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The generalized minimal residual method (GMRES) is an iterative method used to

find numerical solutions to non-symmetric linear systems of equations. The method

relies on constructing an orthonormal basis of the Krylov space and is thus vulnerable

to an imperfect basis caused by computational errors. There have been attempts to

address this issue by devising variations of the method that are less sensitive to poorly

conditioned problems. The GMRES algorithm is typically used when the dimensions

of the problem are very large, thus it is of interest to investigate ways in which the

computational and memory cost of running it can be reduced. One method for doing so

involves replacing the matrix-vector multiplications with an approximating function.

This work compares variations of the GMRES algorithm against each other by using it

as a solver in simulations mirroring real-world applications.
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Chapter 1

The Generalized Minimal

Residual Method

1.1 Background

Through linearization of differential equations, many problems in physics and the nu-

merical sciences can be reduced to linear systems of equations. It is therefore of great

interest to have efficient and numerically stable methods for solving them. Challenges to

classical methods for solving linear systems appear when looking at large-dimensional

cases when memory usage and computational price make them unpractical. Efficient

methods can be found if the system possesses certain properties, symmetry being a case

example where the symmetric LQ method and minimal residual method algorithm are

well suited [4]. Another interesting case is that of large sparse non-symmetric systems,

which will be the focus of this thesis.

In 1986 Saad and Schultz first published, through a generalization of the minimal residual

method, the so-called GMRES algorithm [2]. This method used Arnoldi’s method for

generating an orthonormal basis of the Krylov subspace. Since then several ways of

implementing the GMRES algorithm have been devised. One of particular interest to

this work is one published by Walker in 1988 which replaces the Gram-Schmidt process

used in the standard implementation of GMRES, by using Householder transformations

to store the basis of the Krylov subspaces [1]. This work aims to examine and compare

the numerical properties of these different implementations of the GMRES algorithm.

When dealing with practical problems, the system matrix can often be a Jacobian which

1



Chapter 1. Theoretical Background 2

allows for the use of so-called Jacobian-free implementations of the GMRES algorithm

(see 1.4). A central theme in this work is their performance when compared to those

utilizing full matrix multiplication.

1.2 The Problem

The generalized residual method is an iterative method suited for solving large linear

systems of equations

Ax = b (1.1)

where A ∈ Rn×n is a general matrix.

1.2.1 GMRES - The general idea

Firstly let us remind ourselves that the Krylov space of dimension k is defined as [6];

Kk(A, r0) := span{r0, Ar0, ..., Ak−1r0} (1.2)

Now let x0 denote the initial guess, in each iteration of the GMRES algorithm one has to

solve min
x∈x0+Kk(A,r0)

‖Ax−b‖2, this can be done efficiently if one has an orthonormal basis

(ONB) of the Krylov space Kk(A, r0). Let {v1, v2, ..., vk} be such a basis; then one can,

by placing each basis vector as a column, construct an orthogonal matrix Vk ∈ Rn×k.

Then each vector x(k) ∈ x0 + Kk(A, r0) can be written as x(k) = x(0) + Vky for some

y ∈ Rk. Thus we may rewrite the problem as:

||b−Ax||2 = ||b−A(x(0) + Vky)||2 = ||b−Ax(0) +AVky||2 (1.3)

Now we may introduce r0 := b−Ax(0), then we get, using the above:

min
x∈x0+Kk(A,r0)

‖Ax− b‖2 = min
y∈Rk

‖r0 −AVky‖2 (1.4)

As y is now chosen without restrictions from Rk, this is an ordinary least-squares prob-

lem. It is clear that this method needs an orthonormal basis of the Krylov space to
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construct the matrix Vk. It is the method of how this basis is obtained and saved that

marks the main difference between different methods that will be discussed in this work.

1.2.2 The Gram-Schmidt implementation

Let us first consider the Gram-Schmidt method of constructing an ONB commonly

known as the Arnoldi process [1,5];

Algorithm 1 Arnoldi’s Method. Let v1 = r0
||r0||2

1: for m = 1,2,..., do
2: a. Set
3: him = (Avm)T vi; i = 1, 2, ...,m,
4: v̂m+1 = Avm −

∑m
i=1 himvi

5: hm+1,m = ||v̂m+1||2
6: b. If hm+1,m = 0, then stop; otherwise, set
7: vm+1 = v̂m+1/hm+1,m

8: end for

With this notation we have the following relation;

AVk = Vk+1H̄k (1.5)

Where H̄k ∈ R(k+1)×k is an upper Hessenberg matrix with one extra row inserted at the

bottom which contains only one entry.

H̄k =



h1,1 h1,2 · · · h1,k

h2,1 h2,2 · · · h2,k

0 h3,2 · · · h3,k

0 0 · · · h4,k
...

...
. . .

...

0 0 · · · hk+1,k


. (1.6)

This can then be used, setting r0 = βv1:

||r0 −AVky||2 = ||r0 − Vk+1H̄ky||2 = ||Vk+1(βe1 − H̄ky)||2 =(∗) ||βe1 − H̄ky||2 (1.7)

(*) Note that this equality only holds true when Vk is an orthogonal transformation, thus

an imperfect basis would render this equality false.
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Thus we only need to compute the solution of

min
y∈Rk

‖βe1 − H̄ky‖2 (1.8)

which can be done using the QR-decomposition:

||Q(βe1 − H̄ky)||2 = ||ḡk − R̄ky||2 (1.9)

where R̄k is upper triangular with one aditional zero row at the bottom and gk =

(γ1, ..., γk+1) ∈ Rk+1, ḡk = (gk, γk+1).

