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Abstract

We describe the Fourier-Gauss-Laguerre and Fourier cosine series method and test them extensively in four models: Black-
Scholes, Black-Scholes with discrete dividends, Heston and Bates. While both methods mostly achieve good accuracy and
high computational speed, problems may arise with respect to the optimal choice of the method-specific parameters and the
extension of the methods to other models and financial products.
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1 Introduction
This thesis should be seen as an extension to the Benchop project1, which specifies a number of standard test cases as a
benchmark for new option valuation methods. The Benchop project also provides testing results of various already existent
option pricing methods, specifically Monte Carlo, Fourier, finite difference and radial basis function methods.

Two of the most interesting methods of the tested ones are the Fourier-Gauss-Laguerre (FGL) and the Fourier cosine series
(COS) method. This is because in the Benchop test cases, FGL is one of the or the most accurate method while being fairly
fast, and COS is almost always the fastest, while being reasonably accurate.2 Since the test cases covered by the Benchop
project are quite limited, our goal is to test FGL and COS more comprehensively by

• testing many more combinations of parameters

• testing in a model not covered by the Benchop project, namely the Bates model.

We are going to focus on the pricing of European call options. The fact that we cover many more test cases permits us to
analyze the error in dependence of

• each single model parameter, such as time to maturity,

• the used model, and

• the used method.

To make this thesis as self-contained as possible, a thorough theoretical description of both methods precedes the specification,
description and analysis of the test results. Specifically, the thesis is structured as follows: After giving an overview of option
valuation methods in 1.1 and stating some preliminary definitions and conventions in Section 2, we proceed to describe the
FGL and COS methods in sections 3 and 4, respectively. Some of our test cases use a Monte Carlo method to produce
reference prices, which we elaborate on in Section 5. Lastly, we specify our test methodology, test cases and describe the
results in Section 6.

A large part of this thesis relies on numerical experiments, the code for which can be found at github.com/Arebjel/ThesisCode.

1.1 Overview of option valuation methods
Option valuation methods can be roughly categorized into three different types:3

• Deterministic numerical solution of the pricing PDEs or - for models with jumps - the corresponding PIDEs.

• Quasi Monte Carlo or Monte Carlo methods combined with various variance reduction techniques.

• Methods based on Fourier transform techniques.

An advantage of the PDE/PIDE-based methods is their versatility, allowing them to be employed to price both plain vanilla
and exotic products. Their main drawback is related to the fact that they involve approximating prices on a grid. During the
calibration of model parameters, we need to calculate many option prices that are not used, leading to an additional amount of
work.

Monte-Carlo methods do not have that disadvantage, since we only need to calculate the prices we use. Furthermore, they
are easy to implement.4 Due to their slow convergence rate (O

�

1/
p

N
�

for standard Monte Carlo)5, however, achieving high
accuracy is computationally expensive. One may argue that calculating option prices with a higher accuracy than the bid-ask
spread is unnecessary. However, this does not hold for the calibration of the model parameters, where even small inaccuracies
might lead to very different model parameters in the optimization step. Therefore, the aforementioned slow convergence rate
also makes the calibration step slower.

Fourier transform based methods are fast and fairly accurate. A downside is that they require the characteristic function
of the log stock price to be known in closed form. This, however, is the case for all the models considered in this thesis and
several others, specifically Black-Scholes (BS)6, Merton7, Heston8, Bates9, Normal Inverse Gaussian10, Variance Gamma11,

1Benchop = The benchmarking project in option pricing - [von Sydow et al., 2015]
2See [von Sydow et al., 2015] p. 9f, tables 2 - 5. The only exception of COS being the fastest method is problem 1, American call.
3Section based on [Wiktorsson, 2015], p. 1f.
4[von Sydow et al., 2015], p. 10.
5[von Sydow et al., 2015], p. 10.
6[Black and Scholes, 1973]
7[Merton, 1976]
8[Heston, 1993]
9[Bates, 1996]

10(see e.g. [Barndorff-Nielsen, 1997], and the references wherein)
11[Madan and Seneta, 1990]
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CGMY12, and Finite Moment log-stable13.
We conclude this section by pointing out some advantages and drawbacks of some specific Fourier methods: The FGL

method can easily lead to numerical overflow, as the involved numbers are too large for the data type double. This problem
is particularly prevalent in the Bates model, because the involved moment-generating function requires nested evaluation of
functions such as exp,coth etc. To solve this, one needs either to restrict the optimization domain of the parameter a and the
number of weights in the Gauss-Laguerre quadrature, both of which may reduce accuracy, or one must make use of classes
specialized for dealing with extremely large numbers.14 This, however, considerably slows down the method.

As for the COS method, we found that the choice of the parameters [a,b] and N suggested by Fang, Oosterlee can lead to
highly inaccurate prices in some cases.

Despite the fact that the FFT is not specifically considered in this thesis, we mention one of its drawbacks for the sake of
completeness: the FFT allows the computation of prices on a regularly spaced grid of log strike levels. Market-traded options,
however, are usually regularly spaced in the strike level, not the log-strike level. This makes an interpolation procedure
necessary, and it makes the accuracy of the FFT dependent on the grid spacing, the interval the integrand is to be evaluated
at and the properties of the characteristic function of the log stock price. Apart from that, for each time of maturity one FFT
needs to be done, leading to additional work if we are to price options with several dates of maturity, but each only with a few
strike levels.

12[Carr et al., 2002]
13[Carr and Wu, 2003]
14For example, the high-precision float (HPF) package (http://de.mathworks.com/matlabcentral/fileexchange/36534-hpf-a-big-decimal-class) on Matlab

File Exchange allows for much higher numbers than the usual data type double.
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2 Preliminaries
In this section, we introduce some important definitions relevant to our analyis. Also, we specify the stock price models used
in our test cases.

2.1 Definitions
Definition 2.1. (Fourier transform, inverse Fourier transform)

For a continuous function f : R! R, let its Fourier transform (FT) be denoted by

F [ f ] (z) =

ˆ
R

ezk f (k)dk,

wherever this integral exists. Let the corresponding inverse Fourier transform (iFT) be denoted by

F [g] (k) =
1

2p

ˆ
R

e�(a+iw)kg(a + iw)dw,

for any a 2
n

�

�

�

´
R e�(a+iw)kg(a + iw)dw

�

�

�

< •
o

\{|g(a + iw)|< •}.

Remark 2.2. Note that the regions where F [ f ] exists, are always vertical strips in the complex plane. This is because for any
complex number z = a + iw it holds ˆ

R

�

�

�

eakeiwk f (k)
�

�

�

dk =
ˆ
R

�

�

�

eak f (k)
�

�

�

dk,

and thus the finiteness of F [ f ] (a + iw) does not depend on w .

Definition 2.3. (conditional moment-generating function)

For a stochastic process Xt on {W,Ft ,Q}t�0 and 0  t < T , let the conditional moment-generating function of XT given
Ft be denoted by

MQ
XT |Ft

(z) = EQ [exp(zXT ) | Ft ] ,

where z 2 C.

2.2 Stock price models
In this subsection, we specify the stock price models used in our tests. They largely overlap with the models used in the
Benchop project, allowing us to provide a more comprehensive test coverage (see Section 6) than in that project. The exception
thereof is the Bates model, which serves as an interesting addition to the models used in the Benchop project. This is especially
true because it incorporates both stock price paths with stochastic jumps as in the Merton model as well as stochastic volatility
as in the Heston model.

2.2.1 Black-Scholes model

The Black-Scholes model can be defined by the SDE

dSt = rStdt +sStdWt

with initial condition S0 = s0. Here, r is the risk-free interest rate and s the volatility of the underlying.

2.2.2 Black-Scholes model with discrete dividends

dSt = rStdt +sStdWt �d (t � t)D ·St

At time t = a ·T , a dividend of D ·S
t

is paid. As with the Black-Scholes model, the initial condition is S0 = s0.
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2.2.3 Heston model

The risk-neutral dynamics in the Heston model are given by

dSt = rStdt +
p

VtStdW (1)
t , (2.1)

dVt = k (q �Vt)dt +sV
p

VtdW (2)
t , (2.2)

where W (1),W (2) are Brownian motions with correlation r . Furthermore, k is the mean reversion rate, q the long-term
volatility, sV the volatility of the volatility. The initial conditions for the underlying price and volatility are S0 = s0,V0 = v0.

2.2.4 Bates model

The Bates model is specified via the SDEs

dSt = rStdt +
p

VtStdW (1)
t +StdJt (2.3)

dVt = k (q �Vt)dt +sV
p

VtdW (2)
t . (2.4)

Like in the Heston model, W (1),W (2) are Brownian motions with correlation r and the initial conditions for S0,V0 are the
same. Also, the variables k,q and sV have the same meaning as in the Heston model. J is a compound Poisson process with
intensity l , with jumps DJ such that log(1+DJ)⇠ N

�

g,d 2� and with drift �l

�

exp
�

d

2/2+ g

�

�1
�

.15 The Bates model is
essentially a combination of the Heston and Merton model, which incorporate stochastic volatility and jumps into the stock
price, respectively.

15[Wiktorsson, 2015], p.7.
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3 Fourier-Gauss-Laguerre method
This section is divided into two parts:16 Subsection 3.1 covers the theoretical description of the FGL method. Subsection 3.2
deals with numerical aspects that are relevant to ensure high accuracy in a reasonable amount of computation time.

3.1 Method description
By the fundamental theorem of asset pricing, the price of any European-style contract with maturity T at time t is

p = e�rtEQ [F(ST ,K) | Ft ] , (3.1)

where F is the payoff function and t := T � t.
We give a rough outline of the FGL method as follows: Firstly, the payoff function is represented as the inverse Fourier

transform of its Fourier transform with respect to the log-strike price:

F(ST ,K) =
1

2p

ˆ
R

e�(a+iw) lnK ·F [F] (lnST ,a + iw)dw.

