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Abstract

With industrial robots ready to take the next step in mastering manufac-
turing tasks new approaches to reduce the programing effort are needed. This
is achieved by introducing skills as robot "know-how" and using them as a
higher abstraction level of robot instructions during programming. The skills
are reusable items providing motion control and rich declarative descriptions
of complex robot capabilities. Storing the skills requires an adequate knowl-
edge representation model that enables reuse and reasoning on skills and sim-
plifies knowledge management. In this thesis we develop a skill representa-
tion model and implement it in the LTH knowledge base. It was developed by
studying, normalizing, extending and modularizing the current skill concepts
in the LTH knowledge base. The developed model is effectively a class hier-
archy of the skill concepts implemented in a modularized ontology structure.
The resulting model clarifies the intrinsic concepts of a skill and presents a
module structure that enables the future development and reuse of skills in
general.
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Chapter 1
Introduction

Ever since their arrival in the second half of the 20th century, industrial robots have been
well established in the manufacturing sector. Basic tasks such as welding, painting, stack-
ing and sorting proved to be ideal applications. At workstations where success is char-
acterized by repetitiveness, speed, and precision, robots successfully replaced humans.
However, development seem to have hit to a road block as the task complexity increase.

The current state of robotics is costly for enterprises in terms of skill and time. Pro-
gramming is limited to skilled engineers and is often done using proprietary software.
Programming at low abstraction levels often involve trajectory-planning and manual set-
ting of abstract parameters. Profitable investments is thereby limited to large production
series, hence large enterprises. Moving the skill set of industrial robots to the next level
of complexity has proven difficult since the current state of robot programming is limited
to relatively low-level instructions.

By introducing reusable skills, capable of representing combinations of primitive robot
instructions, the goal is to allow for easier programming and more complex tasks. As a
result, experts in the area of robot programming can apply themselves to the development
of skills and primitive instructions while experts in the task domain can instruct the robots
at the workplace. In the end, the time needed for instructing robots will be shortened and
their skill set greatly increase.

Further, the intent is to let this lead the way for future concepts within the industrial
robotics field. Such as skill libraries where users can access and download skills to their
robots. It will also present a great opportunity for reasoners to automatically pick a suitable
skill for the task at hand, thereby further automating the process.

1.1 Problem definition
During our life and daily routines communication is key to everything we do. For this
to function seamlessly and without misinterpretations a well defined vocabulary agreed
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1. Introduction

upon beforehand is a necessity. Its is often of great importance that the right information
is exchanged or we will likely see negative consequences. This communication is not lim-
ited to individuals/pairs or groups of humans, but also to human-computer and computer-
computer interactions. This is where the area of knowledge representation and semantics
come in. The introduction of knowledge such as skills and the need for human-robot or
robot-robot communication in a domain requires increasing complexity of the knowledge
representation. With the need for a well-defined model capturing this information, ontolo-
gies have come to play a fundamental role.

"An ontology is a formal, explicit specification of a shared conceptualisation" [1]

With increasing complexity, quantity and size of domain, the struggle to manage the
knowledge-base becomes apparent. With a large monolithic knowledge-base, merely the
intent to find existing knowledge may become non-trivial. Extending, removing and mod-
ifying even more so. As a result we find an increased effort in the research community
in finding techniques to help organizing the knowledge. Modularization introduces such
a technique. By letting a large knowledge-base be represented by a set of modules, ie.
smaller knowledge-bases we have achieved less complexity, less quantity and a smaller
domain. The reader might identify this as an analog to the long-established complexity
management technique "divide and conquer" commonly used in computer science areas
such as algorithm theory.

The problemwith largemonolithic knowledge-bases growswith usage. Without proper
structure and modularization, implementation or modification of knowledge may become
unclear, which will bring the former structured ontology into a state of perplexity.

1.2 Project goal
The problems described in the section above have been identified in the knowledge-base
of the high-level task description tool-chain at LTH. The project goal can be summarized
as:

• present an ontological model for skill representation.

• present a modularized ontology structure for the model.

• present a proof of concept for accessing the skills.

Developing a model for skill representation will result in declarative, portable and
reusable skills. The skills are aimed at instructing of industrial robots in manufacturing
tasks. The model is achieved by analysing currently implemented concepts regarding skill
representation at LTH. The model is realized as an ontology, a common concept in knowl-
edge representation.

Modularizing the model into separate ontologies will result in more reusable knowl-
edge and easier management. By limiting the scope of each ontology and developing a
hierarchy for the ontology interactions both skills and other knowledge are more reusable.
This will be achieved by isolating domains of knowledge with strong internal coherence
and loose coupling to other domains.
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1.3 Related work

To lead the way for a future skill library we intend to present a proof of concept for
accessing skills from the knowledge base. The developed software will present an oppor-
tunity to check the correctness of the developed model and provide some starting ground
for the future development of a skill library.

Project scope
Premises for the work regarding ontology development presented in this thesis are limited
to the ontologies described as plug-in ontologies, i.e., all ontologies except the core on-
tology ROSETTA. ROSETTA is the result of several EU Projects and has been properly
developed and evaluated. While there may be room for maintenance it is not in the scope
of this thesis.

1.3 Related work
The European FP6 RoSta Project, "Robotics Standards and Reference Architectures" suc-
cessfully terminated in 2009 with a positive result regarding the use of ontologies in
robotics research and development. Below is an excerpt from the presented results con-
cerning the creation of ontologies.

"[...] A proof of concept of a robotic ontology scheme and its exemplary use in indus-
trial and service robotics domains demonstrated the benefits of using ontologies in robotics
research and developments." [2]

In [3] a case is made for the use of ontologies in the robotics field in general and in
the industrial robotics field in particular. Initial definitions of compound tasks, devices,
and skills are presented and a proof of concept for using ontologies as a design tool in
robotics is introduced. Multiple critical points necessary for success is identified, one of
them being the need for a distributed database storing both the functional ontologies and
the device ontologies. This research was supported by the RoSta Project.

The European FP6 SIARAS project, running 2005-2008, focused on knowledge-based
automatic reconfiguration of automation systems. Example of the results from LTH can be
seen in [4]. Concluding the project the knowledge-base of the system was determined as
underdeveloped, resulting in the launch of the ROSETTA project, 2008-2012. ROSETTA
focused on simplifying interactions between the user and the robotized automation system,
and thereby demanded knowledge-based solutions.

[5] describes one of the insights from the ROSETTA project as the need for a modu-
larization of the ontology used for supporting the connected subsystems. A preliminary
solution is presented with a call for further research and development in the area. [5] also
presents a vision of a future app store and shared knowledge-bases but identifies a need
for knowledge bases, services and solution distribution systems to be in place, while these
in turn need knowledge and solutions to be distributed to get started.
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1. Introduction

1.4 Thesis outline
The general outline of the thesis is as follows. The theory in Chapter 2 is applied to the
domain described in Chapter 3 and the resulting model is presented in Chapter 4. This
result is then discussed in Chapter 5 and conclusions on the results are drawn in Chapter 6.

The general approach of this thesis is studying methodologies for ontology creation,
strategies to ontology modularization and finally the current tool-chain at LTH. Chapter 2
presents the relevant theory on knowledge representation, ontology model development
and ontology modularization. Chapter 3 presents the study of the research domain of
high level instructions for industrial robotics at LTH. In fact, what we are developing is
a model for representing the knowledge describing a skill for industrial robots at LTH.
To achieve this we need to know how skills for robots are used in the context of the LTH
tool-chain. In Chapter 4 we present the results of the thesis. The chapter is divided into
three parts, the developed model, the modularized ontology structure and finally the proof
of concept development. The model is introduced by describing the domain and concepts
of the skill representation we want our model to represent. This can be loosely seen as
the requirements of the model. Then the class hierarchy and properties of the developed
model is presented. The second part regarding the modularization describes the scopes
and domains of the ontologies and their hierarchy. The third part concerning the proof of
concept briefly describes the techniques used in development and its results. Chapter 5
provides discussion of the results and finally, in Chapter 6 we present some conclusions
on the results.
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Chapter 2
Approach

This chapter begins with a general introduction on knowledge representation and knowl-
edge for machines. This will provide the general idea behind the work in this thesis. This
is followed by theory and methodologies for ontology development and modularization.

