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Abstract

We are living in a noisy world. Communication is an important part of our ev-
eryday life and is easily disturbed by noisy environments, making communication
difficult at times. When listening to a speech signal through a loudspeaker in a
noisy environment, it can be troublesome to comprehend the speech. A solution
to this is an adaptive gain control and a psychoacoustic filter for the loudspeaker.

This thesis presents a digital adaptive gain control for a loudspeaker where
the gain will depend on the near end noise. The noise is recorded by a single
microphone and the adaptive gain control adjusts the output gain of the loud
speaker so it increases the signal to noise ratio for the near end user. This can
for example be used by door-station devices at train stations, near busy streets,
street alleys or indoor environments. The proposed system consists of a voice
activity detector based on kurtosis, a power estimator to estimate the noise power
without possible speech and a gain block which calculates the output gain factor.
The system will not only consider the loudness of the noise but also its frequency
characteristics. By using psycho acoustics, an adaptive filter is applied to the
far end speech signal in order to enhance the speech intelligibility, based on the
frequency information obtained from the near end noise signal. The system is
implemented in MATLAB in real time.
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Chapter 1
Introduction

1.1 Background

We are living in a noisy world, which makes communication difficult at times when
the noise from the environment is at a disturbing level. There are several speech
enhancement methods to reduce the noise and make the desired speech signal
more comprehensive. In all applications where microphones are used the desired
signal is mixed with noise. Speech enhancement means to enhance the intelligi-
bility of speech signals, either by noise reduction, dereverberation, separation of
independent signals or frequency dependent gain.[15]

Noise reduction is applied on digital signals and the clean signal is either
sent to another device or loudspeaker. However, the person situated in the noisy
environment will not be able to reduce the noise that he or she is experiencing.
Loud noise makes it difficult to listen to a conversation and information might be
masked or overpowered by the noise. When it is not possible to reduce the noise,
it is desired to increase the gain of the desired speech signal, that is where an AGC
comes in handy.

1.2 Objectives

The main goal of this thesis project is to develop a digital system that will enhance
the near end user’s listening experience, when using a communication device with
a loud speaker and a single microphone.

1.3 About AXIS - New Business

This thesis has been made and carried out at the New Business department at
AXIS Communications AB. AXIS is a company based in Sweden that develops
network cameras with intelligent security solutions. AXIS has over 2000 employees
in over 40 countries and distributors in 70 countries. Their products are used
in public areas such as stores, airports, trains, highways, universities and their
turnover for 2013 was SEK 5450 million. AXIS was founded in 1984 by Martin
Gren, Mikael Karlsson, and Keith Bloodworth in Lund. Their initial focus was
on protocol converters and printer interfaces for connection of PC printers, but
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2 Introduction

started developing network cameras in year 1996 and is now world leading within
their field. Lately AXIS has expanded its product field to include physical access
control devices such as door stations and card readers.

1.3.1 AXIS A8004-VE Network Video Door Station

One of AXIS new products is the A8004-VE Network Video Door Station, and
this thesis has been limited to find solutions for similar products. See figure 1.1.

"AXIS A8004-VE Network Video Door Station is an open, non-proprietary
IP-based door station for two-way communication, video identification and remote
entry control. It is a perfect complement to any surveillance installation and of-
fers new possibilities to effectively control entry to your premises. The use of IP
standards and the open interface makes it easy to integrate AXIS A8004-VE in
smaller installations as well as more advanced enterprise systems" [3]

A8004-VE has a built-in camera, microphone and loudspeaker and uses an
audio codec with 16 kHz sampling frequency. The audio output is 85 dBSPL at
0.5 m. [3]

Figure 1.1: AXIS A8004-VE Network Video Door Station. The door
station is equipped with a camera, microphone, loudspeaker and
dial button.



Introduction 3

1.4 Thesis Outline

Chapter 2 introduces the reader to the problem setup and explains why classic
cancellation algorithms are not used. Furthermore, related work and existing re-
search in the same field is presented.

Chapter 3 explains the underlying theory which the proposed solution is based
on. Such as basic signal processing theory, filter banks, psychoacoustics, voice
activity detection, and speech and noise characteristics.

Chapter 4 presents the proposed solution and explains the method and the al-
gorithms. Previous methods are discussed and the equipment and measurement
method is explained.

Chapter 5 displays the results of the evaluation of the proposed system. SNR
and PESQ enhancements have been measured for both the linear and exponential
AGC with and without the psychoacoustic filter. Furthermore, the tunable AGC
parameters are evaluated.

Chapter 6 discusses and summarizes the results and measurement of the pro-
posed system and gives examples of future work that can be done in order to
improve the system.

Appendices includes formula tables for each block in the proposed system in or-
der to ease an implementation of the system by the reader. A section with all the
speech and noise files that have been used in the project are displayed in graphs
in the time and frequency domain.
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Chapter 2
Problem Setup

2.1 Identifying the Problem

When listening to a speech signal through a loudspeaker in a noisy environment,
it can be difficult to comprehend what is being said if the background noise is
unusually loud or if sudden undesired noise peaks appear. For instance, in door
station devices, the noise in the environment in which the device is placed might
mask important frequency components of the speech signal. The effect of this
is degraded comprehension of the speech for the near end user. The degraded
comprehension derives from simultaneous masking and low SNR, due to noise
that is added to the speech signal.

A solution to this is an AGC which analyzes the loudness of the noise and
automatically adjusts the gain of the speech signal. By doing this the SNR can be
increased by the near end users ear and increase speech intelligibility. In addition
to this, a psychoacoustic filter can be switched on to enhance the signal even
further.

Figure 2.1 describes the problem setup for a door station device. The receiver
of the signal, near end user, receives the speech signal through the loudspeaker
output. A microphone is used primarily for communication from the near end user
to the far end user, but is also used to record and analyze background noise. If

Figure 2.1: Problem setup for door station device.
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6 Problem Setup

noise appears in the environment of the near end user, the SNR value is decreased
at the near end user’s ear which leads to reduced speech intelligibility. There is a
need to improve the intelligibility and quality of the speech in noisy environments.

2.1.1 Why cancellation algorithms are not used

Since the noise appears in the near end user’s environment, noise cancellation
algorithms are not suitable as a solution. Noise cancellation algorithms focus on
removing additive noise from the desired signal, whilst in this particular problem
it is impossible to remove the noise since it arrives directly at the near end user’s
ear.

2.2 Related Work and Existing Research

This section discusses similar approaches of solving degraded comprehension of
speech for the near end user as this thesis describes. The concept of increased
speech intelligibility in communication systems is not a new field of research. Al-
though it has in the last decades become more focused on trying to actively cancel
the noise or enhance the desired signal in noisy environments.

2.2.1 Active Noise Control

ANC is a method for reducing undesired noise and is achieved by introducing
a cancelling anti-noise wave through secondary sources. The challenges are to
identify the original signal and at the same time generate the inverse without delay
in all directions where the noises interact. If the original wave and the inverse of
the original wave encounter at a junction at the same time, total cancellation will
occur. ANC has become possible in recent years due to the fast development
of modern computers which enables systems with microphones, sensors and DSP
boards to produce the anti-noise of an acoustic noise signal. The main purpose of
the ANC is to block low-frequency-real-life noise since most noises occur below 1
kHz for example trains and air-crafts. [33]

ANC was first theorized by Lueg [33] in 1936 by measuring the sound field
with a microphone and then feeding it to an electroacoustic secondary source. In
1953, Olson and May [33] presents another system for ANC. They used a feedback
method to cancel sound by feeding the signal from a much closer microphone to a
second loudspeaker. It was not until 1975 that the first digital techniques to achieve
the precise balance required for feed-forward active control were introduced. [33]

ANC has during the past decades got more research attention due to its posi-
tive results and advantages in cancelling low frequency noise [26]. ANC has been
applied in various industrial applications such as car cabin noise cancellation and
active noise reduction headsets for people working near air crafts or in noisy fac-
tories to protect their hearing [26, 33]. Today ANC is also a common feature in
headsets for home computers. ANC still has challenges, such as controlling im-
pulsive noise. For example stamping machines in manufacturing plants or pump
sounds in hospitals [26].
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2.2.2 Automatic Gain Control

Speech enhancement based on AGC can be used to increase the volume of the
desired signal. This method has many names and can also be called Automatic
Volume Control or Adaptive Gain Control. AGC adjusts the volume in equipment
with at least one microphone such as mobile phones, personal media players, head-
sets, car radios that might be used in noisy environments, such as crowds, cars,
and outdoors. Most used AGC techniques are patented.[18]

For example many sources of noise can interfere when listening to a car radio
such as wind, engine noise, traffic noise, fans and noise made by the driver and
passengers. By using AGC, the driver will not have to manually adjust the volume
and increases the safety on the road by focusing entirely on driving. [18]

Another example is when using a mobile phone in noisy environments. Mobile
phones are used outdoors, in crowds and other environments where the background
noise is non stationary. It is not desired by the user to constantly adjust the volume
manually and an AGC feature could solve this problem. [18]

2.3 Limitations

The thesis is limited to find solutions for similar products as the AXIS A8004-
VE Network Video Door Station. Due to the specifications of the A8004-VE the
loudspeaker has an output limit. The maximum output gain must be restricted to
a point where the loudspeaker does not decrease its quality, this usually is where
the loudspeaker starts to distort. The limit is different for different loudspeakers
and must be manually adjusted in the system. Another reason of limiting the gain
is because too loud speech can be uncomfortable to listen to.

The system has been limited to a distance of 0.5 - 1 meter between the near
end user and the device since this is a normal distance for usage of a door-station
device. The network and the effect that can be caused by the network between
far end and near end is not tested during the measurements and is out of the
scope of this thesis. This includes network latency, loss of packages, third party
software and other various effects that can arise. The system is developed for
communication applications and is not tested for music. It is assumed that there
will be access to echo cancellation or some sort of echo reduction which can be
integrated with the system. If no echo reduction is present, feedback from the
loudspeaker to the microphone can lead to unwanted gain increase.
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Chapter 3
Theory

This chapter explains the fundamental concepts that have been used during this
thesis. First some basic concepts of signal processing such as sampling, signal
power, Fourier transforms and filter banks are introduced. Then an introduction
to psychoacoustics is presented with the theory of the human auditory system,
auditory masking and the Lombard effect. VAD and the characteristics of speech
and noise are explained and finally some relevant subjective and objective mea-
surements of speech quality are discussed.

3.1 Input parameters

The input signal to the system is denoted

x(t) = s(t) + n(t) (3.1)

where n(t) is the noise signal and s(t) is the speech signal. The input x(t) will
following be named x(n) as the input is in the discrete time domain.

3.1.1 Sampling

The continuous time domain t and the discrete time domain n are related through
the sampling period T or, equivalently, through the sampling rate fs = 1/T with
the relationship

t = nT =
n

fs
. (3.2)

One must be aware of using the Nyqvist frequency criterion when sampling in
order to avoid aliasing. The Nyqvist criterion is defined as

fmax ≤
fs
2
. (3.3)

3.2 Energy and Power in Discrete Time

The energy, E, of a discrete time signal x(n) is defined as

E =

∞∑
n=−∞

|x(n)|2. (3.4)
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10 Theory

The definition is also valid for complex valued signals since the usage of squared
magnitude values. The energy can be either finite or infinite. If the signal x(n)
has infinite energy, it may instead have finite power. The power is defined as

P = lim
N→∞

1

2N + 1

N∑
n=−N

|x(n)|2 (3.5)

and if the power is non-zero and finite it is called a power signal
Since signals in real time applications are divided into frames, i.e the signals

are of finite length, it is preferable to use the definitions for short term energy and
average power. The short term energy, Eshort, for a signal x(n) of length N is
defined as

Eshort =

N−1∑
n=0

|x(n)|2. (3.6)

The short term average power, Pshort, for a signal x(n) of length N is defined as

Pshort =
1

N

N−1∑
n=0

|x(n)|2. (3.7)

It is clearly understood that if the energy E is finite, the average power P = 0.
It is also clear that if the energy E is infinite, the average power P is finite or
infinite.