Discounted conditional expectation yields the option price, resulting in a double integral:

p =
e�rt

2p

ˆ
W

ˆ
R

e�(a+iw) lnK ·F [F] (lnST ,a + iw)dwdQ(· | Ft) .

The order of integration is then reversed and explicit formulae for the FT of the payoff function, F [F], and the conditional
moment-generating function of the stock price are inserted. This results in an expression of the type

p =
e�rt

2p

ˆ
R

g(a + iw)dw, (3.2)

where a 2 R is a parameter governing the shape of g. Expression (3.2) can be approximated via Gauss-Laguerre quadrature.
To ensure optimal accuracy of the latter, a is optimized before applying Gauss-Laguerre.

3.1.1 Fourier transform of European call options

As mentioned, the FGL method involves the FT of the payoff function. Therefore, we will provide an explicit formula for it
in the case of a European call option. In general, European style contracts have payoff functions of the shape

F
⇣

es,ek, p,c
⌘

= max
⇣

c
⇣

es � ek
⌘

,0
⌘p

, (3.3)

where s is the log stock price, k the log strike, c is one for call options and minus one for put type options, and p is one for
standard European options, zero for binary options and p > 1 for power options. The FT of (3.3) with respect to k reads

h(s,z, p,c) =
ˆ
R

ezk max
⇣

c
⇣

es � ek
⌘

,0
⌘p

dk. (3.4)

For call type options, it is c = 1 and the Fourier transform exists for Rz > 0. Expression (3.4) then becomes

h(s,z, p,1) =

ˆ
R

ezk max
⇣

es � ek,0
⌘p

dk

=

ˆ s

�•
ezk
⇣

es � ek
⌘p

dk (3.5)

=

ˆ 0

�•
es(z+p)ezk

⇣

1� ek
⌘p

dk,
h

x = ek
i

(3.6)

= es(z+p)
ˆ 1

0
xz�1 (1� x)p+1�1 dx (3.7)

= es(z+p) G(z)G(p+1)
G(z+ p+1)

, (3.8)

which, in the case of a European call option (p = 1), equals

h(s,z,1,1) =
es(z+1)

z(z+1)
. (3.9)

16Section based on [Wiktorsson, 2015], p. 2 - 8.
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3.1.2 Representation of the call option price using the Fourier inversion theorem

By applying the Fourier inversion theorem, the payoff function can be represented as

F(ST ,K) =
1

2p

ˆ
R

e�(a+iw) lnKh(lnST ,a + iw,1,1)dw.

Applying conditional expectation and discounting yields the option price at time t:

p =
e�rt

2p

ˆ
R

e�(a+iw) lnKEQ [h(lnST ,a + iw,1,1) | Ft ]dw

=
e�rt

2p

ˆ
R

e�(a+iw) lnK

(a + iw)(a + iw +1)
EQ
h

elnST (a+iw+1) | Ft

i

dw

=
e�rt

2p

ˆ
R

e�(a+iw) lnK

(a + iw)(a + iw +1)
MQ

lnST |Ft
(a + iw +1)dw, (3.10)

where a must be positive and such that the conditional moment-generating function MQ
lnST |Ft

(a + iw +1) exists. We will
cover the range of admissible a’s and the optimal choice of a in 3.2.2.

3.1.3 Conditional moment-generating functions

Formula (3.10) requires the evaluation of the conditional MGF of the log stock price.These are given by:

• Black-Scholes model:

MQ
lnST |Ft

(z) = exp
✓

z(rt + lnSt)+ t

s

2

2
�

z2 � z
�

◆

.

• Black-Scholes model with discrete dividends:

MQ
lnST |Ft

(z) = exp
✓

z(rt + lnSt)+ t

s

2

2
�

z2 � z
�

+ z log(1�D) I (t < t < T )
◆

.

• Heston model:

d =
q

(rsV z�k)2 +s

2
V (z� z2),

C =
kq

s

2
V

✓

(k �rsV z)t +2log
✓

1
k �rsV z+d coth(dt/2)

d
sinh(dt/2)

◆◆

,

D =
z2 � z

k �rsV z+d coth(dt/2)
,

MQ
lnST |Ft

(z) = exp(z(rt + lnSt)+C+DVt) .

• Bates model:

d =
q

(rsV z�k)2 +s

2
V (z� z2),

C =
kq

s

2
V

✓

(k �rsV z)t +2log
✓

1
k �rsV z+d coth(dt/2)

d
sinh(dt/2)

◆◆

,

D =
z2 � z

k �rsV z+d coth(dt/2)
,

MQ
lnST |Ft

(z) = exp
⇣

z(rt + lnSt)+lt

⇣

ez2
d

2/2+zg �1� z
⇣

ed

2/2+g �1
⌘⌘

+C+DVt

⌘

.
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3.2 Implementation and numerical aspects
3.2.1 Smoothing of the integrand in the inverse Fourier transform

Let the integrand in (3.10) be denoted by g(a + iw). As the option price is real, it holds

p =
e�rt

2p

ˆ
R

g(a + iw)dw

=
e�rt

2p

ˆ
R
Re(g(a + iw))dw. (3.11)

Apart from the condition that the integrand and integral have to exist, the choice of a is theoretically irrelevant. For a
good numerical approximation of this integral, however, it is important to choose a such that the integrand does not exhibit
overpronounced peaks, strong oscillations or extreme values that cause numerical overflow. One possibe choice of a would
minimize the maximal absolute change of the integrand, i.e.

aopt = argmin
a2A+

ST
max
w2D

�

�

�

�

∂

∂w

Re(g(a + iw))

�

�

�

�

(3.12)

or the mean absolute change, that is

aopt = argmin
a2A+

ST

ˆ
w2D

�

�

�

�

∂

∂w

Re(g(a + iw))

�

�

�

�

dw, (3.13)

where D = R and
A+

ST
:=
n

a > 0 |
�

�

�

MQ
lnST |Ft

(a + iw +1)
�

�

�

< •
o

.

is the set of all a such that the conditional MGF in (3.10) exists. Taking into account that the integral
´
R g(a + iw)dw will

be truncated to some interval [a,b] during the numerical approximation, D = [a,b] would be a valid choice, too.
Alternatively, considering that the error term of Gauss-Laguerre quadrature - which we will later employ - is

E =
(n!)2

(2n)!
∂

2n

∂w

2n (w 7!Re(g(a + iw))) |
w=x

for some x 2 (0,•),17 it might make sense to replace
�

�

�

∂

∂w

Re(g(a + iw))
�

�

�

by E in (3.12) and (3.13). Here, n is the number of
weights used in the Gauss-Laguerre quadrature.

The problem of these approaches is that they require the evaluation of
�

�

�

∂

∂w

Re(g(a + iw))
�

�

�

or E at many points w for each

combination of parameters.18 A computationally less expensive approach is based on the inequality

|Re(g(a + iw))| |g(a + iw)| g(a) ,

and then choosing
aopt = argmin

a2A+
ST

g(a) .

As a 7! g(a) is a convex function on A+
ST

, there exists a unique minimum, which can numerically be approximated by, for
example, golden section search.

3.2.2 Range of admissible a’s

Note that
�

�

�

MQ
lnST |Ft

(a + iw +1)
�

�

�

 EQ
h

�

�

�

elnST ·(a+iw+1)
�

�

�

| Ft

i

= EQ
h

�

�

�

elnST ·(a+1)
�

�

�

·
�

�

�

elnST ·iw
�

�

�

| Ft

i

= EQ ⇥S1+a

T | Ft
⇤

.

17[Abramowitz and Stegun, 1972], p. 890.
18[Kahl and Lord, 2006], p.12.

9



Therefore, a sufficient condition for the existence of the conditional MGF is that S1+a

T be integrable, i.e.

A+
ST

◆
n

a > 0 | EQ ⇥S1+a

T
⇤

< •
o

.

Since every (1+ â)-integrable variable is (1+a)-integrable for a < â , the set A+
ST

is an entire interval [0,amax] or [0,amax),
where amax 2 [0,•]. In the Black-Scholes models - with and without discrete dividends -, this set is simply the interval [0,•).
In the Bates and Heston model, we use the following approximation: A conservative approximation of A+

ST
is the interval

between the largest negative zero and the smallest positive zero of the polynomial

q(x) =
�

�r

3 +r

�

t

3
s

3
V x3 +

�

�rt

3
s

3
V +

��

3kr

2 �k

�

t

3 +
�

6r

2 �6
�

t

2�
s

2
V
�

x2

+
��

kt

3 +6t

2�
s

2
V +

�

�3k

2
rt

3 �12krt

2 �24rt

�

sV
�

x

+k

3
t

3 +6k

2
t

2 +24kt +48.

Let the said interval be denoted by [s,r]. To prevent numerical overflow and following the implementation of FGL in the
Benchop project, we further shrink this interval:

Ǎ+
ST

:= [0,min(0.999 · (r�1) ,50000)] .

This last step applies to all models, so that the interval in the Black-Scholes models is [0,50000].

3.2.3 Gauss-Laguerre method

The Gauss-Laguerre method of order n approximates an exponentially weighted integral via19

ˆ •

0
e�x f (x)dx ⇡

n

Â
j=1

w(n)
j f
⇣

x(n)j

⌘

,

which can be extended to any integral on [0,•] via
ˆ •

0
g(x)dx =

ˆ •

0
e�xexg(x)
| {z }

=: f (x)

⇡
n

Â
j=1

w(n)
j g
⇣

x(n)j

⌘

ex(n)j

| {z }

f
⇣

x(n)j

⌘

. (3.14)

The abscissa x(n)j is the j-th zero of the Laguerre polynomial Ln (x), and the j-th weight is

w(n)
j =

x(n)j

(n+1)2
h

Ln+1

⇣

x(n)j

⌘i2 .