2.1 Knowledge representation
"Scientia potentia est" is a Latin aphorism often claimed to mean "knowledge is power".
Despite its disputed origins its implications are clear, the one who possesses knowledge
also possesses power. But what is knowledge? We will not address this question since we
are unlikely to find a conclusive answer.1. But since this is a deep philosophical subject
we feel empty-handed without some ideas and thoughts before we dive into the technical
aspects.

Knowledge has a strong relation to symbolic representations [6]. Even before we had
any kind of language there was likely symbolic representations of who is who, what is
what, and skills we might have acquired. Another important part of knowledge and sym-
bolic representations is communication [7]. Communicating knowledge is likely a major
reason behind the development of spoken and written languages. The letters and words of
our languages are nothing without their symbolism and semantics. Imagine reading a book
without knowing the words or ordering food without knowing the language. You realize
that when communicating knowledge an agreed upon vocabulary is a necessity. Establish-
ing this vocabulary is a matter of formal naming and defining the types, properties, and
interrelationships of the entities in the vocabulary.

Much of the semantics and symbolism come from associations. If we have learned
something once, we can recognise patterns from our previous knowledge and apply these
to new situations. When describing stored knowledge, for example that lamp on our office
desk, we can provide a good model for that knowledge using a graph. We know it provides

142
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2. Approach

light, the light is directional, its color is white, it is from IKEA, it is not very heavy, it is
a bit dusty and so on. We can immediately connect this information to other things that
provides light, are white, are not very heavy or are bit dusty. By remembering these new
objects we can find new descriptors and find additional objects, and so on. It is not far-
fetched to describe desk lamp as a subclass of lamps with some common attributes and
descriptors. We can also specify the relations between the lamp and its descriptors: white
is a color of the lamp, IKEA is a manufacturer, provides light is a functionality etc. It is
like building a graph network with nodes, edges and properties to represent what we know
and what these things mean to us.

Figure 2.1: Knowledge about our desk lamp.

2.2 Knowledge for machines
The reasons for storing and representing knowledge for machines are practically the same
as why knowledge and knowledge communication for humans is important. In [8] the
author begins by presenting a few.

• To share common understanding of the structure of information among people or
software agents,

• To enable reuse of domain knowledge,

• To make domain assumptions explicit,

• To separate domain knowledge from the operational knowledge,

• To analyze domain knowledge.

The graph network model described in Section 2.1 and Figure 2.1 is a gross simplifica-
tion of how humans relate to knowledge, still the model presents an attempt at formalizing
the structure of knowledge. A formalization that can be implemented for machines to en-
able computational reasoning about knowledge. By using the same principle of nodes,
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2.3 Definitions, vocabulary and terms

edges and properties we can construct a knowledge model and use it to build knowledge-
based systems. The structure subject, predicate and object can store relations between
objects much in the same way we described the desk lamp above, see example in Fig-
ure 2.2.

Subject Predicate Object
DeskLamp subClassOf Lamp

Lamp functionality Lightning
DeskLamp color White
DeskLamp boughtAt IKEA

IKEA subClassOf HomeDecorationStore
OfficeChair subClassOf Chair
OfficeChair color Brown

... ... ...

Figure 2.2: A machine knowledge representation using subject -
predicate - object relations.

We will make use of this representation of knowledge later when we wish to display
examples of contents and usage of the implemented ontologies.

2.3 Definitions, vocabulary and terms
Many subjects and terms mentioned and discussed in this thesis are foreign to the uniniti-
ated. The academic fields of knowledge engineering, high-level robot instructions, or the
like, have a large lingo with tasks, skills, ontologies, etc. While these terms may mean
little to the uninitiated, many of them have an array of different definitions, each with pas-
sionate followers with strong bias. For the sake of this thesis, and the discussions herein,
we will discuss the meaning and definitions of the most important terms.

Ontology
The definition of ontology applied in this thesis is software oriented; the term has a ety-
mological definition concerning the philosophical study of the nature of being, becoming,
existence, or reality.

As mentioned in the introduction and hinted upon in Section 2.1 an ontology is a de-
scription of a limited domain containing a formal naming of the entities in the domain and
a description of their relations and properties. The knowledge presented in Table 2.2 can
be thought of as a formal naming and definition of types, properties, and interrelations
of entities in the domain of a desk lamp. We would then call this a desk lamp ontology,
although, its usefulness and structure can certainly be questioned. An ontology often de-
scribes a limited domain within certain area, for example anatomical structures in animals
[9] or gene products [10].

In [8] the authors present a functional definition of an ontology, a definition that clar-
ifies the different parts and opens up for development. They divide the definition into
parts.

11



2. Approach

Classes to represent concepts, such as our lamp.

Subclasses to provide a more specific representation, such as the lamp - desk lamp rela-
tion.

Slots to represent various features and attributes of the classes, such as color, functionality
or bought at.

Facets to provide restrictions on the slots. For example we can restrict the value of the
slot ’color’ to subclasses of the class ’color’.

When using the term knowledge base in this thesis we refer to the entire set of ontolo-
gies and their combined knowledge.

Task
The work to be done by an robot is defined as a task. The task denotes the assignment and
the undertaking of the robot with a final goal. For example the task might be for the robot
to assemble a stop button box or to build a table.

Skill
The skill definition might be the most debated among these terms with as many approaches
as there are researchers. The description here is merely pedagogic as a relief for uninitiated
the reader.

The task is achieved by the utilization of skills. A skill denotes a competence and a
"know-how" of the robot. One or several skills may be applied to finalize a task. In the
"build a table" example, skills might be "drill" and "put-leg-in-hole". The skills are thought
of as reusable items so that the skills of the table manufacturing may well be reused in any
constellation for the completion of other tasks.

2.4 Model Development
Most research on ontology engineering presents some kind of step by step guide called a
methodology. The majority of the methodologies are aimed at creating ontologies from
scratch. This is not analog to the situation in this thesis. Several skills are already present
in the knowledge base. These skills are represented in multiple different ways and do not
adhere to any standard. Our goal of a skill model is achieved by combining the features
and concepts of the existing knowledge with new ideas.

A successful model of a concept is is easy to work with and easy to grasp. When
introducing a new person to the model it should feel natural. On the same note, when
implementing new concepts it should be clear where this knowledge belongs. All in all,
what we are describing is an unambiguous model of a domain. To achieve this we need
some supporting structure during the development process, which is presented below.
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2.4 Model Development

2.4.1 Ontology development
With increasing demand for ontologies, ontology engineering and design is an active area
of research. Multiple popular methodologies and work flows for ontology development
have been developed in the last decades [8, 11]. The sections below are the result of
studying these methodologies and can be interpreted as steps in the process of developing
an ontology. During the development process we have followed these steps, they will also
be used when presenting the results in Chapter 4

A. Knowledge acquisition
In the ontology developmentmethodology and ontology life-cycle presented in [11], knowl-
edge acquisition is referred to as one of the first steps of ontology development. The do-
main knowledge of the developer is fundamental to ontology development. Without it,
making the necessary design decisions will prove a hard task. This first step is carried out
by a thorough domain study using all available sources of knowledge such as literature,
the actual system and dialogues with researchers.

B. Determine the domain and the scope of the ontology
Limiting the domain of the ontology is crucial to further development [8]. Subjects and
information related to but not relevant for the domain is easily included during develop-
ment without a well defined scope of the ontology. With the help of basic questions the
domain and scope of the ontology can be made clear.

The following questions are suggested as guidelines for scope limitation. By referring
to, and if the need arises, altering them during development of the ontology it may become
less diluted and more faithful to the intended domain.

What is the domain that the ontology will cover?
What is the application of the ontology?
Who is the user and maintainer of the ontology?

The example from Section 2.1 is a typical ontology with the need of a scope. A limi-
tation would for example be for the products of IKEA. More general knowledge on lamps
or home decoration stores would be the scope of other ontologies.

C. Define the classes and the hierarchy
Defining the classes and their properties, are two closely intertwined steps that take place
intermittently during the development process [8]. They are also the most important steps
since their results are what constitutes the ontology. During the process of defining the
classes and the class hierarchy the important concepts of the domain and their relations
are determined. These concepts are then turned into the classes of our model.

For example we can turn the concept lamp into the class lamp and decide it has a
parental relation to the concept and class desk lamp. This will give us classes and
hierarchy for the lamps in our example ontology in Section 2.1.

