
Solving equation systems associated with

non-linear model predictive control
Comparison of two methods to solve equation systems which arise when solving

optimization problems associated with non-linear model predictive control

Erik Ackzell

October 14, 2015

Abstract

When solving optimization problems associated with non-linear model

predictive control, a linear equation system of a specific structure fre-

quently arises. Two different software, CVXGEN and FORCES, devel-

oped to generate tailored solvers to specific optimization problems use

two different methods when solving this equation system. In this paper,

two different sets of software is presented which generate tailored solvers

for this equation system using the two different methods. It is found that

the solvers which implement the method used in FORCES are faster than

the solvers which implement the method used in CVXGEN, as are the

generations of the solvers using the FORCES method.

A third software which generate solvers to optimization problems is

QPgen, which is now not able to generate solvers for non-linear model

predictive control problems. The software presented in this paper is in-

tended to be incorporated in the QPgen software in order to make it able

to generate solvers for these problems as well.

1

0.1 Acknowledgements

I would like to thank my supervisor Pontus Giselsson for his encouraging and
helpful comments throughout my work. I would also like to thank Claus Führer
for always inspiring and guiding me through my studies. Lastly, I would like to
thank my life partner Anna for all her wonderful help and support.

Contents

0.1 Acknowledgements . 2

1 Introduction 3

1.1 Problem formulation and limitations 3
1.2 CVXGEN, FORCES and QPgen 3

2 Theory 4

2.1 Model Predictive Control . 4
2.1.1 Linear MPC . 4
2.1.2 Non-linear MPC . 5

2.2 Cholesky factorization . 5
2.3 LDLT factorization . 5

3 Analysis 7

3.1 Problem to be solved . 7
3.2 Method used in CVXGEN . 8

3.2.1 Description . 8
3.2.2 Implementation in this paper 10
3.2.3 Results . 10

3.3 Method used in FORCES . 13
3.3.1 Description . 13
3.3.2 Implementation in this paper 14
3.3.3 Results . 14

4 Concluding discussion 16

4.1 Discussion of limitations . 16
4.2 The produced software . 16
4.3 Comparing the two methods . 17

4.3.1 Factorization- and solve times 17
4.3.2 Code generation times . 17

5 Further research 17

6 Notations 17

References 19

2

1 Introduction

In this work, the speed of two different methods of solving a linear system of
equations which arise in non-linear model predictive control are compared. One
of the methods appears in the CVXGEN software (Mattingley and Boyd, 2012)
and the other method appears in the FORCES software (Domahidi et al., 2012).
Software which generate tailored solvers to this equation system which imple-
ment the two different methods is presented. The software produced for this
paper is intended to be incorporated in the QPgen software (Giselsson, 2015).

In Section 1.1, a short introduction to the problem formulation is given which
is then expanded in Section 3.1. In Section 2, linear and a version of non-linear
model predictive control is introduced and the Cholesky- and LDLT matrix fac-
torization techniques are described. In Sections 3.2 and 3.3, the two methods
are discussed in detail, the implementations of the methods in the software pro-
duced for this software are described and results on how the generated solvers
performs are presented. In Section 4, the implementations and results are dis-
cussed and some conclusions are drawn, while Section 5 discusses what more
work can be done.

1.1 Problem formulation and limitations

The linear equation which is solved in this paper is given by

Kv = w, (1)

where K is a sparse matrix. Given the structure of K, the software created
for this paper produces problem specific solvers written in C to solve (1) by
exploiting the specific structure of K, but not the data, in order to create fast,
efficient solvers.

The scope of this paper is limited to considering a structure of K which
appears when solving optimization problems associated with model predictive
control. This structure is described in Section 3.1.

1.2 CVXGEN, FORCES and QPgen

CVXGEN (Mattingley and Boyd, 2012), FORCES (Domahidi et al., 2012) and
QPgen (Giselsson, 2015) are three software which all generate problem spe-
cific solvers to optimization problems, given certain parameters describing the
problem.

