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Abstract

Optimizing Stimulation Strategies in Cochlear

Implants for Music Listening

by petra maretic

Most cochlear implant (CI) strategies are optimized for speech characteristics while

music enjoyment is significantly below normal hearing performance. In this thesis,

electrical stimulation strategies in CIs are analyzed for music input. A simulation

chain consisting of two parallel paths, simulating normal hearing conditions and

electrical hearing respectively, is utilized. One thesis objective is to configure and

develop the sound processor of the CI chain to analyze different compression- and

channel selection strategies to optimally capture the characteristics of music sig-

nals. A new set of knee points (KPs) for the compression function are investigated

together with clustering of frequency bands. The N-of-M electrode selection strat-

egy models the effect of a psychoacoustic masking threshold.

In order to evaluate the performance of the CI model, the normal hearing model is

considered a true reference. Similarity among the resulting neurograms of respec-

tive model are measured using the image analysis method Neurogram Similarity

Index Measure (NSIM). The validation and resolution of NSIM is another objec-

tive of the thesis. Results indicate that NSIM is sensitive to no-activity regions in

the neurograms and has difficulties capturing small CI changes, i.e. compression

settings. Further verification of the model setup is suggested together with investi-

gating an alternative optimal electric hearing reference and/or objective similarity

measure.

Keywords: cochlear implant, normal hearing model, signal processing, neuro-

gram, compression, N-of-M selection, NSIM
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CHAPTER 1

Introduction

1.1 Background

The idea of using electricity to stimulate hearing arose already in year 1800 with

Alessandro Volta. He conducted an experiment connecting batteries to two metal

rods and inserting them in his ear canal through which he managed to create an

auditory sensation.

It would take until year 1950 before a direct stimulation of the auditory nerve

was performed on a human being. During a neurosurgical operation the Swedish

neurosurgeon Lundberg used sinusoidal electric current to stimulate a patient’s

auditory nerve who perceived it only as noise. The first implant in the cochlea,

allowing the auditory nerve to be stimulated by a multiple electrode device, was

performed by American surgeons John M. Doyle and William F. House in 1961 [2,

pp. 6-9]. The recipients reported auditory percepts in loudness with a change in

stimulation level. The observations with the first cochlear implant prototype led

to several detailed experiments in the upcoming decades to increase the knowledge
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1.1. BACKGROUND CHAPTER 1. INTRODUCTION

in the cochlea functions and sound perception.

During the 70s research refined on clinical applications and implant technology,

making the market open up for CIs as a single channel implant was developed and

the first to be commercially marketed. In the last half of the 80s a multichannel

implant was introduced and immediately became successful with its capabilities of

capturing spectral information and speech recognition. Despite the CIs prevalence

there is a long way with many years of research to go before their performance can

be compared to that of a normally functioning human ear.

Since the most important sound for human communication is speech, research

in CIs has for long been focused on designing the CI to emphasize speech per-

formance. Developing the next generation CIs the improvements lie in new signal

processing and encoding strategies, bilateral cochlear implants as well as combined

electric and acoustic stimulation in order to extract, encode and deliver important

acoustic features in different types of environments and situations. Speech covered

in background noise, sound localization and sound segregation are some of the

targeting points [23].

One area where there has been less directed attention to is perception of non-speech

sounds, including music and tonal languages. Many CI users are unsatisfied with

their ability to perceive music after implantation. An improved music hearing

would not only increase the quality of life for these users but is also believed to

benefit understanding speech in noisy environments [16].

This thesis report is written in close collaboration with Oticon Medical in Copen-

hagen which is a growing global organisation in implantable hearing solutions. As
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1.2. OBJECTIVE AND AIMS CHAPTER 1. INTRODUCTION

a branch from the R&D team this project works as an initial study in how music

appreciation can be improved in the recent CI sound processor Saphyr Neo.

1.2 Objective and aims

With the context of the previous background the aim of this thesis is to investigate

and optimize the electrical stimulation strategies in cochlear implants for music

listening, using a simulation model provided by Oticon Medical. The focus will

lie on configuring and developing the simulation model to analyze compression

settings and optimally capture the characteristics of music signals in the sound

processor. Another approach will be to find an alternative N-of-M strategy to

today’s selection of the N largest envelope channels.

The simulation chain consists of two paths running in parallel simulating normal

hearing conditions and electrical hearing respectively. In order to evaluate the

performance of the CI model, the model simulating normal hearing will serve as a

reference. We assume that the more similar the CI model output is to the output

of the normal hearing, the better is the user’s hearing performance. An objective

measure will then be applied to quantify the similarity. Another focus area of the

project will be to validate the performance and resolution of the objective measure.

1.3 Project outline

The three following chapters will give the reader knowledge and understanding of

the background theory leading up to the implementation and results. Chapter 2

introduces the human hearing including a deeper insight in hearing devices with

an emphasis on cochlear implants. Chapter 3 focuses on the theory behind the

3



1.3. PROJECT OUTLINE CHAPTER 1. INTRODUCTION

simulation model while Chapter 4 describes the main objective evaluation measure.

Chapter 5 includes a description of the model configuration for a typical CI user as

well as listing the proposed optimizing strategies implemented in the model. The

final chapters includes a summary and discussion of the main results and figures

in Chapter 6, followed by conclusions and recommendations for future studies in

Chapter 7.
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CHAPTER 2

Theory

2.1 Human hearing

The first theory section describes the anatomy and functions of the human auditory

system followed by a discussion on different types of hearing loss and treatments

for hearing impairment.

2.1.1 Auditory System

The human auditory system is a sensory system responsible for the sense of hearing.

It consists of two subsystems; the Peripheral auditory system including the outer,

middle and inner ear, and the Central auditory system where the processed input

stimulus is carried further to the brain stem through neural response. The sound

travels a complex path through the ear before it is transformed to a transmitter

in the synapse and can be perceived by the brain as sound. The emphasis in the

following sections will lie on the functions and anatomy of the main parts of the

ear, see Figure 2.1.
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2.1. HUMAN HEARING CHAPTER 2. THEORY

Outer ear

Changes in acoustic pressure caused by vibrations of a medium is the definition of

what we commonly refer to as sound. The sound waves are first collected by the

visible part of the outer ear called pinna. The pinna is formed as folds of cartilage

and serve as a protection towards the more delicate inner parts of the ear as well as

its shape help detect the direction of the sound source. From the pinna the sound

enters the external auditory canal (meatur) where it is amplified and directed to

the eardrum or tympanic membrane which starts to vibrate.

Before sound enters the pinna it passes over the torso and head, which due to their

shape and structure provide obstacles to the sound, causing spectral and temporal

changes in the original sound wave decomposition. To measure the spectral changes

of the sound transmission the so called Head-Related Transfer Functions (HRTFs)

can be used. These transfer functions are describing changes between the source

and outer ear in terms of attenuated amplitudes of the spectral components and

introduced phase shifts of the originating sound. The HRTFs are important to

consider when discussing sound localization.

Middle ear

The middle ear, separated from the external ear by the cone-shaped tympanic

membrane is an air-filled cavity located in the temporal area of the skull. The

tympanic membrane is attached to the inner ear via a series of the three smallest

bones in the body (ossicles) named malleus, incus and stapes. The bones are

suspended in the middle ear cavity by means of axial ligaments and the tensor

tympani- and stapedial muscle. The ossicular chain acts as a lever, converting

the lower-pressure tympanic membrane vibrations to higher-pressure vibrations

at another smaller membrane called the oval window through the translation of

6



2.1. HUMAN HEARING CHAPTER 2. THEORY

sound pressure waves to a mechanical motion of the bones. For the bones to move

efficiently the middle ear must not be a completely closed cavity in order for air

pressure build up or reduced to be able to release. The eustachian tube has the im-

portant role of equalization of pressure difference across the tympanic membrane

by providing another path for the air. Without the function of the eustachian

tube, changes in air pressure that we experience frequently in air planes or under

water, would cause the tympanic membrane to move more in one direction than

in the other and thus stretching the membrane due to the unequal pressure. This

would lead to pressure changes caused by sound waves not to be as successful in

vibrating the tympanic membrane.

The base of the stapes pushes the oval window which vibrates in response, causing

the dense fluids of the inner ear to move. This mechanical movement is responsible

for compensating for the acoustic impedance mismatch between the air and the

inner ear fluids, i.e. the inner ear fluid is denser than the air. If the oval window

was directly driven by air, the system would lose some of its sensitivity. The

compensation is done by increasing the pressure at the oval window which is made

possible by the significant size difference between the tympanic membrane and the

stapes footplate attaching the oval window.

7



2.1. HUMAN HEARING CHAPTER 2. THEORY

Figure 2.1: Cross-section of the human ear anatomy.

Source: http://www.healthgalleries.com/anatomy-ear-learning-activity

Inner ear

The inner ear can be divided into three sections; the semicircular canals, the

vestibule and the cochlea. The semicircular canals and the vestibule together make

up the vestibular system which is the structure that affects the sense of balance.

This structure will not be discussed further in this project. The cochlea is a small

snail-shaped structure in the inner ear being the primary sensory organ for hearing

where the information in the sound waves are transformed into neural form.

The cochlea

The cochlea appears as a coiled tube of decreasing diameter with approximately

two and a half turns in humans. If it were to be unravelled and stretched out it

measures about 35 mm. One fundamental principle of the cochlea is its tonotopic

organisation, meaning that incoming sounds waves deform the basilar membrane

(BM) at a position that is specific to the frequency of the vibration. High frequen-

cies cause movements in the base (near the oval window) of the cochlea and low

frequencies work at the apex (at the top of the cochlear spiral) which results in a

8
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2.1. HUMAN HEARING CHAPTER 2. THEORY

spatial representation of frequencies along the cochlea [22, pp. 91-103]. See Figure

2.2 for a tonotopic map representation of the cochlea.

Figure 2.2: Tonotopic represenation of the cochlea. High frequencies cause basilar
membrane movements in the cochlear base and low frequencies in the apex.

Source: https://science.education.nih.gov/supplements/nih3/hearing/

guide/info-hearing.html

The cochlea is spilt into three distinct ducts known as the scala vestibuli, the scala

timpani and the scala media. All three sections contain chemical fluids called per-

ilymh in the scala vestibuli and scala tympani, containing a low concentration of

K+ and high concentration of Na+. The scala media is filled with a very different

ionic fluid called endolymph that has a high concentration of K+ and low Na+.

The lower passage of the cochlear canal, i.e. the scala tympani, has an opening

known as the round window which is covered by a thin membrane. The Reissner’s

membrane separates the scala vestibuli from the scala media and the BM separates

the scala media from the scala tympani, see Figure 2.3a for a detailed sketch of

the cochlear anatomy.

9
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2.1. HUMAN HEARING CHAPTER 2. THEORY

Organ of Corti

Positioned on the BM and running lengthwise down the cochlea’s scala media sur-

face is the organ of Corti, see Figure 2.3b. The organ of Corti is composed of hair

cells which are responsible for generating the nerve impulses required for hearing.

The general function of the cochlea is to translate the mechanical vibrations of the

stapes and the inner ear fluids into neuroal responses in the auditory nerve. The

vibratory patterns of the basilar membrane act as a key factor in this process.

(a) Cross-section of the cochlea.

Source: http://medicsindex.ning.com/m/blogpost?

id=5826870
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2.1. HUMAN HEARING CHAPTER 2. THEORY

(b) Organ of Corti.

Source: http://healthfavo.com/organ-of-corti.html

Figure 2.3: Cross-section of the cochlea including a detailed skecth of the organ of
Corti.

Basilar membrane

As mentioned in the previous section the BM is essential for understanding the fre-

quency analyzing ability of the cochlea. The membrane runs from the oval window

at the end of the middle ear to a small opening in the apex called the helicoterma.

The membrane varies in thickness and elasticity along the cochlear spiral. It is

wider and under no tension at the appical end and narrower and stiffer at the base.