13



2. Approach

There are multiple strategies for developing the ontology class hierarchy [12]: top-
down, bottom-up and combination.

The top-down approach starts with the most general concepts in the domain and then
proceeds to the mote specialized concepts. This approach would begin with the definition
of store and move on to IKEA, lamp and desk lamp.

A bottom-up development does the inverse. It begins with the most specific concepts
and then move up in the hierarchy to more general concepts. desk lamp, lamp, IKEA,
store.

A Combination process is a combination of the top-down and the bottom-up ap-
proaches. We begin with the definition of the most prominent concepts and specialize
and generalize appropriately.

D. Define the properties of the classes

To further describe our domain we proceed by defining the properties of the classes in
our hierarchy [8]. This will provide our concepts with internal structure and enrich the
knowledge in our ontology. We call these properties slots. Subclasses inherit the slots of
their superclass/parent, this enables us to define more general properties as we climb the
class hierarchy. A slot should be defined for the most general class that has that property.

In our lamp ontology we would have slots such as color and functionality. Follow-
ing the generality guidelines, the functionality slot should be defined as lighting for the
superclass lamp instead of desk lamp.

E. Consider reusing external ontologies

Given the time researchers and developers spend on ontology engineering in a wide range
of domains, considering existing external ontologies might prove time well spent [8]. Even
if the ontology might need some alignment to work with the internal ontologies, using
external ontologiesmay have several advantages. Incorporation of existing, hopefullywell,
researched knowledge, compatibility with other applications and possibly conforming to
developed standards are the most prominent advantages. With some effort the hard work
of others may be incorporated into the ontology, a feat not so easily achieved in other fields.
In recent years a large effort has put into the development of standardized ontologies, as
mentioned in Section 1.3. Incorporating these standards will hopefully grant a longer
lifetime of the developed knowledge.

Regarding our lamp ontology, one or several of the ontologies suggested in the section
above regarding limiting the scope may exists and prove useful, such as home decoration
stores or general knowledge on lamps.
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2.5 Modularizing the ontology structure

2.5 Modularizing the ontology structure
With a model for skill representation we have achieved part of our goal. The other issue
we are attempting is the modularization of the ontologies in the knowledge base. Mod-
ularization is the process of extracting modules of knowledge from the knowledge base.
The modules are pieces of knowledge with strong internal coherence but relatively loose
coupling. The pieces are specified in separate ontologies that represent smaller domains of
knowledge. Separately, they can successful represent their respective domains. Combined,
the ontology modules are used as building blocks to encompass the entire knowledge base.

When discussing the ontologies we will relate to their level, this is a way of describing
their reusability. A general ontology will be more reusable and therefore described as
a higher level ontology, whereas a more specific ontology has less reusability and is a
lower level ontology. A word on the usage of ontology and ontology module: each of the
ontologies constitutes a module, therefore the meaning of the words is in effect the same.

2.5.1 Module development
Extracting useful modules from a knowledge base is a task with several possible ap-
proaches and results. Suggestions range from algorithmically extracting modules using
the description logic of the ontology [13] to using natural viewpoints or base categories to
identify smaller domains with high coherence. Below we will present some way leading
points to successful modularization. These points were utilized in the process of extracting
modules in this thesis.

A. Goal driven
The extraction of modules should to be based on the goal [14] of the modularization.
Different goals might call for different modules. If the modularization is performed for
scalability or performance, modules that limit the domain would be preferred. If the goal
is for example maintenance, modules with natural domains would perhaps be the way to
go. It is important to identify the different needs and goals of the modularization and adapt
the strategy based on this.

B. Semantic-driven strategy
In [14] the authors conclude the importance of a module to "make sense". Each module
is an ontology representing a subset of the original domain. Semantic interpretation of
knowledge relies on the human expertise of the persons in charge of maintaining and ex-
tending existing knowledge base. This includes the allocation of the implemented knowl-
edge to a specific module. In order for this to work the modules needs to make sense
from a human perspective. By identifying natural viewpoints [15] we can modularize the
domain knowledge into relatively small ontologies centered around a base category or a
certain viewpoint. Making sure the modules makes sense will provide modules with less
ontological commitment and is therefore more reusable than the entire domain ontology.

Using this strategy our IKEA ontology may be modularized into a module for example
representing each furniture type.
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Chapter 3

General overview of LTH tool-chain

In this section we will present a general overview of the tool-chain used at LTH for in-
structing industrial robots using high-level task descriptions. In parallel to a literature
study, valuable discussions with Jacek Malec and Maj Stenmark have provided great in-
sight to the current tool-chain and the ontological efforts at LTH, resulting in the contents
of this chapter.

The approach at LTH is of the type bottom up, the system is developed from the low
level robot control mechanisms up to the high-level task descriptions. Here we will present
a brief overview based on the work presented in [16, 17, 18, 19].

The general focus is on manipulation tasks for small part assembly, where the tasks
are solved by performing a sequence of skills. Skills are basically semantically annotated
state machines and at the lowest level specified by simple motion constraints. To enable
reuse of and reasoning on skills, the semantic annotation and its state machine counterpart
are uploaded to a skill server, named Knowledge Integration Framework (KIF)1. KIF con-
tains ontologies semantically describing skills, devices and workpieces. KIF is queried by
services such as graphical task specification tools where the user specifies the desired sub
goals of the task which in turn is translated into robot code.

1not to be confused with Knowledge Interchange Format [20]
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3. General overview of LTH tool-chain

3.1 Architecture

Figure 3.1: LTH tool-chain architecture [17].

A general overview of the LTH Tool-chain is presented in Figure 3.1. The KIF server
serves two types of clients, the Engineering system and the robot task execution system.
The task execution system is built on top of the native robot controller. When presented a
task, it generates run-time code utilizing on-line code generation, then proceeds by com-
piling and executing the code. The Engineering system is a robotic programming envi-
ronment such as ABB Robot Studio. It utilizes the ontologies presented by KIF to model
the workspace objects and download skills and tasks from the skill libraries. New objects
and skills can be added to the knowledge base by uploading them from the engineering
system.

3.2 Ontologies
The ontologies provided by KIF are the result of research conducted at LTHmainly in FP6
and FP7 EU projects SIARAS, RoSta and ROSETTA.

3.2.1 ROSETTA
The core ontology, ROSETTA, is the result of several EU programmes. It originates in
the SIARAS programme and was further developed in the RoSta Program. During the
Rosetta Programme it was refactored, extended and incorporated into the KIF server. The
scope of ROSETTA is aimed at a generic domain ontology for industrial robotics. The
focus is on robotic devices and skills, every device can offer one or more skills and every
skill may be offered by one or more devices. Manufacturing processes are divided into
tasks, each realized by some set of skills. Skills are either primitive or compound items.
See Figure 3.2 for an overview of the ontology.
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3.2 Ontologies

Figure 3.2: Partial ROSETTA ontology structure.

3.2.2 SFC
SFC describes various behaviour representations using different kinds of executable state
machines. It also contains the semantic description of several graph-based representations
of assembly that may also be considered behaviour specifications. See Figure 3.3 for an
overview of the ontology.

Figure 3.3: Partial SFC ontology structure.

3.2.3 FRAMES
An initial proposal of an ontology describing the frames of the iTasC framework presented
in Section 3.3.1. Experimental development during research to enable representation of
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task modelling concepts such as frames, degrees of freedom and relative positions. The
ontology is rudimentary and does not allow complete task modelling with the iTasC frame-
work. See Figure 3.4 for an overview of the ontology.

Figure 3.4: Partial FRAMES ontology structure.

3.2.4 SHIELDCAN and PENCALIBRATION
Ontologies with concepts concerning specific skills. SHIELDCAN contains concepts of
the skills Align, AssembleButtonBox, Shieldcan and Snapfit2, while PENCALIBRA-
TION only contains the Pencalibration skill. The different skills have different vocab-
ulary and do not adhere to a skill representation model. In Section 4.1.1 we present the
identified concepts of the various skills in these ontologies along with the development of
the new model.

The ontologies also contains general concepts that are not specific to a certain skill.
This results in cluttered and unstructured references since skills must depend on knowledge
represented in other skills.

See Figure 3.5 for an overview of the SHIELDCAN ontology.

Figure 3.5: Partial SHIELDCAN ontology structure.

