
Hardware Implementation of Automatic Gain
Controller for Active Hearing Protectors

Niklas Aldén

Department of Electrical and Information Technology
Lund University

Advisor: Joachim Rodrigues and Nedelko Grbic

December 8, 2015

Printed in Sweden
E-huset, Lund, 2015

Abstract

This thesis focus on implementing an automatic gain controller (AGC) in hard-
ware for usage in active hearing protectors. The proposed solution matches and
improves on both the dampening and audio quality compared to an equivalent
commercial product. The listening experience for the user is improved by apply-
ing an equal attenuation for both left and right ear.

The AGC works by estimating the decibel level of an audio sample and applying
an appropriate gain. In case the noise level is so high that the users hearing might
be damaged, the sample is attenuated to a harmless level. Otherwise, the sample
is outputted without any dampening. The proposed solution is verified on an
FPGA and prepared for fabrication of an ASIC in 65nm CMOS technology.

The aim has been to optimized the algorithm to result in an integrated circuit with
a small area and low power consumption. By implementing a time multiplexed
resource sharing algorithm, the circuit area is reduced with 28%. Together with
the use of voltage scaling, the simulated energy dissipation per clock cycle is
reduced with 86%.

i

ii

Acknowledgments

I would like to thank my advisers Dr. Joachim Rodrigues and Dr. Nedelko Grbic:
First, for proposing this thesis; secondly, for their guidance and support during
this period. Also a thanks to Ph.D. Student Oskar Andersson for his help with
the tools. Finally, a special thanks to my family for always supporting me during
my studies.

Niklas Aldén

December, 2015

iii

iv

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Objective . 2
1.3 Thesis Outline . 2

2 Theory 5
2.1 Floating Point Representation . 5
2.2 Fixed Point Representation . 6
2.3 Error Estimation and Bit Resolution 7
2.4 dB . 9

3 AGC Algorithm Development 11
3.1 Fixed Point Conversion . 11
3.2 Filters . 12

3.2.1 High Pass Filter 12
3.2.2 Equalizer Filter 14

3.3 Signal Power Estimation . 16
3.4 AGC and Gain Lookup Table . 17

4 Initial Hardware Implementation 21
4.1 Filters . 21

4.1.1 High Pass Filter 21
4.1.2 Equalizer Filter 23

4.2 AGC . 24
4.3 Gain Lookup Table . 27
4.4 Hardware Resources . 27

5 Optimizing Hardware Implementation 29
5.1 Resource Sharing . 29

5.1.1 Resource Sharing Algorithm 30
5.1.2 Results of Resource Sharing 32

5.2 Scaling Supply Voltage . 38

6 Hardware Implementation on FPGA 41

v

6.1 FPGA Board . 41
6.2 AC‘97 Controller . 43

6.2.1 Inverting Bit Clock 43
6.2.2 Connecting Peripherals 44
6.2.3 AD1981B Control Registers 45

7 Hardware Implementation on ASIC 49
7.1 Additional Configurations . 49

7.1.1 Clock Speed 49
7.1.2 I/O Pads 50

7.2 Synthesis . 50
7.3 Placement and Routing . 52

7.3.1 Standard Power Implementation 52
7.3.2 Low Power Implementation 52

7.4 Power Analysis . 56
7.4.1 Standard Power Implementation 56
7.4.2 Low Power Implementation 57

8 Verification and Results 65
8.1 Equipment for Verification . 65

8.1.1 Hearing Protectors 65
8.1.2 Loudspeakers 66
8.1.3 Head and Torso Simulator 66
8.1.4 Sound Level Meter 66
8.1.5 External Sound Card 69

8.2 Noise Attenuation Measurement . 69

9 Conclusions and Further Development 73
9.1 Conclusions . 73
9.2 Future Work . 74

References 75

vi

List of Figures

2.1 Quantization error. 8
2.2 Variance of quantization error for different bit resolutions. 9
2.3 Frequency response of A-weighting filter. 9

3.1 Overview of algorithm implementation. 12
3.2 Frequency response for high pass filter. 13
3.3 First order IIR filter in Direct-Form-I. 13
3.4 Frequency response for equalizer filter. 14
3.5 Second order IIR filter in Direct-Form-I. 14
3.6 Step response for the equalizer filter. 16
3.7 Gain Lookup Table. 19

4.1 FSM for high pass filter and equalizer filter. 22
4.2 ASMD for the high pass filter. 22
4.3 ASMD for the equalizer filter. 23
4.4 FSM for the AGC. 24
4.5 ASMD for the AGC. 25
4.6 Algorithmic flowchart of gain lookup table. 27

5.1 FSM for resource sharing AGC. 34
5.2 ASMD for the AGC with resource sharing. Part 1 of 2. 36
5.3 ASMD for the AGC with resource sharing. Part 2 of 2. 37

6.1 Xilinx XUPV5-LX110T Evaluation Platform. 42
6.2 Closeup on codec, headphone-, and microphone jack. 42
6.3 Overview of AC‘97 codec and controller connected to filters and AGC. 44
6.4 AD1981B codec schematic. 46
6.5 FSM for setting AC‘97 codec registers. 47

7.1 ASIC layout from PnR using LPHVT libraries. 52
7.2 ASIC layout from PnR using LPHVT re-characterized libraries. 53
7.3 ASIC layout from PnR using LPSVT re-characterized libraries. 54
7.4 ASIC layout from PnR using LPLVT re-characterized libraries. 55
7.5 Energy usage for different libraries and supply voltages. 64

vii

7.6 Leakage energy for different libraries and supply voltages. 64

8.1 Hearing protectors used for measurements. 66
8.2 Norsonic dodecahedron loudspeaker and power amplifier. 67
8.3 Fostex 6301B Analog Personal Monitors. 67
8.4 Brüel & Kjær Head and Torso Simulator and NEXUS Microphone

Conditioner. 68
8.5 01dB SdB+ Sound level meter. 68
8.6 Roland UA-1EX USB audio interface sound card. 69
8.7 Noise attenuation measurement. 70
8.8 Noise attenuation measurement, difference from ideal. 71

viii

List of Tables

2.1 IEEE 754-1985, 32-bit single precision floating point. 6
2.2 IEEE 754-1985, 64-bit double precision floating point. 6
2.3 Fixed point bit resolution. 7

4.1 Hardware resources used in initial design. 28

5.1 Hardware resources used in resource sharing design. 33
5.2 Description of AGC’s FSM states. 35

6.1 Headphone volume register. 46
6.2 Microphone volume register. 47
6.3 PCM-out volume register. 47
6.4 Record gain register. 47
6.5 PCM front DAC rate register. 48
6.6 PCM ADC rate register. 48
6.7 Miscellaneous control bit register. 48

7.1 Estimated area after synthesis. 51
7.2 Power analysis, LPHVT, VDD = 1.2V. 56
7.3 Clock constrains for ASIC with standard 1.2V LPHVT cell library. . . 56
7.4 Power analysis, LPHVT re-characterized cell library, VDD = 0.6V. . . 57
7.5 Clock constrains for ASIC with re-characterized 0.6V LPHVT cell library. 57
7.6 Power analysis, LPHVT re-characterized cell library, VDD = 0.5V. . . 58
7.7 Clock constrains for ASIC with re-characterized 0.5V LPHVT cell library. 58
7.8 Power analysis, LPSVT re-characterized cell library, VDD = 0.6V. . . . 58
7.9 Clock constrains for ASIC with re-characterized 0.6V LPSVT cell library. 59
7.10 Power analysis, LPSVT re-characterized cell library, VDD = 0.5V. . . . 59
7.11 Clock constrains for ASIC with re-characterized 0.5V LPSVT cell library. 59
7.12 Power analysis, LPSVT re-characterized cell library, VDD = 0.4V. . . . 60
7.13 Clock constrains for ASIC with re-characterized 0.4V LPSVT cell library. 60
7.14 Power analysis, LPLVT re-characterized cell library, VDD = 0.6V. . . . 60
7.15 Clock constrains for ASIC with re-characterized 0.6V LPLVT cell library. 61
7.16 Power analysis, LPLVT re-characterized cell library, VDD = 0.5V. . . . 61
7.17 Clock constrains for ASIC with re-characterized 0.5V LPLVT cell library. 61

ix

7.18 Power analysis, LPLVT re-characterized cell library, VDD = 0.4V. . . . 62
7.19 Clock constrains for ASIC with re-characterized 0.4V LPLVT cell library. 62
7.20 Power and energy dissipation of the different ASIC implementations. . 63

x

Abbreviations

AC‘97 . . . Audio Codec 1997
ADC Analog to Digital Converter
AGC Automatic Gain Controller
ASIC . . . Application Specific Integrated Circuit
ASMD . . Algorithmic State Machine with Data path
CMOS . . . Complementary Metal-Oxide-Semiconductor
DAC Digital to Analog Converter
FIR Finite Impulse Response
FPGA . . . Field Programmable Gate Array
FSM Finite State Machine
I/O Input and Output
IIR Infinite Impulse Response
LPHVT . . Low Power, High Voltage Threshold
LPLVT . . . Low Power, Low Voltage Threshold
LPSVT . . Low Power, Standard Voltage Threshold
LSB Least Significant Bit
LUT Lookup Table
MSB Most Significant Bit
MUX . . . Multiplexer
PCM Pulse-Code Modulation
PnR Place and Route
VHDL . . . Very high speed integrated circuit Hardware Description Language

xi

xii

Chapter1
Introduction

This chapter will introduce the background and the objectives of this thesis. The
outline of the report with a short description of each chapter will also be pro-
vided.

1.1 Motivation

According to the Swedish Work Environment Authority, people working in an
environment with an equivalent noise level between 75dB and 80dB, during an
8 hour work day, are entitled to have hearing protectors provided for them. If the
noise level reaches 85dB or more, there is a risk of permanent hearing damage so
the employer should wear hearing protectors. [1]

There are two different types of hearing protectors: passive and active. The pas-
sive type, like earplugs for example, are the most common ones. They work
by dampening all sounds before it reaches the eardrum, regardless of the sur-
rounding noise level. In situations where communication is important, but with
a chance of high noise levels, a pair of active hearing protectors could be a better
fit over the passive kind. Active hearing protectors uses an Automatic Gain Con-
troller (AGC) to adjust the sound volume, depending on the noise level, before
the sound reaches the users ears. This means that harmless sound is not damped1

whilst dangerous sound levels are attenuated to a safe level.

Currently available active hearing protectors are either fully analog, fully digi-
tal, or mix between analog and digital. It is motivated to have digital hearing
protectors for the simplicity of adding extra features in the future, but additional
functions usually means worse battery life. The digital parts are implemented
on Digital Signal Processors (DSPs), which are more efficient than having general
purpose processors doing the calculations. However, compared to a purpose-
build Application Specific Integrated Circuit (ASIC), the DSP is physically much
larger and consumes far more energy.

1Some implementations amplifies low sound levels in order for the user to hear better.

1

2 Introduction

1.2 Thesis Objective

This thesis will be a further development on the work done in [2], which focused
on digitizing an existing analog solution. Their conclusions for suitable filter im-
plementations will be used in this thesis, but where they programmed a floating-
point DSP for verification, the result in this thesis will be written in VHDL and
verified on an Field-Programmable Gate Array (FPGA) using fixed-point arith-
metic.

The goal is to match and improve on the dampening capabilities and sound qual-
ity against a pair of commercially available hearing protectors, while using much
less power. The hearing protectors used for comparison adjusts the dampening
separately for each ear, independent of the other. This is good for locating the
precise direction of a noise source far away. However, a strong impulse sound
from one side, and soon after one from the other side, can cause a swaying sound
effect when one ear hears the sound before the other ear and adjust the attenua-
tion differently. This swaying effect is caused by a large difference in dampening
for each ear, meaning one ear can pick up background noise while it is very quiet
for other ear. When this difference changes rapidly, it could be a bit unpleasant
for the user, and will therefore be solved in this thesis. By applying an equal at-
tenuation for both ears, determined by the side with the most powerful noise, the
swaying effect can be eliminated but still keeping the ability to locate the direc-
tion of a noise source.

The final design will be prepared for manufacturing of an ASIC in 65nm CMOS
technology from STMicroelectronics, with focus on as low power consumption
as possible.

1.3 Thesis Outline

Chapter 2 explains the basics of digital number representation and the intro-
duced errors when converting analog signals to digital. The concept of
the decibel scale and its usage in this thesis is also provided.

Chapter 3 describes the work of developing an algorithm in Matlab that filters
and dampens the audio samples.

Chapter 4 describes the process of taking the algorithm, adjusting it, and trans-
lating it into hardware using a hardware description language, VHDL.