Limited by size, the CVXGEN software generates solvers for general convex
quadratic programming optimization problem, while the FORCES software is
specifically developed to be used with model predictive control problems and
can handle problems containing a bigger number of parameters than CVXGEN
(Domahidi et al., 2012). The QPgen software generates solvers to convex opti-
mization problems and while solvers generated by both CVXGEN and FORCES
allows for all problem data to be updated in the finished solver (Mattingley and

3

Boyd (2012), Domahidi et al. (2012)), some data in the solvers generated by
the QPgen software needs to be supplied in the generation stage (Giselsson,
2015). When using the QPgen software for model predictive control, it can only
generate solvers for model predictive control for linear systems. The software
produced for this paper is a step in making QPgen able to generate solvers for
non-linear model predictive control.

2 Theory

2.1 Model Predictive Control

Model predictive control (MPC) is a method used in automatic control which
requires a discrete time mathematical model of the process being controlled. At
every time step a minimization problem is solved in order to calculate a control
signal to be sent to the process. Early work on MPC includes Richalet et al.
(1978) and Clarke (1987).

2.1.1 Linear MPC

Let m,n ∈ N
∗. At time step k, let xk ∈ R

n be a vector describing some
parameters of the process which is being controlled, uk ∈ R

m be a vector of
control signals which are sent to the process and let A ∈ R

n xn and B ∈ R
n xm be

some matrices describing the dynamics of the process around some linearization
point such that

xk = Axk−1 +Buk−1. (2)

Furthermore, let some state- and control signal reference at time step k be given
by xref

k ∈ R
n and uref

k ∈ R
m, respectively, and let Q ∈ R

n xn and R ∈ R
m xm

be symmetric positive definite weighing matrices. Set ∆xk = xk − xref
k and

∆uk = uk − uref
k . Given some prediction horizon N ∈ N

∗, an initial state
x0, some limits lx, lu, ux, uu ∈ R and real, full-rank matrices Cx ∈ R

n xn and
Cu ∈ R

m xm, the minimization problem to be solved at time step k = 0 is given
by

min
xi,ui−1,i=1,...,N

N∑

k=1

‖∆xk‖Q + ‖∆uk−1‖R, (3)

subject to (2) and
lx ≤ Cxxk ≤ ux

lu ≤ Cuuk−1 ≤ uu,
(4)

for k = 1, 2, . . . , N . After solving (3) subject to constraints (2) and (4) at
the current time step, the first control signal u0 is sent to the process and the
minimization problem is then solved again at the next time step.

4

2.1.2 Non-linear MPC

One version of non-linear MPC is described in this section. Instead of linearizing
the dynamics of the process around a specific operating point, they can instead
be linearized around some trajectory of operating points such that A and B are
allowed to vary with time. If Q and R are also allowed to vary with time, the
minimization problem (3) subject to (2) and (4) can be replaced with

min
xi,ui−1,i=1,...,N

N∑

k=1

‖∆xk‖Qk
+ ‖∆uk−1‖Rk−1

, (5)

subject to
xk = Ak−1xk−1 +Bk−1uk−1

lx ≤ Cxxk ≤ ux

lu ≤ Cuuk−1 ≤ uu.

(6)

2.2 Cholesky factorization

The Cholesky factor of a matrix M is a lower triangular matrix L such that
LLT = M . By Theorem 6.3.1 in Allaire and Kaber (2008), there exists a
unique Cholesky factor for any real symmetric positive definite matrix M . An
algorithm to obtain a Cholesky factor L ∈ R

N xN of a matrix M ∈ R
N xN can

be observed in Algorithm 1.

Algorithm 1 Cholesky factorization

Initialize L=0 and set L1,1 =
√
M1,1

for i = 2, 3, . . . , N do

for j = i, i+1, . . . , N do

Lj,i−1 = Mj,i−1/Li−1,i−1

end for

for j = 1, 2, . . . , i do
for k = i, i+1, . . . , N do

Mk,i = Mk,i - Lk,jLi,j

end for

end for

Li,i =
√
Mi,i

end for

2.3 LDLT factorization

If M is a square matrix and the pair (L,D) is a unit lower triangular matrix

and a diagonal matrix, respectively, such that M = LDLT, the pair (L,D) is
denoted the LDLT factors of M .

