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Abstract

There has been intense research in vehicular communication in order to provide reliable
low-latency vehicular communication links for developing intelligent transportation sys-
tem (ITS). As one of the important properties, vehicle-to-vehicle (V2V) communication
is learned to be inherently non-stationary due to the high mobility of both transmitter
(TX) and receiver (RX). Therefore, the V2V system behavior is essentially different from
previous mobile communication studies and needs to be understood.

For V2V wireless communication systems, it is crucial to model the vehicular chan-
nel accurately to evaluate the quality of the system level applications. Among all channel
properties in a V2V system, the shadow fading (i.e. large scale fading, LSF) from other
vehicles has a significant adverse impact on the system performance. One promising
approach to overcome this issue is by implementing multi-hop technology on the vehic-
ular ad hoc network (VANETS). One goal of this thesis report is to implement relaying
schemes on simulated Rician channel based on measurements to evaluate the performance
of multi-hop technology in V2V systems. Two relaying schemes, Amplify-and-Forward
(AF) and Decode-and-Forward (DF), are employed in the bit level simulation. The results
of packet error rate (PER) are evaluated together with non-relaying situation for convoy
and overtaking scenarios, respectively.

Furthermore, a statistic model is created to model the measured highway environ-
ment. Pathloss parameters and shadowing loss together with correlation coefficients are
derived. Line-of-sight (LOS) and obstructed line-of-sight (OLOS) conditions are manu-
ally separated through on-board video. Each scenario has its own parameter set. Max-
imum likelihood estimation (MLE) is utilized on the pathloss model to compensate the
biasing from the measurement hardware. Also the shadowing is modeled as correlated
Gaussian and we derived the decorrelation distance from the auto-correlation function
(ACF). The model is also validated against the measurements.

For an ad hoc network, the diversity schemes would be strongly affected by the multi-
link correlation. Only a few joint correlation studies for mobile ad hoc network have been
made, but rarely for VANETs. The last goal of this report is to study the joint correlation
on VANETSs based on measurements for four-dimensional position joint correlation model
where shadowing is affected by the vehicle distance. To be precise, we focus on the
joint correlation of large scale fading affected by the distances between the two receiver
vehicles under the same car obstruction. Finally, a stochastic model based on the sum of
sinusoids approach is implemented.
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Chapter 1

Introduction

1.1 A brief overview of VANETSs

Intelligent transportation system (ITS), a crucial component of daily life, has improved
people’s travelling for over two decades. Since the beginning of the 21st century, there
has been an explosive enlargement of the size of the transportation system, which conse-
quently lead to a substantial increase of accidents. The term safety has become number
one and essential concept to be improved in the transportation system [1]. As one ap-
plication branch of the 5G architecture, the ad-hoc vehicle-to-vehicle networks known as
VANETS reveal its suitable features.

With the widely use of WiFi technology, the research in Vehicle to Vehicle (V2V)
communication was initiated by the Department of Transportation (i.e. DOT) and Crash
Avoidance Metrics Partnership (i.e. CAMP). The research effort is known as Dedicated
short-range communication (DSRC) which is a WiFi based technology used for vehicle
sensors to detect potential collision and threats using the 5.9 GHz band [2]. A large
number of V2V studies emerge from there. The idea of VANETS partially come from the
similar system of mobile ad hoc network. The idea is that it can provide minimal latency
due to a direct communication between vehicles; it is considered to have unlimited power
supply since the energy consumption for a vehicle engine is neglectable; The antenna
and equipment size will not have the rigorous restriction as for mobile phones and the
vehicle-embedded computer can provide ability for calculation and data storage [3].

A VANET is defined as a fast moving outdoor communication network [4]. The
communication node typically has a high speed, 20 to 150 km/h. A common single link
can have a range up to 1000 meter. The local road environment is relatively stationary
and the traffic is considered to have predictable movement pattern since it follows the
road. In addition, there could be suitable hosts on the road for information gateways such
as traffic lights and gas stations [2]. On the other hand, the network structure is highly
dynamic and the communication links often has a very short lifetime. Furthermore, the
performance of different links could be highly irregular and could vary from different
vehicle types, relative speeds and traffic types, etc [5]. To manage the difference situations
in the environment, many specific V2V scenarios are brought up for the research, e.g.,
highway merging lanes, rural opposite, intersection urban multiple lanes, tunnel convoy,
bridge convoy, etc. In the future, more particular sub-scenarios will be specified [2].

In recent years, technologies such as automatic parking, collision avoidance system
and automatic driving based on vehicle-embedded sensors gradually have come into the



public eye. These vehicle related technologies provide a very promising path towards safe
driving. In regard to this, some people even doubt the necessity of V2V communication. I
definitely agree on the point that the on-board-vehicle sensor technologies provide much
credible improvement to the safety, however I would like to suggest that the development
of V2V network is inevitable. With VANETS, a large number of new applications could be
built under the prevalent concept of Internet of things, cloud computing and big data. One
can study the traffic pattern with massive real-time information, and effective measures
could be taken even before the initial of an accident with the awareness of surrounding
traffics.

Moreover, with the mature mesh network technology as basis, such as WCDMA, LTE
and WiMAX, VANETS are able to form heterogeneous inter-vehicular networks with the
evident benefits of safe driving (collision detection); travel efficiency (path rerouting and
accident awareness); energy saving (vehicle platoons), etc.

1.2 Thesis goal

The fundamental limitations of VANET systems are the reliability and latency perfor-
mance, which are strongly impacted by the properties of the individual wireless commu-
nication channels. The communication link can be highly dynamic in nature with high
penetration losses, high mobility of vehicles and antennas being close to ground-level [5].
In the literature, V2V communication is described to be inherently non-stationary due to
high mobility of both transmitter (TX) and receiver (RX) ends. As a result, the chan-
nel models for V2V are essentially different from mobile communication channels that
have been studied in the pass century. Channel models specifically designed for V2V are
required [2].

One key parameter in V2V channel modeling is the shadowing effect from vehicles,
which have a significant adverse impact on the system performance [6]. To overcome the
issue, multi-hop technology is believed to be an attractive approach [6]. Therefore, one
aim of this report is to evaluate the performance of implementing relaying schemes in
V2V systems based on measurements. The shadow fading is found to be correlated and
can be modeled with a Gaussian distribution [7]. To study the joint shadowing effect, a
statistic model can be created with a pathloss and shadowing model. Two basic scenarios
LOS and OLOS are considered during the modeling.

The diversity schemes would be strongly affected by correlation. Most related cor-
relation studies have considered single link while a few studied one to multiple cases or
vice versa. Due to the requirement of low latency and accuracy in VANETS, the vehicular
multi-link channels demand the consideration of the joint shadowing process [8]. In [9],
the correlation of disparate links at a single time is studied with a random obstructions
geometry based ad hoc sensor network. In [6], the joint correlation process in mobile
ad hoc network (MANET) have been studied with an independent link assumption and a
four-dimensional position model is created. For VANETS, one could consider joint corre-
lation from both movement coordinates branch and correlation with geometry based car
shadowing. Therefore, the other aim of the report is to investigate the joint correlation of
the multi-link shadowing process in VANETS and create a stochastic vehicular shadowing
model regarding the channel power spectral density (PSD) and the correlation properties.



1.3 Methodology

This thesis mainly focuses on the car shadowing, affecting the large scale fading (LSF).
The evaluation data is based on a measurement campaign performed in April 2014 in a
Highway convoy scenario with four Volvo vehicles equipped with synchronized transceivers
and specifically designed antennas [6]. Instead of a comprehensive but more complex
channel measurements with channel sounders, the data is collected as several sets of RSSI
(i.e. receive signal strength indicator) values from each car, and all distances between cars
are calculated from GPS coordinates. With on-board cameras, two basic scenarios can be
studied separately and compared, i.e. line-of-sight (LOS) and obstructed-LOS (OLOS).
The OLOS is such situation where the LOS component is obstructed by nearby objects,
e.g., other cars, roadside rails, forest, buildings, traffic signs, trucks and bridges [6]. On
one hand, V2V could particularly beneficial on OLOS situations by introducing extra
multi-path components from diversity point of view. On the other hand, due to the ob-
struction of LOS, additional propagation losses are induced and would result in reduction
of the communication range [5].

Two relaying schemes Amplify-and-Forward (AF) and Decode-and-Forward (DF)
[10] are implemented to simulate and evaluate the multi-hop performance on V2V system.
Random packets with size 100 bytes are generated with proper coding and passed on to
the simulated channel on a bit level. Each measured RSSI value is modified as average
transmit power for one packet transmission and simulated as Rician channel on a bit level.
Maximum ratio combining (MRC) is adopted for both relaying schemes at destination
receiver for diversity combining [11]. Eventually, the performance of packet error rate
(PER) is analyzed for both scenario convoy and overtaking.

In the second part of the report, a pathloss model is created based on the measure-
ments data with single-slope regression. Maximum likelihood estimation (MLE) is em-
ployed to compensate the limitation of hardware biasing [12]. Large scale fading is de-
rived by subtracting the local power mean calculated from linear regression. It is later
analyzed to be zero mean and we calculated its standard deviation. The decorrelation dis-
tance can be calculated from the auto correlation function (ACF) of the shadowing and is
used to simulate large scale fading exploiting a correlated Gaussian process. Finally, the
resulting channel is evaluated and compared with the simulation results.

In the last part of the report, a stochastic model based on the sum of sinusoids ap-
proach is employed with Monte Carlo simulations to simulate the joint correlation pro-
cess. The decorrelation distance of the shadowing is studied to decide the joint corre-
lation parameter regarding the effect of movement coordinates. Furthermore, the joint
shadowing influenced by different distance from TX to Rx is also studied and the corre-
lation coefficient for different distances between cars are derived. Furthermore, with the
Gaussian process shadowing auto-correlation assumption and the Gudmundson model,
the joint correlation can be modeled as a negative exponential function [5]. The power
spectral density (PSD) of the shadowing process is estimated with the joint correlation
parameters which is used to generate the spatial frequencies in sum of sinusoids model.
At last, the final model as joint shadowing regarding both position and distances between
cars would have a close correlation properties with measurements [8].



1.4 Contribution

The main contributions of this thesis report are:

e The Decode-and-Forward and Amplify-and-Forward relaying simulation results
based on measurements shown in Figure 3.6, 3.7 and Table 3.1, 3.2 indicate that
the multi-hop techniques provide an efficient way to overcome the car-shadowing
issue in V2V systems.

e A statistical model with pathloss model illustrated in Figure 4.2 and correlated
Gaussian large scale fading described in equation (2.15) is created for highway
scenario regarding the line-of-sight and obstructed-line-of-sight situations.

o Using the sum of sinusoids approach described in equation (2.32), realistic V2V
multi-link stochastic channels with desired power spectral density and correlation
properties could be generated for network simulations and system testing.

e The joint correlation of large scale fading affected by the distance between two
cars of a multi-link with same car obstruction is studied and added to the sum of
sinusoids based stochastic model. Simulation of the vehicular shadow fading is
demonstrated in Figure 5.9.