3.2.1 Power Spectrum Density

The total power spectrum density, PSDtotal, of a discrete time signal x(n) is defined
as

PSDtotal =

∞∑
k=−∞

|c(k)|2 (3.8)

where c(k) is the k:th harmonic component of the signal. The power of a single
frequency bin (sub-band), k, is defined as

PSD(k) = |c(k)|2. (3.9)

3.2.2 Decibel Scale

To convert power into decibel scale, the following equation is used

PdB = 10 · log10(P ) (3.10)

where P is the power or energy retrieved from any of the equations (3.4-3.8).
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3.2.3 Signal to Noise Ratio

SNR is a measure of how strong the desired signal is in proportion to the added
unwanted noise signal. The ratio in power is defined as

SNR =
Psignal
Pnoise

(3.11)

and the ratio in dB is defined as

SNRdB = 10 log10

(
Psignal
Pnoise

)
= Psignal(dB) − Pnoise(dB). (3.12)

The SNR is more convenient to interpret in dB since SNRdB values below zero
indicate that the noise is stronger than the desired signal, and values above zero
indicate that the desired signal is stronger than the unwanted noise. According to
Moore [20] a SNR of +6 dB is necessary for satisfactory communication. Other
studies indicate that maximum word recognition is achieved at a SNR of +10 dB
to +15 dB. [20]

3.3 Discrete Fourier Transform

Any periodic function can be represented by a sum of sines and cosines, called
Fourier series. The Fourier transform is an extension of the Fourier series, but with
support for non-periodic functions as well. An approximation of the continuous
Fourier transform is made with the DFT. In order to transform a discrete time
signal from the time domain to the frequency domain the DFT

X(k) =

N−1∑
n=0

x(n)W kn
N , 0 ≤ k ≤ N − 1 (3.13)

where N is the number of samples and

WN = e−j2π/N . (3.14)

The inverse DFT from frequency domain back to time domain becomes

x(n) =
1

N

N−1∑
k=0

X(k)W−nkN , 0 ≤ n ≤ N − 1. (3.15)

3.3.1 Fast Fourier Transform

FFT is an efficient computation of the DFT using FFT algorithms. Direct compu-
tation of the DFT is often inefficient because it does not take the symmetry and
periodicity of the phase factor WN into account. The symmetry property is

W
k+N/2
N = −W k

N (3.16)

and the periodicity property is

W k+N
N = W k

N . (3.17)
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There are many different FFT algorithms. The one of relevance to this thesis is
the one that MATLAB uses which is a variation of algorithms to optimize the
computation efficiency for different sizes of N [7].

3.4 FFT Filter Bank

When performing real-time signal processing the input sequence x(n) must be
divided into time frames due to limited memory and to be able to be processed by
the FFT. FFT filtering is linear and can hence process time frames one at a time.
These time frames are divided into filter banks which consists of an analysis and
a synthesis part.

3.4.1 Analysis

The analysis filter divides the input signal into parallel banks, also called sub-
bands as seen on the left side in figure 3.1. When using a FFT as an analysis filter
the input signal in the time domain becomes divided into sub-bands of complex
numbers in the frequency domain, where the number of sub-bands are dependent
of the size of the FFT. Each sub-band represents a frequency range decided by the
sampling frequency fs. The frequency range for each sub-band can be determined
with

k · fs
N

(3.18)

where N is the size of the FFT and k is the number of the sub-band, 0 ≤ k ≤ N−1.
One should observe that when k ≥ N

2 , representation of negative frequencies
occurs. This can also be seen as mirroring of the frequencies when looking in
the unit circle or in an magnitude spectrum. The lower half of the unit circle is a
conjugate version of the upper circle. This fact can be used to discard the negative
frequencies which will save computation time, however when making an inverse
FFT this half needs to be added again for reconstruction.

To compute FFTs faster, a FFT size of the power of two should be chosen
and the size should not be less than the number of samples being transformed.
A bigger FFT size leads to a higher resolution but will increase the computation
time.

3.4.2 Synthesis

Synthesis is performed to reconstruct signals from the frequency domain back to
the time domain as can be seen on the right side in figure 3.1. When reconstructing
real time data frames from a filter bank, one must observe that the beginning and
end of the frames can have been altered. This alteration can create clipping sounds
in between the frames. When adding frames in a time sequence, these clipping
sounds are undesired. To prevent the undesired clipping one can use a method
called WOLA.
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Figure 3.1: Analysis filter using FFT and synthesis filter using IFFT

Weighted Overlap-and-Add

WOLA is used when reconstructing a FFT signal back to its discrete time domain
by smoothing the "cuts" done by the FFT by overlapping and adding windowed
frames, see figure 3.3. When performing WOLA a delay will be introduced de-
pending of the size of the overlap. If an overlap of 75% is used, a delay of three
frames will be introduced. Each overlap is multiplied with a hanning window to
smoothen the beginning and the end of the frames, see figure 3.2 and 3.3.

As seen in figure 3.2 an overlap and add will sum the overlapping hanning
windows which increases the amplitude of the output signal. In order to create
a non modified amplitude a weighted constant will be multiplied to the overlap
which will give a correct output amplitude. For the first overlap, three frames of
padded zeros will be added. For each time frame, the first frame in the overlap
will be sent to the output and a new frame will be added, see figure 3.3.

3.5 Psychoacoustics

Psychoacoustics is synonym for the field of human speech perception: the science
of the hearing system as a receiver of acoustical information [38]. In this section a
brief introduction of some of the theory in psychoacoustics will be explained: the
human auditory system, critical bands, auditory masking, psychoacoustic model-
ing and Lombard effect.

3.5.1 Human Auditory System

The human auditory system is the sensory system of the human body that pro-
cesses sound signals. Figure 3.4 describes the human ear. The outer ear is com-
posed of the pinna and the outer part of the auditory canal. The middle ear
is composed of the ear drum and a mechanical transducer that consists of the
malleus, incus and stapes. The inner ear is composed of the cochlea, the basile
membrane and the auditory nerve. [13]
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Figure 3.2: An overlap of 128 samples can be seen in each window,
where each overlap contains 4 frames of length 32 samples

Outer Ear

The pinna is the part of the ear that is visible and its task is to gather sound
into the ear. By for example cupping your hand behind the pinna it increases its
effective size, and by doing so it gathers more sound into the ear. The pinna also
contributes to the determination of direction of sound since the information of the
direction is stored in the sound content. The pressure it creates on the ear drum
enables the brain to interpret both the content of the sound and its direction.
The auditory canal, also called the ear canal, increases the loudness of the sound
entering it. The canal is a pipelike channel with an average diameter of 0.7 cm
and length of 2.5 cm. [17]

Middle Ear

The purpose of the middle ear is to transfer the energy of airborne sound waves
into the fluid like medium in the cochlea. This is done by the vibrations created in
the ear drum and then transferred through the mechanical transducer, the ossicles.
[17]

Inner Ear

The cochlear in the innear ear is about the size of a pea, twisted like a cockleshell,
where its name originates from, and filled with a fluid like medium. The inner ear
transfers the sound vibrations in the fluid to electrical impulses to the auditory
nerve and inteprets them in the brain. The basilar membrane which moves with
the wave vibrations in the cochlea is filled with over 30000 small hair cells, called
stereocilia. The stereocilia picks up the vibrations and acts like microphones,
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Figure 3.3: Weighted Overlap-and-Add method visual description.
Observe that input r=1 during time t=0 is buffered in the over-
lap and add method.
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Figure 3.4: The human auditory system [13]
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Figure 3.5: Maximum safety noise level for the human ear with its
exposure time [24].

transducers that convert mechanical vibration to electrical signals that are sent
through the surrounding tissue and the auditory nerve to the brain. [17]

Hearing Area

The human ear can perceive and process frequencies approximately between 20
Hz to 20000 Hz, which decreases with aging. The hearing system is frequency
selective. It means that different frequencies have different hearing thresholds.
Low and high frequencies need a higher sound pressure level in order to be audible
for humans. Speech is usually composed by frequencies in the range 500 Hz to
5000 Hz, where the hearing thresholds are low. [12]

In figure 3.5 the maximum dBSPL-level with its exposure time is shown for
the human ear before it starts to take damage. It is usually considered that 15 dB
below the peak value is regraded as an effective value and should not be exceeded
[24]. A normal conversation at a distance of 1 meter is usually around 55-65
dBSPL [30].

Absolute Threshold of Hearing

The ATH curve represents the minimum sound level of a tone that a person, with
normal hearing, can distinguish in quiet surroundings. The threshold, Tq, can be
approximated with the empirical equation [32]

Tq(f) = 3.64
( f

1000

)−0.8
− 6.5e−0.6

(
f

1000−3.3
)2

+ 10−3
( f

1000

)4
. (3.19)

The curve is plotted in figure 3.6 with frequency along the abscissa and sound
pressure level along the ordinate. Everything below the curve is inaudible for the
human ear.
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Figure 3.6: Absolute threshold of hearing plotted with equation
(3.19).

Critical Bands

In 1940, Fletcher suggested, after experiments of measuring the threshold of a
sine wave as a function of the bandwidth of a bandpass noise masker, that the
human auditory system behaves as if it contains a bank of bandpass filters with
overlying passbands. These filters are now often referred to as auditory filters.
Fletcher found that different parts of the basilar membrane (see figure 3.7) in
the inner ear corresponds to different bandpass filters. The filters purpose is to
filter unneccessary or unwanted noise from the desired signal. When trying to
distinguish a signal in a noisy background, the listener makes use of auditory
filters with a center frequency close to the desired signal. This removes noise that
is located far away from the desired signal frequencies. A simplified model of the
auditory filters is shown in figure 3.7. [2, 29]

Critical bands refer to a simplified model of the auditory filters, making the
assumption that the auditory filters are rectangular. Rectangular filters means
that everything within the passband is passed equally and everything outside the
passband is removed. Critical bands have a central role in auditory masking, which
is presented in section 3.5.2. Signals that occur within the same critical band are
difficult to separate. [29, 32]

The Bark scale is a uniform measure of the critical bandwidths of the critical
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Figure 3.7: Auditory filters [2]

bands. The relation between frequency in Hz and Bark, zb, is defined as [32]

zb(f) = 13 arctan(0.00076f) + 3.5 arctan

[( f

7500

)2]
(3.20)

where f is the frequency in Hz.
"The published Bark band edges are given in Hertz as [0, 100, 200, 300, 400,

510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400,
5300, 6400, 7700, 9500, 12000, 15500]. The published band centers in Hertz are
[50, 150, 250, 350, 450, 570, 700, 840, 1000, 1170, 1370, 1600, 1850, 2150, 2500,
2900, 3400, 4000, 4800, 5800, 7000, 8500, 10500, 13500]" [35].

3.5.2 Auditory Masking

Suppose that a sound, A, with a threshold of hearing at 50 dBSPL is presented. A
second sound, B, is then presented at the same time as sound A, and the threshold
of hearing for sound A is measured again. Now the threshold has risen to, say, 60
dBSPL. Sound A has a 50 dBSPL threshold of hearing in quiet and a 10 dB higher
threshold in the presence of sound B. This phenomena is called masking. [22] In
this example, sound A has been masked by sound B, the sensitivity for sound A
has been affected by the presence of sound B. Sound A is called the maskee and
sound B the masker.

Masking occurs constantly in our everyday life. For example if you are having
a conversation nearby a busy street and a loud truck passes by, parts of, or the
whole conversation might be masked by the truck. There are two ways to overcome
the masking, either by raising your voice to increase the loudness of the speech
and overpower the noise from the truck (see section 3.5.3 for Lombard effect), or
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by waiting until the truck has passed and then continue the conversation. [38]
Masking can take place in the frequency domain, called simultaneous masking,
and in the time domain, called temporal masking.

Simultaneous Masking

Masking of one sound is highly dependent of the intensity and spectrum of the
masker. Simultaneous masking refers to when a masker masks other nearby fre-
quencies, so one must not only focus on how much a masker masks, but also at
which frequencies it will mask [22]. There are two different maskers, tonal maskers
and noise maskers. A tonal masker is a pure tone, which has a narrower spectra
than a noise masker, see equations (3.21 - 3.24). The tonal maskers are defined in
the tonal set, ST . The tonal set, ST , is defined as [13]

ST =

{
PSD(k)

∣∣∣∣ PSD(k) > PSD(k ± 1),
PSD(k) > PSD(k ±∆k) + 7dB

}
(3.21)

where ∆k describes how many neighbouring critical bands are included in the tonal
set of the subband k, and fs the sampling frequency. ∆k is defined as

∆k ∈

 2 (0.125− 5.5)kHz
[2, 3] (5.5− 11)kHz
[2, 6] (11− 20)kHz

. (3.22)

With a FFT with length of N = 128 and fs = 16000 Hz, ∆k is defined as

∆k ∈
{

2 2 < k ≤ 45 (0.125− 5.5)kHz
[2, 3] 45 < k ≤ 65 (5.5− 11)kHz . (3.23)

For each spectral peak in ST , energy from three adjacent spectral components
centered at the peak are summed to form a single tonal masker. The tonal maskers,
PTM (k), computed from the spectral peaks listed in ST , are defined as

PTM (k) = 10 log10

1∑
j=−1

100.1PSD(k+j) (dB). (3.24)

In figure 3.8 an example of a tone masker at 1000 Hz is shown. The masker tone
has a dB-level at 66 dBSPL, and the two other tones with frequencies 1100 Hz
and 1600 Hz both have a dB-level at 40 dBSPL. The dot-dashed line in the figure
represents a masking threshold, meaning that everything below it is inaudible for
the human ear if presented together with the tonal masker. In this example the
tonal masker will mask the 1100 Hz tone, but not the 1600 Hz tone.

