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Abstract
Recently a new way of constructing variable step-size multistep methods has been
proposed, that parametrizes the entire domain of multistep methods. In the pre-
sented work the case of explicit two-step methods is looked at, analyzed and related
to the already known theory of multistep methods. The error coefficient is derived
as a function of the step-size ratio and an upper limit to the method domain due
to zero stability is found. The theory is used to introduce an implementation of
a variable step-size methods from a pair of explicit two-step methods and optimal
parameters then chosen empirically. The chosen method is tested on benchmark
problems.
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Popular scientific summary
Differential equations are a common type of mathematical problems to be encoun-
tered in many fields of study, such as a change of stock price in economics, a chemical
reaction in chemistry or movement of an object in a gravitational field in physics.
A differential equation is a mathematical model that describes the rate of change
of a system. Knowing some starting value for the system, referred to as the initial
value, the differential equation describes how the value will change.

The predator-prey equations, also known as the Lotka-Volterra equations, are a
famous example that describes the change in the populations of two distinct species
of animals where one is the predator and the other is the prey. The differential
equation would then be the rate of change over time of the two populations as they
depend on each other. If there is plenty of prey, the predator population will grow,
but as it gets larger, the prey will be eaten up faster and the population will shrink.
As the prey population gets smaller, the predator population will follow due to lack
of food. When the predator population gets smaller again the prey population will
grow again and the system is back to the original populations.

When we talk about solving a differential equation, we wish to find a new mathe-
matical model that allows us to find the future value of a system, knowing the initial
value. While such a solution would be optimal, a mathematical model of this type
cannot always be found. For the cases when finding such solution is not possible, we
rely on computers to estimate the solution using numerical methods. A numerical
method is a computer algorithm that with an approximation forwards the solution
in small iterative steps. A numerical solution however contains an error from the
computation and the task of getting the best solution is to minimize the error, but
at the same time keep the computational time to the minimum. For this reason
there exists broad range of numerical methods as different problems have different
requirements. One way of getting less error is to make the step-size of the method
smaller. That however would mean more steps to reach the final destination and
therefore longer computational time. As the same accuracy is not always needed
throughout the entire solution, most modern methods allow the step-size to change
between steps. Those methods are referred to as variable step-size methods.

One type of methods is known as multistep methods as they use the information
from multiple previous steps to further the solution to the next step. A few such
methods have been well known for quite some time but a recent development in the
field has made it possible to construct all possible variable step-size multistep meth-
ods. In this thesis the multistep methods that use the information from the previous
two steps to compute the new step, known as two-step methods, were considered.
As multistep methods have already been studied in detail, the work presented here
was on analyzing and generalizing the already known theory for the new way of con-
structing methods. Furthermore the theoretical results were used to construct and
implement a variable step-size method. The successful implementation was applied
to test problems for demonstration.

5



6



Contents

1 Introduction 9
1.1 Differential equations and the multistep methods . . . . . . . . . . . 9
1.2 Existence of a solution . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Varying the step-size . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Parametric multistep methods . . . . . . . . . . . . . . . . . . . . . . 11
1.5 A good foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Analysis of a method 15
2.1 Coefficients of an explicit two-step method . . . . . . . . . . . . . . . 15
2.2 Order and error coefficient . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Boundaries of the method domain . . . . . . . . . . . . . . . . . . . . 24

3 Implementation of a method 27
3.1 Code organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Executing a computation . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Initializing the multistep method . . . . . . . . . . . . . . . . . . . . 29
3.4 Evaluating the next step . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Error control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Computational results 33
4.1 Constant step-size for different θ’s . . . . . . . . . . . . . . . . . . . . 33
4.2 Variable step-size with θ vs. η . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Varying C with respect to rn . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Testing on harder problems . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Finding stability regions . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Discussion 43
5.1 What has been covered . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Further work on explicit two-step methods . . . . . . . . . . . . . . . 44
5.3 Other k-step methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7



8



Chapter 1

Introduction

1.1 Differential equations and the multistep meth-
ods

Ordinary differential equations are a common type of computational problems of
the form

ẋ = f(t,x), (1.1)

with some initial condition x(t0) = x0. For that reason, much effort has gone into
constructing numerical solvers. The same solvers can then in many cases be adapted
to similar problems, such as partial differential equations and differential algebraic
equations. One family of numerical solvers is referred to as multistep methods and
are of the form

αkxn + αk−1xn−1 + ...+ α0xn−k = h(βkẋn + βk−1ẋn−1 + ...+ β0ẋn−k), (1.2)

where xi, ẋi are discrete values or estimates of (1.1), h = tn − tn−1 is the step-size
and the α’s and the β’s are coefficients of the method. A multistep method is said
to be a k-step method if k is the highest index such that αk 6= 0 and |α0|+ |β0| > 0.
The methods can be divided further into two categories, where methods that have
βk = 0 are called explicit and methods where βk 6= 0 are implicit. While explicit
methods can compute solutions directly, implicit methods need to be combined with
an iterative solver for non-linear equations, for example Newton’s method or else be
used in tandem with an explicit method in a predictor-corrector scheme.

Example 1.1 (Construction of explicit Adams method [8]). The k-step explicit
Adams methods (Adams–Bashforth methods) are amongst the well-known multistep
methods. The methods can be constructed as follows. In order to find the solution
at tn, knowing the value at tn−1, consider the equation

x(tn) = x(tn−1) +

∫ tn

tn−1

f(t)dt.

Since we don’t know the solution to the integral, we wish to approximate it. Using
previously approximated values xi and fi = f(ti,xi) where i = n − 1, .., n − k, an
interpolation polynomial can be constructed

p(t) = p(tn−1 + sh) =
k−1∑
j=0

(−1)j
(
−s
j

)
∇jfn−1

9



1. Introduction

and placed into the integral instead of f(t). The approximated solution to the initial
value problem becomes then

xn = xn−1 +

∫ tn

tn−1

p(t)dt = xn−1 + h

k−1∑
j=0

γj∇jfn−1,

where

γj = (−1)j
∫ 1

0

(
−s
j

)
ds.

1.2 Existence of a solution
For an initial value problem to have a solution, there are certain properties that the
function f(t,x) in eq. (1.1) must hold [1].

Definition 1.2. Let f(t,x) be a function as in the initial value problem (1.1),
then f is said to satisfy the Lipschitz condition and be Lipschitz continuous for the
variable x on the set Ω ⊆ R× Rn if

||f(t,x1)− f(t,x2)|| ≤ L||x1 − x2||,

holds for all (t,x1), (t,x2) ∈ Ω and some Lipschitz constant L <∞.

The Lipschitz continuity allows us then to state the theorem commonly named
after Émile Picard and Ernst Lindelöf.

Theorem 1.3. For an initial value problem on the form (1.1), let f(t,x) be a
continuous function and so that the Lipschitz condition holds, in a neighborhood
around (t0,x0) ∈ R × Rn. Then there is an open interval around t0 where there
exists a unique solution to the problem.

As existence and uniqueness of a solution is necessary for us to even consider the
problem, those conditions will be assumed for all problems in the following chapters.

1.3 Varying the step-size
When solving a problem of the form (1.1) using a numerical method, the choice of
a step-size h plays an important role in the solution. Choosing a too large step-size
can cause the method to not converge to the solution at all. Assuming that the
solution converges, the task is then to estimate the step-size needed for the required
accuracy of the solution. While taking smaller step-sizes results in a smaller error,
there is a trade off between accuracy and efficiency. Smaller step-sizes mean more
steps in order to reach the same end value. For some problems the computation can
be extremely time consuming and in some cases taking too small steps could lead
to the computation not ending within a reasonable time. Commonly, the problems
being solved have parts along the trajectory where the resolution needed varies. In
order to achieve good accuracy the step-size needs to be selected for the parts where
the most resolution is needed. On other parts of the solution this fine step-size is
not needed and unnecessary computation is carried out.

