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Abstract 

Light suspended bridges are often used to connect villages or trail systems in geographical areas 

with lacking infrastructure and demanding topology. Different international non-profit 

organizations in collaboration with local promoters are building these bridges with the purpose 

of connecting isolated communities with health care and education.  

The design and construction of these bridges has by and large relied on engineering judgment 

and design conservatism coupled with past experiences of similar construction projects. An 

interest to engage in the designing of similar bridges has been shown from staff at the Division 

of Structural Engineering at the Faculty of Engineering of Lund University. This master thesis 

aims therefore to provide more sophisticated models of suspended bridges as material for future 

work. 

Suspended bridges are suitable to use for long spans, both due to low construction cost and to 

efficient material usage. They can also most often be built without advanced tools or machinery. 

The bridges studied in this thesis are intended for pedestrians and animals which result in a very 

slim design. 

Recommendations mainly from the development organization Helvetas will be compared to the 

Eurocode to investigate if these creates overly conservative designs. These comparisons will be 

made with both hand calculations, the finite element software Brigade/Plus and data from 

existing bridges. 

Vibrations and sways due to wind can be a major problem for light suspended bridges. Due to 

their small dead load in combination with a low lateral stiffness, the sways and vibrations can 

be very large in comparison with more common pedestrian bridges. This could lead to 

temporary inoperability or in worst case structural failure. With the models made in 

Brigade/Plus, wind effects can be analyzed and suitable measures or restrictions can be 

proposed. 

Key words: Suspended bridge, wind loads, dynamic response, vibrations, cables, FE-analysis, 

modal superposition. 

 

 

 

  



  



Sammanfattning 

Lätta hängbroar används ofta för att sammankoppla samhällen i områden med bristande 

infrastruktur och krävande topologi. Dessa broar byggs genom samarbete mellan internationella 

hjälporganisationer och lokala initiativtagare med syftet att tillgängliggöra sjukvård och 

utbildning.  

Designen på de broar som byggs bygger ofta på empiriska erfarenheter. Intresse för att engagera 

sig i dimensionering av liknande broar har visats från personal på Avdelningen för 

Konstruktionsteknik vid Lunds Tekniska Högskola. Denna uppsats syftar därför på att skapa en 

mer precis dimensionering av dessa broar som underlag för framtida arbete. 

Lätta hängbroar är en mycket materialeffektiv konstruktion som kan överbrygga långa spann 

till ett relativt lågt pris. De kan dessutom oftast byggas utan avancerade verktyg eller maskiner. 

De broar som studeras är alla avsedda för gångtrafik från människor och djur vilket medför en 

slank design. 

Rekommendationer från främst organisationen Helvetas jämförs med Eurocode för att utreda 

om dessa skapar onödigt robusta konstruktioner. Dessa jämförelser sker med både 

handberäkningar, finita element-programmet Brigade/Plus samt data från existerande broar. 

Vibrationer och svängningar orsakade av vind kan innebära ett stort problem för lätta 

hängbroar. På grund av deras låga egentyngd samt deras låga styvhet i transversell riktning kan 

dessa svängningar bli mycket stora i jämförelse med mer vanliga gångbrotyper. Detta kan leda 

till att bron blir tillfälligt obrukbar eller i värsta fall blåser sönder. Med de modeller som byggs 

upp i Brigade/Plus kommer vindeffekter att kunna analyseras och lämpliga åtgärder eller 

begränsningar föreslås. 

Nyckelord: Hängbro, vindlaster, dynamisk respons, vibrationer, kablar, FE-analys, modal 

superpositionering 

 

 

 

 

 

 

 

 

 

 



  



 

“What would be the best bridge? Well, the one 

which could be reduced to a thread, a line, 

without anything left over; which fulfilled 

strictly its function of uniting two separated 

distances.” 

Pablo Picasso 
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1 Introduction 

1.1 Background 
Cable supported bridges are widely used because of their ability to overcome large spans. The 

term cable supported bridges includes many different types of bridges, for example suspended-

, suspension- and cable stayed bridges. This thesis will focus on the designing and construction 

of suspended bridges.  

 

Figure 1.1 A suspended bridge (With permission from Bridges to Prosperity) 

The suspended bridge contains load carrying cables for the walkway and also often for the 

handrails. Because of its natural shape the main use is as a pedestrian bridge. The reason for the 

widely use of suspended bridges in aid projects around the world is that the structure is 

relatively simple and have shown to be convenient for construction in rural areas since it can 

cross large span in combination with being material efficient and therefore quite cheap. A 

suspended bridge can most often be built without the use of heavy machinery and it requires 

very little maintenance. 

Suspended bridges has a typical span smaller than 200 meters, but spans up to 350 meters exist, 

for example the 337 meter long Arroyo Cangrejillo Pipeline Bridge in Argentine (OPAC 

Consulting Engineers, 2015) and the 344 meter long Kusma-Gyadi Bridge in Nepal (Ekantipur, 

2015). Longer spans are usually pure suspension bridges but can also be a combination, i.e. a 

suspension bridge with very short pylons, for example the 406 meter long Highline179 in 

Ruette, Austria. Almost all bridges with spans of this magnitude are stabilized in their lateral 

direction with so-called windguys to prevent wind induced movements. A suspended bridge 

fitted with windguys can be seen in Figure 1.2. 
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Suspended bridges can also be uses as road bridges, so-called stress ribbon bridges, but in these 

cases the deck is made much stiffer and the suspended cables or ribbons are often pre-stressed.  

 

Figure 1.2 A suspended bridge with visible windguy arrangement below (With permission from 

Bridges to Prosperity) 

The Suspension bridge has taller towers at the supports which gives a larger sag and a more 

effective transfer of vertical loads. The cable and the deck are connected with vertical hangers. 

The deck can be made more or less stiff. Suspension bridges have the advantage of having a 

horizontal walkway or traffic path, but it can even take a convex shape if the designer finds this 

more preferable.  The two bridge types are shown in Figure 1.3 and Figure 1.4 below. 

 

Figure 1.3 Suspended bridge 

 

Figure 1.4 Suspension bridge 
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1.2 Aim 
The general aim of this thesis is to highlight suspended bridges and make their design and 

structural behavior more understandable for both the general reader of this thesis and, 

especially, for future designers of these type of bridges. 

The differences between designing according to Helvetas or Eurocode will be investigated since 

this can result in a different design criteria and therefore lead to more material efficient and 

cheaper bridges. 

An investigation of the wind stability of light suspended bridges will be made. The aim of this 

investigation is to formulate design criteria for windguys, i.e. when and why they should be 

used? 

Hand in hand with the wind stability goes the dynamic behavior of suspended bridges. A study 

of the natural frequencies and appurtenant modes and how they are affected by the sag and the 

span of the bridge will be done. 

Another aim of this thesis is to create a design guide in Excel which can be used to design 

suspended bridges according to both Helvetas and Eurocode. This guide will make a fast and 

accurate design of the bridge main cables possible. A careful comparison between the results 

from the design guide and result from finite element models will be done to validate both 

methods. 

1.3 Limitations 
It’s only the bridge structure, i.e. the structure between the saddles at the two abutments that 

will be analyzed and discussed in this thesis. Everything else, for example design of abutments, 

slope stability and technical survey etc, will be left for further investigations. The focus of this 

thesis is on the main bearing elements which leads to that no connectors will be investigated.  

The type of wind stabilization system used is windguys that are symmetrically designed around 

the midpoint of the bridge. Other types of stabilization systems (which obviously exists) will 

not be investigated thoroughly.  

Vertical dynamic response due to pedestrian traffic will also be out of scope for this thesis.    
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1.4 Outline 
This thesis is divided into 9 different chapters. 

Chapter 1 contains an introduction to suspended bridges and a short presentation of the thesis. 

Chapter 2 contains background theory of all the forthcoming chapters. Statics and dynamics of 

the singe cable, loads and an introduction to the finite element software Brigade/Plus. 

Chapter 3 contains a description of the reference bridge. 

Chapter 4 contains both static and dynamic analyses of the single cable. 

Chapter 5 contains a static analysis of suspended bridges. This includes hand calculations 

compared to finite element models, stress distribution between cables, displacements and the 

connection between span and cable diameters. 

Chapter 6 contains a dynamic analysis of suspended bridges. This includes displacements and 

accelerations due to a wind impulse and the determination of natural frequencies. 

Chapter 7 contains the conclusions from this thesis. 

Chapter 8 contains all the references. 

Chapter 9, the annex, contains a design guide and pictures of natural frequency modes. 
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2 Background theory 

2.1 History of suspended and suspension bridges 
The model of suspending a rope as main load carrying element has been used for a very long 

time. The Incas connected its 39 000 km long networks of roads with suspended bridges made 

of ropes (BBC, 2015). An example of such a bridge can be seen in Figure 2.1. 

 

Figure 2.1 A replica of a traditional Inca rope bridge (Dylan Thuras; Atlas Obscura, 2015) 

However, the first cable supported structure with drawn iron wires was built in 1823 in Geneva 

(Gimsing, 1997). The main types used today are cable-stayed bridges with typical spans up to 

1100 meters and suspension bridges with typical spans between 1000 and 2000 meters. For 

example the current world record holder for suspended bridges is the Akashi Kaikyō Bridge in 

Japan with a main span of 1991 meter. Bridges with longer spans are planned, for example the 

Messina strait bridge, and if this bridge ever to be built, its main span will have a length of 3.3 

kilometers (COWI, 2015). 

 

2.2 Description of a typical suspended bridge 
As mentioned in the introduction, the span of the suspended bridges this thesis concerns seldom 

exceeds 200 meters.  For these bridges the design are often very similar. The two main 

foundations are placed on each side of the span and the elevation of them can be either the same 

(level bridge) or it can differ (inclined bridge). These main foundations are usually designed as 

gravity foundations even if anchorage rods may be used if the space for gravity foundations is 

limited. The cables can be attached either adjustable or nonadjustable to the main foundations. 

Both the handrail and the lower cables acts as load-bearing elements and they are connected 

with hanger rods throughout the bridge. The hanger rods are connected at top to the handrail 
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cables and at the bottom to the cross-beams. The cross-beams are bolted to the main cables and 

supports the walkway deck. If there is need for wind stabilization, windguys can be added to 

the structure. A visualization of the bridge described above can be seen in Figure 2.2 below. 

 

Figure 2.2 A typical suspended bridge 

 

2.3 Suspended bridges in aid projects 
As described in the introduction suspended bridges are widely used in aid projects around the 

world. Communities, that for several months every year are isolated due to impassible rivers, 

can with a suspended bridge be provided with a safe route to education, health care and 

economic possibilities. The construction of a suspended bridge requires a large community 

participation. Community participation during construction includes transport of materials, 

collection of locally available materials such as sand, stones and wood and site clearing and 

excavation. Since the community will be both the owner and user of the bridge, it will also be 

responsible for the long time bridge maintenance and repair 

2.4 Helvetas and Bridges to Prosperity 
Helvetas and Bridges to prosperity are two organizations that designs and builds bridges to 

connect isolated communities. Both organizations aims to provide better and safer access to 

health care, education and economic opportunities for these communities. 

Helvetas Swiss Intercooperation is an aid organization that works in more than 30 countries 

(Helvetas, 2015). Since 1972, Helvetas has been involved in trail bridge building in Nepal, and 

later on in other countries as well. This work has, in collaboration with other organizations, 

ended up in the Short Span Trail Bridge Standard (SSTBS) and the Long Span Trail Bridge 

Standard (LSTBS). These two manuals gives guidance for the construction of suspended and 

suspension bridges. Both the Short Span Trail Bridge Standard and especially the Long Span 

Trail Bridge Standard will be used in this thesis. 

Bridges to Prosperity is an American aid organization with focus on bridge building in rural 

and isolated areas. Bridges to Prosperity was founded in 2001 and they work mostly in Central 

America, South America and Africa. The manual from Bridges to Prosperity are based on the 

manuals from Helvetas, with some modifications. 
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2.5 Cables 

2.5.1 Types of cables 
Parallel wire cables 

Parallel wire cables, as seen in Figure 2.3, are the most widely used 

cables in suspension bridges. They consist of a number of wires, 

laid parallel and straight throughout the whole length of the cable. 

These cables are constructed by in situ spinning or by assembling 

a number of preformed parallel wire strands. The void ratio of 

parallel wire cables after compaction is generally 18-22 % (Ryall, 

Parke, & Harding, 2000). The stiffness of a parallel wire cable is 

around E=200 MPa (LTH, Structural Engineering, 2014) 

Spiral cables 

Spiral cables, as seen in Figure 2.4, consist of a straight center core 

wire with multiple layers of round steel twisted around it. Each 

layer of wires is twisted in the opposite direction to the preceding 

layer. The twist of the wires result in a 15-25 % decreased stiffness 

and the cable strength is reduced to around 90 % of the sum of the 

breaking strength of the individual wires (Ryall, Parke, & Harding, 

2000). The stiffness of a spiral cable is around E=150 MPa (LTH, 

Structural Engineering, 2014). 

Locked coil cables 

Locked coil cables, as seen in Figure 2.5, are very similar to spiral 

cables. They consist of, just like spiral cables, a straight center core 

wire with multiple layers of round steel twisted around it. They 

differ in that the final layers of wire consist of Z-shaped wires. 

These wires lock into each other and create a smooth exterior 

surface. The Z-shaped wires also minimize the void space in the 

cross-sectional area. The compact outer layers of the cable make 

protective wrapping unnecessary, but they make inspection and 

maintenance of the inner strands difficult (Ryall, Parke, & Harding, 

2000). The stiffness of locked coil cables is around E=160 MPa 

(LTH, Structural Engineering, 2014). 

