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Cover image: 3D Subset of the digital surface model covering the Romperöd forest 

(visualized in Mars Explorer software).  
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Abstract 

 

Quantifying forest information about e.g. land cover, tree height and biomass has traditionally 

been a both time-consuming and labor-intensive part of forestry and forest research as field 

measurements typically are collected manually using handheld equipment. Remote sensing 

has proved to be a valuable complement to field based measurements as it enables for fast and 

relatively cheap collection of data from areas that would be hard to access from the ground. 

The aim of this thesis was to map and quantify the Romperöd forest located outside Glimåkra 

in southern Sweden. The forest has been managed using selective thinning forestry since the 

1960’s and surrounds a tower where micrometeorological measurements are being collected 

as a part of a research project aiming to study the effects different forestry practices have on 

the greenhouse gas balance of forests. The study was carried out using high resolution 

multispectral aerial images and small-footprint LiDAR remote sensing data included in the 

national elevation model in conjunction with field measurements. The results revealed a 

mixed forest where Norway spruce is the most dominating tree species, accounting for 40.2 % 

of the total coverage of the study area, followed by Scots pine (13.8 %), broadleaved trees 

(8.7 %), succession (6.7 %) and bare-ground (4.1 %). The object-based land cover 

classification outperformed the pixel-based approach, demonstrating the importance of 

spectral, textural and spatial information when classifying high resolution data over complex 

study areas, like a heterogeneous forest. The elevation of the terrain varies between 76.2 and 

107.3 meters above sea level, with a ridge extending from south to north. The canopy height 

of the forest varies greatly throughout the study area and ranged between 1.0 and 34.6 m with 

an average height of 15.1 m and a standard deviation of 8 m. Above ground biomass (AGB) 

was modelled using a combination of LiDAR data and field measurements and showed an 

average AGB of 122 900 kg/ha and a standard deviation of 50 497 kg/ha. The model managed 

to explain 70 % of the variability in the field measured AGB estimates. The results were 

compared to the AGB data included in the SLU Forest Map which showed low correlation  

with AGB estimates based on field measurements (adjusted R
2
: 0.14), proving it unsuitable 

for the part of the Romperöd forest characterized by selective thinning.  

Keywords: Forest inventory, selective thinning forestry, boreo-nemoral forest, remote 

sensing, land cover classification, LiDAR, digital elevation model (DEM), canopy height 

model (CHM), above-ground biomass (AGB).  
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Sammanfattning 

 

Att kvantifiera skogsinformation angående exempelvis marktäcke, terräng, trädhöjder och 

biomassa är en traditionellt både tidskrävande och dyr del av skogsbruk och skogsforskning 

eftersom mätningar vanligtvis samlas in i fält med handhållna instrument. Fjärranalys har 

visat sig vara ett värdefullt komplement till fältbaserade mätningar eftersom det möjliggör för 

snabb och relativt billig insamling av data från områden som skulle vara svåra att besöka i 

fält. Syftet med denna uppsats var att kartlägga och kvantifiera Romperödskogen utanför 

Glimåkra i nordöstra Skåne. Skogen har skötts genom blädningbruk sedan 1960-talet och 

omger en mast där mikrometeorologiska mätningar samlas in som en del av ett 

forskningsprojekt som avser att studera effekten olika skogsbruksmetoder har på 

växthusgasbalansen i skogar. Kvantifieringen genomfördes med hjälp av högupplösta 

multispektrala flygbilder och LiDAR-data inkluderad i den nationella höjdmodellen i 

kombination med mätdata som samlats in i fält. Resultaten blottlade en blandskog där gran 

utgör det dominerande trädslaget (40,2 % av den totala arean av studieområdet), följt av tall 

(13,8 %), lövträd (8,7 %), föryngringar (6,7 %) och bar mark (4,1 %). Den objektbaserade 

marktäckesklassificeringen resulterade i högre träffsäkerthet än den pixelbaserade metoden 

vilket demonstrerar vikten av segmentering och av att inkludera både spektral, texturell och 

rumslig information vid klassificering av högupplöst data över komplexa studieområden, som 

t.ex. en heterogen skog. Terrängen varierar från 76,2 till 107,3 meter över havet med en ås 

som sträcker sig från söder till norr. Höjden på krontaket är heterogent i hela studieområdet 

och varierar mellan 1,0 och 34,6 m med en medelhöjd på 15,1 m och en standardavikelse på 8 

m. Biomassa ovan jord uppskattades med hjälp av LiDAR-data i kombination med 

fältmätningar och visar ett medelvärde på 122 900 kg/ha och en standardavikelse på 50 497 

kg. Modellen förklarar 70 % av variabiliteten i de fältinmätta skattningarna. Resultaten 

jämfördes med biomassa ovan jord enligt SLUs Skogskarta som visade låg korrelation med 

skattningar baserat på fältmätningar (justerat R
2
: 0,14) vilket visar att SLUs Skogskarta ej är 

applicerbar för den del av Romperödskogen som kännetecknas av blädning.  