10



1.4 Parametric multistep methods

One way to tackle this problem is to allow the step-size to vary along the solution.
Accompanying the method with an error estimator allows computations to control
the step-size needed at each iteration in order to achieve a certain accuracy. The
form of the method needs to be altered to

xn +
k∑
i=1

αk−i,nxn−i = hn

k∑
i=0

βk−i,nẋn−i. (1.3)

Here we have normalized the method so αk,n = 1 for all n. This can be done
without any loss of generality. The possibility of varying the step-size has become
so widespread that by today’s standard a method is considered of little use if the
step-size cannot be varied.

Example 1.4. An elliptic Kepler orbit in a plane around the origin can be described
with the second order differential equation

r̈ = −f(r)r̂,

where r̂ denotes a unit vector in the direction of r and f(r) = µr−2 is the inverse
square force with a constant µ only depending on units and the source of attraction.
By introducing velocity v, the system can be reduced to the first order system

ṙ = v,

v̇ = −f(r)r̂

and a solution to the trajectory can be given by

r =
c2/µ

1 + e cosφ
,

where c = |r × v| is the angular velocity, φ is the angle between the semi-major
axis and r and 0 < e < 1 is the eccentricity of the orbit. Now, setting the values
for a problem with a high eccentricity, µ = 1, r = 1 and v = 0.16 with the velocity
perpendicular to r. Then e = 0.6 and the ellipse has a very flat shape.

We solve the problem now using explicit two-step Adams method discussed in
example 1.1 with two different step-sizes h = 0.0004 and h = 0.00005. In figure 1.1
we can see that the bigger step-size manages to approximate the solution closely from
the initial value at the aphelion of the orbit and all the way to the perihelion. Close
to the origin at the perihelion however the speed is high and the curvature is steep so
the particle reaches escape velocity and shoots off, while an elliptical trajectory was
expected. The smaller step-size manages to solve for the ellipse but needs 8 times
as many steps to do so. It would therefore be optimal if for part of the trajectory a
bigger step-size could be used while at the perihelion the step-size could be lowered.

1.4 Parametric multistep methods

Some well known multistep methods such as explicit Adams methods discussed in ex-
ample 1.1, Nyström’s methods, the backwards difference formulas (BDF) and Milne-
Simpson methods can be found both in the literature [8], [10], [12] and widespread
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1. Introduction

Figure 1.1: A Kepler orbit with high eccentricity e = 0.6 solved twice using explicit
two-step Adams method with two different fixed step-sizes. With h = 0.0004 the
computation makes it to the perihelion but then shoots of while with h = 0.00005
the method can solve a full orbit.

numerical software [4], [11]. All those methods are derived by means of some numer-
ical integration with difference methods with a constant step-size. Many of them
have further been extended to variable step-size methods by means of polynomial
interpolation to make new grid point values for the new step-size or Nordsieck’s
approach [8]. In [2] Arévalo, Führer, Selva introduce a construction of implicit mul-
tistep methods of maximal order using collocation polynomials. Arévalo extends
this approach in [3] using the state slack and the derivative slack conditions

sj = P (tj)− xj

and

ṡj = Ṗ (tj)− ẋj.

along with the orthogonality condition that

[cos θ, sin θ] ·
[

sj
hj+1ṡj

]
= 0,

12



1.5 A good foundation

for a polynomial P (t) to hold for j = n − k, .., n − 2. This leads to interpolation
conditions for the polynomial defining explicit methods of maximal order

P ∈ Πk (1.4a)
P (tn−1)− xn−1 = 0 (1.4b)

Ṗ (tn−1)− ẋn−1 = 0 (1.4c)

P (tn−j)− xn−j + tan θjhn−j+1(Ṗ (tn−j)− ẋn−j) = 0; j = 2, . . . , k, (1.4d)
optionally replacing some but not all (1.4d) with

Ṗ (tn−j)− ẋn−j = 0, (1.4e)

where Πk is the space of all polynomials of order k. The new step can be computed
then as xn = P (tn). In this thesis we will use the condition for parametric explicit
methods in (1.4) to analyze all possible explicit two-step methods of order two and
use that in an attempt to implement a variable step-size method combined with an
error estimator. As explicit two-step methods are defined with a single parameter θ
the subscript indexing will be dropped.

1.5 A good foundation
A two volume set called Solving ordinary differential equations by Hairer, Nørsett,
Wanner [7], [8] has a comprehensive coverage of the theory of numerical methods for
ODEs. The first volume covers explicit methods and the second one implicit meth-
ods and stiff problems. As those books thoroughly cover the theory on multistep
methods, the analysis of the parametric variable step-size multistep methods in the
following chapter will heavily rely on them.

In chapter 2 the theory will be discussed and the methods analyzed, in chapter 3
the code implementation of the methods will be covered along with some theory of
how a step-size controller is implemented, then in chapter 4 some computed solution
using the method will be displayed and the effect of different parameter values
discussed and finally in chapter 5 we will summarize and discuss future research
possibilities.

13
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Chapter 2

Analysis of a method

The aim of this chapter is to analyze the family of all variable step-size explicit two-
step methods. There are several conditions a method needs to satisfy in order to be
valid and an attempt will be made to cover all aspects of the theory. In some cases
the two-step methods will only be considered but when appropriate, the theory will
be stated in general for all multistep methods.

2.1 Coefficients of an explicit two-step method

The procedure of getting from the conditions in eq. (1.4) to the coefficients of a
k-step method is more or less the same, regardless of the value of k and whether or
not the method is implicit or explicit. To begin with, some form of a second order
polynomial P (t) needs to be chosen. The form used here is

P (t) =
a

2
(t− tn−1)2 + b(t− tn−1) + c,

with the first derivative

Ṗ (t) = a(t− tn−1) + b.

The polynomial is placed into the conditions of eq. (1.4) and the resulting formulas
used to solve for a, b and c. Once those coefficients have been found, the polynomial
can be evaluated at the new step

P (tn) =
a

2
hn

2 + bhn + c,

where hn = tn − tn−1. The resulting equation will contain terms of xi’s and ẋi’s.
Collecting the terms for each one of the xi’s and ẋi’s will give the corresponding
coefficient of the multistep method as shown in eq. (1.3). For the explicit two-step
method the conditions are few and the equations short but this is the only case
where there’s only one parameter θ. For methods with more conditions, it can
become tedious to keep track of terms and signs. To avoid human error a computer
algebra system software is used. For the results here, Maple 17 was chosen for that
purpose. The result is four coefficients that are functions of the method parameter

15



2. Analysis of a method

Figure 2.1: The four coefficients for the explicit two step method, α1,n, α0,n, β1,n
and β0,n as functions of the parameter θ. A color scale is used to show how the
coefficients vary with respect to the step-size ratio rn and the underlying constant
step-size method rn = 1 is emphasized with a thicker black line.

θ and the step-size ratio rn = hn/hn−1

α1,n(θ, rn) =
rn

2cos θ − cos θ + 2 sin θ

cos θ − 2 sin θ
(2.1a)

α0,n(θ, rn) = − rn
2cos θ

cos θ − 2 sin θ
(2.1b)

β1,n(θ, rn) =
rncos θ − rnsin θ + cos θ − 2 sin θ

cos θ − 2 sin θ
(2.1c)

β0,n(θ, rn) =
rnsin θ

cos θ − 2 sin θ
. (2.1d)

Figure 2.1 contains plots of all four coefficients, demonstrating the effect of varying
the step size. Since θ only occurs within trigonometric functions, all the coefficients
must be periodic with period 2π. Not as obvious is that the functions have a smaller
period of π. Furthermore they all have the same denominator that is equal to zero
at arctan(1

2
) ± nπ for all n ∈ N. This leads to divergence of the coefficients since

none of the numerators are equivalent to zero at those values. Knowing the period
and where the coefficients go towards ±∞, it is sufficient to consider one of the open
intervals (arctan(1

2
)+(n−1)π, arctan(1

2
)+nπ). With the smaller domain of a single

interval it is worth noting that all four of the coefficients are continuous functions,

16



2.2 Order and error coefficient

both for θ and rn. For later analysis this will be an important property.
Two polynomials that are constructed from the coefficients of a multistep method

are referred to as the generating polynomials of a method. Those are

ρ(z) =
k∑
j=0

αkz
k and σ(z) =

k∑
j=0

βkz
k. (2.2)

The generating polynomials serve an important role in the analysis of a method and
will be used multiple times later.