Wire rope / Strand rope 

Wire rope, as seen in Figure 2.6, usually consists of 6 spiral cables 

twisted around a core strand, but the number can vary a lot. The core 

could be made of either steel or synthetic material. Wire ropes are very 

flexible which makes them suitable for cranes, ski lifts etc. The 

flexibility depends on the choice of material of the core. A ropewith a 

synthetic core is more flexible than a rope with a steel core but it’s 

Figure 2.4 Spiral 
cable 

Figure 2.5 Locked 

coil cable 

Figure 2.6 Wire rope / 

Strand rope 

 

Figure 2.3 Parallel wire 

cable 
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more sensitive to crushing than the steel core rope. Wire rope is not usually used in bigger 

suspension bridges since the other types of cables mentioned above are more suitable for this 

purpose (LTH, Structural Engineering, 2014). However, in this dissertation wire rope will be 

used as main load carrying element since it’s the most common solution for suspended bridges 

in rural and remote areas. Wire rope is a mass fabricated standard product which makes it more 

affordable and more available in areas where this type of bridges are built. The stiffness of wire 

rope varies a lot, but the wire rope that will be used in this dissertation has a Young’s modulus 

of around E=110 GPa (Helvetas, 2004). 

Wire rope is elastic and it will stretch or elongate when it’s subjected to a tensile force. This 

stretch can be divided into three different phases which depends on the magnitude of the force 

and the lifetime-situation of the cable. 

Phase 1 – Constructional extension 

When a wire rope is subjected to a load for the first time, the helically-laid wires will act in a 

constricting manner which will lead to a compression of the core and a more tight contact of all 

the rope elements. The constructional extension depends on the core material, the wire 

construction and the steel quality. Ropes with fiber core extends more than ropes with steel 

core. This is because the steel cannot compress as much as the synthetic core. Because of these 

different factors it’s hard to set at definite value of the constructional extension. Approximate 

values is 0.25 % - 0.5 % for a rope with steel core and 0.75 % - 1 % for a rope with synthetic 

core (Hanes Supply, 2015). 

Phase 2 – Elastic extension 

Following phase 1, an elastic extension resulting mostly from recoverable deformation on the 

metal will occur. The manner of this extension complies approximately with Hooke’s law which 

makes it possible to quite easy calculate the elastic extension. It’s important to note that the 

Young’s modulus of a wire rope is only an approximation because of the non-homogenous 

cross section. This “apparent” Young’s modulus can be obtained from the manufacturer or by 

making a modulus test on an actual wire rope sample. 

Phase 3 – Permanent extension 

Just as any other metallic structural member, wire rope has a yield point. If the tensile stress in 

the wire rope exceeds the yield stress, permanent extension will occur. 

Beyond these three types of extensions, both thermal extension, extension due to rotation and 

extension due to wear can appear, but they won’t be taken into consideration in this thesis. 
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2.5.2 Cables as load bearing element 
In a comparison between using a single cable or beam as load-carrying elements for transversal 

load, the two show different behavior. Due to its low bending stiffness, a cable works in almost 

pure tension whilst a beam carries load by combining compression and tension in its cross 

section. For simplicity it’s assumed that the cable has no bending stiffness and can therefore 

only transfer load by tension. For the cable it means that the geometrical configuration is of 

absolute importance, i.e. the sag. A straight cable is unable to carry any transversal load. With 

a cable there will also be a horizontal reaction at the supports in Figure 2.7 which often is larger 

than the vertical reaction. The beam will only be subjected to a vertical reaction at the supports. 

 

Figure 2.7 Support reactions for a cable and a beam 

The advantage in using cables compared to beams is material efficiency. This is because the 

cables transfer load in the most efficient way, pure tension. Gimsing (Gimsing, 1997) illustrated 

this by comparing a cable with a sag of 3 meters and a beam for the same load case, see Figure 

2.8. 

 

Figure 2.8 A cable and a beam designed for a uniform load, 27 kN/m, over a 30 meter span 

For this given load case and span the amount of structural material used with a cable as load-

carrying elements is substantial less than with a beam, which can be seen in Figure 2.8 above. 

A cable is showing more geometrical change due to different loading than a beam because a 

cable follows the funicular shape of the loading applied to it. A few examples of different 

loading on a single cable are illustrated in Figure 2.9.  
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Figure 2.9 Deflection of a cable subjected to i) uniform load, ii) partial live load and iii) asymmetric 

live load 
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2.6 Statics 
The stress-strain behavior of cables is, due to its cross-section with much void, not linear. When 

cables are loaded, the void between the strands decreases with a change in the cross-sectional 

area as result. This will lead to both permanent and temporary deformations. Permanent 

deformations often arises in the beginning of the lifetime of a cable. The reason for this is when 

the cable is subjected to a load, a strain hardening takes place when the void between the strands 

closes. This will lead to an increased axial stiffness and permanent elongations. Besides the 

permanent deformations there will always be elastic deformations in the cable as well. 

Since cables are subjected to large deformations, it’s necessary to formulate the equilibrium 

conditions in the deformed shape of the cable. This is done by analyzing a cable element (Figure 

2.10 ii)) of an arbitrary cable. This will eventually lead to the formulation of the cable equation. 

The cable spans between the points A and B in Figure 2.10 i) and it has a constant axial stiffness 

EA, a bending stiffness EI→0 and an initial length L. The cable is subjected to a vertical line 

load q. 

           

Figure 2.10 i) Static system  ii) Cable element    

    

Equilibrium from Figure 2.10 ii) 

Horizontal equilibrium: 

−𝐻 + (𝐻 + 𝑑𝐻) = 0                    ⟹        𝑑𝐻 = 0 

 

(2.1) 

The horizontal force in the cable is constant. 

Vertical equilibrium: 

−𝑉 + (𝑉 + 𝑑𝑉) + 𝑞 ∙ 𝑑𝑥 = 0                    ⟹        𝑞 = −
𝑑𝑉

𝑑𝑥
 

 

(2.2) 

Moment around point C: 

𝑞 ∙ 𝑑𝑥 ∙
𝑑𝑥

2
+ 𝐻 ∙ 𝑑𝑧 − 𝑉 ∙ 𝑑𝑥 = 0             𝑠𝑖𝑛𝑐𝑒   𝑞 ∙ 𝑑𝑥 ∙

𝑑𝑥

2
≈ 0 

⟹        𝑉 = 𝐻
𝑑𝑧

𝑑𝑥
= −𝐻𝑧′       ⟹        𝑞 = −

𝑑𝑉

𝑑𝑥
= −𝐻𝑧′′ 

(2.3) 
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The cable force S is given by: 

𝑆 = √𝐻2 + 𝑉2 = √𝐻2 (1 +
𝑉2

𝐻2
) = 𝐻√1 + 𝑧′2 

 

(2.4) 

The differential cable length ds is derived in a similar manner: 

𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑧2 = √𝑑𝑥2 (1 +
𝑑𝑧2

𝑑𝑥2
) = 𝑑𝑥√1 + 𝑧′2 

 

(2.5) 

When the equilibrium for the cable element is formulated, the results can be used in the moment 

equilibrium for the deformed cable below.  

 

Figure 2.11 i) Cable in deformed shape  ii) Cut for moment equilibrium 

 

Moment equilibrium around point C in Figure 2.11 ii). 

𝐻 ∙ 𝑧 − 𝐻 ∙ 𝑥 ∙ tan(𝛼) − 𝑅𝐴𝑥 + ∫ 𝑞 ∙ 𝑥 ∙ 𝑑𝑥 = 0
𝑥

0

  

 

(2.6) 

The third and fourth term in the equation above is equal to the moment 𝑀̅ in a simply supported 

beam with the length L subjected to a vertical line load q.  

𝑆𝑖𝑛𝑐𝑒     𝑅𝐴 ∙ 𝑥 + ∫ 𝑞 ∙ 𝑥 ∙ 𝑑𝑥 = 𝑀̅
𝑥

0

          ⟹        𝑧 = 𝑥 ∙ tan(𝛼) +
𝑀̅

𝐻
 

⟹        𝑧′ = tan(𝛼) +
𝑉̅

𝐻
 

⟹        𝑧′′ = −
𝑞

𝐻
 

  
 

(2.7) 

The length of the cable s in its deformed shape is given by the cable equation: 

∫ 𝑑𝑠
𝑙

0

= ∫ √1 + 𝑧′2 𝑑𝑥
𝑙

0

= 𝐿 (1 + 𝛼𝑇 ∙ 𝑇 −
𝜎0

𝐸
) + ∫

𝑆

𝐸 ∙ 𝐴
𝑑𝑠

𝑙

0

  
(2.8) 
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The length of the deformed cable is the sum of the original length L, the thermal deformation, 

the pre-stress deformation and the elastic strain. The last part of the cable equation, the elastic 

strain, is given by: 

∫
𝑆

𝐸 ∙ 𝐴
𝑑𝑠

𝑙

0

= ∫
𝑆 ∙ √1 + 𝑧′2

𝐸 ∙ 𝐴
𝑑𝑥

𝑙

0

= ∫
𝐻√1 + 𝑧′2 ∙ √1 + 𝑧′2

𝐸 ∙ 𝐴
𝑑𝑥 =

𝑙

0

𝐻

𝐸 ∙ 𝐴
∫ (1 + 𝑧′2)𝑑𝑥 =

𝑙

0

 

=
𝐻

𝐸 ∙ 𝐴
∫ (1 + (tan(𝛼) +

𝑉̅

𝐻
)

2

) 𝑑𝑥 =
𝐻 ∙ 𝐿

𝐸 ∙ 𝐴
+

𝐻

𝐸 ∙ 𝐴
∫ (tan(𝛼) +

𝑉̅

𝐻
)

2

𝑑𝑥
𝑙

0

𝑙

0

 

 

(2.9) 

 

The cable equation can therefore be written as: 

∫ 𝑑𝑠
𝑙

0

= ∫ √1 + 𝑧′2 𝑑𝑥
𝑙

0

= 

= 𝐿 (1 + 𝛼𝑇 ∙ 𝑇 −
𝜎0

𝐸
) +

𝐻 ∙ 𝐿

𝐸 ∙ 𝐴
+

𝐻

𝐸 ∙ 𝐴
∫ (tan(𝛼) +

𝑉̅

𝐻
)

2

𝑑𝑥
𝑙

0

 

 

(2.10) 

 

The cable equation can be solved in an iteratively way. Start with estimating a value of H, then 

the cable curve z(x) can be calculated. With H and z(x) known, it’s possible to solve the cable 

equation. If the result isn’t accurate enough, repeat the calculations with a better estimate of H 

(Marti, 2012). 

 

2.7 Dynamics of cables 

2.7.1 Dynamic behavior of the single cable 
Cables are, due to their small mass per unit length and their small bending stiffness, very 

sensitive to oscillations. To explain the dynamic behaviour of a single cable, it’s necessary to 

compare the vibrations in an inextensible taut string compared to the vibrations in a sagging 

cable. 

The first natural vibration modes for the inextensible taut string can be seen in Figure 2.12. The 

first natural frequency 𝜔1 can be found with the formula: 

𝜔1 =
𝜋

𝐿
√

𝑇

𝑚
  𝑟𝑎𝑑/𝑠 

(2.11) 

Where 𝑇  is the tension force in the string 

𝑚  is the mass per unit length of the string 

𝐿  is the length between the supports 

The natural frequency 𝜔𝑖 for modes of higher order is given by: 
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𝜔𝑛 =
𝑛 ∙ 𝜋

𝐿
√

𝑇

𝑚
  𝑟𝑎𝑑/𝑠         𝑤ℎ𝑒𝑟𝑒 𝑛 = 1, 2, 3, … 

 

(2.12) 

Since the first mode is symmetric, symmetric modes are characterized by odd numbers and 

nonsymmetrical modes by even numbers. Example of the first four modes can be seen in Figure 

2.12. Note that this is just a theoretical example. It’s a good estimation for a vertical string, but 

for a horizontal string gravity always affects it with a sag and a curvature as result (Gimsing, 

1997). 

 

 

 

 

 

 

 

 

 

 

 

For a cable with a sag and suspended between two points, two types of vibrations are possible. 

The first type is called sway vibration. Sway vibration is an out of the vertical plane vibration 

and it can be seen in Figure 2.15. 

 

     

 

 

 

 

Figure 2.12 The first 4 vibration 

modes for the taut string 
Figure 2.13 The first 4 in-plane 

vibrations modes for the sagging 
cable 

Figure 2.15 Sway vibration out of the 

vertical plane. Notice the arrows 
Figure 2.14 In-plane vibration. Notice 

the arrows 
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Similar to the taut string, the natural frequencies for the sway vibration are given by: 

𝜔𝑛 =
𝑛 ∙ 𝜋

𝐿
√

𝐻

𝑚
  𝑟𝑎𝑑/𝑠         𝑤ℎ𝑒𝑟𝑒 𝑛 = 1, 2, 3, … 

(2.13) 

 

Where 𝐻  is the horizontal tension force in the string 

For the in-plane vibration, as seen in Figure 2.14, the first four vibration modes will look like 

the ones in Figure 2.13. The in-plane vibration can be either symmetric or asymmetric just like 

the earlier examples, but since the cable has a sag and is considered inextensible, the first 

symmetric mode with only one half wave, as seen for the taut string, cannot exist. Instead, the 

first mode for the in-plane vibration is asymmetric. The asymmetric vibration modes for a 

sagging cable are given by (Irvine, 1974): 

𝜔𝑛 =
2 ∙ 𝑛 ∙ 𝜋

𝐿
√

𝐻

𝑚
  𝑟𝑎𝑑/𝑠         𝑤ℎ𝑒𝑟𝑒 𝑛 = 1, 2, 3, … 

(2.14) 

 

where the first two asymmetric modes can be seen in Figure 2.13.  

The symmetric in-plane modes for an inextensible cable can be found by solving the following 

equation (Irvine, 1974): 

tan (
𝛽 ∙ 𝐿

2
) =

𝛽 ∙ 𝐿

2
        𝑤ℎ𝑒𝑟𝑒 𝛽 = 𝜔 ∙ √

𝑚

𝐻
 

(2.15) 

 

The first two roots found for (2.15) are: 

(𝛽 ∙ 𝐿)1,2 = 2,86 𝜋, 4,92 𝜋 (2.16) 

 

Higher roots can quite accurately be found with (Irvine, 1981): 

(𝛽 ∙ 𝐿)𝑛 = (2 ∙ 𝑛 + 1) ∙ 𝜋 ∙ (1 −
4

((2 ∙ 𝑛 + 1)2 ∙ 𝜋2)
)         𝑤ℎ𝑒𝑟𝑒 𝑛 = 3, 4, 5, … 

(2.17) 

 

The natural frequencies for an inextensible sagging cable are therefore: 

𝜔1 =
2,86 ∙ 𝜋

𝐿
√

𝐻

𝑚
  𝑟𝑎𝑑/𝑠 

(2.18) 

 

𝜔2 =
4,92 ∙ 𝜋

𝐿
√

𝐻

𝑚
  𝑟𝑎𝑑/𝑠 

(2.19) 
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𝜔𝑛 =
(2 ∙ 𝑛 + 1) ∙ (1 −

4
((2 ∙ 𝑛 + 1)2 ∙ 𝜋2)) ∙ 𝜋

𝐿
√

𝐻

𝑚
 
𝑟𝑎𝑑

𝑠
      𝑤ℎ𝑒𝑟𝑒 𝑛 = 3, 4, 5, … 

(2.20) 

 

As mentioned many times in the text above, the analyzed cables are all assumed to be 

inextensible. However, this is not the case for real cables. In reality, cables are always flexible 

and often their supports to. The pylons in a suspension bridge are for example always flexible. 