1.5 Ouitline

This thesis report is organized with three major parts following the three goals. In Chap-
ter 2, basic principles of V2V channel modeling, relaying and the approach of sum of
sinusoids are introduced. The setup of the measurements and data processing are also
presented here. In Chapter 3, after a short introduction of the simulation system, the de-
tailed results of Decode-and-Forward and Amplify-and-Forward relaying schemes are il-
lustrated and compared together with non-relaying both for scenario convoy and scenario
overtaking. Chapter 4 outlines the statistic pathloss shadowing model with maximum
likelihood estimation and correlated Gaussian. Packet error rate results are also evaluated
here. In Chapter 5, the joint correlation of two links is studied regarding position and in-
fluence of different distances between cars. The results of the stochastic sum of sinusoids
model are evaluated. Finally, the conclusion and discussion are presented in Chapter 6
and Chapter 7.



Chapter 2

Background Theory

2.1 Vehicle to Vehicle channel

In wireless communication, the electromagnetic waves propagate from the transmitter to
the receiver over an air-interface, called propagation channel. Unlike wired systems, the
nature of the channel is dependent on the environment. With the fact of that, the per-
formance of a wireless system is ultimately defined by the properties of the propagation
channel, which is extremely important to be understood and modeled. [11]

2.1.1 Channel model

The term channel modeling is used to characterize the effects of the studied channel with
understanding and quantifying its behavior for network simulations and system testing.
There are various approaches to model a channel regarding the desired properties. For
example, a channel can be modeled as time invariant or time varying, which is defined
by whether the impulse response is dependent explicitly on time; It could also be studied
as narrowband or wideband with regard to the frequency being flat or selective; Taking
the antenna diversity into consideration, it can be single-input single-output (SISO) or
multi-input multi-output (MIMO); Based on whether there is comprehending continu-
ous knowledge of the environment, a channel could also be modeled as deterministic or
stochastic [5].

The vast majority of V2V channels are considered to be linear time-variant systems
(LTV) where the impulse response changes with time due to the variability of the channels
[5]. This is conclusive, since in V2V systems, the TX and/or RX vehicles are typically
moving fast together with the changing of the environment during the communication.
Furthermore, due to the uncertainty of the route, it is neither typical nor sufficient to
model the vehicular channel from a deterministic point of view which would require the
exact locations of the TX, the RX and at least all the major scatterers in the environment.
Regarding to that, a general V2V propagation channel could be modeled stochastically.

In a stochastic channel model, the statistics of the channel parameters are normally
reproduced with a probability density function. Some of commonly used parameters are
discussed in the following. The average power delay profile (PDP) and the power spectral
density (PSD) describe the expected received power over a certain time window and over
a certain delay respectively. By integrating the PDP over all delays (i.e. the zero order
moment of PDP), a single parameter is obtained, known as channel gain, which is be the



major parameter analyzed in this thesis. Furthermore, a normalized second order central
moment of the average PDP and the PSD can be used to describe the instantaneous RMS
delay spread and the Doppler spread respectively. These two variables can be used to
estimate the coherence bandwidth B, and coherence time 7;, which evaluate the frequency
selectivity and time selectivity of the channel respectively. In this thesis, the coherence
time T, of the large scale fading is evaluated by calculating the processed auto correlation
within an observation region and defining as the result time duration where the correlation
drops from the peak to half. [11] [5]

To model the propagation channel as a stochastic time-variant system, a multidimen-
sional probability density function of the channel impulse response would be needed. An
impulse response is the result of the superposition of all the line-of-sight and scattered
multipath components at a certain instant. In practice, it is not feasible to derive the
multidimensional probability density function in V2V systems. Therefore, an auto corre-
lation function (ACF) is used as an alternative, which is a second order description of the
system function [11]. The ACF is obtained by multiplying the system function with its
complex conjugate and then taking the expectation E{- } over the ensemble of the channel
realizations [13]. This is further discussed in the spatial correlation subsection 2.1.6.

In order to simplify the complexity of the channel characterization, many wireless
channels are modeled using a wide sense stationary uncorrelated scattering assumption,
i.e. WSSUS. The WSS implies that the contribution from different delays are uncor-
related, i.e. the second order statistic channel correlation function depends not on the
absolute time but only on the difference of time. The US implies that the scatterers with
different path-delays are uncorrelated, i.e. the second order statistic channel correlation
function depends not on the absolute frequency but only on the difference of frequency
[11]. The WSSUS assumption effectively simplifies the characterization of the channel
and still being able to accurately describe its properties. However in general, V2V chan-
nels do not qualify the WSSUS assumption due to the fast movements of both the TX
and RX together with the changing of environment scatterers. To avoid being entangled
with massive complexity, the non-WSSUS V2V channels are treated as an extension of
the WSSUS assumption. It is assumed that any region of the vehicular fading process
represents the average statistical properties of the entire process (i.e. an ergodic process).
Then within certain observation region, the V2V channel could be considered as WSSUS
qualified [6].

Additionally, the V2V channel parameters used in this thesis are all refer to SISO
channel, since the focus of this thesis is not on antenna diversity.

2.1.2 Pathloss and shadowing Model

Pathloss is the expected power loss at a certain distance compared to the receive power at a
reference distance. Together with the shadow fading (i.e. large scale fading, LSF) and the
multipath fading (i.e. small scale fading), the signal propagation over the wireless channel
can be described. In this thesis, the multipath fading is not the primary interest, and it is
removed from the measurements by employing a sliding window. The antenna gain and
the system loss are also removed manually from the measurement data. Therefore, in the
dB domain, the relation of received signal power Prx(d) at RX regarding the distance d
from TX, the transmitted power (Prx), the mean pathloss PL(d) together with the LSF
can be expressed as [5],




Prx = Prx(d) + PL(d) + LSF. (2.1)

In general cases, a simple log-distance power law is used to model the mean pathloss.

Together with the large scale fading, the pathloss shadowing model expression in dB
domain can be written as, [12]

PL(d) = PLy+ 10nlog,, (;;) +%¥, (2.2)
where PLy is the pathloss at reference distance dy in dB and d is the distance between
TX and RX. n is the pathloss exponent, which is an environment dependent parameter
provided by measurements. W4 is a random variable which describes the large scale
fading around the distance dependent mean pathloss, which can be modelled by a Gaus-
sian distribution with zero mean and environment determined standard deviation ¢. The
reference value PLy could theoretically be modeled based on the free space pathloss as,
PLy = 2010g10(47§lﬂ), where A is the wavelength of carrier frequency. This method of
calculating the reference power only valid for LOS scenarios, for OLOS scenarios, it is
obvious that free space condition does not hold due to the obstructions. Hence in this
report, the term PLy is determined on the estimation from measurements data [5].

In addition to that, refer to the pathloss of LOS scenario only, a dual-slope model
based on two-ray ground model could represent measurements data more accurate as the
power decay could differ after a certain distance,

d
PLo+ 10n; logy, (d)’ ifdy<d<d,
PL(d) = 0 2.3)
d d .
PLy+10n1logg | = | +10nz2logg | — |- if d>dp.
dy dp

A piecewise linear model is created with the assumption that the power decays with
a pathloss exponent n1 until the break-point distance d;, and then it decays with a second
pathloss exponent n,. The break-point distance dj, in a typical flat earth model is consid-
ered as the distance of which the first Fresnel zone touches the ground. dj, can then be

2
Al sy — 22 . . .
calculated as, dj, = —2XXX— 4 where A is the wavelength at carrier frequency f., which

in this case is 5.9 GHz, and htx and hrx are the height of TX and RX antennas to ground,
respectively [11]. In V2V communication systems, the TX and RX heights are typically
very low. In this report, htx and hrx are treated the same, approximately 1.5 meter. Af-
ter calculation, the break-point distance d, for this measurements is approximately 180
meter.

The dual slope characteristic mainly comes from the additive and subtractive combi-
nation of the LOS wave and reflect ground wave [14]. Before the break-point distance, a
multi-ray behavior can be observed accordingly and after the distance extend over break-
point distance, the two waves are always combined subtractively resulting a faster power
loss. With respect to that, the dual slope could be easily justified for a LOS scenario.
However, in an OLOS scenario, neither of the two waves should theoretically follows a
clear pattern and the validation of the dual slope model needs more consideration. In this
thesis report, only one pair of exponent and reference value is extracted for each LOS and
OLOS scenario as equation (2.2).



2.1.3 Shadowing

The large scale fading describes the losses as the wireless signal propagates through or
around major obstructions in its path between TX and RX. The shadowing is derived by
subtracting the average RSSI values from the distance dependent estimated pathloss. The
estimation of the pathloss coefficient is based on the measurements data with linear regres-
sion and Maximum-likelihood estimation (MLE) [12]. As the V2V multi-link shadowing
is under a non-stationary situation, in order to study it, one can consider the shadowing
as a stationary process within certain time period (i.e. traveled distance), which refer to
the decorrelation distance determined from shadowing auto correlation function [13]. In
this work sliding window is employed on the RSSI values before the subtraction, i.e. one
second window of moving average over ten consecutive RSSI values in dB. By apply-
ing the sliding window, the small scale fading is considered to be removed [6]. From D.
Vlastaras et al [7], we learn that the large scale fading can be modeled as a Gaussian dis-
tribution with zero mean and standard deviation. This is verified by observing the residual
histogram of the derived large scale fading of measurements. For each LOS and OLOS
scenario, one set of parameter is derived and used later in the model to simulate the large
scale fading.

Furthermore, the vehicular shadowing is considered spatial correlated and can be
more precisely modeled by a correlated Gaussian [15]. The particulars are discussed later
in subsection 2.1.7 Correlated Gaussian.

2.1.4 Ordinary Least Squared Estimation

To derive pathloss model from measurements data, an ordinary least squared estimation
(OLSE) is typically performed. According to the defined pathloss model, the received
RSSI y; could be modeled as a linear function in dB domain,

Vi =0+ ﬁx,- + u;, 2.4)

where « is the reference value PLy, 3 is the pathloss exponential n and u; represents the
large scale fading W which is a Gaussian distribution process in dB domain with zero
mean and standard deviation ¢ [7]. The aim of the OLSE is to minimize the variance of
the modeled value against the measurements value which is eventually to minimize the
term s = Zu,-z,

N N
s=Yui =Y (yi—o—px), 2.5)

1 i=

—

To write the model in matrix form, the reference value PLq and the pathloss exponent
n are combined in a two by one parameter column vector 3 = [PLy n]", where 7 is the
notation of transpose. The log-distance is also put in a matrix X = [1 1010g10(%)] Lx2 With
L representing observation number of the regarding measurements. 1 is a size L column
vector of ones, and d is a size L column vector of the linear distance. Eventually, X is a
L by two matrix. The modified pathloss model for the received signal Y = [PL(d%)] Lx1
become, [12]



Y=XB+U
S=UU=u+ul+ - +u} (2.6)
U=Y-XB,

where S is the variance and U is a L by one column vector describing the large scale
fading, ’ is also a notation of transpose. Eventually the equation becomes,

S=(Y-XB)(¥ —xB)
= (' —p'X')(Y —XP)

o . . 2.7
=Y'Y-Y'XB-B'XY+BXX.