 

Nyckelord: Skogsinventering, blädningsskogsbruk, boreo-nemoral skog, fjärranalys, 

marktäckesklassificering, LiDAR, digital höjdmodell, trädkronhöjdmodell, biomassa 

ovanjord. 
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1. Introduction  

 

Global atmospheric greenhouse gas (GHG) concentrations have increased to levels exceeding 

the natural variations during the last 800 000 years, as determined by analyzing air trapped in 

Antarctic ice cores (Lüthi et al, 2008). Annual global GHG emissions grew from 

approximately 28.7 to 49 Gigatons of carbon dioxide (CO2) equivalents, or by 70 %, between 

1970 and 2010 (IPCC, 2014). The main cause for the increase is emissions from fossil fuel 

combustion and industrial processes (about 78 %) but a significant part of it can be 

contributed to land use change, mainly deforestation, which accounted for about 11 % of the 

annual anthropogenic GHG emissions in 2010 (IPCC, 2014).  

Forests play an important role in controlling the global climate system as vegetation consumes 

atmospheric CO2 through photosynthesis and stores it as organic biomass in a process called 

sequestration (Pan, 2011). It has been estimated that intact forests and forest recovering after 

disturbances (e.g. after a harvest or after being wind thrown) globally sequestered around 4 

billion tonnes of carbon annually between the years of 1990 and 2007, equivalent to almost 

60 % of the CO2 being released into the atmosphere from fossil fuel emissions during the 

same time period (Pan, 2011). The majority of the sequestered carbon the past two decades 

has been stored in the temperate and boreal forests across the globe (Reich, 2011). 

When forests are burned or cut down, photosynthesis cease and the carbon stored in the trees 

is released into the atmosphere as the organic material decomposes. If the forest is converted 

to other land use types (e.g. agriculture) future possible sequestration is lost as well (IPCC, 

2014). Deforestation and forest degradation due to agricultural expansion, conversion to 

pastureland, destructive logging, fires etc. are the second biggest source of CO2 to the 

atmosphere (after the energy sector) and has been estimated to account for up to 20 % of the 

global greenhouse effect (UN-REDD, nd).  

To study the effects different forestry practices have on the GHG balance of ecosystems, a 

tower was set up in 2013 in Romperöd, a forest in southern Sweden where selective thinning 

has been practiced for decades, to measure fluxes of CO2 and H2O. The research conducted 

there is part of the research project “Effect of forest management on climate forcing - 

accounting for all greenhouse gases and energy balance" funded by The Swedish Research 

Council Formas. The project aims to quantify GHG fluxes from different forest types to 

determine if they are sources (net release) or sinks (net uptake) of GHGs. 
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Traditionally, collecting forest information about e.g. land cover, tree height and estimates of 

volume has been a both time-consuming and labor-intensive part of forestry and forest 

research as field measurements typically are collected manually using handheld equipment 

(Kangas & Maltamo, 2006). Advantages of remote sensing include the ability to collect 

measurements with high speed and relatively low cost and the possibility to collect data in 

areas that are difficult to access on the ground (Gibbs et al, 2007). The aim of this thesis was 

to map and quantify the Romperöd forest using remote sensing data in conjunction with field 

measurements. The study can be broken up into three main objectives:  

1. Land cover mapping 

- How are different land cover classes distributed in the forest? The hypothesis is that 

high resolution aerial images can be used to distinguish between the different tree 

species occurring at the Romperöd site.  

2. Characterization of the terrain and canopy cover 

- Is the landscape hilly or flat? Is the canopy cover homogenous or heterogenous? The 

hypothesis is that the canopy cover in the Romperöd forest is vertically heterogeneous. 

3. Biomass modelling  

- How large is the above-ground biomass (AGB) storage? The hypothesis is that the 

LiDAR data included in the national elevation model is detailed enough to be used to 

estimate AGB in the Romperöd forest.  