Then the minimum is obtained when Rky = gk (here Rk denotes the upper triangular

matrix without the extra zero row at the bottom); thus we have

min
x∈x0+Kk(A,r0)

‖Ax− b‖2 = min
y∈Rk

‖r0 −AVky‖2 = min
y∈Rk

‖r0 − Vk+1H̄ky‖2 = |γk+1| (1.10)

Further we know that Rky = gk has a unique solution, so it is sufficent to check γk+1

for a chosen tolerance. When this is fulfilled, we simply solve Rky = gk and since Rk

is upper triangular, this can be done with backwards substitution. When this is done,

we can compute a new solution x = x(0) + Vky. Note that we only solve for y when the

tolerance is satisfied, when this is not the case we simply iterate futher.

Algorithm 2 Gram-Schmidt implementation of the GMRES [2]

1: Start: Choose x0 and compute r0 = b−Ax0 and v1 = r0/||r0||2
2: for j = 1,2,..., do
3: a. Compute and save Avj as to only compute it once.
4: b. Set hi,j =< Avj , vi >, i = 1, 2, ..., j

5: c. Set v̂j+1 = Avj −
∑j

i=1 hi,jvi
6: d. Set hj+1,j = ||v̂j+1||2
7: e. Set vj+1 = v̂j+1/hj+1,j

8: end for
9: e. Form the approximate solution: xk = x0 + Vkyk, where yk minimizes (1.8)

At the heart of Arnoldi’s method used in this implementation is the Gram-Schmidt

process of orthonormalization. We will therefore refer to this implementation of the

GMRES algorithm as the Gram-Schmidt implementation.
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1.2.3 The Householder implementation

There is another option when seeking to form an ONB of the Krylov space employing

Householder transformations [1]. These can be represented by a matrix of the form

P = I − 2uuT , where I is the n by n unit matrix and u is a vector of length n with

||u||2 = 1 [4]. We will call u the Householder vector that determines P . A great

numerical advantage in working with Householder matrices is that they can be fully

characterized by a vector, thus requiring less space for storage compared to saving a

full matrix. Another useful property is that the matrix itself must not be explicitly

constructed for a vector to be multiplied with it, this can instead be done with inner

products, saving computational effort.

Below is a pseudocode that uses Householder transformations to construct an ONB [1];

Algorithm 3 Householder orthonormalization. Suppose v1 is given with ||v1||2 = 1

1: Choose P1 such that P1v1 = e1, this can be done by setting u := ||v1||2e1 − v1, then

P1 = I− 2uuT

uTu
2: for m = 1,2,..., do
3: a. Set vm = P1...Pmem
4: b. If (v1, Av1, ..., Avm) has rank m, then stop;
5: otherwise, choose Pm+1 such that Pm+1...P1(v1, Av1, ..., Avm) is upper-triangular

(here Pm+1 is chosen analogously to the example in 1.)
6: end for

This method is used in the implementation of the GMRES method below. As in the

Gram-Schmidt implementation, the least-squares problem is solved by maintaining a

QR-factorization and then solving an upper-triangular system with backward substitu-

tion.
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Algorithm 4 Householder implementation of the GMRES [1]

1: Compute r0 = b−Ax0 and determine P1 such that P1r0 = ±||r0||2e1 ≡ w
2: for m = 1,2,..., do
3: a. Evaluate v ≡ Pm...P1AP1...Pmem
4: b. If v(m+1) = ... = v(n) = 0, then proceed to step (e); otherwise, continue.
5: c. Determine Pm+1 with a Householder vector having first m components zero

such that Pm+1v has zero components after the (m+ 1)st.
6: d. Overwrite v ← Pm+1v
7: e. If m > 1, overwrite v ← Jm−1...J1v
8: f. If vm+1 = 0, proceed to step (i); otherwise, continue.
9: g. Determine a Givens rotation Jm acting on components m and m+1 such that

(Jmv)(m+1) = 0
10: h. Overwrite v ← Jmv and w ← Jmw

11: i. Set Rm =

{
(v), if m = 1

(Rm−1, v) if m > 1

12: j. If |w(m+1)| ≤ TOL or m = MAXIT , then solve for ym and overwrite x0 with
xm; otherwise, increment m.

13: end for
14: a. Determine ym which minimizes ||w−Rmy||2, by solving a m×m upper-triangular

system with the first m rows of Rm as the coefficent matrix and the first m compo-
nents of w as the right-hand side.

15: for k = 1,2,...,m do

16: b. Overwrite x0 ← x0 + y
(k)
m P1...Pkek

17: end for

In this implementation, the basis is not explicitly stored but instead the basis vectors of

the Krylov space vm = P1...Pmem are generated as part of the calculations when needed.

The Householder vectors will be of decreasing length, the first will have a length equaling

the system dimension and then they will decrease by one for each iteration. It then makes

sense to add another row to the upper triangular matrix R, so that they can be stored

in place of the zeroes below the diagonal; in this way memory can be saved.

1.2.4 Expected differences

We will consider two main issues; the first will be sensitivity to problem condition which

is determined by the different approaches for generating a basis, the second will be

a consideration of the memory use and computation effort demanded by each of the

algorithms.

We first consider the Arnoldi iteration using the modified Gram-Schmidt process [4],

which is mathematically equivalent to the classical Gram-Schmidt but possesses superior

numerical properties. There is a significant risk of error if the vectors on which it operates
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are not sufficently independent. Let S = (s1, ..., sm) be an n by m matrix whose columns

are to be orthogonalized. After applying the modified Gram-Schmidt we obtain a matrix

Q = (q1, ..., qm) and a unit rounding error eps. Björck [3] has then shown that

QTQ = I + E; where E ≈ epsκ2(S), (1.11)

where κ2(S) is the condition number given by the ratio of the largest singular value to

the smallest. This means that if κ2((v1, ..., vm, Avm)) is large, the vm+1 generated by

the m-th step of the Arnoldi iteration may have significant non-zero components in the

span of {v1, ..., vm}. It has been suggested [2] that this imperfect orthogonalization can

be a significant source of errors in practial uses of the GMRES algorithm.