Each point along the basilar membrane that is set in motion due to sound waves

vibrates at the same frequency as the stimulus. However, some locations of the

membrane respond more strongly to the stimulus than others depending on the

stimulus frequency and input level. The narrow and stiff basal end will resonate

maximally to high frequencies (short wavelengths) while the less tightly stretched

11
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2.1. HUMAN HEARING CHAPTER 2. THEORY

wide apical end is resonating most strongly to low frequencies (long wavelengths).

Thus, the membrane’s natural frequency of vibration decreases as the membrane

becomes wider and more flaccid.

The entire motion that occurs on the BM in respond to sound can be seen as a

travelling wave. An example of this at an instant in time can be studied in the top

image in Figure 2.4. Another instantaneous vibration pattern for three successive

given times is seen in the bottom image in Figure 2.4, together with the envelope

where the maximum displacement is determined by its peak value. The travelling

wave motion is in fact an alternation of upward and downward displacement of the

BM, propagating from the base to the helicoterma at the apex. How far the wave

travels depend on the stimulation frequency; lower frequencies travel further and

stimulate both basal and apical end whereas higher frequencies only stimulate the

basal end. Worth noting is that the motion of the BM is not entirely linear. One

consequence of the non-linearity is that the membrane displacement may not be

completely linearly related to the input stimulus level [14, pp. 24-34].

If two different frequencies are received by the cochlea simultaneously they will

each create a maximum displacement at different points along the basilar mem-

brane. The separation of complex signals into different maximum displacement

points means that the membrane is performing a type of spectral analysis. The

membrane will move up and down at different amplitudes in synchrony with vi-

brating stimulus creating a temporal pattern of displacement following the one

of the incoming sound. The input frequency that causes the highest amplitude

displacement along the membrane is called the characteristic frequency (CF) of

that particular location.

12
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The relationship between the CFs of a signal and the position in the cochlea was

developed empirically by Greenwood in 1961 [6]. The frequency-position function

is described as

F = A(10ax − k) (2.1)

where

F = characteristic frequency of the sound [Hz]

A = scaling constant between the CF and upper frequency limit of the specific species

= 165.4 average for humans.

a = slope of the straight-line section of the frequency-position curve = 0.06

x = length of the cochlea measured from the apex to the region of interest [mm]

k = integration constant = 1

Figure 2.4: Basilar membrane vibration in response to a travelling sound wave.

Source: http://www.cns.nyu.edu/~david/courses/perception/

lecturenotes/pitch/pitch.html

13
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2.1. HUMAN HEARING CHAPTER 2. THEORY

Hair cells

The hair cells are arranged in four rows in the organ of Corti along the whole

cochlea coil. There are two types of hair cells with different functions, three rows

of outer hair cells (OHCs) and one row of inner hair cells (IHCs) which also has

various supporting cells. The upper surface of the hair cells are tiny hair like pro-

jections called stereocilia and a smaller part is the basal body called kinocilium.

Depending on the type of hair cell it contains different number of stereocilias in

each bundle, ranging from 40-150. In humans, there are about 12,000 OHC each

with approximately 140 stereocilia and 3,500 IHC, each with about 40 stereocilia

[14, pp. 34 -35] The cilias are arranged in parallel graded rows with the shortest

stereocilia on the outer rows and the longest in the center. This formation is an

important anatomic feature as it allows tuning capability of the hair cells into the

chain of chemical events that take place within the cells. The tips of the tallest

row of cilia of each outer hair cell are holding a structure of fibres known as the

tectorial membrane, see Figure 2.3b. The tectorial membrane moves in response

to sound vibrations.

Despite the significantly larger number of OHC than IHC positioned along the BM

it is the latter ones that have a crucial function to convey acoustical information

into neural information, as most of the fibres in the auditory nerve connect to

the IHCs. Hence, the IHCs act as transducers of sound vibrations from the BM

to electrical activity in the nerve fibres. The OHCs main function is instead to

amplify the motion of the BM by feeding back mechanical energy and by that

increasing the system’s sensitivity.

14
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Auditory nerve

The auditory nerve consists of a bundle of nerve fibres, or neurons, connecting to

the previously described IHCs along the entire BM through a synapse. In humans,

the auditory nerve bundle averages around 30,000 fibers. The main purpose of the

auditory nerve is to carry the information from acoustic stimulus further to the

auditory cortex in the brain.

There are two basic types of nerve fibers: afferent and efferent. Afferent fibers are

sensory nerves carrying information from the organ of Corti to the brain. Efferent

fibers typically have the opposite direction of activity flow. Most of the afferent

neurons are said to have a many-to-one connection to the IHC since each IHC

may be innervated by 16- 20 type I afferent neurons. A smaller part of the afferent

fibers type II are said to have a one-to-many connection as they innervate the

outside row of the OHCs.

Each auditory nerve fibre responds only to a narrow range of frequencies, match-

ing the vibrational pattern of the BM. The neuron activity is initiated by the hair

cells which produces so called receptor potentials causing a change in the chemi-

cal concentration of the cell. The liberation of the chemical transmitter initiates

an action potential at approximately 150 mV to be emitted through the auditory

nerve fibers that innervate the base of the hair cell. The action potential of a single

neuron is called spike and the rate of which spikes are fired is proportional to the

velocity of the basilar membrane.

Characteristics of the auditory nerve fibers are regularly described in terms of

spontaneous rate, threshold and tuning curves. The first property is defined as

the neural activity (discharge) that occurs when no stimulus is present, i.e in a

15
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sound-free environment. The spontaneous activity is expressed in spikes/second

of a single neuron. The low spontaneous rate (LSR) fibers discharge less than 0.5

times per second and constitute approximately 16 % of all nerve fibers. About 61 %

fibers have high spontaneous rates (HSR) (>18 spikes/second) and the remaining

23 % of the fibers groups under medium spontaneous rates (0.5-18 spikes/second).

The threshold of a neuron is defined as the lowest sound level at which a change

in response of the neuron can be measured. HSR are usually associated with low

thresholds and vice versa. The acoustic tuning curves shows the frequency selec-

tivity of each auditory neuron. The curve shows the sound intensity that will cause

the fiber respond as a function of frequency. The lowest threshold of the tuning

curve is referred to as the characteristic frequency [14, pp. 38 -40].

Another mechanism of the auditory nerve fibers is their ability to lock onto the

phase of certain input stimulus and fire action potentials. Phase locking encodes

temporal structure of stimuli and is generally used in the context of pure tones

where the auditory fibers will then fire at the same frequency as the tone. The

quality of phase locking decrease with increased frequency. For frequencies below 1

kHz nerve firings are in synchronous with input stimulus but becomes progressively

inaccurate at higher frequencies (1-5 kHz) [14, pp. 44-50].

2.1.2 Hearing impairment

Hearing impairment can be broadly categorized in two main types by which part of

the auditory system is damaged; conductive hearing loss and sensorineural hearing

loss. The degree of hearing loss is defined as the minimum detectable level (thresh-

old in dB) of a sound relative an average hearing threshold specified for ”healthy”

listeners. A commonly used classification system includes the levels: mild (26- 40

dB), moderate (41- 70 dB), severe (71- 90 dB) and profound (91 dB+).
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Conductive hearing loss

Conductive hearing loss usually occurs when there is a problem with the ear canal,

ear drum or middle ear that reduces the sound transmission to the cochlea. Three

common causes are fluids in the middle ear as a result of infection, stapes im-

mobilization as a result of bone growth over the oval window and wax in the ear

canal [22, pp. 61-63]. Typically the cause of conductive hearing loss can medically

treated to restore hearing partially or completely. Following medical treatment

hearing aids are usually effective in correcting the remaining hearing loss.

Sensorineural hearing loss

Sensorineural hearing loss, also known as ”nerve deafness”, most commonly occurs

from a defect in the cochlea (sensory) like poor hair cell function in the organ of

Corti or a defect in the auditory nerve (neural). Hearing loss due to abnormalities

higher up in the auditory system is known as retrocochlear loss. People suffering

from sensineuroal hearing loss often cannot be treated solely by using hearing aids.

For more severe hearing loss or even complete deafness, cochlear implants are often

an effective solution [22, pp. 61-63].

2.2 Hearing solutions

This section summarizes the different types of hearing solutions available on the

market. Which treating option to chose depends on the cause, severity and time

course of the hearing loss.
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2.2.1 Hearing aids

Hearing aids are devices whose main function is to amplify sounds. Most hearing

aids are built up by similar components including a microphone picking up the

sound, an amplifier with gain control and a loudspeaker. Examples of four differ-

ent styles of hearing aids are the Behind-The-Ear (BTE) aid, In-The-Ear (ITE),

In-The-Canal (ITC) and Completely-In-the-Canal (CIC) aids. Hearing aids are

usually recommended to people suffering from mild to severe hearing loss.

2.2.2 Bone anchored hearing systems

The bone anchored hearing device is an implantable solution utilizing the body’s

natural way of conducting vibrations through the skull to the inner ear and thus

bypassing the damaged parts of the external auditory canal and middle ear. These

devices work well for people with conductive hearing loss, single-sided deafness

(the ”head-shadow” frequency effect is treated by routing the signal via bone

conduction to the opposite cochlea) and people with mixed hearing loss.

2.2.3 Middle ear implants

Another alternative to conventional hearings aids are the middle ear semi-implantable

solution which directly vibrates the small bones in the middle ear, bypassing the

ear canal and tympanic membrane. These devices are an option for people suf-

fering from moderate to severe hearing loss and are also an alternative for people

who cannot use hearing aids because of medical reasons or in any other way are

dissatisfied with their hearing aid.
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2.2.4 Cochlear implants

Cochlear implants are also examples of implantable hearing solutions with a com-

plex electronic device. The device is based on direct electric stimulation of the

auditory nerve fibers in the cochlea, bypassing the damaged sensory hair cells.

Cochlear implants are typically recommended for patients suffering from moder-

ate to profound hearing loss including complete deafness. A throughout description

of the cochlear implant components and signal processing encoding strategies are

listed in the next section.

2.3 Cochlear Implants

Cochlear implant devices are based on the idea that there are enough auditory

neurons left for stimulation, despite the loss of hair cell function. The hair cells

can thus be bypassed by direct electrical excitation of the auditory neurons, im-

proving hearing for people suffering from a profound hearing loss.

Generally a CI consists of an external part and an implantable part. The external

part includes a microphone, a sound processor and a transmitting coil. The internal

part consists of a decoder, a receiving coil and an electrode array. The incoming

sound is picked up by the microphones and processed by the sound processor

located in the BTE device. The encoded sound is then transmitted through the

coil attached to the skull by a magnet to the implanted receiver. The implant is

responsible for converting the encoded sound to electric pulses, sent to the electrode

array in the cochlea. Activated electrodes stimulate auditory nerve fibers located at

the vicinity of the the electrodes allowing propagation of neural impulses further

to the brain. In Figure 2.5 the main parts of a cochlear implanted device are

illustrated.
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Figure 2.5: The main parts of a cochlear implant; 1. BTE sound processor. 2.
Transmitter (external)/ receiver(internal) coil. 3. Implant. 4. Electrode array.

Source: http://www.cochlear.com/wps/wcm/connect/au/home/understand/

hearing-and-hl/hl-treatments/cochlear-implant

2.3.1 Hearing with cochlear implants

It is important to note that a cochlear implant does not restore normal hearing but

instead give useful representation of sound to a hearing impaired person. However,

there are today a lot of restrictions on the electrical representation of sound in a

CI compared to the sounds a normal functioning ear pick up. Two important lim-

itations to consider is the limited dynamic range and the loss of stochastic nerve

firings.

The normal frequency hearing range is commonly given as 20- 20,000 Hz. The

frequency range of a CI patient is limited by the length and insertion depth of

the electrode array. Depending on the patient’s shape and size of the cochlea the

implantation success differ from patient to patient. Due to the narrow passage in

the apex patients often experience unsatisfactory in low frequency hearing.
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A patient’s dynamic range is defined as the range in electrical amplitudes between

a barely audible threshold level(T) and loudness uncomfortable level(C). The dy-

namic range is expressed in terms of dB and for normal hearing the interval scales

between about 1- 140 dB [22, pp. 27-28]. In acoustic hearing the dynamic range

may be 30 dB wide for conversational speech whereas CI users may have a range

as small as 5 dB [10].