Having a well defined method domain, the first question that comes to mind is
whether any of the well known methods are contained within it.

Proposition 2.1. The methods given by equations (2.1) with θ = π/2 is xn =
xn−1+hn−1[(

1
2
rn+1)fn−1− 1

2
rnfn−2] and with θ = π is xn = xn−2+hn−1(rn+1)fn−1.

Setting rn = 1 those methods are equivalent to two-step explicit Adams method and
Nyström method respectively [8].

2.2 Order and error coefficient

One way of determining that a variable step size multistep methods is consistent
of order p, is to apply the method to polynomials of order ≤ p and check that an
exact solution is obtained. Although convenient, other equivalent order conditions
are needed for further analysis of the methods. For the constant step size case,
(Theorem III.2.4 given by Hairer et al. [8]), there are three equivalent conditions
given for a method to be of order p. We are interested in the first case and wish
to show that a generalized formulation is equivalent to the polynomial condition
already mentioned. First we define the local error.

Definition 2.2. The local error of a variable multistep method is

x(tn)− xn (2.3)

where x(tn) is the exact solution to the eq. (1.1) and xn is the computed solution from
equation (1.3), using as initial values the exact solutions x(tn−i), for i = 1, ..., k.

In association with the local error we define the difference operator

L(x, tn−k, hn) =

k∑
i=0

[
αix(tn−k +

j≤i∑
j=1

(Rn
n−k+j)

−1hn)− hnβix′(tn−k +

j≤i∑
j=1

(Rn
n−k+j)

−1hn)

]
, (2.4)

with the shorthand notation Rk
j =

∏k
i=j ri = hk

hj
.

Definition 2.3. A method on the form (1.3) is said to be consistent of order p if
L(x, tn−k, hn) = O(hp+1

n ) or the local error is O(hp+1
n ). A method is called consistent

if it is at least of order 1.

The order of a method can be verified using the following theorem.
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2. Analysis of a method

Theorem 2.4. A variable step size multistep method is of order p, if and only if
the following two equivalent conditions are satisfied:

1.
∑k

i=0 αi = 0 and
∑k

i=0 αi(
∑j≤i

j=1(R
n
n−k+j)

−1)q = q
∑k

i=0 βi(
∑j≤i

j=1(R
n
n−k+j)

−1)q−1

for q = 1, ..., p;

2. Q(tn) +
∑k−1

i=0 αiQ(tn−k+i) = hn
∑k

i=0 βiQ̇(tn−k+i),

for all polynomials Q(t) of degree ≤ p.

Proof. Consider the difference operator L(x, tn−k, hn) given by equation (2.4). By
expanding every term of x and ẋ by its Taylor series from the point tn−k, we get

L(x, tn−k, hn) =
k∑
i=1

[
αi

(∑
q≥0

(
∑j≤i

j=1(R
n
n−k+j)

−1)q

q!
hn

qx(q)(tn−k)

)

−hn
∑
r≥0

(
∑j≤i

j=1(R
n
n−k+j)

−1)r

r!
hn

rx(r+1)(tn−k)

]
.

(2.5)

Now collect by terms of x(q)(tn−k) and get

L(x, tn−k, hn) = x(tn−k)
k∑
i=0

αi +

p∑
q=1

hn
q

q!
x(q)(tn−k)[

k∑
i=0

αi(

j≤i∑
j=1

(Rn
n−k+j)

−1)q − q
k∑
i=0

βi(

j≤i∑
j=1

(Rn
n−k+j)

−1)q−1

]
+O(hn

p+1)

(2.6)

In order for the remainder to be O(hn
p+1) the terms in the sums need to add up

to zero. This proves the first condition, the second condition follows directly from
replacing the function x(t) with a polynomial Q(t) of degree ≤ p.

This result takes us directly to the case of the coefficients in (2.1).

Corollary 2.5. All methods defined by coefficients in equations (2.1) on the open
interval (arctan(1

2
), arctan(1

2
) + π) are of order two.

The two other conditions in the theorem by Hairer et al. already mentioned, are
skipped here. The reason we are interested in the first condition as it can be used to
estimate the error of a method. A common way to estimate the error of a multistep
method is to consider the so called error coefficient. Using Theorem 2.4, the error
coefficient can be derived for the parametric multistep methods for any given θ and
ri’s. For a method of order p we have that eq. (2.4) can be written as

L(x, tn−k, hn) = Cp+1hn
p+1x(p+1)(tn−k) +O(hn

p+2)

where

Cp+1 =
1

(p+ 1)!

[
k∑
i=0

αi(

j≤i∑
j=1

(Rn
n−k+j)

−1)p+1 − (p+ 1)
k∑
i=0

βi(

j≤i∑
j=1

(Rn
n−k+j)

−1)p

]
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2.3 Stability

Figure 2.2: The error coefficient as a function of θ. A color map is used to demon-
strate the effect of varying the step size.

A normalization for the error coefficient is given in Hairer et al. [8],

C =
Cp+1

σ(1)
. (2.7)

The normalization is the same for the variable step size case. The error constant for
the methods described by equations (2.1) is

C =
1

6

rn cos(θ)− 2rn sin(θ) + cos(θ)− 3 sin(θ)

rn(cos(θ) + cos(θ)− 2 sin(θ))
. (2.8)

This is plotted in figure 2.2 as a function of θ with the variation of rn demonstrated
with a color map.

2.3 Stability

A numerical method that is consistent is not guaranteed to converge. The stability
of the method has to do with how well errors are damped as the computations
take place. There are several different notions of stability for numerical methods
for ODEs. We will cover two forms of stability, first zero stability that handles the
boundedness of the round-off error and secondly absolute stability which is about
rapidly decaying modes of the solution. Zero stability looks at the behavior of the
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2. Analysis of a method

method for a fixed end value tn as h → 0, while absolute stability looks at the
behavior of the methods for a fixed h as t→∞.

Commonly zero stability is introduced in the literature with an example of an
unstable method. This will be skipped here, but an example can be found in Hairer
et al. [8] or in the original discussion by Dahlquist [5].

Definition 2.6. A constant step size multistep method is said to satisfy the root
condition if the roots of the generating polynomial ρ(z) are on the unit disk in the
complex plane and roots on the boundary are simple. A method that satisfies the
root condition is said to be zero-stable.

Since the roots of ρ(z) are dependent on the step size ratio rn, it’s not enough
to just consider the roots when rn = 1. In order to generalize the zero stability for
a variable step-size, we consider the method in a different notation. Let Xn−1 =
(xn−1, ...,xn−k)

T and the numerical solution for ẋ = 0 on the form

Xn = An−1Xn−1, (2.9)

where

An =


−αk−1,n · · · · · · −α1,n −α0,n

1 0 · · · 0 0
...

...
1 0 0

1 0

 , (2.10)

then instead of the root condition, the stability can be expressed by the boundedness
of the matrices.

Definition 2.7. A variable step size multistep method is called stable, if

||An+lAn+l−1 · · ·An+1An|| ≤M (2.11)

for all n and l ≥ 0.