2Snapfit is described in more detail in Section 3.3.5
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3.2.5 Ontology hierarchy
The initial ontology structure is presented in Figure 3.6. ROSETTA is the main ontology
and imports only theQUDTontology. SFC only imports the ROSETTAwhereas SHIELD-
CAN imports the ROSETTA and the SFC ontology. The PENCALIBRATION ontology
imports ROSETTA, SFC, SHIELDCAN and FRAMES ontologies. The structure suffers
from duplicated imports since when you import for example SHIELDCAN, the imports
of SHIELDCAN are imported indirectly. This leads to a complicated knowledge base that
is hard to grasp.

Figure 3.6: The structure of the ontology imports.

3.3 Robot skills
In [21] a skill description is presented as a combination of primitive robot capabilities
that are non trivial and have production value. These capabilities can be combinations
of the previously mentioned state machines or manipulation primitives and motion con-
straints. By combining this with a semantic approach skills may be treated as compo-
sitional pieces of declarative, portable and directly applicable knowledge on robotized
manufacturing [17].

3.3.1 Motion constraints
At the lowest level the skills are described by motion constraints based on the iTasC frame-
work [22]. iTasC provides a constraint-based approach to specify the motion in complex
tasks for general sensor-based robot systems. The approach uses feature coordinates, de-
fined with respect to objects and feature frames, to express the relative motions and dy-
namic interactions of the task. Task specification is achieved by first identifying task rele-
vant objects and features and assign frames to them. Each feature is assigned to an object
that represents a physical entity of that object, such as an edge or a surface. The relative
motion between two objects is specified by imposing constraints and the relative motion
between feature frames of the two objects. The connections of a task forms a closed loop
and is called a kinematic chain. The kinematic chain and its constraints is used by the
solver to execute the task.
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3.3.2 Robot programming languages
Robot programming languages are mainly designed for motion specification. Move arm
to target position 1, close gripper, move to target position 2, etc. Most industrial robot
manufacturers have developed languages targeted at their ownmachines, for example KRL
for KUKA, INFORM for Motoman and RAPID for ABB [23].

3.3.3 State machines
The skills composed of motion constraints and/or robot code described above are executed
in a state machine. Each state is represented by a block with initial conditions, exit con-
ditions and error handling, to ensure proper execution. When one block exits the next
follows if the initial conditions are fulfilled. Parameters for these blocks with semantic
value are stored in KIF.

3.3.4 Qualifying aspects
Skills are compositional items. They can be non-divisible or compound items and have a
large number of different attributes and descriptors. At the lowest level are the primitives
that are non-divisible items to be used for composition of skills. To be qualified as a
skill, a declarative definition is required, otherwise they are referred to as skill candidates.
A skill candidate augmented by a declarative description gives a skill. All behaviour
descriptions, such as state machines, are assumed to be declarative.

3.3.5 Skill example: SnapFit
The snapfit skill was developed as part of the assembly of a stop button box. During the
assembly an item needs to "snap" into place and this is were this skill was used. This skill
has an SFC behaviour description and a declarative model in the SHIELDCAN ontology.

The declarative ontological representation of the snapfit skill can be viewed in Ap-
pendix A. This Figure shows only the contents of the SHIELDCAN ontology which are
related to the snapfit skill. As can be seen, the structure is not straightforward. The skill
is connected to some of its classes such as the conditions, but lacks a declarative con-
nection between itself and for example its parameters or behaviour description. Further,
some concepts more general than the individual skill is described here. For example the
conditions of a skill is described in the context of the snapfit skill. This description is
used for referring to conditions in other skill descriptions, which indicates that it should
be implemented on a more general level.
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Chapter 4

Results

In this chapter we will present the results of the thesis. The chapter is divided into three
parts. First we present the developed model, then the modularization of the ontologies.
Finally, we introduce the developed proof of concept for accessing the knowledge.

The resulting class hierarchies and properties can be found specified in SUO-KIF in
Appendix B. SOU-KIF stands for Standard Upper Ontology Knowledge Interchange For-
mat and is language designed for use in the authoring and interchange of knowledge [20].
This language is in general not interpretable by machines. Therefore we have developed an
OWL version. OWL is a knowledge representation language for authoring functional on-
tologies. The OWL ontologies are accesible from kif.cs.lth.se/ontologies/
[ontology_name].owl by replacing [ontology_name] with the name of the de-
sired ontology, for example kif.cs.lth.se/ontologies/rosetta.owl.

4.1 Developing a skill model

In this section we will present the developed model for representation of a skill. The
presentation is based on the points presented in Section 2.4.1.

The material in this section is the result of studying the aspects of the LTH tool-chain.
The implementation of the tool-chain described in Chapter 3 contains a large amount code
and parameters, executed in a complex tool chain. Much of this information has no seman-
tic value in the perspective of declarative, reusable skills. However, parts of it is descriptive
and this constitutes the valuable semantics of a skill. With the goal of declarative, portable
and directly applicable knowledge we identify and expose high level semantic descriptors
of a skill and incorporate them into our model.
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4.1.1 Knowledge acquisition
By studying currently implemented skills four primitive concepts have been identified as
descriptors of a skill. They can be found in the various skill representations of the LTH
skills, but never in a complete manner. The contents of this section can be seen as the
requirements of the representation model in the following section.

BehaviourDescriptions of the runtime behaviour of the skill.

Parameters of the behaviour descriptions.

Frames for the task description.

Requirements for performing the skill.

Describing how these concepts are relevant for the skill and the tool chain will lead to
knowledge that can be utilized as requirements for the modeling of a skill.

BehaviourDescriptions
The behaviour descriptions describe the run-time behaviour of the skill. The implementa-
tion varies between manufacturers and tool-chains. Low level robot control code may be
manufacturer specific, such as RAPID code fromABB, while state machinesmay be in one
of the multiple implementations available, such as Sequential Function Charts (SFC) [24].

When modeling the behaviour descriptions of a skill it is important we get a clear
distinction between the different approaches.

Parameters
Depending on the granularity level of control and the run-time behaviour descriptor type
we can expose parameters with a high intrinsic semantic value, such as force applied or
joint velocity, from the behaviour representations. These parameters are skill-specific and
may be changed for adaptation of the skill to a new workpiece, workplace or task.

The parameters may come with a default value to revert to if the user chooses not to set
the parameter. These values require a systematic way of representing units and measures.
Each parameter may also have an intrinsic measure such as Newton orm/swhich also need
to be easily represented. Reasoning on the type of measure and converting between units
may prove beneficial to the user and the system.

When modeling the parameters we need support for the intrinsic measures of the pa-
rameters and/or their default values.

Frames
Frames and their frame coordinates form the foundation for the motion constraint control
based on the iTasC framework. They have high semantic value since they describe the task
model and the geometry of the workplace.
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4.1 Developing a skill model

The ITasC formalism began with the task frame [25] which was replaced by and ex-
tended to multiple feature and object frames [22]. The object frames represent objects in
the task space, such as a workpiece or a robotic arm, while the feature frames represent
features on the objects, such as a corner or a face.

By using multiple frames the task geometry can be partially modeled by each frame
using translational and rotational directions along the axes of a frame, called feature coor-
dinates. Each frame specifies part of the constraints and the model consists of the partial
descriptions from the individual frames. The complete set of frames expressing the model
is connected by a closed kinematic chain. Finally, each frame can be accompanied by an
uncertainty frame, representing the geometric uncertainty for each of the feature coordi-
nates of the frame.

The frame connects position and orientation into a complete entity. Each frame is
positioned relative to a reference frame forming a hierarchical system, grounded in a world
coordinate frame. A position is a 3-dimensional vector describing a position relative to
a reference position. The values of the vector depends on the chosen coordinate system:
Cartesian (XYZ), Spherical(rθφ) or Cylindrical (ρθz). An orientation is the final piece
needed to describe the frame. It may consist of for example a rotation matrix, Euler-angles
or a quaternion.

The kinematic chain connects the frames of a model into a closed loop. By letting each
frame reference the next frame the loop is achieved. The direction of the loop is important
for the correct execution of the movements. Representing the kinematic chain of the task
description requires a hierarchical notion of frames and their coordinate systems.

To support the iTaScmodel ontologically we need unambiguous representation of posi-
tion and orientation. We need to support the frames by coordinates and coordinate systems
expressing both positions and orientations quantitatively.