Landcover and biomass mapping is important for forest management planning and can be 

used to monitor future changes or disturbances in the forest (Goetz et al, 2009). Accurate 

AGB estimates are important as AGB readily can be converted to carbon storage which is a 

vital step in understanding the carbon cycle of forest ecosystems (Malhi et al, 2002). 

Furthermore, knowledge about the terrain and vegetation surrounding the flux tower is 

important when interpreting the data and can be used for precise modelling of the spatial 

representativeness (footprint) of long-term accumulated eddy-covariance measurements 

(Gökede et al, 2006; Vesala et al, 2008).  
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2. Background 

2.1 Forestry in Sweden 

 

Out of Sweden’s total 40.7 million ha land area, about 28 million ha (57 %) is covered by 

productive forest (Swedish Forest Agency, 2014). The carbon stored in forest biomass 

amounts to more than 1010 million tonnes (Mt) where stem wood biomass accounts for 

approximately 55 % while the rest is stored in the branches, needles, stumps and roots of the 

trees (Olsson, 2010). The yearly growth of the forests biomass is approximately 80 Mt, 

equaling 40 Mt of carbon, or an uptake of 145 Mt CO2 (Olsson, 2010). A lot of this uptake is 

lost due to logging but since the harvest level has been well below the growth, the carbon 

storage increased by almost 8 Mt a year between 2000 and 2010 which equals an annual CO2 

uptake of 28 Mt (Swedish Environmental Protection Agency, 2015), or about 55 % of the CO2 

emissions produced in Sweden stemming from the burning of fossil fuel and production of 

cement during the same time period (The World Bank, 2015). The most dominating tree 

species is Norway spruce (Picea abies), accounting for 42 % of the standing volume followed 

by Scots pine (Pinus sylvestris) (39 %) and silver and downy birch (Betula pendula & Betula 

pubescens) (12 %). The remaining 7 % is mainly constituted of broad-leaved species (The 

Swedish Forest Agency, 2014).  

 

The vast majority of the Swedish forests are managed with some type of clear-cut forestry, an 

annual average of 189 600 ha of forest was clear-cut in the period between 2009 and 2013 

(The Swedish Forest Agency, 2014). Clear-cut forestry in Sweden is typically characterized 

by homogenous coniferous forest stands in which all trees are planted at the same time 

(Albrektson et al, 2012). While the planted trees still are young, undergrowth cleaning and 

pre-commercial thinning is carried out to clear from naturally generated vegetation (which 

typically is left on top of the forest floor) to give additional space and nutrients to the 

production trees (Albrektson et al, 2012). Before the final felling, the forest is usually thinned 

at least two times, removing between 20 % and 40 % of the standing volume each time, to 

focus the production capacity of the forest on a smaller number of trees (Albrektson et al, 

2012). When the remaining trees have reached a thickness of around 30 cm at breast height, 

clear-cutting is carried out. Allowing the trees to grow thicker increases the risk of rot and 

storm fellings and is therefore not economically justifiable (Södra, 2011). After the forest has 

been cleared, ground preparations are carried out to prepare for a new generation of planted 

saplings (Albrektson et al, 2012). The time it takes to complete this cycle (from saplings to 
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harvested trees) depends on the productivity of the forest but the forestry act §10 (Law 

2008:662) regulates that spruce must be at least 45-90 years old before it can be cut down 

(depending on the location and productivity of the forest) while pine must be 60-90 years old.  

 

Several carbon balance research projects around the world have shown that clear-cutting leads 

to drastic changes in the carbon dynamics of the ecosystem (Mäkiranta et al, 2010, Paul-

Limoges et al, 2015). The main cause for these changes is a loss of photosynthesizing biomass 

and enhanced ecosystem respiration due to easily decomposable organic matter, i.e. dying tree 

roots and logging residue (Mäkiranta et al, 2010). An example from a study in Canada 

showed that a clearing transformed a mature fir forest, previously acting as a moderate sink 

(net ecosystem exchange (NEE) of -2053 g CO2 m
−2

 yr
−1

) to a major source of carbon to the 

atmosphere (NEE = 3667 g CO2 m
−2

 yr
−1

) (Paul-Limoges et al, 2015). A study on a pine peat 

forest in Finland showed similar results, with an average NEE of 1990 g CO2 m
-2

 yr
-1

 the 

following three years after clear-cutting and concluded that even though the ground 

vegetation recovers fast after a clearing and starts to store carbon, the presence of a new forest 

stand is needed before the forest can act as a sink again (Mäkiranta et al, 2010). 