Another difference is the lack of stochastic effects in the auditory nerve firings

among CI users due to the bypassing of the damaged hair cells. Electric stimulation

excites neurons in a highly synchronous way whereas different rates of spontaneous

nerve firing are present in acoustic hearing.

2.3.2 Electrode design

The design of CI electrode arrays is a highly focused researched area. Some of

the associated issues are electrode placement, number of electrodes and electrode

configuration [10].

Commonly, the electrode array is inserted in the scala tympani to bring the elec-

trodes in close proximity with the auditory neurons along the organ of Corti.

Typically the electrode array can be inserted 22- 30 mm from the base of the

cochlea [10]. Examining the electrode position, Greenwood’s frequency-position

function is used to estimate the CFs of the CI [6].

The number of electrodes as well as their spacing affects the place resolution for

coding frequencies. Optimally, the larger the number of electrodes the finer place

resolution to the corresponding frequencies. However, the design of the electrode

array is constrained by two inherent factors; the spread of excitation in response to
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electrical stimulation and the number of surviving neurons at a particular location

in the cochlea. Thus, including a large number of electrodes will not generally

result in better performance.

2.3.3 Stimulation

There are generally two types of stimulation of electrodes depending on how in-

formation is presented. The stimulation is referred to as analog if the acoustic

waveform itself is presented simultaneously to the electrodes in analog form. One

disadvantage of the analog approach is that channel interactions may occur due

simultaneous stimulation.

The other stimulation strategy is referred to as pulsatile as the information is

delivered to the electrodes using a pulse train. In this case, the pulses can be

delivered in a non-overlapping way at a certain pulse rate and thereby minimizing

channel interactions. The rate at which the pulses are delivered to the electrodes

has been found to affect speech recognition performance [10].

Pulsatile electrodes can be configured in different ways to deliver stimulation;

monopolar, bipolar and common ground, see Figure 2.6. The monopolar mode

comprises one intracochlear active electrode and several extracochlear electrodes

that are located further away. These electrodes serve as a return current path

for several discrete active electrodes. In bipolar stimulation currents are passed

between an active electrode and a return electrode in the cochlea. The third con-

figuration type can be seen as an intermediate between the monopolar and bipolar

configurations. The common ground stimulation allows one active electrode and

several or all the remaining electrodes to be used as return path for the current

[12].
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Figure 2.6: Sketch showing the current flow for three different type of modes of
stimulation.

2.3.4 Signal Processing

The encoding strategy in the sound processor plays an extremely important role

in maximizing the CI users overall speech perception and communicative ability.

There are a number of strategies that have been put forward over the years for

transforming the incoming audio signal to electrical stimuli and determining which

electrodes should be activated at each time. The aim for many such strategies is

to encode the signal to mimic the firing patterns of a healthy auditory system.

In the early 1970s the first single-channel implants were implanted in human pa-

tients. These implants used a single electrode for stimulation and did not ex-

ploit the place coding mechanism in the cochlea for encoding frequencies. When

stimulating a single site in the cochlea the temporal encoding of frequencies was

restricted to 1 kHz due the refractory period of the auditory neurons. However,

despite the poor transmitted frequency information a handful of patients did ex-
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perience some speech perception [10].

The modern multichannel implants were first introduced in 1980s and has been

designed to provide electrical stimulation at multiple sites in the cochlea using

an electrode array. Different electrodes are thus stimulated depending on the

frequency content of the signal. Electrodes close to the base of the cochlea are

stimulated with high frequency signals while electrodes near the apex are stimu-

lated with low frequencies.

The number of electrodes in multi-channel implants differ among the manufactur-

ers. Some devices uses a large number of electrodes (up to 22) but stimulate only

a few in each cycle, while other devices use only 4-12 electrodes but stimulate all

of them. Depending on how the signal information is extracted and transmitted

to each electrode, the signal processing strategies can be divided into feature-

extraction strategies and waveform strategies.

The first devices coding for spectral information employed a feature extraction

approach which was based on the extraction of formants from the sound signal.

As the name suggests, the F0/F2 strategy is based on the extraction of the funda-

mental frequency (F0) and the second formant (F2) using zero crossing detectors.

The F0/F2 strategy was later modified to include also the first formant F1. F1

and F2 convey information about the identity of vowels and other voices speech

sounds. Further refinements of the feature extraction algorithm were included in

the MULTIPEAK (MPEAK) strategy where high-frequency information could be

captured [12].

The development of spectrum estimating pulsatile strategies led to the abandon-
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ment of the feature extraction techniques. One such approach called Compressed-

Analog (CA) aims at delivering band-specific amplitude-compressed analog stim-

ulation to different electrodes after the signal has been filtered into distinct fre-

quency bands. A drawback of this method is that the analog waveforms are de-

livered simultaneously to the electrodes which causes channel interaction and may

distort spectrum information [10].

The Continous Interleaved Sampling (CIS) method addressed the interaction prob-

lem by delivering non-simultaneous interleaved pulses. The pulse amplitudes are

derived by extracting the envelopes of band passed waveforms [10]. Another

spectrum-estimating scheme is the Spectral Peak (SPEAK) algorithm which has a

larger number of bandpass filters than CIS and N of M (N < M) envelope channels

are selected for stimulation in each period at a rate of 250 Hz per channel. The

Advanced Combinational Encoder (ACE) follows the steps of SPEAK but includes

a much higher stimulation rate (14.4 kHz) [10].

2.3.5 Music enjoyment

Speech and music may be considered to be two very different signals in the way that

they operate on acoustical principles [21]. The perception of music for CI users

rests on the assumption that music can be categorized as a sequence including

fundamental frequencies (perceptional: pitch), rhythm, melody and timbre [12].

Often the transmission of fine temporal frequency information is poor in CIs due

to the large excitation spread. An improvement of pitch perception is believed to

improve the perception of music which in turn can lead to improved quality of life

for the users and additional improved speech perception in noise [16].
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CHAPTER 3

Models

This chapter gives a technical description of each of the two simulation chains

running in parallel. Both the normal hearing path and the CI model are extended

with a point process model called the Goldwyn model which is simulating the

auditory nerve firings. The final model output is represented by neurograms which

are to be compared between the normal hearing reference and the CI model. A

block diagram of the two independent simulation paths is found in Figure 3.1.

Each model description is followed by the necessary changes made to create a

common interface for comparison purposes.
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Figure 3.1: Block diagram of the normal hearing chain and electrical hearing
chain running in parallel and extended with the Goldwyn model to finally generate
comparable neurograms.
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3.1 Auditory Periphery Model

The Matlab Auditory Periphery (MAP) is a computational model simulating all

stages of the auditory periphery, from the outer and middle ear up to the auditory

nerve and the brainstem. The model design is based on measurements from hu-

man patients [13]. The model can be used among several things to process acoustic

waveforms to generate representation at different levels in the auditory periphery

and demonstrate physical phenomena such as absolute threshold. In this project

it is used to simulate normal hearing conditions.

A schematic view of the MAP path can be seen in Figure 3.2 where each stage is

simulated by computational formulae. Observe that the model will be interrupted

after the stage called ”Auditory nerve” and brain cell responses will not be taken

into account.

The model input is a mono acoustic pressure waveform expressed in Pascals and

evaluated in 10 ms long time frame segments.

Figure 3.2: Implemented sections of the auditory periphery path and parameters
can be found in [13].
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3.1.1 External ear

In the first block of the model two independent band-pass filters, representing the

ear canal resonance and the concha 1 resonance respectively, are applied to an

input sound pressure wave. The output from the filters are summed and applied

on the original sound wave.

The output from this substage and thus input to the next is the sound pressure

at the tympanic membrane. The stapes response in the middle ear is modelled

as a displacement measure where the stapes velocity is first represented as being

proportional to the sound pressure. To convert the velocity to displancement, a

frequency variable is introduced where a doubling in frequency results in a halving

of displacement. In practice, a low pass filter is applied resulting in matching hu-

man stapes measurements at frequencies exceeding 2kHz. To limit displacements

at lower frequencies a high pass filter is introduced.

3.1.2 Basilar membrane

The input to the next stage which models the basilar membrane movement is

the stapes displacement. To simulate the physical displacements of the basilar

membrane a Dual-Resonance-Non-Linear (DRNL) filter is used. The filtering

technique models the basilar membrane at discrete locations, each identified by its

logarithmically spaced best frequency. The term best frequency is equivalent to the

previously described characteristic frequency and here referred to as the frequency

generating the greatest basilar membrane response close to the hearing threshold.

The most responsive frequency however changes with the level of input stimulus.

1The concha is the part of the external ear nearest the ear canal.
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The DRNL filter bank serves as a powerful model of the human non-linear cochlear

behaviour consisting of two branches, one linear and one the order non-linear, with

different band-pass responses. A schematic overview of the DRNL stimulation at

a single location can be seen in Figure 3.3.

Figure 3.3: A schematic description of the DRNL filter simulating the displacement
of the basilar membrane at a specific location in the cochlea.

The non-linear path (lower in Figure 3.3) starts with an attenuation of the input

signal by a variable scalar representing the MOC reflex. The MOC response is

based on the sum of all three firing rates (HSR,MSR, LSR) at a particular best

frequency channel.

Following the attenuation are several gammatone filters with center frequencies

close to the best frequencies at the respective location and increasing band widths

with the best frequencies. Further, a so called broken stick compression function

with linear response below a compression threshold is applied to the signal before
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gammatone filters are applied once again.

The parallel linear pathway consists of a scalar representing attenuation (or gain)

and similarity to the non-linear pathway, a cascade of gammatone filters. However,

there is an important difference between the paths being the non corresponding

center freqencies accounting for observed shifts of best frequencies of the DRNL

filter for higher stimulus level.

Finally the output of each pathway is summed to produce an output modelling

the displacement of the cochlear partition (basilar membrane and organ of Corti)

at individual locations. Evaluation of the DRNL filter modelling shows that its

output results accurately matched iso-intensity curves from experimental data, see

Figure 3.4.

Figure 3.4: Iso-intensity contours showing the intensity of a sinusoid required to
produce a spike rate in the neuron as a function of the frequency of the sinusoid.
The iso contours are shown for three different sound levels (dB SPL). The solid
curves represent the DRNL filter modelling by the MAP model and the dotted
lines with open circles experimental chinchilla measurements.
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3.1.3 Inner Hair Cell

The next stage of the model is simulating the inner hair cell response taking the

basilar membrane displacement as input and producing an IHC stereocilia receptor

potential change. The process can be divided into two sub stages being the change

of conductance in the stereocilia and the receptor potential changes in the cell

body.

Stereocilia conduction changes

As the BM moves in response to stimulation, it indirectly causes the IHC stere-

ocilia displacement through coupling with the tectorial membrane located above

the IHC. The movements of the tips of the steoereocilia modifies the conductivity

of the local ion channels by either depolarization (influx K+, Ca2+) or hyperpolar-

ization (outflux K+) of the hair cell, see Figure 3.5. The formula of the procedure

represents a high-pass filter and follows as

τ
du(t)

dt
+ u(t) = τ Ccilia dispt

where τ is a time constant, Ccilia is a scalar converting BM displacement, dispt,

to cilia displacement, u(t). The cilia displacement further determines the apical

conductance G(u).

Receptor potential changes

The membrane potential of a IHCs body is referred to as V(t) and is modelled

with an passive electric circuit with the transfer function

Cm
dV (t)

dt
+G(u)[V (t)− Et] +Gk[V (t)− E ′k] = 0
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where Cm is the cell capacitance, Gk is a fixed membrane conductance Et is the

endocochlear potential and E ′k is the reversed potential of the basal current. An

important characteristic of the transfer function is that it is asymmetric at high

stererocilia displacements, meaning that a negative cilia displacement causes only

a small shift in the receptor potential whereas a positive displacement gives rise

to higher potential shifts.