If a sound is not a tone, it is noise. In order to find noise maskers one have to
consider all the frequency components which are not neighbours of a tone, as noise
[32] . A noise masker is the sum of all spectral lines, not within the neighbourhood
of a tonal masker, in a critical band. A single noise masker for each critical band
PNM is defined as [13]

PNM (k̄) = 10 log10

∑
j

100.1PSD(j) (dB), ∀PSD(j) /∈ {PTM (k, k ± 1, k ±∆k)}

(3.25)
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Bark Scale
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Figure 3.8: The power spectrum density of 3 different tones is plot-
ted in this figure: 1000 Hz, 1100 Hz, and 1600 Hz. The dot-
dashed line represents the masking threshold for the 1000 Hz
tone, which is the masker in this case. The higher frequency
tones are both at the same dB level but only the 1100 Hz tone
is masked by the 1000 Hz tone.
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where k̄ is the geometric mean spectral line of the critical band

k̄ =

(
u∏
j=l

j

)1/(l−u+1)

(3.26)

where l and u are the lower and upper spectral boundaries of the critical bands.

Masking Thresholds in Simultaneous Masking

As seen in figure 3.8, the tonal masker will mask both lower and higher frequencies
than itself. Which frequencies it will mask depends on its spreading function.
It should be noted that the spreading of the masking is not symmetrical. The
threshold of the masker has a steeper slope for frequencies below the masker than
frequencies above. The individual tonal masking thresholds, TTM , are defined as

TTM (i, j) = PTM (j)− 0.275zb(j) + SF (i, j)− 6.025 (dBSPL) (3.27)

where i is the maskee position, j is the masker position, and SF (i, j) is the spread-
ing function defined as

SF (i, j) =


17∆z − 0.4PTM (j) + 11, −3 ≤ ∆z < −1
(0.4PTM (j) + 6)∆z, −1 ≤ ∆z < 0
−17∆z, 0 ≤ ∆z < 1
(0.15PTM (j)− 17)∆z − 0.15PTM (j), 1 ≤ ∆z < 8

. (3.28)

where ∆z is the Bark maskee-masker separation, ∆z = zb(i) − zb(j). Individual
noise masking thresholds, TNM , are defined as

TNM (i, j) = PNM (j)− 0.175zb(j) + SF (i, j)− 2.025 (dBSPL). (3.29)

A spectrum can contain many tone and noise maskers, and therefore a global
masking threshold can be calculated, assuming that masking effects are additive.
The global masking threshold is defined as

Tg(i) = 10 log10

(
100.1Tq(i) +

L∑
l=1

100.1TTM (i,l) +

M∑
m=1

100.1TNM (i,m)
)

(3.30)

where Tq is the absolute threshold of hearing defined with equation (3.19), l is the
tonal masker position, L is the number of tonal maskers, m is the noise masker
position, and M is the number of noise maskers. [13]

Temporal Masking

Masking does not only occur when sounds are presented simultaneously, but can
also occur in the time domain when the signals are not presented together. This
is called temporal masking. Figure 3.9 describes different temporal masking phe-
nomenons. Backward masking takes place when the masker is presented after the
signal, the masking effect occurs backward in time. Forward masking takes place
when the masker is presented before the signal, the masking effect then occurs
forward in time. Backward and forward masking can be combined and a signal
can be masked both forward in time and backward in time. [22]
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Figure 3.9: Temporal masking: (a) Describes when the masker is
presented after the signal, masking effect occur backward in
time. (b) Describes when the masker is presented before the
signal, masking occur forward in time. (c) Describes when a
masker is presented before and after a signal, masking occur
both forward and backward in time. [22]

3.5.3 Lombard Effect

The Lombard effect is a phenomenon which triggers an adaptation in speech
production. When exposed to noisy environments the speakers commonly in-
crease vocal intensity and fundamental frequency (f0) as compared to communi-
cating in quiet environments [21]. Speech produced in noise is also called Lom-
bard speech and is characterized by a boosted energy above 2 kHz and increased
vowel/consonant ratio in both vocal intensity and duration [21]. Sound audibility
is degraded when it is heard simultaneously with a noise that contains energy in
the same critical frequency band. When considering others speech as noise it is
referred to as multi-talker noise. Multi-talker noise degrades the perception of
vowels more than consonants whilst Gaussian white noise has the opposite effect
[21]. Speech is also more degraded by a competing speech produced by a speaker
of the same gender especially if the competing speech is similar in spectral content
and f0 [21].

In order to improve speech audibility and segregation i noise, speakers may try
to decrease the amount of simultaneous masking and enhance acoustic contrasts
by increasing the global vocal intensity or more specifically the spectral energy in
frequency regions where the background noise presents maximum energy of their
speech [21]. One could even try to shift the spectral energy to spectral bands
where the background noise presents minimum energy [21].

3.6 Voice Activity Detection

VAD refers to the ability of identifying speech periods in time and frequency
domain. It is an important part in all speech and audio processing applications and
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is used in most telecommunication system. An ideal VAD needs to be independent
from application area and noise conditions, thus the required characteristics for
an ideal VAD are reliability, robustness, accuracy, adaption, simplicity, real-time
processing and no prior knowledge of the noise. Among these, robustness against
noisy environments is the most difficult task to accomplish. [28]

In high SNR conditions, a simple VAD algorithm can perform satisfactory
while in low SNR ratio environments all of the VAD algorithms degrade to a
certain extent. Few VAD algorithms are able to detect speech at a SNR ratio level
as low as -5 dB. A VAD algorithm detecting speech at a SNR ratio level lower
than -10 dB is very rare, if not impossible. Another important part is to have a
good decision rule when classifying the signal into silence/speech/noise segments
to get a consistent and accurate judgment of these. At the same time, the VAD
algorithm should be of low complexity, which is necessary for real-time systems.
Therefore simplicity, robustness and decision are three essential characteristics of
a practicable VAD. [25, 28]

3.7 Speech and Noise Characteristics

In this section theory about speech and noise characteristics will be discussed
in order to distinguish speech from noise during real time scenarios where most
dominant frequency, spectral flatness measure and higher order statistics are in-
troduced.

3.7.1 Most Dominant Frequency

Speech is most dominant in the lower frequency range typically of 500-5000 Hz.
The speech sounds which are characterized most easily are the vowels. These are
usually voiced and they have formants that are relatively stable over time. Speech
formants are frequency bands with high energy where vowels contain peaks in their
spectra at the frequencies corresponding to the formants, see figure 3.10. When
analysing a noisy speech signal it will give an indication of higher amplitude around
the frequency range of 500-5000 Hz than the rest of the spectra when speech is
active. [4, 12, 29]

The most dominant frequency is calculated by FFT the input signal x(n) and
decide the frequency bin with the highest amplitude for each time frame.

3.7.2 Spectral Flatness Measure

SFM is a measure of the noisiness of a spectrum and is a good feature in Voiced/Un-
voiced/Silence detection. It measures the amount of energy which is spread at a
given time in the spectrum. If a high value, the energy is equally distributed,
if a low value the energy is concentrated in a small number of narrow frequency
bands. A high spectral flatness indicates that the spectrum has a similar amount
of power in all the spectral bands which would sound similar to white noise and
the spectrum would appear relatively flat and smooth. A low spectral flatness
indicates that the spectral power is concentrated in a relatively small number of
bands which is of typical speech sound, and the spectrum would appear spiky. [31]
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Figure 3.10: Spectral envelope of an [i] pronounced by male speaker.
F1, F2 and F3 are the first 3 formants. [4]

SFM is computed from the spectrum as the geometric mean of the Fourier
coefficients divided by the arithmetic mean and is calculated using [14, 28]

SFMdB = 10 · log10

(
Gm
Am

)
(3.31)

where Am and Gm are arithmetic and geometric means according to

Am =
1

N

N−1∑
n=0

X(ω, n) (3.32)

Gm = exp

(
1

N

N−1∑
n=0

ln(X(ω, n))

)
(3.33)

where X(ω, n) is the power spectrum of a signal x(n) and where ω represent the
frequency at time t. SFM is also known as Wiener entropy.

3.7.3 Higher Order Statistics

The difference in speech and noise is distinct in the condition of high SNR which
will lead to easy observation of separation of speech and noise. However when
exposed to non-stationary environmental noise it can easily get degraded [25].
This section focuses on the characteristics of speech and noise distribution and
uses the fact that HOS of unvoiced speech are approximately zero.

Cumulants

To describe HOS, the definition of cumulants is used and is mathematically de-
scribed here [11]:
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Assume that x is a real valued, zero-mean, continuous scalar random variable
with probability density function px(x). The first characteristic function ϕ(ω) of x
is defined as the continuous Fourier transform of the probability density function
px(x):

ϕ(ω) = E{eωx} =

∫ ∞
−∞

eωpx(x)dx (3.34)

where ω is the transformed variable corresponding to x. Expanding the charac-
teristic function ϕ(ω) into its Taylor series yields

ϕ(ω) =

∫ ∞
−∞

( ∞∑
k=0

xk(ω)k

k!

)
px(x)dx =

∞∑
k=0

E{xk} (ω)k

k!
. (3.35)

The characteristic function ϕ(ω) is called the moment generating function. How-
ever it is often desirable to use the second characteristic function φ(ω) of x, also
known as cumulant generating function. The cumulant generating function φ(ω)
is given by the natural logarithm of the first characteristic function ϕ(ω) as seen
in

φ(ω) = ln(ϕ(ω)) = ln(E{eωx}). (3.36)

The cumulant κk of x are defined in a similar way to the respective moments as
the coefficients of the Taylor series expansion of the second characteristic function:

φ(ω) =

∞∑
k=0

κk
(ω)k

k!
(3.37)

where the kth cumulant is obtained as the derivative

κk = (−)k d
kφ(ω)

dωk

∣∣∣∣
ω=0

. (3.38)

Expressions of the cumulants when the mean of x is nonzero, E{x} 6= 0, are

κ1 = E{x}
κ2 = E{x2} − [E{x}]2

κ3 = E{x3} − 3E{x2}E{x}+ 2[E{x}]3

κ4 = E{x4} − 3[E{x2}]2 − 4E{x3}E{x}+ 12E{x2}[E{x}]2 − 6[E{x}]4

(3.39)

For a zero mean random variable x, i.e. E{x} = 0, the first four cumulants are:

κ1 = 0

κ2 = E{x2}
κ3 = E{x3}
κ4 = E{x4} − 3[E{x2}]2

(3.40)

The cumulats are called mean, variance, skewness and kurtosis, respectively [36].
Higher than fourth order moments and statistics are rarely used in practise.
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Figure 3.11: Distribution showing if kurtosis is positive, negative or
zero. [6]

Kurtosis

Kurtosis is defined as the fourth cumulant and is given by:

kurt(x) = E{x4} − 3[E{x2}]2 (3.41)

An important feature of kurtosis is that it is the simplest statistical quantity
for indicating the non-Gaussianity of a random variable. If x has a Gaussian
distribution, its kurtosis kurt(x) is zero. A distribution having zero kurtosis is
called mesokurtic. Distribution having a negative kurtosis are said to be sub-
Gaussian (platykurtic) and positive kurtosis is super-Gaussian (leptokurtic). Sub-
Gaussian probability densities tend to be flatter than the Gaussian one and super-
Gaussian probability density has a sharper peak and longer tails than the Gaussian
probability density function, see figure 3.11. Kurtosis can be used as a simple
measure of non-Gaussianity if the signals to be compared are of the same type,
either sub-Gaussian or super-Gaussian. [11]

Noisy speech can mostly be regarded as clean non-Gaussian distributed speech
added by Gaussian distributed environment noise. Higher order statistics can be
used to distinguish noisy speech segments and noise only segments. Gaussian
distribution is analysed in a long time statistical feature. When analysing in real
time, frame wise, the Gaussian feature of noise is wrecked by framing speech
signals. In other words higher order distinction between speech and noise in time
domain becomes inconspicuous. [34]

When instead looking at the spectral distribution of Gaussian signals it shows
that speech has a more obvious distinguishing character with noise in spectral
domain, even when the length of the signal is limited. In this case HOS can be
used in spectral domain to detect speech and noise, with better performance. [34]
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3.8 Evaluating Performance of Speech Enhancement

There are two ways of evaluating the quality of speech: subjective and objective.
Subjective quality evaluation implies that a group of people evaluates a comparison
of an original and processed speech file and rates the quality of speech along a
predetermined scale. It is probably the most reliable method of assessing speech
quality or speech intelligibility [27]. A drawback with subjective testing is that you
often need a larger group to evaluate the quality and the group must contain the
same persons at all test cases or the risk of a biased result could occur. In other
words subjective evaluation is highly time consuming [27]. Objective evaluation
is a mathematical comparison of the original and processed speech signal, where
an ideal objective measurement would be identical to the result obtained in the
subjective listening evaluation. The PESQ measure is currently the most reliable
objective measure for assessment of overall quality of speech processed by noise-
reduction algorithms [27].