In this thesis project, we apply this technique to the integral (3.11). Note that the real part of the integrand is symmetric, i.e.
ˆ
R
Re(g(a + iw))dw = 2

ˆ •

0
Re(g(a + iw))dw,

making it feasible to use approximation formula (3.14).
19[Abramowitz and Stegun, 1972], p. 890.
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4 Fourier cosine series method
This section is organized as follows: In Subsection 4.1, we derive the COS formula. The involved Fourier coefficients
are presented in 4.2 in the case of European call options. An exception to the general COS formula is the Black-Scholes
model with discrete dividends, for which we state a tailored COS formula in Subsection 4.3. We conclude by treating the
characteristic function in Subsection 4.4.

4.1 Method description
Our goal is to approximate the price of a European call option by means of the COS method.20 We denote the price by

p(x, t) := e�rtEQ [p(XT ,T ) | Xt = x] , (4.1)

where XT := log(ST/K) is the state process, and p(XT ,T ) :=
�

K
�

eXT �1
��+ the payoff function of a European call option.

In models with stochastic volatility Vt such as Heston and Bates, the conditional expectation in (4.1) must be replaced by
EQ [p(XT ,T ) | Xt = x,Vt = vt ]. The subsequent reasoning, however, remains valid in that case, hence assuming that the option
price is of the shape (4.1) leads to no loss of generality.

The expectation in (4.1) can also be expressed as an expectation with respect to the factorized conditional risk-neutral
measure of XT given Xt = x, which is A 7! Q(XT 2 A | Xt = x) for A 2 FT . Assuming that this measure has a continuous
density q(· | x) under the risk-neutral measure Q, the price equals

p(x, t) = e�rtEQ [p(XT ,T ) | Xt = x]

= e�rt

ˆ
R

p(y,T )dQ(XT = y | Xt = x)

= e�rt

ˆ
R

p(y,T )q(y | x)dy. (4.2)

The derivation of the COS formula can be separated into three steps:
Step 1: The Fourier cosine series expansion allows any function g : [a,b]! R to be represented as

g(x) =
•

Â
k=0

(0)ak cos
✓

k ·p x�a
b�a

◆

, for x 2 [a,b] , (4.3)

ak =
2

b�a

ˆ b

a
g(y)cos

✓

kp

y�a
b�a

◆

dy (4.4)

where the (0) means that the first coefficient should be multiplied by 1
2 . Formula (4.3) requires g to have a bounded interval

[a,b] as its domain or support. As we aim to apply it to the payoff function p(y,T ) and to the transitional density q(y | x), we
therefore need to truncate the integral (4.2):

p(x, t) = e�rt

ˆ
R

p(y,T )q(y | x)dy ⇡ e�rt

ˆ b

a
p(y,T )q(y | x)dy =: p1 (x, t; [a,b]) (4.5)

We will deal with the choice of a and b in Subsection 6.1.3.
Step 2: Next, consider the Fourier series expansion of p(y,T ) and q(y | x):

p(y,T ) =
•

Â
k=0

(0)Pk (T )cos
✓

kp

y�a
b�a

◆

, for y 2 [a,b] , where

Pk (T ) =
2

b�a

ˆ b

a
p(y,T )cos

✓

kp

y�a
b�a

◆

dy, and

q(y | x) =
•

Â
k=0

(0)Qk (x)cos
✓

kp

y�a
b�a

◆

, for y 2 [a,b] , where

Qk (x) =
2

b�a

ˆ b

a
q(y | x)cos

✓

kp

y�a
b�a

◆

dy.

20Section based on [Ruijter and Oosterlee, 2015], p. 1 - 3.
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Replacing the density q(y | x) by its Fourier cosine series in definition (4.5), interchanging summation and integration, using
the definition of Pk (T ) and truncating the series gives

p1 (x, t; [a,b]) = e�rt

ˆ b

a
p(y,T )

•

Â
k=0

(0)Qk (x)cos
✓

kp

y�a
b�a

◆

dy

= e�rt

•

Â
k=0

(0)Qk (x)
ˆ b

a
p(y,T )cos

✓

kp

y�a
b�a

◆

dy

= e�rt

b�a
2

•

Â
k=0

(0)Qk (x)Pk (T )

⇡ e�rt

b�a
2

N�1

Â
k=0

(0)Qk (x)Pk (T ) (4.6)

=: p2 (x, t; [a,b] ,N) .

Step 3: Lastly, we can approximate the coefficients Qk (x) by means of the conditional characteristic function f (w | x) :=´
R eiwyq(y | x)dy as follows:

Re

✓

f

✓

kp

b�a
| x
◆

e�ikp

a
b�a

◆

= Re

✓ˆ
R

eikp

y�a
b�a q(y | x)dy

◆

=

ˆ
R

cos
✓

kp

y�a
b�a

◆

q(y | x)dy,

hence

Qk (x) =
2

b�a

ˆ b

a
q(y | x)cos

✓

kp

y�a
b�a

◆

dy

⇡ 2
b�a

ˆ
R

q(y | x)cos
✓

kp

y�a
b�a

◆

dy

=
2

b�a
Re

✓

f

✓

kp

b�a
| x
◆

e�ikp

a
b�a

◆

.

The advantage of approximating the coefficients Qk (x) by the conditional characteristic function f (y | x) is that the latter is
known in many models, while the transitional density q(y | x) is not. Plugging this approximation into (4.6) yields the COS
formula:

p̂(x, t; [a,b] ,N) := e�rt

N�1

Â
k=0

(0)Re

✓

f

✓

kp

b�a
| x
◆

e�ikp

a
b�a

◆

Pk (T ) . (4.7)

The fact that the coefficients Pk (T ) do not depend on x allows pre-calculating them and using them for many different values
of the state process x. Evaluation of the COS formula (4.7) requires evaluation of Pk (T ) and f (· | x), for which we will
subsequently give analytical formulae.

4.2 Fourier cosine coefficients of European call options
Since the state process Xt = log(St/K) is defined as the scaled log-asset price, the payoff function p(XT ,T ) must be expressed
in terms of the scaled log-asset price, too.21 Therefore, denoting y := log(ST/K), the payoff function of a European call option
reads

p(y,T ) = (K (ey �1))+ .

To get an analytical formula for Pk (T ), we need the following results: Firstly, the cosine series coefficients ck of g(y) = ey on
[c,d]⇢ [a,b]

ck (c,d) :=
ˆ d

c
ey cos

✓

kp

y�a
b�a

◆

dy,

are known analytically as

ck (c,d) : =
1

1+
� kp

b�a
�2 [cos

✓

kp

d �a
b�a

◆

ed � cos
✓

kp

c�a
b�a

◆

ec

+
kp

b�a
sin
✓

kp

d �a
b�a

◆

ed � kp

b�a
sin
✓

kp

c�a
b�a

◆

ec].

21Section based on [Fang and Oosterlee, 2008], p. 832.
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Secondly, the cosine series coefficients yk of g(y) = 1 on [c,d]⇢ [a,b]

yk (c,d) :=
ˆ d

c
cos
✓

kp

y�a
b�a

◆

dy

are known as

yk (c,d) =

(

⇥

sin
�

kp

d�a
b�a
�

� sin
�

kp

c�a
b�a
�⇤ b�a

kp

, k 6= 0
d � c, k = 0.

Hence

Pk (T ) =
2

b�a

ˆ b

0
K (ey �1)cos

✓

kp

y�a
b�a

◆

dy =
2

b�a
K (ck (0,b)�yk (0,b)) .

4.3 COS formula in Black-Scholes model with discrete dividends
The Black-Scholes model with discrete dividends poses an exception to the COS formula (4.7).22 We use the following
formula to approximate the option price at time t:

p̂(x, t) = e�rt

N�1

Â
k=0

�0�Re

⇢

j

✓

kp

b�a
| x�a

◆�

Pk
�

t

��

with Fourier cosine coefficients

Pk
�

t

��=
2

b�a

ˆ b

a
p
�

y,t�
�

cos
✓

kp

y�a
b�a

◆

dy.

There holds p(y,t�) = p(y+ ln(1�D) ,t+).
We use discrete Fourier cosine transforms (DCT) to approximate the Fourier cosine coefficients Pk (t�). For this, we

take N grid points and define an equidistant y-grid

yn := a+
✓

n+
1
2

◆

b�a
N

and Dy :=
b�a

N
.

We determine the value of function p(y,t�) = p(y+ ln(1�D) ,t+) on the N grid points. The midpoint integration rule gives
us

Pk
�

t

�� ⇡
N�1

Â
n=0

2
b�a

p
�

yn,t
��cos

✓

kp

yn �a
b�a

◆

Dy

=
N�1

Â
n=0

p
�

yn,t
��cos

✓

kp

2n+1
2N

◆

2
N

=
N�1

Â
n=0

p
�

yn + ln(1�D) ,t+
�

cos
✓

kp

2n+1
2N

◆

2
N
.

The appearing DCT (Type II) can be efficiently calculated by, for example, the function dct in Matlab.

4.4 Characteristic function
In general, it holds for the characteristic function

f (w | Ft) = EQ ⇥eiwXT | Ft
⇤

= e�iw lnKEQ
h

eiw lnST | Ft

i

= e�iw lnKMQ
lnST |Ft

(iw) .

In each of the used models, we already provided an explicit formula for MQ
lnST |Ft

(z), in Subsection 3.1.3.