Fixing the step size ratio at rn = 1 will take us back to the root condition, but
with a varying step size there are many other possible solutions to eq. (2.11). In
the summary given by Hairer et al. [8], there are three theorems given for a bound
on the step size ratio so that the method stays stable. We consider the first two of
them.

Theorem 2.8. A method on the form (1.3) that satisfies the conditions that

• it is consistent of order p ≥ 0,

• the coefficients αj,,n are continuous for the step size ratios rn around 1 and

• the corresponding constant step size method satisfies the root condition.

Then there exists an upper and lower bounds (ωn ≤ 1 ≤ Ωn) such that the method
is stable if

ωn ≤ rn ≤ Ωn.
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2.3 Stability

As has already been noted, all the coefficients in (2.1) are continuous with respect
to rn. In a search for some bounds on rn we consider a second theorem. First we
need the transformation

T =


1 1 1 · · · 1

1 1 · · · 1
1 · · · 1

0
. . . ...

1

 , T−1 =


1 −1 0

1 −1

1
. . .

0
. . . −1

1

 ,

such that

T−1AnT =

(
A∗n 0
eTk−1 1

)
where eTk−1 = (0, ..., 0, 1) and

A∗n =


−α∗k−2,n · · · · · · −α∗1,n −α∗0,n

1 0 · · · 0 0
...

...
1 0 0

1 0


with

α∗k−2,n = 1 + αk−1,n, α∗0,n = −α0,n

α∗k−j−1,n − α∗k−j,n = αk−j,n for j = 2, ..., k − 1.

Theorem 2.9. A method of the form (1.3) of order p ≥ 0 is zero stable if and only
if for all n and l ≥ 0

1. ||A∗n+l · · ·A∗n+1A
∗
n|| ≤M1

2. ||eTk−1
∑n+l

j=n

∏j−1
i=nA

∗
i || ≤M2

This way the dimension of the square matrix gets reduced by one and this theo-
rem tells us that for a variable step size two-step explicit method we can return to the
root condition, since the only thing that is left in the matrix A, n∗ is α∗0,n = −α0,n.
We see that for

ρ(z) = z2 + z
cos θ r2 − cos θ + 2 sin θ

cos θ − 2 sin θ
− cos θ r2

cos θ − 2 sin θ
(2.12)

the roots are −α0,n and 1. According to Definition 2.6, a parametric method satisfies
then the root condition if |α0,n| < 1, since the other root is already on the boundary.
We consider |α0,n| = 1 and solve for rn and get the equation rn =

√
|1− 2 tan θ|. A

corresponding plot is in figure 2.3. Since we are only interested in rn > 0 and the
root condition holds for all

0 < rn <
√
|1− 2 tan θ|. (2.13)

There is no lower limit to the step-size ratio. While technically the theory above
allows for a more free upper bound, it might be hard to find one and specially for
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2. Analysis of a method

Figure 2.3: The upper limit of rn as a function of θ to hold the root condition. The
shaded blue area shows is the domain of stable methods having an underlying stable
constant step size method as described by the theorems.

a generic method that is not constructed for solving only a specific problem. We
define the domain of zero stable methods to be

Zrn,θ =

{
rn × θ ∈ R+ × (arctan(

1

2
), arctan(

1

2
) + π) ; rn <

√
|1− 2 tan θ|

}
(2.14)

and then Z1,θ = (π/4, π) would be the interval of zero stable methods with a fixed
step-size.

While zero stability handles the growth of the round-off error, there is another
stability issue to consider of the growth of rapidly decaying modes of the solution of
a problem. For explanation and testing of the stability of a method, the linearized
and autonomous system with a Jacobian J ,

ẋ = Jx (2.15)

is used. By change of basis to the eigenvectors of J the problem reduces to the test
problem

ẋ = λx (2.16)
where λ is the corresponding eigenvalue with the problem stability condition that
Re(λ) ≤ 0. Applying a multistep method and solving using Lagrange’s method, by
setting yj = zj results in the characteristics equation

ρ(z)− µσ(z) = 0 (2.17)
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2.4 Convergence

where µ = hλ. As this difference equation is stable only if all z roots of eq. (2.17)
are ≤ 1 and multiple roots strictly less than one, the method has a stability region
defined by all µ ∈ C such that these conditions are satisfied. The stability region
of a method gives the boundaries within which the method will behave "properly",
i.e., the solution will be bounded.

By studying the stability region of a method, we can look at the boundary of
the region. By rearranging 2.17 and setting z = eiφ, we get

µ =
ρ(eiφ)

σ(eiφ)
(2.18)

where φ ∈ [0, 2π). If the stability region of a method is small, this means that the
step size has to remain small.

We end this section by stating the first Dahlquist-barrier.

Theorem 2.10. A stable k-step method is at most of order p where

• p ≤ k + 2 if k is even,

• p ≤ k + 1 if k is odd and

• p ≤ k if βk/αk ≤ 0.

For an explicit method the last condition is always true. So a stable explicit
method can never be of a higher order than the number of steps in it.

2.4 Convergence
The convergence is the most important condition of a method, but it relies solely
on the order and stability conditions that we have already discussed. The theory of
convergence for variable step-size multistep methods has been studied in detail and
therefore nothing new or specific for our case that needs to be taken into consider-
ation. We adapt a definition to the notation used here and then restate a theorem
on the convergence.

Definition 2.11. A variable step-size multistep method on the form 1.3 is called
convergent, if for all IVP’s with a unique solution as described in Theorem 1.3 on
an interval [t0, t̂], then

x(t̂)− xn → 0

for a step size ratio sequence {ri}ni=0 with bounded values such that h1
∑n

i=1R
i
1 = t̂

as h1 → 0 and n→∞. The starting values must satisfy

x(ti)− xi → 0 for h1 → 0, i = 0, 1, ..., k − 1

Furthermore the method is called convergent of order p if there exists some positive
H s.t.

||x(t̂)− xn|| ≤ Chp for h ≤ H,

where h = maxhj and the starting values satisfy

||x(ti)− xi|| ≤ Chp for h ≤ H, i = 0, 1, ..., k − 1.
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2. Analysis of a method

Then we state a theorem from Hairer et al. [8, Theorem 5.8, p. 358]

Theorem 2.12. For a method of the form 1.3 let

1. the method be stable and of order p, with bounded coefficients,

2. starting values be of order O(h0
p) and

3. the step size ratios be bounded.

Then the method is convergent of order p.

The order of consistency for the methods defined by the coefficients in (2.1) has
already been covered in Corollary 2.5. Combined with Theorem 2.12 we can then
state the following.

Corollary 2.13. Every method defined by the coefficients in (2.1) that is stable is
also convergent.

2.5 Boundaries of the method domain
In the beginning of this chapter the function domain for the parametric coefficients in
(2.1) was limited to the interval θ ∈ (arctan(1

2
), arctan(1

2
) +π). As has been covered

in the other sections, the domain of valid methods is most likely even smaller.
The clearest factor would be the root condition, but methods with an underlying
zero stable constant step size method (rn = 1) can only be found on the interval
θ ∈ (π/4, π). This cuts of the edge cases of the original interval and restricts the
domain further. Note that for the stability condition θ = π can be included as a
weakly stable case. The other endpoint θ = π/4 would however form a double root
at 1 for ρ(z) and is therefore not stable.

A factor that might put into question the usability of a method is the correspond-
ing error coefficient. While the error coefficient is only considered an estimation tool,
one would want to keep it bounded or else there would be an order reduction. Con-
sidering figure 2.2 again, there is a region θ ∈ [π/4, 1.5] where the error constant
diverges for different values of rn. Although difficult to state anything about the
factor of those values on the solution, this is most definitely something to keep in
mind when selecting θ.