Requirements
Requirements are divided into two parts, device requirements and conditions. Device re-
quirements are qualifying preconditions on the devices involved in the task, such as a
mounted force sensor. Conditions may be pre- or post-conditions and have a broader def-
inition since the notion of a condition is arbitrary. Examples are the existence of certain
frames or their geometrical relations in the task descriptions.

When representing the requirements of a skill we need clear distinction between device
requirements and conditions as well as qualitative temporal description as pre and post
execution.

4.1.2 Domain of the skill model
The domain of the skill model is the representation of concepts relevant to skills for the
tool-chain at LTH. The application is to produce compositional pieces of declarative,
portable and directly applicable knowledge on robotized manufacturing. The user is a
robot execution system or an engineering station where the user can download skills. The
maintainer is a human working with the ontology engineering software.
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4.1.3 Class hierarchy
Because of the amount of existing knowledge, see Section 3.2, the combination approach
was applied to the development of the classes and the hierarchy. The existing knowledge
was incorporated into our new model and augmented by new concepts and class hierar-
chies. By using existing knowledge as part of our model we get a tightly integrated model
with the existing knowledge base.

The classes developed mirror the concepts and requirements presented in Section 4.1
by using classes and subclasses, see Figure 4.1.

• Our main class Skill is part of the ontology ROSETTA. This way we make use of
and integrate the skill concept into the existing model using the ROSETTA ontology
as our core.

• BehaviourDescription is part of the ontology SFC. This ontology has proven
to successfully describe behaviour descriptions in previuoswork at LTH and is there-
fore unaltered. The notion of CodeImplementation was not implemented in
the ontology SFC but was implemented separately for a skill. Its general purpose
was identified and it was been added class hierarchy of the behaviour description.

• The Frame class is partitioned into FeatureFrame and ObjectFrame

• The Parameter class is an existing class from the ROSETTA ontology, it is aug-
mented by the optional property of a unit.

• TheRequirement class is partitioned intoCondition and DeviceRequire-
ment. Condition is further partitioned into Precondition and Postcon-
dition.

Figure 4.1: The class hierarchy of the skill model.

4.1.4 Properties of the classes
The properties of the classes are modeled by using predicates. The predicates of the model
represent the connections between the classes, see Figure 4.2. These predicates are in-
tended to be links between the skill and its concepts. Our main class Skill will be
connected to the other classes of our model, and this way pointing to the properties of the
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skill. The superpredicates have an organizational purpose along with the ability to impose
general properties on the subpredicates.

• hasFrame connects the skill to the frames.

• hasParamter connects the skill to the parameters

• hasRequirement serves as a superpredicate for the requirements.

• hasCondition connects the skill to the conditions.

• hasDeviceRequirement connects the skill to the DeviceRequirements

• hasBehaviourDescription serves as a superpredicate for the behaviour descriptions

• hasCodeImplementation connects the skill to a robot code implementation.

• hasTransitionSystem connects the skill to a transition system.

Figure 4.2: Predicates for the skill model.

4.1.5 External ontologies
Two domains have been identified where the use of external ontologies will be beneficial.

• Units and Measures

• Positioning and Orientation

These domains have a long history of ontological research and there are multiple at-
tempts at standardizing ontologies in each of the domains [26, 27, 28]. Both areas present
unique challenges that needs to be solved in a satisfactory way for the user.

Units and measure
The previous representation of units and measure at LTH was achieved by exploiting the
QUDT ontology [26]. New options were needed since the ontology was inconsistent. The
OMontology [29] is the result of evaluation of other ontologies in the domain which finally
led to the development of the ontology. Note that the OM ontology only is consistent with
some of the reasoners, such as FaCT++. The OM ontology is incorporated into the skill
model by using the ROSETTA predicate hasUnit. The resulting model is straight forward
and non intrusive to deeper parts of the knowledge.
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Object Predicate Subject
Skill1Parameter hasUnit OM:Newton

Figure 4.3: The usage of the OM ontology for units and measure.

Positioning and orientation
The need for a generally accepted representation of position and orientation is not unique
to our effort. A recent development by the IEEE [30] has led to a spatial position and
orientation ontology combining both qualitative and quantitative representations [28]. We
have chosen to make use of these results with a few modifications.

CORA and thereby CORA:POS is based on the upper ontology SUMO1. SUMO is a
major effort to provide an upper ontology for a variety of computer information processing
systems. The focus of CORA:POS is on the positioning and orientation of objects. An
object is a subclass of SUMO:Physical in SUMO.

The ontologies at LTH are based on the ROSETTA ontology with no roots in SUMO.
This causes discrepancies between the positioning of objects in CORA:POS and our in-
tended positioning and orientation of frames. A frame is an abstract concept in the ROSETTA
ontology and therefore not comparable to a SUMO:Object, see Figure 4.4 and Figure 4.5.

Figure 4.4: Major concepts of the ROSETTA ontology

An important note here is the notion of pose. POSE is a part of the CORA:POS ontol-
ogy and its is clearly closely related to a FRAME. Purely comparing descriptors, a pose
and our frame have little to no difference, both contain a position and an orientation. The
separation is based on their intrinsic semantic value, the pose is an attribute of an entity
whereas the frame is an entity in itself. Further a frame has a clear connection to task
modeling using an iTasC formalism, while a pose is a more general concept.

These discrepancies has led to the development of a layer on top of CORA:POS mim-
icking the object positioning and orientation but with regards to a FRAME instead, see
Figure 4.6. These are used in the same way that the object positioning is made in the

1Suggested Upper Merged Ontology
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Figure 4.5: Major concepts of the SUMO ontology.

CORA:POS ontology [30, 31]. Figure 4.7 and Table 4.8 demonstrates the use of frames
for modelling the task.

Figure 4.6: Frame positioning and orientation.

4.1.6 Example of a skill in the model
Here we present an example of a skill using the developed model. As can be seen in Fig-
ure 4.9 the skill is described by the predicates pointing at the classes that comprise the con-
cepts of the skill. Each class has subclasses that indicate the actual property. The concepts
of each class is modelled by the class hierarachy. For example, the class Skill1Frame1
is a subclass of Skill1Frame to indicate its connection to Skill1. It is also a subclass
of FeatureFrame to indicate that it is of the type Feature Frame. This way we get a
clear connection between the skill and its concepts and clear class hierarchy for describing
the connected concepts.
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Figure 4.7: Sketch of a robot with frames and coordinate systems.
This figure demonstrates the classes from Table 4.8 and it is not a
complete example of the usage of object, feature andworld frames.

Figure 4.9: Outline of a skill. Skill1 is an example to demonstrate
the model.
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Object Predicate Subject
worldFrame subClassOf ObjectFrame
wFPosition subClassOf CartesianPositionPoint
wFPCS subClassOf CartesianCoordinateSystem
worldFrame framePosition wFPosition
wFPosition inPCS wFPCS
frame1 subClassOf ObjectFrame
f1Position subClassOf CartesianPositionPoint
f1PCS subClassOf CartesianCoordinateSystem
frame1 framePosition f1Position
f1Position inPCS f1PCS
f1PCS frameRefPCS wFPCS
frame2 subClassOf ObjectFrame
f2Position subClassOf CartesianPositionPoint
f2PCS subClassOf CartesianCoordinateSystem
frame2 framePosition f2Position
f2Position inPCS f2PCS
f2PCS frameRefPCS wFPCS

Figure 4.8: Positioning of the frames in Figure 4.7.

4.2 Modularizing the ontology structure
To begin with we will provide an overview of the ontologies and the process of extracting
them. Later we will go into more detail on each of the ontologies.

4.2.1 The goal of the modularization
The goal of the ontology-modules for the knowledge base is to increase re-usability and
manageability. Extracting meaningful modules will help management by clearly showing
were knowledge is intended to be implemented. Finding these modules requires the iden-
tification of separate areas of the skill concepts. These modules will also contribute to the
re-usability by constituting natural areas of meaningful knowledge. The second aspect to
the modularization is the separation and extraction of the skills. By letting each skill be
represented by a module they can easily be reused and managed.

Meaningful modules
The semantics-driven strategy for modularization calls for the identification of disparate
areas of the modelled domain, pieces of knowledge with high coherence and relatively low
connection to the other concepts of the domain.