22Section based on [Ruijter and Oosterlee, 2015], p. 7.
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5 Monte-Carlo method
In this section, we describe the Monte-Carlo method used to compute reference prices, which are used to measure the error
of FGL and COS. This only applies to the Heston and Bates model, since in the Black-Scholes models we use closed-form
formulae to compute reference prices. The used Monte-Carlo method comprises two steps: Obtaining samples of the terminal
stock price ST and using variance reduction techniques to reduce the variance of the Monte-Carlo estimator. The first step is
semi-sequential in the sense that paths of the variance Vt are generated, but not of the stock price. It is described in detail in
Subsection 5.1 for the Heston model. The Monte-Carlo method can easily be extended to incorporate stochastic jumps in the
stock price, as they appear in the Bates model. We shortly describe this extension in Subsection 5.2. The mentioned variance
reduction techniques are described in 5.3.

5.1 Heston model
The Heston model, as formulated in the SDEs (2.1) and (2.2), relies on two Brownian motions W (1),W (2) with correlation
r .23 Those SDEs are equivalent to the following:

dSt = rStdt +
p

VtSt



rdW (1)
t +

q

1�r

2dW (2)
t

�

, (5.1)

dVt = k (q �Vt)dt +sV
p

VtdW (1)
t , (5.2)

with two independent Brownian motions W (1),W (2). The stock price and variance at time t, given their values at u < t, permit
the following expression:

St = Su exp


r (t �u)� 1
2

ˆ t

u
Vsds+r

ˆ t

u

p
VsdW (1)

s +
q

1�r

2
ˆ t

u

p
VsdW (2)

s

�

(5.3)

Vt = Vu +kq (t �u)�k

ˆ t

u
Vsds+sV

ˆ t

u

p
VsdW (1)

s . (5.4)

Our goal is to obtain a sample of ST so that we can compute a Monte Carlo simulation of the option price at u = 0, for
instance via

pMC = e�rT
N

Â
i=0

1
N

F
�

Si
T
�

, (5.5)

with F being the payoff function and S1
T , . . . ,S

N
T the individual samples. Actually, our Monte Carlo estimator is slightly more

complicated than (5.5) due to various variance reduction techniques, but we will elaborate on this detail in 5.3. As becomes
evident from (5.3) - (5.4), for sampling ST given S0,V0, it suffices to follow the following steps:

1. Generate a sample of Vt0 , . . .Vtn on an equidistant time grid [0 = t0 < t1 < .. . < tn = T ] of grid width ti+1 � ti = 1
100 .

2. Using the samples Vt0 , . . .Vtn , generate a sample of
´ T

0 Vsds.

3. Recover
´ T

0
p

VsdW (1)
s from (5.4).

4. Generate a sample of
´ T

0
p

VsdW (2)
s .

5. Combine all previous steps via (5.3), resulting in a sample of ST .

In steps 1 and 2, we diverge from (24), which does not use a time grid and uses characteristic functions to sample
´ T

0 Vsds.

5.1.1 Simulation of VT

According to (25), the variance Vt permits the following representation:

Vt =
s

2
V

⇣

1� e�k(t�u)
⌘

4k

c

02
d

 

4ke�k(t�u)

s

2
V
�

1� e�k(t�u)
�Vu

!

,u < t.

23Section based on [Broadie and Kaya, 2004]
24[Broadie and Kaya, 2004]
25[Cox et al., 1985]
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Here, c

02
d (l ) denotes a non-central chi-squared random variable with d degrees of freedom, where

l =
4ke�k(t�u)

s

2
V
�

1� e�k(t�u)
�Vu,

d =
4qk

s

2
V

.

Therefore, for sampling from Vt , it suffices to be able to sample from a non-central chi-squared distribution. For the latter, the
following two facts are useful: According to [Johnson et al., 1994], if d > 1, then c

02
d (l ) permits the following representation:

c

02
d (l ) = c

02
1 (l )+c

2
d�1, (5.6)

where c

2
d�1 is an ordinary chi-squared random variable. To sample from the latter, we use the Matlab routine chi2rnd. c

02
1 (l ),

in turn, can easily be sampled based on a standard normal random variable Z independent of c

2
d�1, so that (5.6) is equivalent

to
c

02
d (l ) =

⇣

Z +
p

l

⌘2
+c

2
d�1.

In the more general case d > 0, a noncentral chi-squared random variable can be represented as an ordinary chi-squared
random variable with a random degrees of freedom parameter. More specifically, let N be a Poisson random variable with
mean 1

2 l . Then c

2
d+2N has the same distribution as c

02
d (l ). So to sample from the latter, we first sample from N and then

from an ordinary chi-squared random variable c

2
d+2N with d +2N degrees of freedom.

We apply the aforementioned procedure to all u= ti and t = ti+1, for i= 0, . . . ,n�1, resulting in samples Vti for i= 1, . . . ,n.

5.1.2 Simulation of
´ T

0 Vsds

Deviating from the procedure described in (26), we use a simple trapezoidal rule to sample
´ ti

ti�1
Vsds:

ˆ ti

ti�1

Vsds ⇡
�

Vti +Vti�1

�

/2 · (ti � ti�1) .

The integral over the entire time interval [0,T ] is then simply the sum of all intermediate intervals:
ˆ T

0
Vsds =

n

Â
i=1

ˆ ti

ti�1

Vsds.

5.1.3 Simulation of
´ T

0
p

VsdW (1)
s ,
´ T

0
p

VsdW (2)
s and ST

A sample of
´ T

0
p

VsdW (1)
s can easily be obtained by solving equation (5.4) for it. This yields

ˆ T

0

p
VsdW (1)

s =
1

sV

✓

VT �V0 �kqT +k

ˆ T

0
Vsds

◆

,

in which we can simply insert the samples of
´ T

0 Vsds and VT .
In addition, the SDEs (5.1) - (5.2) of the Heston model make it obvious that Vt is independent of the Brownian motion

W (2). Hence,
´ T

0
p

VsdW (2)
s is normally distributed with mean 0 and variance

´ T
0 Vsds, so it can be simulated via the variable

sˆ T

0

p
Vsds ·G,

with G being a standard normal variable.
Combining these results, we generate a sample of ST by inserting the samples of

´ T
0 Vsds,

´ T
0
p

VsdW (1)
s and

´ T
0
p

VsdW (2)
s

into (5.3):

ST = S0 exp

2

4rT � 1
2

ˆ T

0
Vsds+r

ˆ T

0

p
VsdW (1)

s +

s

(1�r

2)

ˆ T

0
Vsds ·G

3

5 (5.7)

26[Broadie and Kaya, 2004]
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5.2 Bates model
Generating samples of ST in the Bates model is a simple extension of the aforementioned procedure in the Heston model,
because the jumps can be treated separately.27 The procedure is as follows:

1. Ignore the jump part in (2.3) and simulate ST in the same way as in the Heston model.

2. Generate a sample from a Poisson random variable NJ with mean lT , representing the number of jumps that occured
in the time horizon [0,T ]. Here, l refers to the jump intensity of the Poisson process in (2.3).

3. Simulate the log-jumps as a normal random variable J with mean �lT
⇣

ed

2/2+g �1
⌘

+NJg and variance d

2NJ .

4. Compute the ST sample as

ST = S0 exp

2

4rT � 1
2

ˆ T

0
Vsds+r

ˆ T

0

p
VsdW (1)

s +

s

(1�r

2)

ˆ T

0

p
Vsds+ J

3

5 .

5.3 Variance reduction techniques
28The previously described procedure yields samples of ST , which can be used to form a crude Monte Carlo estimator. We
improve this estimator by applying three variance reduction techniques: Importance sampling, antithetic sampling and control
variates. In each of the paragraphs 5.3.1 - 5.3.3, we describe these techniques first in general, and then specify how we apply
them to our test setting.

5.3.1 Importance sampling

A problem we encounter in the Heston and Bates models for some test parameters is that many of the Monte Carlo samples
are zero. This can occur when the initial stock price S0 is significantly lower than the strike price K, so that many of the stock
samples Si

T end up being lower than K, too, resulting in a zero payoff at time T . To address this problem, we make use of
importance sampling, which is based around the idea of using a measure change to force the payoff F(ST ) to be non-zero
more often. More specifically, let Q be the risk-neutral measure implicitly used all along, so that the option price can be
expressed as

p = e�rTEQ [F(ST ) | F0] .

Now, find a measure Q0 ⇠Q and a Q0-density L := dQ
dQ0 . Then the option price also permits the representation

p = e�rTEQ0
[F(ST )L] .

We want to choose Q0 such that the probability of a non-zero outcome Q0 (F(ST )> 0) is reasonably high. Simulating ST and
L under Q0 yields a Monte Carlo estimator of

pMC,IS =
1
N

N

Â
i=1

F
�

Si
T
�

Li.

The SDEs (2.1), (2.2) and (2.3), (2.4) characterising the Heston and Bates models are special cases of the following SDE
system:

dSt = rStdt +s (t,St ,Vt)StdWQ
t +St�dZt ,

dVt = m(t,Vt)dt + l (t,Vt)dWQ
t .

We choose Q0 such that

dSt = aStdt +s (t,St ,Vt)StdWQ0
t +St�dZt , (5.8)

dVt = m(t,Vt)dt + l (t,Vt)dWQ0
t ,

27Section based on [Broadie and Kaya, 2004], p. 20ff.
28Section based on [Boyle, 1997]
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where WQ0 is a 2-dimensional standard Brownian motion under Q0, and Z is a compound Poisson process like in the Bates
model. The Girsanov kernel g in the measure change should then satisfy a�s (t,St ,Vt)g(t) = r, yielding

L = exp
✓

�1
2

ˆ T

0
|g(u)|2 du�

ˆ T

0
g(u)⇤dWQ0

(u)
◆

.

In the Heston and Bates models, we have

s (t,St ,Vt) =



r

p
Vt ,
q

1�r

2
p

Vt

�

,

m(t,Vt) = k (q �Vt) ,

l (t,Vt) =
⇥

sV
p

Vt ,0
⇤

,

g(t)⇤ =

"

0,
a� r

p

1�r

2pVt

#

,

and hence

L = exp

 

�1
2

ˆ T

0

(a� r)2

(1�r

2)Vu
du�

ˆ T

0

a� r
p

1�r

2pVu
dWQ0

2 (u)

!