Chapter 5 goes through the optimizations done to the initial hardware imple-
mentation in order to make it more efficient. An in-depth description of
the new algorithm is also provided.

Chapter 6 describes the additional interface and controller that is necessary for
having the algorithm running on the FPGA.

Introduction 3

Chapter 7 covers the implementation of the algorithm on an ASIC. The work-
flow of going from a hardware behavioral model to an integrated circuit is
briefly described.

Chapter 8 presents the setup and the equipment used for verification, along with
the results.

Chapter 9 contains the conclusions and suggestions for future work and further
development.

4 Introduction

Chapter2
Theory

This chapter explains the basics on digital number representation, the source of
rounding errors, and the usage of the decibel scale in this thesis.

2.1 Floating Point Representation

When handling decimal numbers in a computer, most of the times they are rep-
resented using floating point notation [3]. They are often called float in most
common programming languages. These decimal numbers are represented as
binary numbers using normalized scientific notation, meaning there is only one
non-zero number to the left of the binary point1, i.e. any leading bits that are zero
are moved and instead used for representing the numbers fraction, thus increas-
ing the precision of the number. This means that the position of the binary point
is not fixed, it is floating, thereof the name floating point. The bit at position n to
the right of the binary point has the weight of 2−n [4].

For example, the number 1/2 in base 10 is written in base 2 floating point as:
1.00 . . . · 2−1, not as 0.10 . . . · 20

The advantage of floating point is the range of numbers that can be represented,
from small fractions with high precision up to very large numbers. In general,
floating point numbers are written as in (2.1) and the distribution of bits used for
the exponent and fraction parts for the most common types, single and double
precision, are shown in Table 2.1 and Table 2.2.

(−1)S · (1. F) · 2E. (2.1)

where: S = Sign bit, 1 for negative, 0 for positive
F = Fraction bits
E = Exponent bits

1Binary point is the base 2 equivalent of the decimal point in base 10.

5

6 Theory

TABLE 2.1: IEEE 754-1985, 32-bit single precision floating point.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Exponent Fraction

1 bit 8 bits 23 bits

TABLE 2.2: IEEE 754-1985, 64-bit double precision floating point.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

S Exponent Fraction

1 bit 11 bits 20 bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fraction continue

32 bits

Floating point notation offers great precision for a wide range of numbers, but
calculating with them is difficult, time consuming and requires special arithmetic
units. To avoid having to use specialized hardware for floating point calculations,
fixed point numbers will be used in this thesis.

2.2 Fixed Point Representation

In contrast to floating point, the position of the binary point in fixed point nota-
tion is, as the name suggests, fixed. The user must in advance decide how many
bits should be used for the integer part and for the fraction part. This is often
written on so called Qm.n-format, where m is the number of integer-bits and n
the number of fraction-bits. In this thesis, n will be 0, meaning all fixed point
numbers will be interpreted as integers.

The fixed point representation is much easier to work with since the numbers are
integers and much simpler hardware, such as regular adders, can be used. The
disadvantage with fixed point is the limited range of numbers that can be repre-
sented. Floating point numbers adapts when the numbers increase or decrease,
but with fixed point one is stuck with a predetermined range. [4]

If the most significant bit (MSB) were to be used for a sign bit and the remaining
bits for the magnitude, one would end up with both a positive and a negative
zero. To avoid having two definitions of the number zero, signed numbers are
often represented in two’s complement. In this representation, for an N-bit num-
ber the MSB has the weight of −2N−1 and the remaining k bits have a weight
of 2k, where 0 ≤ k < N−1. For example, the 4-bit integer −5 is written in two’s
complement as:

10112 = −23 + 21 + 20 = −810 + 210 + 110 = −510. (2.2)

Theory 7

With N bits, the minimum value of a number is −2N−1 and the maximum is
2N−1 − 1, meaning the range for a 16-bit number is:{

−215, 215−1
}
=
{
−32768, 32767

}
. (2.3)

A floating point number is converted into a fixed point number by multiplying
it with 2x, x ∈ Z+, and then rounded to the nearest integer. This introduces an
error, because of the limited resolution, called quantization error. The resolution
of a fixed point number is determined by the number of bits used, and can be
seen as what impact the least significant bit (LSB) has in proportion to the whole
number. For a large number, ±1 do not make much of a difference, but for a
small number it changes a lot. The difference in resolution when using various
number of bits are shown in Table 2.3. Quantization error is discussed further in
section 2.3.

TABLE 2.3: Comparison of fixed point resolutions. Different sizes
of fixed point numbers and their minimum and maximum value,
and the floating point equivalent of LSB.

Range

bits Minimum Maximum LSB resolution

4 -8 7 1.25 · 10−1

8 -128 127 7.81 · 10−3

12 -2048 2047 4.88 · 10−4

16 -32768 32767 3.05 · 10−5

2.3 Error Estimation and Bit Resolution

Error estimation is important because of the introduced error when converting
floating point numbers to fixed point numbers. Similarly, there will always be a
quantization error when converting an analog signal to a digital representation,
because of the limited resolution depending on the number of bits used. A de-
piction of an analog-to-digital conversion and digital-to-analog recreation of the
sampled signal is shown in Fig. 2.1.

An addition of two n-bit numbers can result in a (n+1)-bit sum and a multipli-
cation of two n-bit numbers can result in a (2·n)-bit product [5]. This has to be
taken into account. In order to not corrupt any data due to an arithmetic over-
flow, the size of the variable that stores the operands and the result needs to be
well adapted. Few bits require less number of registers and smaller arithmetic
units, which translates to less power usage and smaller chip area, but increases
the round-off error. With more bits, the error is smaller but requires more registers
and larger arithmetic units with larger chip area and higher power consumption

8 Theory

Time

M
ag

ni
tu

de

original signal
sampled signal
recreated signal
quantization error

Fig. 2.1: Quantization error. Difference between recreated signal
and original signal using 4-bit resolution, i.e. 24 = 16 discrete
digital values.

as a consequence. A trade-off is needed. The variance of the quantization er-
ror for different resolutions is shown in Fig. 2.2. As seen in Fig. 2.2, there is an
exponential decrease in the variance, i.e. less deviation from the correct value,
with more bits. At some point, the audio quality will be acceptable and adding
more bits may not result in noticeable better audio quality. Different number of
bits will be tested during the AGC algorithm development, but implementing in
hardware, verifying, and comparing all different sizes is not in the scope for this
thesis.

Matlab, which is used during development of the algorithm, supports both signed
and unsigned integers with sizes of 8, 16, 32, and 64 bits. In each block of the de-
sign, only the number of bits needed to represent each signals largest absolute
value is used. Every signal is studied to ensure that enough bits are used in every
step to hold the signals value. In the Matlab implementation, one is limited to the
aforementioned integer sizes but with a custom hardware design, any number of
bits can be used, resulting in a more optimized design.

Theory 9

2 4 6 8 10 12 14 16
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

Bits

V
ar

ia
nc

e

Fig. 2.2: Variance of quantization error for different bit resolutions.

2.4 dB

When measuring accurate noise levels, one tries to replicate the human auditory
perception by applying a weighting filter usually called an A-filter, see Fig. 2.3.
This is because the human ear has a different sensitivity for different frequencies.
A sound with a frequency of a few kilohertz is heard clearer than a low- or high
frequency sound. The measured noise is measured in dB(A) where the “(A)”
denotes that the noise level is weighted with an A-filter [1].

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

-50

-60

-70

-40

-30

-20

-10

0

10 100 1k 10k 20k

Fig. 2.3: Frequency response of A-weighting filter.

10 Theory

In this thesis, for simplicity the power of the sampled sound will not be weighted
with an A-filter. Instead, the power of a sample will be the squared absolute value
of what the analog to digital converter (ADC) samples and then transformed into
decibel scale. This calculation is not the true A-weighted power, and therefore the
lookup table (LUT) containing all the gain values has to have an offset to match
the actual noise level.

When talking about sound levels in decibel, one refers to how much more power
there is then the standard reference power, which is 10−12W. In general, decibel
is a measurement of how much one level differs from a specified reference level,
see (2.4). Since decibel is a logarithmic scale, a negative value means the mea-
sured level is lower then the reference, a positive value means its more powerful,
and zero means its at the same level as the reference value. The logarithmic scale
also means that an increase of about 3dB, which may not sound like much at first,
is actually a doubling in power: 10 · log10(2) = 3.01029 . . . ≈ 3.

LdB = 10 · log10

(
P1

P0

)
= 10 · log10(P1)− 10 · log10(P0). (2.4)

where: LdB = Sound level in decibel
P1 = Measured power
P0 = Reference power

During development of the algorithm, there will be needs for calculating the
power level from a given decibel level. When going back from a decibel value
to the corresponding power level, assuming the reference power is zero, the fol-
lowing rewriting of (2.4) is made:

10 · log10(P) = LdB

log10(P) =
LdB
10

10log10(P) = 10
LdB
10

P = 10
LdB
10 . (2.5)

Chapter3
AGC Algorithm Development

This chapter covers the development of the AGC algorithm using Matlab. An
overview of the algorithm design is shown in Fig. 3.1. First an ADC samples
the audio from a microphone and converts the analog signal to a binary fixed
point number, see section 3.1. The sample then passes two filters described in
section 3.2 before reaching the AGC (sections 3.3 and 3.4). When the sample is
processed, and damped if necessary, it is converted back to an analog signal by a
digital to analog converter (DAC).

A low latency for processing the audio samples is necessary. If there is a delay,
even a small one, it will be annoying for the user. By processing one sample at
the time, i.e. fetching one sample from the ADC, calculate and apply appropriate
gain and then output the sample to the DAC before the ADC samples again. This
means that the algorithm has to be faster then the sampling frequency of the
ADC.

One important thing to remember during development is that everything has to
work in hardware afterwards, meaning built-in Matlab functions cannot be used.

3.1 Fixed Point Conversion

The input samples during Matlab development comes from .wav-files which stores
audio-samples in a range from -1 to 1, represented in floating point numbers. In
the real world the samples are analog audio signals with infinite resolution. To
make the calculations easier and faster, i.e. more efficient, the samples are trans-
formed to fixed point two’s complement integers.

Different number of bits, up to 16 bits, for the fixed point conversions are evalu-
ated. The floating point samples are multiplied with 2bits−1 and then typecasted
to a signed integer. In the end, there is no time to try out several different sizes
in hardware. To not sacrifice too much on audio quality, 16 bits was chosen since
this is the maximum resolution that the ADC on the FPGA can handle.

11

12 AGC Algorithm Development

Microphone

Speaker

High pass
lter

Equalizer
lter

Gain LUT

ADC

DAC
AGC

T F

Fig. 3.1: Overview of algorithm implementation.

3.2 Filters

In [2] it was found that the most suitable filters would be infinite impulse re-
sponse (IIR) filters instead of finite impulse response (FIR) filters. The IIR filters
uses fewer components and have a shorter delay then a FIR filter with compara-
ble frequency response, therefore IIR filters are more efficient. However, depend-
ing on the pole-placement of the filter coefficients, IIR filters can be unstable since
the output is fed back. The filters used in this thesis are found to be stable.

3.2.1 High Pass Filter

The first filter is a high pass filter used for eliminating low frequency noise created
for example by the wind. The frequency response of this filter is shown in Fig. 3.2.
It is implemented in Direct-Form-I, Fig. 3.3, using (3.2).

The general equation for a first order IIR-filter is:

a0y(n) + a1y(n− 1) = b0x(n) + b1x(n− 1). (3.1)

where: a0, a1, b0, b1 = filter coefficients, defined in [2]
x(n) = current input sample
x(n− 1) = previous input sample
y(n) = current output sample
y(n− 1) = previous output sample

AGC Algorithm Development 13

0 100 200 300 400 500 600 700 800 900 1000

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Fig. 3.2: Frequency response for high pass filter.

By dividing all coefficients in (3.1) with a0 and rearranging we get:

y(n) = −a′1y(n− 1) + b′0x(n) + b′1x(n− 1). (3.2)

where: a′1 =−0.9685
b′0 = 0.9842
b′1 =−0.9842

D D

Fig. 3.3: First order IIR filter in Direct-Form-I.

Since the algorithm operates using fixed point arithmetic, the filter coefficients
also has to be transformed into fixed point numbers. This is done by multiplying
the coefficients with 215 = 32768, i.e. 16-bit fixed point. This multiplication will
make the sample 32768 times larger after passing the filter, so the sample needs
to be divided with the same amount after the filter.