In [32] the authors presents an idea to declaratively define a skill as the configura-
tion and coordination of capabilities according to the intentions. The insights derive from
the work in [33] where the separation of computation, coordination and configuration is
recommended for evolving large-scale software systems. Further the research from [34]
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Figure 4.10: Example of inheritance for concepts of skill exam-
ple.

presents a separation of concerns into communication, computation, coordination, config-
uration and composition as a recommended best practice when developing large software
frameworks.

The definition of the terms configuration and coordination is as follows:

coordination - the harmonious combination or interaction, as of functions or parts.

configuration - the relative disposition or arrangement of the parts or elements of a
thing.

With the semantics-driven approach to modularization, presented in Section 2.5, and
the ideas from [32], the middle level ontologies CONFIGURATION and COORDINA-
TION were developed. Following the definitions of the terms, interpretations are made
with regards to skill representation.

Coordination is interpreted as the items describing the actual run-time behaviour.

Configuration is interpreted as the arrangement and setting of specifications determin-
ing the run-time behaviour.

As a result the ontologies CONFIGURATION and COORDINATION are grounded
in natural language and represent two disparate areas of the concepts of a skill.

The extraction of skill-specific ontologies enables the use of skills as reusable items.
This extraction is also semantics-driven but on a lower level. This is a matter of generality
and specificity. All of the knowledge of the skill-specific ontologies would fit conceptually
in either CONFIGURATION or COORDINATION. But, the knowledge in each of the
skill modules concerns only the specifics of that skill. This way, all general knowledge
on skills belongs in either CONFIGURATION or COORDINATION, depending on its
nature, while all skill-specific knowledge belongs in a skill module.
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4.2.2 The ontologies
In order to make sure that future knowledge is incorporated in correct place we will present
some guidelines to the scopes of the resulting modules. Each module is a ontology de-
scribing its domain in itself. This is related to step B of the model development process of
an ontology, presented in Chapter 2.

Figure 4.11: The final structure of the ontologies.

ROSETTA

The ROSETTA ontology is outside of this thesis as it is previously defined and the result
is an iteration of several projects.

The domain of ROSETTA is the general concepts of industrial robotics such as de-
vices, workpieces and skills. The generality of the ontology is key only andmajor concepts
qualify. The application of ROSETTA is extracting knowledge and categorizing to sup-
port these devices, skills and workpieces. The user is either an engineering station or
the execution system of the robot while the maintainer is a human using some ontology
engineering software.

CONFIGURATION

The domain of CONFIGURATION is the configuration of skills. Conditions for execution
and finalization and configurations of input and output values, semantically relevant pa-
rameters, and frames. The application is supporting the skill representation and clarifying
the semantic skill composition. The user is either an engineering station or the execution
system of the robot while the maintainer is a human using some ontology engineering
software.

The CONFIGURATION ontology is based on the previous knowledge from SHIELD-
CAN, FRAMES and PENCALIBRATION.
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COORDINATION
The domain of COORDINATION is the representation and combination of parts that de-
scribe the run-time behaviours of the skill. This includes executable state machines and
robot code, as well as several graph-based representations of assembly such as assembly
graphs, constraint graphs and task graphs. The application is supporting the skill repre-
sentation and clarifying the semantic skill composition. The user is either an engineering
station or the execution system of the robot while the maintainer is a human using some
ontology engineering software.

TheCOORDINATIONontology is based on the previous knowledge in SFC and SHIELD-
CAN.

Figure 4.12: The contents of CONFIGURATION and COORDI-
NATION.

Scope of skill ontologies
For the sake of consistency we refer to a made up skill called Skill_1 in the following
paragraph.

The domain of SKILL_1 is the description and definition of the concepts relevant
only to the Skill_1 skill. This is in general subclasses of classes from the higher level
ontologies CONFIGURATION, COORDINATION and ROSETTA. The application is
the manifestation of Skill_1 for use as a declarative reusable skill. The user is either an
engineering station or the execution system of the robot while themaintainer is a human
using some ontology engineering software.

4.3 Accessing the skills
To demonstrate the capabilities of the model we have developed a conceptual version of
a skill-knowledge access API. This illustrates that a future skill library is within reach.
The results of the demonstration is also an indication of the correctness of our model. By
showing that we can extract skills from the knowledge base we have indicated that our
model successfully represents the modelled domain.
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Figure 4.13: The outline of the xml served by the server.

As the development is of the conceptual kind we have decided not to delve deep into
the technicalities and solutions of the resulting software, but we will present a brief review.

The resulting software is divided into a back-end and a front-end. The back-end pro-
vides the interactions with the knowledge base and serves the results to the front-end,
which interacts with the user. The back-end is intended to serve platform independent re-
sults so that any front-end can utilize the service. This way the front-end can be any skill
consuming user, be it ABB RobotStudio or any other agent. This division of labour en-
sures that the skills are delivered in a unified matter by the back-end, and that development
and management of the back-end and front-ends can be performed independently.

The ontologies are formalized in OWL23 and are hosted in a Java framework for pro-
cessing and handlingRDF data databases called, rd4j Sesame4. Sesame provides a SPARQL5

endpoint to enable querying the ontologies. Our developed back-end queries the Sesame
endpoint and constructs java objects from the results representing the skills. The java ob-
jects are then serialized into XML and served by a java servlet. This way we provide a
web service that serves the skills in XML format to virtually any front-end.

The implementation can be found at:
https://git.cs.lth.se/jacek/skill-ontologies/.

By accessing the URL http://[serverurl]/skillendpoint/skills
on the server where the servlet is deployed, it list the skills in the openrdf repository called
’Skill_Library’ on that same server.

2http://www.w3.org/TR/owl-features/
3http://www.w3.org/TR/owl2-overview/
4http://rdf4j.org/
5http://www.w3.org/TR/sparql11-query/
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Chapter 5
Discussion

5.1 Separation of existing knowledge and
our results

The existing ontologies at LTH have been in use for several years. They are the result of
several EU projects and have been extended multiple times. The implemented knowledge
is the result of previous or current research projects. Since much of this work, especially
regarding skills, is of experimental nature, with trial and error-like work processes, the
majority of the implemented knowledge is undocumented and largely unstructured. This
means it is hard to outline the previous state of the knowledge base when we initiated the
project in a clear way. Without this outline, the distinction between the results of this thesis
and the existing previous knowledge is sometimes unclear. To amend this we have tried to
show the state of the ontologies in Chapter 3 by showing pictures of their class hierarchy
providing a diagram of the skill representation in Appendix A.

5.2 The model
The developed model provides a representation for the parts of a skill we have identified as
relevant. This is based on the current state of the skills at LTH and the way they are used
as of today. As we initiated the project we identified confusion and a non-standardized
approach to using the ontologies. Several systems tap into the knowledge base and make
use of the implemented knowledge. Because of this need for backward compatibility we
had to exercise caution when altering the knowledge base. When we had the chance we
made use of existing knowledge in order to reduce the size and redundancy of the final
model. Because of the knowledge being largely undocumented reusing knowledge proved
hard.

Another conclusion to be made from the state of the model before this thesis is the
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need to commit to the model. Each time knowledge is inserted into the knowledge base
the user has to make sure that the knowledge is aligned to the model and is placed in the
correct place. Otherwise the state of the knowledge base is soon back in the previous state
of confusion.

The need to change the approach for knowledge for industrial robots from a closed
world assumption to an open world assumption is supported by the ontological approach
to knowledge representation. A closed world assumption means that the complete nature
of the environment the robot acts in is known. The exact position and nature of everything
currently in the workplace as well as everything that will ever appear is known by the
robot. This works fine when the robot does not have to act or react on new information.
The industrial robot of the future is adaptable to new situations and new information where
not everything is known, this is called the openworld assumption. This type of reasoning is
closer to the way we humans interact with out surroundings. A robot with this assumption
can learn things about its surroundings and incorporate this information into its knowledge
base. In order to support this approach we need a knowledge representation system that
is easily extended with new knowledge in a systematic way. The nature of ontologies
support the open world assumption. New knowledge can easily be added in such a way
that knowledge that was learned can be related to what we knew before. When the need
arises for new concepts of a skill they can easily be incorporated in the model by adding
classes to the class hierarchy. The developed model can successfully represent the current
skills in the LTH knowledge base and we feel confident that it is flexible enough for the
representation of future skills. It has a clear class hierarchy that incorporates the different
parts of a skill.