Figure 3.5: Hair cell motion, hyperpolarization (left) and depolarization (right).

Source: http://www.rci.rutgers.edu/~uzwiak/AnatPhys/Audition.htm

3.1.4 Auditory Nerve

The IHC receptor potential influences the firing of the neurons in the auditory

nerve through controlling the concentration of calcium ions in the synaptic region.

The process is treated in two stages where the calcium influx is first modelled

followed by modelling the neurotransmitter release to the synapse.
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Ca2+ influx

As the receptor potential rises due to stererocilia displacement, calcium ions (Ca2+)

flows into the cell causing the the small packets called vesicles located near the

synapse to have an increased probability of generating an action potential. The

calcium current ICa is based on the membrane potential V(t)

ICa = GCa m
3
ICa

(t)[V (t)− ECa]

where GCa is the maximum calcium conductance when all the calcium channels are

open, mICa
(t) is the fraction of all open channels and ECa is the reversal calcium

potential.

Calcium concentration

The pre-synaptic calcium concentration is modelled as function of calcium current

dCa2+(t)

dt
= ICa(t)− Ca2+(t)/τCa

where τCa is a time constant reflecting the time from the calcium canals open and

the vesicle release in the synapse. The value of τCa controls the release character-

istics of the synapse as it varies according to the spontaneous rate of the neurons

which are allowed to operate in parallel.

Probabilistic model

Vesicle release holding the neurotransmitter can in the MAP model be simulated

both in an quantized way, modelling individual vesicles, or in a probabilistic man-

ner, the latter one being more approximative however less computationally heavy.
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In response to the released neurotransmitter is the auditory nerve where a model

assumption is that a single vesicle transmitter release is sufficient to trigger an

action potential in the auditory nerve fibers. The auditory nerve firing rate simu-

lations are based on the on the quantity of transmitter of the synaptic cleft between

the cell body and the neuron.

3.1.5 MAP modifications

Several modifications were made in the original MAP model as a part of the former

thesis work by Attila Fráter [4].

The first change in the MAP model is related to the best frequencies corresponding

to discrete locations along the basilar membrane. In section 3.1.2 it was described

that the positions are by default logarithmically spaced between two values. How-

ever, in [6] it is suggested that the Greenwood function could be used to accurately

map linearly spaced basilar membrane positions to corresponding cochlea frequen-

cies.

The second deviation from the original configuration is the exclusion of the at-

tenuation feedback from the brainstem. Neither the acoustic reflex nor the MOC

reflex are included in the model as it is connected to Goldwyn before reaching the

brain stages. The consequence of the simplification is that the efferent activity of

the system in not be modelled.
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3.2 Cochlear Implant Model

Running in parallel with the MAP model is the Oticon Medical CI model developed

under the ABCIT Project, simulating each consecutive stage of electrical cochlear

stimulation in a 2D cochlear model. The model takes an audio file as input and

generates an electrodogram with corresponding intra cochlear electric field. An

overview of the implemented platforms can be found in the right path in Figure

3.1. The main blocks are the BTE signal processor, which is the area of focus in

this project, and the implanted part of the device.

3.2.1 Signal processing strategy

The signal processing part of a cochlear implant system plays an important role in

how the recipient perceive the incoming sound. Today, the BTE processor can be

equipped with a wide range of additional features depending on the lifestyle and

demands of the user, for example noise cancellation and wireless connections.

In the first block of the Oticon Medical BTE Saphyr Neo sound processor the

audio signal is acquired by the processor microphone and then applied to a pre-

accentuation filter modelling the hear related transfer functions discussed in section

2.1.1. The filter output is passed on to the short-time Fourier transform where the

signal is transformed from time to frequency domain, see Figure 3.6.

In the next step the STFT-transformed signal is passed through an envelope detec-

tor and regrouped according to the predefined frequency bands corresponding to

each electrode’s channel. The regrouping configuration is patient specific and can

vary for each electrode. The N-of-M block represents the pulsatile CIS strategy

but where only N (N < M) electrodes are stimulated in each time frame using non-
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simultaneous, interleaved pulses delivered at a constant rate at 520 Hz. It is worth

mentioning that the design of the Oticon Medical sound processor allows stimu-

lation of electrodes in either ascending (apex to base) or descending order (base

to apex). This restriction will have an impact on the spectral content of the signal.

Finally, the N envelope outputs are level estimated and then compressed through

the XDP compression function which aims at transforming each electrode’s acous-

tic dynamic range to electrical stimulation used to modulate biphasic pulse trains

in the electrode array [17].

0

2

4
x 10

�5

0

0.5

1
x 10

�4

0

1

2
x 10

�5

0 0.02 0.04 0.06 0.08 0.1

Pre-accentuation STFT

Envelope

   Ch 1

Envelope

   Ch 2

Envelope 

  Ch M

N-of-M strategy

Compression

       Ch1

Compression

      Ch 2

Compression

     Ch N

Pulse modulation

0 1 2 3 4 5 6 7 8 9

x 10
4

Eaf19

Eaf18

Eaf17

Eaf16

Eaf15

Eaf14

Eaf13

Eaf12

Eaf11

Eaf10

Eaf9

Eaf8

Eaf7

Eaf6

Eaf5

Eaf4

Eaf3

Eaf2

Eaf1

Eaf0

Frame

Time (µs)

Microphone

Regrouping

Figure 3.6: The main blocks of the Oticon Medical signal processing strategy.

3.2.2 Implant

The stimulation pattern computed from the signal processor is transmitted to the

implantable part. In this implanted stage the information is decoded and current

pulses are generated through the electrode array, which in the next phase serves

as input to the electrode-auditory nerve interface. The output from the implant is

a stimulation frame structure including both time and amplitude information of

the current pulses.
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The implantable part of the cochlear device is considered more or less a fixed

structure (due to the nature of the actual hardware) in contrary to the BTE part

where parameters variable and different configurations tested.

3.2.3 Intra-cochlear electric field (ICEF)

Connected to the implant block is the platform modelling the intracochlear po-

tential map estimating the electrical field generated from the current spread, from

each point source known as the electrodes. The potential field problem is solved

analytically by a partial difference equation whose solution is a series of modified

Bessel functions. An approximation which can be used for the actual implemen-

tation of the current spread is a decaying exponential function. This is justified

by the effect produced by the tapering of the cochlear ducts.

The exponential spatial filter is given by

Φ(x) = [x− xi] e−(x−xi)/τa + [xi − x] e−(xi−x)/τb

where τa is a spatial decay constant along the apical axis and τb along the basal

axis. x represents the cochlear position in mm and i stands for the electrode index.

[x] denotes the threshold linear function as x if x > 0 and 0 otherwise.

3.2.4 Model modifications

To match the mapping from the MAP model, the Greenwood function is used to

model the cochlear frequency-position interface for the electrical hearing chain.

Several additional modifications are made in the CI blocks to make the neurogram

output look as expected. These changes will not be described in detail but includes
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gain adjustment along the complete CI path and configuring the current spread

parameters.

3.3 Connection of models

When including the modifications in each simulations chain their respective out-

put needs to be matched before entering the Goldwyn model. The output from

the MAP model includes probabilities of the synapse transmitter release in the

auditory nerve for each best frequency. The CI model produces current values at

each best frequency as modelled by the implementation of the ICEF. Hence, each

model results in slightly different outputs and will therefore be entering the Gold-

wyn model at different stages. The MAP model connects to the spike generation

stage in Figure 3.7, bypassing all the previous stages of the chain. As for the CI

model it enters the Goldwyn model with current input in the form of biphasic

pulse trains expressed in µs.

3.4 Goldwyn Model

Both the MAP and CI model are extended with a point process model used to

generate auditory nerve patterns in response to the electrical stimulation from

the cochlear electrode array. The stochastic Goldwyn model is completely defined

by its conditional intensity function, simulating the response of a single auditory

nerve using a cascade of linear and non-linear stages and producing a spike pattern

as output [5].

The Goldwyn model is based on fundamental statistics from recordings of physio-

logical data from cats and accounts for acoustic threshold, jitter, refractory period
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and summation effects. Below sections give an overall description of the point

process’ framework and parameters.

The firing efficiency curve is a function that relates the current level of a single

pulse to the probability of a nerve firing. It can be approximated by a Gaussian

distribution. In close relation to the efficiency curve is the threshold of a neuron,

defined as the half the probability of a stimulus eliciting a spike. A measure of

variability of the spike initiation is the relative spread which is defined as the stan-

dard deviation of the underlying Gaussian distribution divided by its mean.

For longer pulse duration the threshold current level is typically smaller than for

a single pulse of stimulation due to the neuron capacity to integrate current over

time. The dependence of pulse duration on threshold is described by the chronixe.

An additional stochastic measure to the firing efficiency curve (spike initiation

variability) is the timing of spikes described by jitter. Jitter depends both on

pulse duration and pulse level but in this model used as the value measured for a

pulse at spiking threshold.

For the model to generate realistic results it is crucial to include the effect of pre-

vious spikes. One such historic effect is the refractory effect which reduces the

excitability of a neuron immediately after firing. The refractory period is imple-

mented as an increase in the threshold following a spike.

Another implemented feature in the Goldwyn model is the summation effect of

several consecutive pulses. This effect is relevant for high carrier pulses and ac-

counts for multiple pulses being more likely to evoke a spike than single pulses

40



3.5. NEUROGRAMS CHAPTER 3. MODELS

acting independently on the neuron.

A schematic view of the model can be studied in Figure 3.7 and summarized

as follows: An incoming biphasic pulse train I(t) is passed through several linear

filters, accounting for stimulus and spike time variability, and a non-linear function.

The filter output defines the instantaneous probability of spiking which is then used

to generate a random sequence of spike times. Previous spikes provide feedback

to control the the stimulus filters and non-linearity.

Figure 3.7: A schematic diagram of the Goldwyn point process model modelling
the auditory nerve fibers response to electrical stimulation.

3.5 Neurograms

A commonly used graphics tool to represent the neural response of the auditory

nerve is the neurogram [7]. It presents the intensity of neural activity from mul-

tiple auditory nerve fibers in the time-frequency domain, completely analogous to

a spectrogram. The frequency axis shows the Greenwood -spaced characteristic

frequencies between a lower and upper frequency bound. The neurogram is cre-

ated by analyzing each row in the spike pattern output from the Goldwyn model.

Within each time frame, spikes are accumulated and smoothed by convolving with

a 50% overlapping Hamming window.
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CHAPTER 4

Objective measures

As described in the previous section, both the acoustic hearing model and the

electrical hearing model are extended with an additional model go generate neural

spike patterns and then neurograms. Their discharge patterns can be evaluated

subjectively by visual inspection, however to statistically determine the differences

between the neurograms a quantitative objective performance measure is needed.

In this chapter three different objective measures will be discussed, two based on

image analysis methods and one on vocoder transformation. A common denomi-

nator for the three is that they are developed to predict speech intelligibility. The

Neurogram Similarity Index Measure (NSIM) has been extensively used within

this model setup and will therefore be the focus of testing and validation.

4.1 NSIM

The acoustic and electric hearing model respectively respond differently to input

stimulus and both generate spike patterns. There are numerous methods that can

be used to compare the spike trains including simple quality metrics based on error
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sensitivity like the mean squared error (MSE)[20].

Some of the more complex methods that originate from image processing, NSIM

being one of them, evolve around that the neurograms from the model output can

be treated as images. NSIM was originally developed as a modified version of the

Structural Similarity Index Measure (SSIM) used to evaluate JPEG compression

quality between compressed and uncompressed images. The modified version is

described as a technique to access speech intelligibility by effectively ranking the

information of degradation from different amount of simulated hearing loss in the

acoustic hearing model [7]. Throughout this project we will make the assumption

that NSIM can be used as a comparison measure between the acoustic output

considered the reference and the CI model.