This gives the fixed point coefficients:

a′1 = −31736
b′0 = 32250
b′1 = −32250

14 AGC Algorithm Development

3.2.2 Equalizer Filter

The equalizer filter limits the samples to a bandwidth of about 4kHz. The fre-
quency response of this filter is shown in Fig. 3.4. It is implemented in Direct-
Form-I, Fig. 3.5, using (3.4).

0 1 2 3 4

0

10

20

30

40

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Fig. 3.4: Frequency response for equalizer filter.

D D

D D

Fig. 3.5: Second order IIR filter in Direct-Form-I.

The general equation for a second order IIR-filter is:

a0y(n) + a1y(n− 1) + a2y(n− 2) = b0x(n) + b1x(n− 1) + b2x(n− 2). (3.3)

AGC Algorithm Development 15

By dividing all coefficients with a0 and rearranging we get:

y(n) = −a′1y(n− 1)− a′2y(n− 2) + b′0x(n) + b′1x(n− 1) + b′2x(n− 2). (3.4)

where: a′1 = −0.6108
a′2 = −0.2947
b′0 = 108.37
b′1 = −0.6108
b′2 = −107.66

Converting to fixed point gives the filter coefficients:

a′1 = − 20015
a′2 = − 9657
b′0 = 3551068
b′1 = − 20015
b′2 = −3527803

The equalizer filter with these filter coefficients amplifies the sample and in order
to get an accurate power estimation, and not distort the sound, some dampen-
ing is needed. This is accomplished by dividing the sample after being filtered.
However, division is a very complicated operation unless one can divide by two
to the power of a positive integer, i.e. sample/2bit ⇒ shifting right bit number of
times. The step response in Fig. 3.6 shows that the amplification caused by the
filter is initially between 108 and 174 before steadily decreasing. The most suit-
able dampening factor will therefore be 27 = 128, since 26 = 64 and 28 = 256 are
either too small or too big. Seven rightshifts is not a perfect dampening, but the
small difference in amplification afterwards will be acceptable.

16 AGC Algorithm Development

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

n (samples)

 A
m

pl
itu

de

Fig. 3.6: Step response for the equalizer filter.

3.3 Signal Power Estimation

To limit the output to a harmless level, the power of the samples has to be esti-
mated. If the output sound level is too high the hearing protectors will not fulfill
their purpose and the users hearing might be damage. In [2] they used 82dB as
the threshold limit, so 82dB will also be used in this thesis.

The constants α and β used from here on are parameters that determines the
attack and release time respectively of the system, in other words how fast the
system reacts to a change of intensity at the input. The aim is to have an attack
time of less than 1ms and the release time should be around 300ms.

First, the power of a sample x(n) is calculated by squaring its absolute value,
i.e. |x(n)|2. A fraction of the sample’s power is then weighted with the time
constant α against a part of the weighted power of the previous sample, as in (3.5),

Pw_fast(n) = (1− α)Pw_fast(n−1) + α · |x(n)|2. (3.5)

The time constant α is used when the system needs to react fast to a change in
power, typically when the power is increasing. The weighted power is stored in
a signal called Pw_fast, where the index denotes the fast reaction time.

The actual power that will be used when determining the gain factor for the AGC
is a signal called Pweighted. In case the power calculated in (3.5), Pw_fast(n), is
larger than the previously used power, Pweighted(n− 1), Pweighted(n) is assigned
the value of Pw_fast(n). Otherwise, the previous weighted power, Pweighted(n− 1)

AGC Algorithm Development 17

is assigned to Pweighted(n). See (3.6). This is to ensure that the attenuation in the
AGC is sufficient, i.e. the maximum calculated power has to be used.

Pweighted(n) = max
(

Pw_fast(n), Pweighted(n− 1)
)
. (3.6)

In the case of decreasing weighted input power, Pw_fast, the current weighted
power, Pweighted(n), will be weighted against the time constant β, see (3.7), in
order for the estimated power to descend slowly. If the power were to decrease
too fast, the outputted audio would stutter during attenuation.

Pw_fast(n) ≤ Pw_fast(n− 1)⇒ Pweighted(n) = (1− β)Pweighted(n). (3.7)

When the weighted power to be used when determining the dampening is calcu-
lated, it is converted to its nearest decibel value. This rounding makes the lookup
process easier since a smaller table is needed. Decibel is a ratio between a power
value P1 and another power value P0, with P0 as the reference, as defined in (2.4).
The estimated weighted power of the sample Pweighted(n) measured in dB is cal-
culated as in (3.8) with 0dB as reference.

Ln = 10 · log10

(
Pweighted(n)

1

)
= 10 · log10

(
Pweighted(n)

)
. (3.8)

3.4 AGC and Gain Lookup Table

The AGC uses the weighted power of the current sample to find an appropriate
gain in order to limit the output to a harmless noise level, a maximum of 82dB.
If the sample’s power is below 82dB, the gain applied is 1. Instead of evaluating
a gain-function for each sample, a lookup table (LUT) with precalculated func-
tion results for each power level is more efficient. When a gain is found, it is
multiplied with the input sample and the product makes the output sample.

The ideal values of the LUT are calculated as in (3.9), with a gain of 1 for any sam-
ple below the power limit, and an appropriate gain for a more powerful sample.
See Fig. 3.7.

Pin · G = Pout ≤ 82dB⇒ G =

{
1, Pin ≤ 82dB;
82dB
Pin

, Pin > 82dB; (3.9)

where: G = gain
Pin = power of input sample in dB
Pout = power of output sample in dB

18 AGC Algorithm Development

One thing to remember is that the power of input samples are for convenience
measured in decibel, but the sample is still a fixed point number in linear scale.
This means that the gain must be calculated as in (3.10), i.e. using what was
derived in (2.5), to have the correct value for samples over 82dB.

G =
1082/10

10Pin/10 (3.10)

The ideal gain curve has a sharp edge where the gain starts to apply will have a
bad effect on the sound quality. A smoother transition is desirable. Therefore, the
values in the LUT near 82dB will be replaced with the functionvalues of a poly-
nomial. This will make the transition at 82dB smoother and the sound quality
will not be affected as much.

As previously discussed in section 2.4, Pin in (3.9) is not the true noise level since
it is not A-weighted. During measurements in the anechoic chamber, section 8.2,
it was discovered that an estimated noise level of 46dB would correspond to
82dB(A), resulting in the offset from 82dB downto 46dB seen in Fig. 3.7.

AGC Algorithm Development 19

0 20 40 60 80 100
0

10

20

30

40

50

P
in

(dB)

P
o

u
t
(d

B
)

Smooth curve

Ideal curve

Fig. 3.7: Gain Lookup Table. Pout is a function of Pin as in (3.11).

Pout = 10 · log10

(
10Pin/10

)
· LUT(Pin). (3.11)

where: Pin = Power before gain is applied
Pout = Power when gain is applied
LUT = Lookup table, returns gain for corresponding Pin

20 AGC Algorithm Development

Chapter4
Initial Hardware Implementation

This chapter will cover the hardware implementation of the algorithm that was
developed in Matlab. The Matlab code is written to be as easy as possible to
translate into VHDL.

The filters and the AGC uses finite state machines (FSMs) connected together
for a synchronized flow of the samples through the circuit. The blocks are syn-
chronous sequential circuit that performs a part of the calculations in different
states each clock cycle. An advantage of hardware implementation is that sev-
eral calculations can be done in parallel. In total it takes 15 clock cycles for this
implementation of the AGC algorithm to process one sample.

To illustrate the signal connections in a hardware block, algorithmic state machine
with data path (ASMD) are used. In [5], the notation “←” is used for a register
transfer (RT) operation, i.e. when a signal is updated on the next clock cycle, and
“⇐” is used for regular signal assignment, i.e. when a signal is set immediately.
For an RT operation, the assigned signal is the input to a register. For example, the
operation r1← r2, where one want to store the value of register r2 in register r1,
is implemented as r1_next⇐ r2 and on the next clock event r1⇐ r1_next. In
other words, r2 is set as the input to register r1. At the next clock cycle, r1 will
hold the same value as r2.

4.1 Filters

4.1.1 High Pass Filter

The high pass filter is a first order IIR filter implemented in Direct-Form-I, see
Fig. 3.3, using the FSM in Fig. 4.1 and the ASMD in Fig. 4.2. The FSM starts in
the HOLD state and waits for the signal istart to be asserted. When istart goes high,
the input sample is latched in and the FSM moves to the CALC state. In CALC,
the current input sample, previous input sample, and previous output sample are
multiplied with the corresponding filter coefficients and then added/subtracted,

21

22 Initial Hardware Implementation

HOLDinit CALC SEND

istart = 0

istart = 1

Fig. 4.1: FSM for controlling the high pass filter and the equalizer
filter.

F

T

HOLD

CALC

SEND

Fig. 4.2: ASMD for the high pass filter.

Initial Hardware Implementation 23

as in (3.2), to make the current output sample. The current input sample is also
saved as the previous input sample, to be used for the next filter calculation. The
state is then shifted to the SEND state, where the output sample is rightshifted
15 times, to compensate for the fixed point filter coefficients, and then sent to
the equalizer filter. The outputted sample is also saved as the previous output
sample, to be used for the next filter calculation. The odone signal is asserted for
one clock cycle, to let the equalizer filter’s FSM know when to start, before the
FSM shifts back to the HOLD state.

4.1.2 Equalizer Filter

F

T

HOLD

CALC

SEND

Fig. 4.3: ASMD for the equalizer filter.

The equalizer filter is a second order IIR filter implemented in Direct-Form-I, see
Fig. 3.5, using the FSM in Fig. 4.1 and ASMD in Fig. 4.3. The FSM starts in the
HOLD state and waits for the signal istart to be asserted. The istart signal is con-
nected directly to the odone signal of the high pass filter. When istart goes high,
the input sample is latched in and the FSM moves to the CALC state. In CALC,
the current input sample, the two previous input samples, and the two previous
output samples are multiplied with the corresponding filter coefficients and then
added/subtracted, as in (3.4), to make the current output sample. The current
input sample is also saved as the previous input sample, and the previous input-
and output samples are saved as the before last input- and output samples, to be
used for the next filter calculation. The state is then shifted to the SEND state,
where the output sample is rightshifted 15 times, to compensate for the fixed
point filter coefficients, and saved as the previous output sample, to be used for
the next filter calculation. The output sample is also rightshifted an additional

24 Initial Hardware Implementation

7 times, to dampen the sample due to the amplification caused by the filter, be-
fore it is sent to the AGC. The signal odone is asserted for one clock cycle, to let the
AGC’s FSM know when to start, before the FSM shifts back to the HOLD state.

4.2 AGC

HOLDinit P_CURR P_W1 P_W2

P_W3

P_dBF._GAINGAIN

SEND

istart=0

istart=1

lutdelay=1

lutdelay=0

Fig. 4.4: FSM for controlling the AGC. The state name F._GAIN
is an abbreviation for FETCH_GAIN.

The AGC is implemented using the FSM in Fig. 4.4 and ASMD in Fig. 4.5. The
FSM starts in the HOLD state and waits for the signal istart to be asserted. The istart
signal is connected directly to the odone signal of the equalizer filter. When istart
goes high, the input sample is latched in and the FSM moves to the P_CURR state.
In P_CURR the absolute value of the sample is squared, to calculate the power
of that sample, Pin. Then the state is shifted to P_W1, where Pin is weighted
with the time constant α against the weighted power of the previous sample,
Pw_fast_prev. The FSM then shifts state to P_W2 where the maximum value of
Pw_fast and Pweighted_prev is stored as the current Pweighted. Note that Pw_fast is
rightshifted 15 times to compensate for the fixed point representation of α. In the
next state, P_W3, Pweighted is scaled down by the time constant (1− β) if the sam-
ple’s power is decreasing. In case of the weighting with β, Pweighted_next is right-
shifted 15 times before assigned to Pweighted. When the final value for Pweighted is
determined, the FSM shifts state to P_dB where Pweighted is converted to decibel

Initial Hardware Implementation 25

F

T

HOLD

T

F

P_CURR

P_dB

FETCH_GAIN

GAIN

SEND

P_W1

P_W2

P_W3

TF

FT

Fig. 4.5: ASMD for the AGC.

26 Initial Hardware Implementation

scale. After that, the state is shifted to FETCH_GAIN, where the decibel value is
sent to the Gain LUT and an enable signal for the LUT is sent. The LUT has one
clock cycle read delay, therefore a one-bit counter, lutdelay, is used to stall the FSM
for one clock cycle before shifting to state GAIN. In GAIN, the fetched gain from
the LUT is multiplied with the input sample before shifting state to SEND. In
SEND the product from the multiplication is latched out after being rightshifted
15 times, to compensate for the applied gain’s fixed point representation. Pw_fast
and Pweighted are store in Pw_fast_prev and Pweighted_prev respectively, to be available
when the next sample is processed. After that the FSM shifts back to the HOLD
state.