The development of a knowledge representation model is ridden with situations where
one has to make decisions regarding the model where the solution is ambiguous. The re-
sulting model is a reflection of the understanding and perception of the developer. This
leads to a model that is correct in the eye of some, and incorrect in the eyes of others.
During the development of our model we have encountered these situations on some oc-
casions, for example during the choice of primitive classes. Is the class Requirements
properly partitioned by its subclasses Condition and DeviceRequirements, or is
Condition a candidate itself for a primitive class? The decision was made based on dis-
cussions and previously implemented knowledge but it is clear that there is not an unique
solution.

Regarding the general development of ontologies is is our understanding that the prop-
erties of the classes provide important richness in the represented knowledge, as is sup-
ported by the authors of [8]. By augmenting each class with properties the machine can
get a better understanding of each class than by merely relying on class hierarchies. A
class Desk Lamp that is the subclass of Lamp knows only that relation without any fur-
ther properties. If the class is augmented by the properties color, size, weight, and so on,
the knowledge gets richer. The ontologies at LTH could make stronger use of properties
for its classes. The general approach to the ontology development seems to be based on
constructing a rich class hierarchy for the concepts in the knowledge domain. This has of
course influenced our process, and our model resembles the other LTH ontologies as they
are intended to coexist and interact. We believe it would be worthwile to augment the cur-
rent LTH knowledge base with more properties, this will aid future algorithmic reasoning
on the use of skills during manufacturing.
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5.3 The ontology modules

(a) Old structure and modules.
(b) New structure and modules.

Figure 5.1: Ontology modules before and after modularization.

Comparing the original snapfit description in Section 3.3.5 and the resulting model in
Section 4.1.6 we see the change of skill representation. The developed model has a clear
connection between the skill class and its concepts. The class hierarchy is used to describe
aspects of the skill concepts. This hierarchy allows for a clear differentiation between what
is relevant to a specific skill and what is more general by using subclasses of the concepts
of a skill to describe skill-specific knowledge.

5.3 The ontology modules

There are multiple strategies and approaches to ontology modularization, semantic, as we
used in this thesis and also algorithmic and logical solutions. The drawbacks of the se-
mantic approach is that the resulting module structure needs strong commitment to remain
structured. Other approaches to modularization include using algorithms to extract areas
that have close connection according to the logic of the ontology. Using this method the
modularization can easily be run again at a later stage if needed. However, there is no
guarantee that the resulting modules will make sense from a human perspective. We felt
that the human perspective is important since the modular structure is largely there for the
human users that extend and maintain the knowledge base.

By identifying domains for the ontology modules using a semantic strategy we achieve
module domains grounded in the intrinsic characteristics of skill representation. The do-
mains represent unambiguous coherent domains of knowledge. When implementing new
knowledge a clear structure of knowledge domains gives the support needed to make sure
the ontologies remain organized. This is the big advantage of the semantic strategy to
modularizing knowledge bases. The resulting modules have clear scope and their struc-
ture adheres to the nature of the modeled domain.

The result of the modularization can clearly be seen in Figure 5.1. The resulting struc-
ture allows for the use and development of "pluggable" skill modules. The dependencies
are clear and recursive imports are avoided. Finally, by using the semantic approach we
have identified intrinsic characteristics of a skill and extracted meaning full modules that
allow for easy development of future skill concepts.
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5. Discussion

5.4 Knowledge access
Following the development of the proof of concept it is our understanding that the result-
ing model is correct in the representation of the skill. We can successfully deliver skills
extracted from the knowledge base to a front-end client.

We believe the development of a back end will prove useful to the skill research at LTH.
Current approaches uses queries directly from the client to the knowledge base which re-
sults in a non-unified access to the skills. The development of clients then also relies
heavily on the developer’s expertise in extracting meaningful data from the LTH knowl-
edge base and may result in different realizations of the skills depending on the front-end
developer. A back-end should also provide a unified approach to uploading skills.

A back-end with easy access to the skills will promote the development of future
clients. This will provide the skill library with the much needed user base to kick off
the concept. The skill library needs skills to attract users, and the library needs users to
produce skills.
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Chapter 6
Conclusions

As was made clear in Chapter 5 the resulting skill model and modularization provides a
clear representation of a skill.

The model for representing a skill provides the support needed for the existing skills
and for the development of future skills. New knowledge may easily be implemented by
adhering to the developed class hierarchy and extending it if necessary.

The modularization provides an environment for the skills where they are supported
by the more general ontology modules. The semantic approach resulted in the extraction
of modules that made sense.

We can conclude the need of commitment to a model. The knowledge base does not
remain structured unless its users maintain the structure of the model. It could prove
beneficial to research the development of an algorithmic approach to the modularization.
This could help the correct placement for future knowledge and help the user maintain an
organized knowledge base.

By using the model in this thesis as a base for future skills and proceeding by devel-
oping more skills the idea of a skill library seems closer than ever. The proof of concept
skill library further showed that this is possible. By allowing skills to be downloaded and
uploaded through a library, the skill based approach to the instruction of industrial robots
may expand rapidly, both in terms of users and skills. The next step in this process is the
development of a proper back-end with standardized upload and download features. This
will result in a knowledge base with maintained structured knowledge and may relieve the
effort for a strong commitment to the model.

A large amount of the existing knowledge in the LTH knowledge base is in need of
maintenance and documentation. This would lead to much easier usage which in turn
would lead to further development.
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6. Conclusions
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Appendix A
Snapfit Skill
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A. Snapfit Skill

Figure A.1: Description in 3.3.5
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Appendix B
SUO-KIF formulation of developed on-
tologies

B.1 configuration
;; CONFIGURATION ONTOLOGY MODULE
;;
;; by: Ludwig Jacobsson ludjac@gmail.com
;;
;; DEPENDENCIES:
;; - CORA:POS
;; - SUMO
;; - ROSETTA
;;
;; PREFIXES:
;; rosetta: [http://kif.cs.lth.se/ontologies/rosetta.owl]
;; POS: [http://www.inf.ufrgs.br/phi-group/ontologies/coraPos.owl]
;;
;; 1. FRAME
;; 2. PARAMETER
;; 3. REQUIREMENT
;; 4. CORA:POS extensions to fit frames
;; 5. Units and measure from OM-ontology

;;;; 1. FRAME

(subclass Frame rosetta:Concept)
(documentation Frame EnglishLanguage

"Abstract frame concept.
A frame to describe an object frame in the task-scene.
Definition from iTAsC formalism.")

(subclass ObjectFrame Frame)
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B. SUO-KIF formulation of developed ontologies

(documentation ObjectFrame EnglishLanguage
"Rigidly attached to an object in the scene")

(subclass FeatureFrame Frame)
(documentation FeatureFrame EnglishLanguage

"Linked to but not necessarily rigidly attached to and object frame")

(instance hasFrame BinaryPredicate)
(domain hasFrame 1 rosetta:Skill)
(domain hasFrame 2 Frame)
(documentation hasFrame EnglishLanguage

"To indicate relationship skill<->frame")

;;;; 2. PARAMETER

(documentation rosetta:Parameter EnglishLanguage
"Skill parameter concept")

;; Each parameter has a unit
(=>

(instance ?PARAM rosetta:Parameter)
(exists (?UNIT)

(rosetta:hasUnit ?PARAM ?UNIT)))

;;;; 3. REQUIREMENT
(subclass Frame rosetta:Concept)

(documentation Frame EnglishLanguage
"Abstract frame concept.
A frame to describe an object frame in the task-scene.
Definition from iTAsC formalism.")