3.8.1 Perceptual Evaluation of Speech Quality

PESQ is an objective method with several years of development and is applica-
ble to speech codecs and end-to-end measurements. It is widely used within the
telecommunication industry and was selected as the ITU-T recommendation P.862
[23, 27]. PESQ compares a reference signal with a degraded signal that is the re-
sults of passing the reference signal through a communication system. The PESQ
output predicts the perceived quality that would be given to the degraded signal
by subjects in a subjective listening test [23]. The PESQ output is measured in
the interval of 0−4.5 or 1−5 as seen in figure 3.12 where the scale is in MOS [27].
Observe that the score 5.0 is never achievable with PESQ since it’s highest score
is 4.5. This is simply due to the fact that subjective tests never reach a score of
5.0 since test listeners tend to be cautious to score a 5 and the resulting score is a
mean value of all given scores.

No further theory of PESQ will be discussed because of its complexity and
describing PESQ is out of the scope of this thesis. For further information on
PESQ see [23, 27].
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Figure 3.12: The mean opinion score PESQ with describing quality
perception.[9]
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Chapter 4
Method

A frequency domain approach is proposed to overcome the loss of intelligibility
of speech signals in the presence of near end noise. The system and the method
for the evaluation of the system is described in this chapter. At the beginning
of the chapter a review of the setup and current algorithms will be explained,
then previous used algorithms will be reviewed and finally the evaluation setup is
described.

4.1 System Overview

Figure 4.1 describes the proposed solution. The near end signal is analyzed in
frequency domain by using a VAD and a Noise Power Estimation. The power
information is sent to an AGC which derives an appropriate gain for the current
frame of the far end signal. If wanted, the system can apply a psychoacoustic filter
to the far end signal in order to enhance the speech intelligibility. Observe that if
the psychoacoustic filter is used it will introduce a delay of 6 ms (75 % overlap) to
the far end signal due to the reconstruction with WOLA. The gain obtained from
the AGC is applied to the far end signal right before it is sent to the loudspeaker.
The system is made for input frames of length l = 32 samples with a sampling
frequency fs=16 kHz. The reason for choosing a frame length of 32 samples is
because it limits the maximum system delay to 6 ms, which is introduced in the
WOLA when using the psychoacoustic filter. If the filter is not used, no latency is
introduced. A formula table for each block of the system is provided in appendix,
A.1.

4.2 Buffer

The input signals from far end and near end are buffered to a size of 128 samples,
in order to get a high resolution of sub-band frequencies when analyzing the signals
in the frequency domain. The buffer is filled with an array of 128 zeros when the
system is initiated, and for each iteration a new signal frame of 32 samples is
buffered. See a description of the in and outputs of the buffer in figure 4.2 and a
description of the function in figure 4.3.
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Figure 4.1: System setup for door station device.

Figure 4.2: Block figure of the buffer describing its in and outputs.

Figure 4.3: Description of the buffer function. The buffer is filled
with 128 zeros when the system is started. For each iteration,
i, a new signal frame of length 32 samples is added and the
oldest frame in the buffer is discarded.
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Figure 4.4: Block figure of the 128-point FFT analysis filter bank
with its in and outputs.

Figure 4.5: Block figure of the VAD with its in and outputs.

4.3 FFT Filterbank

A hanning window and a DC notch-filter of the same size as the buffer is applied to
soften the sharp transition changes between frames and to dampen lower frequen-
cies that could give unwanted interference. The notch filter has a cut of frequency
at 300 Hz and will therefore not dampen speech frequencies. The filtered signal
is transformed with a 128-point FFT into 128 sub-bands of 125 Hz interval each.
Observe that MATLAB indexing is used and that there are two FFT computa-
tions. The reason for two FFT computations is that the VAD needs data that
is centered in the mean before the transform is performed. Both the outputs are
filtered with a weighted curve, an inverted normalized ATH-curve in order to filter
sound that is inaudible for the human ear. The in and outputs of the filterbank
block are described in figure 4.4.

4.4 Voice Acitivity Detection

The VAD was implemented in the frequency domain where two methods where
evaluated, the kurtosis and a fusion between energy and spectral flatness. Experi-
ments shows that the kurtosis based method is a better choice as seen chapter 4.4.2,
hence the kurtosis implementation is only represented in the method. The kurtosis
and fusion was implemented with guidelines from [11, 16, 19, 34, 36] respectively
[28]. Robustness and low computing complexity was taken into consideration when
choosing VAD-methods for possibility of implementing it to a DSP.

4.4.1 VAD Algorithm

The kurtosis is calculated and a threshold is used to make the decision if the
current sub-bands and frame contains speech or not. Since we are in the frequency
domain there is 64 different kurtosis and thresholds, one for each sub-band. A
input/output diagram of the VAD can be seen in figure 4.5 and the steps of the
kurtosis VAD algorithm are:
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1. X is a matrix where the columns are the 64 latest input frames and the rows
are number of sub-bands for each frame i. Where i is the current frame and
k is the sub-band number of the current frame, 2 ≤ k ≤ 65, in MATLAB
index notation. The first sub-band (k=1) is not used since it contains the
zero frequency. The matrix discards the oldest frame X(i − 63), shifts all
elements one step to the left and adds the new frame with 64 new sub-bands
i.e XVAD(i, k) to the end column of the matrix. This is done in order to
calculate the kurtosis over a set of samples, where more samples give a more
accurate kurtosis estimation.

X =


X(i− 63, 2) X(i− 62, 2) · · · X(i+ 0, 2)
X(i− 63, k) X(i− 62, k) · · · X(i+ 0, k)

...
...

. . .
...

X(i− 63, 65) X(i− 62, 65) · · · X(i+ 0, 65)


2. Calculate the spectral domain kurtosis of each sub-band in current frame

and smooth it to avoid outliers. A modified kurtosis formula is used since
complex valued data is given by the FFT:

kurttmp(i, k) =
√
|E{|X(i, k)|4} − 2E2{|X(i, k)|2} − |E{(X(i, k))2}|2|

(4.1)

kurt(i, k) = α1 · kurt(i− 1, k) + (1− α1) · kurttmp(i, k) (4.2)

Where kurtosis is smoothed with respect to its previous value as seen in
equation (4.2) , α1 is a smoothing factor between 0-1 and is set to 0.98 by
experiment. By experiments it has shown that taking the absolute value
and the root power function of the kurtosis as seen in equation (4.1) yields
a better result for the VAD due to threshold adaption.
The expectation value E{·} for sub-band k is calculated as:

E{X(i, k)} =
1

64

63∑
m=0

X(i−m, k) (4.3)

3. To estimate a suitable adaptive threshold for the VAD when using kurtosis,
following model has been used:

kurtmin(i, k) =


γkurtmin(i− 1, k)+

+ 1−γ
1−β

(
kurt(i, k)− βkurt(i− 1, k)

)
, kurtmin(i− 1, k) < kurt(i, k)

kurt(i, k), else
(4.4)

The final threshold is calculated according to:

T (i, k) = αkurtmin(i, k) + λkurtmax(i, k) (4.5)

Where kurtmax is the maximum value of all current frames and T is the
threshold. α and λ are allowed for adjustment to achieve optimal threshold.
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The parameters were chosen by experiments for optimizing the VAD. A
small α implies that the threshold follows the kurtosis curve passive and
a small λ decreases the threshold faster. The parameters were chosen as
α = 1.5, λ = 0.004, γ = 0.998 and β = 0.95.

4. The final VAD decision is made by verifying that the kurtosis is bigger or
smaller than the threshold. If kurtosis is larger than the threshold, the VAD
is true and will be given a value of 1 which means that the sub-band contains
speech. Otherwise the VAD will be false and be given a value of 0 which
implies that the sub-band contains no speech.

VAD(i, k) =

 1, T (i, k) ≤ kurt(i, k)

0, else
(4.6)

4.4.2 VAD Evaluation

This section evaluates the kurtosis and fusion based VAD implemented in the
frequency domain. The parameters α and λ are tuned to have a rather passive
threshold. This means that more speech energy can be suppressed, though, to
the risk of the threshold not being able to adapt as well in non-stationary envi-
ronments. This can led to noise also being suppressed but often in a insignificant
amount. A aggressive threshold means that it will follow the kurtosis curve ag-
gressively and will be better to adapt in non-stationary environments however at
a cost of not suppressing as much speech as the passive threshold. Parameters for
a typical aggressive threshold are for example α = 4.5 and λ = 0.00004. In order
to suppress as mush speech as possible the passive threshold was implemented.

In table 4.1 a comparison of the two VAD methods are shown. The evaluation
was performed on six different speech files and six different noise files as well as an
average of the non-stationary noise and speech files. The characteristics of these
files can be found in appendix A.2.1 and A.2.2. From table 4.1 the kurtosis shows
the better VAD method, it suppresses the near end speech the most and works
best for all SNR-levels.

4.5 Noise Power

The noise power block estimates the incoming spectral noise power from the near
end environment, averaged over a period of four frames which equals 8 ms. The
decisions from the VAD are used to exclude the sub-bands which contains power
contributed from speech, see figure 4.6.

The spectral power PSD(i, k) in each sub-band k and frame i is calculated
with equation (3.9). A temporary total noise power PnoiseTmp(i) is calculated
with equation (4.7) and smoothed (averaged) with the previous total noise power,
Pnoise(i−1). The noise power is the sum of the power of all speech free sub-bands.

PnoiseTmp(i) = α · Pnoise(i− 1) +
(1− α)

BL

65∑
k=2

PSD(i, k) (4.7)
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Noise Environment Speech [%] Power [%] Power [dB]
Type SNR [dB] Kurt. Fusion Kurt. Fusion Kurt. Fusion

Non-stationary

-10 67.88 25.46 22.99 4.97 1.35 0.26
0 85.44 63.39 54.22 31.44 4.48 2.23
10 93.72 86.13 71.97 61.95 7.38 5.74
20 95.45 93.85 76.25 74.12 8.58 7.91

White

-10 42.15 6.01 1.41 0.13 0.06 0.00
0 74.06 41.39 16.44 7.82 0.87 0.39
10 89.78 78.94 51.98 42.91 3.92 3.08
20 94.71 92.23 72.01 69.46 7.20 6.72

Table 4.1: Evaluation of the Kurtosis and Fusion based VAD. Speech
[%] is the percentage where the respective method detected
speech of the speech sequence, i.e when VAD(i, k) is true.
Power [%] is the average speech power (linear) that could be
suppressed by the different methods. Power [dB] is the average
speech power in dB that could be suppressed.

Figure 4.6: Block figure of the noise power estimation with its in
and outputs.

where α is a smoothing factor set to 0.98, which is the same value that is used in
the VAD block.

Since sharp changes in the energy affect the gain decisions in the AGC, an
additional smoothing is done with 4 previous total noise powers, Pnoise(i− d) 1 ≤
d ≤ 4, by computing a mean value:

Pnoise(i) =
1

5

4∑
d=0

PnoiseTmp(i− d). (4.8)

A step by step description is provided below:

1. Use a 128 bin long spectrum of near end signal and loop through sub-bands
k = 2, 3...65. Check for speech in the sub-bands with an index matching 64
bin long VAD-decision array.

2. If VAD-decision for sub-band k is false, calculate the sub-band power PSD(i, k).
If VAD-decision is true, set sub-band power PSD(i, k) = 0. Repeat this step
for all positive sub-bands, k = 2, 3...65.

3. Use equation (4.7) to calculate the temporary total noise power PnoiseTmp(i).

4. Use equation (4.8) to obtain the final total noise power Pnoise(i).



Method 37

Figure 4.7: Block figure of the AGC with its in and outputs.

4.6 Adaptive Gain Control

The AGC block calculates a gain factor for the incoming far end signal, which is
applied right before the output to the loudspeaker. Two different AGC functions
are introduced, a linear AGC and an exponential AGC. A description of the inputs
and outputs of the AGC are described in figure 4.7

4.6.1 AGC Tuning

The AGC functions are initialized before the system is started with the parameters
Gmax, SNRmin, and SNRmax. Where Gmax is the maximum gain increasement in
dB allowed in the system, SNRmin is the SNR value in dB for when the maximum
gain is applied, and SNRmax is the SNR value in dB when gain no longer should be
applied. SNR is calculated with equation (4.15) and is the ratio between the noise
power Pnoise(i) and a default far end speech signal level of 60 dBSPL. Observe
that the exponential AGC does not use the upper bound SNRmax.

The linear AGC function, Gl, is defined with equation (4.9). See figure 4.8 for
graphs of the function.

Gl = γl · SNR +ml 0 ≤ Gl ≤ Gmax (4.9)

where
γl =

Gmax

(SNRmin − SNRmax)
(4.10)

and
ml = −γl · SNRmax (4.11)

The exponential AGC function, Ge, is defined with equation (4.12). See figure
4.9 for graphs of the function.