As seen in the previous examples the sag of the cable or string affects the order of the first 

natural frequencies. The relationship between the geometry, the elasticity and the order of the 

first natural frequencies can be seen in Figure 2.16. The abscissa 𝑃𝑔𝑒  is a parameter that governs 

the dynamic behaviour of the current cable. As seen in Figure 2.16, the value of 𝑃𝑔𝑒decides the 

order of the symmetric and the asymmetric modes. A low value of 𝑃𝑔𝑒  indicates that the cable 

in question has a small sag and/or a small axial stiffness, for example the taut string seen in  

 

Figure 2.16 The first four natural frequencies for a sagging cable. With permission from (Gimsing, 
1997). 

Figure 2.12 and a stay cable in a cable stayed bridge. For higher values of 𝑃𝑔𝑒 , the behavior of 

the cable looks more like the sagging cable in Figure 2.13 with a reversed order of the modes 

compared to the taut string. 𝑃𝑔𝑒  is given by (Gimsing, 1997) (Irvine, 1981): 

𝑃𝑔𝑒 = (
8 ∙ 𝑓

𝐿
)

3

∙
𝐸 ∙ 𝐴

𝑔𝑎 ∙ 𝑚 ∙ 𝐿
 

 

(2.21) 

Where 𝑓  is the sag of the cable 

 𝐸  is the Young’s modulus of the cable 

 𝐴  is the cross sectional area of the cable 

 𝑔𝑎 is the acceleration due to gravity 

 𝑚  is the mass per unit length of the string 

 𝐿  is the length between the supports 
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As seen in Figure 2.16, three important cases can now be considered: 

I. If  𝑃𝑔𝑒 < 4𝜋2 

The frequency of the first symmetric in-plane mode is less than the frequency of the first 

asymmetric in-plane mode and it has no internal nodes along the span. 

II. If  𝑃𝑔𝑒 = 4𝜋2 

The frequency of the first symmetric in-plane mode is at this “cross-over point” equal to the 

frequency of the first asymmetric in-plane mode. 

III. 𝑃𝑔𝑒 > 4𝜋2 

The frequency of the first symmetric in-plane mode is higher than the frequency of the first 

asymmetric in-plane mode. The first symmetric in-plane mode has two internal nodes along 

the span 

 

As also seen in Figure 2.16, if 4𝜋2 ≤ 𝑃𝑔𝑒 ≤ 16𝜋2, both the first and the second symmetric 

mode has two internal nodes. When 𝑃𝑔𝑒 = 16𝜋2, the frequency of the second asymmetric mode 

is equal to the frequency of the second symmetric mode. 𝑃𝑔𝑒 = 16𝜋2 is therefore the second 

“cross-over point”. This pattern repeats for higher values of 𝑃𝑔𝑒 . 

As seen in Figure 2.16, the natural frequencies for the asymmetrical modes don’t change when 

the cable is considered extensible. However, the natural frequencies for the symmetrical modes 

depend on 𝑃𝑔𝑒  and are given by: 

tan (
𝛽 ∙ 𝐿

2
) =

𝛽 ∙ 𝐿

2
−

4

𝑃𝑔𝑒
( 

𝛽 ∙ 𝐿

2
)

3

 
(2.22) 

 

This equation can be used for all values of 𝑃𝑔𝑒 . For example, if the cable is considered 

inextensible, i.e. 𝑃𝑔𝑒 → ∞ , equation (2.22) will be equal to equation (2.15). 

As a summary, start with deciding 𝑃𝑔𝑒  of the cable and find out the order of the symmetric and 

asymmetric modes. Then calculate the out of plane frequencies with equation (2.13), the 

frequencies for the asymmetric modes with equation (2.14) and finally the frequencies for the 

symmetric modes with equation (2.22). 
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2.8 Wind effects 
Wind loads can affect a bridge in different ways. Some bridges doesn’t become affected in a 

noticeable way, while other bridges, especially cable supported bridges, can start sway or 

vibrate quite heavily. These motions are often a problem for the serviceability of the bridge, but 

they can in some cases be a risk for the structural capacity of the bridge. Below some wind 

phenomena that’s been reported from bridges are presented. Not all are relevant for the 

suspended bridges this thesis are concerning, but their existence is important for a bridge 

engineer to know. 

2.8.1 Buffeting 
Vibrations due to buffeting are a phenomenon created by wind turbulence. The natural 

fluctuation in wind velocity gives an inconsistent load over time on the structure, just like the 

sway of trees and bushes encountered in high winds. Buffeting actions can occur in both lateral, 

vertical and torsional modes of vibration of a bridge structure and the magnitude depends on 

the shape of the bridge deck (Storebaelt Publications, 1998). When the frequency of the wind 

load is approaching the natural frequency of the structure, resonance occur. Buffeting does not 

generally cause structural failure but it can cause problems with serviceability of the structure. 

It can also lead to fatigue problems in local elements.  

2.8.2 Flutter 
For wind induced vibrations the flutter phenomenon is maybe the most severe problem for 

slender bridges and can cause failure with catastrophic consequences. The wide known collapse 

of the Tacoma Narrows bridge in 1940 was caused by single degree freedom flutter (Storebaelt 

Publications, 1998). This instability problem happens when the aerodynamic damping becomes 

negative. The energy transfer from the airflow exceeds the energy dissipation by structural 

damping. This is true for a system with one degree of freedom i.e. pure torsional motion, also 

known as stall flutter. With coupled vibration modes, torsional and vertical, classical flutter can 

occur even when all aerodynamic damping terms are positive (Dyrbye & Hansen, 1997).  

2.8.3 Vortex shedding 
With airflow acting on blunt bodies, vortices are shed from the sides. These vortices are created 

periodically and creates therefore alternating aerodynamic pressure. When the frequency of the 

shifting aerodynamic pressure coincide with one of the torsional vibration modes of the 

structure, resonance will occur. The main direction of the forces are transversal to the airflow. 

The vibrations caused by these forces are often too small to cause any damage to a bridge but 

they can cause an uncomfortable feeling among the users of the bridge (Ryall, Parke, & 

Harding, 2000) 

2.8.4 Galloping 
Galloping is a wind induced phenomena where the vibration is perpendicular to the wind 

direction. Similar to stall flutter but with the movement in the transversal degree of freedom. 

Galloping is typical for light structures with little damping and usually for non-circular bodies. 

It is dependent on the velocity of the wind acting on the body. A known galloping scenario is 

with ice-accreted cables. Due to the change of shape of the cable it loses aerodynamic stability. 
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2.9 Comfort criteria 
Due to the shape and stiffness of a suspended bridge, vibrations and sway will occur in a 

stronger manner than in regular bridges and buildings. These vibrations will occur in both 

vertical, lateral and torsional direction, but the main focus will be laid on the lateral sway of the 

bridge since this is the direction in which the largest displacement due to wind will occur. 

Vibrations due to pedestrian traffic will also occur, but these vibrations are assumed to cause 

less comfort problems than the vibrations caused by the wind, and will therefore be considered 

out of scope for this thesis. The thesis will also not consider dampers as a possible solution for 

reducing vibration due to economic reasons. 

At first, before any comfort criteria has been given, one must first note that large accelerations 

or deformations sometimes has to be accepted due to, for example, achieve a low construction 

cost or due to a low frequency of use. In those cases the best comfort criteria can be as simply 

as a warning sign. However, there’s still reason to investigate more sophisticated comfort 

criteria. 

There has been many studies made that covers the human perception of horizontal vibrations in 

different structures. Unfortunately, most of this work has focused on horizontal vibration in 

buildings and not in bridges. (Zivanovic et al, 2005). Even if this ratio isn’t preferable, some 

valuable information is given. The most fundamental fact of horizontal vibrations is that each 

pedestrian has its own perception and that this is based on many different factors. According to 

(Heinemeyer et al, 2009), this is some of the aspects that affect the human assessment of 

vibrations on a bridge: 

 The number of people using the bridge 

 The frequency of use 

 The surrounding landscape and the height above ground 

 The motion of the human body 

 The exposure time 

 The expectation of vibrations. If a person expects a bridge to vibrate, the acceptance of 

vibrations is greater. 

This is some of the non-quantifiable aspects that affect the perception of vibrations. Even if the 

perception is individual, some general criteria must be given. It exist different recommendations 

for deciding a maximum size of the vibrations. The most common way to estimate the level of 

comfort is to measure the peak value of the acceleration the bridge is subjected to. This has 

been done by different scientific reports and standards. 
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2.9.1 Eurocode 
Eurocode 0, SS-EN 1990, appendix A2 gives the following suggestions for the peak value of 

the acceleration, also known as critical acceleration of the bridge (SIS, 2010): 

 0.7 𝑚/𝑠2 for vertical vibrations 

 0.2 𝑚/𝑠2 for horizontal vibrations under normal use 

 0.4 𝑚/𝑠2 for horizontal vibrations under exceptional crowd conditions 

These peak values should be checked if the natural frequency of the superstructure is less than 

5 𝐻𝑧 for vertical vibrations and less than 2,5 𝐻𝑧 for lateral and torsional vibrations. 

The national annex can give other recommendations than the ones given above. However, the 

Swedish annex for example, gives no further comfort criteria.  

The critical accelerations for a given frequency can be translated into displacement and velocity 

with equation (2.23) and equation (2.23). 

 𝑎 = 𝑓2 ∙ 𝑢 (2.23) 

 

 𝑎 = 𝑓 ∙ 𝑣 (2.24) 

 

2.9.2 Sétra 
Sétra, the French Technical Department for Transport, Roads and Bridges Engineering and 

Road Safety, suggest that three different comfort levels with corresponding maximum 

accelerations should be used for both vertical and lateral vibrations. For lateral vibrations the 

following acceleration ranges are suggested (Sétra, 2006): 

 0 – 0,15 𝑚/𝑠2  for range 1, maximum comfort 

 0,15 – 0,30 𝑚/𝑠2  for range 2, mean comfort, 

 0,30 – 0,80 𝑚/𝑠2  for range 3, minimum comfort 

 > 0,80 𝑚/𝑠2 for range 4, unacceptable discomfort 

Sétra also recommends a maximal acceleration of 0,1 𝑚/𝑠2 to avoid “lock-in” effects, i.e. when 

a pedestrian adjust its walking frequency so it enters in phase with the bridge motion and 

becomes a negative damper. A famous example of a bridge subjected to the “lock-in” effect is 

the Millenium Bridge in London (Sétra, 2006). This recommendation, however, will not be 

taken into consideration since it’s unnecessary due to the amount of crossing pedestrians and 

also because it’s probably impossible to achieve such a low maximum acceleration. 

2.9.3 JRC- and ECCS-report 
The Design of Lightweight Footbridges for Human Induced Vibrations by (Heinemeyer et al, 

2009) is a JRC- (European Commission Joint Research Centre) and ECCS-report (The 

European Convention for Constructional Steelworks). The report is a guideline for dynamic 

behavior of light-weight steel structures. The recommendations given is this report are very 
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similar to the ones suggested by Sétra. The following recommendations are suggested 

(Heinemeyer et al, 2009): 

 < 0,10 𝑚/𝑠2  for comfort class 1, maximum comfort 

 0,10 – 0,30 𝑚/𝑠2  for comfort class 2, medium comfort, 

 0,30 – 0,80 𝑚/𝑠2  for comfort class 3, minimum comfort 

 > 0,80 𝑚/𝑠2 for comfort class 4, unacceptable discomfort 

As seen above it’s only the limit for comfort class 1 that divides these recommendations from 

the ones given by Sétra. 

 

2.9.4 ISO 10137 
Bases for design of structures – Serviceability of buildings and walkways against vibration 

ISO 10137 is a guideline for the serviceability of buildings and walkways against vibrations, 

made by the International Organization for Standardization (ISO). Instead of 3-4 different 

ranges/comfort classes, ISO uses a diagram that gives the maximum allowable acceleration for 

a given frequency. This diagram should be used with four different loading scenarios and, 

depending on the load scenario, the base curve of the diagram should be multiplied with a 

certain factor. The load scenarios are according to ISO 10137: 

 Load scenario 1:  A single person walking over the bridge while another person is  

  standing at the mid-span 

 

 Load scenario 2:  A pedestrian flow of eight to fifteen walks across the bridge. The  

  number of persons depends on the length and width of the bridge. 

 

 Load scenario 3: A stream with significantly more than 15 person walks across the  

  bridge 

 

 Load scenario 4: Exceptional crowd load, for example an opening ceremony.  

These load scenarios are more important for vertical vibrations since it’s only for these the 

multiplying factor varies. For vertical vibrations the multiplying factor is 30 for load scenario 

1 and 60 for load scenario 2-4, but then another diagram than Figure 2.17 should be used. 

For horizontal vibrations the multiplying factor is 60 for every load scenario and this factor will 

be multiplied with the acceleration value in Figure 2.17 below. This will give a maximal 

allowed horizontal acceleration of 0.216 𝑚/𝑠2 for frequencies < 2 𝐻𝑧 and for example 0,54 

𝑚/𝑠2 for a frequency of 5 𝐻𝑧. 
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Figure 2.17 Horizontal vibration according to ISO 101 37. With permission from SIS   

 

One important thing to notice is that this acceleration recommendation from ISO isn’t, 

according to (Zivanovic et al, 2005), based on published research pertinent to footbridge 

vibrations. Therefore it can be questioned if these recommendations are relevant for 

footbridges. 