We now consider the alternative method using Householder transformations, which the-

oretically should be less sensitive if the orthogonalized vectors are not very indepen-

dent. A Householder transformation is an orthogonal linear transformation of the form

P = I − 2uuT [4], where I is the n-dimensional unit matrix and u is a vector with n

entities. Here we note that we need only n entries to characterize the n × n matrix P .

We further note that given two normalized vectors, it is easy to calculate the vector u

that defines a Householder reflection of one vector onto the other.

To orthonormalize the columns of S = (s1, ..., sm), we determine a series of Householder

transformations P1, ..., Pm such that Pm...P1S = R is upper triangular. A natural ap-

proach would be to determine P1, ..., Pm inductively by imposing the requirement that

Pk...P1(s1, ...sk) be upper triangular for each k ∈ {1, ...,m}. If, further, we have that

Pm...P1S = R, then this directly implies that the first k − 1 components of the k-th

Householder vector must be zero. We can use this fact in that we avoid storing the ze-

ros explicitly. Finally, using that the Householder transformation defines an orthogonal

transformation, we have that S = P1...PmR. Thus, the matrix Q constructed by the

columns of P1...Pm gives us the orthonormalized columns of S. If Q is computed using

floating-point arithmetic then, from [3], we have the following relation for the error:

QTQ = I + E; where E ≈ eps, (1.12)

where u is the unit rounding error. We thus note that the error term depends only

on the rounding error, not on the condition number as we saw in the Gram-Schmidt
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method considered above. These superior properties form a theoretical motivation for

implemententing a GMRES algorithm using Housholder transformations.

1.3 Memory usage and numerical complexity

The theoretical considerations indicate that the Householder implementation has supe-

rior stability. While the Householder method requires sligthy less memory compared to

the Gram-Schmidt implementation, it requires more individual computations, however,

it can be shown [1] that the increase in arithmatic is always less than a factor of three.

This is chiefly caused by the fact that in the Gram-Schmidt implementation, the basis

of the Krylov space is explicitly calculated and stored, and thus can always be called in

from storage when needed. In the Householder implemenation, the Householder vectors

are stored instead, they are then used to calculate the basis of the Krylov space needed.

Except for this difference, both methods are almost the same with regard to complexity.

The Householder implementation (Algorithm 4) requires about 2n multiplications and

one matrix-vector product in part (1) for each m. Steps (3a) and (6d) require about

4nm multiplications and one matrix-vector product for each m. If the for-loop in (2) is

carried out a total of m times, this results in about 2mn(m+ 1) multiplications and m

matrix-vector products. For each iteration k, (k = 1, ...,m) in step (16b) requires about

2nk − n multiplications and thus contributes with approximately nm2 multiplications

in total. The entire algorithm then requires about n(3m2 + 2m+ 2) multiplications and

m+ 1 matrix-vector products.

The Gram-Schmidt implementation requires one matrix-vector product to compute the

initial residual and about 2n multiplications are needed to normalize the residual. At

the m-th iteration, the cost of computing one additional basis of the Krylov space

is one matrix-vector multiplication and about 2n(m + 1) multiplications. If a total

of n iterations are computed, the total cost is then m matrix-vector multiplications

and nm(m + 3) scalar multiplications. Computing the approximate solution after m

iterations then requires nm additional scalar multiplications. In total, the Gram-Schmidt

implementation costs about n(m2 + 4m + 2) scalar multiplications and m + 1 matrix-

vector multiplications.
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Approximate computational cost: HH vs GS GMRES

HH - system dim = 100
GS - system dim = 100
HH - system dim = 1,000
GS - system dim = 1,000
HH - system dim = 10,000
GS - system dim = 10,000

Figure 1.1: Approximate number of scalar multiplications, excluding the m+ 1
matrix-vector multiplications, required for the two different implementations.

(HH=Householder, GS=Gram-Schmidt)

The additonal arithmetic cost of the Householder implementation may be significant for

large-dimensional systems in combination with a large dimension of the Krylov space. In

the case where the maximum number of iterations (maxit) is small, this should cause no

significant increases in computation time. A significant part of the computational effort

is devoted to calculating matrix-vector products which are relatively costly. There are

methods by which these can instead be approximated, sacrificing accuracy for quicker

computations and/or reduced memory cost. In some of the numerical experiments done

in the scope of this work, an approximate method for calculating the matrix-vector

multiplication was used. Methods that replace matrix multiplication with this function

are known as Jacobian-free methods. Because the matrix-vector multiplications can be

replaced by approximating functions, they are left out from this consideration. The

numerical and memory cost of these approximating functions should thus be considered

separately.
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1.4 Jacobian-free implementations

Jacobian-free methods are applicable when the system matrix is a Jacobian, e.g., if the

system considered is a linearization of a system of nonlinear differential equations. As

the system matrix is used only for matrix-vector multiplication, this step can be replaced

by the following quotient approximation [6];

δF(y)

δy
v ≈ F(y + εv)− F(y)

ε
(1.13)

Thus all system matrix vector-products can be replaced by a difference quotient. If

the parameter ε is chosen to be very small, the approximation performs better but

cancellation errors become a substantial problem. A choice that avoids cancellation

problems but still gives a moderately small ε is given by;

ε =

√
eps

||v||2
(1.14)

Where eps is the machine accuracy. One should also note that when using the GMRES,

this approximation performs well because the vectors in the matrix multiplications are

normalized [6].