Another component to be considered is the reducibility of a method. A method
is said to be reducible if the generating polynomials, ρ(z) and σ(z) have a common
factor φ(z). The method defined by the polynomials

ρ∗(z) =
ρ(z)

φ(z)
, σ∗(z) =

σ(z)

φ(z)
(2.19)

is then equivalent to the original method. As σ(z) = β1,nz+β0,n, the root of σ(z) is

−β0,n
β1,n

= − rn sin θ

rn(cos θ − sin θ) + cos θ − 2 sin θ
.

Revisiting the roots of ρ(z), the conditions for reducibility are

rn sin θ

rn(cos θ − sin θ) + cos θ − 2 sin θ
= −1
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2.5 Boundaries of the method domain

or
rn sin θ

rn(cos θ − sin θ) + cos θ − 2 sin θ
=

rn
2 cos θ

cos θ − 2 sin θ
.

The first equation is simple to solve and is r = 2 tan θ − 1. The second one can be
rewritten as

rn
2(1− tan θ) + rn(1− 2 tan θ) + tan θ(2 tan θ − 1) = 0.

Solving the quadratic equation for r gives

rn =
(2 tan θ − 1)±

√
8 tan3 θ − 8 tan2 θ + 1

2(1− tan θ)
.

For the case when tan θ = 1 there is a root when rn = 1. That would be when
θ = π/4 which has already been discussed as an unstable method.

One aspect of the reducibility of the methods is to consider if one method is
simply a multiplication by a constant with another method for two different θ’s.
Since we have already assumed that α2,n = 1 for all methods. Now lets choose
arbitrarily one of the other coefficients from eq. (2.1), say α1,n. The coefficient
α1,n spans the entire R on the interval θ ∈ (arctan(1

2
), arctan(1

2
) + π), but knowing

the value for those two coefficients the first condition in Theorem 2.4 guaranties a
unique value for the rest of the coefficients. As α1,n is strictly growing, each method
is unique. This is true for all step-size ratios rn.

Theorem 2.14 ([3]). The coefficients in (2.1) construct all possible explicit variable
step-size two-step multistep methods of order two.

Example 2.15 (Corroborating the Dahlquist-barrier). Since we have a way of con-
structing all two-step methods of order two, trying and see if any of them are of
order three as well, would be of interest. If such a method exists and is stable that
would mean that the Dahlquist-barrier was incorrect.

A simple way to find such a method is to consider when the error coefficient in
eq. (2.8) is zero. Solving the equation for rn gives

rn =
1− 3 tan θ

2 tan θ − 1
.

For most values of θ the equation is negative, which is not of any interest and only
a small part gives a positive value for rn. Setting rn = 1 we get tan θ = 2

5
. That

method is not stable for rn = 1. The Dahlquist-barrier has thus been confirmed.
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Chapter 3

Implementation of a method

3.1 Code organization

For further investigation of the behavior of the two-step methods, an implementa-
tion was made in MATLAB [11] based on the theory previously covered. In the
following sections we will have a look at some of the code along with explanations.
Only code snippets are included in the text but the entire code can be found at
https://github.com/kjartankg/e2. Along with the method some test cases were
implemented as well. The program code was organized into the following folder and
file structure.

e2/
+coeffs/

alpha0.m
alpha1.m
beta0.m
beta1.m

+err/
error_constant.m
error_estimate.m
step_control.m
upper_limit.m

+problems/
logistic_curve.m
logistic_exact.m
lotka_volterra.m
lotka_volterra_inv.m
neg_exp.m
neg_exp_exact.m
oscillatory.m
oscillatory_exact.m
riccati.m
riccati_exact.m
vdPol.m

data/
gelmm.m
init_two_step.m
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3. Implementation of a method

script_const_step_mge.m
script_lotka.m
script_var.m
script_var_var_c.m
script_vdPol.m
stepper_const_step.m
stepper_var_step_const_c.m
stepper_var_step_var_c.m

The function files can be divided into four categories: scripts where the com-
putation is specified depending on a specific problem and what method should be
used, steppers that carry out the iteration of the method, other functions that the
method depends on such as computing the coefficients and error handling functions
and then finally there is the problems used for testing. In the following sections we
will have a closer look at those categories. It should be noted that the program is
designed for this project specifically and is not packaged as a computational library
for reuse. Furthermore the code is optimized for readability rather than speed and
efficiency.

3.2 Executing a computation
A computation is carried out by executing one of the scripts with the appropriate
variables that define the problem to be solved. An example of variables could be

problem = @problems.oscillatory;
exact_sol = @problems.oscillatory_exact;
x_start = 1;
t_start = 0;
t_end = 15;
tol = 1e-5;

A different script exists for each one of the different tests. The scrips are responsible
for calling the corresponding stepper, that carries out the iteration of the numerical
solution. In chapter 4 the corresponding script to each section will be mentioned.

Three different steppers were implemented for different purposes. All of them
take as input a function f, initial value x_0, time start value t_0, a time end value
t_n and the parameter theta that defines the method coefficients used. The simplest
stepper iterates with constant step-sizes using a for loop. On top on the already
mentioned inputs it takes the number of steps n. The other two steppers are very
similar to one another since they both are variable step-size iterators using the same
method to estimate the error. The only difference is that one uses always the same
error coefficient, as it would be for the underlying constant step-size method, while
the other one updates the error coefficient every iteration depending on the step-size
ratio rn. Those steppers have a second method parameter eta, that defines the error
comparison method.

function [data] = stepper_var_step_const_c(f, x_0 , ...
t_0 , t_n , tol , theta , eta)

The constant step-size stepper returns a single vector containing the computed value
for each iteration while the other steppers have multiple return values packed into
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3.3 Initializing the multistep method

a single variable called data.

data.x_all = x_all (1:step ,:);
data.dx_all = dx_all (1:step ,:);
data.t_all = t_all (1: step);
data.h_all = h_all (1: step);
data.r_all = r_all (1: step);
data.est_err_all = est_err_all (1: step);

3.3 Initializing the multistep method
Since problems are usually only presented with an initial value for a single point
and a multistep method needs more starting values, some other method is needed to
compute the first few steps. Methods for starting up multistep methods is a study
of its own and outside the scope of this thesis. For that reason and for simplicity,
the built-in MATLAB solver ode45 is used to start all computations. This solver
uses an explicit Runge-Kutta formula based on the Dormand-Prince pair [6].

function ys = init_two_step(f, y_0 , t_0 , h)
[t, y] = ode45(f,[t_0 , t_0 + h], y_0);
ys = [reshape(y(end , :), [], 1) y_0];

end

The initial values are passed to the built-in function and then a vector of two first
values are passed back to be used to start a two-step method.

3.4 Evaluating the next step
In order to evaluate the next step, the coefficients of the method are needed. Con-
stant step-size methods can be initialized once before the computation starts but
variable step-size methods need the coefficients to be reevaluated for each step with
respect to the step-size ratio.

% Calculate the coefficients for the given step.
neg_alphas = - [coeffs.alpha1(r, theta); ...

coeffs.alpha0(r, theta)];
betas = [coeffs.beta1(r, theta); ...

coeffs.beta0(r, theta)];

neg_alphas_err = - [coeffs.alpha1(r, eta); ...
coeffs.alpha0(r, eta)];

betas_err = [coeffs.beta1(r, eta); ...
coeffs.beta0(r, eta)];

Each coefficient has a separate function to be computed. As an example, here is the
function for α1.

function a = alpha1(r, theta)
a = ((r^2 - 1) * cos(theta) + 2 * sin(theta)) / ...

(cos(theta) - 2 * sin(theta));
end
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Having obtained the coefficients, the solutions and derivatives, the next step can be
evaluated using a general explicit linear multistep method function.

function x_new = gelmm(xs, dxs , h, neg_alphas , betas)
x_new = xs * neg_alphas + h * (dxs * betas);

end

The solutions and derivatives of the two last steps are stored in vectors.