5

Definition 2.3.1. Let E,F be positive definite matrices and let G be any matrix
and define

M =

[

−E GT

G F

]

. (7)

Then M is quasi-definite.

By Theorem 2 in Vanderbei (1995), any symmetric quasi-definite matrix M
is strongly factorizable. This means that regardless of the choice of permutation
matrix P , there exists a unique pair of LDLT factors of PMPT. An algorithm
to obtain LDLT factors L,D ∈ R

N xN of a matrix M ∈ R
N xN is shown in

Algorithm 2. In this algorithm, the strictly lower triangle of the original matrix
M is overwritten by the strictly lower triangle of L, while the diagonal of M is
overwritten by the diagonal elements in D.

Algorithm 2 LDLT factorization

for i = 1, 2, . . . , N do

for j = 1, 2, . . . , i-1 such that Mi,j 6= 0 do

for k = i+1, i+2, . . . , N such that Mk,j 6= 0 do

Mk,i = Mk,i - Mk,jMj,jMi,j

end for

end for

for j = i+1, i+2, . . . , N such that Mj,i 6= 0 do

Mj,i = Mj,i/Mi,i

Mj,j = Mj,j - Mj,jM
2
j,i

end for

end for

6

3 Analysis

3.1 Problem to be solved

This section uses the same naming as in Section 2.1.2. Since Qi, Ri−1 are all
symmetric, Equation (5) can be written as

min
xi,ui−1,i=1,...,N

N∑

i=1

‖xk‖Qk
+ ‖uk−1‖Rk−1

+ qxkxk + quk−1uk−1, (8)

where
qxk = −2(xref

k)TQk

quk−1 = −2(uref
k−1)

TRk−1.

Equation (8) is then equivalent to

min zTHz + qz, (9)

where
z = [x1, x2, . . . , xN , u0, u1, . . . , uN−1]

q = [qx1 , q
x
2 , . . . , q

x
N , qu0 , q

u
1 , . . . , q

u
N−1]

H = blkdiag(Q1, Q2, . . . , QN , R0, R1, . . . , RN−1).

By setting

b = [−A0x0, 0, 0, . . . , 0]

C = blkdiag(Cx, Cx, . . . , Cx, Cu, Cu, . . . , Cu)

l = [lx, lx, . . . , lx, lu, lu, . . . , lu]

u = [ux, ux, . . . , ux, uu, uu, . . . , uu]

A =










−I B0

A1 −I B1

A2 −I B2

. . .
. . .

. . .

AN−1 −I BN−1










,

solving the minimization problem (5) subject to the constraints (6) is equivalent
to solving (9) subject to

Az = b

l ≤ Cz ≤ u.
(10)

Let µ be some unknown vector of appropriate dimension, let λ, y be given vectors
of appropriate dimensions and let ρ ∈ R be some given parameter. When using

7

any of the methods used in QPgen for solving (9) subject to (10), a system of
linear equations which need to be solved is given by

[

H̄ AT

A 0

]

︸ ︷︷ ︸

K

[
z
µ

]

︸ ︷︷ ︸

v

=

[
−q̄
b

]

︸ ︷︷ ︸

w

, (11)

where
H̄ = H + ρCTC

q̄ = q + λTC − ρCy.
(12)

Hence, the problem which is considered in this paper is Equation (11).

3.2 Method used in CVXGEN

3.2.1 Description

In the solvers generated by the CVXGEN software, the K matrix in Equation
(11) is modified and LDLT factorized and this new system of linear equations is
then solved using forward- and backward substitution. After this, the solution
to the original system is determined in an iterative process. In Mattingley
and Boyd (2012) it is assumed that the structure of the L factor in the LDLT
factorization of a matrix A is dependent only on the structure of A and not on
the data. This is exploited in the generated solver, since the structure of K is
known in the generation state.