There is no hardware friendly method of calculating logarithms, which is needed
when converting the sample’s power into decibel scale, as in (3.8). An easy
workaround for this is to use a number of comparators, starting with checking
if the power of the sample is at its highest possible value. If it is that high, then
the corresponding decibel-value is assigned to the target register. Otherwise, the
power will be compared to the next corresponding decibel value, and so on. The
maximum value for the power of a sample is 232−1 − 1 = 2 147 483 647, since it
is stored in a 32-bit signed number. This corresponds to 10 · log10(2

32−1 − 1) ≈
93.32dB. To include round-off, a sample-power that is larger then the correspond-
ing value of 92.5dB (1 778 279 410) will be the first value to be compared to, result-
ing in 93dB if larger. If it is smaller then 92.5dB but larger then 91.5, the power
of the sample is rounded to 92dB. See the pseudo code in Listing 4.1. There is
no point of comparing all the way down to 0dB since at a certain power level,
depending on the LUT, the gain for this level and any below this should be 1.

Listing 4.1: Pseudo code for decibel conversion.

if P_sample > 1778279410 then // >92.5dB
P_sample_dB <= 93;

else if P_sample > 1412537545 then // >91.5dB
P_sample_dB <= 92;
.
.
.

else if P_sample > 14125 then // >41.5dB
P_sample_dB <= 42;
.
.
.

else if P_sample > 2 then // >3dB
P_sample_dB <= 3;

else
P_sample_dB <= 0;

Initial Hardware Implementation 27

4.3 Gain Lookup Table

The lookup table (LUT) is a read only memory (ROM) with a gain corresponding
to the power of a sample measured in dB. The functionality of the LUT is shown
in Fig. 4.6. It is divided into two parts running in parallel, one for finding the
largest decibel level, and one doing the lookup using the largest decibel level. The
LUT has two enable signals and two decibel level inputs, one from each stereo
channel (left and right). When any of the two enable signals are asserted, both the
decibel level inputs are compared to determine which is the largest. The channel
with the largest power will determine the gain for both channels. This equal gain
factor for both left and right channel will create a natural difference in noise level
for both ears, when still keeping the ability for the user to locate the direction of
the noise source. The maximum power is stored in a register which is used in the
lookup process. The corresponding gain for the maximum power is returned to
both the left and right channel simultaneously.

The tables are generated as floating point numbers in Matlab, as described in
section 3.4, and converted into 16-bit fixed point numbers.

F

T

T F

Fig. 4.6: Algorithmic flowchart of signals in the gain lookup table.
To the left is the updating the maximum noise level and to the
right is the looking up and sending the corresponding gain.

4.4 Hardware Resources

To find out how many hardware components that are required to realize the ini-
tial AGC implementation in hardware, the behavioral model was run through
the Synopsis Design Compiler synthesis tool. The resources used by the synthesis
tool, with an estimated chip area, is listed in Table 4.1. By studying the behav-
ioral model, it was expected that a total of 1081 registers, 10 adders, 6 subtracters,
26 multipliers, and 117 comparators would be utilized. The difference in regis-
ter count is because some signals are trimmed down by the synthesis tool since

28 Initial Hardware Implementation

not all their bits are used. The full length is however needed in the behavioral
model to have the correct size of the output from a multiplier for instance. In the
synthesized netlist, these registers are not needed since they do not connect to
anything.

TABLE 4.1: Hardware resources used in initial design. The Stereo
AGC consists of two identical designs. By dividing these re-
sources with 2, the resources for a single AGC implementation
is given.

Number of resources used

Resource Stereo AGC Gain LUT Total

Register 930 23 953
Adder 10 — 10
Subtracter 6 — 6
Multiplier 26 — 26
Comparator 116 1 117

Estimated area: 0.0578mm2

Chapter5
Optimizing Hardware Implementation

This chapter covers the optimizations to the design that are made to make the
implementation of the algorithm more efficient in terms of circuit area and power
dissipation.

5.1 Resource Sharing

The initial implementation needs several adders and multipliers, see Table 4.1,
and multipliers in particular can be very large in terms of area. The idea of re-
source sharing is that instead of having many parallel adders and multipliers, by
using time-multiplexing, one adder and one multiplier can be used repeatedly
in separate states to perform the same calculations [5]. For example, the high
pass filter in section 4.1.1 uses three multipliers and two adders in parallel to fil-
ter a sample. By using one multiplier and schedule the multiplications in three
different time-slots (states) and accumulating the products using one adder, less
resources are needed. To achieve this resource sharing, some additional regis-
ters (to store intermediate values) and multiplexers (MUXs) (to route inputs and
outputs to/from the arithmetic units) are needed. However, multipliers used for
multiplying an input with a constant, such as filter coefficients, are optimized by
the synthesis tool and are therefore not as large as a general multiplier with two
inputs. For example, a multiplication with 2n, n ∈ Z+ is optimized as a leftshift
n times. To achieve a multiplication not equal to a power of two, shifting can be
combined with addition or subtraction, like:

x · 5 = x � 2 + x = 4x + x = 5x. (5.1)

In fact, 22 out of the 26 multipliers in Table 4.1 are constant multipliers and re-
placing these with one general multiplier will probably not reduce the total area.
The remaining four general multipliers can on the other hand be beneficial to
combine into one, since they are quite large (16× 16 bits each). Since resource
sharing will be implemented for the general multipliers, the constant multipliers
might as well be included.

29

30 Optimizing Hardware Implementation

The number of adders and multipliers will decrease but the number of registers
will increase. There is also a less parallel execution of the algorithm and therefore
the execution-time will increase. Instead of 15 clock cycles, this resource sharing
algorithm takes 38 clock cycles to process one sample. In order to minimize the
usage of input- and output (I/O) pads for the ASIC, the samples will also be read
and outputted in serial rather than parallel. More on the I/O pads in section 7.1.2.
This serial read and write adds an additional 32 clock cycles to the algorithm for
a total of 70 clock cycles. As always there is a trade-off between performance and
size.

5.1.1 Resource Sharing Algorithm

With only one adder and one multiplier per audio channel plus the serial read and
write of samples, the FSM has to be redesigned. To share as much resources as
possible, the filters and AGC are joined together in one block instead of dividing
the algorithm into different blocks. The overall behavioral is still the same, it
just takes longer time since fewer arithmetic units are available, thus less parallel
calculations are done.

When only having one adder and one multiplier to do all calculations, they have
to be large enough to accommodate for all possible inputs. By tracing all signal
paths and opting for a worst case scenario, i.e. maximum amplitude of audio
samples, it is found that one input to the multiplier has to be 32 bits and the other
input 23 bits. This is the largest two inputs to the multiplier that are routed at
the same time. However, these 23 bits are needed for representing the large filter
coefficients for the equalizer filter. Without this filter, 16 bits would be enough
to represent the remaining signals. Simulations in Matlab shows no noticeable
difference when reducing the size of the filter coefficients by scaling them with a
factor 28 instead of 215 during the conversion to fixed point numbers. This gives
the following filter coefficients for the equalizer filter in (3.4):

a′1 = − 156
a′2 = − 75
b′0 = 27742
b′1 = − 156
b′2 = −27561.

These coefficients can be represented using 16 bits, resulting in a 32× 16-bit mul-
tiplier with a 48-bit output. The high pass filter’s coefficient can already be rep-
resented using 16 bits and therefore no altering of them are needed. Using the
same methodology, following all signal paths, the largest two inputs to an adder
at the same time are two 48-bit numbers. This occurs when summing the outputs
from the adder and multiplier together. If a signal for multiplication or addition
is smaller (fewer bits) then the corresponding input it is routed to, the signal is
sign-extended, i.e. padded with its MSB, to the correct size.

Optimizing Hardware Implementation 31

The inputs for the adder and multiplier are registers called addsrc1,2 and multsrc1,2,
and the outputs are registers called addout and multout respectively in the ASMD
in Fig. 5.2 and 5.3. They are routed using multiplexers that are controlled depend-
ing on which state the FSM, Fig. 5.1, is in. If the product from the the multiplier is
used in the next state, there is a one clock cycle delay inserted to allow the multout
register to be updated.

As in the previous design, the FSM starts in the HOLD state, waiting for istart
to be asserted before moving to state LATCH_IN_SAMPLE where the sample is
read in serial, starting with the MSB. The 4-bit counter inoutcnt is used to in-
dex each bit to its correct register. When the counter reaches 15, all bits of the
sample are read and inoutcnt should stay at 15. After that the state is shifted
to HP_CALC1, where the first multiplication with one of the filter coefficients
are made. The output from the multiplier is one of the inputs for the adder
in the next state, therefore there is a one clock cycle delay before going to the
HP_CALC2 state. In HP_CALC2, multout is assigned as one of the inputs for the
adder. The other input is zero, since this is the first accumulation of multiplica-
tions for the filter. The multiplier also do the next multiplication for the filter, then
the state shifts to HP_CALC3 where the output from the adder and multiplier are
summed. This pattern repeats until both of the filters are done. In EQ_CALC1
and FINISH_CALC, addout is rightshifted to compensate for the fixed point filter
coefficients, and also saved as the previous samples for the next time a sample
is processed. In FINISH_CALC the previous samples are also saved as the before
last samples, and the current output sample is rightshifted 7 additional times to
dampen most of the amplification caused by the equalizer filter.

With the filters done, the FSM shifts to the P_CURR state where the absolute
value of the current sample is squared, to calculate the power of the sample, be-
fore moving to state P_W1. The weighted power calculations are performed in the
same way as the filters, multiplying and accumulating, and finishes in the P_W4
state where addout is rightshifted 15 times, to compensate for the fixed point time
constant α, and assigned to Pw_fast. In case Pweighted is to be weighted with β in a
later state, the multiplication is started here to avoid delays and since the multi-
plier is free. The decision box comparing

(
addout � 15

)
and Pweighted_prev deter-

mines the next state and which signal to be routed to multsrc1. Either P_W_INCR
with multsrc1 set to addout � 15 if addout � 15 is the largest, or P_W_DCR1 with
multsrc1 set to Pweighted_prev if Pweighted_prev is the largest. In both P_W_INCR and
P_W_DCR1, Pweighted is assigned the largest value in the previous decision box.
The next decision box, comparing Pw_fast_prev and Pw_fast, determines if Pweighted
should be weighted against β or not. If so, the next state is P_W_DCR2, otherwise
P_dB. Regardless of which of the two state the FSM is in, the multiplication for the
weighting with β is already performed. If the next state is P_W_DCR2, Pweighted
is assigned to multout after 15 rightshifts, to compensate for the fixed point time
constant β. After that, the FSM shifts state to P_dB. Here the final weighted
power, Pweighted, is converted to decibel scale using comparators. The decibel
value is stored in a register called PdB. The state is then shifted to FETCH_GAIN
where PdB and the enable signal (ogain_fetch) is sent to the gain LUT. There is a
one clock cycle delay here, to wait for the LUT to return the gain, before the

32 Optimizing Hardware Implementation

FSM moves to the GAIN state. In GAIN, the fetched gain from the LUT is multi-
plied with the current sample. The FSM is stalled one clock cycle before shifting
to LATCH_OUT_SAMPLE, since the product is needed in that state. When in
LATCH_OUT_SAMPLE, the output from the multiplier is rightshifted 15 times,
to compensate for the fixed point gain, and then outputted in serial, starting
with the MSB. In this case, inoutcnt starts at 15 and decreases in order to avoid
glitches on the output pin when indexing multout for latching out the sample. A
subtraction in the index (like in LATCH_IN_SAMPLE) would introducing a short
delay, causing the output signal to be pulled low for a very short time between
sending high signals. These glitches was found during post-layout-simulations
and was after that fixed by reversing inoutcnt in the algorithm. At the first itera-
tion, Pweighted_prev and Pw_fast_prev are set to Pweighted and Pw_fast respectively. At
the same time the LSB of the output sample is sent, the odone signal is asserted,
inoutcnt_next is set to zero, and the next state is set to HOLD again.

5.1.2 Results of Resource Sharing

The major hardware components used with the resource sharing implementation,
and the difference compared to the initial implementation, is listed in Table 5.1.
To make a good comparison, the same timing constrains as in the initial design
are used. The area with resource sharing is smaller, but were at first expected to
be a lot smaller, due to the number of multipliers that were removed. However
as previously discussed, most of the multipliers, 22 out of 26, are constant multi-
pliers. For example, in the filters the samples are multiplied with constant filter
coefficients and in the AGC the powers are weighted against fixed time constants.
These multipliers are optimized to calculate one input against a constant value,
thus no need for a complete multiplier that takes up a lot more area.