The underlying theory of SSIM is to extract structural information from the image

used to characterise its composition. It follows that a measure of feature extrac-

tion change quantitative can capture the perceived image distortion. The SSIM

measure is a straightforward comparison of two signals directly. For our applica-

tion it will not serve as a measure of image degradation but instead measure the

similarity between the reference neurogram and CI output.

SSIM is computed as a weighted sum of three structural parameters; luminance

(l), contrast (c) and structure (s) between two neurograms. Luminance compares

the mean intensity values of the neurograms. The contrast is a variance measure

and the structure parameter equivalent to the cross correlation coefficient. The

SSIM between two neurograms r and d is defined as
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SSIM(r, d) =

(
2µrµd + C1

µ2
r + µ2

d + C1

)α
·
(

2σrσd + C2

σ2
r + σ2

d + C2

)β
·
(
σrd + C3

σrσd + C3

)γ
(4.1)

4.1.1 NSIM parameters

At each point of the neurogram the local statistics (µr, σd, σrd) are computed within

a 3×3 square window. The local statistics are used to compute an SSIM map over

all regions. Finally, the mean of the SSIM map represent the overall similarity

value [7].

Each component in (4.1) also contains constants, C1, C2, C3, which are chosen

somewhat arbitrary and have negligible influence on the results but are included

to ensure stable boundary conditions. The weighted coefficients α, β and γ are

used to adjust the relative importance of each of the three SSIM components.

In [7] the relative contribution from each component is investigated through human

listener test scores. The scores which resulted in the best phoneme discrimination

had α and γ close to full weighting whereas β had almost no contribution. These

results serve as a strong argument to excluding the contrast component in the

optimally weighted SSIM and thus [α, β, γ] = [1, 0, 1]. One could argue that you

should find new weights when having a CI application, but as listener test are not

feasible within the given time, the same configurations as above mentioned will

be used throughout the project. The simplified version of SSIM is referred to as

NSIM:

NSIM(r, d) =
2µrµd + C1

µ2
r + µ2

d + C1

· σrd + C2

σrσd + C2

(4.2)
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4.2 Alternative measures

As it will show in section 6, the performance measure NSIM will give inconclusive

results for certain types of controlled model configurations. It is therefore desirable

to investigate alternative objective measures.

4.2.1 NOPM

A recently proposed alternative speech intelligibility measure is the Neurogram

Orthogonal Polynomial Measure (NOPM) [11]. This metric suggests the use of

orthogonal moments as a feature extractor to predict speech intelligibility for lis-

teners with hearing loss and has a wider dynamic range than the previous discussed

NSIM.

Similarly as for NSIM, the NOPM is developed to predict speech intelligibility for

a range of hearing loss under quiet and noisy conditions. The metric makes use

of orthogonal moments which has been used in various image processing areas for

pattern recognition, image segmentation and multi-resolution analysis to mention

a few. One of the most important properties of orthogonal moments is the ability

to localize in space, meaning that they allow analysing and reconstructing a cer-

tain part of the original image, which in turn could contain relevant perceptional

feature information. Moreover orthogonal moments are good signal descriptors as

they can capture small intensity pixel changes efficiently.

Signals can be transformed from time to moment domain, where they have more

compact representation, using a set of basis functions. A commonly used set of

orthogonal moments is the Discrete Krawtchouck Transform based on the orthogo-

nal Krawtchouck polynomials. The nth-order normalized Krawtchouk polynomial
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is given by

Kn(x) =

√√√√√
(
N−1
x

)
px (1− x)N−1−x

(−1)n
(

1− p
p

)n
n!

(−N + 1)n

2F1

(
−n,−x;−N + 1;

1

p

)

where p controls the moments’ localization in the moment of interest and can

extract different frequency components. The function rFs is a hyper-geometric

series. The Krawtchouck transformation for a neurogram block f(x, y) of size

N ×N is given by

ψnm =
N−1∑
x=0

N−1∑
y=0

Kn(x)Km(y)f(x, y)

To compare similarity between two neurogram transformed to moment domain

cross-correlation is applied to provide quantitative results.

4.2.2 Vocoder + STOI

A different approach than the above mentioned image analysis method is to syn-

thesize the sound from a given spike pattern using a spike-based vocoder. This

method has no reference from the acoustic model, instead the processed signal

from the CI model is compared with the original unprocessed sound.

The implemented spike-vocoder is described very briefly as introducing a wavelet

at each spike with center frequency at the auditory nerve fiber that elicited the

spike. A Gaussion function is modulating the wavelet amplitude. To create the

synthesized sound, both wavelets across the whole frequency range and for each

simulated auditory nerve fiber are superimposed, see Figure 4.1.
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Figure 4.1: Spike-based vocoder sketch.

The output from the vocoder can be subjectively evaluated by simply listening to

the synthesized sound. However, to get comparable results with the two previously

described measures NSIM and NOPM, an objective measure is needed also in this

case.

A proposed objective intelligibility measure which has shown good performance for

methods including noisy speech is the Short-Time Objective Intelligibility (STOI)

measure, developed partly by support from Oticon A/S. The measure has a rela-

tively simple structure and is based on an intermediate measure analyzing time-

frequency regions during short-time segments (40ms) [19].

STOI is a function of clean (x) and processed (y) time-aligned signals. A time-

frequency representation is obtained by applying a 50% overlapped Hanning win-

dow to both signals where each frame contains 256 samples and is zero-padded

with up to 512 samples. Each frame is then Fourier transformed and frequency

bins grouped to range over one-third octave bands defined as

Xj(m) =

√√√√k2(j)−1∑
k=k1(j)

|x̂(k,m)|2

for the jth one-third octave band where x̂(k,m) denote the kth DFT-bin of themth

frame of the clean signal. The parameters k1 and k2 refer to the one-third octave
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band rounded end points. The time-frequency representation of the processed

speech is defined similarly and denoted Yj(m). The intermediate intelligibility

measure for one time-frequency unit, dj(m), depends on a region of N consecutive

time-frequency units from both Xj(m) and Yj(m).
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CHAPTER 5

Methods

This chapter presents the methods analyzed to optimize the output from the CI

model, initialized with the original configuration for a typical Oticon Medical CI

user. It also focuses on the validation and adaptiveness of the objective evaluation

measure NSIM.

5.1 Original model configuration

In section 3.2.4 it was described how the CI model is configured to match the

output from the MAP model so that their respective outputs can be directly com-

pared. The CI model is as mentioned built up by independent platforms each

consisting of many variable parameters which can be set to represent the current

hearing situation. To limit the set of parameters varied we let the the model

be configured for a typical Oticon Medical CI user. This will be considered the

original CI reference. Although several common interfaces may be present in the

sound processor among the CI users it should be emphasized that each CI patient

is individually fitted.
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The typical Oticon Medical CI user is fitted with a multichannel 20-channel elec-

trode with a 24 mm insertion depth from the base. If assuming that the cochlea

itself has a length of 35 mm when unravelled, an insertion depth of 24 mm means

that the electrode array does not reach to the lower frequencies located in the apex

[6]. Among the 20 inserted electrodes a subset of 12 are maximally activated in

each time frame defining the number of spectral bands of stimulation along the

tonotopical map of the cochlear region.

One side-effect of different insertion depth of the implanted electrode array is

the degree of frequency mismatch it is causing. Frequency mismatches can occur

when the input signal frequencies fail to map to the corresponding characteristic

frequency of the neurons at the electrode locations. Clinical practice today is to

give most CI users a standard frequency-to-electrode allocation table where basal

electrodes are assigned high frequencies and more apical electrodes are assigned

lower frequencies. Even if the human brain is highly adaptable and the discomfort

of frequency mismatch can be reduced by training, for some patient this hinders

their speech-perception [8].

Another restriction among CI users is the suppressed hearing dynamic range. The

dynamic range of the auditory system is defined as the difference between the

smallest intensity threshold the ear can perceive and the largest intensity the ear

can tolerate (pain threshold). In the typical Oticon Medical user the dynamic

range is set between 23- 95 dB SPL.
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5.1.1 Frequency-electrode mapping

From the STFT transform and the envelope detection in the BTE signal processor

a number of frequency bands are generated representing the theoretically available

frequency range for the CI user. Something that has become more and more im-

portant for commercial implants to consider is the mapping of frequency bands to

electrodes in the implant using a frequency-to-electrode allocation table. Study-

ing the literature, most mapping strategies have been selected to preserve speech

perception optimally not taking pitch or harmonic structure into account as an

example [9].

The signal encoding strategy used in Oticon Medical devices encodes signals be-

tween 130 Hz and 8333 Hz onto maximally 20 electrodes. The frequency range

is typically similar in all today’s commercial cochlear implants. The uniformly

spaced FFT bins are combined by summing the powers to provide the required

number of channels M including the envelopes in each spectral band. The fre-

quency range up to 1 kHz follows a linear mapping whereas for frequencies above

1kHz frequency bins are mapped logarithmically. The number of FFT bins per

frequency band with corresponding center frequencies for a 20-channel electrode

device can be studied in Table 5.1.
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Channel

No.

No.

of bins

Bandwidth

[Hz]

Center

freq. [Hz]

Channel

No.

No.

of bins

Bandwidth

[Hz]

Center

freq. [Hz]

1 1 130-260 195 11 1 1432-1693 1562

2 1 260-391 326 12 2 1693-1953 1823

3 1 391-521 456 13 2 1953-2344 2148

4 1 521-651 586 14 3 2344-2734 2539

5 1 651-781 716 15 3 2734-3385 3060

6 1 781-911 846.3 16 5 3385-4036 3711

7 1 911-1042 977 17 5 4036-4817 4427

8 1 1042-1172 1107 18 6 4817-5729 5273

9 1 1172-1302 1237 19 7 5729-6770 6250

10 1 1302-1432 1367 20 8 6770-8203 7487

Table 5.1: Number of FFT bins with corresponding center frequencies for M=20.
Using a 128-point FFT and an input sampling frequency of 16666 Hz provides a
minimum resolution of 130.2 Hz.

5.1.2 Max selection strategy

Following the envelope detection is the selection block where a subset N (N < M)

channels are selected sequentially for stimulation in each frame of the audio signal.

The value of N can be set individually and affects the spectral resolution of the

signal. For the general patient the active channel number is set to N = 12 and

selected as the channels with the largest amplitudes among M = 20.

5.1.3 XDP compression

In the final stage of the signal processor the N largest amplitudes are mapped

to the corresponding electrodes and the acoustic amplitudes are compressed into

the CI user’s dynamic range defined by the measured threshold and the maximum

comfortable loudness level.
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The Oticon Medical CI BTE Saphyr processing strategy aims at improving speech

understanding in noise, provide the largest possible input dynamic range and en-

sure comfort for patient in all hearing situations. The compressor takes the signal

energy in each frequency band as input and maps it directly to the electrical stim-

ulation levels. The mapping procedure can be seen as a transfer function that

maps 95% of the signal input energy (dB SPL) below a knee point (KP) which

represents 75% of the electrical stimulation range (µs), see Figure 5.1. For input

levels above the KP the signal is heavily compressed [17].

KP

C

T

75%

23

Stimulation level (µs)

95 Input level (dB SPL)

Figure 5.1: XDP compression function.

The XDP strategy allows the compressor to operate on each electrode indepen-

dently. However, to reduce fitting complexity four frequency bands are grouped

together by hierarchical clustering. Within these four ranges the frequency bands

have similar power spectral density (PSD) and thus identical compression func-

tions are used.

To optimally preserve speech information and provide comfort for the patient pre-
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sets have been designed to identify three different hearing environments; quiet 50

dB SPL, medium 60 dB SPL and loud 70 dB SPL. The KPs for each of the pre-sets

and frequency bands can be observed in Table 5.2. For further testing, the input

signal level will be fixed to 50 dB SPL which have shown to be compatible with

the output from the MAP model.