(subclass Requirement rosetta:Thing)
(documentation Requirement EnglishLanguage "A skill requirement")

(subclass Condition Requirement)
(documentation Requirement EnglishLanguage "A skill condition")

(subclass DeviceRequirement Requirement)
(documentation Requirement EnglishLanguage "A device requirement")

(subclass Precondition Condition)
(documentation Requirement EnglishLanguage "A skill precondition")

(subclass Postcondition Condition)
(documentation Requirement EnglishLanguage "A skill postcondition")

;;;; 4. CORA:POS extensions to fit frames
;; Based on CORA:POS but altered to fit Frames
;; FOR MORE INFO SEE: CORA documentation [CORA:POS]

(instance framePosition BinaryPredicate)
(domain framePosition 1 Frame)
(domain framePosition 2 POS:PositionMeasure)
(documentation framePosition EnglishLanguage "Frame position")

;; Each frame has a position
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B.1 configuration

(=>
(instance ?FRAME Frame)
(exists (?POS)

(framePosition ?FRAME ?POS)))

(instance frameOrientation BinaryPredicate)
(domain framePosition 1 Frame)
(domain framePosition 2 POS:OrientationMeasure)
(documentation frameOrientation EnglishLanguage "Frame orientation")

;; Each frame has an orientation
(=>

(instance ?FRAME Frame)
(exists (?ORI)

(framePosition ?FRAME ?ORI)))

(instance frameRelPosition TernaryPredicate)
(domain frameRelPosition 1 Frame)
(domain frameRelPosition 2 POS:PositionMeasure)
(domain frameRelPosition 3 Frame)
(documentation frameRelPosition EnglishLanguage

"Relative position of two frames")

(instance frameRelOrientation TernaryPredicate)
(domain frameRelOrientation 1 Frame)
(domain frameRelOrientation 2 POS:OrientationMeasure)
(domain frameRelOrientation 3 Frame)
(documentation frameRelOrientation EnglishLanguage

"Relative orientation of two frames")

(instance frameRefPCS SingleValuedRelation)
(instance frameRefPCS BinaryPredicate)
(domain frameRefPCS POS:PositionCoordinateSystem)
(domain frameRefPCS Frame)
(documentation frameRefPCS EnglishLanguage

"Frame reference for position coordinate system")

;; Each Coordinate system has a reference frame
(=>

(instance ?CS POS:PositionCoordinateSystem)
(exists (?FRAME)

(frameRefPCS ?CS ?FRAME)))

(instance frameRefOCS SingleValuedRelation)
(instance frameRefOCS BinaryPredicate)
(domain frameRefOCS POS:OrientationCoordinateSystem)
(domain frameRefOCS Frame)
(documentation frameRefPCS EnglishLanguage

"Frame reference for orientation coordinate system")

;; Each Coordinate system has a reference frame
(=>

(instance ?CS POS:OrientationCoordinateSystem)
(exists (?FRAME)

(frameRefOCS ?CS ?FRAME)))
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B. SUO-KIF formulation of developed ontologies

(subclass CartesianCoordinateSystem POS:PositionCoordinateSystem)
(documentation CartesianCoordinateSystem EnglishLanguage

"Cartesian Coordinate System")

(subclass CartesianPositionPoint POS:PositionPoint)
(documentation CartesianPositionPoint EnglishLanguage

"A position point for cartesian coordinate systems")

(subclass CartesianX Double)
(documentation CartesianX EnglishLanguage "Cartesian X coordinate")

(subclass CartesianY Double)
(documentation CartesianY EnglishLanguage "Cartesian Y coordinate")

(subclass CartesianZ Double)
(documentation CartesianZ EnglishLanguage "Cartesian Z coordinate")

(subclass SphericalCoordinateSystem POS:PositionCoordinateSystem)
(documentation SphericalCoordinateSystem EnglishLanguage

"Spherical Coordinate System")

(subclass SphericalPositionPoint POS:PositionPoint)
(documentation SphericalPositionPoint EnglishLanguage

"Spherical Position Point")

(subclass CylindricalCoordinateSystem POS:PositionCoordinateSystem)
(documentation CylindricalCoordinateSystem EnglishLanguage

"Cylindrical Coordinate System")

(subclass CylindricalPositionPoint POS:PositionPoint)
(documentation CylindricalPositionPoint EnglishLanguage

"Cylindrical Position Point")

;; Orientation

(subclass ZYXEulerAngleCoordinateSystem POS:OrientationCoordinateSystem)
(documentation ZYXEulerAngleCoordinateSystem EnglishLanguage

"ZYX Euler Angle Coordinate System")

(subclass ZYXEulerAngleOrientationPoint POS:OrientationPoint)
(documentation ZYXEulerAngleOrientationPoint EnglishLanguage

"ZYX Euler Angle Orientation Point")

(subclass ZYXEulerAngleAlpha Double)
(documentation ZYXEulerAngleAlpha EnglishLanguage

"ZYXEulerAngle alpha coordinate")

(subclass ZYXEulerAngleBeta Double)
(documentation ZYXEulerAngleBeta EnglishLanguage

"ZYXEulerAngle beta coordinate")

(subclass ZYXEulerAngleGamma Double)
(documentation ZYXEulerAngleGamma EnglishLanguage

"ZYXEulerAngle gamma coordinate")
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B.2 coordination

(subclass ZYZEulerAngleCoordinateSystem POS:OrientationCoordinateSystem)
(documentation ZYZEulerAngleCoordinateSystem EnglishLanguage

"ZYZ Euler Angle Coordinate System")

(subclass ZYZEulerAngleOrientationPoint POS:OrientationPoint)
(documentation ZYZEulerAngleOrientationPoint EnglishLanguage

"ZYZ Euler Angle Orientation Point")

(subclass ZYZEulerAngleAlpha Double)
(documentation ZYZEulerAngleAlpha EnglishLanguage

"ZYZEulerAngle alpha coordinate")

(subclass ZYZEulerAngleBeta Double)
(documentation ZYZEulerAngleBeta EnglishLanguage

"ZYZEulerAngle beta coordinate")

(subclass ZYZEulerAngleGamma Double)
(documentation ZYZEulerAngleGamma EnglishLanguage

"ZYZEulerAngle gamma coordinate")

;;;; 5. Units and measure from OM-ontology
;; Use of the OM-ontology
;; for more info see: http://www.wurvoc.org/vocabularies/om-1.8/

B.2 coordination
;; COORDINATION ONTOLOGY MODULE
;;
;; by: Ludwig Jacobsson ludjac@gmail.com
;;
;; DEPENDENCIES:
;; - ROSETTA
;;
;; PREFIXES:
;; rosetta: [http://kif.cs.lth.se/ontologies/rosetta.owl]
;;
;;;; 1. BEHAVIOURDESCRIPTION
;; Unaltered class hierarchy from old SFC.owl ontology
;; imported into configuration.owl
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Reusable skills for industrial robots 
"snapfit" and "peg­in­hole", the future of robot programming. Developing a model for  
reusable skills used to instruct industrial robots in manufacturing tasks.  
Robot skills will enable the app­store like skill libraries of the future.  
 

To drive the development and integration of industrial robots in manufacturing tasks new                         

approaches to robot programming are needed. The current state of robot programming involves                         

trajectory planning and low level instructions for grippers and tools. This results in long                           

development processes and is highly dependent on the expertise of the developer. To remedy                           

this limitation reusable robot skills are introduced. A skill describes a "know how",or capability, of                             

a robot. Each skill is designed to be reusable over different types of industrial robots. By                               

combining these skills the robot can be instructed to solve complex tasks. For example, the task                               

of assembling a table can be achieved by combining the imagined skills, "drill" and                           

"peg­in­hole". This can now be achieved by a user not well versed in the area of robot                                 

programming. Perhaps even a computer can reason on the needs of the task and the outcome                               

of each skill and instruct the robot without the need of human interaction. In order to enable this                                   

usage of skills for robot instruction each skill need to be packaged and stored with rich                               

structured descriptions and in a way that enables a plug­and­play like behaviour.  

 

We have developed a data model for representing and storing these skills. The model was                             

implemented as an ontology. A ontology is a representation of the entities in a domain of                               

knowledge using classes, attributes and relationships. To achieve machine readable knowledge                     

descriptions we use an ontology to describe the intrinsic concepts of a skill. Each skill is                               

essentially a motion control instruction for the robot along with a structured description of                           

important aspects of the skill. To achieve sufficient packaging and storage our model represents                           

these intrinsic concept describing the skill. Our data model consists of a class hierarchy and                             

class relations describing the skill aspects. Reuse, management and extensions on the current                         

model are enabled by organizing the skill knowledge into smaller knowledge domains using                         

separate ontologies. By isolating the knowledge specific to each skill, skills are treated as                           

reusable items and can be applied in a plug­and­play like manner.  

 

Our work shows that the use and reuse of skills is in the near future. The pluggable feature of                                     

the skills inspire us to imagine a future "skill­library" where the users can download and upload                               

skills to accommodate for their needs and solve the tasks in front of them.
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