In the generation state of the CVXGEN software, a permutation matrix P is
obtained such that the number of nonzero elements of the L factor in the LDLT
factorization of the symmetrically permuted modified K matrix is small. The
method used to determine this permutation is the local minimum fill-in method
introduced in Duff et al. (1986) and is described in Algorithm 3.

As mentioned in Section 2.3, an LDLT factorization of a matrix exists if the
matrix is quasi-definite. Since the K matrix is not quasi-definite, K is modified
in the following way

K̃ = K +

[
ǫI 0
0 −ǫI

]

(13)

for some ǫ > 0. This new matrix K̃ is quasi-definite (Mattingley and Boyd,
2012). After solving the modified equation

K̃ṽ = y, (14)

the solution to the original system in Equation (11) can be obtained through
iterative refinement (Mattingley and Boyd, 2012), a process described in Algo-
rithm 4. The iterative refinement of the solution will converge to the solution of
the original system (Mattingley and Boyd, 2012) when the K̃ is chosen in this
way.

8

Algorithm 3 Calculate permutation

1: Initialize Kfinal = K
2: for i = 1, 2, . . . , N-1 do

3: Set K = Kfinal
4: Set f = N2

5: for j = i+1, i+2, . . . , N do

6: Permute rows i and j in K
7: Permute columns i and j in K
8: Factorize K=LDLT

9: Set nnz = number of non-zero elements in L
10: if nnz ≤ f then
11: f = nnz
12: p = j
13: end if

14: end for

15: Save p for later use
16: Permute rows i and p in Kfinal
17: Permute columns i and p in Kfinal
18: end for

Algorithm 4 Iterative refinement

1: Set v(0) = ṽ
2: Set maxit to be the maximum number of iterations
3: for i = 1, 2, . . . , maxit do

4: Obtain δv by solving K̃(δv) = w −Kv(i−1)

5: Update v(i) = v(i−1) + δv

6: if ‖Kv(i) − w‖ ≤ res then
7: break
8: end if

9: end for

9

3.2.2 Implementation in this paper

The programs which implement the method used in the CVXGEN software
consists of a combination of C- and Python scripts. In the Python scripts,
given the dimensions and structures of the matrices described in Section 2.1.2 a
quasi-definite matrix K̃ with arbitrary data is set up using the NumPy library.
A C-script which calculates the permutation P is then called from the Python
script using the ctypes library. When this is finished, another Python script is
called which generates the solver files, using the calculated permutations as well
as the structure of the K matrix.

In the solver file, two different structs are introduced, the square mat - and the
data struct. The square mat struct is used to store full, square matrices and has
two members, an integer for the dimension and a pointer to the first element
in the double array in which the data is stored. The data struct contains all
data which is used by the solver, among which the K and K̃ matrices are kept
as square mats and the diagonal of the D matrix and all vectors are kept as
pointers to the first elements in the array in which they are stored. The data
struct is initialized on the first use of the script.

Most of the functions in the solver exploits the structure of the matri-
ces involved. For example, matrix-vector multiplication, LDLT factorization,
forward- and backward substitution and the function which performs the per-
mutations are all loop free and hard coded in such a way that multiplication by
zeros or permutation of two zeros are omitted when appropriate.

3.2.3 Results

In Figures 1 and 2, factorization-, solve- and generation times and residuals
are shown for two different generated solvers. The results shown in Figure 1
were obtained when the Ai, Bi−1, Qi, Ri−1, Cx and Cu matrices introduced in
Section 2.1.2 were all full. In Figure 2 however, the Ai and Bi−1 matrices
were only about half full and the Qi, Ri−1, Cx and Cu were all diagonal. In

all tests Ai, Qi, Cx ∈ R
4 x 4, Bi−1 ∈ R

4 x 2 and Ri−1, Cu ∈ R
2 x 2, while the

prediction horizon N varies with N = 5, 6, . . . , 50. In the generation state, the
ǫ in Equation (13) was chosen as ǫ = 1.0, while it was chosen as ǫ = 10−6 in the
tests of the generated solvers.