2.9.5 Nakamura 
Maybe the most interesting study made on horizontal vibration in footway bridges are done by 

(Nakamura, 2003). In the report Field measurements of lateral vibration on a pedestrian 

suspension bridge, Nakamura investigates the lateral dynamic behavior of a 320 meter long 

pedestrian suspension bridge. The report focus on lateral vibrations caused by the footsteps of 

the users and not the wind induced vibrations. However, since accelerations have been 

measured, this report is a very important comparison since the dynamic behavior of the tested 

bridge is very alike the suspended bridges studied in this master thesis. This bridge is stabilized 

by windguys in the lateral direction which decreases the amplitude of the vibrations. 
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The perception of the vibrations varied between the pedestrians but some general grades of 

discomfort due to a certain acceleration could be identified: 

0,3 𝑚/𝑠2: Pedestrians are able to feel the vibrations. Some of them become uncomfortable 

but most of them can walk normally. 

0,75 𝑚/𝑠2: Some of the pedestrians find it difficult to walk normally and some must use the 

handrails from time to time. 

1,35 𝑚/𝑠2: Pedestrians often loses their balance and some of them have to stop temporarily 

to support themselves with the help of the handrail. Some of the elderly people 

aren’t able to walk at all. 

2,1 𝑚/𝑠2: This acceleration occurred on the London Millennium Bridge where it was 

reported that many people were unable to walk and that many people felt unsafe. 

Nakamura suggest that 1,35 𝑚/𝑠2 is a suitable serviceability limit. This corresponds to a girder 

amplitude of 45 𝑚𝑚 and a velocity of 0,25 𝑚/𝑠 for the bridge in the study. The acceleration 

and the velocity seems reasonable for comparison with the bridges in this thesis, but the 

amplitude will most likely be at least ten times bigger.  

2.9.6 Summary and suggestions 
As seen in the sections above, the acceleration limits varies a bit between the different standards 

and reports. Even if it’s always preferable that the maximum acceleration of a bridge doesn’t 

exceeds the maximum comfort classes, the main focus here will be to suggest a maximum 

allowable acceleration for suspended bridges. The maximum lateral accelerations 

recommended by the different standards and reports can be seen in Table 2.1 below: 

 Eurocode Sétra JRC/ECCS ISO 10137 Nakamura 

Max acceleration 𝑚/𝑠2 0,4 0,8 0,8 0,22 – 0,54 1,35 

Table 2.1 Maximum allowed lateral accelerations 

Since Nakamuras report is focused on pedestrian bridges and especially suspension bridges, 

this recommendation seems adequate as a reference for the suspended bridges this master thesis 

will focus on. 
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2.10  Loads 

2.10.1 Wind loads on bridges 
As discussed in earlier chapters, cable supported bridges are very flexible structures and 

therefore it becomes important to analyze the movement of the bridge due to wind.  Different 

phenomena caused by wind induced vibrations are buffeting, flutter, vortex shedding and 

galloping. The total wind load on a bridge deck can divided into three parts according to (2.25). 

 𝐹𝑡𝑜𝑡 = 𝐹𝑞 + 𝐹𝑡 + 𝐹𝑚 (2.25) 

 

The term 𝐹𝑞 denotes the mean wind load, 𝐹𝑡 the turbulent wind load, and 𝐹𝑚 is the motion-

induced wind load. For bigger cable supported bridges these three loads must be considered. 

For the trail bridges in this report only the first part, the mean wind load 𝐹𝑞, is taken into account.  

2.10.2 Static wind loads 

Eurocode 

Wind loads in Eurocode are given by SS_EN 1991-1-4. Unfortunately SS_EN 1991-1-4 doesn’t 

give guidance on cable supported bridges, i.e. suspended bridges, suspension bridges and cable 

stayed bridges. Neither the Swedish annex, the British annex, the German annex nor the Danish 

annex gives any guidance on cables supported bridges. However, as a guideline the simplified 

method described in SS_EN 1991-1-4 8.3.2 will be used since it´s alike the methods used by 

both Helvetas and Bridges to Prosperity. The vertical load component of the wind load is 

neglected by both Helvetas and Bridges to Prosperity and will therefore be neglected in this 

chapter. One can question if Eurocode as design code is appropriate for these types of bridges 

since they most likely will be built in places where Eurocode isn’t a standard. However, due to 

the authors knowledge of Eurocode, this seems as the most effective and reliable way to verify 

the size of the wind loads given by Helvetas and Bridges to Prosperity. 

The first step in determining the wind load/force is to calculate the basic wind velocity 𝑤𝑏  at 

10 meter above ground of terrain category II. 𝑤𝑏  is a function of wind direction and time of 

year and it´s given by: 

𝑤𝑏 = 𝑐𝑑𝑖𝑟 ∙ 𝑐𝑠𝑒𝑎𝑠𝑜𝑛 ∙ 𝑣𝑏,0 

 

(2.26) 

Where 𝑐𝑑𝑖𝑟   is the directional factor. Recommended value is 1. 

𝑐𝑠𝑒𝑎𝑠𝑜𝑛  is the seasonal factor. Recommended value is 1. 

𝑣𝑏,0  is the fundamental value of the basic wind velocity 10 meters   

 above ground of terrain category II 

When 𝑤𝑏  is decided the basic velocity pressure 𝑞𝑏 can be calculated with: 

𝑞𝑏 =
1

2
∙ 𝜌 ∙ 𝑣𝑏

2 

 

(2.27) 

Where 𝜌 is the density of the air. Recommended value is 1.25 kg/m3. 
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The wind force acting on the long side of the bridge can be calculated with the simplified 

method described in SS_EN 1991-1-4 8.3.2: 

𝐹𝑤 =
1

2
∙ 𝜌 ∙ 𝑣𝑏

2 ∙ 𝐶 ∙ 𝐴𝑟𝑒𝑓 = 𝑞𝑏 ∙ 𝐶 ∙ 𝐴𝑟𝑒𝑓 

 

(2.28) 

 

Where 𝐶 is the wind load factor based on the shape of the bridge lane and 

 the exposure to the wind 

The manuals from Helvetas and Bridges to Prosperity recommends a wind speed of 160 km/h 

or 44.4 m/s and a reference area of 0.3 m2/m. To make a comparison between the different wind 

loads possible it’s assumed that the bridge used for the Eurocode wind load is situated 10 meters 

above ground and that the terrain beneath is flat and of category II. This will give the following 

value of the wind load factor: 

𝐶 = 𝑐𝑒 ∙ 𝑐𝑓,𝑥 = 2,35 ∙ 1,3 = 3,06 

 

(2.29) 

The basic velocity pressure 𝑞𝑏 can then be calculated: 

𝑞𝑏 =
1

2
∙ 1,25 ∙ 44,42 = 1,23 𝑘𝑃𝑎 

 

(2.30) 

With these values known the wind force can be calculated: 

𝐹𝑤 =
1

2
∙ 1,25 ∙ 44,42 ∙ 3,06 ∙ 0,3 = 1,13 𝑘𝑁/𝑚 

 

(2.31) 

When deciding the wind loads, Bridges to Prosperity refers to Helvetas where both the Short 

Span Trail Bridge Standard and the Long Span Trail Bridge Standard refer to the Report on 

Windguy Arrangement for Suspended and Suspension Standard Bridges, Dr. Heinrich 

Schnetzer, WGG Schnetzer Puskas Ingenieure AG, Switzerland, 2002. In this report they discuss 

the wind loads used by Helvetas. The wind speed recommended by Helvetas, 160 km/h, is 

considered very conservative by the authors. Instead they recommend a wind speed of 140 km/h 

for normal design situations which is the value recommended by the Swiss standard SIA 160. 

Only for bridges situated in exposed areas or very high above ground, a wind speed of 160 km/h 

is recommended (Schnetzer, 2002). However, both Helvetas and Schnetzer recommends a final 

load of 0.5 kN/m. This load is based on a reference area of 0.3 m2/m and a wind coefficient of 

1.3. Note that Helvetas recommended load is based on 160 km/h and Schnetzers on 140 km/h. 

Schnetzer recommends a load of 0.6 kN/m for bridges situated in exposed areas or very high 

above ground. 

A short summary of the recommended loads can be seen in Table 2.2 below. 
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 Helvetas Schnetzer Bridges to Prosperity Eurocode 

Reference wind      (km/h) 160 140 160 160* 

Wind pressure        (kPa) 1,3  1,3   1,7  1,23 

Wind load                (kN/m)  0,5 0,5 0,3 (30 kgf/m)  1,13 
Table 2.2 Wind loads 

*Based on Helvetas and Bridges to Prosperity 

Note that these loads are only recommendations for static wind loads. In every design situation 

there have to be a consideration if the size of the load is correct. Helvetas has taken gorge effects 

into account but the surrounding terrain must always be considered. 

2.10.3 Vertical loads 
The vertical loads acting on a suspended bridge, i.e. the dead load and the live load, are the 

most contributing factors for the design of the load carrying cables. Since recommendations 

from both Helvetas and Eurocode will be used, the vertical loads and load combinations from 

both of them will be presented. The characteristic loads are very alike for Helvetas and 

Eurocode, in fact it’s only the live load that differs. The biggest difference between Helvetas 

and Eurocode is that Eurocode uses partial coefficients as enlargement factor for the current 

loads, both dead load and live loads. Helvetas doesn’t enlarge its characteristic loads, instead a 

safety factor of 3 between the sum of the loads and the structural capacity is used. 

2.10.3.1 Dead load 

The dead load, with exception from the self-weight of the cables, doesn’t differ so much 

between a suspension bridge designed according to Eurocode or Helvetas. Since Helvetas has 

great experience and knowledge in the building of suspended bridges, there is no reason for not 

use their recommended characteristic dead-loads for design according to both Helvetas and 

Eurocode. The recommended dead loads for a suspended bridge with a 1 meter wide steel deck 

can be seen in Table 2.3. If other dimensions or materials, for example a wooden deck, are 

preferd, the dead loads in Table 2.3 can be modified. The additional dead load from the main 

cables and possible windguy cables have to be calculated for each case. Note that the dead load 

from the windties, i.e. the cables between the bridge and the windguy cable, in Table 2.3 should 

only be used if windguys are installed. 

Walkway 0,46 kN/m 

Walkway support 0,22 kN/m 

Fixation cables 0,01 kN/m 

Wiremesh netting 0,06 kN/m 

Windties (average) 0,03 kN/m 
Table 2.3 Dead loads 

2.10.4 Live load 
Live loads are an estimation of the loads from pedestrians and wind acting on the bridge. Both 

Eurocode and Helvetas has recommendations for characteristic live loads, both from wind, 

which was presented in chapter 2.10.2, and from pedestrians.  
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Helvetas recommendation for pedestrian live load varies with the length of the span since the 

possibility of extreme overloading due to a large crown decreases with the span length 

(Helvetas, 2004). The live loads recommended by Helvetas can be seen in  

  

𝐹𝑜𝑟 𝑠𝑝𝑎𝑛 𝑙 ≤ 50 𝑚, 𝑞 = 4 𝑘𝑁/𝑚2 
 

(2.32) 

𝐹𝑜𝑟 𝑠𝑝𝑎𝑛 𝑙 > 50 𝑚, 𝑞 = 3 +
50

𝑙
𝑘𝑁/𝑚2 

 

The live load recommended by Helvetas can be seen in Figure 2.18 below: 

 

(2.33) 

 

Figure 2.18 Live load according to Helvetas 

Eurocode has two alternatives for crowd loading. The most common crowd load is Load Model 

4, defined in SS-EN 1991-2 part 4.3.5, which is a uniformly distributed load equal to 5 kN/m2. 

However, it’s up to each project to define if Load Model 4 is relevant. 5 kN/m2 is a very large 

load since it’s equal to almost 500 kg/m2, which is quite hard to achieve when only pedestrians 

are affecting the bridge. It’s possible that these bridges will be used even for cattle, which isn’t 

a problem, but some regard has to be taken to the structural capacity of the bridge, for example 

some limitation of the allowed number of cattle using the bridge at the same time. 

If it’s decided that Load Model 4 isn’t relevant for the specific bridge, there is another option. 

The recommended load in this case is very similar to the load recommended by Helvetas, i.e. a 

load that depends on the length of the span. Even here it seems like the risk of over-crowding 

decreases with an increasing span length. The live load recommended by Eurocode is therefore: 

𝐹𝑜𝑟 𝑎𝑙𝑙 𝑠𝑝𝑎𝑛𝑠  𝑞 = 2 +
120

𝑙 + 30
𝑘𝑁/𝑚2,    𝑤ℎ𝑒𝑟𝑒 2,5 𝑘𝑁/𝑚2  ≤ 𝑞 ≤ 5 𝑘𝑁/𝑚2 

 

(2.34) 
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The live load recommended by Eurocode can be seen in Figure 2.19 below. 

 

Figure 2.19 Live load according to Eurocode 

2.10.5 The vertical effects from wind load 
Since the wind loads are assumed to be horizontal, they 

won’t affect a “normal” bridge in a vertical way. Suspended 

bridges however are easily displaced by the wind, which 

creates a different load situation compared to more stable 

bridges. The displacement increases the load that has to be 

transferred trough the cables to the abutments. This situation 

can be described with seeing the bridge as a pendulum 

hanging from the axial line between the abutments, which 

can be seen in Figure 2.20. When there’s no wind load acting 

on the bridge, the pendulum string, representing the vertical 

load S carried by the bridge main cables, will hang vertical. 

The force S in the string will in this case be equal to the 

vertical force g. When the wind load increases the horizontal 

displacement d will also increase, creating a larger force S in 

the pendulum string and therefore a larger force in the 

bridge main cables. The enlarged force S due to the wind 

load is given by: 

𝑆 =
𝑔

cos(𝑟)  
= √𝑔2 + 𝑤2  𝑁/𝑚 

 

(2.35) 

2.10.6 Load combinations 

When using Eurocode, designing in the ultimate limit state (ULS) and therefore load 

combinations 6.10a and 6.10b will be used according to SS-EN 1990 6.4.3.2. The cable strength 

will be designed according to equation 6.2 in SS-EN 1993-1-11. 
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Figure 2.20 Static equilibrium for a 

bridge under constant wind load 
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2.11 Fatigue 
According to (Schnetzer, 2002), damage on the cables due to fatigue hasn’t been reported from 

site inspections on existing bridges without windguy arrangement. Note that the span of these 

bridges didn’t exceed 120 meter. However, the wind displacements leads only to small cable 

rotations at the support which therefore makes the fatigue effects negligible on the main cables 

(Schnetzer, 2002). Fatigue effects on suspenders and other structural members can’t be 

excluded, but this will not be investigated further. 