Frequency range [Hz] KPQUIET [dB SPL] KPMED [dB SPL] KPLOUD [dB SPL]

130 - 780 52 60 71

780 - 1430 52 60 71

1430 - 3380 47 57 65

3380 - 8333 41 50 48

Table 5.2: Frequency ranges with corresponding knee points for three different
environments; quiet (50 dB SPL), medium (60 dB SPL) and loud (70 dB SPL).

5.2 Music configuration

As previously mentioned the current CI encoding strategies are optimized for

speech characteristics whereas music enjoyment is significantly below normal hear-

ing performance. A number of changes will be implemented and evaluated within

the blocks of the signal processor with the aim to better capture music character-

istics and improve frequency resolution for different music test signals.

5.2.1 Octave band distribution

To better preserve the harmonic structure of music signals a frequency-to-electrode

mapping that involves tone mapping will be used. With the idea first proposed in

[9] this approach includes frequency band mapping based on octave bands or parts

of an octave. The octave mapping is as previously restricted by the frequency
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resolution for each channel.

5.2.2 Alternative N-of-M channel selection

Signal encoding strategies are essential for the user’s ability to perceive and un-

derstand sound. It can be questioned whether the simple max strategy approach

mentioned in section 5.1.2 performs optimally. The aim of an alternative method is

to increase temporal resolution by neglecting less important spectral components

while keeping the ones with more important features.

No neighbour selection

A first alternative approach is motivated by the fact that the stimulated N fre-

quency bands are relatively wide to accurately encode tonal components of audio

signals. Even though they are non-overlapping it will show in the results that

the impact of current spread from each electrode is causing signal interaction.

By adding the condition that no neighbouring electrodes are allowed stimulating

within each frame such a distortion could be limited. In practice it means that

maximally N = 10 electrodes can be stimulated each per cycle, hence less envelope

information is used to generate the electrical pulses.

Psychoacoustic channel selection

Another approach, anchored in simulating the behaviour of a healthy auditory

system is referred to as the psychoacoustic masking model and based on psychoa-

coustic measurements of the masking threshold. The aim of this method is to

describe auditory masking effects that occur when the perception of one signal is

affected by the presence of another sound. The model will here be used to select

the N most significant bands in terms of perception by first calculating the in-

dividual masking components for each frequency band and then using non-linear
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superposition to create the overall masking threshold [1].

For each band, the individual masking threshold modelling the masking effect of

the respective band upon the others, Li, is determined using a triangular spreading

function. The representation of the spreading function belonging to a frequency

band zi with amplitude A(zi) is given by

Li(z) =

A(zi)− av − sl · (zi − z), z < zi

A(zi)− av − sr · (z − zi), z ≥ zi

where z denotes the frequency band number at the critical band interval, 1 ≤

z ≤ M , av represents the attenuation level defined as the difference between the

amplitude A(zi) (dB SPL) and the maximum of the spreading function, sl and sr

correspond to the left and right slopes of the spreading function in dB/band unit,

see Figure 5.2b.

A ”power-law” model as described in [1] is used for non-linear superposition of

different masking thresholds to calculate the overall masking threshold. The sum

is formed as

IT (z) =

[∑
i

[Ii(z)]α

]α
where Ii denotes the sound intensities calculated from the sound levels as

Ii(z) = 10Li(z)/10

The parameter α, 0 < α ≤ 1, allows the superposition to be carried on in a non-

linear mode for α < 1. The overall masking threshold IT (z) can be seen in Figure
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5.2c plotted together with Ii(z) for 1 < i ≤M .

The selection of N bands is performed in a straightforward way as the number of

amplitudes A(zi) reaching above the overall masking threshold, see Figure 5.2d. If

the number of peaks over the overall masking threshold is larger than a predefined

limit on N , the N largest amplitudes are selected, hence the max strategy is

utilized.
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Figure 5.2: Associated levels over frequency band number z. The spreading func-
tions Li(z) in Figure 5.2b is calculated for every masker component A(zi) at the
band zi, see Figure 5.2a. The left and right masking slopes are chosen to 40
dB/band and 30 dB/band respectively as proposed in [15]. The attenuation level
av is highly varible and here set to 4 dB to fit the input signals. The parameter α
controlling the non-linear superposition in Figure 5.2c is set to 0.25 in accordance
with [15].

5.2.3 Music compression

The KPs determined in the XDP compression strategy are based on a database of

speech signals and then clustered to avoid fitting complexity. To investigate how

many frequency bands are optimal for music input and the dynamic spread for
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different types of music, a new set of KPs will be determined using a statistical

approach. The analysis is based on determining the 95-percentile of the signal

acoustic energy for each frequency band, see Figure 5.3c, and then applying hier-

archical clustering to group several frequency ranges together, see Figure 5.3d.

Depending on the type of music one could expect a significant change of stimulation

output when applying new KPs, e.g. pop music which if often compressed and

uses a small dynamic range could experience an improved temporal resolution.
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Figure 5.3: Steps of the statistical analysis performed to find new compression
parameters. Figure 5.3a shows an example of a boxblot of how the signal energy
is spread for each channel. In Figure 5.3b the probability of a selected channel
following a Gaussian distribution is shown. Figure 5.3c illustrates how well the
channels are separated for different quantiles and a visualisation of the hierarchical
clustering algroithm can be seen in the dendrogram in Figure 5.3d.

5.3 Resolution of NSIM

NSIM will be used as the primary measure of similarity between the normal hear-

ing and electrical hearing neurogram. It is therefore important that it can track

changes made in the CI model in order to be able to indicate improvements made
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in the signal processor. To quantify the performance of NSIM the measure will be

evaluated using a number of test signals and controlled changes implemented in

the simulation model. The aim is to see how predictable the value of NSIM is and

thus if it is a good similarity measure in this application. The implemented model

configurations are listed in Table 5.3.

Model config. Org. setting Description

Insertion depth 24 mm Increase the insertion depth of the electrode array to
29 mm to match the Greenwood function used in
the MAP model to correlate the position of IHCs to
the frequencies that stimulate the corresponding
auditory neurons.

Current spread Exp. function The intracochlear electric spread is modelled as an
exponential function with decreasing slopes and peak
value at each electrode position. Vary the amount of
current spread by changing the exp. decay parameters.

Elec-to-Freq map linear ≤ 1 kHz
log > 1 kHz

Octave band distribution.

Filtering &
SR cleaning

- Apply a frequency smoothing filter and threshold
on the normal hearing neurogram to increase
resemblance with the time frames of the electrical
hearing neurogram and remove the spontaneous
activity.

FFT resolution 128-point Increase the frequency resolution by applying
a 512-point Hamming window.

N-of-M strategy N max amp. Alternative channel selection strategies.

Compression XDP compression
incl. 4 freq. clusters

Vary the clustering and KPs of the XDP compression
to find optimal settings for music signals.

Table 5.3: Table describing the controlled changes made in the signal processing
part of the CI block to predict the performance of NSIM.
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5.4 Test signals

To evaluate the performance of the model chains, the same audio stimulus is fed

to the MAP and CI model respectively. Instead of forming the conclusions around

a quantitative analysis only a few test signals with required characteristics are

selected and used throughout the validation.

The first test signal chosen is a simple chirp. The logarithmic chirp is a sweeping

sinus with increasing frequency over time can be loosely referred to as ”gliding

tones”. It is typically used as a measurement signal in audio applications.

The other measurements signals are short pieces of music input provided EBU to

serve as sound quality assessment material [3]. The music input comprises two

signals; a single instrument flute playing a 10 s rising scale and a 3 s pop music

selection with ABBA - The Visitors. The flute input can be seen as representative

for harmonic music signals with a wide bandwidth (wider than speech) whereas

pop music is usually very compressed and uses a smaller dynamic range. The

pop music is chosen to include an increase in amplitude after approximately 1.5

seconds.
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CHAPTER 6

Analysis and results

This chapter presents the main results of the NSIM evaluation for the chosen test

signals, for different configurations of the CI model, and combination of those. A

comparison with the alternative proposed objective measures, NSIM and STOI, is

also presented.

6.1 Test signal: chirp

The spike pattern response from the acoustic model chain to a chirp input can be

viewed in Figure 6.2. Figures 6.2a and 6.2c show spike patterns generated only by

the original MAP model for two different input levels. As discussed in section 3.1

the MAP model implements all the stages of the auditory periphery and can thus

generate spike patterns without the extension of the Goldwyn model, by including

a probabilistic or quantal model simulating neurotransmitter release. By instead

cutting the MAP model (before the auditory nerve firings) and extending it with

a probabilistic spike generator from the Goldwyn model one get the output pre-

sented in Figures 6.2b and 6.2d for the chirp signal.
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For input level 50 dB SPL the MAP and Goldwyn responses are similar with the

main differences lying in the generated spontaneous activity. Increasing the input

level to 70 dB SPL seems to cause an over saturation in the MAP response as

the signal is hardly visible. The Goldwyn model on the other hand stays intact

showing more spread in the signal response from the spike pattern.

The saturation of the MAP model for 70 dB SPL may seem strange but can in

fact be explained by the behaviour of HSR auditory nerve fibers. The auditory

nerve firing rates reach saturation at different levels depending on the type of

spontaneous rate. Most HSR auditory nerve fibers are saturated by 60 dB SPL and

will not increase their firing rate significantly above that level. The minority LSR

nerve fibers on the other hand are less sensitive to level differences and saturate

at higher intensities. The saturation level of HSR and LSR fibers as modelled by

the MAP model can be seen in Figure 6.1.

Figure 6.1: Saturation rates for two different types of spontaneous rate fibers as a
function of input level. LSR fibers are represented by the red curve and the HSR
fibers are shown in the black.

The saturation effect of the spontaneous rate nerve firings are not modelled in the
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Goldwyn model and it will therefore give reasonable spike patterns even for higher

intensities. To go around this problem and generate comparable results, all further

simulation will be done at the same input level at 50 dB SPL. To further ensure

that the auditory nerve firings are modelled in the same manner, the Goldwyn

model is selected to generate spike patterns both for the MAP and CI model.

Recall that one main difference between the two since the MAP model is based on

human data whereas Goldwyn is fitted to measurement data from cats.

(a) MAP. Input level: 50 dB SPL. (b) Goldwyn. Input level: 50 dB SPL.

(c) MAP. Input level: 70 dB SPL. (d) Goldwyn. Input level: 70 dB SPL.

Figure 6.2: Spike patterns generated from the acoustic hearing MAP model and
Goldwyn model respectively, for two different input levels; 50 dB SPL and 70 dB
SPL.

Figure 6.3 shows the output neurograms from the normal hearing model and elec-
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tric hearing model respectively, for the same input chirp signal at stimulation rate

520 Hz. On the y-axis we have 120 Greenwood distributed characteristic frequen-

cies and the x-axis represents a time scale in seconds. In the acoustic neurogram,

the 120 characteristic frequencies correspond to an equal number of discrete loca-

tions along the basilar membrane. For the electric hearing path we have 20 fixed

electrodes represented by 20 characteristic frequencies. Modelling the ICEF, 120

frequencies are computed to match the output from the acoustic path.

(a) Acoustic hearing neurogram

(b) Electric hearing neurogram

Figure 6.3: Neurograms generated from the MAP and CI model chain respectively
in response to a chirp input stimulus at 50 dB SPL. NSIM1 = 0.1457.

Both neurograms are scaled equally in time, frequency and amplitude. There are

several remarks that need to be made before moving further:

• Stochastic effects For simulating normal hearing conditions the MAP

model includes three different types of spontaneous rate auditory nerve fibers
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(HSR/MSR/LSR). The spontaneous firing rate is clearly visible in Figure

6.3a where the neurogram background is covered in pixels indicating nerve

firings. The stochastic effect is however not modelled in the CI model, see

Figure 6.3b, where the only firing activity is due to input stimulus. This is

the first important difference to consider between the models.