Besides the storage advantage, this method also offers ease of implementation in that,

instead of computing the Jacobian by analytical means of difference quotients, we need

only function evaluations. Furthermore, this allows us to increase the convergence speed

of the of the Newton scheme; as we never need to compute the Jacobian but only an

approximation thereof. The method used when employing matrices is always of Newton-

type and thus has first-order convergence. The matrix-free approximation, however, is

for the second-order Jacobian and can thus obtain second-order convergence, provided

the proper forcing terms are employed. Regarding convergence, the following theorem

[6] describes the convergence behavior of the Jacobian-free Newton-Krylov scheme:
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1.4.1. Theorem 1. Using the standard assumptions [6], there are δ, σ̄ and CG such

that if x0 is in a δ-neighborhood of x∗ and the sequences {ηk} and {εk} satisfy

σn = ηn + CGεn ≤ σ̄,

then the Jacobian-free Newton-GMRES iteration converges linearly. Moreover,

• if σk → 0, the convergence is superlinear and

• if σk ≤ Kη||F(xk)||p for some Kη > 0 and p ∈ [0, 1], the convergence is superlinear

with order 1 + p

This theorem says that for superlinear convergence, the ε in (1.14) needs to approach

zero, but as pointed out, this leads to cancellation errors. Because of this, a behavior

like quadratic convergence can only be expected in the initial stages of the iterations,

where ε is small compared to ηk.

1.5 Method and goal

In the scope of this work we will use different variations of the GMRES algorithm on

simulations of practical problems mirroring real-world applications of the code.

There are three main distinctions to be made, one is the version of GMRES implemented,

that is the Householder or Gram-Schmidt methods introduced earlier. We will further

test how these methods perform when the matrix-vector multiplication is replaced by an

approximating function in the so-called Jacobian-free methods (JF). The JF methods

themselves allow for further comparison relating to the degree of the function used when

approximating the matrix-vector multiplication (for an overview of the structure of the

testing please see figure 1.5 on page 15).

The parameters we will look at are the residual ||Ax− b||2 and estimates thereof given

by the algorithm, as well as the result when Ax is found by an approximating function.

The estimates provided by the algorithm are theoretically equivalent to the calculated

residual when no approximation function is used, though they may still be subject to

computing errors. The interest is to see how well this equality translates when using the

Jacobian-free approximation, as this is of vital importance to a reliable solver. Further,
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we will compare the performance of the JF methods to those using the full Jacobian for

matrix multiplication.

All of the simulations were run on a PC running a 32-bit Linux OS and all were made

within the Tau Code library which is written in C++. The author of this work has

written the solver implementing the Jacobian-free Householder method, whereas the

Jacobian-free Givens implementation was provided to him by the supervisor and the

Householder utilizing full matrix multiplication for the Jacobian was obtained from the

libraries used. All input parameters used are included in the appendixes A,B and C.

The ultimate aim of these experiments is to assess the performance of the Jacobian free

implementations against those utilizing full matrix multiplication.

1.5.1 Expected differences

When using full matrix multiplication we should expect ||Ax − b||2 to be equal to the

value given by the algorithm (the w-vector), save for rounding errors. The Jacobian-free

methods introduce a potential for further error caused by the approximating function,

the size of which it is the goal of this work to determine.

When using the Gram-Schmidt implementation we expect a larger error sensitivity to

rounding errors caused by an imperfect orthonormal basis than that in the Householder

implementation. While this error is dependent on problem condition, it should only

be visible in late iterations as the error propagates with the dimension of the Krylov

space. In the first couple of iterations no noticeable difference against the Householder

implementation is to be expected.

1.5.2 Comparison of practical implementations

We look at three different problems on which we test several variations of the GMRES

algorithm. The first distinction we make is the order of discretization used; in the scope

of this work we will consider those of the first and second order (see Chapter 2). For each

problem and discretization we then examine the residual behavior in dependence of the

dimension of the Krylov space, this is done for both the Householder and Gram-Schmidt

implementations. In the case of the first-order discretization, the Tau Code library allows

for a construction of the matrix, thus in this case we can compare the performance
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of the Jacobian-free methods to a Householder implementation using explicit matrix

multiplication.

1.5.3 Airfoil (NACA0012), wind turbine & flanged shaft

In the first problem we consider a particular airfoil shape which is one of many designs

developed and classified by the National Advisory Committee for Aeronautics (NACA),

hence it is known by the code NACA0012. The system has a dimension of 18,420 making

it the lowest-dimensional problem considered within the scope of this work.

Figure 1.2: Shape of the NACA0012 airfoil [F1]

The second problem we consider is a wind turbine where the system dimension is 97,380.

Figure 1.3: Detail of the mesh used when simulating the wind turbine.
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Finally we look at a simulation of a flanged shaft where the systems dimension is 568,208,

making it the highest-dimensional system considered.

Figure 1.4: Mesh used when simulating the flanged shaft [7]
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In the interest of giving the reader a clear overview of the comparisons made, below is

a flow-chart showing the structure of the experiments and the groupings of the results.

 Problem: Base problem to 

solve; in our case: 

NACA0012, Wind Turbine 

or Flanged Shaft 

Piecewise Constant:  

First order discretization 

Piecewise Linear:  

Second order discretization 

Matrix Free:  
Approximate matrix 

multiplication   

Using Matrix: 
Explicit matrix 

multiplication  

Matrix Free:  
Approximate matrix 

multiplication   

GMRES - 

Householder  

GMRES -  

Gram-Schmidt 

 

GMRES - 

Householder  

GMRES - 

Householder  

GMRES -  

Gram-Schmidt 

 

Parameters of these three variations 

can be directly compared. We look at 

three different measures of the 

residual for each; 

1. As indicated by the algorithm 

(denoted w-vector) 

2. As indicated by the approximation 

function used instead of explicit 

matrix (for the matrix free methods)  

3. The residual calculated with explicit 

matrix multiplication.  