% Updating the variables
xs = [x_new xs(:,1:(end -1))];
dxs = [f(t, x_new) dxs(:, 1:(end -1))];

The only thing left then of the iteration is to store the new data and compute the
next step-size ratio based on the error estimation.

3.5 Error control
In order to control the error, there are mainly two things that need to be done. The
first part is to estimate the error and the second one is to choose a new step-size
so that the error bound is met. In total there are four functions that take care
of this process. For the error estimation, the error coefficient (2.8) discussed in
the previous chapter is computed for two separate two-step methods defined by the
variables theta and eta.

function c = error_constant(r, theta)
c = (1/6)*(cos(theta)*r-2*r*sin(theta)+cos(theta)- ...

3*sin(theta)) / (r*(cos(theta)*r+cos(theta) - ...
2*sin(theta)));

end

The solution from the method defined by theta will be the main result while the
solution computed with eta is only used for comparison.

% Calculating new values.
x_new = gelmm(xs, dxs , h, neg_alphas , betas);
x_err = gelmm(xs, dxs , h, neg_alphas_err , betas_err);

With the two solutions the error can now be estimated using [13]

err =

∣∣∣∣ Cθ
Cθ − Cη

∣∣∣∣× ‖xθ − xη‖ (3.1)

where err is the error and can be implemented as

function err = error_estimate(c, c_err , x, x_err)
err = abs(c/(c-c_err))*norm(x_err - x);

end

The error estimate can then be used to compute the step-size ratio for the next step.
The simplest step-size controller is

rn =

(
TOL

err

)1/(k+1)

,
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where rn is the step-size ratio as before and TOL is the given error tolerance. This
step-size controller has a tendency to oscillate around an appropriate step-size, which
is an unwanted behavior. As a solution to that, other step-size controllers have been
made that use information from past step-size ratios in order to damp the oscillation
[14]. The one used here is

rn =

((
TOL

err

)1/(k+1)
)1/6((

TOL

errold

)1/(k+1)
)1/6

,

where errold is the estimated error from the previous step. This can then be com-
puted with the following code.
function r = step_control(tol , err , err_old , ord)

parvec = [1/6 1/6];
r = prod ([(tol/err)^(1/( ord +1)) ...

(tol/err_old)^(1/( ord +1))] .^ parvec);
end

Not all step-size ratios are acceptable with respect to stability. As discussed in
section 2.3 the step-size ratio must be bounded as in eq. 2.13. In order to guaranty
stability the step-size ratio is passed on to the function upper_limit along with the
method parameters.
function r = upper_limit(r, thetas)

% Some factor to make sure that the value is
% below the upper limit.
inner_point_factor = .99;

% The smaller value of the previously computed
% step -size ratio or the upper limit is chosen.
r = min([r sqrt(abs(1 - 2 * tan(thetas))) * ...

inner_point_factor ]);
end

Then the next step-size can be computed. This takes place in the beginning of each
iteration. In case the new step-size reaches beyond the final time value, the following
control flow takes place.

if t_n < t + h * r
h_end = t_n - t;
r = h_end / h;
h = h_end;
isNotDone = 0;

else
h = h * r;

end

3.6 Test problems
For testing purposes some problems were implemented as well. The problems can
be grouped into two different categories. First kind taken from [9], are simple single
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variable problems with a known analytical solution. The second category contains
problems more commonly used to show the usability of a variable step-size method.
In the first category there are the following problems:

• The negative exponential

ẋ = −x, x(0) = 1 (3.2)

with the solution x(t) = Ce−t, where C = 1 and final time value tn = 3.

• A special case of the Riccati equation

ẋ = −x
3

2
, x(0) = 1 (3.3)

with the solution x = 1/
√
t+ C, where C = 1 and final time value tn = 6.

• An oscillatory problem
ẋ = x cos t, x(0) = 1 (3.4)

with the solution x = Cesin t, where C = 1 and final time value tn = 4π.

• A logistic curve.
ẋ =

x

4

(
1− x

20

)
, x(0) = 1 (3.5)

with the solution x = 20
1+19Ce−t/4 , where C = 1 and final time value tn = 20.

For those problems the exact solution is implemented as well. In the second category
are the following two problems.

• Non-stiff Van der Pol oscillation

ẋ1 = x2 (3.6a)
ẋ2 = µ(1− x12)x2 − x1 (3.6b)

with a period of approximately 2µ. Initial values are x = (2, 0), t0 = 0, final
time value is tn = 60 and µ = 10.

• Lotka–Volterra equation

ẋ1 = ax1 − bx1x2 (3.7a)
ẋ2 = cx1x2 − dx2 (3.7b)

where a = 3, b = 9, c = 15 and d = 15 are coefficients of the problem. Initial
values are x = (1, 1), t0 = 0 and final time value tn = 5. Lotka–Volterra has
an invariant

H(x1, x2) = cx1 + bx2 − d log x1 − a log x2. (3.8)

All problems are implemented on the same form. As an example here is the negative
exponential.
function dx = neg_exp(t,x)

dx = -x;
end

The analytical solution to the problem is implemented as well.
function x = neg_exp_exact(t)

x = exp(-t);
end
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Chapter 4

Computational results

4.1 Constant step-size for different θ’s

While the goal is to make a variable step-size method, the first implementation
tested will be of the constant step-size methods defined by different θ’s. Since the
method’s coefficients are smooth with respect to both the parameter θ and the step-
size ratio rn, it can be expected that the characteristics of a method with rn close
to 1 is similar to the characteristics of the underlying constant step-size method.

In order to measure the accuracy of a method, the mean global error will be
used, which is given by

MGE =

∑n
i=1 ‖x(ti)− xi‖

n
, (4.1)

where n is the number of steps. As the global error can vary greatly for different
time values, using only the global error at the final value is therefore not reliable
for evaluating the accuracy of a method. That is why the mean global error is used
instead.

The script was placed in file script_const_step.m. The test was carried out
by choosing 500 uniformly spaced θ’s, over the open interval of zero stable fixed
step-size methods, Z1,θ = (π/4, π). For each one of the θ’s, the computation was
repeated for different number of steps, being doubled each time on the form n = 2k

for k = 4, ..., 11. The methods were all applied to the four test problems negative
exponential, special case of the Riccati equation, oscillatory problem and logistic
curve as described in section 3.6.

The results for all the different problems showed similar trends. For demonstra-
tion the data for the logistic equation (3.5) was chosen to be visualized. Two figures
were made. In figure 4.1 the mean global error (MGE) is plotted against the pa-
rameter θ. Each line is for different number of steps and therefore different step-size
as presented on the color bar. The error seems to somewhat follow the expected
trend of the error coefficient in figure 2.2 with a lower error as θ gets higher in the
stable interval. A few values of θ were chosen out of the computation and the same
data then replotted in figure 4.2 with the mean global error against the step-size.
This demonstrates the second order convergence of the methods.
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Figure 4.1: The mean global error against the parameter θ on the stable interval
Z1,θ = (π/4, π), that defines the constant step size methods used. The problem
solved is the logistic curve (3.5). Each line represents a different number of steps
and thus different step-size. The steps were doubled from 16 and up to 2048. The
error scale is logarithmic.

4.2 Variable step-size with θ vs. η
In section 3.5, we discussed how the error could be estimated using two separate
methods and by comparing the difference of their solutions with the difference of
their error coefficients. The error estimate could then be used to set a new step-
size in order to hold the local error close to the given tolerance. As the minimum
requirement for a valid parameter is that the underlying constant step-size method
is zero stable, we will restrict the parameters to Z1,θ = (π/4, π). As we need two
parameters for the error estimation pair the method domain becomes Z1,θ × Z1,θ.