.

Using that

ST
d
= S0 exp

0

@rT � 1
2

ˆ T

0
Vudu+r

✓

VT �V0 �kqT +k

ˆ T

0
Vudu

◆

/sV +

s

(1�r

2)

ˆ T

0
VsdsG+ J

1

A , (5.9)

J d
= �lT

�

exp
�

g

2/2+d

�

�1
�

+NJd + g

p

NJGJ ,

NJ ⇠ Poi(lT ) ,G ⇠ N (0,1) ,GJ 2 N (0,1) ,G and GJ independent,

we can further reduce variance by conditioning L on {Vu | 0  u  T} and ST , yielding

L̃ = EQ0
[L | {Vu | 0  u  T} ,ST ]

d
= exp

0

@� (a� r)2 T 2

2(1�r

2)
´ T

0 Vudu
� (a� r)T
p

1�r

2
q´ T

0 Vudu
G

1

A , (5.10)

where G is the same standard normally distributed G as above. Numerical experiments suggest to use

a =
ln(K/St)

2T

in (5.8). We use

a = max
✓

ln(K/St)

2T
,�2r

◆

,

so that we do not change measure when the option is deep in the money.

5.3.2 Antithetic sampling

For simplicity, let V := F(ST ). Ignoring the discounting factor, our goal is to estimate E [V ]. Assume there is a variable V 0

such that

1. E [V 0] = E [V ]

2. V [V 0] = V [V ]

3. V 0 can be simulated at the same complexity as V .

Then the variable
W :=

V +V 0

2
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has the same expectation as V and has variance

V [W ] =
1
4
�

V [V ]+2C
⇥

V,V 0⇤+V
⇥

V 0⇤�

=
1
2
�

V [V ]+C
⇥

V,V 0⇤� .

The number of samples of V needed to achieve an error less than any given e > 0 is

NV > l

2
a/2

V [V ]

e

2 .

Likewise, there holds

NW > l

2
a/2

V [W ]

e

2 .

Taking into account that simulating W has double the complexity of simulating V (because both V and V 0 must be simulated,
at the same complexity), it is better to use W if

2l

2
a/2

V [W ]

e

2 < l

2
a/2

V [V ]

e

2 ,

which is equivalent to

V [V ]+C
⇥

V,V 0⇤ < V [V ]

, C
⇥

V,V 0⇤ < 0.

Therefore, finding a V 0 that is negatively correlated to V improves accuracy. The following theorem proves useful in this
context:

Theorem 5.1. Let V = j (U), where j : R! R is a monotone function. Moreover, assume that there exists a non-increasing
transform T : R! R such that U d

= T (U). Then V = j (U) and V 0 = j (T (U)) are identically distributed and

C
⇥

V,V 0⇤= C [j (U) ,j (T (U))] 0.

In our case, we apply this to the standard normal variable U = G in (5.10) and (5.9), and the transform we use is T (U) =
�G. Combined with importance sampling, V will be

V = F(ST ) L̃

=

0

@S0 exp

0

@rT � 1
2

ˆ T

0
Vudu+r

✓

VT �V0 �kqT +k

ˆ T

0
Vudu

◆

/sV +

s

(1�r

2)

ˆ T

0

p
VsdsG+dJ

1

A�K

1

A

+

·exp

0

@� (a� r)2 T 2

2(1�r

2)
´ T

0 Vudu
� (a� r)T
p

1�r

2
q´ T

0 Vudu
G

1

A .

Simplifying the notation, this is really the same as

V = j (G) = (S0 exp(µ +sG)�K)+ · exp
�

µ

0+s

0G
�

,

with µ,s ,µ 0,s 0 defined in the obvious way. Likewise, the antithetic variable is

V 0 = j (T (G)) = (S0 exp(µ �sG)�K)+ · exp
�

µ

0 �s

0G
�

.

The transformation j is a composition of several transformations, namely

x 7! µ +sx,
y 7! S0 exp(y) ,
z 7! (z�K)+ ,

x0 7! µ

0+s

0x0,
(v,w) 7! v ·w.

They are all monotonously increasing except for the last one, which however is also increasing in each argument on the used
domain: The arguments v = (S0 exp(µ �sG)�K)+ and w = exp(µ 0 �s

0G) are always positive. Utilizing Theorem 5.1, the
variables V,V 0 have therefore negative correlation, making this a useful improvement. It is also evident that the transformation
T does not increase computational complexity.
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5.3.3 Control variates

The aforementioned procedures produce samples of ST and L, which we refer to by Si
T and Li for i = 1, . . . ,N, respectively. As

their antithetic variables, it also yields samples S̃i
T and L̃i which are negatively correlated with the former samples. Combining

importance sampling and antithetic sampling, an unbiased Monte Carlo estimator would be:

pMC = e�rT 1
N

N

Â
i=1

1
2

⇣

F
�

Si
T
�

Li +F
⇣

S̃i
T

⌘

L̃i

⌘

.

For simplicity, we define Xi := 1
2

⇣

F
�

Si
T
�

Li +F
⇣

S̃i
T

⌘

L̃i

⌘

as samples of a random variable X . We further optimize our Monte
Carlo estimate by employing a control variate. In general, this technique works as follows: Assume there is a random variable
Y such that

1. m := E [Y ] is known, and

2. X �Y can be computed at the same complexity as F(ST ).

Then the random variable
Z := X +a (Y �m) (5.11)

for any a has the same expectation as X . Hence, if X1, . . . ,XN and Y1, . . . ,YN are i.i.d. samples of X and Y , respectively, then

p̃MC = e�rT 1
N

N

Â
i=1

(Xi +a (Yi �m)) (5.12)

is an unbiased Monte Carlo estimator of the option price. The trick of the control variate technique lies in choosing a such
that the variance of (5.12) or, equivalently, of (5.11) is minimal. Finding the optimal a is simple:

V [Z] = V [X +a (Y �m)] (5.13)
= V [X ]+2aC [X ,Y ]+a

2V [Y ]

Differentiating this expression by a , equating to 0 and solving for a yields

a

⇤ =�C [X ,Y ]
V [Y ]

,

which we can estimate from the sample of ST and Y . Inserting a

⇤ into (5.13) yields

V [Z] = V [X ]
⇣

1�r (X ,Y )2
⌘

, (5.14)

where r (X ,Y ) denotes the correlation of X and Y . Equation (5.14) thus shows that we should choose Y such that its correlation
is close to 1 or -1 in order to achieve a high reduction in variance.

Moving from the general description of the control variate technique to our specific problem, we chose as a control variate

Y := e�rT �ST L+ S̃T L̃
�

/2�S0,

which has a known expectation of m = 0, due to the fact that e�rT ST L is a martingale under Q0, and thus its antithetic variable
S̃T L̃, too. It is reasonable to assume that this choice of Y has positive correlation with X .
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6 Tests
This section is divided into three parts: In Subsection 6.1, we describe the testing methodology, which includes aspects such
as model and method-specific parameters. In Subsection 6.2, we briefly specify the four test cases. Lastly, in Subsection 6.3,
we present the test results both in terms of accuracy and computational speed.

6.1 Methodology
6.1.1 Overview

Our goal is to provide a broader test coverage than the Benchop project. Additionally, we aim at discovering dependencies of
the option pricing error on the model parameters, the model and the used pricing method. For this purpose, we consider four
major test cases: Black-Scholes, Black-Scholes with discrete dividends, Heston and Bates. Each test case encompasses many
combinations of model parameters. We refer to J for a combination of parameters and QM for all combinations of model
parameters in a model M. For instance, in the Black-Scholes model, we have J = (t,S0,r,s ,K) 2 QBS. For the choice of QM ,
we refer to Subsection 6.1.2.

For each single combination of parameters, we compute the reference price of a European call option via analytical
formulae, where available, or Monte-Carlo. Such formulae are available for the Black-Scholes model with and without
discrete dividends, but not for Heston and Bates. For the latter, we use Monte Carlo because it is a robust and wide-spread
technique. As for the choice of the financial product, we chose a European call option because it is very common in financial
markets and because this thesis is based on the Benchop project, which also largely used that product.

In addition to the reference price, we compute the price via FGL and COS. The error of both methods are then measured
by the relative difference to the reference price: for example, if p(J ,M,FGL) is the FGL option price in model M with model
parameters J and p(J ,M, ref) is the reference price in the same model setup, then the raw error is

Eraw (J ,M,FGL) :=
|p(J ,M,FGL)� p(J ,M, ref)|

p(J ,M, ref)
.

The COS error is defined analogously. In the Heston and Bates model, the reference method is a non-deterministic one (Monte
Carlo) and should therefore not be regarded as an exact option price, but always in conjunction with its (1�a)-confidence
interval that covers the real option price with probability 1�a . Consequently, we define the FGL and COS error to be 0 if the
respective price falls within this confidence interval. The latter is given by

[c1,c2] :=


pre f �u1�a/2
ŝp
NS

, pre f +u1�a/2
ŝp
NS

�

,

where pre f is the reference price, u1�a/2 the (1�a/2)-quantile of the standard normal distribution, NS the number of simu-
lation steps and ŝ is the standard deviation estimated from the Monte Carlo sample. We use a = 0.05, so that u1�a/2 ⇡ 1.96.
To summarise, in the Heston and Bates model we measure the error by

E (J ,M,FGL) :=

(

0, if pFGL 2 [c1,c2] ,

Eraw (J ,M,FGL) , else.

and likewise for COS. In the Black-Scholes models, we simply use the raw error.
The described procedure enables us to consider the error a function of the model parameters J , the model M and the

pricing method. Since there are generally too many combinations of model parameters to depict or list the error for each one
- e.g. 2304 in the Bates test case -, we take the median 1. intra- and 2. inter-model-wise.