Studying the behavioral model, it was expected that the synthesis tool would
utilize 1275 registers, 2 adders, 2 subtracters, 2 multipliers, and 119 comparators.
The only difference between the resources used by the synthesis tool and what
was expected is two comparators. This is probably the result of one comparator
in each AGC being used twcie. When deciding the next state in both state P_INCR
and P_DCR1, see Fig. 5.1, the same comparison is done, meaning there is no need
to have two identical comparators in two different states.

Optimizing Hardware Implementation 33

TABLE 5.1: Hardware resources used in resource sharing design.
The Stereo AGC consists of two identical designs. By dividing
these resources with 2, the resources for a single AGC imple-
mentation is given. Diff. from Table 4.1 shows the differences
when resources sharing is implemented.

Number of resources used Diff. from

Resource Stereo AGC Gain LUT Total Table 4.1

Register 1252 23 1275 +322
Adder 2 — 2 -8
Subtracter 2 — 2 -4
Multiplier 2 — 2 -24
Comparator 116 1 117 0

Estimated area: 0.0414mm2 -28%

34 Optimizing Hardware Implementation

HOLDinit L._IN HP1 HP2 HP3

HP4

EQ1

EQ2

EQ3

EQ4

EQ5

EQ6F._CALCP_CURRP_W1P_W2

P_W3

P_W4

P_INCR

P_DCR1

P_DCR2

P_dB

F._GAIN

GAIN

L._OUT

Fig. 5.1: FSM for controlling the resource sharing AGC. γ is a four-
bit counter (0–15) for reading and writing serial data. Pw...
denotes the largest power when branching in state P_W4,
P_DCR1, and P_INCR. See Table 5.2 for a short description
of each state.

Optimizing Hardware Implementation 35

TABLE 5.2: Description of AGC’s FSM states from Fig. 5.1.

State State name Description

HOLD Hold Waiting for start signal

L._IN Latch_in_sample Read input sample, 16 bits serial data

HP1 HP_calc1

Calculations for the high pass filter
HP2 HP_calc2
HP3 HP_calc3
HP4 HP_calc4

EQ1 EQ_calc1

Calculations for the equalizer filter

EQ2 EQ_calc2
EQ3 EQ_calc3
EQ4 EQ_calc4
EQ5 EQ_calc5
EQ6 EQ_calc6

F._CALC Finish_calc Save current sample as prev. sample

P_CURR P_current Calculate power of current sample

P_W1 P_w1

Weighting, fast increasing power
P_W2 P_w2
P_W3 P_w3
P_W4 P_w4

P_INCR P_increase Weighting, increasing power

P_DCR1 P_decrease1
Weighting, decreasing powerP_DCR2 P_decrease2

P_dB P_dB Transform weighted power to decibel

F._GAIN Fetch_gain Fetch gain from LUT

GAIN Gain Multiply current sample with gain

L._OUT Latch_out_sample Write output sample, 16 bits serial data

36 Optimizing Hardware Implementation

F

T

HOLD

HP_CALC1

T

F

LATCH_IN_SAMPLE

D

HP_CALC2

D

HP_CALC3

D

HP_CALC4

D

EQ_CALC1

D

EQ_CALC2

D

EQ_CALC3

D

EQ_CALC4

D

EQ_CALC5

D

EQ_CALC6

D

FINISH_CALC

P_CURR

D

P_W1LATCH_OUT_SAMPLE

Fig. 5.2: ASMD for the AGC with resource sharing. Part 1 of 2.
D denotes a delay of one clock cycle.

Optimizing Hardware Implementation 37

GAIN

P_W2

P_W3

P_W1

LATCH_OUT_SAMPLE

P_W_INCR P_W_DCR1

F

T

P_CURR

P_W4

D

P_dB

FETCH_GAIN

D

HOLD

F

FT

T

D

D

D

P_W_DCR2

TF
F T

D

Fig. 5.3: ASMD for the AGC with resource sharing. Part 2 of 2.
D denotes a delay of one clock cycle.

38 Optimizing Hardware Implementation

5.2 Scaling Supply Voltage

The power consumption of an integrated circuit consist of the dynamic power
and static power, see (5.2). Dynamic power is a result of charging or discharging
the gate-capacitance when the CMOS switches from 0→ 1 and 1→ 0, along with
the short-circuit current during switching. The static power comes from leakage
current when the CMOS is not switching. [6]

Ptotal = Pdynamic + Pstatic (5.2)

where the dynamic power is relative to the clock frequency and supply voltage:

Pdynamic ∝ fclk ·V2
DD (5.3)

and the static power is the result of the leakage current when the transistors are
not switching, i.e.,

Pstatic = Ileakage ·VDD. (5.4)

As seen in (5.3), the supply voltage has a quadratic effect on the dynamic power.
By lowering VDD by half, the dynamic power will go down to one-forth. This is
with the assumption that the clock frequency stays the same. Usually, a slower
clock is needed since the transistors operates slower when powered with a lower
voltage. With a slower clock, the power savings are even bigger due to the pro-
portional relation between dynamic power and switching frequency.

To not lose too much performance when scaling down the supply voltage, the
gate threshold voltage (VT) can be lowered in order for the transistor to operate
quicker. However, a lower threshold voltage introduces more leakage current.
Three different sets of libraries, with different VT, will be used when scaling the
supply voltage in order to decrease the power consumption:

LPHVT Low power cell library with high threshold voltage transistors. Has a
slow operating speed and low leakage.

LPSVT Low power cell library with standard threshold voltage transistors. Has
a medium operating speed and medium leakage. SVT is about ten times
faster then HVT, with approximately ten times the leakage.

LPLVT Low power cell library with low threshold voltage transistors. Has a fast
operating speed and high leakage. LVT is about ten times faster then SVT,
with approximately ten times the leakage.

It is desirable to run the circuit with the fastest clock frequency possible to mini-
mize the leakage current. The clock frequency is limited by the critical path in the
design. Some components are faster then others, for example adders are faster
then multipliers, but with a well balanced design, as many as possible of the
transistors in the design will be done switching at the same time. This results in a
proportionally lower leakage power compared to the dynamic power since fewer

Optimizing Hardware Implementation 39

transistors are not switching. With a clock frequency that is too slow, all compo-
nents in the design will be done with time to spare before the next transition of
the clock, resulting in a circuit that leaks unnecessary current.

The problem when scaling the supply voltage is that at a certain level, the transis-
tors will switch so slowly that the leakage power increases more than the dynamic
power decreases. It is therefore desirable to run the circuit at the voltage level of
this sweet spot, if the timing constrains are met of course. Using the aforemen-
tioned cell libraries, several supply voltages will be used and compared in order
to find the most power efficient implementation. It might be possible that switch-
ing to a faster library with more leakage could lower the total power dissipation
thanks to the ability to perform at lower voltages.

40 Optimizing Hardware Implementation

Chapter6
Hardware Implementation on FPGA

In addition to the filters and AGC algorithm, an interface for the FPGA’s audio
codec is also needed to run the design on the FPGA. This chapter will cover the
controller and the other additional components necessary for the algorithm to be
fully functional, and to be able to connect the hearing protectors.

6.1 FPGA Board

For testing and verification of the hardware, a Xilinx XUPV5-LX110T Evaluation
Platform from Digilent with a Virtex 5 FPGA from Xilinx is used, see Fig. 6.1. It
has an on-board AC‘97 codec, AD1981B from Analog Devices, with peripheral
jacks for microphone input, line in, line out, headphone, and SPDIF digital audio
output, see Fig. 6.2. The only jacks to be used in this thesis are the microphone and
headphone jacks, both with a stereo 3.5mm female connectors. The microphone
jack has a 2.25V biasing voltage1 , and the headphone jack is driven by a 50mW
amplifier. The AD1981B chip contains a 16-bit ADC and a 20-bit DAC. [7] [8]

Apart from hardware simulations, all the changes during development of the
hardware design needs to be tested on physical hardware to verify its function-
ality. This is important since it is difficult to write simulation-testbenches that
covers every aspect of the design. If the design do not work on an FPGA, it is not
going to work on an ASIC.

1Can also be configured with 3.7V biasing voltage.

41

42 Hardware Implementation on FPGA

Fig. 6.1: Xilinx XUPV5-LX110T Evaluation Platform with Xilinx
Virtex 5 XC5VLX110T FPGA. [9]

MicrophoneHeadphone

Codec

Fig. 6.2: Codec, headphone jack and microphone jack marked out
on the FPGA.

Hardware Implementation on FPGA 43

6.2 AC‘97 Controller

The FPGA used for verification has an AC’97 codec, an AD1981B chip, for audio
processing. This is a codec developed by Intel and was previously the standard
audio codec to be used on for instance a computer’s motherboard. The AD1981B
chip has a 16-bit ADC and a 20-bit DAC2, both with a sample rate of up to 48kHz.

In order to interface with the AC‘97 codec, a controller is needed. A design for a
controller to interface the LM4550 AC‘97 codec on an ATLYS Spartan 6 FPGA was
found at [10]. This is another AC‘97 codec but the link interface is the same, so it
will work as the backbone of the implementation needed in this thesis. The link
between the codec and the controller uses a fixed bitrate of 12.288Mbit/s divided
into 256-bit frames, giving it a fixed frame frequency of 12.288Mbit/s

256bit = 48kHz. The
link interface (marked with LINK in Fig. 6.4) consists of five wires:

bit_clock, 12.288MHz clock signal from the codec to the controller.

sync, signal from controller to codec to synchronize when a new frame begins.

reset, signal from controller to codec for resetting the codec.

sdata_in, serial data from codec to controller.

sdata_out, serial data from controller to codec.

Each 256-bit frame is divided into 13 slots containing different data, first a 16-bit
slot (slot 0) and then twelve 20-bit slots (slot 1 – slot 12). The frames are trans-
mitted on sdata_in and sdata_out simultaneously using pulse-code modulation
(PCM). Slot 0 specifies which slots, if any, that contains valid data. Slots 1 and 2
are used for writing to the codecs control registers, or reading status of control
registers. See section 6.2.3 for details on the registers. Slot 3 is used for sending
PCM data to the left channel DAC or receiving PCM data from the left channel
ADC. Slot 4 has the same properties as slot 3 but for the right channels data in-
stead. The remaining slots are used for surround sound channels and not used in
this implementation.

6.2.1 Inverting Bit Clock

The convention when sending and receiving serial data on the links between the
codec and the controller is to send on the rising edge of the bit clock, and to
read data on the falling edge. This applies for both the codec and the controller.
This means that when receiving data from the DAC, the process responsible for
latching in data has to trigger on the falling edge of the bit clock in order for the
data to be read accurately.

It is not a good idea to mix processes that trigger on rising edge and falling edge
in the same design. This is solved by having a block that inverts the bit clock

2Only 16-bit resolution is used for the DAC since the ADC has a maximum of 16 bits.

44 Hardware Implementation on FPGA

AC'97
Codec

Microphones

Left Right

Speakers

AC'97
Controller

High pass
filter

Equalizer
filter

Gain LUT

AGC

Left

Right

Fig. 6.3: Overview of AC‘97 codec and controller connected to filters
and AGC.

signal, so the controller has both the regular bit clock signal and the inverted bit
clock signal as inputs. Thereby, the processes can use whichever clock signal they
need, all of them triggering on rising edges.

6.2.2 Connecting Peripherals

Numbers and letters marked as X refers to the squares in Fig. 6.4. By default, all
paths with a mute-switch are muted except for the mute-switches 6 connecting
the DAC outputs to the mixers Σ .

Microphone and Headphone

The microphone jack IN is by default selected as the input for the ADC by the
MUX 2 . However, it is necessary to unmute the input to the ADC 3 and to
enable stereo microphone input by selecting the MIC2 input on the MUX 1 .

When a sample returns from the DAC, the mute-switches 4 has to be unmuted,
and the output selector MUX 7 routes the DAC to the output jacks. To play the
sound through the headphones OUT , the mute-switches 8 are unmuted.

Hardware Implementation on FPGA 45

Volume

During development and testing it is desirable to be able to change the volume
of the output sound. The codec has a register that controls the attenuation 8 for
the headphone volume, with five bits for left channel volume and five bits for
the right channel volume. Using five switches on the FPGA, connected to both
channels volume bits, the output volume to the headphones can be controlled.