For every choice of N , 50 000 tests were run and the average factorization-
and solve times as well as average residuals are shown, while the solver genera-
tion times shown are results of one test per choice of N . The average number
of iterations in the solution refinement step was two for every choice of N . All
tests were conducted on a Windows laptop with a 1.80GHz 64-bit dual core
processor and 8Gb RAM.

10

100 200 300 400 500
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

ti
m

e
 [

s]

Factorization time

Solve time

100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

re
si

d
u
a
l
[1

]

1e−8

Residual

Accepted residual

100 200 300 400 500

system dimension

0

100

200

300

400

500

600

ti
m

e
 [

s]

Generation time

Figure 1: In this figure, the results when using the CVXGEN method for solving
Equation (11) are shown. In the upper plot, the factorization- and solve times
are shown with dashed and solid lines, respectively. In the middle plot, the
accepted residual and the actual residuals, both measured in the two norm, are
shown with dashed and solid lines, respectively, while the last plot shows the
time taken to generate the solver. The first two plots shows average results when
50 000 tests were run, while the last plot only shows the results from one test. In
these tests, using the same naming as in Section 3.1, the Ai, Bi−1, Qi, Ri−1, Cx

and Cu matrices are full. As can be seen, the factorization times grows much
more rapidly than the solve times. Furthermore, the actual residual is more
than an order of magnitude smaller than what is accepted and the generation
time grows exponentially with the size of the problem.

11

100 200 300 400 500
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

ti
m

e
 [

s]

Factorization time

Solve time

100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

re
si

d
u
a
l
[1

]

1e−8

Residual

Accepted residual

100 200 300 400 500

system dimension

0

100

200

300

400

500

600

ti
m

e
 [

s]

Generation time

Figure 2: In this figure, the same number of tests are run and the same method
is used as in Figure 1. However, this figure shows the result when using only half
full matrices Ai, Bi−1 and diagonal matrices Qi, Ri−1, Cx and Cu. Comparing
with Figure 1, both the factorization- and solve times are reduced slightly as is
the generation time for almost all dimensions. However, the actual residual is
slightly larger than in Figure 1.

12

3.3 Method used in FORCES

3.3.1 Description

In this section, the method used in Domahidi et al. (2012) to solve Equation
(11) is described. The method exploits the banded structure of K. Using the
same naming as in Section 2.1.2, for i = 1, 2, . . . , N , set

Q̂i = Qi + ρCT
x Cx

R̂i−1 = Ri−1 + ρCT
u Cu

Y = AH̄−1AT

=











Y1,1 Y1,2

Y T
1,2 Y2,2

. . .

. . .
. . .

YN−1,N

Y T
N−1,N YN,N











,

where







Y1,1 = Q̂−1
1 +B0R̂

−1
0 BT

0

Yi,i+1 = −Q̂−1
i AT

i i = 1, 2, . . . , N − 1

Yi,i = Q̂−1
i +Bi−1R̂

−1
i−1B

T
i−1 +Ai−1Q̂

−1
i−1A

T
i−1 i = 2, 3, . . . , N.

Solving Equation (11) is then equivalent to solving

Y µ = β (15a)

β = −b−AH̄−1q̄ (15b)

H̄z = −q̄ −ATµ. (15c)

First determine the Cholesky factors of Q̂i and R̂i−1 for i = 1, 2, . . . , N ,

Q̂i = L
Q̂i

LT
Q̂i

R̂i−1 = L
R̂i−1

LT
Ri−1

.

Then solve
ViL

T
Qi

= I

Wi−1L
T
Ri−1

= Bi−1

and set up

13







Y1,1 = V1V
T
1 +W0W

T
0

Yi,i+1 = −ViV
T
i AT

i i = 1, 2, . . . , N − 1

Yi,i = ViV
T
i +Wi−1W

T
i−1 +Ai−1Vi−1V

T
i−1A

T
i−1 i = 2, 3, . . . , N.