By an intra-model median, we mean the following: Let M 2 {BS1, BS1DD, Heston, Bates} be any of the tested models,
and QM the corresponding set of combinations of model parameters. Now fix a parameter with more than one distinct value
in QM , say t , and for each value of t take the median of the error with respect to all other parameters. This yields a function

t 7! median
n

E (J ,M,FGL) | J =
⇣

t

J ,SJ

0 , . . .
⌘

2 QM,tJ = t

o

,

allowing us to examine the dependence of the error on the parameter t . We do the above for both FGL and COS and all
parameters that have more than one distinct value in QM .

By inter-model median, we simply mean taking the median of all errors within each model and then compare across
models. Thus, we are equipped with the function

{BS1,BS1DD,Heston,Bates} ! R�0,

M 7! median{E (J ,M,FGL) | J 2 QM} ,
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and its equivalent for the COS method. BS1 stands for Black-Scholes and BS1DD for Black-Scholes with discrete dividends.
Taking the median intra- and inter-model-wise allows us to discover dependencies of the error on each model parameter

within a given model and on the model itself. We depict the errors of both methods alongside each other in Subsection 6.3.

6.1.2 Model parameters

In order to provide a more comprehensive test coverage of the FGL and COS methods than in the Benchop project, each
model is tested with a set of many different combinations of model parameters, which we refer to by QM for any given
model M. This set QM is defined as follows: First, we choose a set of test values for each single model parameter. For in-
stance, in the Black Scholes model, these are Qt

M = {0.25,0.5,0.75, . . . ,2} ,QS0
M = {70,80,90, . . . ,130} ,Qr

M = {0.03} ,Qs

M =
{0.25,0.5,0.75,1} ,QK

M = {100} for time to maturity, current stock price, risk-free interest rate, stock price volatility and
strike price, respectively. The set of parameter combinations is simply their Cartesian product:

QBS := Qt

M ⇥QS0
M ⇥Qr

M ⇥Qs

M ⇥QK
M

The exception of this rule is the parameter V0 (initial volatility) in the Heston and Bates models. To keep the number
of simulations at a reasonable level, we set this parameter equal to the long-term volatility q . Hence, the set of parameter
combinations in the Heston model is

QHeston :=
n

(S0,K,t,r,k,q ,V0,sV ,r) | S0 2 QS0
M ,K 2 QK

M,t 2 Qt

M,r 2 Qr
M,k 2 Qk

M,q 2 Qq

M,V0 = q ,sV 2 QsV
M ,r 2 Qr

M

o

,

and the set QBates is defined analogously.
For the sake of consistency, we wanted the different models to share their parameter sets, where possible. For instance,

Heston and Bates use the same set of test values for correlation. All parameters are listed in table 6.1.
Due to the high number of parameters of the Bates and Heston models and to keep computational time at a reasonable

level, we restricted the size of each parameter test set. The choice of parameters is often motivated by including some small,
intermediate and large values.

Parameter Description Values Used in models
t time to maturity 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 BS1, BS1DD
t time to maturity 0.5, 1, 1.5, 2 Heston, Bates
S0 current stock price 70, 80, 90, 100, 110, 120, 130 BS1, BS1DD
S0 current stock price 85, 100, 115 Heston, Bates
r risk-free interest rate 0.03 BS1, BS1DD, Heston, Bates
K strike price 100 BS1, BS1DD, Heston, Bates
s stock price volatility 0.25, 0.5, 0.75, 1 BS1, BS1DD
D dividend yield 0.01, 0.05, 0.1 BS1DD
a time of dividend payment (as percentage of t) 0.25, 0.5, 0.75 BS1DD
sV volatility of volatility 0.5, 0.75, 1 Heston
sV volatility of volatility 0.25, 1 Bates
r correlation of Brownian motions -0.5, 0, 0.5 Heston, Bates
k mean reversion speed of volatility 0.1, 0.5, 1 Heston
k mean reversion speed of volatility 0.25, 1 Bates
q mean volatility 0.1, 0.5, 1 Heston
q mean volatility 0.25, 1 Bates
l jump intensity of Poisson process Jt 0.25, 1 Bates
g mean jump size 0.25, 1 Bates
d jump standard deviation 0.25, 1 Bates

Table 6.1: Table of model parameters. Note that Heston and Bates use a smaller parameter set for time to maturity t and
current stock price S0. This is because these models have more model parameters than the Black-Scholes type models, and
we aimed at keeping the computation time at a reasonable level.

6.1.3 Method-specific parameters

FGL A discretionary parameter of FGL is the number of weights n in the Gauss-Laguerre quadrature. We used n = 1000
as a tradeoff between high accuracy and the peril of long computation times and numerical overflow. To understand the latter,
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note that the maximum of the abscissae in the Gauss-Laguerre quadrature increase as n increases. As the FGL method involves
evaluating the MGF at these abscissae and the MGF in the Heston and Bates model contain exponentials, this may result in
numerical overflow.

COS Two of the errors introduced by the COS formula (4.7) stem from the truncation of the integration range in (4.5) to
[a,b] and the truncation of the summation in (4.6) to N coefficients. For the choice of [a,b], Fang and Oosterlee recommend:29

[a,b] =


c1 �L
q

c2 +
p

c4,c1 +L
q

c2 +
p

c4

�

, with L = 10. (6.1)

c1,c2,c4 are the cumulants, i.e. the derivatives of the log-moment generating function of the state process at zero:

ci :=
∂

i

∂ ti logE
⇥

etX0
⇤

|t=0 .

Clearly, the disadvantage of formula (6.1) is that it requires the cumulants to be analytically known, which can be difficult for
intricate MGFs as the ones in the Heston and Bates model. In some models, we altered this formula to achieve better accuracy.
Overall, the following values for L and N were used:

• Black-Scholes: [a,b] =
⇥

c1 �L
p

c2,c1 +L
p

c2
⇤

, where c1 =
�

r�s

2/2
�

t,c2 = s

2
t,L = 6.6,N = 26

• Black-Scholes with discrete dividends: [a,b] =
⇥

c1 �L
p

c2,c1 +L
p

c2
⇤

, with c1 and c2 as above and L = 6.8,N = 41

• Heston: [a,b] = [c1 �L,c1 +L], where c1 = rt +(1� e�kt)(q �V0)/(2k)�qt/2,L = 7.4,N = 12

• Bates: [a,b] =
⇥

c1 �L ·
�

�

p

c2 + c2 +
p

c4
�

� ,c1 +L ·
�

�

p

c2 + c2 +
p
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�

�

⇤

, where

c1 = t

⇣

r+l

⇣

g � eg+d

2/2 +1
⌘⌘

+
�

1� e�kt

�

(q �V0)/(2k)�qt/2,

c2 = qt (1+sV ) ,

c2 = lt

�

g

2 +d

2� ,

c4 = lt

�

g

4 +6d

2
g

2 +3d

4
l

�

,

L = 9,
N = 250.

We obtained the above values for L and N as follows: For each model, we defined a small sets of test cases for calibration,
which do not overlap with the test cases described in table 6.1 and adhered to the following procedure:

1. For each model and calibration set, compute the reference prices.

2. For each test case, optimize N and L such that all COS prices match the reference prices well. More precisely, for each
N 2 {2, . . . ,1000}, optimize L 2 (0,500) so that the absolute error of COS price to reference price is minimized. Then,
we chose the smallest N and the corresponding L such that the maximal error is below a tolerance of 10�4.

3. With the thusly obtained N,L, repeat computing the COS prices, but this time for the larger set of test cases.

To be clear, in step 3 we used the same L,N for all combinations of parameters. Since the smaller set of test cases for
calibration does not coincide with the larger set of test cases, we can argue that the COS prices are not tailored to the reference
prices and that we used the calibration set only to get a general idea of which L,N to use. The calibration sets of parameter
combinations are defined in table 6.2.

29[Fang and Oosterlee, 2008], p. 839.
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Parameter Description Values Used in models
t time to maturity 0.5, 1, 1.5 BS1, BS1DD
t time to maturity 0.5, 1.5 Heston, Bates
S0 current stock price 85, 115 BS1, BS1DD
S0 current stock price 90, 110 Heston, Bates
r risk-free interest rate 0.03 BS1, BS1DD, Heston, Bates
K strike price 100 BS1, BS1DD, Heston, Bates
s stock price volatility 0.33, 0.66, 1 BS1, BS1DD
sV volatility of volatility 0.5 Heston
D dividend yield 0.05, 0.1 BS1DD
a time of dividend payment 0.33, 0.66 BS1DD
k reversion speed of volatility 0.25, 0.75 Heston, Bates
q mean volatility 0.25, 0.75 Heston, Bates
r correlation of Brownian Motions -0.5, 0.5 Heston
r correlation of Brownian Motions -0.25, 0.25 Bates
l jump intensity of Poisson process Jt 0.5 Bates
g mean jump size 0.5 Bates
d jump standard deviation 0.5 Bates

Table 6.2: Table of model parameters used for calibration of L,N in the COS method in the BS1, BS1DD, and Heston model.
As before, we used all combinations of the respective parameters.

Monte Carlo We set the number of particles to NS = 1,000,000 and the number of time steps NT proportional to the time
to maturity, with 100 per year. So for example, if t = 2, then NT = 200.

6.1.4 Hard- & software

All code is run on a 2,3 GHz Intel Core i7 with Matlab R2015b and the following toolboxes: Financial Toolbox, Optimization
Toolbox, Parallel Computing Toolbox, Signal Processing Toolbox, Statistics and Machine Learning Toolbox and Symbolic
Math Toolbox. Additional libraries used: the Benchop files30, the allcomb utility function31 and a golden section search
function from Matlab File Exchange32.