Ge = 20 · log10

(
γe · η + 1

)
0 ≤ Ge ≤ Gmax (4.12)

where

γe =
10(Gmax/20) − 1

10((60−SNRmin−SPLnear)/10)
(4.13)

and
η = 10((60−SNR−SPLnear)/10) (4.14)

where SPLnear = 94.8969 is a SPL constant for the near end microphone which
is further explained in chapter 4.10.3. The constant 60 in equations (4.13) and
(4.14) is the default dBSPL level that has been chosen for speech, according to
theory. A normal level for speech is around 60 dBSPL.
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Figure 4.8: The linear AGC function. The upper graph shows
the linear AGC in dB with input SNR and output Gl and the
lower graph shows the linear AGC with input Pnoise(i) and out-
put Gl(i). It is initialized with Gmax = 20 dB, SNRmin =
−10 dB, SNRmax = 20 dB

4.6.2 AGC Method

First the input to the AGC method, the noise power Pnoise(i), has to be converted
into SNR:

SNR = 60− (10 · log10(Pnoise(i)) + SPLnear). (4.15)

The gain, G(i), is then found by using either the linear or the exponential AGC
function in equations (4.9 - 4.12). After the gain has been computed it needs to
be converted to a linear gain factor, Glin(i):

Glin(i) = 10(G(i)/20). (4.16)

Since rapid changes of the gain can cause clipping sounds in the signal, the gain
factor is controlled not to change more than (∆G · 100)% from previous gain,
Glin(i − 1), see equation (4.19). ∆G is calculated by setting the desired rise time
in seconds, τ :

∆G = (10(Gmax/20) − 1)(l/(fs·τ)) − 1 (4.17)

where l = 32 samples is the frame length. The rise time was chosen to τ = 4.3966.

τ =

(
l

fs

)
·

(
ln(10Gmax/20 − 1)

ln(∆G + 1)

)
(4.18)
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Figure 4.9: The exponential AGC function. The upper graph
shows the exponential AGC in dB with input SNR and out-
put Ge and the lower graph shows the exponential AGC with
input Pnoise(i) and output Ge(i). It is initialized with Gmax =
20 dB, SNRmin = −10 dB, SNRmax = 20 dB

Gfinal(i) =

 1 + ∆G ·Glin(i− 1), Glin(i) > 1 + ∆G ·Glin(i− 1)
1−∆G ·Glin(i− 1), Glin(i) < 1−∆G ·Glin(i− 1)

Glin(i), else
(4.19)

The gain Gfinal(i) is applied to the far end speech signal by multiplying the signal
with it, this is done right before the output to the loudspeaker.

In figures 4.10 and 4.11 three graphs are shown: VAD as a function of time,
noise power as a function of time, and AGC gain as a function of time. It is clear
in the graphs that the AGC gain is dependent of how well the VAD estimates
near end speech. The graphs in figure 4.10 were retrieved by running the system
with street traffic noise at SNR-level zero using the linear AGC, and the graphs
in figure 4.11 were retrieved by running the system with white noise at SNR-level
zero using the linear AGC. The VAD decisions in the graphs are plotted true when
the algorithm indicates speech in at least one of the sub-bands.

4.7 Psychoacoustic Modeling

The psychoacoustic modeling block performs a 128-point FFT analysis filterbank
on a 128 sample block from both near end and far end signal. When the signals
are transformed to frequency domain, the near end signal is analyzed and its tonal
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Figure 4.10: These three graphs show how the VAD decisions in-
fluence the noise power estimation which in turn influences the
AGC gain. The graphs were retrieved by running the system
with street traffic noise at SNR-level zero and using the linear
AGC. As can be seen in the upper graph, the VAD decisions are
not always accurate and can sometimes indicate speech when
there’s actually just noise (at time = 0− 0.3 s, 4.1− 6.4 s and
8.3 − 9.3 s). The AGC gain follows the noise power curve but
gives more spiky peaks due to the AGC function.
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Figure 4.11: These three graphs show how the VAD decisions in-
fluence the noise power estimation which in turn influences the
AGC gain. The graphs were retrieved by running the system
with white noise at SNR-level zero and using the linear AGC.
As can be seen in the upper graph, the VAD decisions are not al-
ways accurate and can sometimes indicate speech when there’s
actually just noise (at time = 0 − 1.3s, 6.8 − 6.9s 8.0 − 8.1s,
8.7 − 8.8s and 9.2s). The AGC gain stays constant through
the whole noise file after it has adapted to a level of about
18 dB, since white noise has an equal amount of power in all
frequencies.
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Figure 4.12: Flow diagram of psychoacoustic modeling block.

and noise maskers are located. A global masking threshold is derived from the
found maskers, everything beneath this threshold is inaudible for the human ear.
When the masking threshold is computed it is sent to the filter-block.

The psychoacoustic filter is based on the global masking threshold from the
near end signal. The filter gains the far end signal sub-bands which are below the
threshold in order to make them audible. After the filter is derived and applied,
the filtered far end spectrum is sent through the synthesis part of the filterbank.
A WOLA is used to perform a perfect reconstruction. Observe that this will
introduce a delay on the far end signal of 6 ms due the overlap. See the flow
diagram of the psychoacoustic modeling block in figure 4.12

The loudness of the far end signal and the near end signal have to be compared
in order for the filter to gain the proper sub-bands. This is done by converting
the power into dBSPL. When the power is converted to dB with equation (3.10)
in MATLAB, it is automatically converted to the type dBFS. In order to convert
it to dBSPL a constant has to be added. The SPL constant is dependent of the
microphone that is used for recording the signal, therefore two SPL constants are
computed: SPLnear = 94.8969 dBSPL and SPLfar = 97.2932 dBSPL. How the
constants are obtained is further explained in chapter 4.10.3.

4.7.1 128-point FFT Filterbank

In the analysis part of the filter-bank the AGC gain, Gfinal(i), is first multiplied
to the far end block in time domain. The near end block doesn’t need any pre
modification. The signal blocks, x[n], are then normalized by dividing it with the
FFT-size, N = 128, as in equation (4.20).

x[n]norm =
x[n]

128
(4.20)

where x[n] is the far end block. x[n]norm is then windowed with a Hanning window

of length 128. Only the far end block is multiplied with a weight
√

2
3 , to compen-

sate for the increased amplitude made by the WOLA method. Finally the signal
is transformed with a FFT of length 128.
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Figure 4.13: Inputs and outputs for maskers in near end noise block.

In the synthesis part of the filter-bank the signal block in frequency domain
is transformed with an IFFT of length 128 and then windowed with the same
Hanning window as in the analysis part. The signal block is then multiplied with
the weight:

√
2
3 and the normalization from the analysis part is reversed with

equation (4.21).

x[n] = x[n]norm · 128 (4.21)

Finally the AGC gain, Gfinal(i), is removed from the far end block with division.

4.7.2 Maskers in Near End Noise

The maskers in near end noise block finds all maskers in the near end signal
and calculates a global masking threshold for each overlapping frame by using
the MPEG1 psychoacoustic model 1, presented in [13]. The model simulates the
perception of sound in the human auditory system. See inputs and outputs for
this block in figure 4.13.

Determine the Power Spectrum Density

The near end signal block of length 128 samples is first transformed in the analysis
part of the 128-point FFT filter bank in chapter 4.7.1. When the signal is trans-
formed, the PSD(i, k), 0 ≤ k ≤ N/2, is calculated for current frame i and each
sub-band k, with equation (3.9). The power PSD(i, k) is converted into dBSPL
with equation (3.10) and the SPL constant, SPLnear = 94.8969 dBSPL, is added.

Locate Tonal and Noise Maskers

Local maximas in the PSD, which are at least 7 dB greater than neighbouring
frequency bins, are defined as tonal maskers. See the definition of the tonal set
ST , equation (3.21). The tonal maskers PTM (k) are computed from ST with
equation (3.24).

When the tonal maskers are located and computed, one noise masker for each
critical band, zb, is computed from the remaining frequency bins, not within ±∆k
of a tonal masker. ±∆k is defined in equation (3.23). The noise maskers NTM (k)
are computed by using equation (3.25).
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Decimation and Re-organization Of Maskers

All tonal or noise maskers that are below the absolute threshold of hearing Tq, are
removed. Only maskers that full-fill equation (4.22) are kept.

PTM,NM (k) ≥ Tq(k) (4.22)

Next, all maskers (tonal or noise) that are within a distance of 0.5 Bark of each
other are replaced by the stronger of them two. After this process, the masker
frequency bins are reorganized according to the sub sampling scheme in (4.23).

PTM,NM (i) = PTN,NM (k)

PTM,NM (k) = 0
(4.23)

where
i =

{
k 0 ≤ k ≤ 36

k + (kmod 2) 37 ≤ k ≤ 64

The result of equation (4.23) is a 1:1 decimation of masker bins in critical bands
1-17 and a 2:1 decimation of masker bins in critical bands 18-21.

Calculation of the Individual Masking Thresholds

After decimation and re-organization of the maskers, individual masking thresh-
olds are to be computed. The tonal masking threshold, TTM , is given by equation
(3.27) and noise masking thresholds, TNM , with equation (3.29) in chapter 3.5.2.

Calculation of the Global Masking Threshold

In the final step the individual masking thresholds are combined to compute a
global masking threshold, Tg, over the whole spectra. This is done with equation
(3.30) in chapter 3.5.2.

4.7.3 Psychoacoustic Filtering

The psychoacoustic filtering block computes a filter which gains the sub-bands
representing 500-5000 Hz in the far end signal that are below the global masking
threshold, in order to overpower the maskers in near end. The maximum gain is
an experimental value, and can be increased or decreased depending on the system
and the signal. The maximum gain is set to 15.6 dB, 6 times gain, so that the
filter does not change the spectrum too much and risk decreasing its PESQ-value.
See inputs and outputs for this block in figure 4.14.

1. Convert the far end spectrum to dB. The masking threshold is defined in
dBSPL so it is required to add a SPL constant to the far end PSD in order
to match them. The SPL constant, SPLfar = 97.2932 dBSPL, is used and an
additonal constant β = 15.2832 dBSPL is added. β is an experimental value
which enhances the filter function and is obtained from testing different
background noises and evaluating the PESQ enhancement of the far end
speech.
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Figure 4.14: Inputs and outputs for psychoacoustic filtering block.

Figure 4.15: Inputs and outputs for WOLA block.

2. When the global threshold and far end spectrum have the same unit it is
possible to start comparing them. Loop through sub bands 5 ≤ k ≤ 41
(MATLAB indexing) and calculate a gain factor, Gfilter

lin (i, k), for the sub-
bands that are below the threshold. It is not necessary to loop through all
sub bands since speech is located between frequencies 500-5000 Hz. The gain
factor is calculated by first computing the difference in dB, diffdB, between
far end PSD and the global masking threshold, and then converting it to a
factor by using:

Gfilter
lin (i, k) =

√
10(diffdB+1.5)/10 (4.24)

with limitations, 1 ≤ Gfilter
lin (i) ≤ 6.

3. The gain factor is averaged with the previous frames gain Gfilter
lin (i− 1, k):

Gfilter
lin (i, k) = (1− α)Gfilter

lin (i− 1, k) + α ·Gfilter
lin (i, k) (4.25)

where i is the frame and k is the sub-band. α is an experimental constant
set to α = 0.9, 0 ≤ α ≤ 1.

4. When all the averaged gain factors Gfilter
lin (i, k) are computed, 5 ≤ k ≤ 41,

the far end spectrum sub-bands are multiplied with their corresponding gain
Gfilter
lin (i, k).

4.7.4 Weighted Overlap-and-Add

The WOLA block performs an overlap-and-add of the far end signal after the IFFT
in the synthesis filterbank. This is done in order to obtain a perfect reconstruc-
tion after the transform from frequency domain to time domain. See inputs and
outputs for this block in figure 4.15. The overlapped far end frame output is the
reconstructed far end frame.

1. Create an adding block with the previous overlap block and an array of
zeros by throwing the first 32 samples of the previous block and filling the
end with 32 zeros.
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2. Compute a new overlap block by summing the adding block with the far
end frame input.

3. The overlapped far end frame output is the first 32 samples of the new
overlap block, which is computed in the previous step.

4.8 Previous Methods and Implementations

In this section previous methods and implementations are presented and discussed.
The first approach of the VAD and noise power estimation blocks were in the time
domain. This was changed later on in order to be able to detect noise present
simultaneously with speech.

4.8.1 Previous Voice Activity Detection

Many different methods can be used to detect speech with various results. With
respect of robustness and complexity four different methods was evaluated and
tested. The four different methods are energy estimation, most dominant fre-
quency, spectral flatness measurement and higher order statistics kurtosis. First,
a time domain approach was done when implementing the VAD but was later
changed to a frequency domain approach which gives a better precision since we
are looking in the sub-bands.