To minimize the variance, which is to minimize S, the partial derivation can be calcu-
lated on dS over df3 at S being 0,

j‘g = 2X'Y +2X'Xp =0. (2.8)

By solving equation (2.8), the estimation of the parameter ﬁ can be derived,

B=xx)"Xy. (2.9)

However, the model only considered the information from received packets, the in-
formation of the lost packets should also be included in estimating the practical channel.
From the research of C. Gustafson er al [12], with a known number of missing data
where only the knowledge of the distance is known, it is possible to base the estimation
on a censored normal distribution. In this thesis, maximum likelihood estimation (MLE)
is employed and explained in the next section.

2.1.5 Maximum Likelihood Estimation

For the measurements at large distances, there is a fair probability that it could be much
more missing packets with further sampling. As the data measured is limited by the dy-
namic range and affected by the noise floor of the measurement systems, the pathloss
model calculated from ordinary least squared estimation may lead to a bias estimation
from reality. Thus, a maximum likelihood estimation (MLE) is performed here to get a
better estimation on the pathloss parameter, which takes censoring situation into consid-
eration.

MLE is a method of estimating the parameters of a statistical model, which is to seek
the probability distribution that makes the observations most likely. When applied to a
data set and a given statistical model, MLE provides estimates for the model’s parameter
which maximize the probability of desired term, i.e. the likelihood function.

Given a set of parameter values, the probability density function (PDF) shows that
some data can be more probable than others. However, in reality the data set has been
already observed and a proper model is also assigned. The demand is to find the de-
sired PDF among all the model prescribed probability densities which have the maximum
probability to have produced the given data set. To avoid a complicated multi-dimensional



process and to solve this problem, a likelihood function need to be first determined. It is
a function of the parameter which is defined on the parameter scale, given a particular
set of observed data. The initial input here could be the previous defined ordinary least
squared estimation parameters. In related to that, maximizing the log-likelihood function
is often a replacement of maximizing the likelihood function for convenience. Since the
logarithm is a monotonically increasing function, the logarithm of a function achieves its
maximum value at the same point as the function itself [12]. Eventually, MLE here is to
maximize the log-likelihood equation (2.10),

In these measurements, the received packets data are first used to generate ordinary
least squared estimation temporal model parameters. Then all the RSSI values below a
certain level (i.e. the censoring level) and all the missing data have a probability to be ob-
served based on the distance. The probability of outage packets is generated according to
the normal PDF of the chosen censoring level and the temple modeled censored data. The
three desired parameters are the pathloss exponent, power reference level and shadowing
deviation.

The probability of observing a censored data at distance d is given by [12],

C — X 3
P(dcensored) = l _¢<Gﬁ>, (210)

where c is the censoring level, which is proper chosen with some margin with respect
to the noise floor, so that a limited number of samples dominated by noise are included
as measurement data. &P is the cumulative distribution function (CDF) of the standard
Gaussian distribution. The likelihood function can be treated as two parts: likelihood of
uncensored data and likelihood of censoring data. This is done by adding an indicator
function 7;, and the likelihood function becomes,
A 71
1—@(0_)6’[3)1 . @2.11)
c

b {1l (4]

By setting [; to 1, the likelihood of uncensored data is calculated. For censored data
likelihood, I; is set to 0. To simplify the process, equation (2.11) is transformed to a log-
likelihood function. Eventually, the log-likelihood function can be derived and written
as,

~

v yi—Xxif
L, (uncensored) = Z [—ln6+lnq) (6)1

i=1
1—® (C_Gx"ﬁﬂ.

By finding the maximum of the log-likelihood function, the three desired parameters
could be found, which would fit best with the given data regarding the censoring.

Generally, MLE become unbiased minimum variance estimators as the sample size
increases. One thing to be careful with is that the MLE can be heavily biased if the sample
size is small. Also one should be cautious to choose the starting values since the MLE
can be very sensitive to that.

2.12)

L,(censored) = Z In

10



2.1.6 Spatial correlation

As mentioned in subsection 2.1.1 channel model, to model V2V as a stochastic time
variant system, an auto correlation function is required. Once a vehicle goes into a shadow
zone, it remains shadowed for a certain amount of time implying that there is spatial
correlation for the vehicular shadowing. The spatial auto correlation function of shadow
fading can be written as [5],

re(Ad) = E{XsXo(d + Ad)}. (2.13)

where E is the notation of expectation.

As mentioned, V2V shadow fading is not typically a WSSUS process, which, to avoid
being entangled with massive complexity, is mostly regarded as an extension of WSSUS.
One way to study the characteristic of such channels is to do the experiment repetitively
while keeping the conditions the same. That is evidently not feasible in wireless links.
The other way is to assume that fading process is an ergodic process. Then one can divide
the observations over small regions with the assumption that WSSUS could hold over
these regions. In addition to that, the distance dependent mean need to be subtracted from
the overall channel gain. After that, the large scale variation of shadow fading can be
well described as a Gaussian random variable [5], and the auto correlation function of the
Gaussian process can be modeled by an analytical model proposed by Gudmundson [13],
which is a simple negative exponential function [3],

re(Ad) = e~ 1Adl/de (2.14)

where Ad is an equally spaced distance vector and d_ is the average decorrelation distance
which is a scenario-dependent real value constant. d, is defined as the value of Ad at
which the auto correlation function value is equal to 1/e.

2.1.7 Correlated Gaussian

In a typical V2V communication, once a link is obstructed by another vehicle, it remains
in the shadow for a certain amount of time. The vehicular shadowing is normally modeled
as Gaussian distribution with a spatial correlation. For this purpose, a correlated auto
regressive Gaussian is employed during the vehicular shadowing modelling.

In order to do that, a normal distributed random sequence g, is first produced. Then
with the correlation model p and the correlation coefficient d., the correlated Gaussian
sequence 7, can be generated as [15],

gn = N(0,1), p = e /%

n 4 (2.15)
png0+ /1 _p2 Zgipnﬂ.
i=1

The correlated Gaussian generation follows with two properties: Each individual gen-
erated number is a Gaussian deviate and follows a zero mean unit deviation distribution;
auto correlation function of the sequence decays following a certain model with a prede-
termined decay time. In this case, the model is exponential and decay time is the spatial
decorrelation distance according to last subsection.

'n
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2.2 Measurements

The measurements took place between Landvetter airport (lat N 57.68014, long E 12.31441)
and Boras city (lat N 57.71958, long E 12.96809) at Rv 40 road, Sweden [6]. A normal
to rich scattering environment of highway is expected from characterize of the Rv 40
road. Two major measurement scenarios were performed: High-way convoy (Scenario 1a
and 1b) and overtaking cars (Scenario 2). The coordinates of several bridges in between
the path were used from google map as reference points for time synchronization. The
measurements route are shown in Figure 2.1,

Figure 2.1: The route of the measurements on google map.

Six wireless communication links performance were captured between four Volvo
cars of different models (Volvo XC70, S60, XC90 and V70) for each measurement. Each
vehicle was equipped with transceivers as receiver and transmitter using IEEE 802.11p
communication standard. The transceivers are connected with specially designed vehicu-
lar antennas on the roof and transmitted repetitively with a 10 Hz frequency. GPS coor-
dinates were recorded as references to calculate distances between links. Videos together
with time stamps were recorded to separate and synchronize LOS/OLOS scenarios, which
is manually derived subsequently. OLOS here is defined as the situation where at least
one car is in between the RX and TX vehicles constituting the link nodes, which refer to
the video as more than half of the vehicle body is blocked by other vehicles visually. This
definition is only temporary used in this report, as in many related paper, OLOS could be
defined with consideration of the first Fresnel zone.

The measurements results were converted into matlab format with five major subjects
for each link: 1, Distances between vehicles; 2, Received RSSI values; 3, Lost packets
information; 4, Frame ID; 5, Post time.

As the measurement distances are relatively small based on the ellipsoid model of the
earth surface, and the movement area in the measurements can be approximately treated
as plane [16]. The distances between two vehicles’ GPS points can be calculated by using
Pythagorean distance function,

Distance = /A®? x (@) — )2 + A2 x (A1 — ha)?. 2.16)
where @ and ®;, are the two points’ latitude and A; and A, are the two points’ longitude.

Figure 2.2 shows the definition of the latitude and longitude on an ellipsoid. The normal
at a point on the surface of an ellipsoid does not pass through the centre, except for points
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on the equator or at the poles. Since the definition of the latitude is the angle between the
normal and the equatorial plane, the terminology for latitude must be made more precise
by distinguishing. A® and AA are the unit arc length of the ellipsoid that Earth is being
modelled. At certain geodetic latitude degree, corresponding values for A® and AL give
the value on length for the respectively latitude and longitude.

, Q(h S8
/g g :.I. 2
4Py %

Figure 2.2: The definition of geodetic latitude ® and longitude A
on an ellipsoid, from [16].

The shape of an ellipsoid is determined by the shape of the ellipse which is rotated
about its minor axis. This requires the equatorial radius (a) and the polar radius (b) with
the relationship of,

a=6378137m
b = 6356752.3142
s " (2.17)
2=12 ;2 = 0.00669437999014,

where e is the eccentricity. Then based on the evaluation of the meridian distance, for
the arc distance on one degree difference latitude and longitude, the A® and AA could be
calculated as,

2
AD — ma(l —e*) :
180(1 — e2sin® ®)2 2.18)
AL macos® )

180(1 — e2sin )}

As for the data used in this report, the transceivers transmitted packets of size 100
bytes with a 10 Hz repetition rate and the receivers reported RSSI values in the dB domain
with 1 dB resolution for successfully decoded packets. As mentioned before, a sliding
window with size 10 is used on RSSI values to compensate the hardware limitation of
measurements resolution and to remove the small scale fading effect. For the missing
packets, as all transceivers were synchronized to GPS, all time stamps without receiving a
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packet correctly were recorded. The none reported RSSI values were later assigned with
a fairly low values temporally for the relaying simulation (-100 dB in the simulation, as
the lowest received RSSI value is about -90 dB). The measurement post time is the time
count of Epoch time starting from January 1, 1970 with 0.1 second resolution.