 

Alternative forestry practices are still uncommon in Sweden even though forest owners have 

been free to use them since the new Forestry Act of 1993 when the old legislation, focusing 

on maintaining high yield and forcing the forest owners to practice clear cut forestry, were 

replaced by new laws, placing equal focus on production and nature conservation 

(Westerstad,  2011). Continuous cover forestry is a group of methods that has gained increased 

interest in the Nordic countries (Andersson, 2006). Selective thinning is an example of a 

continuous cover forestry practice characterized by uneven-aged forests which are selectively 

thinned with relatively frequent intervals, while leaving the majority of the trees untouched 

(Lundqvist et al, 2009). This encourages increased growth in the remaining trees as more 

sunlight and nutrients are made available (Lundqvist et al, 2009). The extracted trees are 

eventually replaced by new saplings through natural rejuvenation and there is therefore often 

no need for manual plantations (Oleskog, 2008). Selective thinning has many ecological 

benefits compared to clear-cut forestry as a continuous and unfragmented forest cover 

constitutes a necessary habitat for many forest-living species. According to the Swedish Red 

List, 861 forest-living species are considered as threatened and 270 as near-threatened (The 

Swedish Forest Agency, 2014). A recent study, comparing the biodiversity of natural forests 

with forests where clear-cut forestry and forests where selective thinning is being practiced 
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showed that clear-cut forests have significantly lower species diversity compared to 

selectively thinned forests where the biodiversity was similar to natural forests (Leverin, 

2014).  

2.2 Forestry in Romperöd  

 

The Romperöd forest has a long tradition of selective thinning (D. Göransson, personal 

communication, April 14
th

, 2015; Göransson, 2015). Around 1920 all coniferous trees that 

had reached a profitable dimension were cut to finance a generation shift at the farm, leaving 

a residual forest with broadleaved trees of varying size and coniferous trees not thicker than 

12 cm at breast height. During the 1940s, some deciduous trees were felled for firewood. This 

resulted in an uneven-aged forest, which prompted the forest owners to carry out selective 

thinning in 1946 and 1959 with the purpose of evening out the canopy layer. The effect 

however, was the opposite. Sometime during the 1960s, the owners decided to fully commit 

to selective thinning and started to develop the silviculture which is carried out today (D. 

Göransson, personal communication, April 14
th

, 2015). 

Out of Romperöd’s approximately 120 ha forest, about 40-60 ha is currently characterized by 

selective thinning which is carried out according to the following summarized principles (a 

complete list can be found in Appendix I) (D. Göransson, personal communication, April 14
th

, 

2015): 

 Cut primarily the biggest trees – spruce should not reach a diameter (at breast height), 

that exceeds 60 cm (maximum for debarking machinery). Normally this means that 

spruces bigger than 50 cm should not be left. 

 Slow growing trees and trees with low timber quality in the upper canopy story should 

be cut to promote quality and height on the remaining trees and to forward good genes 

to new generations of saplings.  

 The production should be focused on big and valuable trees while it is less important 

to increase the growth of smaller trees by thinning dense groups of trees. The high tree 

density will improve timber quality. 

 Trees smaller than the smallest profitable dimensions should normally only be cut if 

the quality of the trees are so bad that they will not grow into sellable timber. 

 Do not thin more than 35 % of the standing volume to prevent storm damage. Leave 

wind resistant trees, especially pine, and avoid opening pathways for westerly winds. 
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 Keep a standing volume high enough (at least 100 m3/ha, preferably 150 m3/ha or 

more) to uphold high production and to facilitate natural rejuvenation. 

 Try to always keep the forest floor shadowed. This is especially important for stands 

on dry ground. Shadows prevent wavy hair grass (Deschampsia flexuosa) and 

broadleaved trees from establishing and promotes rejuvenation of shadow tolerant tree 

species like Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). 

2.3  Research station in Romperöd 

 

In June 2013 a research team from Lund University started a measurement station in the 

Romperöd forest, with the main purpose of quantifying net CO2 fluxes to determine the 

carbon balance of the forest and in that way study the effects selective thinning forestry has 

on the climate. A 35 m high tower (Figure 1) was erected to conduct micrometeorological 

measurements of CO2 and H2O fluxes using an ultrasonic anemometer and an infrared gas 

analyzer and utilizing the eddy covariance technique (Burba, 2013). In addition to this, other 

parameters measured include energy fluxes, relative humidity, air temperature, precipitation, 

soil temperature, soil moisture, and soil conductivity. 