Basically two different VAD were implemented and evaluated, where a fusion
of the methods energy estimation, most dominant frequency and SFM, was done
with guidelines from [28]. The second implementation was done by the kurtosis
based as mentioned before and basically follows the same VAD algorithm as used
in 4.4, the only difference is that there were no sub band calculations. Both VAD
methods worked but the kurtosis based was the more robust version, especially
at lower SNR-levels. This be seen in the result chapter 4.4.2. Therefore all focus
was put on the kurtosis based VAD, the disadvantages of the fusion method are
described below.

At first the VAD was implemented in the time domain but introduced problems
when estimating the energy of the near end noise when the VAD was true. Since
we do not want to estimate energy of the speech in near end, all background noise
during this time period is neglected making it difficult to estimate a gain for the
output. An attempt to solve this problem was to introduce linear regression which
estimates the slope of the energy which is proportional to the output gain when
the VAD is false. This would make it possible to estimate the slope of the noise
and use this slope to estimate the background noise energy when the VAD was
true. A drawback with the linear regression was that it is hard to tune since it
neglects the amplitude of the signal and only evaluates the slope of the signal.
This means that a signal with very low amplitude but sharp slopes give undesired
gain effect.

VAD Fusion

To estimate the energy of input x(n) equation (3.4) is used. It is a very simple way
of detecting speech in a noisy signal since speech usually consists of more energy
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than noise. However a problem with the short term energy estimation is that for
specific background noise or at low SNR levels it can be difficult to distinguish
speech from noise.

The problem with the most dominant frequency method is when using the
method in real time. The algorithm delay time must be taken into consideration
giving us the limitation of the size of the FFT. A bigger FFT size would allow a
better resolution of the frequency spectrum but with a cost of delay in the system.
Due to limitations of the algorithms delay time the FFT size resulting in frequency
steps of 125 Hz. This results in low resolution and does not work in all cases when
working with the most dominant frequency method.

4.8.2 Previous Noise Power Estimation

The first approach for the noise power estimation block was performed in the time
domain. The VAD was applied on all frequencies and a decision was sent to the
noise power estimation block. If there was speech present in the signal frame, the
power was held constant until a speech-free frame appeared.

This approach was changed later on in the project since it was impossible to
obtain power from noise that was present at the same time as speech. When the
method was moved into the frequency domain, the VAD could give a decision
stating that there is speech present, but only in certain sub-bands. The noise
power computation could now proceed for each signal frame, but skip the sub-
bands containing speech.

4.8.3 Previous Adaptive Gain Control

The first approach for the AGC block was to use linear regression to find the
gradient of the noise power curve. The gradient value, α, would then decide if
the AGC gain would increase, decrease or remain constant for the current frame.
Linear regression is defined as: x1 1

...
...

xn 1

[ α
m

]
=

 y1
...
yn

 xiα+m = yi (4.26)

where we used that x is a time array from 0− 2 ms of length n, and y is an array
with n number of previous noise power estimations.

This approach did not work very well since the gain did not map to any
absolute values, it was only dependent of the gradient. Not mapping the gain to
absolute values made it uncontrollable and it was difficult to predict its behavior.

4.9 Equipment

In order to do tuning and repeatable measurements the system setup has been
simulated to a real life scenario with a simulated near end person and a simulated
AXIS unit. The far end and near end user is a wav-file that is played through the
AXIS unit respectively near end unit.
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4.9.1 Head and Torso Simulator

To simulate a person of the near end the HATS and dedicated NEXUS micro-
phone conditioner - type 2690-A by Brüel and Kjær has been used. The amplifier
for the mouth simulator is a Fostex personal monitor 6301B, note that only the
amplifier is used and not the loudspeaker itself, see figure 4.16. The NEXUS was
set to 316mV/Pa for the microphone and the Fostex speaker was set to an output
level at 7. The mouth has an output of 69.8 dBSPL for white noise at 0.5 meter
which gives speech around 50-60 dBSPL. The wav files were restrained to have a
normalized amplitude between -0.3 and 0.3 to establish this.

"Head and Torso Simulator (HATS) Type 4128C is a manikin with built-in ear
and mouth simulators that provides a realistic reproduction of the acoustic prop-
erties of an average adult human head and torso. It is designed to be used in-situ
electroacoustics tests on, for example, telephone handsets, headsets, audio con-
ference devices, microphones, headphones, hearing aids and hearing protectors."
[5]

4.9.2 The AXIS Unit

The AXIS unit consists of the condenser microphone AKG C417 with an AKG
MPA III phantom adapter. The loudspeaker was a Logitech S-120 used in mono,
see figure 4.17. The microphone sensitivity was set to +60 dB on the audio inter-
face and the Logitech speakers was set to give 74.5 dBSPL at 0.5 meter for white
noise which gives speech around 50-60 dBSPL. The wav files was restrained to
have a normalized amplitude between -0.2 and 0.2 to establish this.

4.9.3 Background Noise

It is difficult to simulate real background noise since the source of the noise comes
from all directions. But in order to make repeatable measurements the equipment
used for background noise simulation is a Norsonic Nor 270 dodecahedron speaker
and a Nor280 power amplifier. These were used to spread out the signal in all
directions, see figure 4.18. The Nor280 power amplifier was set to an output at
-10 dB.

4.9.4 Audio Interface

To handle the different inputs and outputs the audio interface RME Fireface 802
was used which includes preamps for microphones and instruments, see figure 4.19.

4.9.5 Audio Analyzer

To measure sound pressure levels, Phonic PAA3 handheld audio analyzer has been
used as an reference, see figure 4.20.
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(a) The HATS for simulating the person
interacting with the AXIS unit in near
end.

(b) NEXUS microphone conditioner - type
2690-A, the amplifier used for the
HATS microphones.

(c) Fostex personal monitor 6301B ,the
amplifier used for the HATS loud-
speaker.

Figure 4.16: Equipment for simulating the near end person.
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(a) The AKG C417 mi-
crophone simulating
the AXIS unit mi-
crophone.

(b) The Logitech S120
loudspeaker simu-
lating the AXIS unit
loudspeaker.

Figure 4.17: Microphone and loudspeaker equipment simulating the
AXIS unit.

4.9.6 Anechoic Chamber

The space used for measuring is a anechohic chamber as seen in figure 4.21. The
dimensions of the room is approximately 4.55x4.12x4 meters (LxWxH).

4.10 Measuring SNR and PESQ

To evaluate SNR and PESQ for different background noises and speech signal an
automated script was made. Six different background noise files, one near end
speech signal spoken by the HATS, one far end speech signal spoken by the AXIS
unit and different SNR-levels has been evaluated for the AGC and the AGC with
psycho filter.

The background noise files were downloaded from [1] and they simulate differ-
ent types of environments that would be of typical places where an AXIS product
could be placed. The files used where: check point, shopping square, street al-
ley ambience, street traffic, trainstation hall. White noise was also evaluated as
a reference noise, the white noise was created in MATLAB. The speech signals
used for simulating the far end and near end user is of the type Rec. ITU-T P.50
which is an artificial speech signal that are mainly used for objective evaluation
of speech processing systems or devices. It is a standard within telephone trans-
mission quality, telephone installations, local line networks [8]. The speech files
were downloaded from [10] and contains a male voice of length 11 seconds. The
different types of background noise and speech can be seen in the appendix A.2.1
and A.2.2.

Each of the noises and speech files have been cut or added to a length of 33
seconds to simulate a typical door station conversation. The far end user speaks
the first and last 11 seconds and near end speaks the 11 seconds in between.
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(a) The Norsonic Nor 270 dodecahedron
speaker used to for background noise
simulation.

(b) Nor 280 Power Amplifier used for the
Nor 270 speaker.

Figure 4.18: Equipment for background noise simulation.
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Figure 4.19: RME Fireface 802 audio iterface used to handle all the
inputs and outputs.

Figure 4.20: Phonic PAA3 handheld audio analyzer used for mea-
suring sound pressure levels.
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Figure 4.21: Anechoic chamber with all equipment used as described
in this chapter.
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4.10.1 Measurement Setup

The environment used for the evaluation is in an anechoic chamber at the faculty
of engineering at Lund University. The measurement setup can be seen in figure
4.22. The reason of doing the measurement in an anechoic chamber is to exclude
possible unwanted noise that could affect the measurements repeat-ability.

To measure the different noise files with different speech and SNR-levels, linear-
ity of the measurement setup has been taken into consideration for time efficiency.
Each noise and speech file has been recorded singularly in real time. For example,
each background noise is played from the noise loudspeaker and recorded by the
AXIS unit and HATS. The same principle is done for the AXIS unit and HATS
with speech i.e the AXIS unit plays the far end speech which is recorded by the
HATS and vice versa. Each background noise can be added with desired speech
signal without re-recording the files since the system is linear. In order to record
in real time in MATLAB an external framework created by Mikael Swartling was
used [37].

4.10.2 Calculating Multiplication Factor for Desired SNR-level

In this chapter multiplications factors to adjust SNR levels for the near end user
and AXIS unit is described.

SNR-level at HATS Ear

When establishing different intensities of the background noise, adjustment of the
SNR-level at the HATS ear is calculated. The SNR-levels to be tested are -10, 0 ,
5, 10, 15 and 20 dB.

The level of the SNR at the HATS ear can be adjusted by multiplying the
recorded background noise with a factor, SNRHATS, which will increase or de-
creases the SNR in respect to the signal from the AXIS unit:

SNRHATS = 10−SNR/20 · std(Speech)/std(Noise) (4.27)

where SNR is the desired SNR-level, std is the standard deviation and SNRHATS is
the factor to multiply the background noise with to achieve the desired SNR-level.

These multiplication factors are calculated for each background noise and
speech signal from the AXIS unit using equation 4.27. Since the far end speech con-
tains no sound between 11 to 22 seconds, this sections is not evaluated in order to
give a fair SNR representation. It should be noted that when using non-stationary
noise files a worst case SNR is calculated. This means that a moving window of
size 1 second is moving over the noise file and calculating the SNR-level for each
of the 1 seconds sequences. The lowest SNR-level found in one of these sequence
is then used as the desired SNR-level to get the desired SNR multiplication factor.

SNR-level at AXIS Unit

In order to have a conversation there needs to be a near end speaker that is able
to adapt its speaking volume when background noise is present. To simulate a
real conversation the Lombard effect is introduced to the near end speaker. This
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Figure 4.22: Measurement setup for evaluation PESQ. The HATS
simulates a real person interacting with the simulated AXIS
unit and the loudspeaker at the bottom simulates background
noise. The arrows shows the direction of where the sound is
propagating. "AXIS unit to HATS" represents the signal that
is being sent from the loudspeaker of the AXIS unit to the near
end user’s ear. "HATS to AXIS unit" represents the signal sent
from the near end user to the AXIS unit’s microphone. "Noise
to AXIS unit" and "Noise to HATS" represents the background
noise that is being sent to respective microphone and ear.

basically means that when loud background noise is present the near end speakers
voice is increased to a level where the SNR is +6 dB. The reason for not having
lower SNR levels is mentioned in section 3.2.3. To increase the near end speaker,
following equation is used:

SNRAXIS = 10SNR/20 · std(Noise)/std(Speech) (4.28)

where SNR = 6 dB is the desired SNR-level. SNRAXIS is the factor to multi-
ply the near end speech with to achieve the desired SNR-level when in a noisy
environment. When the factors are calculated they can easily be multiplied to
respective background noise which will give the desired SNR-level for respective
speech signal.

4.10.3 Calculating SPL Constant to Compare Loudness

The SPL constant is dependent of the microphone that is used to record the
signal. Two different SPL constants are computed, one for near end signal which
uses the near end microphone of the device, and one for the far end signal which
is recorded with the microphones in HATS. The measured SPL constants are:
SPLnear = 94.8969 dBSPL and SPLfar = 97.2932 dBSPL.
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Figure 4.23: SPL constant measurement setup

The SPL constants are measured in the anechoic room using the dBSPL meter
as a reference and a microphone which the signal will be recorded with. See
figure 4.23 for measurement setup. The dBSPL meter is used to measure the
dBSPL value, PmdBSPL, 1 ≤ m ≤ 7, of Gaussian white noise created in MATLAB,
while being recorded through the microphone. The noise is then measured and
recorded. In this test 7 different dBSPL levels have been recorded and is considered
a reasonable amount for this specific measurement. When the recordings are
finished the dBFS level, PmdBFS 1 ≤ m ≤ 7, of all 7 recordings is computed in
MATLAB with equations (3.7) and (3.10). The difference between the dBFS levels
and the measured dBSPL levels are calculated and a mean value is obtained:

SPLmic = mean

( SPL1
mic
...

SPL7
mic

) = mean

( P 1
dBSPL
...