• Resolution In the normal hearing neurogram the dynamics in the signal re-

sponse can be seen on pixel level. In the CI model on the other hand we see

a more on/off behaviour in the intensity which is visualised by the vertical

”stripes” running along the whole chirp.

Each time frame has reserved time to at maximum 20 active electrodes. Typ-

ically this number is smaller for most user fittings. Depending on the audio

input level and the number of active electrodes in each 2 ms time frame,

there is a period of time with no pulse activity between the last pulse in a

time frame and the first following pulse in the next time frame. Thus, the

absence in pulse activity in each time frame causes the black vertical lines

in the neurogram. The zoomed electrodogram in Figure 6.4 visualizes this

behaviour for a broadband signal.

One restriction of the CI model is to not consider the pulse decay effect going

from one time frame to another, hence no historic effects are modelled to

reduce complexity of the simulation chain. One could think that in reality

it is more likely that the CI user experience a continuous sound intensity

between time frames rather than a ”cut-off” period of silence between the

last pulse in each time frame ends and the first one in the next time frame.
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Figure 6.4: Electrodogram showing pulse activity for a white noise input signal.
The pulse at electrode Eaf19 in time frame one ends at 4.003 · 105 µs and Eaf0 in
the next frame starts at 4.007 · 105 µs, leaving a small gap with no pulse activity
measuring 400 µs.

• Iterations

To produce the neurograms in Figure 6.3 the simulation chain is iterated 10

times. In each trial 120 characteristic frequencies are simulated, related to

the tonotopic map of the cochlea. The reason for iterating the paths several

times is due to the large spontaneous activity in the normal hearing neuro-

gram affecting the intensity of the signal response. For only one iteration the

signal response is hardly visible with a large part of black (no firings) in the

neurogram, but superimposing the neurograms of several iterations results in

a reduced spontaneous activity effect which is seen as a greyish background

over the whole neurogram, and a more prominent signal response. One could

think of this as a type of averaging where we are interested in the signal re-

sponse only, to make the acoustic and electric neurogram comparable.

The similarity measure NSIM will be dependent on the number of iterations

as it is sensitive to the spontaneous firings in the normal hearing (i.e the
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black region of no pulse activity). Figure 6.5 shows NSIM similarity as a

function of number of iterations for a chirp signal. NSIM convergence will

depend on the type of input signal and input level. N = 10 is chosen to limit

the run-time of simulation and shows to produce good enough results.

Figure 6.5: Calculated NSIM value for a 50 ms chirp signal at 50 dB SPL input
as a function of the number of iterations.

• Frequency up-shifting It is clear from Figure 6.3 that the electric hear-

ing neurogram is shifted up in frequency compared to the normal hearing

neurogram. This is explained by looking at the original positioning of the

electrode array (blue curve) relative the Greenwood function (green curve)

in Figure 6.6. The less insertion depth we have of the electrode array (be-

low the Greenwood function) the larger frequency shift we get, since all the

characteristic frequencies are mapped to the Greenwood function. Thus, a

position along the cochlea corresponding to a small frequency according to

the electrode array will in fact correspond to a larger frequency in the Green-

wood function which is exactly what we see in the neurogram plots.

As NSIM performs its similarity analysis it assumes that the two compared
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neurograms are aligned in all dimensions. Since we want NSIM to give an

indication of the relative similarity improvement of the signal responses it

makes sense to align those to get relevant results. For this reason, in all

further testing, the electrode array will be inserted 29 mm and frequency-

to-electrode mapped according to octave band distribution, to match the

Greenwood function optimally.
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Figure 6.6: Insertion depth [mm] from cochlear base plotted as a function of
frequency. The step functions illustrates each channel’s allocated frequency range.
The blue curve represents the typical patient configuration with 24 mm insertion
depth of the electrode array. The red curve shows the electrode array with deeper
insertion and an octave band frequency-electrode distribution which matches the
Greenwood function (green curve).

• Current spread Observing the neurogram obtained from the CI model in

Figure 6.3b we see that the even though the electrodes are positioned on

discrete locations along the cochlea, the modelling of the intra-cochlear elec-

tric spread results in a wide stimulation of frequencies along the whole signal

duration. In contrast to the acoustic neurogram the intensity of the audi-

tory nerve firings are mostly either black or white, hardly any gray scale

70



6.1. TEST SIGNAL: CHIRP CHAPTER 6. ANALYSIS AND RESULTS

pixels are visible. This means that the firing intensity is almost equally large

within the whole signal, even though the electric spread is modelled as an

exponentially decaying curve.

Modelling the current spread, the exponential function will in fact never

reach zero, meaning that we always have a positive probability of firing a

spike along the 120 characteristic frequencies. The Goldwyn model is as

familiar used to generate firing spike patterns in response to electrical stim-

ulation. The firing probability is dependent on the length and amplitude of

the electric pulse. Here we assume that the amplitude is fixed to 1 mA at

the electrode position with a varying pulse length. Figure 6.7 shows the sim-

ulated spiking probabilities for a pair of pulses from the Goldwyn model for

three different interpulse intervals (time since the last spike). In our case we

have a interpulse interval of 1900 µs (observing each channel independently)

which matches best with the blue curve. On the x-axis current is scaled to

dB with the reference of a neural response threshold set to 0.852 mA [5].

For 1 mA current, transformed to 20 · log

(
1

0.852

)
= 1.371 dB, we see that

we reach the maximum of the blue curve, i.e. probability one for generating

a spike. When the current to the auditory nerve decrease we move along

the slope of the blue curve to the left where the range for firing a neuron

(prob 1) to case fire (prob 0) is relatively small. In Figure 6.3 this effect is

visualised through the vertical lines which are dashed at the ends.
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Figure 6.7: Simulated spiking probabilities for three different interpulse intervals
of a paired pulse stimuli: 667 µs (green), 1000 µs (red), 1500 µs (blue) [5], with
current in dB unit using a reference of 0.852 mA. The simulated ICEF of the CI
model with interpulse lengths of 1900 µs is best matched to the blue curve. The
shifting of firing efficiency curves to the right as the interpulse intervals decrease
is related to the refractory period of the excitable neurons. As neurons are less
excitable immediately after a spike, shorter interpulse lengths result an in increased
current to obtain the same spiking probability. Also, the amount of relative spread
increases when more spikes are generated resulting in less flat slopes.

• NSIM The similarity between the neurograms in Figure 6.3 is calculated

to NSIM1 = 0.1457. It has already been shown that the NSIM value is de-

pendent on the number of simulated trials. The reduction of NSIM when

increasing the number of iterations, as shown in Figure 6.5, is due to the

superimposed spontaneous activity in the acoustic neurogram. The sensitiv-

ity of NSIM can be observed in Figure 6.8 where random noise is introduced

systematically. It is clear that NSIM decrease rapidly with increased amount

of in noise. One can also look at it as NSIM decrease as the amount of black

regions in the neugrams decrease. This is, as it will also show later, an im-

portant restriction of NSIM. Two neurograms where the signal responses are

significantly different but both have an equally large black background will

in fact be given a high similarity score by NSIM. It turns out that NSIM
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is more sensitive to changes in the background activity that in the signal

response making it difficult to draw conclusions on what type of similarity

among the neurograms is actually calculated.

(a) 1% noise. NSIM1 = 0.9564. (b) 5% noise. NSIM1 = 0.7900.

(c) 10% noise. NSIM1 = 0.6246. (d) 25% noise. NSIM1 = 0.2881 .

Figure 6.8: Cacluated NSIM for four different percentage levels of introduced noise
for a chirp signal; 1%, 5%, 10%, 25%. All noise induced neurograms are compared
with a reference with 0% noise.

6.1.1 Model validation

Reference neurogram

With the aim to increase NSIM resolution a median filter is applied on the normal

hearing reference including removal of spontaneous neural activity (i.e. remov-

ing noise) by applying a density threshold on the spike pattern, see Figure 6.9.

However, with the discussion on NSIM sensitiveness from the previous section, a

filtering of the acoustic neurogram in practice means that more black regions are

exposed. This will most likely result in higher similarity scores as the CI model

does not model for any stochastic effects. In reality it is thus not likely that the

relative similarity changes, i.e. the resolution, of NSIM increases. Both acoustic

neurogram references will however be used when presenting the neurogram results.
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(a) Original reference. (b) Filtered reference.

Figure 6.9: Reference neurograms with and without included spontaneous activity
and smoothing in frequency. In the filitered reference almost all spontaneous neural
activity is removed resulting in a narrower signal response.
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CI model configurations

(a) Original. NSIM1 = 0.1457.
NSIM2= 0.5977.

(b) 29 mm ins. depth. NSIM1 = 0.1786.
NSIM2=0.6596.

(c) Octave band dist. NSIM1 = 0.1837.
NSIM2=0.6605.

(d) Small ICEF. NSIM1 = 0.1767.
NSIM2=0.7484.

(e) No ICEF. NSIM1 = 0.1609.
NSIM2=0.7145

(f) 512-point FFT. NSIM1 = 0.1809.
NSIM2=0.6410.

Figure 6.10: Superimposed model configurations: insertion depth 29 mm and
octave band frequency-to-electrode mapping from Figure 6.10d-6.10f. NSIM1 refers
to the original reference and NSIM2 to the filtered reference.



6.1. TEST SIGNAL: CHIRP CHAPTER 6. ANALYSIS AND RESULTS

Similarity analysis

An overview of the similarity scores of the CI model configurations for the three

different objective similarity measures are found in Figure 6.11, using the un-

filtered acoustic reference. For the original configuration of the typical patient

NSIM scores 14.57 % while the other image analysis method NOPM results in i

similarity score of 0.106 %. Changing the insertion depth to 29 mm and aligning

the frequency-electrode distribution with Greenwood is expected to increase the

similarity with the acoustic neurogram significantly. Observing the bar diagram

NSIM scores 18.37 % and NOPM 22.05 %. To be able to get a sense of the magni-

tude of change in NSIM one could calculate the standard deviation of the acoustic

neurogram. Measurements show that NSIM differ in order of 10−3 from different

simulation of spontaneous activity in the normal hearing for the chirp signal. For

the NSIM changes of the CI configuration to be seen as significant it is reasonable to

think that the magnitude of change at least have to exceed the standard deviation.

A smaller amount of current spread is expected to give increased similarity due to

a more accurate representation of best frequencies at the electrodes. However, a

decrease of current spread results in a very small decrease in similarity for both

NSIM and NOPM compared with the previous configuration. The result of re-

moving the current spread completely can be observed in Figure 6.10e. Even if

current spread generally is seen as a negative effect it is not necessary that an

optimal electrical output only has neural activity at the discrete locations of the

electrodes. Both NSIM and NOPM has a lower similarity for no CS compared to

the third configuration.

Increasing the frequency resolution from a 128-point to 512-point FFT Hamming

window length is expected to show more signal dynamics and thus a higher like-
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ness. From Figure 6.10f it can be seen that the effect of the FFT side lobes is

reduced with a decrease in current spread. This is however not captured in the

NSIM or NOPM which scores 18.08 % and 17.68 respectively.

The STOI scores represented by the blue bars are significantly higher for all con-

figurations than the other objective measures but does not follow the bars of NSIM

and NOPM. This approach is as familiar based on the vocoding of the spike pattern

to generate an audio signal which is compared with the original input signal.
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Figure 6.11: Bar diagram showing similarity between CI and normal hearing out-
puts for different CI model configurations with an input chirp signal. Three differ-
ent similarity measures are included to observe the relative changes; NSIM(orange),
NOPM(green), STOI(blue).
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6.1.2 N-of-M strategy

A simple alternative to the max channel selection strategy is to allow no adjacent

neighbour channels to be stimulated in the same time frame. Another more so-

phisticated method takes psychoacoustic masking effects into account which are

present in an healthy auditory system. The resulting neurograms for each model

are found in Figure 6.12.

(a) No neighbour. NSIM1=0.1840.
NSIM2=0.6701.

(b) Psycoacoustic. NSIM1 = 0.1839.
NSIM2=0.6243.