Parameters of these two variations 

can be directly compared. We look at 

two measures of the residual for 

each; 

1. As indicated by the algorithm 

(denoted w-vector) 

2. As indicated by the approximation 

function used instead of explicit 

matrix. The second order 

discretization does not allow the 

library to construct the explicit matrix. 

Figure 1.5: Flowchart: an overview of the structure of the testing



Chapter 2

Numerical Experiments and

Analysis

2.1 First-order discretization

We first look at the data obtained when running the simulations (described in 1.5.3)

using first-order discretization, that is when individual cells in the mesh contain piecewise

constant functions. The initial guess for the solution of Eq. (1.1) in all simulations is the

zero vector of system dimension. Using discretization of the first order we will compare

two variations of matrix-free GMRES solvers, one being the Householder implementation

described in Algorithm 4, the other being the Gram-Schmidt implementation described

in Algorithm 2. The results of the two matrix-free methods will then be compared to a

Householder implementation using explicit matrix multiplication. This will be done for

all three problems introduced in the previous chapter.

Each plot will thus contain three approximations of the residual for the two matrix-free

methods and two for that of the matrix method. In the interest of keeping cluttering

of the plots to a minimum, the following abbreviations are used in the legends: HH

refers to Householder, GS to Gram-Schmidt, JF to Jacobian-free and M to Matrix. The

residuals calculated using the approximation function replacing matrix multiplication are

denoted as approximation, w-vector refers to the residual as indicated by the algorithms.

||Ax− b||2 is the residual explicitly calculated using proper matrix multiplication. This

notation will be used henceforth in all plots of the residuals.

16
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2.1.1 NACA0012

Below are the data obtained when running the NACA0012 simulation using the Jacobian-

free Gram-Schmidt implementation:
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−
b||
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NACA0012 - Piecewise Constant

GS JF- approximation
GS JF- w-vector
GS JF- ||Ax−b||2

Figure 2.1: NACA0012 - Residuals for GS-JF, using first-order discretization.

We see that the indicated residual in the w-vector follows the approximated residual

only in the first iteration, then the approximated residual stabilized while the indicated

residual continues falling. The residual that is found by explicitly calculating ||Ax− b||2

falls in the first two iterations, then rebounds slightly and lies constant. It should be

noted that the calculated residual is significantly larger than the approximated residual.

The fact that the approximation diverges from the calculated residual at the first itera-

tion raises questions about the accuracy of the approximation function used instead of

the explicit matrix multiplication. This can be stated as: at iteration one we are consid-

ering a one-dimensional Krylov space and errors of the kind arising from an imperfect

basis are not expected to have an impact.

The observation that the w-vector starts to show significant divergence from the approx-

imated residual at iteration two further adds to the suspicion that an error is present

in the matrix-vector approximation. As the indicated (w-vector) and the approximated

residual are mathematically equivalent, we should expect only computational rounding

errors, with a two-dimensional basis these would be expected to be negligible.

It should however be noted that other issues cannot be excluded.
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We now look at the results obtained using the Jacobian-free Householder implementa-

tion:
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Figure 2.2: NACA0012 - Residuals for HH-JF, using first-order discretization.

As we saw when using the Jacobian-free Gram-Schmidt implementation, we see a diver-

gence between the calculated residual and the other two metrics at the first iteration.

Again this suggests that the accuracy of the approximating function may not be satis-

factory for obtaining a useful result.

A major difference compared to the GS-implementation is that the approximated resid-

ual follows the indicated residual which is consistent with the theory outlined previously.

This could mean that in the case of this problem, the Householder implementation is

more stable than the Gram-Schmidt one or indeed, that there is a bug in the code of

the Gram-Schmidt implementation.

In any case the indicated residual seems to be an accurate estimate of the approximated

residual but none of them can be trusted to represent the calculated residual ||Ax− b||2.
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Finally we look at the case where we use explicit matrix multiplication with the House-

holder implementation:
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Figure 2.3: NACA0012 - Residuals for HH-M, using first-order discretization.

In this case, we are using the full matrix which means that we no longer have an ap-

proximating function to which the results can be compared. We can however see how

the w-vector compares to the calculated residual ||Ax− b||2.

What we see is that for all iterations the indicated residual matches, up to rounding

errors, the calculated residual. This is consistent with the theory of them being mathe-

matically equal and serves to reinforce earlier suspicions that the approximating function

in the Jacobian free methods is lacking in accuracy, as the only change in the algorithm

is its replacement with full matrix multiplication.
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2.1.2 Wind turbine

We now consider the data obtained from the wind turbine simulation using the Jacobian-

free Gram-Schmidt implementation:
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Figure 2.4: Wind turbine - Residuals for GS-JF, using first-order discretization.

We observe that the indicated residual of the w-vector diverges sharply from the other

two metrics at the first iteration and then keeps falling. In this case the approximated

and the calculated residual both indicate a residual slightly larger than the initial guess

and seem to follow each other with regard to their values. We would expect the indicated

residual to match the approximated residual in the case of a stable implementation,

regardless of the accuracy of the approximation, the fact that we do not see this suggests

to the author that the Gram-Schmidt implementation is faulty or contains a bug.