Each block Yi,j is then factorized







Y1,1 = L1,1L
T
1,1

Yi,i+1 = Li,iL
T
i+1,i i = 1, 2, . . . , N

Yi+1,i+1 − Li+1,iL
T
i+1,i = Li+1,i+1L

T
i+1,i+1 i = 1, 2, . . . , N,

where Li,i is lower triangular and Li,i+1 might be full. When this is done and
β is set up, Equations (15a) and (15c) are solved using backward- and forward
substitution.

3.3.2 Implementation in this paper

Just as with the implementation of the CVXGEN method, the software pro-
duced for this paper which implements the FORCES method consists of both
C- and Python scripts. All needed dimensions are passed to a Python function,
which then generates the solver which consists of one header file and one main
file. In a similar way as in the implementation of the CVXGEN method, differ-
ent structs are introduced to store matrices as well as all data needed to solve
the problem.

In the generated solvers, only the blocks of the block- and tri-block diagonal
matrices are stored and the lower triagonal matrices are stored as full matrices.
The block- and tri-block diagonal structure is then exploited in the backward-
and forward substitution steps.

3.3.3 Results

In Figure 3 results when testing generated solvers using the FORCES method
are shown, along with solver generation times. With the same naming as in
Section 2.1.2, the Ai ∈ R

4 x 4 and Bi−1 ∈ R
4 x 2 matrices used are both full, as

are the Q̂i ∈ R
4 x 4 and R̂i−1 ∈ R

2 x 2 matrices mentioned in Section 3.3.1. For
every choice of prediction horizon N = 5, 6, . . . , 50, the average factorization
times, solve times and residuals of 50 000 tests are shown. For every choice of
N , one solver generation time was measured. All tests were conducted on a
Windows laptop with a 1.80GHz 64-bit dual core processor and 8Gb RAM.

14

100 200 300 400 500
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

ti
m

e
 [

s]

Factorization time

Solve time

100 200 300 400 500
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

re
si

d
u
a
l
[1

]

1e−15

Residual

100 200 300 400 500

system dimension

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ti
m

e
 [

s]

Generation time

Figure 3: In this figure, the results obtained when using the FORCES method
are shown. In the first plot, factorization- and solve times are shown with
dashed and solid lines, respectively. With the same naming as in Section 2.1.2,
the Ai and Bi−1 matrices are full, as are the Q̂i and R̂i−1 matrices introduced
in Section 3.3. The first two plots shows average results when 50 000 test were
conducted, while the last plot only shows results from one test. It can be seen
that the factorization times increase more rapidly than the solve times as the
size of the problem is increased. The residuals also increase with the size, while
the generation times remain around 0.5s apart from the first generated solver.

15

4 Concluding discussion

4.1 Discussion of limitations

Since the solver generation time is quite long for big systems when producing
solvers which use the CVXGEN method, only one generation time per prediction
horizon was measured. Even though this might be enough to see that the these
solvers take much more time to generate than the solvers using the FORCES
method, the tests might not be enough to give an accurate estimate of how long
time code generation actually takes. Since a goal of this paper is to compare
the methods in an equal way, only one generation time per prediction horizon
was measured for generation of the solvers using the FORCES method as well.
This might indicate that the large difference in generation time for the solver
for the smallest problem compared to all other problem sizes, as seen in Figure
3, is only a random occurrence.

When using solvers which use the FORCES method, no accepted residual can
be specified. Since the tests of the solvers which use the CVXGEN method were
all conducted with an accepted residual of 10−8, the comparison of the efficiency
of the two methods is only relevant for this specific choice of residual.

The relatively large choice of ǫ = 1.0 in Equation (13) in the code genera-
tion step of the implementation of the CVXGEN method was made in order
to minimize errors due to numerical instability. For this specific choice of ǫ, all
LDLT factorizations in the generation step succeeded, while a smaller choice
sometimes resulted in failed factorizations in the generation step. In all testing,
all solvers of both methods always succeeded in solving the system of linear
equations.