For the relaying simulation, the results of two tri-links were picked from Scenario
convoy la and 1b, while for each scenario, four vehicles were driving in the same direction
as convoy with an average speed of 90 km/h. In scenario 2 overtaking, four tri-links
were chosen to be studied. Furthermore, for the statistic model, two censored tri-links
data with LOS/OLOS separation were taken into account, while for the joint correlation
studies, another four desired cases were picked from scenario convoy. More details are
introduced in Chapter 3, 4 and 5 respectively.

In addition to that, data with speed under 30 km/h were removed representing the
very beginning and finishing stage of the driving, where the desired highway conditions
were not fulfilled. Also the antenna and system loss were manually removed in the RSSI
values.

2.3 Relaying scheme

Figure 2.3: A typical single hop relay

Consider a three-node network shown in Figure 2.3. A source transmits information
to a destination with the help of a relay. The channels between the nodes are given by hy,.,
hgq, and h,,. The destination then can use both information from source and relay to make
more accurate decision. There are various ways to forward the information through relay.
The most common ones are: Amplify-and-Forward (AF), which the relay amplifies the
received signal by a certain factor and retransmit it; Decode-and-Forward (DF), which the
relay decodes the information and subsequently re-encodes and retransmits it. In another
word, is to relay hard decision, parity checking code; another method is Compress-and-
Forward which the relay creates a quantized version of obtained signal and forward the
regenerated signal to destination [10]. There are also many researches on Hybrid version
of the above methods for specify demands. To summarize that, it is a plain comprehension
that the relaying provides an extra opportunity for the decoding at the destination, since
the transmission could be successful if either independent paths, i.e. source-to-relay-to-
destination or source-to-destination, provides sufficient quality [11].
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The three nodes, source, relay and destination are displayed in Figure 2.3. The source
sends message x; through channel Ay, and hy; which would reach relay and destination
respectively. Independent system noise ng and ng; are introduced separately for both
links and the received signals are recorded as yy and y;; accordingly. At relay, with
various relaying scheme operating, the node then prepares new message x, and send it to
destination through channel %,;. Another system noise n,4 is added during the process
and the received signal from relay is marked as y,;. Finally the combination of the two
signals from independent two paths is received at destination. Relations of the signals can
be written as,

Vsr = hgrXs +ng

vd = NpaXr + 1y,
Yrd dXr d (2.19)
Ysd = hsdxs+nsd-

2.3.1  Amplify and Forward

In Amplify-and-Forward, the relay amplifies its received signal, maintaining a fixed aver-
age transmit power. The transmit power for the source and the relay is denoted here as Py
and P.. For general cases in a multi-hop relaying, the power provided by vehicle engines
should be equal, P; = P, = P. The average transmit power for relay is then constrained by
a amplify factor f3, i.e. x, = By, [10].

El(l|)*) <P

[ p (2.20)
< 1.
B N h%rES *

The noise is assumed to be additive white Gaussian noise (AWGN), thus the average
noise power is considered to be 1. The receive signal at destination from relay y,; then
can be written as,

Yrd = hrdﬁ)’sr + 1y
= hf3 (hsrxs + nsr) + g (2.21)
= ﬁhxrhrdxx + hrdﬁnsr +1ya-

AF operates at all time, including when SR channel experiences outage. This indi-
cates that the transmission would be most likely failed if the SR-link suffers a depression.

2.3.2 Decode and Forward

Decode-and-Forward is so far the most used one among all the relaying schemes. The
relay receives packets from the source and decodes them. If successful, it proceeds and
encodes the packets with the same or different encoder as the source’s and forwards the
packet to the destination. Otherwise, it requests a retransmission from the source or sim-
ply stays idle, leaving only the Source-Destination link operating until the next packet
arrives. In other words, the signal received by the destination from the delay does not
include any additional information about the reliability of the source-relay link. In this
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report, the relay uses the same encoder as source if it decodes the signal from source
successfully. In that case, the signal forwarded by relay is just the original source signal,
X = X5.[10]

In this single-hop relay situation, DF always performs better than AF due to the com-
pression of noise at relay. It also opens the possibility for maximizing the coding gain
through distributed codes.

2.3.3 V2V Rician channel

Rician fading is a non-deterministic model for the anomaly that occurs when some multi-
path components of a transmitted signal accidentally cancels one another. It often comes
with a LOS component that is much stronger than others. The amplitude gain is charac-
terized by a Rician distribution with Rician factor k, which indicates the ratio between
the power in the direct path and the power in the other scattered paths. With a total power
constrain €, the relations between the Rician parameters can be written as, [17]

V2 = 7’(
R
) (2.22)
2 _ o
2(1+x) 7

where v? and 267 represent the power for the two paths, (Q = v> 4 26?). Furthermore, a
Rician distributed number r could be generated accordingly as,

a=06XxXR+v
b =0XxR (2.23)

r =+va?+b2,

where a and b are the amplitude of the real and imaginary parts respectively, and R is a
random number with standard Gaussian distribution.

The V2V radio link can often be modelled statistically as a Rician fading channel.
That is a fair assumption with the fact that most V2V links can typically have a LOS
component from the direct links with the roof-top antennas. This dominant component
in the Rician fading channel is often relatively strong compared to the reflected signal.
Thereby, the V2V propagation channel is modelled as a dominant component consisting
of a direct LOS wave and a ground reflected wave, a set of early reflected waves and
inter-symbol interference caused by excessively delay waves.

2.3.4 MRC at Destination

Under relaying schemes, the destination receiver need to use information both from source
and relay. Therefore, a diversity combining has to be performed. Maximum ratio com-
bining (MRC) is implemented which is the optimum strategy to reduce signal fluctuations
caused by multipath propagation. The gain of each channel is made proportional to the
rms signal level and inversely proportional to the mean square noise level in that channel.
The assumptions of the basic condition are restated here: Relay-Destination and Source-
Destination are two independent flat fading channels; all the noises are independent and
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have standard Gaussian distribution. By that means, the signal to noise ratio (SNR) can
be expressed as [11],

_ |hPE,
=N
where 7y and & represent the SNR and pre-known channel at relevant link respectively.
With complete channel knowledge, MRC can be performed to improve error rate
optimally. As for this measurements, only information on the amplitude of the channel is
captured. The MRC used in the simulation is a simplified version which the weights of
the combining is only decided by the channel gain.

(2.24)

2.4 Joint correlation

Wireless links under close geographically environment often experience similar large
scale fading which could be considered to have correlated fading. Most current multi-
link models do not take the correlations between links into account, i.e., cannot accu-
rately represent multi-hop wireless network under certain environment condition. E.g.,
two links from the same TX would suffer similar loss when the signals pass through or
diffract around the same building in its path. In most models, the multi-link would be
considered independently, suggesting that if one link suffers fading, the other could still
have an independent probability to transmit successfully based on the model parameters,
which is not true since both two links are most likely to experience high fading loss. The
multi-link correlation would cause a strong limitation on diversity gain in such multipath
diversity schemes like ad hoc network.

These multi-link correlations in this report are refer as joint correlation. There are
studies on mobile ad hoc networks in Z. Wang et al [8] where the implement data are
generated from a simulation model and the multi-hop network are considered to be inde-
pendent and identically distributed random variables (i.i.d.). In P. Agrawal and N. Patwar
[9], a random environment measurement was performed with fix position TXs and RXs,
the geographical multi-link correlations are analyzed and a statistical model are created.
In V2V measurements, TXs and RXs are both with high mobility and yet could still suffer
similar environmental shadowing.

In this thesis, a stochastic model is created to simulate the joint shadowing process
with consideration of the joint correlation affected by the four dimensional positions of
the vehicle and the multi-link vehicles’ distance under the same obstruction car.

For a typical ad-hoc network, it is assumed that all nodes have the same configuration
and for a single link, the shadowing fluctuation saw from one end is identical to the other.
In V2V, the antenna position, vehicle height could differ the channel in some level, but
in general, the mutual communication channel can be considered identical. Thereby, the
shadowing fluctuations from both TX and RX can be treated the same s7x, = sgyx; [8].

The shadowing based on the distance sy, are modeled as Gaussian with zero mean
standard deviation oy and the joint correlation R; based on the movement from TX Adr
and RX Adp are defined in equation (2.25),

sa41dB] = N(0,03)

(2.25)
Ry(Adr,Adg) = E{saq;5a4, }/63-
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With the same assumption in Z. Wang et al [8], the auto correlations from the TX
and the RX are treated independently. This indicates that the joint correlation with both
nodes moving is the co-effect of the independently movement with either one of the nodes.
With the Gudmundson model [13], the shadowing auto correlation function R; and joint
correlation function (JCF) Ry are represented below in equation (2.26),

d
R] (AdR) = R‘Y(O,AdR) =exp ( - % ln2)

cor

(2.26)

dr|+|d
Ry(Adr,Adg) = Ry(Adr,0)R(0,Adg) = exp < - w{ﬂ ln2> .
cor

2.5 Sum of sinusoids

The sum of sinusoids (SOS) approach is commonly used to generate Gaussian process.
The basic principle is that a stationary Gaussian process can be expressed as a sum of
infinite number of sinusoids with random phases and properly selected frequencies [18].
In practice, a finite number N of sinusoids is used to approximate the Gaussian process.
A Monte Carlo approach is proposed to randomly generate the sinusoids frequencies in
order to simulate WSSUS channels. Since one dimension (1-D) could not completely
describe the shadowing effects over a relatively large area (i.e. Cannot capture the spatial
correlation when a node moves along a curve rather than straight line), a two-dimensional
(2-D) random Gaussian process is introduced. With x and y representing the coordinates
of the studied object 2-D movements, the 2-D channel simulation model for the Gaussian
process is shown as 2.27 [8],

N
§(x>y) = Z Cn COS(Zﬂfxﬂx + 27rfy.,ny + 6,,), (2.27)
n=1

where {9,1}2]:1 are random variables uniformly distributed over [0,27). f; and fy are
two spatial frequencies randomly generated according to specific PDF to sample the 2-D
power spectral density of the desired Gaussian random process. In this way, the model
is able to have a 2-D auto correlation function to describe the 2-D spatial correlation.
{c,, }ivzl is the constants obtained from the shadowing process power spectral density. The
number of sinusoids N should be relatively large to approximate the 2-D power spectral
density more accurately.