6.2 Test case specification
6.2.1 Black-Scholes model

• Model: Black-Scholes (see Subsection 2.2.1)

• Reference value: The Black-Scholes formula:

f (S0,K) = N (d1)S0 �N (d2)Ke�rt ,

d1 =
1

s

p
t

✓

ln
✓

S0

K

◆

+

✓

r+
s

2

2

◆

t

◆

,

d2 = d1 �s

p
t.

• Parameters: All combinations of S0,t,K,s ,r in table 6.1.

6.2.2 Black-Scholes model with discrete dividends

• Model: Black-Scholes with discrete dividends (see Subsection 2.2.2)
30http://www.it.uu.se/research/project/compfin/benchop
31http://www.mathworks.com/matlabcentral/fileexchange/10064-allcomb
32http://www.mathworks.com/matlabcentral/fileexchange/25919-golden-section-method-algorithm
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• Reference value: By [Björk, 2009], Proposition 16.6, p. 235, the price in this model is the same as the price in the BS
model without discrete dividends, but with S0 (1�D) instead of S0 as the underlying price. Hence, we can employ the
BS formula:33

f (S0,K) = N (d1)S0 (1�D)�N (d2)Ke�rt ,

d1 =
1

s

p
t

✓

ln
✓

S0 (1�D)

K

◆

+

✓

r+
s

2

2

◆

t

◆

,

d2 = d1 �s

p
t.

• Parameters: All combinations of S0,t,K,s ,r,D,a from table 6.1.

6.2.3 Heston model

• Model: Heston (see Subsection 2.2.3)

• Reference value: A Monte-Carlo simulation with N = 1,000,000 particles using importance sampling, anithetic sam-
pling, and a control variate.34

• Parameters: All combinations of S0,t,K,sV ,r,r,k,q from table 6.1. The initial volatility V0 is always equal to sV .

6.2.4 Bates model

• Model: Bates (see Subsection 2.2.4)

• Reference value: For each combination of the model parameters, the reference value is a Monte Carlo approximation
with N = 1,000,000 particles using importance sampling, anithetic sampling, and a control variate.35

• Parameters: All combinations of S0,K,t,r,k,q ,sV ,r,l ,g,d from table 6.1. The initial volatility V0 is always equal
sV .

6.3 Results
In this subsection, we present the results of our previously specified test cases. For each test case, we list the median, mean,
maximum and standard deviation of the relative error in tables 6.3 - 6.6. The sensitivity of the relative error to the model
parameters is depicted in figures 6.1 - 6.5. Furthermore, the mean, median and maximum relative error as a function of the
model are shown in figure 6.6. Additionally, the median, mean, maximum and standard deviation of the computation times
are listed in tables 6.7 - 6.10. All computation times are given in seconds.

For both methods, we mostly achieve several digits of relative accuracy, with the exception of the maximal COS error in
the Bates model. By comparison, the relative Monte Carlo error - as measured by the length of the confidence interval divided
by the Monte Carlo price - is typically around 1.4 ·10�3.

The Black-Scholes models are similar in the sensitivity of both errors to changes in model parameters: The mean relative
COS error exhibits a local minimum for values of t and s around 0.5. The FGL error is generally smaller than the COS error
by several magnitudes and also rather insensitive to changes of model parameters. A noteworthy aspect of the Black-Scholes
model with discrete dividends is that the COS error decreases strongly as a increases from 0.25 to 0.5.

In the Heston and Bates model, the FGL error is again generally smaller than the COS error, but to a lesser extent,
especially in the Heston model. The FGL error in the Bates model behaves similar to the Black-Scholes models in that it is
rather insensitive to changes of the model parameters. This is different in the Heston model, where both errors are similarly
sensitive. Furthermore, in the Heston model, both errors decrease for higher values of S0,t,r,k . In the Bates model, the COS
error increases strongly as t,l ,g,d increase. Since these parameters correspond to the number and size of jumps occuring
in the stock price paths, this shows that the COS method performs worse as the jump aspect of that model becomes more
prominent.

Comparing the overall error between models, the mean, maximum and standard deviation of both errors are significantly
higher in the Heston and Bates model compared to the Black-Scholes models.

The mean and maximum of the COS error increases sharply in the Bates model compared to the other models, while the
FGL error is less sensitive.

33from [von Sydow et al., 2015], p. 16
34See the Matlab routine HestonEuCall_CVISA_ref.m in the thesis code. The Monte Carlo scheme was implemented by Magnus Wiktorsson.
35See the Matlab routine BatesEuCall_CVISA_ref.m in the thesis code. The Monte Carlo scheme was implemented by Magnus Wiktorsson.
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In terms of computation time, both COS and FGL are by far faster than the Monte Carlo methods, which, on average, take
more than a minute for a single price. Unlike FGL and COS, it also becomes slower for high times to maturity t , because the
number of points on each stock price path is proportional to t . In fact, the slowness of Monte Carlo drove us to restrict the
number of parameter combinations to test, so that the computation time could be kept below a reasonable limit. Comparing
the two other methods, FGL is generally slower than COS. The difference is, however, small, as even the slowest computation
of a FGL price finishes within ⇡ 0.7 seconds.

median mean max stdev
FGL 1.07e-15 1.76e-15 2.76e-14 2.81e-15
COS 2.95e-09 1.68e-08 1.27e-06 8.67e-08

Table 6.3: Black-Scholes model: Relative FGL and COS error. The FGL error is by several magnitudes smaller than the COS
error. Furthermore, it varies less, as measured by the lower standard deviation.

median mean max stdev
FGL 1.13e-15 2.06e-15 3.68e-14 3.53e-15
COS 9.81e-10 5.92e-08 3.06e-05 7.10e-07

Table 6.4: Black-Scholes model with discrete dividends: Relative error of FGL and COS. Similar to the Black-Scholes model,
the COS method exhibits a higher error than the FGL method. This is especially true for the maximal error. Additionally, the
COS error fluctuates more, as indicated by the higher standard deviation.

median mean max stdev
FGL 0.00e+00 3.60e-05 2.31e-03 2.01e-04
COS 0.00e+00 4.55e-05 2.44e-03 2.30e-04

Table 6.5: Heston model: Relative error of FGL and COS. In contrast to the Black-Scholes models, FGL and COS perform
similarly well here.

median mean max stdev
FGL 0.00e+00 3.74e-05 2.00e-03 1.83e-04
COS 0.00e+00 4.12e-03 6.83e-01 2.77e-02

Table 6.6: Bates model: Relative FGL and COS error. The FGL error is smaller than the COS error, but the difference is not
as big as with the Black-Scholes models. The exception is the maximal error, which is fairly high for the COS method.
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Figure 6.1: Mean relative error of FGL and COS by t,S0,s in the Black-Scholes model with logarithmic scale. The FGL
error is always by several magnitudes smaller than the COS error. Furthermore, it is fairly insensitive to the model parameters,
whilst the COS error is minimal for low-to-medium maturities and volatilities.
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Figure 6.2: Mean relative error of FGL and COS as a function of t,S0,s ,a and D in the Black-Scholes model with discrete
dividends. As with the Black-Scholes model, the FGL error is far smaller than the COS error and is much less subject
to changes in the model parameters. The FGL error decreases slightly as t,S0 and s increase, and is rather insensitive to
changes in a and D. The COS error decreases strongly for maturities up to 0.5 and for volatilities of 0.5, then increases again
for higher values of each parameter. It also generally decreases as the stock price and a increase.
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Figure 6.3: Mean relative error in the Heston model by S0,t,sV ,r,k and q , linearly scaled. The dependence on the initial
volatility V0 is omitted because this parameter is always equal to sV , as stated in Section 6.1.2. FGL is generally more accurate
than COS, although the relative difference is much smaller than in the Black-Scholes models. Both errors decrease as S0 and
k increase, and are small for medium values of sV ,r and q . They are maximal for medium time-to-maturity.
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Figure 6.4: Mean relative error of FGL and COS in the Bates model by S0,t,sV ,r,k and q . The FGL error is generally
smaller than the COS error, and less sensitive to changes in the model parameters. The COS error increases strongly as t

does.
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Figure 6.5: Mean relative error of FGL and COS in the Bates model dependent on l ,g and d . The COS error increases
strongly with all parameters, while the FGL error is rather insensitive.
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Figure 6.6: Mean relative error of FGL and COS by tested model. The mean and maximal COS error is much greater than the
FGL error in the Bates model.
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median mean max stdev
ref 8.54e-04 9.13e-04 2.70e-03 1.70e-04

FGL 1.80e-02 1.82e-02 2.51e-02 1.04e-03
COS 6.69e-05 8.38e-05 1.41e-03 9.20e-05

Table 6.7: Computational time of the reference method (BS formula), FGL and COS in the Black-Scholes model in seconds.
The most apparent difference is that FGL is generally slower than COS or the BS formula. Even so, all methods are fairly
fast, with the overall longest computation time being less than 3/100 seconds.

median mean max stdev
ref 8.60e-04 9.28e-04 2.90e-03 2.08e-04

FGL 1.81e-02 1.88e-02 3.60e-02 2.23e-03
COS 3.48e-04 3.88e-04 3.24e-03 1.37e-04

Table 6.8: Computational time of the reference method (BS formula), FGL and COS in the Black-Scholes model with discrete
dividends. The results are similar to the ordinary Black-Scholes model, with FGL being the slowest method.

median mean max stdev
ref 6.19e+01 8.81e+01 2.73e+02 8.31e+01

FGL 1.97e-02 2.07e-02 7.04e-01 2.20e-02
COS 3.32e-04 3.49e-04 1.46e-03 8.32e-05

Table 6.9: Computational time of the reference method (Monte Carlo), FGL and COS in the Heston model. Both FGL and
COS are by far faster than Monte Carlo, which takes on average more than a minute per computed price. By contrast, even the
slowest computation of a FGL or COS price finishes within ⇡ 0.7 seconds. Comparing only FGL and COS with one another,
one again notices the same pattern as in the previous models: COS is faster than FGL.

median mean max stdev
ref 2.16e+01 6.71e+01 1.15e+03 8.45e+01

FGL 5.13e-02 4.29e-02 7.90e-02 1.31e-02
COS 2.87e-04 2.99e-04 1.80e-03 5.50e-05

Table 6.10: Computational time of the reference method (Monte Carlo), FGL and COS in the Bates model. The results are
similar to the Heston model: Monte Carlo is by far the slowest method, while COS and FGL are very fast, with COS being
slightly faster.
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7 Summary
We conclude by discussing some of the advantages and disadvantages of each method, including Monte Carlo.