4.2 The produced software

The two considered methods are implemented in two different sets of software.
The structures of these are quite similar but differ in some aspects. Different
from the solvers implementing the CVXGEN method, the solvers implement-
ing the FORCES does not consider the structure of the individual matrices
Ai, Bi−1, Q̂i and R̂i−1 apart from what dimensions they have. If for example

the Q̂i and R̂i−1 are diagonal, exploiting this might speed up the generated
solvers. Furthermore, the solvers produced by the software implementing the
CVXGEN method are free from for loops and are quite difficult to read, while
the solvers generated using the FORCES method are far more readable.

16

4.3 Comparing the two methods

4.3.1 Factorization- and solve times

When comparing factorization times of the two methods, the FORCES method
is much faster than the CVXGEN method. Since the FORCES software is spe-
cialized to solving only MPC problems, this is expected. However, the difference
in solve time is much smaller, even though the FORCES method is slightly faster
even here. In Figures 1 and 2 it can be observed that lower denseness of the
individual matrices which made up the K̃ matrix in Equation (14) resulted in
faster factorization times as well as faster solve times when using the CVXGEN
method.

4.3.2 Code generation times

The local minimum fill-in method used in Mattingley and Boyd (2012) is very
time consuming, while the solver generation time using the FORCES method
is very fast. However, since the generation state is only done once, this is not
necessarily an issue and might be negligible cost for a fast and efficient solver.
Just as with factorization- and solve times, the generation time of the solvers
which implemented the CVXGEN method was reduced as the denseness of the
individual matrices making up the K̃ matrix was decreased.

5 Further research

When generating the solvers which use the CVXGEN method, the level of fill-in
in the L matrix LDLT factorization of the K̃ matrix seemed to be related to the
structure of the individual matrices which make up the matrix, and not only
their denseness. This might be interesting to study further.

There are still several things in the software produced for this paper which
can be improved, including making the generated solvers which use the FORCES
method able to exploit the structures of the individual matrices which make up
the system of linear equations to be solved. Furthermore, the way that matrices
are stored in the solvers generated using the CVXGEN software can be made
more efficient. Small modifications must be made to make the software produced
for this paper compatible with the QPgen software.

A method presented in Patrinos and Bemporad (2014) to solve the equation
system might also be of interest to compare with.

6 Notations

S∗ = S\{0}

‖v‖M = vTMv

17

If v ∈ R
m then a ≤ v ≤ b ⇔

{
a ≤ vi ≤ b ∀i if a, b ∈ R

ai ≤ vi ≤ bi ∀i if a, b ∈ R
m

18

References

G. Allaire and S. M. Kaber. Numerical linear algebra [Electronic resource].
Texts in applied mathematics: 55. New York, NY : Springer, c2008., 2008.
ISBN 9780387689180.

D. Clarke. Generalized predictive control Part I. – The basic algorithm. Auto-
matica, 23(2):137–148, 1987.

A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones.
Efficient interior point methods for multistage problems arising in receding
horizon control. 51st IEEE Conference on Decision & Control (CDC), 2012.
ISSN 9781467320658.

I. S. Duff, A. Erisman, and J. K. Reid. Direct Methods for Sparse Matri-
ces. Monographs on numerical analysis. Oxford: Clarendon, 1986. ISBN
0198534086.

P. Giselsson. QPgen, 2015.
http://www.control.lth.se/user/pontus.giselsson/qpgen/index.html.

J. Mattingley and S. Boyd. CVXGEN: A code generator for embedded convex
optimization. Optimization and Engineering, 13(1):1–27, 2012.

P. Patrinos and A. Bemporad. An accelerated dual gradient-projection algo-
rithm for embedded linear model predictive control. IEEE Transactions on
Automatic Control, 59(1):18 – 33, 2014. ISSN 00189286.

J. Richalet, A. Rault, J.L Testud, and J. Papon. Model predictive heuristic con-
trol: applications to industrial processes. Automatica, 14(5):413–428, 1978.

R. J. Vanderbei. Symmetric quasi-definite matrices. SIAM Journal on Opti-
mization, 5(1):100–113, 1995.

19