In order to generate above parameters, the auto correlation function and power spec-
tral density of the shadowing process need to be derived. As mentioned in equation (2.13)
and (2.14), an exponential auto correlation function which could fit this measurements
data is given by 2.28,

Ry(Ax,Ay) = Ry(d) = e, (2.28)

where a = In2/d,,, is a constant depending on the environment with the decorrelation

distance d_,, calculated, and d = /Ax? + Ay? is the distance of the node’s movement. To
obtain the 2-D power spectral density, a 2-D Fourier transform is performed on the auto
correlation function Ry (Ax,Ay) which gives rise to equation (2.29),
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CIJs(Ax,Ay) _ /Do /oo e—a\/x2+y2e—j(27rfxx+27rfyy)dxdy

2.29
o, (fr) = 2ma ) ( )

[a? +4n2 f2]

(1%

where f; is defined such that f, = f,cos(¢) and f, = f.sin(¢). From studies in [18], the
sampling frequencies can be generated according to a PDF which is proportional to the
power spectral density of shadowing. The joint PDF in the 2-D model can be expressed as
p(fe: fy) =b @(fv. fy), fx > 0. bis 2 here as a constant to normalized the PDF. Following
the procedure, the PDF p(f,, @) and CDF P(f,) of the random spatial frequencies could
be derived as equation (2.30),

27mab
p(ﬁ#P)Z#

a2 +472 7] (2.30)
P(f) = 11— —==

V@ +anif?
Inverse the CDF function, the random variable f, then can be generated based on a

uniformly distributed random variable 3 over [O, 1) and the 2-D spatial frequencies can
be derived as equation (2.31),

o 1
=54 7—az !

2w\ (1=F) 2.31)
fi = |frlcos(@), fy = |fr]sin(e)
6, = U(0,27),

where ¢ and 0 are two uniformly distributed random variables over [0,277:). The 2-D
spatial frequencies could be generated corresponding to equation (2.27), the power coef-
ficient {cn} have the same value for all sinusoids in order to keep the process stationary.
The value is defined by the total power of the Gaussian process and for unit power it can

be expressed as ¢, = \/% .

As mentioned in previous section, the joint correlation of shadowing at TX and RX is
assumed to be independent processes. As a result from [8], the auto correlation function
and power spectral density for the joint shadowing have the same form as single link,
considering equation (2.26). Also the PDF and CDF of the random spatial frequencies for
TX and RX are identical. Based on the same principle above, the 2-D sum of sinusoids
can be extended to a 4-dimensional (4-D) sum of sinusoids function,

N
S, y,u,v) =Y € COS(2M frnX + 27 fypy + 27 fy it + 27 fr v + 6,), (2.32)

n=1

where (x,y) and (u,v) represent the positions of TX and RX respectively. fy ., fi. are
2-D spatial frequencies for RX and are generated independently but in the same way as
Sxns fyn from equation (2.31).
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Under the same concept, in this thesis it is assumed that the auto correlation of the
vehicular shadowing affected by the vehicle distance under the same obstruction is in-
dependent from the auto correlation for the vehicles’ movements. By modeling the auto
correlation of the shadowing affected by distance, it is possible to add the correlation
properties to the sum of sinusoids stochastic model.
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Chapter 3

Relaying Performance

In order to study the relaying performance on V2V systems, a bit-level simulation is
employed. Every measured RSSI value represents the average channel power at a certain
observation period, and it is used as the mean power of the simulated Rician channel.
Random packets are generated and sent through the simulated channels based on different
relaying schemes. Individual results of packet error rate (PER) are recorded.

3.1 Simulation set up

3.1.1 Packet generation

The sizes of the packets in the measurements are 100, 500 and 1500 bytes per packet
and the corresponding RSSI results are recorded individually. In this thesis, only RSSI
results of packet size 100 are used. Therefore, all the random generated packets for the
simulation are in the same size. An example of packet generation is demonstrated in
Figure 3.1,

Random VA —= Pack
_ _ CRC ackage
Binary Bits ™ Trelise 7745 . APSK Size 100

Figure 3.1: Packet generation

The packets are generated from random binary bits. After a proper number of bits
are generated, a cyclic redundancy check (CRC) is implemented and used later in the
receiver to check whether the original information is decoded correctly. Then a general
coding is utilized to enhance the transmission quality. For this thesis, Viterbi Algorithm
(VA) is chosen and a regular convolutional coding with trellis 6, [77 45] is employed. The
encoding rate is 1/2. Eventually, QPSK modulation is performed and packets with size
100 are ready to be sent. [11]

3.1.2 Channel and Power factor

All channels used in the simulation are modified based on the RSSI values recorded by
each vehicle. Each RSSI value for one specific observation gives information of the mean
receive signal power for the entire packet. As mentioned in Chapter 2.3, in order to be
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more accurate on the bit-level simulation, for every packet passing a particular observa-
tion, all bytes of the packet are considered to pass through a Rician distribution channel
individually with a mean power of the corresponding RSSI value. Each sub-channel in-
troduces independent noise. The Rician factor « is chosen to be 3 in this simulation as a
general choice for V2V channels [19].

Package Size 100
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Figure 3.2: System block for relaying simulation

A power factor (PF) is introduced to determine the simulated transmit power and to
revise the level of packet error rates within the interested region. The initial value of PF
is determined when the packet lost rate (PLR) of the non-relaying case to be around 20%.
The PLR here is defined as the ratio between total number of lost packets and total number
of sent packets.

Together with the two relaying schemes, Decode-and-Forward (DF) and Amplify-
and-Forward (AF) discussed in chapter 2.3, the system block is demonstrated in Figure
3.2,

For each observation, one hundred generated packets are sent from the source. Each
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of the packets reaches the relay, that react based on the individual schemes, i.e. DF, AF
or non-relaying (NR). Firstly, the signal symbols in all three schemes reach the destina-
tion through the source-destination (SD) channel, regardless of any action token at the
relay. The destination receives the signal symbol and either uses it as one of the two spa-
tial diversity compositions in the maximum ratio combining, or directly passes it to the
destination decoder as a solo component in the non-relaying case. Secondly, in the two
relaying schemes, the relay also receives the signal from the source. Since the propaga-
tion distance of the source-relay (SR) link is normally shorter than the SD, also the SR
channel has a proper chance not being blocked by an obstruction when SD is, the power
of SR channel is expected to be higher than the SD channel in general. In DF scheme,
the relay decodes the received symbol and makes a hard decision according to the cyclic
redundancy check results. If the result indicates a fail transmission on the SR link, the
relay remains idle until the next packet arrives. Otherwise, the successfully decoded sig-
nal is re-encoded with the same encoder as source’s and is forwarded to the destination
with an unit power. In the end, at the destination, the two received signals, one being
the re-encoded symbol passed through RD channel, the other being the signal comes di-
rectly from the source through SD channel, are combined with maximum ratio combining
(MRC). The combined signal is decoded and after sending all hundred packets for this
specific observation, a packet error rate is calculated. As for the AF, the simulation scene
is mostly the same with the DF, except that at the relay, there is no decode of the received
symbol, instead the relay amplified whatever it receives by a calculated amplify factor ac-
cording to equation (2.20) and forward it to the destination. Finally, for all three schemes,
this entire process happens for every measured observations from the chosen continuous
period and the PER results can be compared between different relaying schemes.

3.2 Scenario convoy

3.2.1 Scenario Initial

As previously mentioned in Chapter 2.2, for each typical measured four-car links, three
of the cars are picked as study subjects.
Scenario 1A Highway Convoy

Source Relay Destination

b

75m 75m Q- 10-1000 m ’[LZ ]

V70 XC90 S60 XC70
R

SD-Link

————————  Moving Direction

Figure 3.3: Test scenario 1a. Distances are not correctly scaled.

As Figure 3.3 illustrated, the V2V links V70-XC90-S60 are picked and representing
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Scenario la in the relaying simulation. The received RSSI values measured on vehi-
cle XC90 from V70 are considered as the channel gain of the source-relay (SR) link, and
similarly the received RSSI values measured on vehicle S60 from V70 and XC90 are con-
sidered as the channel gain on the source-destination (SD) link and the relay-destination
(RD) link respectively. The interrelated links from TX to RX and RX to TX are assumed
to be identical. In these chosen links, the variations of the distances between vehicles are
generally small. The maximum variation value is less than 100 meter.

Scenario 1B Highway Convoy

Source Relay

Destination
@: 75m U D 75m Hc‘:ﬂ S 10-1000m ‘@
S60 XC90 V70 XC70
S A —

SD-Link

=——=_—— Moving direction

Figure 3.4: Test scenario 1b. Distances are not correctly scaled.

As Figure 3.4 demonstrates, the V2V links XC90-V70-XC70 are picked and repre-
senting Scenario 1b in the relaying simulation. The received RSSI values measured on
vehicle V70 from XC90 are considered as the channel gain of the SR link; and similarly
the received RSSI values measured on vehicle XC70 from XC90 and V70 are considered
as the channel gain of SD link and RD link respectively. In these chosen links, vehicle
XC70 regularly changes its distances from the other two vehicles. As a result, data with a
higher range of vehicles’ distances can be observed.

For each simulation, the implemented RSSI values are measured from an continuous
time period with approximately 12000 observations (20 minutes).

3.2.2 Relaying Results

The results of relaying simulation with Non-relaying (NR), Decode-and-Forward (DF)
and Amplify-and-Forward (AF) schemes for scenario convoy are presented and discussed
in this subsection.

Firstly, multiple power factors are tested with NR scheme in order to adjust an appro-
priate reference level based on the packet lost rate which are introduced in 3.1.2 channel
and power factor subsection. As a result, the selected power factor for the basic simulation
is 3 x 107, which is 74.77 in dB. The corresponding packet lost rate for the NR is around
18.15% and the packet error rate results for the NR, DF and AF are displayed separately
in Figure 3.5, Figure 3.6 and Figure 3.7,

As can be seen from Figure 3.5, Figure 3.6 and Figure 3.7, the X axis shows the sim-
ulated continuous observation period, the Y axis shows the number of the failure decoded
packet at the destination for each observation, and as a reminder, 100 packets are sent for
each observation in the simulation. It is evident that the packet error rate performances
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for the transmission with DF and AF relaying schemes outperform NR. The packet lost
rates (PLR) are compressed by relaying from around 20% down to a level within 10%.
With DF scheme, the PLR number is even pushed to around 5%. Apart from the excep-
tional bad behaviors around observation number 3500, 6000 and 11000 which is deduced
to be a rapidly increase in distance from 50 to over 250 meter, the relaying graphs (DF
as green, AF as blue) clearly suggest that there is a significant benefit of implementing
relaying schemes to V2V systems. The measured channels for the three chosen links are
plotted in Figure 3.8 to evaluate the observation periods with high packet error rate. All
the RSSI values of missing packets are represented with -100 dBm. In general the SR link
(Blue) is under a superior condition while the SD link (Red) is under a substandard one
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Packet Error Rate for Amplify—and—Forward Relaying
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Figure 3.8: Measured RSSI for relaying links, Scenario 1a

as expected. The corresponding packet error rate results generally rise and fall with the
RSSI values being low and high.

As a continuation, the power factor are gradually increased to see the degree of im-
provement of the packet lose rate regarding the three relaying schemes. Tested values are
3x 107, 4.5x 107, 6 x 107, 7.5 x 107 and 9 x 107 in linear domain. All the numerical
results are listed in Table 3.1 and the simulation results for comparison of NR and DF are
illustrated in Figure 3.9.