Figure 6.12: Resulting neurograms for alternative N-of-M channel selection for the
chirp signal. In Figure 6.12a no adjacent neighbours are allowed stimulation and
6.12b shows the result of psychoacoustic masking selection Both neurograms are
configured with electrode insertion depth of 29 mm and octave band frequency-
electrode distribution.

The alternative N-of-M channel selection strategies are expected to generate a more

sparse electrodogram and hence a decrease in current spread. For the chirp signal

the no neighbour strategy in Figure 6.12a seems to result in an visual improves

compared to the reference but this effect fails to be captures in NSIM. Applying a

psychoacoustic masking threshold does not give any additional information about

the signal in this case.

78



6.2. TEST SIGNAL: FLUTE CHAPTER 6. ANALYSIS AND RESULTS

6.2 Test signal: Flute
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(a) Audio input: flute signal

(b) Acoustic hearing neurogram

(c) Electric hearing neurogram

Figure 6.13: NSIM1 = 0.0780.
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6.2.1 Model validation

Reference neurogram

(a) Original reference. (b) Filtered reference.

Figure 6.14: Reference neurogram with and without included spontaneous activity
and smoothed frequency.
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CI model configurations

(a) Original. NSIM1 = 0.0780.
NSIM2=0.2499.

(b) 29 mm ins. depth. NSIM1 = 0.1090.
NSIM2=0.3308.

(c) Octave dist. NSIM1 = 0.1136.
NSIM2=0.3729.

(d) Small ICEF. NSIM1 = 0.1052.
NSIM2=0.4753.

(e) No ICEF. NSIM1 = 0.0849.
NSIM2=0.5229.

(f) 512-point FFT. NSIM1 = 0.1123.
NSIM2=0.4035.

Figure 6.15: Superimposed model configurations: insertion depth 29 mm and
octave band frequency-to-electrode mapping from Figure 6.10d-6.10f. NSIM1 refers
to the original reference and NSIM2 to the filtered reference.
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Similarity analysis

The flute signal is more complex in its structure compared to the chirp which

results in generally lower similarity scores for NSIM and NOPM. Also the STOI

measurements are in the same range. However, calculating the standard deviation

of the stochastic effects it is also of a lower order 10−4.
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Figure 6.16: Bar diagram showing similarity between CI and normal hearing out-
puts for different CI model configurations with an input flute signal. Three differ-
ent similarity measures are included to observe the relative changes; NSIM(orange),
NOPM(green), STOI(blue).

6.2.2 N-of-M strategy

(a) No neighbour. NSIM1=0.1136.
NSIM2=0.4531.

(b) Psycoacoustic. NSIM1 =0.1142 .
NSIM2=0.4004.

Figure 6.17: Resulting neurograms for alternative N-of-M channel selection for
the flute signal. In 6.17a no adjacent neighbours are allowed stimulation and
6.17b shows the result of psychoacoustic masking selection Both neurograms are
configured with ins. 29 mm and octave band frequency-electrode distribution.
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6.2.3 Compression

The XDP compression strategy aims at maximizing the user’s dynamic range per

frequency band and plays an important role in the frequency tuning. Each of the

20 available channels has an independent transfer function but are clustered to

reduce the complexity of fitting. Figure 6.18 shows each channel’s compression

slopes and how the signal activity is mapped depending on the input level. A

mapping above the KP results in a strongly compressed signal to eliminate the

risk of overshooting. The neurogram response for a varying number of predefined

clusters and KP’s can be observed in Figure 6.19. The compression changes are

expected to be seen in the intensity of the neural firings which are also affecting

the current spread. However, when comparing the three clustering approaches in

Figures 6.19b- 6.19d there are only very small (hardly visible) differences between

the compression strategies.
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Figure 6.18: Compression slopes for each channel showing the transfer function
mapping energy level to electrical stimulation. All four neurograms are configured
with electrode insertion depth 29 mm and octave band frequency-to-electrode map-
ping.
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(a) Original KPs. NSIM1 = 0.1136.
NSIM2=0.3729.

(b) 1 comp cluster. NSIM1 = 0.1142.
NSIM2=0.3793.

(c) 4 comp. clusters. NSIM1 = 0.1126 .
NSIM2 = 0.3630.

(d) 8 comp. clusters. NSIM1 = 0.1124 .
NSIM2 = 0.3607.

Figure 6.19: Varying compression clustering and KPs for flute music input. Figure
6.19a illustrates the response for the original set of KPs.
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6.3 Test signal: Pop
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(a) Audio input: pop signal

(b) Acoustic hearing neurogram

(c) Electric hearing neurogram

Figure 6.20: NSIM1 = 0.0883.
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6.3.1 CI model configurations

(a) Original. NSIM1 = 0.0883.
NSIM2 = 0.1180.

(b) 29 mm ins. depth. NSIM1 = 0.1035.
NSIM2 = 0.1476.

(c) Octave dist. NSIM1 = 0.1083.
NSIM2 = 0.1712.

(d) Small ICEF. NSIM1 = 0.1054.
NSIM2 = 0.2126.

(e) No ICEF. NSIM1 = 0.0835 .
NSIM2 = 0.2696.

(f) 512-point FFT. NSIM1 = 0.1031.
NSIM2 = 0.1628.

Figure 6.21: Superimposed model configurations: insertion depth 29 mm and
octave band frequency-to-electrode mapping from Figure 6.21d-6.21f. NSIM1 refers
to the original reference and NSIM2 to the filtered reference.
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6.3.2 Similarity analysis

Implementing the CI model configurations it can be seen in Figure 6.22 that each

of the three objective measures calculate a very small similarity score. For NSIM

and NOPM it holds that increasing the insertion depth together with changing the

frequency-to-electrode distribution to octave band always gives the largest positive

similarity. In this case the STOI measure results in unrealistic values.

Comparing similarity with the psychoacoustic selection strategy, NSIM actually

shows an improvement of the order 10−3 from configuration three in Figure 6.22

where NSIM1=0.1083 to NSIM1=0.1142 in Figure 6.23b. Visually there can also be

seen a change in Figure 6.23b as the neurogram is more sparse between 2 s and 4 s.

As NSIM was not able to capture the relatively large changes in 6.22 it is reasonable

to assume that neither the changes in the compressor are traceable. Studying

Figure 6.24 NSIM reveals no significant differences among the neurograms.
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Figure 6.22: Bar diagram showing similarity between CI and normal hearing out-
puts for different CI model configurations with an input pop signal. Three different
similarity measures are are included to observe the relative changes; NSIM(orange),
NOPM(green), STOI(blue).
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6.3.3 N-of-M strategy

(a) No neighbour. NSIM1 = 0.1090.
NSIM2 = 0.1897.

(b) Psycoacoustic. NSIM1 = 0.1142.
NSIM2 = 0.2000.

Figure 6.23: Resulting neurograms for alternative N-of-M channel selection for
the pop signal. In Figure 6.23a no adjacent neighbours are allowed stimulation
and Figure 6.23b shows the result of psychoacoustic masking selection. Both
neurograms are configured with ins 29 mm and octave band frequency-electrode
distribution.
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6.3.4 Compression

(a) Original KPs. NSIM1 = 1083 .
NSIM2 = 0.1712.

(b) 1 comp cluster. NSIM1 = 0.1081.
NSIM2 = 0.1689.

(c) 4 comp. clusters. NSIM1 = 1079.
NSIM2 = 0.1664.

(d) 8 comp. clusters. NSIM1 = 0.1075.
NSIM2 = 0.1659.

Figure 6.24: Varying compression clustering and KPs for pop music input. Figure
6.24a illustartes the response for the original set of KPs.
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CHAPTER 7

Conclusions and future work

The MAP model, simulating the steps of the auditory periphery, and the CI model,

coding for direct electrical stimulation of the auditory nerves, are very different to

their nature. In this project it has been assumed that the two model outputs can

be aligned and compared by extending each of the paths with a third model sim-

ulating auditory nerve firings. When evaluating the normal hearing and electrical

hearing neurograms respectively using NSIM the absolute similarity score shows

to be highly dependable on the complexity of the input signal.

NSIM was originally developed to measure speech degradation for hearing im-

pairment. To the author’s knowledge it has never been used to measure likeness

between normal hearing conditions and CI hearing before. In this work several

limitations on NSIM has been documented. The controlled changes in the CI

model were set up to see if we were able to predict the behaviour of the objective

measure and thus if it was able to register the type of changes we want to evaluate

in the CI chain. For example we expected a significant increase in NSIM when

the electrode array was inserted 29 mm and frequency-to-electrode mapping was
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performed according to an octave distribution. Even if the NSIM likeness increases

of order 10−2 for all three test signals, the similarity change is very small to what

was expected. Further analysis show that no significant change are calculated in

NSIM when decreasing the current spread or increasing the frequency resolution

by applying a longer FFT window.

It has been shown that NSIM is very sensitive to noise and thus the sponta-

neous activity in the normal hearing reference. When using the original refer-

ence neurogram NSIM calculated a much lower similarity than when using the

filtered reference. The main reason for this is that the two backgrounds compared

are completely different, i.e. comparing black and greyish (spontaneous activity)

background NISM scores low likeness while comparing two neurograms with both

a large amount of black regions generates high likeness. This restriction makes it

very difficult to evaluate the signal response in the neurograms.

As an alternative to NSIM two other objective measures have been tested; NOPM

and STOI. NOPM which aims at capturing smaller intensity changes efficiently,

shows larger positive and negative changes than NSIM for the chirp and flute

signal. STOI is a different evaluation approach completely bypassing the normal

hearing reference and instead using a spike based vocoder to generate back an

audio signal which is then compared to the unprocessed signal. STOI has been

shown to successfully predict speech intelligibility in noise. In this application the

STOI results are difficult to draw a conclusion around since it there is nothing

saying that the processing CI signal has the input stimuli as optimal reference.

The output from the vocoder tells us how correlated the processed signal from the

CI is with the input stimulus, but does not necessarily give information about how

the sound is perceived in the brain.
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The large insecurity of evaluating NSIM on only a few audio signals makes it dif-

ficult to measure the performance of the music compression and the alternative

N-of-M selection. Visually, the small changes can be discriminated in the neuro-

grams as intensity changes.

Finally, here we have assumed that no relevant results will be generated unless the

CI output is aligned in both time and frequency with the Greenwood function.

It is important to keep in mind that using this assumption we are moving away

from the configurations of the typical patient and thus no longer simulating the

up-shifting in frequency that is most likely occurring for many CI patients, before

they can learn to adapt for the basal shifts to some degree through training.

7.1 Future work

This thesis has focused on the validation of the MAP and CI chain respectively as

well as simulating strategies optimal for music input. For future recommendations

both models can be improved. In the results it can be observed that Goldwyn gen-

erates a different spike pattern than the MAP model. One could consider using

the MAP model for simulating the complete normal hearing chain, without the

attachment of Goldwyn. This would assure simulation of all steps of the auditory

pathway (including the afferent attenuation).

As for the CI model it also needs to be tested further. One suggestion for improve-

ment is to include the modelling of the ICEF historic current potential effects by

using data from previous time frames. To avoid the large variance in using two

models, a different reference can be implemented where an optimal CI configura-
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tion can be established. There is certainly not one true electric reference but with

further testing some optimal parameters can be establishing.

The objective evaluation measure NSIM has shown to give inconclusive results. To

further evaluate its performance it needs to be applied on a larger amount of test

signals with different characteristics. Alternative objective measurement could be

further analyzed in parallel and adapted to the type of change in the CI model

that are to be tested.

There are several improvements in the CI implementation that could be done for

music. Extracting the temporal fine structure (TFS) from the amplitude signal is

one of the current research areas to improve pitch perception. Further evaluation of

the proposed compression analysis is also needed on genre classified music signals

with longer duration. Although NSIM did not indicate an improvement when using

the alternative psychoacoustic N-of-M strategy the method aims at describing

the natural psychoacoustic selection and should be investigated further, both for

speech and music signals.
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