 

Figure 1. The Romperöd flux tower during maintenance. 
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2.4  Remote sensing in forest applications 

 

Remote sensing is a powerful tool that has been widely used over the last decades to map and 

model forest ecosystems (Lavrov et al, 2003; Chu, 2014). Passive remote sensing sensors (e.g. 

aerial photography) measure naturally available electromagnetic radiation (reflected sunlight) 

in different wavelength bands or absorbed and re-emitted thermal energy (Lillesand et al, 

2008). Active sensors (e.g. RADAR) on the other hand, transmit their own source of 

illumination and measure the amount of energy being reflected back to the sensor (Lillesand 

et al, 2008). A combination of both passive and active sensors is commonly used in forest 

applications, for example, Ranson et al (2003) fused multispectral images from the Landsat-7 

satellite system with RADAR data from a range of satellite systems to map burned areas, 

logging, and insect damage in the boreal forests of Siberia and Holmgren et al (2008) used 

multispectral aerial images in combination with high resolution LiDAR data for species 

identification of individual trees in a temperate mixed forest in southern Sweden. Other forest 

applications related to remote sensing include e.g. forest management planning, land cover 

type discrimination, habitat mapping, forest health assessments and monitoring of forest 

recovery after storm fellings or wildfires (Lavrov et al, 2003; Hyde et al, 2006; Chu, 2014; de 

Tanago et al, 2014). 

2.4.1 Land cover classification 

 

Different materials on Earth reflect and absorb incident sunlight in different parts of the 

electromagnetic spectrum. Vegetation reflects mostly in the near infrared (NIR) and green 

parts of the spectrum as can be seen in Figure 2. Green leaves reflect about 20 % of the 

sunlight in the green to red wavelength bands (0.5-0.7 μm) and about 60 % in the NIR band 

(0.7-1.3 μm) (Loveland et al, 1991). The spectral profile of bare ground depends on material 

but generally shows higher reflectance in all bands. Shadows have the lowest reflectance in all 

bands as no direct sunlight is reflected from the surface. These spectral differences make it 

possible to identify and map objects and materials in remotely sensed images using automated 

classification algorithms (Lillesand et al, 2008).  
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Figure 2. Spectral profile of the classes chosen for the land cover classification  

based on the data from 2010 described in section 3.4. 1 = blue, 2 = green, 3 =  

red and 4 = near-infrared, DN = digital number*  

* Digital number (DN) is commonly used to describe pixel values that have not  

yet been calibrated into physically meaningful units. 

An example of a widely used classification algorithm is the Support Vector Machine (SVM) 

(Boser, Guyan, and Vapnik, 1992). SVMs are a group of machine learning methods that have 

proved to be especially good at classifying noisy or complex data (Melgani and Bruzzone, 

2004; Pal and Mather, 2005; Lu and Weng, 2007). Given a set of training examples, SVMs 

classify data by computing an optimal hyperplane in linearly separable patterns (Boser, 

Guyan, and Vapnik, 1992). The training examples are projected as points in two-dimensional 

space and separated by a straight line. The predicted class values are decided depending on 

which side of the line a pixel or feature is mapped. Since complex data cannot always be 

separated by straight lines in two-dimensional space, a non-linear kernel function is often 

applied, projecting the inputs into high-dimensional feature space where an optimal 

hyperplane can be computed to separate them into classes (Boser, Guyan, and Vapnik, 1992). 

Traditional remote sensing classification techniques are pixel-based which means that an 

image is classified based on individual pixel values representing reflected electromagnetic 

radiation (Lillesand et al, 2008). Pixel-based classification methods work well with 

hyperspectral data but are not ideal when it comes to classifying high resolution multispectral 

imagery (Blaschke, 2003). A more modern approach is to use an object-based classification 

method. In object-based methods the pixels of an image is first grouped into features, or 

objects, typically sharing spatial, spectral, and textural properties (Nielsen, 2014). The 
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classification is then based on these objects rather than the individual pixels. Object-based 

classification is particularly suitable for medium to high resolution data as objects in the 

image, like trees or buildings often consist of several pixels with varying spectral properties 

(Clark Lab, 2009).  