The improvement rate of the packet lost rate gradually decreases as the power factor
further increases. After certain level, the influence on the packet lost rate of increasing the
power factor is relatively insignificant, e.g., when the power factor increases from 7.5 x
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PLR Numerical Result for Convoy
Scenario and PF NR DF AF
Convoy 1a, 3e7 18.15% 5.49% 9.07%
Convoy 1a, 4.5¢7 13.07% 3.64% 6.18%
Convoy la, 6e7 10.21% 2.77% 4.86%
Convoy 1a, 7.5¢7 8.39% 2.24% 4.04%
Convoy la, 9e7 7.12% 1.85% 3.47%

Table 3.1: PLR numerical result for convoy

107 to 9 x 107, the increment results of packet lost rate for the NR, DF and AF schemes
are only 1.27%, 0.39% and 0.57% respectively. Nevertheless there are still significant
improvements with comparison of the two relaying schemes to the NR, e.g., the packet
lost rate still has a increment of 5.27% comparing the DF to the NR with the power factor
being the highest tested value 9 x 107.

As for Figure 3.9, the red line represents the packet error rate results of the NR, while
the results of the DF are represented by the green line. The results of power factor being
9 x 107 are not shown in the figure since only a negligible degree of accumulation is
denoted on the transmission performance.

The packet error rate results of the two relaying schemes, the DF and the AF indicate
that the DF relaying scheme always outperforms the AF in this simulation. This is because
that with the way of implementation in the simulation, the DF unilaterally compresses
noise at the relay while the AF amplifies it. If the SR link is under good condition, both
the DF and the AF could perform well with a limited effect by noise. However if the
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SR link is bad, the DF could recognize the situation and response via various methods,
which in this case, it eliminates the bad SR channel effect by remaining idle, while the AF
would only enlarge the negative effect by amplifying the noise which more likely leads to
an transmission error at the destination. The cumulative density functions (CDF) of the
packet error rate for the NR, the DF and the AF with various power factors are shown in
Figure 3.10 to further verify the summary.
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Figure 3.10: CDF simulation results, various PF, Scenario 1a

As can be seen in Figure 3.10, the results of the four power factors in an ascendant
order correspond to the color in red, green, blue and cyan. The probability is displayed
from 0.5 to 1.

To summarize, the relaying simulation results indicate that implementation of the
multihop technology in V2V systems could conspicuously increase the performance of
communication as to overcome the issue with shadowing caused by other cars.

3.3 Scenario 2 overtaking

Several more relaying simulations are implemented on overtaking scenario. Four tri-links
from the measurements of scenario 2 are picked: Link 1, S60-V70-XC70, which the
vehicle queueing sequence changes the least during the entire overtaking process; Link
2, S60-V70-XC90, which the vehicle queueing sequence changes the most; Link 3, S60-
XC90-XC70 and Link 4, V70-XC90-XC70, have a moderate changes. The four links are
demonstrated in Figure 3.11.

As the Figure 3.11 shows, for the entire duration of overtaking scenario, the XC90
first moved to the last position of the queue, then the V70 changes its lane and accelerates
for a certain amount of time. After that, the V70 slowly decreases the speed while the
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Scenario 2 Overtaking
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Figure 3.11: Test scenario 2 Overtaking

XC90 moves back to the second position of the queue. Eventually the V70 and the XC90
are steady at the second position of the queue in parallel.
The numerical results for the overtaking scenario are listed in Table 3.2.

PLR Numerical Result for Overtaking
Scenario and PF NR DF AF
Overtaking Link 1, 6e7 26.91% 3.99% 4.19%
Overtaking Link 2, 4.5¢7 24.93% 1.28% 1.48%
Overtaking Link 3, 7.5¢7 24.11% 9.78% 16.83%
Overtaking Link 4, 1.5e7 25.66% 12.09% 16.76%

Table 3.2: PLR numerical result for overtaking

During these simulations, four different power factors are employed to preserve the
packet lost rate level of the non-relaying to be around 20%. Therefore, it is not distinct
to straightly compare the results between the four links. However it is still perceptible
that the transmission performance can benefit from the relaying significantly, e.g., in the
link 2, the Decode-and-Forward and Amplify-and-Forward compress the packet lost rate
from around 25% to around 1%. On the other hand, there are situations with a slighter
improvement like the link 3 and link 4, where the packet lost rates only decrease to a level
between 10 to 15%. These behaviors of the relaying in overtaking scenario require further
understanding based on the detail environment.

In order to compare the scenarios of the chosen links, the simulation packet error rate
results and the RSSI data are plotted in Figure 3.12.

The four studied links have various channel conditions which can be seem from the
RSSI vs Observation plots in each last sub-figures. The green line represents the relay-
destination (RD) link, the blue one represents the source-relay (SR) link and the red line
represents the source-destination (SD) link. The blue line is the lowest curve most of
the time since the general vehicle distances of the SD link are larger than the other two
links. As discussed before, for the link 1 and the link 2, the relaying performances are
outstanding which reduce the packet lost rate from around 25% to a level below 5%. For
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the link 3 and the link 4, the relaying performances are less remarkable compared to link
1 and link 2, yet they still have a decent reduction on the packet lost rate.

One thing to specify is that, for the link 3, the power factor is set to 7.5x107 which
is the highest among all four links. However the packet lost rate result of Amplify-and-
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PER Relaying Simulation Result Overtaking Link3
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Figure 3.12: PER results for scenario overtaking

Forward (AF) is about 17% which is really a poor performance considering the result
of Non-relaying 24% and the related results of the other three links. To countercheck
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the results, the packet lost rate for the SR link in the link 3 has a high value of 15%.
This relatively bad behavior of the SR link could be the essential reason for the poor AF
performance and it could be influenced by the antenna positions on the vehicles. The relay
vehicle which is the tall XC90 has its antenna on the back of the roof. When the XC90
is overtaking and drops back to the last position of the convoy queue, the relay antenna
could be blocked by the tall vehicle XC90 itself which ultimately changes the propagation
environment and results to a relatively bad SR channel. This could be inspected from the
last subfigure of figure 3.12 (c), where the RSSI values for the SR link (blue line) remain
low for most of the time for the link 3, while it is generally the highest among all the other
three links.
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Chapter 4

Statistic Pathloss and Shadowing
Model

In this chapter, the statistics of the pathloss exponent, reference power of the pathloss
model based on maximum likelihood estimation are derived from the two chosen tri-link
from scenario la and scenario 1b. The distribution of the large scale fading is verified
in a residual plot and the deviation of the large scale fading is calculated. Then the spa-
tial correlation coefficient of the derived large scale fading is obtained. It is later used to
simulate the vehicular shadowing for the measured channel based on the correlated Gaus-
sian approach. The modeled channels are evaluated with the comparison of the measured
channels. Finally, a pattern of the packet error rate results versus the channel power is
created based on the results of the multiple simulations with various power factors. It is
used to directly estimate the packet error rate performance for the simulated channels.

4.1 Pathloss model LOS and OLOS

Example LOS/OLOS Data Seperation in SD link

$ [—oLos

RSSI value (dBm)

5000 ) 10600 15000
Observation number

Figure 4.1: Example LOS/OLOS RSSI separation SD link
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In order to study the characteristics of the line-of-sight (LOS) and the obstructed
LOS (OLOS) scenarios separately, the measured data of the two scenarios are manually
synchronized and detached based on the inspection of the on-board videos. An example
of data separation for a source-destination (SD) link is demonstrated in Figure 4.1. The
LOS data is represented by red and the OLOS data is represented by green. All RSSI
values of missing packets are indicated by -100 dBm.

To increase the accuracy of the channel model, all available data from both mea-
surements of scenario convoy is evaluated. Based on the single slope pathloss model in
equation (2.1) and the implementation of maximum likelihood estimation discussed in
Chapter 2, two linear regression lines are drawn on the RSSI scatter plot vs the distance
in dB domain, the green one is the ordinary lease squared estimation (OLSE) and the red
one is the maximum likelihood estimation (MLE). The plot is shown in Figure 4.2.

Statistic Pathloss Mode_l3%OS and OLQS
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Figure 4.2: Scenario convoy LOS/OLOS pathloss model, OLSE
and MLE

The plotted data is filtered with a sliding window of size 10. From the two figures
above it can be observed that, the maximum likelihood estimation always has a higher
slope than the ordinary least squared estimation curve since the maximum likelihood es-
timation takes the censored data into consideration. The censoring happens with all the
values that are of missing packets or having a receive power lower than a chosen censor-
ing level. These values are considered not clearly received (i.e. being censored) and have
a certain probability of successful reception. In this thesis, the censoring level is chosen
to be -87 dBm which better describes the information of the missing packets based on
the RSSI and distance values. In Figure 4.2, all the data under censoring is plotted as -87
dBm for inspection. In the OLOS scenario, the maximum likelihood estimation curve is
much sharper than the ordinary least squared estimation curve while there is only slightly
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distinction in the LOS scenario. This is because most censoring happens in the OLOS
scenario since the signal is obstructed and there are a lot of measurements happened at
large distances between the vehicles.

Furthermore, in the RSSI data of the LOS scenario, there is a clear multi-ray behavior
which is caused by the additive and subtractive combination between the dominant LOS
component and the reflective ground wave component. In addition to that, since the com-
ponent of reflective wave always weaken the other after a certain distance, a dual-slope
pathloss in the LOS scenario can be observed separated from distance around 180 meter.
These behaviours can be further modeled as discussed in C. Sommer et al [20] and Chap-
ter 2.1.2. These models are not implemented in this thesis. The multi-ray and dual-slope
behaviours are not seen in the OLOS scenarios, since both the two wave components are
likely blocked by the obstructed vehicle.

Pathloss model results
Scenario || Exponent | Reference power LSF deviation
LOS 1.43 50.9 4.59
OLOS 2.29 43.6 5.82
Overall 2.02 46.3 5.19

Table 4.1: Pathloss model parameters

The final pathloss results for the LOS, OLOS and overall scenarios are illustrated in
table 4.1, where the reference power is the power loss at distance of 10 meter,
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Figure 4.3: LSF residual histogram for LOS and OLOS

To verify the shadowing power distribution, the large scale fading is derived for the
LOS and OLOS scenarios individually by subtracting the distance dependent power mean
from the measurement RSSI values. The histograms of the residual values are shown in
Figure 4.3,
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As can be seen from the figure, the derived large scale fading follows a zero mean
Gaussian distribution. One thing to mention is that, in the OLOS scenario, the distri-
bution shape of the residual has some distinction with a Gaussian. This is because the
pathloss model used for the large scale fading derivation is based on the maximum like-
lihood estimation, and as discussed before, the OLOS scenario is further affected by the
maximum likelihood estimation. As to the offset in the histogram of OLOS, the censored
data is taken into consideration during the derivation of the large scale fading, while the
histogram only shows the residual values of the uncensored data.