Taken as a whole, this behavior was not observed in the NACA0012 simulation and it

is not consistent with the theoretical predictions made in the scope of this work.
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Next, we examine the data obtained from the wind turbine using the Jacobian-free

Householder implementation:
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Figure 2.5: Wind turbine - Residuals for HH-JF, using first-order discretization.

In this case we see that for the first four iterations all metrics follow each other, then

the calculated residual ||Ax− b||2 begins to diverge from the other two. The residual as

indicated by the w-vector follows the approximated residual in all iterations considered.

The first thing to note is that this behavior is consistent with the behavior previously seen

when using the Jacobian-free Householder implementation in the NACA0012 simulation.

That is to say, the algorithm seems to be performing as expected in that w-vector and the

approximation match and the most likely cause of the divergence seen in the calculated

residual once again is thought to be an imprecise approximating function.
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Finally we look at the results when using full matrix-multiplication in the Householder

implementation:
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Figure 2.6: Wind turbine - Residuals for HH-M, using first-order discretization.

We see a familiar behavior to that observed in the NACA0012 experiment in that the

indicated residual closely follows the calculated ||Ax − b||2. This is wholly consistent

with the theoretical predictions in that both measures are mathematically equivalent and

should differ only by rounding errors caused when calculating the basis of the Kyrlov

space.

This result serves to further strengthen the argument that the approximating function

is lacking in accuracy.
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2.1.3 Flanged shaft

Finally we consider the flanged shaft. We begin by looking at the Jacobian-free Gram-

Schmidt implementation:
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Figure 2.7: Flanged Shaft - Residuals for GS-JF, using first-order discretization.

We see a behavior similar to the two previous simulations in that the indicated residual

falls consistently for each iteration while the approximated and the calculated residuals

diverge in the first iterations to then stabilize at different levels. In this case, the

calculated residual falls in the first iteration to then slightly rebound and stabilize.

The approximated residual seems to largely follow the indicated residual in the first

iteration but shows significant divergence in the second. Again, the discrepancy between

approximated and calculated residual indicates a faulty approximation function while

the difference between the indicated and approximated residuals could be the result of

a bug in the GS-implementation.
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Next we examine the results when using the Jacobian-free Householder implementation:
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Figure 2.8: Flanged Shaft - Residuals for HH-JF, using first-order discretization.

This is an interesting result as it differs from the behavior previously seen when using

the Jacobian-free Householder in that after iteration four, the indicated and approxi-

mated residuals begin to diverge, in the previous two experiments this was not observed.

The reason for this could be that the approximation function presents an upper limit to

how small the residual can be made. This suspicion is strengthened by the result pre-

sented below where the approximating function has been replaced with explicit matrix

multiplication.

As in all previous experiments the calculated residual falls for the first iteration to then

slightly rebound and stabilize. The solution found does not correspond the indicated

residual which is used as the termination criterion.
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Finally we look at the Householder implementation using full matrix multiplication:
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Figure 2.9: Flanged Shaft - Residuals for HH-M, using first-order discretization.

We see a behavior consistent with all previous simulations in that the calculated and in-

dicated residuals match for all iterations considered. This is in line with what the theory

predicts and strengthens the suspicion presented in the JF HH-implementation above,

that is that the approximating function can be a limiting factor for the approximated

residual as well as the calculated residual.
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2.2 Second-order discretization

We now examine the performance of the two matrix-free methods, Householder and

Gram-Schmidt, when using the second-order discretization. Here the individual cells in

the mesh will contain piecewise-linear functions instead of the piecewise-constant as was

the case when using first-order discretization. A important difference to note is that the

Tau Code library does not permit to generate a full matrix when using the second-order

discretization, thus we will only compare the residual as indicated by the algorithm (as

before denoted w-vector) and the approximated residual calculated with the function

replacing matrix-vector multiplication.

2.2.1 NACA0012

We begin by examining the results from the NACA0012 example.
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Figure 2.10: NACA0012 - Residuals using second-order discretization.

Again we see that, for both implementations, the indicated residual from the w-vector

falls consistently with each iteration, yet the approximated residual only noticeably falls

in the first few iterations. All measures indicate the residual to be smaller than that pro-

duced by the initial guess. A difference from the first-order discretization of NACA0012

is that the w-vector and the approximated residual of the Householder implementation

no longer match, as they begin to exhibit significant divergence at the second iteration.
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2.2.2 Wind turbine

We now consider the wind turbine example.
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Figure 2.11: Wind turbine - Residuals using second-order discretization.

We see that the matrix-free Gram-Schmidt produces a quickly falling w-vector-residual

while the calculated residual does not noticeably change from that produced by the

initial guess. In this case the rapid fall of the w-vector of the Gram-Schmidt results in a

large area of interest making individual changes in the Householder difficult to see, we

therefore plot this separately, see figure below.
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Figure 2.12: Wind turbine - Residuals using second-order discretization - Householder
only.

In this case we see that for all but the last iterations, the approximated residual follows

the indicated ones, but around iteration 90 the two estimates begin to diverge. This is

similar to the results seen in the first-order iteration where the Householder w-vector

initially followed the approximated residual.
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2.2.3 Flanged shaft

Finally we consider the flanged shaft example.
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Figure 2.13: Flanged shaft - Residuals using second-order discretization.

Here it seems that the matrix-free Gram-Schmidt implementation displays unstable

behavior in that the indicated residual falls consistently with each iteration while the

approximated residual initially seems to converge to a level slightly above that seen

in the Householder implementation, and then exhibits an increasing saw-tooth pattern

leading to an estimated residual significantly larger than that produced by the initial

guess.