The computations were performed using the script script_var.m. In order to
test different pairs, 128 values were uniformly chosen from the interval (π/4, π).
Each value was then paired with each one of the 127 other parameters. The pairs
were used to carry out a computation and each time the mean global error was
computed and stored along with the number of steps needed. The problem chosen
to be the most suitable for this test was the oscillatory problem (3.4) as the step-size
must be changed repeatedly as the computation goes over more than one period.
The problem was set up as follows

problem = @problems.oscillatory;
exact_sol = @problems.oscillatory_exact;
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Figure 4.2: Same data as in figure 4.1 showing the order two convergence of 5 of the
500 methods that a solutions was computed with. The plot is of the mean global
error against step-size. Both scales are logarithmic. A red triangle with slope 2 is
included for comparison of slope.

x_start = 1;
t_start = 0;
t_end = 15;
tol = 1e-4;

The results were collected into two 128× 128 matrices with empty diagonals.
Due to the upper limit on the step-size ratio described by eq. (2.13), the methods

defined by the parameters close to the boundaries of Z1,θ have a range for rn that
is too limited to be considered. As the result values from the computation close to
the borders take extreme values both in accuracy and number of steps due to this
limit, it’s beneficial to trim away those values before visualizing them. We define
the trimmed region of the matrices

A = X(7 : 122, 7 : 122),

where X is either one of the result matrices and following MATLAB notation of
indexing. This cuts away the first and last 6 values on both axes. While including
those values would be perfectly fine, the benefit of removing those rows and columns
gives the remaining values more range on the color scale when plotted. In figures
4.3 and 4.4 the plots of each one of the result matrices restricted to the region A
can be found. Considering fist the mean global error in figure 4.3, while the MGE
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4. Computational results

Figure 4.3: The mean global error for each pair (θ, η) restricted to the region A.
The diagonal is empty since a parameter can’t be paired with itself and on the plot
the diagonal is filled in with white. Even though the result contains noise, there is a
clear trend of the MGE getting lower as θ and η get larger. The error spikes when
both parameters are close to π/2.

is clearly not a smooth function on the domain of parameter pairs, there is clearly
a trend of the error getting lower as both θ and η become larger. The error spikes
when both parameters are in the neighborhood of π/2. The number of steps needed,
as seen in figure 4.4 has less noise to it. If we were to consider the number of steps
alone, we should choose θ high but η low.

Taking into account both theMGE and the number of steps, it seems to be good
to choose a method close to the upper limit and close to the diagonal. In order to
choose appropriate pair (θ, η), we could first estimate the maximum step-size ratio
rn needed and from eq. (2.13) choose θ as large as possible. With θ chosen we can
then pick η close to θ but smaller. Lets say for example that we want max(rn) ≈ 1.2
to be our upper limit, then from eq. (2.13) we have

θ = π + arctan

(
−1.22 − 1

2

)
≈ 2.9

and η = 2.85 would be an option for a pair. To see if this is a reasonable choice of
parameters, we must compare the accuracy and the steps needed for those values.
As the accuracy for different methods in the same region can vary as we have seen
in figure 4.3, we consider some neighborhood of the chosen parameters rather than
just a single result. We define a new sub region of the solution matrices, containing
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4.2 Variable step-size with θ vs. η

Figure 4.4: The number of steps used for each pair (θ, η) restricted to the region A.
While the number of steps is lowest in the lower right corner, one has to take into
consideration the accuracy as well, as visualized in figure 4.3. Taking both accuracy
and number of steps into consideration the upper right corner seems to be better,
but not too close to the borders.

the chosen θ and η along with some of their neighborhood. The region chosen is
then

B = X(114 : 116, 109 : 113).

We do not want the quality of our chosen parameters to be too sensitive to small
deviations and as we have already discussed, the MGE in figure 4.3 has noise in it.
This is why we are interested in the neighborhood around the chosen parameters
and not just the solution of the specific method.

In table 4.1 the minimum, mean and maximum values of the MGE and number
of steps are listed for the reions A and B. The methods contained inside B clearly
have a good accuracy and small variance of the MGE compared to all methods in
A. The number of steps used by the methods in B is above the average for the
region A, but again with a small variance and still far from the maximum in A.
Bear in mind that it’s unreasonable to expect a method to exist that has both the
minimum number of steps and minimum MGE in A. The methods contained in
the region B can therefore, most likely be accepted as reasonable methods out of A
in general.
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4. Computational results

Table 4.1: A comparison between the MGE and number of steps used for the
two different regions A and B. The methods are variable step-size but the error
coefficient is kept constant.

min mean max

A
MGE 0.00076 0.00317 0.10519

Nr. steps 155 244.46 453

B
MGE 0.00102 0.00120 0.00156

Nr. steps 248 252.47 257

Table 4.2: A comparison between the MGE and number of steps used for the
two different regions A and B. The methods are variable step-size and the error
coefficient is varied as well. Comparing with table 4.1, for this method it does not
pay off to vary the error coefficient.

min mean max

A
MGE 0.00076 0.00476 0.32679

Nr. steps 150 242.93 453

B
MGE 0.00109 0.00120 0.00142

Nr. steps 248 252.4 257

4.3 Varying C with respect to rn
The standard way of using an error coefficient C, as the one in eq. (2.8) is to
disregard the current step-size ratio and simply put rn = 1 when evaluating the
coefficient. This is what was done in the previous section for testing different pairs
of parameters for a variable step-size method. Since we have an equation for the
error coefficient that does include the step-size ratio, we now wish to compare what
difference it makes to vary the error coefficient with respect to rn.

The script script_var_var_c.m was used for this test. The computation from
the previous section was repeated by reevaluating C at each step with respect to rn.
Plotting the results as before gave figures very similar to 4.3 and 4.4 and therefore
no reason to display them here as well. A better way of comparing the two different
alternatives is to repeat table 4.1 for the new results. Those values can be found in
table 4.2.

Figure 4.5: A phase plot of the Van der Pol oscillation on the left and the Lotka-
Volterra equation on the right.
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4.4 Testing on harder problems

Figure 4.6: The convergence of the normalized root mean square global error for
the Van der Pol oscillation, as related to the given tolerance. The five data points
are plotted in as circles and the linear regression for the result is represented by a
dotted line. The slope of the line is 0.507.

Comparing tables 4.1 and 4.2, we see that the values don’t differ that much.
What is more interesting is that when C is varied, the solvers seem to be even
worse. There doesn’t seem to be any reason to vary C like this and the standard
way of doing this is better.

The error coefficient only plays a role in the error estimator which estimates the
local error. The quality of a method is however measured here using the mean global
error. As the error estimator is only one component of a variable step-size method,
the mean global error doesn’t necessarily reflect the quality of the error estimation.
The method itself along with the step-size controller also plays a big role in the
final result. A better test for the error estimator would therefore be to consider the
difference of the true local error against the estimated error. The analysis of such
experiment has however proven to be more difficult the expected at first glance and
will not be covered here.

4.4 Testing on harder problems

Using the results from the previous sections in this chapter, we continue now with a
test of a variable step-size method on less trivial problems than those used before.
The problems used here are the Van der Pol equation (3.6) and the Lotka-Volterra
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4. Computational results

Figure 4.7: The convergence of the normalized root mean square global error for
the Lotka-Volterra equation, as related to the given tolerance. The five data points
are plotted in as circles and the linear regression for the result is represented by a
dotted line. The slope of the line is 0.542.

equation (3.7). A phase plot of the two problems can be found in figure 4.5. As
the exact solution is not available for the two problems considered here, the built-in
solver ode113 in MATLAB was used for comparison with the relative tolerance set
at 10−13 and the absolute tolerance at 10−16.