AGC on/off

To evaluate the function of the AGC there should be an easy way of turning the
AGC on or off. One switch on the FPGA is used for bypassing the AGC, or to
be more precise, bypassing the ADC and DAC. This switch inverts the state of
the mute-switches 3 , 4 , and 5 , turning off all inputs to the ADC and outputs
from the DAC, and activates the microphone input to the mixers Σ . The mute-
switches 6 are activated, since they are disabled by default. The output MUX 7
also routes the mixers to the output. The microphone is then connected directly to
the outputs. Note that only one of the microphones, IN , can be used as input but
the sound is played back through both left and right channel on the headphones.

Reset

In case of an error, the user should be able to reset the AC‘97 codec and AGC
algorithm. One switch on the FPGA is therefore connected to the design’s reset
input.

6.2.3 AD1981B Control Registers

The AD1981B codec has twenty-seven 16-bit control registers for customizing its
functionality. After a reset, all registers return to their default state, meaning no
sound goes through the codec until it is configured correctly. The FSM in Fig. 6.5
is used to cycle through the registers that needs to be updated in order for the
codec to work with the AGC algorithm. Each state contains the data that should
be written to a register, along with the address to that register. Information on
what bits that are to be set in the registers, and their functions, are shown in
Table 6.1 – 6.7. Some functions, like headphone volume and turning the AGC
on or off, should be controllable without resetting the codec in between. This is
solved by having some of the states in the FSM reading the switches on the FPGA
and updating the data before it is written to the codec’s registers.

The link between the AC‘97 controller and codec allows for changing the data
of one register each frame, during slots 1 and 2. When a new frame is about to
begin, the FSM switches state upon request by the AC‘97 controller, and sends

46 Hardware Implementation on FPGA

LINK

IN

OUT

OUT

7

5

6

4

2

3

1

8

6
8 Σ

Σ

Fig. 6.4: Schematic over AD1981B codec. [8]

the register address and the register data to the AC‘97 controller. The AC‘97
controller then sends the data to the correct register.

Only the bits in the registers that are used are represented in the tables. There are
more control bits in the registers that are not marked out in the tables. Remaining
registers use their default values. Consult [8] for all registers and more details.

TABLE 6.1: Headphone volume register, address 0x04
M = mute headphone output 8
Use settings “0x0000” for maximum volume.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Default

M – Left volume – Right volume 0x8000

Hardware Implementation on FPGA 47

HP_VOLinit MIC_VOL OUT_VOL

REC_GAINDAC_RATEADC_RATEMISC

Fig. 6.5: FSM for setting data in AC‘97 codec registers. The state
is shifted when a new frame is about to begin, at the request
the AC‘97 controller. Information about the registers are shown
in Table 6.1 – 6.7.

TABLE 6.2: Microphone volume register, address 0x0E
M = mute microphone 5 to mixers Σ
G = microphone preamplification 1
Use settings “0x8000” to mute to mixers and 0dB gain.
Use settings “0x0000” to connect mic to mixers and 0dB gain.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Default

M – G – Mic volume 0x8008

TABLE 6.3: PCM-out volume register, address 0x18
M = mute DAC output 4
Use settings “0x0808” to unmute and 0dB gain.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Default

M – Left volume – Right volume 0x8808

TABLE 6.4: Record gain register, address 0x1C
M = mute ADC input 3
Use settings “0x0000” to unmute and 0dB gain.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Default

M – Left gain – Right gain 0x8000

48 Hardware Implementation on FPGA

The sample frequency, measured in hertz, for the DAC and ADC in Table 6.5 and 6.6
is represented with a 16-bit binary number. The range is between 1B5816 =
700010 → BB8016 = 4800010, with 1Hz resolution.

TABLE 6.5: PCM front DAC rate register, address 0x2C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Default

Sample rate 0xBB80

TABLE 6.6: PCM ADC rate register, address 0x32.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Default

Sample rate 0xBB80

TABLE 6.7: Miscellaneous control bit register, address 0x76
DO = DAC as output 7
DX = mute DAC 6 to mixer Σ
2M = dual microphone input 1
Use settings “0x0A40” for DAC output and dual microphones.
Use settings “0x0240” for mixer output and dual microphones.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Default

– DO – DX – 2M – 0x0000

Chapter7
Hardware Implementation on ASIC

This chapter will cover the workflow of implementing the optimized AGC algo-
rithm on an ASIC.

7.1 Additional Configurations

For the ASIC to be as general as possible, the AC‘97 controller is not needed and
is therefore not included. Otherwise the ASIC would only work with the exact
same codec as on the FPGA board, and its usefulness would be limited.

Other changes to the design consists of choosing the optimal clock frequency and
adding input- and output (I/O) pads.

7.1.1 Clock Speed

The algorithm takes 70 clock cycles to process one sample, from when it starts
reading the input sample until the output sample is completely sent. The equal-
izer filter has a bandwidth of approximately 4kHz, which means that the sam-
pling frequency has to be at least twice that, 8kHz, according to the Sampling
Theorem [11]. This sample rate or higher has to be met when determining the
ASIC’s clock frequency. First the time between two samples has to be determined:

fs =
1
ts
≥ 8000Hz⇒ ts ≤

1
8000s−1 = 125µs. (7.1)

where: fs = sample frequency of ADC/DAC
ts = sample period of ADC/DAC

49

50 Hardware Implementation on ASIC

tsample = ncycles · tclock = 70 · tclock. (7.2)

where: tsample = time to process one sample
ncycles = number of clock cycles
tclock = clock period for ASIC

By assuming that ts from (7.1) is equal to tsample from (7.2) and by combining
(7.1) and (7.2), the longest clock period, i.e. slowest clock frequency, is given as:

tclock ≤
tsample

ncycles
=

ts

ncycles
=

125µs
70

≈ 1786ns⇒ fclock ≥
1

tclock
= 560kHz. (7.3)

This means that the clock frequency for the ASIC has to be 560kHz in order to
match an ADC/DAC sample rate of 8000 samples/s. Using a faster clock allows
for a higher sample rate of the ADC and DAC, hopefully resulting in better sound
quality. As an example, the upper limit for sample frequency of the ADC and
DAC in the AD1981B codec is 48kHz. Using (7.3) with 48kHz sample rate yields:

tclock ≤
1/48000s−1

70
=

20.833 . . . µs
70

≈ 298ns⇒ fclock ≥
1

tclock
= 3.36MHz.

(7.4)

7.1.2 I/O Pads

Input- and output pads takes up a lot of area, and also consumes some energy.
The number of pads should therefore be kept to a minimum. One pad for supply
voltage (VDD) and ground (GND) respectively is necessary, as well as one pad
for the clock (CLK) and one for reset (RSTN). To save on the number of pads, the
samples are read and outputted on serial pads, one for input and one for output,
rather than 16 parallel pads each. There is also a start pad and a done pad, to let the
algorithm know when to start latching in the input sample and to notify when the
last serial output bit of the sample is sent. As the implementation supports stereo
sound, these last four pads are duplicated, one set for the left audio channel and
one for the right, giving that a total of 12 pads is needed for the ASIC.

7.2 Synthesis

Synthesis was performed with both standard- and re-characterized cell libraries
using Synopsis Design Compiler. The compiled code results in a netlist with the
same functionality as the behavioral model, but build out of logic gates. The

Hardware Implementation on ASIC 51

re-characterized cell libraries are used when scaling the supply voltage in order
to get lower power dissipation. With a lower supply voltage, large logic gates
with high fan-in and/or high fan-out may fail to operate due to the voltage drop
over the transistors. The re-characterized libraries excludes these larger gates,
meaning the synthesis tools can not use these when compiling the behavioral
model.

As discussed in section 5.2, to avoid as much leakage current as possible, the
ASIC will be clocked with the fastest clock the critical path allows. Using the
standard cell libraries, the shortest clock period was found to be 10ns, which is
almost 30 times faster then what was found in (7.4). Theoretically, it is possible to
reduce the power dissipation 30 times by lowering the clock frequency, as shown
in (5.3). This is however not true since the leakage increases. It is better to lower
the supply voltage, which forces one to use a slower clock frequency, resulting in
even lower power usage, low leakage current, and a design that is not unneces-
sary fast.

The resources used during synthesis are the same as in Table 5.1: 1275 regis-
ters, 2 adders, 2 subtracters, 2 multipliers, and 117 comparators. Since the re-
characterized libraries does not contain large gates, smaller gates are combined
to make larger. The area needed for realizing the circuit can therefore be larger.
However, most of the differences in circuit area depends on the timing constrains.
With a fast clock, the synthesis tool will insert buffers in an effort to meet the tim-
ing constrains, resulting in a large combinatorial area. The estimated area for
all the different combinations of cell libraries and supply voltages are listed in
Table 7.1.

TABLE 7.1: Estimated area after synthesis. The area for I/O pads
are excluded.

Estimated area (mm2)

Library VDD tclk Comb. Noncomb. Total

LPHVT 1.2V 10ns 0.0255 0.0159 0.0414

LPHVT
0.6V 400ns 0.0734 0.0163 0.0897

re-char
0.5V 2200ns 0.0579 0.0167 0.0746
0.4V 20000ns 0.0538 0.0167 0.0705

LPSVT
0.6V 100ns 0.0561 0.0159 0.0720

re-char
0.5V 300ns 0.0951 0.0159 0.1110
0.4V 1500ns 0.0462 0.0164 0.0625

LPLVT
0.6V 25ns 0.0244 0.0159 0.0403

re-char
0.5V 90ns 0.0476 0.0159 0.0635
0.4V 350ns 0.0567 0.0168 0.0735

52 Hardware Implementation on ASIC

7.3 Placement and Routing

The place and route (PnR) of the synthesized netlist was performed in Cadence
Encounter. When everything was routed without any violations, the routed netlist
and timing/delay information were extracted to be used in post-layout simula-
tion for verification and power estimation.

7.3.1 Standard Power Implementation

Fig. 7.1: ASIC layout from PnR using LPHVT libraries with 1.2V
supply voltage. Core area is 0.072mm2 (300µm × 240µm).
Core utilization is 72%.

7.3.2 Low Power Implementation

All the synthesized netlist using re-characterized cell libraries from Table 7.1 were
placed and routed, except for the LPHVT 0.4V implementation. Because of the
slow clock frequency required for the LPHVT 0.4V to function, more then 11 times
slower then stated in (7.3), this implementation is ignored since it is not a feasible
solution. The LPHVT 0.5V implementation also has a clock frequency slower
than 560kHz, but it is not that far off and therefore included for comparison.

The size of the core area is set through trial-and-error, with the goal to utilize as
much as possible of the available die area. If the size of the core is too large, the
utilized area is small and the ASIC will be unnecessary expensive to manufacture.
If the size of the core is too small, there will not be enough room for routing
the metal connections between the transistors resulting in a non-functional ASIC.
Looking at the layouts using the LPLVT libraries in Fig. 7.4, one can see that
the utilization is very small compared to the other layouts in Fig. 7.1, 7.2, and
7.3. Unfortunately, a smaller core area introduced several violations and required

Hardware Implementation on ASIC 53

routing of metal wires outside the core. The different color scheme of the wires
in Fig. 7.4 also indicates that more of the top metal layers are utilized in order to
route all signals.

(a) LPHVT, VDD = 0.6V. Core area
is 0.12mm2 (400µm× 300µm).
Core utilization is 71%.

(b) LPHVT, VDD = 0.5V. Core area
is 0.16mm2 (400µm× 400µm).
Core utilization is 75%.

Fig. 7.2: ASIC layout from PnR using LPHVT re-characterized li-
braries.

54 Hardware Implementation on ASIC

(a) LPSVT, VDD = 0.6V. Core area
is 0.09mm2 (300µm× 300µm).
Core utilization is 83%.

(b) LPSVT, VDD = 0.5V. Core area
is 0.16mm2 (400µm× 400µm).
Core utilization is 64%.

(c) LPSVT, VDD = 0.4V. Core area
is 0.12mm2 (400µm× 300µm).
Core utilization is 75%.

Fig. 7.3: ASIC layout from PnR using LPSVT re-characterized li-
braries.

Hardware Implementation on ASIC 55

(a) LPLVT, VDD = 0.6V. Core area
is 0.36mm2 (600µm× 600µm).
Core utilization is 18%.

(b) LPLVT, VDD = 0.5V. Core area
is 0.36mm2 (600µm× 600µm).
Core utilization is 23%.

(c) LPLVT, VDD = 0.4V. Core area
is 0.25mm2 (500µm× 500µm).
Core utilization is 29%.

Fig. 7.4: ASIC layout from PnR using LPLVT re-characterized li-
braries.