One important factor to the absence of fatigue problems on the bridges examined by (Schnetzer, 

2002) may be the high safety factor that Helvetas uses in their design. Since the dimension of 

the cables are getting bigger due to the safety factor, the stress ranges in the cables decreases, 

which reduces the risk of fatigue problems. If Eurocode is used in the design, it will lead to a 

more slender design. This will lead to higher stress ranges and an increasing risk for fatigue 

problems. It’s important to have this in mind when using Eurocode in the design. 

2.12  Brigade/Plus 
As modelling software BRIGADE/Plus, or just Brigade as it will be called, has been chosen. 

Brigade is developed by Scanscot Technology and it´s a finite element software for structural 

analysis of bridges and other civil structures. Brigade includes an integrated Abaqus finite 

element solver and it can handle dynamic analyses and nonlinear structural models which is 

important capabilities when modelling cable supported structures. 

Brigade/Plus will be used to determine the dynamic behavior of suspended bridges. The basic 

theory behind the dynamic calculations will be presented in the next chapters. 

2.12.1 Equation of motion SDOF 
The most simple oscillator system that can be described is mass spring system with a single 

degree of freedom (SDOF). The components are a mass, a spring and a viscous damper. The 

system is subjected to a dynamic external force, see Figure 2.21. 

 

Figure 2.21 Mass spring system 
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𝐹 is the external force, 𝑚 the mass, 𝑘 the spring stiffness, 𝑐 the viscous damping and 𝑢 denotes 

the displacement. The spring force and the viscous dissipation force depending on the 

displacement and the velocity, will be negative with the analogy from Figure 2.21.  

 𝑓𝑠 = −𝑘𝑢 − 𝑐𝑢̇ (2.36) 

 

Newton’s second law of motion with constant-mass system gives: 

 𝐹(𝑡) − 𝑓𝑠 = 𝑚𝑢̈ (2.37) 

 

The dynamic equation of motion for the system can now be written with (2.36) in (2.37) as: 

 𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝐹(𝑡) (2.38) 

 

2.12.2 Rayleigh Damping 
The type of damping referred to as Rayleigh damping or classical damping is proportional to 

the mass and stiffness matrices according to equation (2.39). This type of damping is suitable 

for nonlinear analysis because of the proportionality to the stiffness matrix, which is updated 

with the iteration scheme. 

 𝐶 = 𝛼𝑀 + 𝛽𝐾 (2.39) 

 

The modal damping factor is bescribed in equation (2.40) 

 
𝜉𝑛 =

1

2𝜔𝑛
𝛼 +

𝜔𝑛

2
𝛽 

(2.40) 

 

This shows that 𝛼 will be dominant for low frequencies and 𝛽 will consequently be dominant 

for high frequencies. 

2.12.3 Newton-Raphson 
Due to the geometric nonlinearities, an iterative analysis will be used. The nonlinearities comes 

from the relative large displacements the bridge is subjected to. The Newton-Raphson method 

is used in Brigade/Plus. The Newton-Raphson is a method used to solve the nonlinear 

equilibrium equations. The load is applied in increments and the force equilibrium for every 

increment is achieved with iterations with updated stiffness matrix.  

2.12.4 Eigenvalue 
When extracting the natural frequencies and associated modes for the bridge it can be handled 

as an eigenvalue problem. Considering a free vibration multi degree of freedom (MDOF) 

system, equation of motion will be according to equation (2.41).  

 

Trying to find the solution according to equation (2.42). 

 𝑀𝑢̈ + Ku = 0 (2.41) 
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 u = ϕ sin(𝜔𝑡) (2.42) 

 

Due to the time independence of ϕ the acceleration is given by equation (2.43). 

 

Inserting eq. (2.43) in (2.41) the following is obtained: 

 

Where 𝜔 denotes the eigenfrequencies and ϕ the eigenmodes. This gives the fundamentals for 

a modal analysis. 

2.12.5 Modal dynamics 
A Modal dynamics analysis is an analysis based on modal superposition. The natural modes 

gives the most likely behavior and movement of the bridge. Before this step can be used an 

extraction of the natural frequencies and associated modes of the bridge needs to be done. The 

system will have equal number of mode shapes as the number of degrees of freedom. Due to 

the user defined number of frequency modes that will be extracted, the system of equations will 

be smaller than a full implicit analysis and therefore the calculation time will be less. The 

response of the bridge will be a linear set of equations. Rayleigh damping will be used on the 

modes extracted. The loads will be applied on the nodes. 

2.12.6 Implicit dynamics 
The implicit dynamics analysis can handle nonlinear problems. The implicit analysis solves the 

equation of motion and updates the velocities and displacements using a Newmark time 

integration procedure. When no numerical damping is applied, the procedure is called the 

trapezoidal rule. Due to the integration scheme the calculation time will be larger than the 

Modal dynamics analysis. 

 

  

 𝑢̈ = −𝜔2𝑢 (2.43) 

 (𝐾 − 𝜔2𝑀)ϕ = 0 (2.44) 
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3 Reference bridge 
To be able to make a more precise model, a real built bridge has to be analyzed. With help from 

Bridges to Prosperity, and especially Maria Gibbs, we have received dynamic measurements 

from a real suspended bridge.  

The bridge that has been analyzed is named the Jicaro Bridge and it’s situated in Nicaragua. 

The bridge is 64 meter long and it’s a suspended bridge without wind stabilization. Its main 

load carrying system is composed of 5 cables with a diameter of 32 mm, 3 under the walkway 

and 2 as handrails. Both the deck and the crossbeams are made of wood. The bridge can be seen 

in Figure 3.1 below. 

 

Figure 3.1 The Jicaro Bridge 

Since these measurements are a part of Maria Gibbs PhD-project, we are not able to publish 

results from these. However, we have been able to calibrate our model from these 

measurements. The structural damping have been measured and some natural frequencies have 

been identified. One must note that these measurements are done with quite few accelerometers, 

which of course affects the results and that these result only validates the model for this single 

case. But overall, these measurements has been very valuable for our models. 

 

  



2.12 Brigade/Plus 

 
 

34 

 

  



4.1 Evaluation of sag 

 
 

35 

 

4 Analysis of the single cable 

4.1 Evaluation of sag 
The dynamic behavior of a suspended bridge is very affected by its sag. In some literature, for 

example (Schnetzer, 2002), the natural frequencies for a suspended bridge is plotted against the 

length of its span with a fixed sag/span-ratio. An example of this, made with hand calculations, 

can be seen in Figure 4.1. 

 

Figure 4.1 Natural in-plane frequencies for a single cable with a sag of L/20 

When looking at Figure 4.1, it’s easy to get the impression that the natural frequencies of the 

cable varies with the length of the cable. This is partly true, but the most contributing factor to 

the reduction of the natural frequencies is the increasing sag of the cable due to the fixed 

sag/span-ratio, i.e when the span increases, the sag of the cables also increases.  

In Figure 4.2 below, a cable with a fixed sag of 5 meter has been analyzed, also this time with 

hand calculations. The figure clearly shows that it is only the symetric in-plane frequencies that 

changes when the span increases. The assymetric in-plane frequencies, and also all the out of 

plane frequencies which aren’t showed in the figure, doesn’t change with the span length.  
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Figure 4.2 In-plane natural frequencies for a single cable with a fixed sag of 5 meter 

When the span is shorter than 100 meter, the cable behaves just like the sagging cable it is, but 

when the span length increases it behaves more and more like a taunt string. The crossover-

point for the 4th symetric- and assymetric frequencies take place at around 115 meter. The 

crossover-points for higher frequencies will take place at smaller spans, but the mode shapes 

for these frequencies are so small so they are not considered relevant for this report. The 

remaining crossover-points happens at 130, 160 and 220 meters. 

As described in the chapter Dynamics of cables, these crossover-points and the order of the 

natural modes depends on the value of  𝑃𝑔𝑒  

𝑃𝑔𝑒 = (
8 ∙ 𝑓

𝐿
)

3

∙
𝐸 ∙ 𝐴

𝑔𝑎 ∙ 𝑚 ∙ 𝐿
 

 

 (4.1) 

Where 𝑓  is the sag of the cable 

 𝐸  is the Young’s modulus of the cable 

 𝐴  is the cross sectional area of the cable 

 𝑔𝑎 is the acceleration due to gravity 

 𝑚  is the mass per unit length of the string 

 𝐿  is the length between the supports 

0,0

0,5

1,0

1,5

2,0

2,5

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Fr
eq

u
en

cy
 (H

z)

Span length (m)

In-plane natural frequencies for a single cable with a fixed sag 
of 5 meter

1 Assymetric 1 Symmetric 2 Assymetric 2 Symmetric

3 Assymetric 3 Symmetric 4 Assymetric 4 Symmetric



4.1 Evaluation of sag 

 
 

37 

 

 

Figure 4.3 Order of the in-plane natural frequencies depending on Pge 

The relationship between 𝑃𝑔𝑒  and the order of the natural in-plane frequencies can be seen in 

Figure 4.3. This figure is made with the equations from (Irvine, 1981) which were presented in 

the chapter Dynamics of cables. Figure 4.3 confirms the theory given in Figure 2.16 and it also 

shows the next two crossover-points. The multiplier on the vertical axis in Figure 4.3 can be 

used in equation (4.2). 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

2 ∙ 𝐿
√

𝐻

𝑚
   𝐻𝑧 

(4.2) 

 

Where 𝐻  is the horizontal force component in the cable 

 𝑚  is the mass per unit length of the string 

 𝐿  is the length between the supports 

Since the span length 𝐿 is present in both the denominator and the numerator (𝐿2 is included in 

𝐻) in equation (4.2), the frequency for the symmetric modes won’t change, due to their constant 

multiplier, if the length of the span varies. 

A more efficient way to manipulate the natural in-plane frequencies is to change the sag of the 

cable. The relationship between the frequencies and the sag can be seen in Figure 4.4, Figure 

4.5 and Figure 4.6. In these figures the span length is fixed and the sag is varying which means 

that all the natural frequencies, in-plane and out of plane, will be affected by the changes in the 

sag. In Figure 4.4 the symmetric in-plane natural frequencies can be seen. The sign of the 
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derivative for the symmetric frequency-curves isn’t constant since their “multiplier” is affected 

by the value of 𝑃𝑔𝑒 . This is not the case for the asymmetric in-plane  

 

Figure 4.4 Symmetric in-plane natural frequencies for a single cable with span L=150 meter 

frequencies. The sign of the derivative is always constant, i.e. if the sag increases the 

frequencies will always decrease. This can be seen in Figure 4.5 below. 

 

Figure 4.5 Asymmetric in-plane natural frequencies for a single cable with span L=150 meter 
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The first three symmetric and three antisymmetric in-plane frequencies have been plotted 

together in Figure 4.6. This figure clearly shows three crossover-points on the way from 

behaving like a taut string at a sag of L/100 to having like a sagging cable from sag bigger than 

L/20. 

 

Figure 4.6 In-plane natural frequencies for a single cable with span L=150 meter 

Since it’s quite easy to calculate the natural frequencies for a single cable, it would be useful if 

theses frequencies corresponds to the one that’s been calculated from the bridge models in 

Brigade/Plus. This connection will be researched further in chapter 0.  
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4.2 Modelling of a single cable in Brigade/Plus 
As a first step in the modelling of a suspended bridge, a single cable has been modelled. Since 

it has been shown in chapter 2.7 that it’s easy to calculate the natural frequencies by hand, this 

is a good way to start working with Brigade since it’s possible to compare the result from the 

model with the hand calculated results. This is a good way to check if the results from the model 

is reasonable. The chosen cable has the diameter of 35 mm which gives an approximate metallic 

area of 544 mm2. A rough sketch of the cable can be seen in Figure 4.7 below. 

Length L:    60 meter   

Sag f:    3 meter 

Mass:    4.27 kg/m   

E-modulus:   110 GPa 

Metallic area:  544 mm2 

The cable in the model is composed of two node beam elements and it’s pinned in both ends.  

 

Figure 4.8 Brigade model 

 

The Brigade model can be seen in Figure 4.8 above. The cable force near the supports in the 

model is 6,37 kN. Since the sag is increased in the cables deformed stadium and the hand 

calculation estimate the cable force to be 6.41 kN it’s seem like a reasonable result. 

The eigenmodes and appurtenant frequencies have been calculated for both in plane- and out 

of plane vibrations. Since the 𝑃𝑔𝑒-number is quite high, 𝑃𝑔𝑒 ≈ 1500, the cable will act like a 

sagging cable (which it is) and not like a taut string or anything in between. This causes the first 

vertical eigenmode to be assymetric, which both the hand calculations and the Brigade model 

has shown. As seen in the tables below, the frequencies calculated by hand and the ones 

calculated in the model are very alike.  

 

Figure 4.7 Sketch of the cable 
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  1st 2nd 3rd 4th 

Direction   Out of plane  Vertical Out of plane  Vertical 

Mode type   Symmetric Asymmetric Asymmetric Symmetric 

BRIGADE/Plus (Hz) 0,318 0,631 0,637 0,910 

Hand calculations (Hz) 0,320 0,639 0,639 0,914 

      

  5th 6th 7th 8th 

Direction   Out of plane  Vertical Out of plane  Vertical 

Mode type   Symmetric Asymmetric Asymmetric Symmetric 

BRIGADE/Plus (Hz) 0,957 1,279 1,282 1,578 

Hand calculations (Hz) 0,959 1,279 1,279 1,573 
Table 4.1 Natural frequencies for a single cable 

In Figure 4.9 below, the second natural mode and therefore the first in-plane natural mode of 

the single cable can be seen. 