The corresponding scripts is script_lotka.m and script_vdPol.m. The prob-
lems were solved with the parameter pair (θ = 2.9, η = 2.85) and the non-varying
C stepper was used. The problems were then solved for different tolerance values.
In the case of the Van der Pol equation, the tolerances used were [1e-5 1e-6 1e-7
1e-8 1e-9] and for the Lotka-Volterra equation [1e-6 1e-7 1e-8 1e-9 1e-10].

Both problems are two dimensional and therefore we need to replace the mean
global error with something else. We define the normalized root mean square global
error as

NRMSGE =
1

tn − t0

√√√√ n∑
i=1

hi|xi − x(ti)|2. (4.2)

In order to understand the relationship between the tolerance and the normalized
root mean square global error, we must start at the error estimator that estimates
the local error elocal while we are measuring the global error eglobal. For a second order
method we have that elocal ≈ TOL ∝ h3. This means that eglobal ∝ h2 ∝ TOL2/3
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4.4 Testing on harder problems

Figure 4.8: The error of the invariant for Lotka-Volterra as given by eq. (4.4) over
time both on log scales, for three different tolerance values. The invariant slowly
drifts away from the initial value and the error grows.

and thus

NRMSGE ∝ eglobal ∝ TOL2/3. (4.3)

This means that when NRMSGE is plotted against TOL on logarithmic scales, we
expect linear relationship with the slope 2/3 = 0.66. In figure 4.6 we can see the
convergence rate of NRMSGE against the tolerance for the Van der Pol equation.
A linear regression was done on the logarithmic values of the five data points which
gave the slope 0.507. Same kind of plot for the Lotka-Volterra equation can be found
in figure 4.7 and slope of the linear regression is 0.542. Both those slopes are under
the theoretical slope that we expected. This is however not so surprising since the
step-size controller doesn’t always succeed in holding the local error close to the
tolerance and therefore some unforeseen factors occur in the results.

Finally in this section we have figure 4.8 showing the error of the invariant (4.4)
of the Lotka-Volterra equation. The error is computed by

Herr = |H/H0 − 1| (4.4)

where H0 is the invariant at the initial value. As we see in figure 4.8, there is a
clear drift of the invariant. This is however to be expected for a numerical solution.
Furthermore the error gets less as the tolerance is decreased.
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4. Computational results

Figure 4.9: The root locus curve for the stability region of four different values of
θ. Each plot contains three curves showing the effect of the step-size ratio on the
stability region. The stability region gets smaller as θ gets larger, but for a small
value of θ and large step-size ratio, the region tends to diverge from the imaginary
axis.

4.5 Finding stability regions
What we have not considered so far for the variable step-size methods in this chapter
is the stability regions. Although stability regions are of higher interest when dealing
with stiff problems, we would like to study how these regions are affected by the
choice of θ. The process of computing the root locus curve is more or less the same
for all cases of multistep methods. Equation (2.18) is applied to the unit circle in
the complex plane and the resulting curve plotted. Such a plot can be found in
figure 4.9 for four different θ’s and three different step-size ratios. In order to stay
within the zero stability region for all cases, the outer θ values chosen were 0.9 and
2.9 along with 1

2
π (Adams method) and 3

4
π in between. The step-size ratios are 0.8,

1.0 and 1.2. The resulting plots can be found in figure 4.9.
The stability regions clearly get smaller as θ gets larger. For θ = 2.9 the regions

get quite small and in the case of step-size ratio r = 1.2 the range of hλ is very
limited. On the other side, for θ = 0.9 the region is inconvenient as well for r = 1.2.
As the region quickly diverges from the imaginary axis except for the origin, the
method would not be stable for a linearized problem whose eigenvalue λ that lies
on or is close to the imaginary axis.
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Chapter 5

Discussion

5.1 What has been covered

Using the interpolation conditions in eq. (1.4), the coefficients for a multistep method
as a function of the parameter θ and the step-size ratio rn were constructed in section
2.1. Those coefficients were then used to analyze the potential methods defined by
them and for implementation.

The order of convergence was derived in similar way to what has been done for
fixed step-size methods and the condition used to find a error coefficient dependent
on the step-size ratio. A condition was found for the zero stability based on the roots
of the generating polynomial ρ(z) and absolute stability conditions were discussed.
Finally in chapter 2 the convergence of a method was related to the consistency and
the stability of a method and the overall limits of the domain of two-step methods
discussed.

In chapter 3 an implementation was discussed that uses two parameters to form
a variable step-size method. Using the implementation, there were four computa-
tional tests performed in chapter 4. An initial test of the underlying fixed step-size
method was done which showed the expected behavior as predicted by the error
coefficient. The variable step-size implementation was then used to compare the
efficiency for different parametric values of the method pair. The variable step-size
method defined by the parametric pair (θ, η) was tested on a single problem for
multiple values and conclusion reached that picking θ as high as the zero stability
allows, paired with an η smaller but close to θ was a reasonable way of choosing
the pair. The computation was repeated with an error coefficient that was updated
according to the step-size ratio rn and showed that for this implementation of the
method it does not pay of to vary the error coefficient. The chosen method pair
with fixed error coefficients was then used for a test on the benchmark problems,
non-stiff Van der Pol oscillation and Lotka-Volterra equation and the convergence
of global error related to the chosen tolerance considered.

Finally the stability region as it depends on the parameter θ was considered
which showed that higher values for θ results in smaller stability regions. As the
equation 2.18, describing the stability region is smooth for θ, the shrinking and
growing of the region behaves accordingly.

43



5. Discussion

5.2 Further work on explicit two-step methods
As mentioned in section 1.5, there already exists a comprehensive collection of theory
on multistep methods. This simplifies the process of making sure that we have
covered every aspect needed. For most parts there is not much more to do with
the exception of zero stability. While the conditions in eq. (2.13) guarantee zero
stability, there’s nothing that says that same method with bigger step-size ratio is
not stable as well. By manipulating the sequence of matrix multiplication given by
the condition in definition 2.7 by choices of step-size ratios sequences, the condition
could still be met even though the root condition does not hold for all matrices.

The way of choosing the parameter pair as was done in section 4.2, by experi-
menting on a single problem has a clear limiting factor to it. What the test showed
however is that the accuracy and the effort needed to reach it did not vary enough
that it would pay off to go into too much detail in choosing the parameters. One
surprising aspect of the results was that when θ and η were close to one another,
with the exception of the neighborhood of π/2, they gave better estimation of the
local error. The numerator in eq. (3.1) will become smaller as the parameters are
closer to one another and one could suspect that this would introduce an unwanted
sensitivity in the error estimator. This however seems not to be the case. A better
way to consider the optimal pair would be to compare the error estimator with the
true local error. An attempt was made to do this comparison for this work but was
dropped after it turned out to be a bigger project than originally anticipated.

While the method formulation gives a convenient way of getting a variable step-
size method by simply choosing a parameter in the stable region, there are other
ways this work can be used. As the domain of all possible explicit two-step methods
of maximal order can be reached from the parameter θ and the step-size ratio rn,
one could consider other relationships between the two variables. Say for example
that we want the error coefficient to be fixed for all rn, then that gives a condition
for θ and defines a new variable step-size method. Same way the root of the method
could be fixed and give a relationship between θ and rn and thus free the method
from stability restrictions.

5.3 Other k-step methods
While explicit two-step methods is the only case discussed in this thesis, the work
of Arévalo [3] allows for any number of steps in k-step methods, both explicit and
implicit. As all other methods than the explicit two-step ones have more that
one parameter, the work of analyzing their domain can be a lot more difficult.
For instance it might not always be possible to find an explicit condition for zero-
stability. Higher order methods, implicit in particular, are of more interest and
therefore the work of analyzing them of high importance. Hopefully the work done
here will shed some light on what can be expected to be found for the higher order
cases as well and simplify their analysis.
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