P 7
dBSPL

−
 P 1

dBFS
...

P 7
dBFS

). (4.29)

The mean value is the SPL constant SPLmic.

4.10.4 Evaluating SNR

The SNR is evaluated at the HATS ear where the SNR ratio between the far end
signal and noise is calculated i.e. "AXIS unit to HATS" and "Noise to HATS"
as seen in figure 4.22. In order to verify if a SNR improvement has been made
a comparison of the un-enhanced far end signal and the gained far-end signal in
respect of SNR is done.

4.10.5 Evaluating PESQ

When evaluating PESQ an executable file created by ITU-T provided by our ex-
aminer was used. No specific PESQ value is measured, instead the PESQ improve-
ment are studied as seen in figure 4.24. The executable file has two inputs where
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Figure 4.24: This picture showes the concept of how to measure a
PESQ improvement. Two PESQ values is calculated where the
difference between them are the gain factor which is multiplied
with the reference signal. The name of each input is taken from
figure 4.22

a reference wav-file is compared with an degraded wav-file. To measure PESQ
improvements the PESQ value given from enhanced files will be compared to the
non enhanced file as seen in 4.24. As reference file, "Far end reference" is used
and is compared with "AXIS unit to HATS" + "Noise to HATS" as seen in figure
4.22.
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Chapter 5
Result

This chapter presents the results of the evaluation of the proposed system. The
system has been tested with 6 different near end noise scenarios, with p50 as far
end and near end speech signals. The noise and speech signals that have been
used are described in appendix, chapter A.2.1 and A.2.2.

Chapter 5.1 shows the SNR and PESQ enhancement results and chapter 5.4
shows PESQ enhancements for varying rise times τ and maximum gain Gmax.

5.1 SNR and PESQ Enhancement Results

Two different measurements have been carried out, SNR enhancement and PESQ
enhancement. The SNR enhancement has been measured for SNRINIT=[-10 0 10
20] dB and PESQ enhancement for SNRINIT=[0 5 10 15 20] dB. As stated earlier
in the report, the reason why SNR and PESQ are measured for different SNRINIT
is due to the PESQ algorithm limitation to positive SNR values. The measurement
setup and how the SNR enhancement and PESQ enhancement results are obtained
is explained in chapter 4.10. Both the linear and the exponential AGC have been
evaluated with and without the psychoacoustic filter. Figures 5.1 to 5.6 shows the
SNR and PESQ enhancement as line graphs, tables 5.1 and 5.2 displays the PESQ
enhancement in percentage.

5.2 SNR Enhancement Evaluation

Even though similiar for low SNR values, the SNR enhancements for the linear
and the exponential AGC differ for the higher SNR values. This is due to the curve
of the exponential AGC which applies a lower gain for high SNR values than the
linear AGC. The SNR enhancement bars in the graphs follow a linear curve for
the linear AGC and an exponential curve for the exponential AGC.

5.2.1 Linear AGC

The results show clear enhancements of the SNR at the near end users ear for
all SNRINIT = [20, 10, 0,−10] dB. The SNR enhancements with the linear AGC
are between 4.854 - 19.183 dB for white noise and 0.104 - 19.188 dB for non
stationary noise. The enhancements are greater for Gaussian white noise than

59
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for non stationary noise since white noise has a flat spectra and gives a constant
gain. If the gain is fluctuating, due to non stationary noise, the SNR enhancement
seems to become smaller. The SNR is further enhanced by the filter, between
0.068 - 0.073 dB for white noise and 0.065 - 0.073 dB for non stationary noise.
It is interesting to note that the psychoacoustic filter does not enhance the SNR
more than 0.073 dB but still enhances PESQ significantly.

5.2.2 Exponential AGC

The exponential AGC shows enhancements of the SNR for all SNRINIT = [20, 10, 0,−10]
dB. The biggest difference between the exponential and linear AGC is that the
exponential AGC gives much lower gain for high SNR values. The SNR enhance-
ments for the AGC are between 0.418 - 19.189 dB for white noise and 0.024 -
19.157 dB for non stationary noise. Even here it can be seen that due to the
constant gain for the exponential AGC, the results are better for white noise than
for non stationary noise. The filter enhances the SNR further, 0.068 - 0.0726 dB
for white noise and 0.062 - 0.071 dB for non stationary noice. Independent of the
AGC, due to the filter the SNR enhancement is the same as for the linear AGC.

5.3 PESQ Enhancement Evaluation

Since the PESQ results only show positive SNRINIT, they differ between the linear
and the exponential AGC. This is most likely since the exponential AGC has lower
SNR enhancements for the positive SNR values than the linear AGC. It is clear
that PESQ ehancement is dependent of the SNR enhancement since the PESQ
bars follow the same patterna as the SNR enhancement bars.

5.3.1 Linear AGC

The PESQ enhancements with the linear AGC are between 0.197 units to 0.810
units for white noise and -0.074 units to 0.724 units for non stationary noise. The
negative PESQ enhancement occurs for the street traffic noise at SNRINIT = 15
dB. There is no clear explanation for this, however the authors of this report believe
it may be due to the high amplitude variations of the noise. The psychoacoustic
filter enhances PESQ further to between -0.006 units to 0.203 units for white noise
and -0.074 units to 0.724 units for non stationary noise. The filter decreases PESQ
twice, -0.006 units for white noise at SNRINIT = 0 dB and -0.007 units for the
shopping square noise at SNRINIT = 5 dB. The decrease of PESQ is due to big
fluctuations of the gain in the psychoacoustic filter, any greater change to the
spectrum will destroy its PESQ value. But the decrease is insignificant due to the
small numbers. As stated above, the psychoacoustic filter does not enhance the
SNR much, however manages to enhance PESQ. This result is desired and shows
that the filter can enhance PESQ without actually gain the overall power of the
signal. The highest PESQ enhancement for the linear AGC, 61.17%, is achieved
with the filter using street traffic noise at SNRINIT = 0 dB.
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5.3.2 Exponential AGC

The PESQ enhancements with the exponential AGC are between 0.010 units to
0.674 units for white noise and -0.163 units to 0.414 units for non stationary noise.
PESQ decreases -0.163 units for the street alley ambience noise at SNRINIT = 0
dB. This result is not 100% reliable since crude delay for the PESQ algorithm
was inconsistent. It is not logical that a SNR enhancement of 15.296 dB would
decrease PESQ. The psychoacoustic filter enhances PESQ further, 0.083 units to
0.137 units dB for white noise and -0.122 units to 0.156 units for non stationary
noise. The enhancements are lower for the exponential AGC than for the linear
AGC due to low SNR enhancements. The large decrease of -0.122 units occurs
for the shopping square noise at SNRINIT = 0 dB and -0.106 dB for SNRINIT = 5
dB. This is due to big fluctuations of the filter gain and/or too low AGC gain
in order to reach above the masking threshold. Even though the filter enhances
PESQ further in a majority of the cases, the maximum PESQ enhancement for
the exponential AGC, 30.22%, is achieved without the filter using street traffic
noise at SNRINIT = 0 dB.

5.4 AGC Parameters

This chapter shows the PESQ improvement results of increasing max gain, Gmax,
with and without a certain rise time τ . This is tested with the linear AGC for
white noise. The results are displayed in figure 5.7.
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Figure 5.1: SNR and PESQ enhancement with white noise as near
end noise, male p50 as far end and near end speech.
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Figure 5.2: SNR and PESQ enhancement with checkPoint1 as near
end noise, male p50 as far end and near end speech.
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Figure 5.3: SNR and PESQ enhancement with shoppingSquare1 as
near end noise, male p50 as far end and near end speech.
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Figure 5.4: SNR and PESQ enhancement with streetAlleyAmbi-
ence1 as near end noise, male p50 as far end and near end
speech.
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Figure 5.5: SNR and PESQ enhancement with streetTraffic1 as near
end noise, male p50 as far end and near end speech.
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Figure 5.6: SNR and PESQ enhancement with trainStationHall1 as
near end noise, male p50 as far end and near end speech.
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Figure 5.7: The graphs show the PESQ improvements when the
gain reaches different Gmax for different τ . The linear AGC
with white background noise and p50_m for speech are used.
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PESQ enhancement % (Linear AGC)
SNR AGC AGC + psycho filter

Noise: White Noise
0 dB 43.88% 43.55%
5 dB 31.65% 39.19%
10 dB 18.73% 26.07%
15 dB 12.68% 20.33%
20 dB 7.06% 14.33%

Noise: checkPoint1
0 dB 31.23% 41.69%
5 dB 27.98% 30.86%
10 dB 17.24% 20.41%
15 dB 1.29% 5.22%
20 dB 0.51% 1.17%

Noise: shoppingSquare1
0 dB 52.85% 61.17%
5 dB 32.95% 32.54%
10 dB 21.53% 26.26%
15 dB 7.85% 10.35%
20 dB 1.75% 6.94%

Noise: streetAlleyAmbience1
0 dB 17.27% 28.50%
5 dB 37.55% 45.14%
10 dB 18.71% 23.61%
15 dB 4.66% 7.92%
20 dB 0.23% 5.15%

Noise: streetTraffic1
0 dB 24.70% 30.29%
5 dB 14.80% 20.15%
10 dB 4.58% 11.15%
15 dB -2.72% 1.14%
20 dB 0.03% 4.58%

Noise: trainStationHall1
0 dB 46.82% 54.01%
5 dB 40.21% 48.99%
10 dB 25.90% 33.35%
15 dB 12.58% 19.74%
20 dB 3.73% 9.26%

Table 5.1: PESQ enhancement in percentage, with the linear AGC.
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PESQ enhancement % (Exponential AGC)
SNR AGC AGC + psycho filter

Noise: White Noise
0 dB 35.05% 39.54%
5 dB 19.02% 24.93%
10 dB 4.74% 10.48%
15 dB 2.33% 5.97%
20 dB 0.36% 5.16%

Noise: checkPoint1
0 dB 13.02% 12.65%
5 dB 2.51% 7.15%
10 dB 1.29% 3.87%
15 dB -0.43% -0.27%
20 dB 0% 0.84%

Noise: shoppingSquare1
0 dB 30.22% 21.31%
5 dB 7.12% 0.98%
10 dB 3.54% 5.77%
15 dB 1.01% 0.88%
20 dB 0.20% 5.26%

Noise: streetAlleyAmbience1
0 dB -9.58% -10.28%
5 dB 4.23% 10.46%
10 dB -0.45% -0.35%
15 dB 0.47% 4.19%
20 dB -0.04% 4.60%

Noise: streetTraffic1
0 dB 4.91% 1.86%
5 dB 3.12% 5.30%
10 dB 0.82% 5.58%
15 dB 0.22% 0.81%
20 dB 0.07% 4.30%

Noise: trainStationHall1
0 dB 18.84% 21.42%
5 dB 10.73% 11.74%
10 dB 2.87% 7.13%
15 dB 1.69% 7.43%
20 dB 0.28% 6.54%

Table 5.2: PESQ enhancement in percentage, with the exponential
AGC.



Chapter 6
Discussion and Conclusion

In this chapter the two different AGCs, parameter choice, the psychoacoustic filter
and the test and measurement approach are discussed. The discussions are con-
cluded in the conclusion section and the chapter is finished with a short discussion
of possible future work.

6.1 AGC Discussion

In this section an analysis of the AGC and its parameters is made.

6.1.1 Linear and Exponential

The draw back with linear AGC is how it increases the output gain even at high
SNR-levels which can be unwanted at times. This is application-dependent and can
be avoided by proper tuning of the parameters. The exponential AGC increases
the gain the most at lower SNR-levels where it is needed the most, however does
not show as great results as the linear AGC. The speech power that sometimes
slips through the VAD increases the AGC gain where it should not be increased.
The exponential AGC is more robust to the speech power than the linear AGC
and therefore does not gain the far end signal as much during near end speech.
This is due to the exponential curve which gives lower gain at high SNR-levels.

6.1.2 AGC Parameters

The tunable parameters in the AGC algorithm are: rise time, maximum gain,
minimum and maximum SNR. A discussion on how these parameters are chosen
is presented in this section.

Rise time

When setting the rise time, τ , one should observe that a too rapid rise time can
lower PESQ improvement and even decrease PESQ. This is due to fast variations
of the AGC gain. A PESQ improvement requires the AGC gain to be as smooth as
possible and is also the reason for the smoothing parameter α in the noise power
method. If the gain has possibilities of varying too much the gain curve tends
to get spiky and leads to an output that sounds "vibrational" as a result of too
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fast increases and decreases. Quick gain increases and decreases can also sound
unnatural for the listening user.

When setting a rise time τ and max gain, Gmax, one must choose them care-
fully. In figure 5.7 it can be seen that a too high Gmax with a certain rise time can
give lower PESQ enhancement. The reason for this is because there is a high vari-
ation in amplitude changes which will affect the PESQ negatively. On the other
hand, it can be seen that a static AGC gain, i.e no rise time, results in increased
or constant PESQ values, but then the system would not be adaptive anymore.