 

Figure 4.9 The second mode of the single cable, i.e the first vertical mode 

 

4.3 Discussion 
The results in this chapter has proven that modifying the sag is an effective way to change the 

value of the natural frequencies of a single cable. It has also been proven that the hand 

calculations are very similar to the finite element model when it comes to calculating natural 

frequencies for a single cable. Since the way to hand calculate the natural frequencies of a single 

cable is well known, it can be assumed that the FE-modelling of cables is precise so far. This is 

promising for the modelling in further chapters. 
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5 Static analysis of the suspended bridge 

5.1 Hand calculations 
Designing a suspended bridge with regard to only static loads isn’t a difficult task for a person 

with some knowledge of structural engineering. The design procedure can be made systematic 

which has led to the creation of a design guide in the form of an Excel sheet. The Excel sheet 

can be used to design a suspended bridge according to both Helvetas and Eurocode and also 

with or without windguys as lateral stabilization. Since the main and handrail cables in a 

suspended bridge are the structural members that carries the whole load of the bridge and its 

users, the main focus in the design guide is to determine the appropriate dimensions for these 

cables. A design example for a 150 meter long suspended bridge made with this design guide 

can be seen in the appendix. 

Note that unless otherwise stated, all hand calculations presented are calculated with the design 

guide. 

5.2 Modelling 
Component Part Element 

Cable Wire 3D deformable B31 

Crossbeam Wire 3D deformable B31 

Suspender Wire 3D deformable T3D2 
Table 5.1 Properties for components in Brigade/Plus 

B31 is a 2 node beam element in 3D space with a linear interpolation function. And T3D1 is a 

2 node truss element in 3D space. This means that the connection between the suspender and 

the crossbeam will be a joint due to the lack of rotational degrees of freedom in the truss 

element.  

 

5.3 Influence lines 
An influence line shows the deflection, moment, shear force etc for a certain position on the 

bridge due to a force placed somewhere on the bridge. In this case, influence lines showing the 

deflection for two points on a 150 meter long suspended bridge has been made. The bridge is 

designed according to Eurocode. The two points are: 

 𝑥 =
𝐿

2
= 75 𝑚   

 

 𝑥 =
𝐿

4
= 37.5 𝑚. 

The influence lines had been made with the Brigade/Plus model and the recorded displacements 

has been normalized to achieve a displacement factor 𝜂 that can be multiplied with an acting 

force on the bridge. Since the unit of  𝜂 is 𝑚/𝑁, the user of the influence line can multiply the 

value of the force with the displacement factor 𝜂 for the location of the force. 



5.3 Influence lines 

 
 

44 

 

One important matter to notice is the nonlinearity in the force-displacement relationship. This 

nonlinearity is important to have this in mind when using the influence lines. The influence 

lines in Figure 5.1 and Figure 5.2 has been made by recording the displacement due to a vertical 

force with a magnitude of 100 newton. 

 

 

Figure 5.1 Vertical displacements at x=75 meter 

 

Figure 5.2 Vertical displacement at x=37,5 meter 
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To investigate the assumption of nonlinearity two another influence lines was made. These two 

recorded the deflections due to a vertical force of 2000 newton for the same points as the earlier 

ones. In Figure 5.3 and Figure 5.4 the influence lines for the force of 2000 newton has been 

inserted. Both of the influence lines in each figure has been normalized and as expected a small 

difference between the lines can be seen. When using the influence lines, interpolation have to 

be used even if the difference between the lines isn’t big. 

If one want to use the influence lines for a uniformly distributed load, the influence line have 

to be integrated over the length of the uniformly distributed load. For example, if the maximum 

possible displacement for the midpoint of the bridge should be determined, the influence line 

should be integrated over the distance 𝑥 ≈ 43 −  𝑥 ≈ 107 and then multiplied with the 

uniformly distributed load that should be placed over the same distance.  

 

Figure 5.3 Vertical displacements at x=75 meter 
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Figure 5.4 Vertical displacement at x=37,5 meter 

An example of how to use an influence line can be seen below. A force with a magnitude of 1 

kN has been placed at the position 𝑥 = 20 𝑚. This can be seen in Figure 5.5. The displacement 

for the two positions can be calculated with interpolation between the two influence lines in 

Figure 5.3 and Figure 5.4: 

Deformation at 𝑥 = 37.5 𝑚: 𝑣37.5 = 1000 ∙ −3,1 ∙ 10−5 = −31 𝑚𝑚 

Deformation at 𝑥 = 75 𝑚:  𝑣75 = 1000 ∙ 1,35 ∙ 10−5 = 13,5 𝑚𝑚 

 

 

Figure 5.5 Deflection due to a vertical force with the position x=20 meter  
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Another example can be seen below. A force with a magnitude of 1 kN has been placed at the 

position 𝑥 = 75 𝑚. This can be seen in Figure 5.6. The displacement for the two positions can 

be calculated with interpolation between the two influence lines in Figure 5.3 and Figure 5.4: 

Deformation at 𝑥 = 37.5 𝑚: 𝑣37.5 = 1000 ∙ 0,75 ∙ 10−5 = 7,5 𝑚𝑚 

Deformation at 𝑥 = 75 𝑚:  𝑣75 = 1000 ∙ −6,0 ∙ 10−5 = −60 𝑚𝑚 

 

 

Figure 5.6 Deflection due to a vertical force with the position x=75 meter 

 

5.4 Displacements 
Due to their slim and flexible shape, suspended bridges can be subjected to large vertical and 

lateral displacements. In this chapter, displacements due to static loads will be discussed. 

Displacements in the vertical direction will always occur, in fact the dead load sag is a 

displacement from the hoisting sag, i.e. the sag the cables are hoisted to during construction. 

The vertical displacements for the two investigated bridges can be seen in Table 5.2.  

The vertical displacements for the 150 meter long bridge have been determined with Brigade, 

influence lines and hand calculations. The live load used is the characteristic live load according 

to Eurocode for a 150 meter long bridge, and this load acts on the whole length of the bridge. 

The calculated displacements are quite similar and they span from 1,6 – 1,75 meter, which 

seems like a reasonable result. These displacements won’t significantly affect the users of the 

bridge, with a possible exception for old or disabled people. However, live loads of this 

magnitude are extremely rare. For a smaller but still large live load, 1000 kN/m, the vertical 

displacement becomes approximately 0,78 meter. 

 Span Dead load Live load Total load Displacement 

Vertical (m) (N/m) (N/m) (N/m) (m) 

Brigade 150 460 2670 3137 1,65 

influence line 150 460 2670 3137 1,6 

Hand calculations 150 460 2670 3137 1,75 

Brigade 64 490 2670 3167 0,36 

Hand calculations 64 490 2670 3167 0,33 
Table 5.2 Vertical displacements 
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The deformed shape of the 150 meter long bridge can be seen in Figure 5.7 below. 

 

Figure 5.7 Vertical displacements due to a live load of 2,67 kN/m. 

Lateral displacements due to wind load are hard to determine in a realistic way. Due to the non-

steady state of wind loads, static displacements are more an easy calculated estimation of 

possible lateral displacements. More lateral displacements due to wind will be presented in the 

dynamics chapter 0 

The lateral displacements in Table 5.3 below are based on wind speeds of 10, 15 and 20 m/s 

and the wind loads are determined according to equation (2.31. For both the Brigade and the 

hand calculations, the bridge has only been subjected to its own dead load since this will be the 

worst case with regard to lateral displacements. Live load would have increases the reference 

area for the wind load, but since the vertical load is greater than the increased wind load, this 

would have reduced the lateral displacements. 

 

Span Windguys Wind Dead load Wind load Displacement 

Lateral  (m)   (m/s) (N/m) (N/m) (m) 

Brigade 150 - 10 460 57 0,99 

Brigade 150 Yes 10 460 57 0,18 

Hand calculations 150 - 10 460 57 0,92 

Brigade 150 - 15 460 129 2,16 

Brigade 150 Yes 15 460 129 0,34 

Hand calculations 150 - 15 460 129 2,01 

Brigade 150 - 20 460 229 3,55 

Brigade 150 Yes 20 460 229 0,51 

Hand calculations 150 - 20 460 229 3,32 

Table 5.3 Lateral displacements 

As it can be seen in Table 5.3, the lateral displacements determined with Brigade and hand 

calculations are very similar. The hand calculations are done with the “pendulum theory” 

presented in chapter 2.10.5. The lateral displacements determined with the Brigade model 
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without windguys are approximately 7% bigger than the displacements determined by the hand 

calculations. It can therefore be stated that quite simple hand calculations are very similar to 

finite element models when calculating lateral displacement due to static wind load for bridges 

without windguys. 

The lateral displacements due to a wind speed of 20 m/s for the 150 meter long bridge with and 

without windguys can be seen in Figure 5.8 below. 

 

Figure 5.8 Lateral displacements due to a static wind of 20 m/s 

 

Figure 5.9 Lateral displacements due to a static wind of 20 m/s 

 

5.5 Stress distribution 
The main part of the loads on a suspended bridge acts on the walkway deck. If this load shall 

be uniformly distributed over both the walkway cables and the handrail cables, the suspenders 

have to be very stiff. Since the suspenders, and therefore the connection, between the handrail 
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and walkway cables aren’t completely stiff, there will be a difference between the forces in 

these cables.  

To be able to investigate the force and the appurtenant stress distribution in the cables, both the 

models of the Jicaro Bridge and the 150 meter bridge have been analyzed. The cable diameter 

of the Jicaro Bridge in the model has in this case been changed to a diameter that’s 

recommended by Eurocode. The comparison between the two bridges would otherwise have 

been poor. 

The two bridge models have been subjected to both their design load and their dead load and 

the stresses in the cables have been measure for these load cases. An additional load step was 

used for the Jicaro Bridge, which can be seen in Figure 5.10. In this figure, two lines can be 

seen. The upper line corresponds to the stress in one of the walkway cables and the lower line 

corresponds to the stress in one of the handrail cables. The stress is plotted against time, where 

the dead load was applied in steps during the first second and the 1 kN/m load was applied in 

steps during the second second.  

The stress difference starts during the first load steps. Since most of the dead load are situated 

in the lower parts of the bridge, the stress in the walkway cables will increase first. Since the 

handrail cables are connected with suspenders to the walkway cables, a vertical displacement 

of the walkway cables must occur before the suspenders will be tensioned and the lower part of 

the bridge starts to “hang” in the handrail cables. So if the suspenders aren’t pre-tensioned, 

which seems hard to achieve, the deformation and therefore the stresses on the walkway cables 

will be greater, at least for small loads. 

 

Figure 5.10 Stress distribution for walkway cables and handrail cables for the Jicaro Bridge 



5.6 Cable diameter and span 

 
 

51 

 

When the bridges are subjected to larger loads, the quotient between the stresses in the handrail 

cables and the walkway cables decreases, which can be seen in Table 5.4 below. It can also be 

seen that the stress distribution becomes more uniform with an increasing span. 

 Jicaro 64 m Bridge 150 m 

 
Handrail 

(HR) 
Walkway 

(WW) 
Quotient 
WW/HR 

Handrail 
(HR) 

Walkway 
(WW) 

Quotient 
WW/HR 

Load (Mpa) (Mpa)   (Mpa) (Mpa)   

Dead load 54,0 78,0 1,44 84,3 92,1 1,09 

Dead load + 1 kN/m 230,0 260,0 1,13 - - - 

Dead load + 5,5 kN/m 850,0 900,0 1,06 888 895 1,01 
Table 5.4 Stress distribution between handrail and walkway cables 

For the dead load case, the quotient between the walkway cables and the handrail cables are 

quite high, especially for the shorter Jicaro Bridge. For the longer bridge however, the quotient 

are quite low even for the dead load case. When the load increases, it’s clear that the quotient 

decreases, which can be seen in Table 5.4. This is due to the increasing interaction between the 

cables that occurs when the deformation of the cables increases. In the designers viewpoint, this 

is a positive result since designing in the ultimate limit won’t be affected if a uniformly stress 

distribution among both the handrail cables and the walkway cables is assumed. When the 

bridge approaches its maximum capacity, the stresses in the handrail cables and the walkway 

cables are almost identical, which is also assumed in the design sheet used for the hand 

calculations in this thesis. 

If the quotient still would be 1,44 for the Jicaro Bridge when it approaches its maximum 

capacity, some kind of enlargement factor should be added to the walkway cable dimensions to 

compensate for the higher stress level. But as seen in Table 5.4, this doesn’t seem necessary. 

 

5.6 Cable diameter and span 
For a suspended bridge, the length of the span and therefore the size of the sag, has a crucial 

impact on the necessary size of the load carrying cables. To make the growth of the cables due 

to an increasing span length clear, two different parameter studies has been made. The first 

study, which can be seen in Figure 5.11, is based on Eurocode and it’s showing the relationship 

between the span length and the cable diameter for a suspended bridge with 5 load carrying 

cables and a sag of the span length divided by 21 i.e. L/21. The reason for the choice of the 

number of cables and the sag is to make a comparison with the reference bridge, i.e. the Jicaro 

Bridge, possible. As seen in Figure 5.11, the relationship is nonlinear, especially from 30 meter 

up to around 150, but also for longer spans despite the fact that the relationship looks linear for 

spans longer than 150 meter.  

The cable diameter and the span length of the Jicaro Bridge has been marked in the figure, i.e. 

five cables with a diameter of 35 mm and a 64 meter long span. It’s clear that the cables in the 

Jicaro Bridge are oversized according to Eurocode. Instead of a diameter of 35 mm, the cables 

should have a diameter of approximately 21 mm.  
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Figure 5.11 Cable diameter according to Eurocode for a bridge with a sag of L/21  

A more obvious method to describe the relationship between the span length and the cable size 

is to use the metallic cross-sectional area instead of the cable diameter, which can be seen in 

Figure 5.12. The metallic cross-sectional area are direct proportional to the total strength of the 

cables and it’s approximately 55-56 % of the total cross-sectional area of the type of wire rope 

used in this report. The cables use in the Eurocode design is of rope class 1570 MPa, with 𝑓𝑢 =

1570 𝑀𝑃𝑎 and 𝑓0.2 = 1370 𝑀𝑃𝑎. 

In Figure 5.12 it’s even clearer that the Jicaro Bridge are oversized according to Eurocode. The 

metallic cross-sectional area of the Jicaro Bridge is almost three times bigger than the necessary 

area suggested by Eurocode. 