4.2 Spatial correlation

The auto correlation function (ACF) of the shadowing is calculated based on equation
(2.13). The LOS and OLOS scenarios are separated to find the correlation coefficient for
individual situation. An example of ACF calculation is illustrated in Figure 4.4 for 500
continuous large scale fading data (50 seconds).
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Figure 4.4: Example of ACF for 500 continuous LSF data

In Figure 4.4, each point represents the correlation of all observation pairs with a
certain lag. E.g, the value at lag 50 indicates correlation for all data pairs that have a
space of 50 observations. As in the equation (2.14), the desired correlation coefficient
is the lag when correlation drop from 1 to 1/e which in this case is observation number
66. The correlation coefficients of every 500 continuous data are calculated regarding the
LOS and OLOS scenarios. An example of the decorrelation distance calculation in one
continuous time period is shown in Figure 4.5.

The X axis in this figure is a continuous LOS scenario from source-relay link with
around 11500 data observations. For every continuous 500 data points starting from cer-
tain observation, a decorrelation distance is calculated and plotted in the graph. The green
cross points represent the decorrelation distances calculated at certain start observation,
while the red points represent those with the correlation coefficient higher than 500.
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Example Decorrelation Distance for a Continuous Interval

eooFw T = - LOSSR 2
’ ‘
b
b
i

Dcor
© Overlap

m
a
(=]
o

T

[ T ]
aol 4y 1f ;‘ 2 :
0 ny ] T

(%)

o

o
T
I

Decorrelation Distance (2.5

o
o
T
I

o
St

4000 6000 ) 8000
Start Observation

I
10000 12000

Figure 4.5: Example correlation for a continuous time period

From Figure 4.5, it can be seen that, the decorrelation distance appears to be quite
sensitive to the environment. Under certain conditions, it could remain small around 20
to 50 observations indicating a less correlated situation, while occasionally it could raise
rapidly over several hundred within a few tens of seconds indicating a high correlation
event. The spacing between observations have a time period of 0.1 second. Under an
average speed of 25 m/s, the average decorrelation distance for LOS scenario is calculated
to be 375 meter (150 observations) and for OLOS to be 500 meter (200 observations).

4.3 Simulation with a statistical model

With the deviation of the large scale fading and the spatial correlation coefficient, a cor-
related Gaussian shadowing process could be simulated. The simulation of the chan-
nels would be simply adding the generated shadowing onto the distance dependent mean
pathloss based on the pathloss model regarding LOS and OLOS. The shadowing for dif-
ferent observations with the same distance are generated independently. The spatial cor-
relation coefficient used in LOS is d,,- = 150 observations and in OLOS is d,,, = 200.
They are derived from the auto correlation function of the large scale fading which is
discussed in the previous section. To simulate the channels, all channel observations are
simulated based on the LOS and OLOS scenario, employing the corresponding pathloss
shadowing model. An example of simulated channel for source-relay link is illustrated in
Figure 4.6.

In Figure 4.6, all the values are compensated with the power factor of 3x107 (74.77
dB). The red curve is the mean pathloss following the changes of distance between cars.
The modeled channel is demonstrated in cyan and the measured channel is shown in blue.
As can be seen, the simulated channel could closely describe the characteristics of the
measured channel.

To further evaluate the model, all the channels used in simulation scenario con-
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voy la are simulated, the source-relay (SR), the relay-destination (RD) and the source-
destination (SD), based on the vehicle distances and LOS/OLOS scenarios. The power

simulations are illustrated in Figure 4.7,
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Figure 4.7: Statistic model channel simulation

In Figure 4.7, all modeled RSSI values are demonstrated in cyan color while the mea-
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surements RSSI values are the blue ones. In general, the modeled channel characteristics
follow the measurements, especially for the SR and SD links comparing the power mean
and the deviation of the large scale fading. In the RD link, the fluctuation of the modeled
channel appears to be more intensive.

For a Gaussian large scale fading, with a single slope regression pathloss model, the
deviation of the SR and RD links is expected to be much higher than in the measurements.
One reason for that is, most of the observations in the SR and RD links are in the LOS
scenario, and the pathloss in LOS could be better modeled in a dual-slope with a clear
multi-ray behavior as mentioned before in section 4.1 pathloss model LOS and OLOS.
The neglect of the different behavior in pathloss model would lead to a rougher estimation
on the deviation of the large scale fading. These effects are not clearly seen in the SD link
since most observations of the SD link are in OLOS scenario.

With the implementation of the correlated Gaussian approach, the behavior caused
by the loosen estimation on the large scale fading deviation is restrained with proper
correlation characterization. However there is still intensive fluctuation for the RD link.
One prediction of the reason is that, the decorrelation distance used in the model is an
overall average value for all links, however in the RD link, the used overall decorrelation
distance for LOS (150) is much smaller than the averaged value for the RD link itself
(200), which leads to a more intensive fluctuations for the simulated channel.

4.4 Packet error rate simulation
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Figure 4.8: Statistic model PER vs power pattern

Based on the results from all the simulations with various power factors, information
about simulated packet error rate at certain channel RSSI value regarding the three relay-
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ing schemes, Non-relaying (NR), Decode-and-Forward (DF) and Amplify-and-Forward
(AF) are well observed (i.e. PER vs Power pattern). After sorting the results by power
and deploying several sliding windows, the PER vs Power pattern can be constructed and
it is illustrated in Figure 4.8.

With this pattern derived from the simulation results, the simulated packet error rate
result can be directly read from it corresponding a modeled channel power. Then the
packet error rate performance of the simulated channel could be directly derived based
on the simulation channel power regarding the chosen relaying scheme. An example
of simulated packet error rate performances for all relaying schemes is demonstrated in
Figure 4.9.
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Figure 4.9: Statistic model simulation PER vs observation

As can be seen, the simulated packet error rate of all schemes induced by the derived
pattern (cyan) are generally higher than the original simulated results (with power factor
3 x 107). This could be mainly cause by the lower estimation on the channel power of
OLOS scenario based on the maximum likelihood estimation as discussed before. The
non-relaying link is basically the SD link itself and most observations of the SD link are
in OLOS scenario. As previously mentioned, the OLOS scenario has more censored data
and the curve of the maximum likelihood estimation at far distances deviates more from
the measured data set. As a result, the channel power of the simulation at far distances
is generally weaker than the measured channel power. For example in the SD link, the
distances between cars are on average over 100 meter and sometimes even reach 300
meter. When distance between cars is larger than 100 meter, the modeled pathloss curve
gradually goes beneath the measurements data which leads to a lower power simulation,
and consequently a higher packet error rate. This can be observed from Figure 4.2.

40



Chapter 5

Stochastic Sum of Sinusoids Model

In this chapter, the joint correlation of vehicular shadowing affected by multi-link move-
ment is first studied and a temp stochastic model of shadowing simulation is created based
on the sum of sinusoids approach discussed in [18] and [8]. In this thesis, the vehicular
channel is treated as an extension of the WSSUS channels. The auto correlation of the
shadowing at the transmit vehicle and the receive vehicle are assumed to be independent
and modeled with a negative exponential. A Monte Carlo method is used to generate the
random spatial frequencies based on the channel power spectral density as discussed in
section 2.4 and 2.5. After that, the joint correlation of vehicular shadowing affected by
the vehicle distance between two cars under the same obstruction vehicle is studied. The
correlations for different distance intervals are evaluated and modeled as negative expo-
nential. This joint correlation property is later added to the sum of sinusoids stochastic
model. Finally, the model results are analyzed in the last section.

5.1 Joint correlation with movement

As mentioned in Chapter 2.1.6, the vehicular shadowing is assumed to be an ergodic pro-
cess while any duration of the process can describe the average statistics of the entire
process. Therefore it can be treated stationary within certain observation period. Then
as discussed in Chapter 2.5, an stationary Gaussian process could be approximately rep-
resented by the sum of finite number of sinusoid waves with random phases and proper
chosen frequencies. Lastly in section 2.4, the auto correlation of the multi-link shadow-
ing affected by positions can be modeled as two independent negative exponential which
could extend the sum of sinusoids (SOS) stochastic model to 4-dimensional (4D) regard-
ing the shadowing power spectral density.

The movements of the multi-link cars are represented by assigned coordinates which
are the input to the 4D model. An example picture of shadowing simulation regarding
movement is demonstrated in Figure 5.1 using a discrete Monte Carlo method.

As can be seen from Figure 5.1, the X axis and Y axis represent 2-dimensional (2D)
movements for the first car of the multi-link while the other car’s coordinates are fixed.
The start coordinates of the first car are set to (1, 1) and increase with the car movements
in both dimensions. The employed decorrelation distances for both direction are 350
meter based on the calculation results of the measurements. The simulation movement
boundary is one thousand for both dimensions.
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5.2

Regenerate shadowing correlated Gaussian DMCM
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Figure 5.1: Shadowing simulation for 4D position with discrete
Monte Carlo method (DMCM)

Correlation dependence on car distance

In order to study the joint correlation of the vehicular large scale fading affected by the
distance between the two receiver vehicles under the same obstruction car, the large scale
fading and car distances for all related multi-link pairs are derived first. Figure 5.2 shows
an example of a studied multi-link pair in scenario 1b.

Rx1

Scenario 1B Highway Convoy

Link 1

Rx2 Obstruct Car

H(om) 75m 75m [Lz }4 10— 1000 m >-

S60 XC90 V70 XC70

e

Link 2

=———=— Moving direction

Figure 5.2: Example joint correlation multi-link pair, Scenario 1b

In the convoy scenario 1b, the leading car XC70 (TX) is transmitting to both S60
(RX1) and XC90 (RX2) simultaneously. The second car in queue, V70, is treated as a
common obstruction car for both link 1 and link 2. The joint correlation of the large scale
fading on the RX1 and the RX2 can be studied based on the distance between RX1 and
RX?2 disregarding the distances for link 1 and link 2.
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Moreover, the roles of the vehicles in the scenario are inverted, treating S60 as the
TX and XC90 as the obstruction car. Thereby another related scenario can be observed
as 1b reverse. With the same concept, two more related scenarios from convoy la can be
inspected.