The behavior of the Householder is consistent with previous results in that the indicated

residual follows the approximated residual in the initial iterations to then lie dormant at

a specified level, below that of the initial guess. The indicated residual of the w-vector

decreases consistently with each iteration.
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Conclusions and Comments

3.1 Conclusions

As mentioned in Chapter 1, a fundamental problem when working with the Krylov spaces

is the risk of getting, because of computational rounding errors, a flawed orthonormal

basis. This is indeed the basic motivation for creating an approach using Householder

reflections to store the basis. While we can expect this problem to be present in our

simulation, we would not expect it to have a significant impact for a small number of

basis vectors. We do, however, see significant divergence in the results early on in the

iterations, and the author does not consider this to be consistent with the effects of an

imperfect basis as they are orders of magnitude larger than the theory predicts.

Another point to make is that the GMRES algorithm profits from preconditioning of

the problems [5] and within the scope of this work no preconditioning was used. This

could disadvantage the numerically more sensitive Givens implementation when tested

against the more stable Householder.

As stated, the dimensions of the problems are quite large (e.g. 568,208 in the case

of the flanged shaft), and there is a wish to avoid explicit matrix multiplications by

replacing them with an approximating function. This introduces an error factor that

will propagate with each matrix-vector multiplication, which is each iteration. In the case

of the first-order discretization, the library allows us to calculate the size and behavior

of this error. When using second-order discretization, this is not possible and thus the

exact behavior remains unknown. One could, however, try to extrapolate the results

from those obtained when using the first order to the second, but this should be done

30
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with caution and should be viewed as speculation until it can be properly confirmed in

tests.

A very important observation is that, when using matrix-free methods, the w-vector-

residual seems to be a poor indicator for the actual residual ||Axm−b||2. It is important

because this is usually the only estimator for the residual that is used when testing the

algorithms for convergence. This means that, unless the solution is explicitly tested, a

matrix-free implementation could well return a solution stating convergence for a certain

tolerance that the solution does not fulfill. It presents a double danger in that it may

give false results and present them as true. Because of this, the author would recommend

that every solution obtained when using matrix-free methods be checked separately to

make sure that it indeed satisfies the tolerance required.

The matrix-free implementations are outperformed, with regard to consistence of the

residual estimate, in every test by the Householder utilizing full matrix multiplication.

The latter performs as theory predicts, and there were no observations made that would

suggest that the w-vector is not an accurate estimate for the residual when using the

full matrix multiplication.
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Summing up the main points, based on the results obtained in the tests presented above;

• The Jacobian-free Gram-Schmidt implementation exhibits significant instability,

the behavior observed is not consistent with the theoretical predictions outlined

in Chapter 1.

• When using Jacobian-free methods, the w-vector does not provide a reliable esti-

mate of the residual ||Ax− b||2.

• When using the first order-discretization, Jacobian-free implementations signifi-

cantly decrease the residual ||Ax− b||2 only in the first iterations, after this using

higher dimensions for the Krylov space does not seem to translate into finding a

better solution for the system. This behavior was observed in all three experiments.

• The Householder implementation using full matrix-multiplications displays sta-

ble and consistent behavior in that it performs as predicted in each experiment

considered.

3.2 Recommendations for further study

The results presented in this work are exclusively obtained with the use of the Tau

Code library. If one wishes to study fundamental differences between the two different

implementations of the GMRES method, the author would recommend running both

methods on a series of known systems of equations where the condition number can

easily be manipulated. In order to keep the issues of interests clear, the tests should

be made with full matrix multiplication, without using approximations for numerical

efficiency and without third-party code. The consequences of this approach would be

difficulties of studying real-world applications of the code, which seldom can be reduced

to a standard matrix. The avoidance of approximations could result in a significantly

higher computational cost, so considerations of higher-dimensional problems could be-

come very costly.

For the reasons mentioned above, further study of the use of GMRES within specialized

libraries is also of interest. The use of approximating functions quickly becomes neces-

sary as dimensions increase but their use significantly harms convergence theory, unless

the error behavior of the approximating function is well known. In the results presented
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in this work, the act of replacing the matrix multiplication with an approximating func-

tion significantly damages the accuracy of the solution. It is therefore of interest that

the method for approximating the matrix-vector multiplication is tested for accuracy

individually outside of the GMRES algorithm. The author thinks the quality of the

approximation is central to usefulness of all matrix-free methods.

Summing up main areas for further study;

• Examine differences in performance of the Gram-Schmidt and Householder imple-

mentations of GMRES in a controlled environment, in particular their dependence

on condition number.

• Search the Gram-Schmidt implementation for bugs.

• Individually test the matrix-vector-multiplication approximation against known

matrices and vectors, examine if better methods are available. Examine if precon-

ditioning increases the accuracy of the matrix-free methods.

• Test and document the performance of repeating Jacobian-free implementations

of the GMRES algorithm. That is, see how the residual behaves if the function

is terminated after a certain number of iterations and then is called again using

the output of the previously called function as the new initial guess. This is then

repeated until a tolerance is satisfied or a maximum number of restarts is reached.
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Appendix A

NACA0012 input parameters

Parameters which are varied throughout the tests are followed by a number (#)

and explained below;

restart file =

grid name = NACA_LOW_MACH60.tri

Euler/NS = NAVIER_STOKES

Problem type = STEADY

Explicit/Implicit = IMPLICIT

Time integration = 0

Error controlled time adaptivity = 0

fsafety = 0.9

Minimal time step decrease = 0.5

Maximal time step increase = 2.0

Absolute tolerance in time step control = 1e-3

Relative tolerance in time step control = 1e-3

reconstruction_type = TVD

reconstruction = PIECEWISE_LINEAR (1)

limiter = BARTH_JESPERSEN

flux_function = AUSMDV

flux_function_jacobi = AUSMDV

ausmpup_ref_mach = 0.3

ausmpup_a_half =

ausmpup_kpfa_fix =

CFL -number = 4.0

max timesteps = 1

max time = 999e10
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CFL max number = 100.0