Maximum Gain

The maximum gain parameter, Gmax, should be chosen to fit the specified loud-
speaker component in order to eliminate the risk of distorting the sound. One
should also observe that the far end signal is of unknown character. The authors
have assumed that the far end signal is at a level of 60 dBSPL which is of typical
speech. Since speech is non-stationary this level can probably be in the interval
50-70 dBSPL. If a gain is applied to this far end signal, the speech can get an
maximum increased output of 90 dBSPL, if the desired Gmax is chosen to 20 dB.
The default output of the AXIS unit (assumed to be 60 dBSPL) is a parameter
which has to be set by AXIS for their specific product.

Minimum SNR and Maximum SNR

The parameters SNRmin and SNRmax adjusts when the application should start
increasing the gain and when it should reach its maximum gain Gmax. If SNRmax
is set to 20 dB and assuming the far end signal is 60 dBSPL, the AGC should start
to increase its gain when the noise in the near end is around 40 dBSPL. If SNRmin
is -10 dB and assuming the far end signal is 60 dBSPL, the maximum gain will be
applied when the background noise is around 70 dBSPL.

All these parameters should be tuned for their specific application. For exam-
ple, if the system is used in a hospital, it would be better to set a lower Gmax and
SNRmin in order to avoid too high gain increase. However, if used at a train sta-
tion, it would rather be appropriate to set a higher Gmax due to high background
noise levels.

6.2 Psychoacoustic Filter Discussion

The psychoacoustic filter gives small SNR-enhancements but still manages to in-
crease PESQ. The enhancements are not clearly audible when examining the re-
sults by the human ear, but the PESQ measurements show that the method is
working.

6.2.1 Maximum Filter Gain

A deeper analysis of the choice of the maximum filter gain has not been carried out,
however the authors have noted the importance of choosing the maximum filter
gain carefully since it can destroy PESQ if chosen too big. On the other hand, if
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the maximum filter gain is too small it will not enhance the speech quality enough
to increase its PESQ value.

6.3 Test and Measurement Discussion

In this section an evaluation of the test setup and measurements approach is
analyzed.

6.3.1 Measuring Quality with PESQ

When measuring PESQ it has been noted that the PESQ values show unreliable
results for negative SNR-levels or for some types of non-stationary noises. The
exact reason for this is not known since no information of the PESQ script is pro-
vided. However, the authors have noticed that the PESQ algorithm has difficulties
detecting the speech signal in noisy files at negative SNR-levels, and can as a result
not match it with the reference speech file. This will lead to an unreliable PESQ
values.

The reason for unusual results for some non-stationary noises is still unclear.
When setting a SNR-level for non-stationary noise files, a worst case SNR is calcu-
lated as mentioned in chapter 4.10.2. This should count out the fact of having too
low SNR-levels for non-stationary noise files and PESQ should be able to make a
match with the reference file. However, results have shown that even if the worst
case SNR is positive, the PESQ values are sometimes decreased.

6.3.2 Test Setup

The test was performed in an an-echoic chamber with one single loudspeaker gen-
erating the noise. Even though the specifications of the loudspeaker is well suited
for the given task it cannot simulate a real life noise where the noise comes from
all directions. One solution would be to have a surround setup of loudspeakers
generating the noise files. This would lead to a better real life performance eval-
uation. Even though real life tests would give more realistic results it should be
avoided due to non repeat-ability. Also the system parameters are easier to tune
in an an-echoic chamber.

6.3.3 Noise Files

It can be seen in appendix A.2.2 that the tested noise files all have similar spectra.
This fact could have been used during the evaluation in order to measure fewer
noise files and by doing so save time. It could be interesting to study how the AGC
behaves at more amplitude varying noises than the ones chosen in this report.

6.4 Conclusion

Results show that the proposed solution enhances the listening experience for the
near end user by increased SNR-levels and improved PESQ for the majority of the
tests.
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A general system has been carried out for AXIS in order for them to develop
their own specifications for their own products. Even though the proposed solution
was implemented for a communication application the concept can also be used
for mono communication. Two different AGC functions have been developed. The
linear AGC shows better SNR and PESQ enhancement results and would be ideal
to implement. The VAD dampens the near end speaker reasonably well but can
show tendencies to increase the gain if stressed too much. Since the VAD is not
able to detect all speech from the near end user, the noise power estimation will not
be solely noise power but also include some speech power. This will increase the
AGC gain even when there is no noise present and the near end user is speaking.
The system still needs improvements for the double talk scenario, however as long
as the near end user and far end user do not speak simultaneously the extra speech
power will not be a problem.

The psychoacoustic model improves PESQ but also introduces a constant delay
of 3 frames (6 ms). If low latency is of greater importance than speech quality
enhancement, the psychoacoustic model should not be used.

6.5 Future Work

In this section a short summary of possible future work is described.

6.5.1 DSP Implementation

The system was originally intended to be implemented on a DSP. However due
to DSP problems, AXIS was not able to supply with a working interface for DSP
implementation together with the AXIS unit. The written MATLAB code for this
thesis is of low computational complexity and the next step would be to translate
the code into C-code and implement it on a DSP.

6.5.2 Echo Canceller

To test the system in a real life application, an echo canceller needs to be imple-
mented in order to avoid feedback which can increase the gain. Currently AXIS
uses a black box solution for the echo cancellation which is provided by a third
party. AXIS can either develop an echo canceller on their own or implement our
code together with the third party’s code.

6.5.3 Integration with Beamformer

A beamformer is an application with multiple microphones where one of the pur-
poses is to separate speech from noise. A beamformer can give a much better
results than with a one microphone solution. Implementing a beamformer with
our solution can increase the robustness and result of our system by separating
the near end speech and noise with more precision. This can solve the current
problem where the gain sometimes increases when a near end person speaks.
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Appendix A
Appendix

A.1 Formula tables

A.1.1 VAD

Parameters: α1 = 0.98, α = 1.5, λ = 0.004, γ = 0.998, β = 0.95

(4.1) Spectral domain kurtosis

kurttmp(i, k) =
√
|E{|X(i, k)|4} − 2E2{|X(i, k)|2} − |E{(X(i, k))2}|2|

(4.2) Kurtosis smoothing

kurt(i, k) = α1 · kurt(i− 1, k) + (1− α1) · kurttmp(i, k)

(4.3) Expectation value

E{X(i, k)} =
( 63∑
m=0

X(i−m, k)
) 1

64

(4.4) Adaptive threshold model

kurtmin(i, k) =


γkurtmin(i− 1, k)

+ 1−γ
1−β

(
kurt(i, k)

−βkurt(i− 1, k)
)
, kurtmin(i− 1, k) < kurt(i, k)

kurt(i, k), else

(4.5) Final threshold

T (i, k) = αkurtmin(i, k) + λkurtmax(i, k)
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(4.6) VAD decision

VAD(i, k) =

{
1, T (i, k) ≤ kurt(i, k)
0, else

A.1.2 Noise power

Parameters: α = 0.98

(3.9) Spectral power

PSD(k) = |c(k)|2

(4.7) Temporary total noise power

PnoiseTmp(i) = α · Pnoise(i− 1) +
(1− α)

BL

65∑
k=2

PSD(i, k)

(4.8) Power smoothing

Pnoise(i) =
1

5

4∑
d=0

PnoiseTmp(i− d)

A.1.3 AGC

Parameters: Gmax = 20 dB, SNRmin = −10 dB, SNRmax = 20 dB, τ = 4.3966,
SPLnear = 94.8969 dB

(4.9) Linear gain function

Gl = γl · SNR +ml 0 ≤ Gl ≤ Gmax

(4.10) Linear γl

γl =
Gmax

(SNRmin − SNRmax)
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(4.11) Linear ml

ml = −γl · SNRmax

(4.12) Exponential gain function

Ge = 20 · log10

(
γe · η + 1

)
0 ≤ Ge ≤ Gmax

(4.13) Exponential γe

γe =
10(Gmax/20) − 1

10((60−SNRmin−SPLnear)/10)

(4.14) Exponential η

η = 10((60−SNR−SPLnear)/10)

(4.15) SNR conversion

SNR = 60− (10 · log10(Pnoise(i)) + SPLnear)

(4.16) Gain factor conversion

Glin(i) = 10(G(i)/20)

(4.17) ∆% and rise time

∆% = (10(Gmax/20) − 1)(l/(fs·τ)) − 1

(4.19) Final gain

Gfinal(i) =

 1 + ∆% ·Glin(i− 1), Glin(i) > 1 + ∆% ·Glin(i− 1)
1−∆% ·Glin(i− 1), Glin(i) < 1−∆% ·Glin(i− 1)

Glin(i), else
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A.1.4 Maskers in near end noise

Parameters: SPLnear = 94.8969 dB

(3.9) Spectral power

PSD(k) = |c(k)|2

(3.10) Decibel conversion

PdB = 10 · log10(P )

(3.21) Tonal set

ST =

{
PSD(k)

∣∣∣∣ PSD(k) > PSD(k ± 1),
PSD(k) > PSD(k ±∆k) + 7dB

}

(3.23) ∆k in tonal set

∆k ∈
{

2 2 < k ≤ 45 (0.125− 5.5)kHz
[2, 3] 45 < k ≤ 65 (5.5− 11)kHz

(3.24) Tonal maskers

PTM (k) = 10 log10

1∑
j=−1

100.1PSD(k+j) (dB)

(3.25) Noise maskers

PNM (k̄) = 10 log10

∑
j

100.1PSD(j) (dB), ∀PSD(j) /∈ {PTM (k, k ± 1, k ±∆k)}

(4.22) Decimation

PTM,NM (k) ≥ Tq(k)

(4.23) Re-organization

PTM,NM (i) = PTN,NM (k)

PTM,NM (k) = 0
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i =

{
k 0 ≤ k ≤ 36

k + (kmod 2) 37 ≤ k ≤ 64

(3.27) Individual masking threshold for tonal maskers

TTM (i, j) = PTM (j)− 0.275zb(j) + SF (i, j)− 6.025 (dBSPL)

(3.29) Individual masking threshold for noise maskers

TNM (i, j) = PNM (j)− 0.175zb(j) + SF (i, j)− 2.025 (dBSPL)

(3.30) Global masking threshold

Tg(i) = 10 log10

(
100.1Tq(i) +

L∑
l=1

100.1TTM (i,l) +

M∑
m=1

100.1TNM (i,m)
)

A.1.5 Psychoacoustic filtering

Parameters: Gfilter
max = 15.6 dB, SPLfar = 97.2932 dB, β = 15.2832 dB, α = 0.9

(3.10) Decibel conversion

PdB = 10 · log10(P )

(4.24) Gain factor

Gfilter
lin (i, k) =

√
10(diffdB+1.5)/10

(4.25) Smoothing

Gfilter(i, k) = (1− α)Gfilter(i− 1, k) + α ·Gfilter
lin (i, k)
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A.2 Test Files

The single-sided amplitude spectrum plot is a short term amplitude spectrum
where each line is from a 128 point FFT. The signal has been windowed with a
hanning window of length 128 and a dc-notch filter with cut off frequency of 300
Hz before the FFT. These are the same settings as used in the method in chapter
4.3.

A.2.1 Speech Files

The speech files for A_eng_m1 and A_eng_f1 uses Harvard sentences:

1. The ship was torn apart on the sharp reef.

2. Sickness kept him home the third week.

3. The box will hold gifts at once.

4. Jazz and swing fans like fast music.

The speech files for A_eng_m5 uses Harvard sentences:

1. The birch canoe slid on the smooth planks.

2. Glue the sheet to the dark blue background.

3. It’s easy to tell the depth of a well.

4. Four hours of steady work faced us.

The speech files for A_eng_f5 uses Harvard sentences:

1. A rod is used to catch pink salmon.

2. The source of the huge river is the clear spring.

3. Kick the ball straight and follow through.

4. Help the woman get back to her feet.
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Figure A.1: Time and frequency domain for speech file A_eng_f1.

Figure A.2: Time and frequency domain for speech file A_eng_m1.



86 Appendix

Figure A.3: Time and frequency domain for speech file A_eng_f5.

Figure A.4: Time and frequency domain for speech file A_eng_m5.
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Figure A.5: Time and frequency domain for speech file p50_m.

Figure A.6: Time and frequency domain for speech file p50_f.
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Figure A.7: Time and frequency domain for noise file WhiteNoise.

A.2.2 Noise Files
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Figure A.8: Time and frequency domain for noise file checkPoint1.

Figure A.9: Time and frequency domain for noise file shop-
pingSquare1
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Figure A.10: Time and frequency domain for noise file streetAl-
leyAmbience1.

Figure A.11: Time and frequency domain for noise file streetTraffic1.
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Figure A.12: Time and frequency domain for noise file trainStation-
Hall1.