The main advantage of the FGL and COS methods compared to Monte Carlo is their speed: While the computation of a
Monte Carlo price can take several minutes, the slowest computation of a FGL / COS price was ⇡ 0.7 seconds. Typically, this
time is much shorter, though, with ⇡ 0.02 seconds per FGL price and ⇡ 0.003 seconds for a COS price. This is clearly a big
computational gain, and might be especially useful in areas where option pricing needs to be done very frequently, such as the
calibration of model parameters.

Furthermore, the Monte Carlo computational time increases with time to maturity, as longer stock price and volatility paths
need to be simulated. FGL and COS do not have this dependency. However, the relative abundance of cheap computational
power might render this advantage less important. This is especially true since Monte Carlo methods can be parallelized to a
large extent.

A major disadvantage of both Fourier methods - FGL and COS - is that they are not as straightforward to understand and
implement as Monte Carlo methods. This can make adjustments of the pricing procedure to new products and models difficult:
FGL requires the Fourier transform of the payoff function to be known, and the COS method involves the coefficients in the
Fourier cosine series expansion of the payoff function. Additionally, both methods need the moment-generating function of
the log-stock price to be known. This is not the case with the Monte Carlo method, where an existing pricing routine can be
easily extended to price other products.

The method-specific parameters of Monte Carlo are the size of the time grid for the stock price and volatility paths, and the
number of paths NS. At least with respect to the second parameter, the effect on the error is also easy to predict, as it decreases
proportional to 1/

p
NS. By contrast, the method-specific parameters of the Fourier methods caused a lot of tricky issues in our

experiments: The number of weights in the Gauss-Laguerre quadrature in FGL, n, should generally be set sufficiently high
to allow for an accurate integration. However, when it is too high, numerical overflow occurs, especially in the Bates model
due to the nested exponentials in the moment-generating functions. This can be solved by using specialized classes to handle
extremely large numbers, but from our experience, this slows down computation enormously.

As for COS, we found that the error behaves rather irregularly depending on the choice of L, [a,b] and N. Furthermore, the
recommendation of Fang and Oosterlee to use [a,b] =

⇥

c1 �L
p

c2 +
p

c4,c1 +L
p

c2 +
p

c4
⇤

or [a,b] =
⇥

c1 �L
p

c2,c1 +L
p

c2
⇤

caused very inaccurate prices in some cases. Furthermore, it introduces the need to compute the cumulants, which can be quite
intricate in the Heston and Bates model. We mostly resolved these problems by appropriate choices of [a,b] and optimization
of L, but we remain cautious as to whether this choice holds for model parameters or models other than the tested ones.

In terms of accuracy, both methods generally show good performance, typically with several digits of accuracy. A notable
exception thereof is the Bates model, in which the relative COS error gets quite high. We also noted that the mean relative
COS error increases as the number and size of jumps do, showing that the COS method does not handle the jump aspect of
that model well. For the FGL method, we find overall low sensitivity to this aspect and to changes in model parameters in
general.

Overall, we appreciate the swiftness of the Fourier methods, but find that the method-specific parameters and difficulty in
extending these methods to other pricing problems are significant caveats. A more thorough investigation of optimal choices
of model parameters and an even more comprehensive test coverage would help.

33



References
[Abramowitz and Stegun, 1972] Abramowitz, M. and Stegun, I. A., editors (1972): Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover. p. 890.

[Barndorff-Nielsen, 1997] Barndorff-Nielsen, O. E. (1997): Processes of Normal Inverse Gaussian Type, Finance and
Stochastics, 2, 41–68.

[Bates, 1996] Bates, D. (1996): Jumps and Stochastic Volatility: the Exchange Rate Processes Implicit in
Deutschemark Options, Review of Financial Studies, 9, 69–107.

[Björk, 2009] T. Björk (2009): Arbitrage Theory in Continuous Time, 3rd ed., Oxford University Press.

[Black and Scholes, 1973] Black, F. and Scholes, M. (1973): The Pricing of Options and Corporate Liabilities, Journal
of Political Economy, 81, 637–659.

[Boyle, 1997] Phelim Boyle, Mark Broadieb, Paul Glasserman (1997): Monte Carlo methods for security
pricing. Journal of Economic Dynamics and Control ELSEVIER 21, 1267-1321

[Broadie and Kaya, 2004] Mark Broadie,¨Özgür Kaya (2006): Exact Simulation of Stochastic Volatility and Other
Affine Jump Diffusion Processes, Operations Research,Volume 54, Issue 2,pages 217-331,
http://dx.doi.org/10.1287/opre.1050.0247.

[Carr and Wu, 2003] Carr, P. and Wu, L. (2003): The Finite Moment Log stable Process and Option Pricing,
Journal of Finance, 58, 753–778.

[Carr et al., 2002] Carr, P., Geman, H., Madan, D., and Yor, M. (2002): The Fine Structure of Asset Returns:
An Empirical Investigation, The Journal of Business, 75, 305–332.

[Cox et al., 1985] Cox, J.C., Ingersoll, J.E., and Ross, S.A., (1985): A theory of the term structure of interest
rates, Econometrica, Vol.53, No.2, 385-407.

[Fang and Oosterlee, 2008] F. Fang and C.W. Oosterlee (2008): A novel pricing method for European options based on
Fourier-cosine series expansions, SIAM J. Sci. Comput. 31.

[Heston, 1993] Heston, S. L. (1993): A Closed-Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options, Review of Financial Studies, 6, 327–343.

[Johnson et al., 1994] Johnson, N.L., Kotz, S., and Balakrishnan, N. (1994): Continuous Univariate Distributions,
Volume 2, Second Edition, Wiley, New York.

[Kahl and Lord, 2006] Lord, Roger; Kahl, Christian (2006): Optimal Fourier Inversion in Semi- analytical Option
Pricing, Tinbergen Institute Discussion Paper, No. 06-066/2

[Madan and Seneta, 1990] Madan, D. B. and Seneta, E. (1990): The Variance Gamma (VG) Model for Share Market
returns, Journal of Business, 63, 511–524.

[Merton, 1976] Merton, R. C. (1976): Option Pricing When the Underlying Stock Returns are Discontinu-
ous, Journal of Financial Economics, 5, 125–144.

[Ruijter and Oosterlee, 2015] M. J. Ruijter and C. W. Oosterlee (2015): Notes on the Benchop implementations for the
COS method, http://www.it.uu.se/research/project/compfin/benchop/COSnotes.pdf

[von Sydow et al., 2015] Lina von Sydow, Lars Josef Höök, Elisabeth Larsson, Erik Lindström, Slobodan Milo-
vanović, Jonas Persson, Victor Shcherbakov, Yuri Shpolyanskiy, Samuel Sirén, Jari Toiva-
nen, Johan Waldén, Magnus Wiktorsson, Jeremy Levesley, Juxi Li, Cornelis W. Oosterlee,
Maria J. Ruijter, Alexander Toropov, Yangzhang Zhao (2015): BENCHOP – The BENCH-
marking project in option pricing. International Journal of Computer Mathematics Vol. 92,
Iss. 12. http://www.tandfonline.com/doi/abs/10.1080/00207160.2015.1072172

[Wiktorsson, 2015] Wiktorsson, Magnus (2015): Notes on the Benchop im-
plementations for the Fourier Gauss Laguerre FGL method,
http://www.it.uu.se/research/project/compfin/benchop/FGLnotes.pdf

34

http://dx.doi.org/10.1287/opre.1050.0247
http://www.it.uu.se/research/project/compfin/benchop/COSnotes.pdf
http://www.tandfonline.com/doi/abs/10.1080/00207160.2015.1072172
http://www.it.uu.se/research/project/compfin/benchop/FGLnotes.pdf

	Introduction
	Overview of option valuation methods

	Preliminaries
	Definitions
	Stock price models
	Black-Scholes model
	Black-Scholes model with discrete dividends
	Heston model
	Bates model


	Fourier-Gauss-Laguerre method
	Method description
	Fourier transform of European call options
	Representation of the call option price using the Fourier inversion theorem
	Conditional moment-generating functions

	Implementation and numerical aspects
	Smoothing of the integrand in the inverse Fourier transform
	Range of admissible 's
	Gauss-Laguerre method


	Fourier cosine series method
	Method description
	Fourier cosine coefficients of European call options
	COS formula in Black-Scholes model with discrete dividends
	Characteristic function

	Monte-Carlo method
	Heston model
	Simulation of VT
	Simulation of 0TVsds
	Simulation of 0TVsdWs(1), 0TVsdWs(2) and ST 

	Bates model
	Variance reduction techniques
	Importance sampling
	Antithetic sampling
	Control variates


	Tests
	Methodology
	Overview
	Model parameters
	Method-specific parameters
	Hard- & software

	Test case specification
	Black-Scholes model
	Black-Scholes model with discrete dividends
	Heston model
	Bates model

	Results

	Summary