5.2.1 Shadowing versus distance

In order to derive the large scale fading of the desired multi-link pairs, the values of RSSI
and distance are first synchronized based on the measured time stamps. Secondly, periods
with large packet loss are removed. By subtracting the distance dependent mean based on
the pathloss model, the effective large scale fading of the multi-link pairs are calculated.
Example derivations of the RSSI values, the distances between cars and the large scale
fading are demonstrated in Figure 5.3.
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Figure 5.3: RSSI and LSF with extend data

As can be seen in Figure 5.3, the RSSI values, the distances and the large scale fading
of the multi-link are plotted including the observations where no packet is received. The
red lines represent link 1 and the green ones represent link 2. Then the observation periods
of which the RSSI values are mostly unreceived, are removed corresponding to the large
distances between TX and RX. After the modification, the large scale fading values are
derived by subtracting distance dependent means from the filtered RSSI values. Which
the means were taken from the pathloss model for all measurements data disregarding the
LOS or OLOS scenario. Finally, the histogram of the result large scale fading is shown
in last subfigure indicating a Gaussian distribution. The modified multi-link RSSI values
for scenario 1b and pathloss model can be observed from Figure 5.4.
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Figure 5.4: Pathloss model and RSSI value, Scenario 1b

To study the large scale fading affected by distances between the two cars of the
multi-link pair, the large scale fading versus the distance is derived and illustrated in
Figure 5.5. From the figure we can observe that, most of the large scale fading data pairs
fall into distance interval 10 to 80 meter. The scatter plot for each 10 meter interval is
derived from 10 to 80 meter in consideration of the GPS offset being several meters. An
example scatter plot is shown in Figure 5.6 for the 30 to 40 meter interval in scenario 1b.
A clear positive correlation with the two large scale fading of the multi-link pair could
be observed. A sample reflective correlation coefficient is calculated for each interval to
evaluate the joint correlation and it is introduced in next subsection.
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Figure 5.5: Large scale fading vs Distance between cars
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Figure 5.6: Scatter plot, Scenario 1b 30 to 40 meter interval

5.2.2 Sample reflective correlation coefficient

The coefficient of the joint correlation for each distance interval is a description of the
correlation between the two large scale fading of the multi-link. Therefore, the means
of the two large scale fading are not subtracted during the calculating of the correlation
coefficients. A sample reflective correlation coefficient (SRCC) is introduced in equation
(5.1,

%Zﬁ'vzl (x,~y,-)
T T
(I 17)? (R E107)?

where x and y represents the large scale fading data of the two studied links and N is the
number of samples. Eventually, the sample reflective correlation coefficients Rggrcc for
every 10 meter interval from 10 to 80 meter are calculated. All four scenario data and the
results from all four scenarios are combined and illustrated in Figure 5.7.

As can be seen in Figure 5.7, the sample reflective correlation coefficient values are
plotted at the middle of the corresponding distance interval. All the values here are posi-
tive and indicate a clear descend trend till 80 meter besides the first two points of which
the distances are smaller than 30 meter.

The multi-link shadowing data for this studies are measured under a highly dynamic
situation. Each pair of the large scale fading are collected under the same time instance.
However the position of the obstruction car in the convoy, the distances between trans-
mitting car and receiving cars, and even the antenna heights and the environments of
surrounding are essentially different between the data pairs of different observations. The
analyzed results could be strongly affected by the measurement environment. With these
in mind, the joint correlation of large scale fading affected at different distances from
same obstruction car can be observed on an indistinct level.

Rsrcc = (5.1)

45



Sample Reflective Correlation Coefficient
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Figure 5.7: SRCC vs Distance

Under such conditions, based on the behaviors of the distance interval 10 to 30 meter,
it is assumed that there is a close-vehicle-distance before 30 meter distance, where the
large scale fading is mainly affected by the factors other than the car distance, such as the
car type, the antenna pattern, the antenna height, etc.

Furthermore, based on the results of sample reflective correlation coefficient, the de-
scend trend can be modeled either linearly or exponentially. In this thesis, the joint corre-
lation of the large scale fading affected by distances between cars is modeled as a negative
exponential and it drops from 1 at zero meter. All other influences during the distance in-
terval of 30 to 80 meter are assumed to be neglectable for this particular study object.

5.3 Analysis results

As mentioned in the last section, the sample reflective correlation coefficients (SRCC)
from 10 to 30 meter intervals are eliminated and the joint correlation at zero meter is
1. After a proper exponential fit based on the sample reflective correlation coefficient
results from 30 to 80 meter intervals, the decorrelation distance of the large scale fading
affected by distances between cars is derived based on equation (2.14). Finally, the result
is calculated to be 52 meter. The fitting is illustrated in Figure 5.8,

The joint correlation of the large scale fading affected by car distance is now mod-
eled by a negative exponential, which is in the form of the movement factor. It is assumed
that this joint correlation with car distance is independent with the correlation with move-
ment. Then based on the same concept of equation (2.25) and equation (2.26), the joint
correlation affected by the car distance can be added to the sum of sinusoids model.

For the stochastic sum of sinusoids (SOS) model, the movement of the multi-link
vehicle pair is considered as one entirety. The 4D movement SOS model is reduced to a
two dimensional model with decorrelation distance of 350 meter on both dimensions. On
the other hand, another two dimensions with the decorrelation distance of 50 meter are
added representing the car distance effects. Eventually, a 4-dimensional sum of sinusoids
shadowing model is created which could be expressed with equation (2.32), and its spatial
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Sample Reflective Correlation Coefficient Exponential model
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Figure 5.8: SRCC, Exponential fit

frequencies for movement and car distance are generated separately based on equation
(2.31) using a = 350 and a = 50 respectively. An example of the shadowing simulation
based on the stochastic SOS model with a Monte Carlo method is demonstrated in Figure
5.9.

Regenerate Stochastic Channel Model MCM
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X Yy ]
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Figure 5.9: Stochastic model shadowing simulation, Monte Carlo

As can be seen from Figure 5.9, the left axis represents the movement of convoy from
reference (1, 1) to (1000, 1), the joint correlation spatial frequencies are generated with the
decorrelation distance 350 meter. The right axis demonstrates the distance between the
two cars of the multi-link pair, with coordinates from (1, 1) to (500, 1). The decorrelation
distance for the distance factor is 50 meter.
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The shadowing results of the stochastic model could be limited by the accuracy of
the pathloss model, the limitation on data size, the valid distance and the GPS offset. In
addition to that, the car link with a further distance also suffers an additional blockage
from the closer link cars.
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Chapter 6

Conclusion

This thesis focuses on the study of vehicular shadowing in multi-link V2V systems. To-
gether three parts compose the main structure: 1) Implemented two relaying schemes,
Decode-and-Forward and Amplify-and-Forward, in the simulation based on the measure-
ment data. The packet error rate performance is analyzed; 2) Generate a statistic pathloss
and shadowing model regarding the line-of-sight (LOS) and the obstruction LOS (OLOS)
scenarios. Simulated the power and PER performance of the channels based on the model
and the simulation results; 3) Employ the sum of sinusoids approach for the stochastic
shadowing model, based on the joint correlation affected by movements and distance be-
tween vehicles under same obstruction car.

The results of the relaying simulations based on the practical measurements indicate
that implementing multi-hop technology could effectively solve the issues with shadowed
cars. The bit level simulation with Rician distributed channel power is very close to prac-
tice and the basic principles of Decode-and-Forward and Amplify-and-Forward schemes
are well fulfilled. As for the packet error rate results, Decode-and-Forward and Amplify-
and-Forward suggest a significant benefit comparing with the non-relaying. In the mean-
while, the Decode-and-Forward always outperforms the Amplify-and-Forward under the
condition that both of the transceivers are transmitting under unit power.

The statistic pathloss and shadowing model well describes the power properties of
the measured highway scenarios and can be used to simulate channel power based on
distance between transmitters and receives. The implementation of the maximum likeli-
hood estimation makes a better evaluation of the practical signal power loss taking into
consideration of the missing packets. The correlated Gaussian model of the vehicular
shadowing could better describe the spatial correlation on the measured highway sce-
nario. The pathloss and shadowing model closely characterizes the measured channels
with the desired deviations of large scale fading and a close mean pathloss. This model
could be used for system level V2V studies under similar highway scenarios.

The joint correlation of vehicular shadowing affected by positions and by distance
between vehicles under same obstruction car are modeled as negative exponential. A
close distance range should be studied separately. The stochastic sum of sinusoids model
for generating Gaussian shadowing well describes the power spectral density and join
correlation effects of the multi-link car pairs. Therefore it could be used for multi-link
vehicular shadowing simulation on V2V systems based on the vehicle movements and
the distance between the vehicles under same obstruction car.
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Chapter 7

Discussion and Future Work

As a step forward in deeper studies, this thesis includes several topics about multi-link
modeling in V2V channels, involving relaying simulation design, channel statistics deriva-
tion and stochastic channel modeling. There could still be several improvements in the
details while the major concepts are included in the report.

A single-hop relaying scenario is employed in the simulation. Multi-hop systems
with more nodes could be studied, from which more joint correlation properties could
be studied for the multi-link shadowing. Furthermore, hybrid and cooperative relaying
schemes precisely designed for V2V communication could be employed in the simulation.

The pathloss in this thesis is modeled with the single-slope linear regression. As
mentioned in Chapter 4, advanced pathloss models could be applied for the multi-ray
and dual-slope behaviors on the line-of-sight scenario. With more accurate prediction
of the mean power, the simulated channels would be more close to the measured ones.
Moreover, for the convoy situation, in total the data of six links out of twelve are analyzed.
More links could be resolved and included in the modeling to increase the accuracy.

The basic linear pathloss model of the multi-link shadowing in this report is based on
the assumption that the power loss is independent on the pair of links. This assumption is
not absolutely accurate as the power loss of some links can be highly correlated through
the shadowing effect, for example, two vehicles suffering correlated shadowing from the
same obstruction. Further studies could be made with consideration of a joint pathloss
model mentioned by P. Agrawal and N. Patw [9].

In addition to that, the channel could be modeled more comprehensively with the
information of frequency domain provided by channel sounders. One can study from
elementary channel characteristics like the power delay profile, the power spectral den-
sity, the delay spreads, the Doppler spreads, etc.; Directional information could also be
analyzed from derivation of the direction-of-arrival (DOA) and direction-of-departure
(DOD); The optimal usage of antenna diversity can be evaluated based on the eigenvalue
derivation.

Furthermore, only small size vehicles are used in the measurements of this thesis.
Similar multi-link studies could be done on large vehicles such as trucks and buses. The
multi-link correlation properties should be properly modeled to be able to design V2V
systems based on multi-hop technology with low latency and high reliability.

Finally, the study method of collecting channel gain in V2V channels from synchro-
nized transceivers is quite practical, and the parameters needed for the channel modeling
are uncomplicated. With the gradually implementation of employing single antenna on
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vehicles, there could also be local geometric-based self-tuning channel models, feeding
by the channel data of RSSI values, GPS coordinates and synchronized time stamps from
the massive passing vehicles. Furthermore, more elements could be taken into considera-
tion, such as vehicle type, vehicle speed, traffic timing, weather, etc. These models could
be quickly developed and auto-superseded. They could compensate the effects of envi-
ronmental changes like new constructed buildings and bridges, growing roadside trees,
etc.
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