 

Figure 5.12 Metallic cross-sectional area according to Eurocode for a bridge with a sag of L/21 
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The other bridge marked in Figure 5.12 is the Trift Bridge, which is a suspended bridge 

spanning over a gorge close to the Trift glacier in Switzerland. This bridge was opened in 2009 

when it replaced a few year older bridge that suffered from wind instability. The Trift Bridge 

has a similar sag ratio and it’s design for a similar load as the load recommended by Eurocode 

(Pfaffen, Brog, & Van Rooden, 2009). As seen in Figure 5.12, the dimension of the cables in 

the Trift Bridge are slightly bigger but still close to the dimensions recommended by Eurocode. 

One reason for the bigger dimension can be the Trift Bridge are fitted with pre-tensioned 

windguys which creates an extra vertical force since the windguys aren’t completely horizontal. 

Another reason for using the metallic cross-sectional area as unit for the relationship between 

span length and cable size is that a comparison between the Jicaro Bridge and the dimensions 

suggested by Helvetas is possible. When using the Helvetas design guide it recommends 

different cable combinations depending on the size of the calculated force. Since the number 

and diameter of the cables used in these combinations varies, it’s impossible to use the cable 

diameter as unit for the cable size. However, the metallic cross-sectional area for each cable 

combination is given which makes a comparison possible. In Figure 5.13 below, a maximum 

span for each cable combination has been calculated.  

Even according to Helvetas, the cables in the Jicaro Bridge seems to be oversized. If the Jicaro 

Bridge should have been designed according to Helvetas, the recommended cable combination 

should have been point number three in the line in Figure 5.13 below, i.e. 4 cables with a 

diameter of 26 mm under the walkway and 2 cables with a diameter of 26 mm as handrails.  

This gives a metallic cross-sectional area of 1751 mm2 even if approximately 1500 mm2 is 

necessary.  

The cables in the Trift Bridge are undersized according to Helvetas. Since the dimension of the 

cables where close to the Eurocode dimensions, this result was expected. 

 

Figure 5.13 
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Not surprisingly, the curves in Figure 5.12 and Figure 5.13  has a quite constant factor between 

them, which can be seen in Figure 5.14. The areas calculated according to Helvetas are 

approximately 60 % bigger than the areas calculated according to Eurocode. However, for a 

span of 64 meter, both these areas are much smaller than the metallic cross-sectional area of the 

cables in the Jicaro Bridge. The Trift Bridge positions itself between the Helvetas- and the 

Eurocode curves. Its metallic cross-sectional area is approximately 400 mm2 bigger than the 

Eurocode recommendations and 1000 mm2 smaller than the Helvetas recommendation. 

Note that neither the Helvetas nor the Eurocode curves are calculated with regard to windguys. 

 

Figure 5.14 

 

5.7 Discussion 
The influence lines are a good tool to identify the most crucial load positions for a suspended 

bridge but they should be used with care. The influence lines presented in chapter 5.3 are created 

specifically for a 150 meter long bridge designed according to Eurocode and the displacement 

axis should only be used for this bridge. However, the shape of the influence lines won’t differ 

much from bridges with different span but with the same span/sag-ratio. They can therefore be 

used with quite good accuracy to determine the displacements for different load positions. 

The stress distribution between the handrail and walkway cables showed to be more and more 

uniformly distributed when the vertical load was increased, i.e. the cables deforms uniformly. 

The interaction between the handrail and the walkway cables depends on the suspenders 

connecting them. The difference between the vertical deformations, and therefore the stresses, 

in the cables will decrease with an increasing load. Since the stresses in the cables are almost 

similar when the bridge reaches its structural capacity, the design in the ultimate limit state can 

be made with the assumption of full interaction between the cables. 
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Hand calculations have proved to be very alike the Brigade-calculations when it comes to 

displacements due to static loads. The need for time-consuming FEM-models is therefore small 

when only static loads are used in the design. 

The design according to Helvetas must be seen as oversized in comparison with Eurocode since 

the recommended cable dimensions by Helvetas are approximately 60 % larger than the 

recommended dimensions by Eurocode. Bridges to Prosperitys design guide is based on the 

Helvetas design guide, but as it can be seen in Figure 5.14, the design of the Jicaro Bridge is 

very oversized according to both Helvetas and Eurocode. The cross-sectional area of the cables 

in the Jicaro Bridge is almost identical with the over 100 meter longer Trift Bridge even if the 

cable quality can differ between them. It’s however determined that damage due to fatigue 

aren’t common on suspended bridges designed according to Helvetas (Schnetzer, 2002). If this 

is because of the larger dimensions will remain uncertain, but it’s clear that the larger 

dimensions aren’t a disadvantage when it comes to reducing fatigue damage. 

The available cables sizes on the building site must also be considered in the design. Perhaps 

it’s cheaper to buy a larger cable dimension on site than transport a smaller cable a long way. 

This could be one reason to the oversized design of the Jicaro Bridge. Since it’s only the 

walkway and handrail cables that are the main load carrying elements, it’s quite cheap to 

increase the cable size and therefore the structural capacity of the bridge. 
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6 Dynamic Analysis 

6.1 Modal superpositioning 

6.1.1 Natural Frequencies 
The extracting of the natural frequencies is done both by hand calculation for a single cable and 

it’s also treated as an eigenvalue problem in Brigade/plus. The step in Brigade that is used is a 

linear perturbation step called frequency. When the whole bridge is modelled one can obtain 

torsion modes in addition to vertical and out of plane modes. The number of natural frequencies 

and modes extracted is user defined but in theory it’s possible to extract a number equal to the 

number of degrees of freedom. 3 vertical, out of plane and torsional frequencies are extracted 

both from the Jicaro Bridge and the 150 m span bridge. A few different modes are presented 

below while the rest can be seen in appendix. 

 

Figure 6.1 First out of plane mode shape for the Jicaro Bridge 

 

Figure 6.2 Second out of plane mode shape for the Jicaro Bridge 
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Figure 6.3 First in- plane mode shape for the Jicaro Bridge 

 

Figure 6.4 First torsional mode shape for the 150 meter span bridge 

 

A comparison between hand calculated and FEM modelled frequencies has been done. The 

frequencies from these calculations can be seen in Table 6.1 below.  
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  Jicaro Bridge  Single cable   Modelled bridge Single cable 

  64 meter 64 meter  150 meter 150 meter 

Natural frequencies Brigade/Plus Hand calculated  Brigade/Plus Hand calculated 

Out of plane (Hz) (Hz)   (Hz) (Hz) 

1st 0,318 0,320  0,201 0,209 

2nd 0,608 0,639  0,388 0,419 

3rd 0,910 0,959  0,567 0,628 

In-plane      

1st 0,620 0,639  0,401 0,419 

2nd 0,887 0,911  0,563 0,592 

3rd 1,249 1,279  0,805 0,837 
Table 6.1 Comparison of natural frequencies calculated by FEM-models and by hand 

Note that the bridges in the Brigade/Plus-models are subjected to their own dead load, i.e. the 

weight from cables, suspenders, crossbeams etc. The single cables are only subjected to the 

dead load of the cable itself. 

6.1.2 Excitation / Impulse 
To analyse the dynamic response of the bridges, energy need to be added to the system. 

Consequently the response will be very much dependent on the energy added. The excitation 

of the bridge in the horizontal direction is based on the wind velocities of 10, 15 and 20 m/s. 

Since “real” wind loads are very difficult to model, a reference method is used where the load 

is applied as a line load on the side of the bridge in the out of plane direction. The load is built 

up under a 2 second period and then decayed under a period of 0.1 second. This will allow free 

vibration of the bridges in the excited modes when load has decayed to zero. The load is applied 

with Smooth Step in Brigade. This gives the transition between the input values of the amplitude 

as a fifth degree polynomial. The first and second derivative will be zero at the start and end 

value. Figure 6.5 shows the transition of the load between two input values. 

 

Figure 6.5 Amplitude curve for Smooth Step 
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6.1.3 Damping 
The Rayleigh damping coefficients are extracted from experimental dynamic pluck tests on the 

Jicaro Bridge in Nicaragua. The pluck tests are performed by Bridges to Prosperity and Maria 

Gibbs. According to (Austrell, 2015) the damping ratio on lightly damped systems can be given 

by equation (6.1). 

  

6.2 Modal analysis 
In Brigade the modal super positioning analysing step is a linear perturbation step called modal 

dynamics. This step needs to be preceded by the frequency step where the natural frequencies 

are extracted. The number of natural frequencies used for the modal analysis is set to 25. 

Because of the excitation of the bridges is done along the whole span, one can suspect that the 

dominant mode will be the first mode in the out of plane direction, see Figure 6.1. The results 

extracted from the analyses will be displacements and accelerations for the midpoints of the 

three bridges, Jicaro Bridge (64 m), 150 m span bridge and 150 m span bridge with windguys 

installed.  

6.2.1 Displacements 
The response in the form of displacements is shown in Figure 6.6, Figure 6.7 and Figure 6.8. 

Each figure shows the response from the three different wind velocities acting on one of the 

bridges. 

 

Figure 6.6 Lateral displacement in the center of Jicaro Bridge 
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Figure 6.7 Lateral displacement in the center of the 150 m span bridge 

 

Figure 6.8 Lateral displacement in the center of the 150 m span bridge with windguys 
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6.2.2 Accelerations 
The response in the form of accelerations is shown in Figure 6.9, Figure 6.10 and Figure 6.11. 

Each figure shows the response from the three different wind velocities acting on one of the 

bridges. 

 

Figure 6.9 Lateral accelerations in the center of Jicaro Bridge 
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Figure 6.10 Lateral accelerations in the center of the 150 m span bridge 

 

Figure 6.11 Lateral accelerations in the center of the 150 m span bridge with windguys 
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6.3 Implicit dynamic step 
As stated before the cables gives a nonlinearity to the problem. And because a modal analysis 

only can handle linear problems a comparison is made with an implicit dynamic analysis. The 

comparison is made on the 150 meter span bridge without windguys and a wind velocity of 10 

m/s. It should also be noted that the modal analysis only uses the first 25 modes which also can 

give a deviation between the different analyses. The response comparison in the form of 

displacements and accelerations are shown in the figures below. 

 

 

Figure 6.12 Lateral displacement comparison between modal and implicit dynamic analysis 
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Figure 6.13 Lateral accelerations comparison between modal and implicit dynamic analysis 
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the windguys. One can make the conclusion that the design criteria for using windguys is based 

on allowed lateral displacement rather than allowed accelerations of the bridge.  

The acceleration values for the three bridge types are relative large compared to the suggested 

accelerations by Nakamura. The choice of excitation parameters that are put into the system is 

of great importance for the response of the bridge and will greatly influence the values. It’s 

possible that it’s more important in this case to analyse the change in behavior with greater span 

and windguys rather than analysing the actual peak values.       

In the comparison between a modal analysis and an implicit analysis in Figure 6.12 and Figure 

6.13, a difference can be distinguished in the early peak values for the displacements. The 

implicit analysis gives larger displacements than the modal analysis. The peak values for the 

accelerations seems to conform in a better way. A small difference in frequency of the response 

can also be seen. The modal analysis gives overall a good approximation of the response of the 

bridge but to fully analyse the nonlinearities that occur with cables, an implicit analysis is 

needed. Note that the modal analysis requires less calculation time than the implicit dynamic 

analysis.   
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7 Conclusions 
Since all the results have been discussed in each chapter, this chapter will summarize them 

shortly. 

Modifying the sag is the best way to affect the natural frequencies. 

The Brigade model and hand calculations gives very alike result for both vertical and lateral 

displacements due to static loads. 

The stress distribution between the handrail and the walkway cables is not a problem for 

designing in ultimate limit state. The stress distribution becomes more uniformly distributed 

between the cables when the vertical load increases, i.e. the cables will deform uniformly. 

When analyzing the natural frequencies of a suspended bridge, a good approximation will be 

to evaluate a single cable with the same sag and span subjected to its self weight. 

The criteria for using windguys should rather be based on displacements than accelerations. It 

could also be a combination of the two. 

In Brigade/plus the cables, and therefore the whole bridge, will have no stiffness before the 

dead load is applied which means that the sag will get larger than what it’s initially modeled 

as. This needs to be accounted for when modelling a suspended bridge in Brigade/plus.   

Bridges designed with design guides from Helvetas and Bridges to Prosperity requires larger 

cable dimensions compared with bridges designed according to Eurocode.  

When determining the lateral dynamic response from wind loads, a modal dynamics analysis 

gives a good approximation of the behavior of the bridge. However, a full implicit dynamic 

analysis is preferred.  
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7.1 Further investigations 
In this section a number of suggestions are made for further investigations and analyses that 

have not been included in this thesis.  

 More full dynamic implicit analyses should be done to fully understand the nonlinear 

behavior of the dynamic response. 

 

 If possible make experimental tests on existing suspended bridges for calibrating 

models. This can for instance be a simple pluck test to identify natural frequencies. 

 

 Try to find a criteria depending on displacements, accelerations and span length for 

when windguys should be installed.  

 

 The effect of temperature changes. Very low temperature will lead to a temporary 

shortening of the cables which will increase the stress levels. 

 

 Corrosion protection of the cables. 
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9 Annex 

9.1 Design guide 
This part gives a short guidance on how to use the excel design sheet. All formulas and labels 

are based on the design guides made by Helvetas, especially the Long Span Trail Bridge 

Standard, but the loads and the safety criteria has been adjusted to also fit Eurocode. The excel 

sheet has five different parts, each for different design situations, for example if the bridge 

should be fitted with windguys or not, or if it should be designed according to Eurocode or 

Helvetas. Note that the authors don’t take responsibility for any design created with this excel 

sheet. It’s only a guideline and reasonable check should always be done after the use of this 

sheet. 

In the design example below, a suspended bridge with a span of 150 meter will be designed 

according to Eurocode. Since the span length exceeds 120 meter, the sheet >120 Eurocode is 

chosen. The first step is to determine the basic geometry of the bridge. This is done in the first 

part of the sheet which can be seen in Figure 9.1 below. A green cell means that a value must 

be given. A white cell will be calculated automatically.  