56 Hardware Implementation on ASIC

7.4 Power Analysis

The power analysis is performed in Synopsis Primetime using signal activity infor-
mation extracted from post-layout simulations in QuestaSim. All simulations was
verified with the same testbench running at the corresponding clock frequency
for each ASIC implementation. The number of samples that was run through
each simulation was the same, meaning the slower the clock frequency, the longer
the simulation time.

7.4.1 Standard Power Implementation

The results of the power analysis, using the standard 1.2V low power, high VT
(LPHVT) cell libraries, are listed in Table 7.2. The power dissipation of the I/O
pads are excluded.

TABLE 7.2: Results of Primetime’s power analysis for LPHVT cell
library, VDD = 1.2V, simulation time = 1ms. Clock constrains
are listed in Table 7.3.

Power (W)

Internal Switching Leakage Total

clock_network 1.169e-03 4.636e-04 2.673e-09 1.632e-03
register 2.843e-05 1.529e-05 8.962e-08 4.381e-05
combinational 9.124e-05 9.797e-05 1.049e-07 1.893e-04

Leakage percentage 0.01%

Total Power 1.865e-03

TABLE 7.3: Clock constrains for ASIC with standard 1.2V LPHVT
cell library.

Constrain Time (ns)

Clock period 10
Clock uncertainty 0.1

Clock transition, rise & fall 0.1
Input delay 0.75

Output delay 0.25

Hardware Implementation on ASIC 57

7.4.2 Low Power Implementation

The results of the power analysis, using re-characterized cell libraries with dif-
ferent threshold voltages, are listed in Table 7.4, 7.6, 7.8, 7.10, 7.12, 7.14, 7.16, and
7.18. The power dissipation of the I/O pads are excluded.

TABLE 7.4: Results of Primetime’s power analysis for LPHVT re-
characterized cell library, VDD = 0.6V, simulation time = 40ms.
Clock constrains are listed in Table 7.5.

Power (W)

Internal Switching Leakage Total

clock_network 6.617e-06 0 0 6.617e-06
register 1.340e-07 1.942e-07 1.061e-08 3.388e-07
combinational 1.796e-06 1.184e-06 4.218e-08 3.022e-06

Leakage percentage 0.27%

Total Power 9.977e-06

TABLE 7.5: Clock constrains for ASIC with re-characterized 0.6V
LPHVT cell library.

Constrain Time (ns)

Clock period 400
Clock uncertainty 5

Clock transition, rise & fall 0.1
Input delay 20

Output delay 0.1

58 Hardware Implementation on ASIC

TABLE 7.6: Results of Primetime’s power analysis for LPHVT
re-characterized cell library, VDD = 0.5V, simulation time =
220ms. Clock constrains are listed in Table 7.7.

Power (W)

Internal Switching Leakage Total

clock_network 8.133e-07 0 0 8.133e-07
register 1.808e-08 1.343e-08 7.553e-09 3.906e-08
combinational 3.542e-07 1.561e-07 5.702e-08 5.674e-07

Leakage percentage 4.55%

Total Power 1.420e-06

TABLE 7.7: Clock constrains for ASIC with re-characterized 0.5V
LPHVT cell library.

Constrain Time (ns)

Clock period 2200
Clock uncertainty 10

Clock transition, rise & fall 0.1
Input delay 20

Output delay 0.1

TABLE 7.8: Results of Primetime’s power analysis for LPSVT re-
characterized cell library, VDD = 0.6V, simulation time = 10ms.
Clock constrains are listed in Table 7.9.

Power (W)

Internal Switching Leakage Total

clock_network 2.630e-05 0 0 2.630e-05
register 5.033e-07 2.322e-07 1.998e-07 9.353e-07
combinational 5.706e-06 5.214e-06 4.888e-07 1.141e-05

Leakage percentage 1.78%

Total Power 3.864e-05

Hardware Implementation on ASIC 59

TABLE 7.9: Clock constrains for ASIC with re-characterized 0.6V
LPSVT cell library.

Constrain Time (ns)

Clock period 100
Clock uncertainty 5

Clock transition, rise & fall 0.1
Input delay 20

Output delay 0.1

TABLE 7.10: Results of Primetime’s power analysis for LPSVT re-
characterized cell library, VDD = 0.5V, simulation time = 30ms.
Clock constrains are listed in Table 7.11.

Power (W)

Internal Switching Leakage Total

clock_network 6.117e-06 0 0 6.117e-06
register 1.156e-07 1.655e-07 1.368e-07 4.178e-07
combinational 2.108e-06 1.287e-06 8.912e-07 4.286e-06

Leakage percentage 9.50%

Total Power 1.082e-05

TABLE 7.11: Clock constrains for ASIC with re-characterized 0.5V
LPSVT cell library.

Constrain Time (ns)

Clock period 300
Clock uncertainty 5

Clock transition, rise & fall 0.1
Input delay 20

Output delay 0.1

60 Hardware Implementation on ASIC

TABLE 7.12: Results of Primetime’s power analysis for LPSVT
re-characterized cell library, VDD = 0.4V, simulation time =
150ms. Clock constrains are listed in Table 7.13.

Power (W)

Internal Switching Leakage Total

clock_network 7.807e-07 0 0 7.807e-07
register 1.609e-08 2.033e-08 8.921e-08 1.256e-07
combinational 2.261e-07 1.673e-07 4.194e-07 8.127e-07

Leakage percentage 29.59%

Total Power 1.719e-06

TABLE 7.13: Clock constrains for ASIC with re-characterized 0.4V
LPSVT cell library.

Constrain Time (ns)

Clock period 1500
Clock uncertainty 10

Clock transition, rise & fall 0.1
Input delay 20

Output delay 0.1

TABLE 7.14: Results of Primetime’s power analysis for LPLVT
re-characterized cell library, VDD = 0.6V, simulation time =
2.5ms. Clock constrains are listed in Table 7.15.

Power (W)

Internal Switching Leakage Total

clock_network 1.335e-04 7.180e-05 2.402e-07 2.056e-04
register 2.951e-06 2.820e-06 1.593e-06 7.363e-06
combinational 1.582e-05 1.730e-05 3.910e-06 3.703e-05

Leakage percentage 2.30%

Total Power 2.499e-04

Hardware Implementation on ASIC 61

TABLE 7.15: Clock constrains for ASIC with re-characterized 0.6V
LPLVT cell library.

Constrain Time (ns)

Clock period 25
Clock uncertainty 0.5

Clock transition, rise & fall 0.1
Input delay 1.5

Output delay 0.1

TABLE 7.16: Results of Primetime’s power analysis for LPLVT re-
characterized cell library, VDD = 0.5V, simulation time = 9ms.
Clock constrains are listed in Table 7.17.

Power (W)

Internal Switching Leakage Total

clock_network 2.013e-05 0 0 2.013e-05
register 5.125e-07 5.542e-07 9.411e-07 2.008e-06
combinational 5.840e-06 5.902e-06 4.927e-06 1.667e-05

Leakage percentage 15.12%

Total Power 3.881e-05

TABLE 7.17: Clock constrains for ASIC with re-characterized 0.5V
LPLVT cell library.

Constrain Time (ns)

Clock period 90
Clock uncertainty 5

Clock transition, rise & fall 0.1
Input delay 10

Output delay 0.1

62 Hardware Implementation on ASIC

TABLE 7.18: Results of Primetime’s power analysis for LPLVT re-
characterized cell library, VDD = 0.4V, simulation time = 35ms.
Clock constrains are listed in Table 7.19.

Power (W)

Internal Switching Leakage Total

clock_network 3.356e-06 0 0 3.356e-06
register 9.297e-08 9.632e-08 5.885e-07 7.778e-07
combinational 8.957e-07 6.236e-07 2.781e-06 4.300e-06

Leakage percentage 39.96%

Total Power 8.430e-06

TABLE 7.19: Clock constrains for ASIC with re-characterized 0.4V
LPLVT cell library.

Constrain Time (ns)

Clock period 350
Clock uncertainty 5

Clock transition, rise & fall 0.1
Input delay 10

Output delay 0.1

Hardware Implementation on ASIC 63

The power usage of the different libraries is not the best way to find the best com-
bination of VDD and VT, since they operate at different clock frequencies. As seen
in (5.3), the clock frequency is proportional to the power usage. A fairer compar-
ison is to divide the total power usage with the clock frequency, thus calculating
the energy usage per clock cycle:

E =
P

fclk
=

[
fclk =

1
tclk

]
= P · tclk. (7.5)

Results of using (7.5) on the different implementations are shown in Table 7.20.
The total energy dissipation from the simulation-results are plotted in Fig. 7.5
and the leakage energy for each implementation is plotted in Fig. 7.6. The extrap-
olated data in Fig. 7.5 and Fig. 7.6 are approximated using second order polyno-
mials.

TABLE 7.20: Power and energy dissipation of the different ASIC
implementations.

Library, VDD tclk (ns) Ptot (µW) Etot (pJ)

LPHVT, 1.2V 10 1865 18.65

LPHVT, 0.6V 400 9.977 3.991
LPHVT, 0.5V 2200 1.420 3.124

LPSVT, 0.6V 100 38.64 3.846
LPSVT, 0.5V 300 10.82 3.246
LPSVT, 0.4V 1500 1.719 2.579

LPLVT, 0.6V 25 249.9 6.248
LPLVT, 0.5V 90 38.81 3.493
LPLVT, 0.4V 350 8.430 2.951

64 Hardware Implementation on ASIC

0.4 0.45 0.5 0.55 0.6
1

2

3

4

5

6

7

8

Supply voltage (V)

E
n

e
rg

y
 (

p
J
)

LPHVT

LPSVT

LPLVT

Fig. 7.5: Energy usage for different libraries and supply voltages.

0.4 0.45 0.5 0.55 0.6
0

0.5

1

1.5

Supply voltage (V)

L
e

a
k
a

g
e

 e
n

e
rg

y
 (

p
J
)

LPHVT

LPSVT

LPLVT

Fig. 7.6: Leakage energy for different libraries and supply voltages.

Chapter8
Verification and Results

This chapter lists the equipment, apart from the FPGA previously described in
section 6.1, used for measurements in the anechoic chamber and then gives the
results from the measurements.

8.1 Equipment for Verification

8.1.1 Hearing Protectors

The hearing protectors used for testing the implemented AGC algorithm are called
Peltor Tactical 7-SH (type MT1H7A-07). They have a cable with a standard 6.3mm
stereo headphone male connector for playing back sounds in the internal speak-
ers from an external source. With a 6.3mm-female-to-3.5mm-male-adapter, the
speakers can be connected to the FPGA. However, the 50mW headphone ampli-
fier on the FPGA proved not to be powerful enough to drive the speakers, so an
external amplifier between the FPGA and the hearing protectors is needed. The
microphone-wires from the two microphones on the hearing protectors are dis-
connected from the internal circuit boards and soldered to an external cable with
a 3.5mm stereo headphone male connector in the other end.

For comparing the hardware implementation with a commercial product, another
similar pair of hearing protectors called Peltor Tactical 7 Classic (type MT1H7A)
were used. These are unmodified.

65

66 Verification and Results

(a) Peltor Tactical 7 Classic.
Unmodified.

(b) Peltor Tactical 7-SH. Modified
with microphone-connector.

Fig. 8.1: Hearing protectors used for measurements.

8.1.2 Loudspeakers

Two different types of speakers where used during testing and verification. To
generate white noise, the Norsonic Dodecahedron Loudspeakers Nor270H, Fig 8.2a,
powered by the Norsonic Power Amplifier Nor280, Fig. 8.2b, was used.

The Fostex 6301B, Fig. 8.3, were used as amplifiers to drive the speakers in the
hearing protectors. Two of these speakers were used, one for each stereo channel.

8.1.3 Head and Torso Simulator

A human analog is needed to measure the perceived noise from wearing or not
wearing the hearing protectors. The Head and Torso Simulator Type 4128-C,
Fig. 8.4a, from Brüel & Kjær is the size of an average adult and has microphones
for ears. These microphones are connected to the Brüel & Kjær NEXUS Micro-
phone Conditioner, Fig. 8.4b, which in turn is connected the the sound card of a
computer for recording the noise picked up by the microphones.

8.1.4 Sound Level Meter

To get accurate results and for calibrating the gain LUT, one must know the true
noise level during testing. The 01dB SdB+ Sound level meter, Fig. 8.5, is used to
measure the true noise level next to the Head and Torso’s ears.

Verification and Results 67

(a) Norsonic Dodecahedron
Loudspeaker Nor270H.

(b) Norsonic Power Amplifier
Nor280.