CFL update period = 10

CFL update factor = 1.2

Max Newton steps = 1

Newtontolerance = 1e-4

Eisenstat -Walker forcing terms = 0

Extrapolation = 0

krylov dim = 40 (2)

ilu update period = 30

epsilon = 1e-8

max restarts = 2

output period = 2000

output prefix = NACA_LOW_MACH60

adaption period = 50000

adapt refine limit = 1.0e-1

adapt coarse limit = 1.0e-3

least triangle area = 0

Mach number = 0.85

angle = 1.25

preconditioner = 0

preconupdates = 0

physical renumbering = 1

matrix free solver = 1 (3)

Reynolds number = 1000

Prandtl number = 1.2

temperature = 300

isotherm or adiabat = ADIABAT

temperature on wall = 273

(1) is set to PIECEWISE LINEAR when measuring second-order discretization,

when measuring first-order discretization this is changed to PIECEWISE CONSTANT

(2) is varied to measure dependence on the dimension of the Krylov space.

(3) is set to 1 when testing matrix-free methods, when examining the Householder

using full matrix multiplication it is set to 0.
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Wind turbine input parameters

Parameters which are varied throughout the tests are followed by a number (#)

and explained below;

restart file = wind_96_boundarylayer_steadyEuler_t200.pval

grid name = wind_96_boundarylayer.tri

Euler/NS = NAVIER_STOKES

Problem type = STEADY

Explicit/Implicit = IMPLICIT

Time integration = 1

Error controlled time adaptivity = 0

Constant Delta t = 0.01

Timestep controller = 0

theta = 0.9

Minimal time step decrease = 0.5

Maximal time step increase = 2.0

Absolute tolerance in time step control = 1e-1

Relative tolerance in time step control = 1e-1

reconstruction_type = TVD

reconstruction = PIECEWISE_LINEAR (1)

limiter = BARTH_JESPERSEN

flux_function = AUSMDV

flux_function_jacobi = AUSMDV

ausmpup_ref_mach = 0.3

ausmpup_a_half =

ausmpup_kpfa_fix =
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CFL -number = 100.0

max timesteps = 1

max time = 202

CFL max number = 30.0

CFL update period = 10

CFL update factor = 1.2

Max Newton steps = 50

Newtontolerance = 1e-13

Eisenstat -Walker forcing terms = 0

Extrapolation = 0

krylov dim = 10 (2)

ilu update period = 30

epsilon = 1e-3

max restarts = 0

output period = 200000

output prefix = Wind_96_SDIRK2

adaption period = 50000

adapt refine limit = 1.0e-1

adapt coarse limit = 1.0e-3

least triangle area = 0

Mach number = 0.12

angle = 40.0

preconditioner = 0

preconupdates = 0

physical renumbering = 1

matrix free solver = 1 (3)

Reynolds number = 1000

Prandtl number = 1.2

temperature = 300

isotherm or adiabat = ADIABAT

temperature on wall = 273

(1) is set to PIECEWISE LINEAR when measuring second-order discretization,

when measuring first-order discretization this is changed to PIECEWISE CONSTANT

(2) is varied to measure dependence on the dimension of the Krylov space.

(3) is set to 1 when testing matrix-free methods, when examining the Householder

using full matrix multiplication it is set to 0.
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Flanged shaft input parameters

Parameters which are varied throughout the tests are followed by a number (#)

and explained below;

restart file =

grid name = flanschmit2duesen.tri

Euler/NS = NAVIER_STOKES

Problem type = FLANSCHWELLE

Explicit/Implicit = IMPLICIT

Time integration = 0

Error controlled time adaptivity = 0

Constant Delta t = 0.01

Timestep controller = 3

theta = 0.9

Minimal time step decrease = 0.5

Maximal time step increase = 2.0

Absolute tolerance in time step control = 1e-3

Relative tolerance in time step control = 1e-3

reconstruction_type = TVD

reconstruction = PIECEWISE_LINEAR (1)

limiter = BARTH_JESPERSEN

flux_function = AUSMDV

flux_function_jacobi = VAN_LEER

ausmpup_ref_mach = 0.3

ausmpup_a_half =

ausmpup_kpfa_fix =

39
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CFL -number = 2.0

max timesteps = 500

max time = 10

CFL max number = 0.9

CFL update period = 10

CFL update factor = 1.2

Max Newton steps = 1

Newtontolerance = 1e-4

Eisenstat -Walker forcing terms = 1

Extrapolation = 0

krylov dim = 30 (2)

ilu update period = 30

epsilon = 1e-4

max restarts = 0

output period = 200000000

output prefix = flanschwelle_2

adaption period = 5000000000

adapt refine limit = 1.0e-1

adapt coarse limit = 1.0e-3

least triangle area = 0

Mach number = 1.0

angle = 1.25

preconditioner = 0

preconupdates = 0

physical renumbering = 1

matrix free solver = 1 (3)

Reynolds number = 1000

Prandtl number = 1.2

temperature = 300

isotherm or adiabat = ADIABAT

temperature on wall = 273

(1) is set to PIECEWISE LINEAR when measuring second-order discretization,

when measuring first-order discretization this is changed to PIECEWISE CONSTANT

(2) is varied to measure dependence on the dimension of the Krylov space.

(3) is set to 1 when testing matrix-free methods, when examining the Householder

using full matrix multiplication it is set to 0.
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