 

Figure 9.1 Geometry 
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𝑙   The design span is the horizontal distance between the two saddles. 

𝑏𝑑  The dead load sag is the sag of the bridge when it’s subjected to its own dead 

load. The recommended min-, max-, and mean dead load sag is given in the cells 

to the right. 

𝑏ℎ  The hoisting sag is the sag the cables should be hoisted to during construction. 

When suspenders, crossbeams, walkway etc. are installed, the cables will sink to 

their dead load sag. 

𝑏𝑓   The full load sag is the sag of the bridge when it’s subjected to its maximal vertical 

load. Note that if a certain freeboard is required for a bridge, the full load sag must 

be checked against the height requirement for the freeboard. 

Note that the prefixes 𝑑, 𝑏, 𝑓 stands for dead load, hoisting load and full load. 

ℎ  The height difference between the saddles which can be seen in Figure 9.1. 

𝐿  The cable length is the total length of the cable. 

𝑓𝑑  The vertical distance between the lowest point on the cable and the highest saddle. 

𝑓𝑑  is marked with an 𝑓 in Figure 9.1. 

𝑒 The horizontal distance between the lowest point on the cable and the highest 

saddle. 

 

The next part concerns the properties of the main load carrying cables. This part is very 

important since many cells have to be filled in and it’s important to get the right information 

from the cable manufacturer. 
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Figure 9.2 Cable properties 

𝐸 The Young’s modulus for the cable. Note that Young’s modulus for cables is 

always lower than the modulus for steel. In this case it’s 110 GPa. 

𝑅𝑟 The rope grade is a level of breaking force requirement given in N/mm2, i.e. MPa, 

for example 1570, 1770 or 1960 N/mm2. The rope grade does not necessary 

correspond to the tensile strength of the wires in the rope.  

𝐹𝑚𝑖𝑛 The minimum breaking force for one cable is calculated according to SS-EN 

1993-1-1 1.3.9. 

𝑑 The diameter of the rope should be chosen from standard manufacturing 

dimensions. For simplicity the diameter will be the same for all the cables in the 

bridge. The number of handrail cables is fixed to two, the main cables under the 

walkway can be chosen with a minimum of two. 

𝐴𝑚 The metallic cross-sectional area is calculated by multiplying the fill factor with 

the cross-sectional area of all the cables. 

𝐾 The breaking force factor is an empirical factor used to determine the minimu 

breaking force for a cable. Should be given by the manufacturer. If not, it can be 

calculated with SS-EN 1991-1-11 1.3.8. 

𝑘𝑒 The loss factor for end terminations is given in Table 6,3 in SS-EN 1993-1-11. 

𝑓 The fill factor is the percent of metal area in the cross-sectional area of a cable. 
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𝐹𝑢𝑘 The characteristic value of breaking strength is calculated according to equation 

6,4 in SS-EN 1993-1-11. 

𝐹0,2𝑘  The characteristic proof strength is the maximum strength of the cable without 

exceeding a permanent strain of 0,2 %. 

𝛾𝑅  The partial factor used in equation 6,2 in SS-EN 1993-1-11. 

𝐹𝑅𝑑 The total design strength for all cables is calculated with equation 6,2 in SS-EN 

1993-1-11. The equation can be seen below: 

𝐹𝑅𝑑 = 𝑚𝑖𝑛 {
𝐹𝑢𝑘

1,5 ∙ 𝛾𝑅
;
𝐹𝑘

𝛾𝑅

} 
(9.1) 

 

In Figure 9.3 below, the loads acting on the bridge can be seen. These loads are the same as the 

loads presented in chapter 2.10.3. The only load that has to be given is the horizontal wind load 

for the current bridge. The other loads, both dead load and live load, will be calculated 

automatically. The load combination creating the worst load situation will be the design load. 

In almost all cases, load combination 6,10b will be the design load combination. 

In this sheet, the windguys are assumed to carry all the horizontal wind load. In the sheet for 

spans under 120 meter, an enlargement factor will be added to the vertical loads to compensate 

for the displacement caused by the wind load, as described in chapter 2.10.5. This enlargement 

factor will be calculated and added automatically. 

 

Figure 9.3 Loads 

When the loads and load combinations are determined the hoisting sag and the full load sag 

can be determined. This is done in an iterative way for both the hoisting sag and the full load 

sag. The numbers of iterations varies depending on the loads. 
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Figure 9.4 Hoisting sag iteration procedure 

𝐿  The cable length is the total length of the cable. 

𝐶 The constant factor gather all the constants in the iteration procedure. The formula 

used can be seen in Figure 9.4. 

𝑏ℎ
∗

𝑠𝑡𝑎𝑟𝑡
 The primary hoisting sag is the starting value for the hoisting sag in the iteration 

procedure. The starting value is set to 93 % of the dead load sag. 

𝑔∗ The primary hoisting load is the load used for calculating the primary hoisting sag 

in every iteration. Will with every iteration move closer to the real hoisting load. 

𝑏ℎ
∗  The primary hoisting sag is the sag determined with the primary hoisting load in 

the current iteration. 

∆𝑔𝑖 The load difference is the difference between the primary hoisting load and the 

real hoisting load, i.e. ∆𝑔𝑖 = 𝑔ℎ − 𝑔∗. The condition to be fulfilled is that |∆𝑔𝑖| ≤

0,01 𝑘𝑁/𝑚. If this condition is fulfilled, the cell to the right will sign OK. 

𝑏ℎ The final hoisting sag is set to the 𝑏ℎ
∗  in the first iteration that fulfills the condition 

|∆𝑔𝑖| ≤ 0,01 𝑘𝑁/𝑚. For example, in Figure 9.4 above, the 4th iteration fulfilled 

the condition and 𝑏ℎ is therefore set to 6,11 meter. 

When the hoisting sag has been determined, the same procedure is followed to determine the 

full load sag. The same unit are used as in the hoisting sag procedure. The only difference is 

that the prefixes are changed from ℎ to 𝑑, which can be seen in FIGURE XXX
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Figure 9.5 Full load sag iteration procedure 

As it can be seen in Figure 9.5, the maximum tension in the cables due to the full load, is 

calculated with the full load sag. In the figure above, the full load sag is determined to be 9,2 

meter and the tension in the cables 1,67 MN. In the bottom of the figure is the structural capacity 

for the cables checked against the maximum tension. If the capacity is greater than the 

maximum tension in the cables, the safety factor, i.e. the capacity divided by the maximum 

tension, is larger than 1. If this condition is fulfilled, the cell to the right will sign “OK”. If the 

condition isn’t fulfilled, it will sign “Not OK”. When this condition is fulfilled, the design of 

the load carrying cables of the bridge is done. 

Windguys 

Designing the windguys is a more complicated task. Four different anchors have to be installed. 

Hopefully, the ground conditions are favorable so a symmetric position of the anchors is 

possible. Otherwise a more detailed design procedure have to be done. 

But let’s assume favorable ground conditions and a bridge with no height difference between 

its saddles. This means that the windguys will be symmetric and that it’s enough to design only 

one of the windguys. This has been assumed in the design guide, and otherwise the Helvetas 

Long San Trail Bridge Standard should be used. Note that the design guide contains many 

pictures explaining the geometric properties of the windguys. These picture has not been 

included in this document due to publicity rights. The figure below contains the geometric 

properties, the wind load and the resulting tension in the windguy cable/cables. 



9.1 Design guide 

 
 

77 

 

 

Figure 9.6 Windguy geometry 

   

Note that when the term in-plane is used here it mean as viewed in plan.  

 

𝑙   The design span is the horizontal distance between the two saddles. 

𝑣𝑅 The horizontal distance from the right abutment to the in-plane vertex for the 

windguy cable. For a bridge with abutments at the same height, 𝑣𝑅 has the same 

value as 𝑒 for the bridge. 

𝑓𝑤  The in-plane sag of the windguy cable measured from the right abutment of the 

bridge. 

𝐻1 Elevation of the highest bridge abutment. In this case the elevation is the same for 

both the abutments. 

𝐻𝑅  Elevation of the right windguy foundation. 

𝐻𝐿  Elevation of the left windguy foundation. 

ℎ𝑤 The horizontal in-plane distance between the crossing points between the 

windguy cable and the abutments, i.e. the in-plane distance from the windguy 

cable to the bridge axis at the left abutment minus the same distance at the right 

abutment. For a symmetric windguy, this distance is zero. 
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𝑏𝑤 The in-plane sag of the windguy cable at midspan. If ℎ𝑤 = 0, i.e. a symmetric 

windguy, 𝑏𝑤 = 𝑓𝑤 . 

𝑑 The distance between the windties, i.e. the cables connection the windguy to the 

bridge. 𝑑 should be equal to 6 meter for suspended bridges. 

𝑘 The distance from the midpoint of the crossbeam to the connection with the 

windtie. 

𝑤 The wind load, which is determined in the earlier parts of the design guide. 

𝐻𝑤 The horizontal force in the windguy cable 

𝑇𝑅 The force in the windguy cable at the right foundation 

𝑇𝐿 The force in the windguy cable at the left foundation 

𝑇𝑤,𝑚𝑎𝑥 The largest of 𝑇𝑅 and 𝑇𝐿. 

In the figure below, the cables are designed in the same way as in the earlier part. The only 

difference is that one have to choose the number of cable in each windguy, 𝑛𝑤, which most 

often is one or two. For example,in the figure below it was enough with one. 

 

Figure 9.7 Windguy porperties 



9.1 Design guide 

 
 

79 

 

𝐵𝑅 The horizontal distance from the right abutment to the first windtie. 

𝐵𝐿 The horizontal distance from the left abutment to the first windtie.  

𝛼𝑅 The in-plane inclination between the windguy and the bridge axis at the right 

abutment. 

𝛼𝐿 The in-plane inclination between the windguy and the bridge axis at the left 

abutment. 

𝐶𝑅 The in-plane, orthogonal to the bridge axis, distance between the right bridge 

abutment and the right windguy foundation.  

𝐶𝐿 The in-plane, orthogonal to the bridge axis, distance between the left bridge 

abutment and the left windguy foundation. 

𝐶𝑅𝑜 The in-plane, orthogonal to the bridge axis, distance between the right bridge 

abutment and the windguy. 

𝐶𝐿𝑜 The in-plane, orthogonal to the bridge axis, distance between the left bridge 

abutment and the windguy. 

𝐷𝑅 The in-plane, along the bridge axis, distance between the right bridge abutment 

and the right windguy foundation. Negative if the windguy foundation is closer 

than the abutment to the midpoint of the span. 

𝐷𝐿 The in-plane, along the bridge axis, distance between the left bridge abutment and 

the right windguy foundation. Negative if the windguy foundation is closer than 

the abutment to the midpoint of the span. 

𝐹 The safety factor is finally determined by dividing the structural capacity of the 

windguy, 𝑓𝑅𝑑  with the maximum force 𝑇𝑤,𝑚𝑎𝑥. If the safety factor exceeds 1, the 

design is correct. 

Windties 

The windties connects the bridge to the windguy. The length of the windties can be determined 

with a series of parabolas that describes the shape of the bridge and the windguy in both plan 

and elevation. 
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Figure 9.8 Windties properties 

𝛾 The inclination between the windtie at the walkway vertex and the horizontal 

plane. 

𝑦𝑙𝑝  The horizontal distance from the windguy to the wintie connecting bolt at the 

vertex of the walkway. 

∆ℎ𝑙𝑝 The vertical distance from the windguy to the wintie connecting bolt at the vertex 

of the walkway. 

𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑎 1 The parabola that describes the elevation of the suspended bridge. 

𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑎 2 The parabola that describes the elevation of the windguy to the right side of the 

walkway vertex. 

𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑎 3 The parabola that describes the elevation of the windguy to the left side of the 

walkway vertex. 

𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑎 4 The parabola that describes the plan of the windguy. 

The parabola equation used is: 

 𝑦 𝑜𝑟 𝑧 = 𝑎𝑖 ∙ 𝑥2 + 𝑐𝑖   

where x is parallel to the bridge axis. The parabolas and the geometry can be seen in the design 

guide. 

Finally the length of the windties is determined. 



9.1 Design guide 
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Figure 9.9 Length of windties 

As it can be seen in the figure above, it’s important to use parabola 2 for values x>0 and parabola 

for values x<0. 

Finally, note that if a non-symmetric bridge is designed, formulas might need to be changed. 

Please check the Long Span Trail Bridge Standard in this case.  

 

 

 

 

 

  



9.2 Natural frequencies and appurtenant modes 
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9.2 Natural frequencies and appurtenant modes 
      

 

Figure 9.10 Third out of plane mode shape for Jicaro Bridge 

 

Figure 9.11 Second in-plane mode shape for Jicaro Bridge 



9.2 Natural frequencies and appurtenant modes 
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Figure 9.12 Third in-plane mode shape for Jicaro Bridge 

 

Figure 9.13 First out of plane mode shape for 150 m span bridge 



9.2 Natural frequencies and appurtenant modes 
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Figure 9.14 Second out of plane mode shape for 150 m span bridge 

 

Figure 9.15 Third out of plane mode shape for 150 m span bridge 



9.2 Natural frequencies and appurtenant modes 
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Figure 9.16 First in-plane mode shape for 150 m span bridge 

 

Figure 9.17 Second in-plane mode shape for 150 m span bridge 



9.2 Natural frequencies and appurtenant modes 
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Figure 9.18 Third in-plane mode shape 150 m span bridge 

 

 

 

Figure 9.19 First out of plane mode shape 150 m span bridge with windguys 



9.2 Natural frequencies and appurtenant modes 
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Figure 9.20 Second out of plane mode shape 150 m span bridge with windguys 

 

Figure 9.21 Third out of plane mode shape 150 m span bridge with windguys 

 



9.2 Natural frequencies and appurtenant modes 
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Figure 9.22 First in-plane mode shape 150 m span bridge with windguys 

 

Figure 9.23 Second in-plane mode shape 150 m span bridge with windguys 



9.2 Natural frequencies and appurtenant modes 
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Figure 9.24 Third in-plane mode shape 150 m span bridge with windguys 

 

Figure 9.25 Second torsional mode shape 150 m span bridge 
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Figure 9.26 Third  torsional mode shape 150 m span bridge 

 

 