Fig. 8.2: Norsonic dodecahedron loudspeaker and power amplifier.
Used for noise generation. [12]

Fig. 8.3: Fostex 6301B Analog Personal Monitors. Used for driving
the speakers in Peltor Tactical 7-SH hearing protectors. [13]

68 Verification and Results

(a) Brüel & Kjær Head and Torso Simulator type 4128-C. [14]

(b) Brüel & Kjær NEXUS Microphone Conditioner type 2690. [15]

Fig. 8.4: Brüel & Kjær Head and Torso Simulator and NEXUS
Microphone Conditioner. Used for recording noise with and
without hearing protectors.

Fig. 8.5: 01dB SdB+ Sound level meter. Used for measuring the
true noise level.

Verification and Results 69

8.1.5 External Sound Card

To avoid noise caused by interference from components inside the computer dur-
ing measurement, an external Roland UA-1EX USB audio interface sound card,
Fig. 8.6, is used to record the sound picked up by the microphones in the Head
and Torso Simulator.

Fig. 8.6: Roland UA-1EX USB audio interface sound card. Used to
record the sounds heard by the Head and Torso Simulator. [16]

8.2 Noise Attenuation Measurement

When the implementation of the filters and AGC is complete, the most suitable
LUT with the gain values has to be decided. Several different LUTs with different
offsets, aforementioned in section 2.4 and 3.4, was tested in order to dial in the
LUT that met the requirements. If a LUT dampens too much or dampens on
unnecessary low decibel level, the audio quality will suffer.

The Norsonic Nor270H speaker was set up to play white noise at a specific level.
The noise level was then increased with about 5dB for each of the following mea-
surements. The reference noise level was measured just next to the Head and
Torso’s ear with the sound level meter. The input volume on the UA-1EX sound
card was then calibrated to match that noise level with no hearing protectors on.
Both pair of hearing protectors were put on the Head and Torso, one at a time,
for comparison and the result is presented in Fig. 8.7.

The lookup table that dampened just enough to keep the noise level below 82dB
is used for the measurements in Fig. 8.7, and is also the one seen in Fig. 3.7.

As seen in Fig. 8.7, the measured noise level for the AGC implementation done
in this thesis peaks just below 82dB when the surrounding noise is around 85dB
and then decreases slightly to around 80dB for higher noise levels. One can also
see that the reference hearing protectors have a high amplification at lower noise
levels, compared to the implementation done in this thesis. At approximately
80dB, both designs are pretty similar. The closer to ideal curve accomplished in

70 Verification and Results

60 65 70 75 80 85 90 95 100 105
60

65

70

75

80

85

P
noise

 (dB)

P
m

ea
su

re
d (

dB
)

Ideal
Reference (Peltor Tactical 7)
This thesis (FPGA + Peltor Tactical 7−SH)

Fig. 8.7: Results from the dampening measurements in the anechoic
chamber for the reference hearing protectors and the implemen-
tation of this thesis. The ideal curve has a gain = 1 up to 82dB
before dampening, as in (3.9). Pnoise is the noise level in the
room and Pmeasured is the noise level inside the hearing protec-
tors.

this thesis allows for a more natural sound volume at harmless noise levels. This
becomes clear when plotting the difference between the measured noise level to
the ideal curve, as in Fig. 8.8.

Verification and Results 71

60 65 70 75 80 85 90 95 100 105
−5

0

5

10

P
noise

 (dB)

D
iff

er
en

se
 fr

om
 id

ea
l c

ur
ve

 (
dB

)

Ideal
Reference (Peltor Tactical 7)
This thesis (FPGA + Peltor Tactical 7−SH)

Fig. 8.8: The difference from the ideal curve in Fig. 8.7 for the
reference hearing protectors and for the implementation of this
thesis. Pnoise, on the x-axis, is the noise level in the room and
the y-axis shows the difference of the measured noise level inside
the hearing protectors from the ideal curve, i.e. Pmeasured −
Pideal.

72 Verification and Results

Chapter9
Conclusions and Further Development

9.1 Conclusions

The aim for this thesis has been to implement a working AGC algorithm in hard-
ware with focus on low power consumption. Measures, like resource sharing,
has been taken to keep the area small. The comparison against an equivalent
commercial product proves that the design is working. By implementing the
same algorithm on an ASIC using re-characterized cell libraries for low power
consumption, both the main goals for this thesis has been accomplished. Instead
of running the ASIC with a standard supply voltage of 1.2V, a scaled down sup-
ply voltage in combination with a slower clock frequency results in a simulated
power reduction of up to 86%.

The best compromise between speed and low power dissipation looks to be when
using the LPSVT re-characterized cell libraries. LPHVT offered lower leakage
with similar energy usage, but with a clock frequency that is too slow for this
algorithm when VDD is below 0.6V. The LPLVT libraries have the capability to
operate much faster, but unless one is able to utilize more of the core area during
PnR, this implementations are not a reasonable option. The ASIC with the lowest
simulated energy usage, LPSVT with VDD = 0.4V, dissipates 2.58pJ per clock
cycle at 667kHz and can handle a ADC sample rate of 9.5kHz. If one want an
implementation capable of higher sample rate, switching up to VDD = 0.5V yields
a higher theoretical audio quality than a studio recorded CD (44.1kHz), with a
energy dissipation of 3.25pJ per clock cycle.

Since the gain factor is 1 for harmless noise levels, the implementation in this
thesis has a very natural sound level. An amplification for low sound levels,
found in the reference hearing protectors for example, have the advantage of em-
phasizing speech for instance. However, it also amplifies unwanted sounds, like
distant traffic noise or the sound of the user’s own footsteps. The equal attenu-
ation for both ears also results in a more pleasing listening experience. Without
the independent AGCs for each ear, the annoying swaying effect mentioned in
the introduction is eliminated.

73

74 Conclusions and Further Development

9.2 Future Work

For the proposed solution in this thesis, 16-bit resolution for the sample were
chosen to have the best audio quality the codec can deliver. With fewer bits, the
audio quality will suffer, but the power consumption and chip area would also
decrease. With more time, next step in the optimization would be to find the
number of bits that suffice for an acceptable audio quality and see what power
usage and area that yields.

To achieve a more accurate power estimation for the AGC, the samples should
be A-weighted as discussed in section 2.4. An additional filter will increase the
number of clock cycles needed to process one sample, and will require a slightly
higher clock frequency to continue to have the same sample rate on the ADC and
DAC.

The proposed solution does not work by itself. If it were to be fabricated and
put in a commercial product, the circuit should contain its own ADC and DAC.
By embedding an ADC and a DAC on the ASIC, the need for serial data trans-
fer is also removed. Sending the samples in parallel from/to the ADC/DAC
almost halves the time the algorithm takes to process one sample, allowing for
even lower power dissipation.

Having the LUT hard-coded on the ASIC is very area- and power efficient, but
can be a bit limiting. If the LUT were to consist of an external interchangeable or
reprogrammable ROM, it would allow for more and different applications. Some
might want a bit of amplification at lower audio levels to enhance their hearing,
or people with a sensitive hearing might require a lower threshold level than
82dB. By just changing the values in the LUT, the AGC can still be used without
any alterations.

References

[1] Bengt Johansson. Buller och Bullerbekämpning. “Arbetsmiljöverket” (Swedish
Work Environment Authority), 4th edition, 2002.

[2] Maziar Soltani and Anna Lilja-Ramusson. Signal processing for hearing pro-
tectors. Master’s thesis, Blekinge Institute of Technology, Sweden, 2006.

[3] David A. Patterson and John L. Hennessy. Computer Organization and De-
sign: The Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edition, 2005.

[4] Jonas Skeppstedt and Christian Söderberg. Writing Efficient C Code: A Thor-
ough Introduction for Java Programmers. Skeppberg AB, 1st edition, 2013.

[5] Pong P. Chu. RTL Hardware Design Using VHDL: Coding for Efficiency, Porta-
bility, and Scalability. Wiley-IEEE Press, 2006.

[6] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nicolic. Digital Inte-
grated Circuits: A Design Perspective. Prentice Hall, 2nd edition, 2003.

[7] Xilinx. “ML505/ML506/ML507 Evaluation Platform”, User Guide, version
3.1.2, May 16, 2011.

[8] Analog Devices. “AC‘97 SoundMAX Codec”, AD1981B datasheet, Rev. C,
2005.

[9] Xilinx. XUPV5-LX110T. http://www.xilinx.com/univ/xupv5-lx110t.
htm. Accessed: 2015-07-30.

[10] John Terragnoli. ECE383_Lab02, GitHub repository, “ac97.vhd” (2015).
https://github.com/JohnTerragnoli/ECE383_Lab02/blob/master/
Code/ac97.vhd. Accessed: 2015-03-20.

[11] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing: Princi-
ples, Algorithms, and Applications. Prentice Hall, 4th edition, 2006.

[12] Norsonic. Noise Excitation for Building Acoustics. http://www.
campbell-associates.co.uk/products/Norsonic/productdata/071005%
20Noise%20Excitation%20Kit%20issue%20201007v2.pdf. Accessed:
2015-07-27.

75

http://www.xilinx.com/univ/xupv5-lx110t.htm
http://www.xilinx.com/univ/xupv5-lx110t.htm
https://github.com/JohnTerragnoli/ECE383_Lab02/blob/master/Code/ac97.vhd
https://github.com/JohnTerragnoli/ECE383_Lab02/blob/master/Code/ac97.vhd
http://www.campbell-associates.co.uk/products/Norsonic/productdata/071005%20Noise%20Excitation%20Kit%20issue%20201007v2.pdf
http://www.campbell-associates.co.uk/products/Norsonic/productdata/071005%20Noise%20Excitation%20Kit%20issue%20201007v2.pdf
http://www.campbell-associates.co.uk/products/Norsonic/productdata/071005%20Noise%20Excitation%20Kit%20issue%20201007v2.pdf

76 References

[13] Fostex. 6301 Analogue Personal Monitors. http://www.
fostexinternational.com/docs/products/6301_Analogue.shtml. Ac-
cessed: 2015-07-27.

[14] Brüel & Kjær. Head And Torso Simulator 4128-C. http://www.
bksv.com/Products/transducers/ear-simulators/head-and-torso/
hats-type-4128c. Accessed: 2015-07-27.

[15] Brüel & Kjær. NEXUS Microphone Conditioner - Type 2690-A. http://www.
bksv.com/Products/transducers/conditioning/microphone/2690A0F2.
Accessed: 2015-07-27.

[16] Roland. UA-1EX USB audio interface sound card. http://www.roland.
com/products/ua-1ex/support/. Accessed: 2015-07-23.

http://www.fostexinternational.com/docs/products/6301_Analogue.shtml
http://www.fostexinternational.com/docs/products/6301_Analogue.shtml
http://www.bksv.com/Products/transducers/ear-simulators/head-and-torso/hats-type-4128c
http://www.bksv.com/Products/transducers/ear-simulators/head-and-torso/hats-type-4128c
http://www.bksv.com/Products/transducers/ear-simulators/head-and-torso/hats-type-4128c
http://www.bksv.com/Products/transducers/conditioning/microphone/2690A0F2
http://www.bksv.com/Products/transducers/conditioning/microphone/2690A0F2
http://www.roland.com/products/ua-1ex/support/
http://www.roland.com/products/ua-1ex/support/

	Introduction
	Motivation
	Thesis Objective
	Thesis Outline

	Theory
	Floating Point Representation
	Fixed Point Representation
	Error Estimation and Bit Resolution
	dB

	AGC Algorithm Development
	Fixed Point Conversion
	Filters
	High Pass Filter
	Equalizer Filter

	Signal Power Estimation
	AGC and Gain Lookup Table

	Initial Hardware Implementation
	Filters
	High Pass Filter
	Equalizer Filter

	AGC
	Gain Lookup Table
	Hardware Resources

	Optimizing Hardware Implementation
	Resource Sharing
	Resource Sharing Algorithm
	Results of Resource Sharing

	Scaling Supply Voltage

	Hardware Implementation on FPGA
	FPGA Board
	AC`97 Controller
	Inverting Bit Clock
	Connecting Peripherals
	AD1981B Control Registers

	Hardware Implementation on ASIC
	Additional Configurations
	Clock Speed
	I/O Pads

	Synthesis
	Placement and Routing
	Standard Power Implementation
	Low Power Implementation

	Power Analysis
	Standard Power Implementation
	Low Power Implementation

	Verification and Results
	Equipment for Verification
	Hearing Protectors
	Loudspeakers
	Head and Torso Simulator
	Sound Level Meter
	External Sound Card

	Noise Attenuation Measurement

	Conclusions and Further Development
	Conclusions
	Future Work

	References