2.4.2 Estimating biomass 

 

Estimating biomass via field measured forest inventory data is both time-consuming and 

expensive and is therefore generally only repeated at ten-year intervals (Houghton, 2005). The 

possibility of estimating biomass using remote sensing is therefore considered to be a valuable 

alternative, or complement, to field-based forest inventories (Hese et al, 2005).  

Remote sensing estimates of AGB is often conducted using a combination of field 

measurements and both active and passive remote sensing systems (Goetz et al, 2009; Pirotti, 

2011; Shendryk, 2013; Cao, 2014). However, it is still a challenging task in terms of model 

complexity and data availability (Shendryk, 2013). Active systems like e.g. the synthetic 

aperture radar (SAR) have been used to model AGB with satisfying results (Robinson et al 

2013). SAR measures the height of objects by sending radio pulses on the Earth surface and 

records the backscatter of the reflected pulse, however, the sensitivity and accuracy of such 

instruments have shown to decrease with increasing AGB due to a saturation effect on the 

backscatter occurring at high AGB values as the canopy cover gets too thick and opaque for 

the radio pulse to penetrate (Mitchard et al, 2012; Robinson et al, 2013). Passive systems, like 

multi- and hyper-spectral optical sensors, are capable of mapping some aspects of forest 

structure but have difficulties penetrating beyond the upper canopy layer and are therefore 

more suited for mapping horizontal components, like land cover type (Weishampel et al, 

2000). LiDAR sensors have proved to be a promising alternative to conventional sensors for 

modelling AGB thanks to the high intensity and frequency of the pulses being emitted from 

the instrument which makes it capable of penetrating even a thick canopy cover and makes it 

suitable for smaller-scale studies (Hyde et al, 2007).  

2.4.3 LiDAR Analysis 

 

LiDAR stands for light detection and ranging and was developed more than 20 years ago as a 

tool for terrain mapping (Baltsavias, 1999). It is an often airborne active remote sensing 

technology that sends high frequency laser pulses at the Earth’s surface and measures the time 

delay between the transmission of the pulse and the detection of the reflected signal to 
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determine the elevation of the terrain and the height of objects occupying it (Lefsky et al, 

1999). Compared to RADAR technology, which utilizes radio waves, LiDAR uses much 

shorter wavelengths, typically in the ultraviolet, visible or near-infrared range of the 

electromagnetic spectrum (Lavrov et al, 2003).  

There are two types of LIDAR systems, differentiated by how the backscattered laser pulses is 

quantified and recorded by the system’s receiver. Full-waveform LiDAR systems records the 

entire waveform of each pulse reflected back to the sensor at fixed time intervals (typically ~1 

ns) (Pirotti, 2011). In contrast, small footprint discrete-return LiDAR systems normally 

records several returns for the same pulse, the first return from the uppermost part of the 

canopy, followed by less intense returns through the canopy down to the forest floor (Lavrov 

et al, 2003). Both types of LiDAR systems are utilized in forest applications to measure the 

three-dimensional structural characteristics of a forest and its underlying terrain (Van 

Leeuwen and Nieuwenhuis, 2010; Cao, 2014; de Tanago et al, 2014). These characteristics 

are often used to model e.g. forest volume, basal area and productivity (Nilsson, 1996; Nelson 

et al, 1997; Lefsky et al, 1999). LiDAR can also be used for habitat mapping and forest 

wildlife management as the presence of specific organisms, bird species and the overall 

richness of wildlife communities can be highly dependent on the structural patterns of the 

forest (MacArthur and MacArthur, 1961; Carey et al, 1991). 

A digital elevation model (DEM) is a 3D representation of a terrain’s surface and is a 

common product to derive from LiDAR data (Augilar et al, 2010). DEM is often used as a 

collective term for both digital terrain models (DTM), digital surface models (DSM) and 

canopy height models (CHM). A DTM, or bare-earth image, represents the Earth’s surface 

without any objects on it and can be computed using the ground returns of small-footprint 

LiDAR data (Schwarz, 2012). In contrast a DSM depicts all the objects on the Earth’s surface, 

like trees or houses and is generated using the first LiDAR returns (Schwarz, 2012). A CHM 

represents the height of the forest canopy above ground level and is produced by subtracting 

the DSM from the DTM (Schwarz, 2012). 

Studies have shown that LiDAR derived CHMs have great potential when it comes to 

estimating the AGB of a forest (Couteron et al, 2012; Cao, 2014). Ideally, CHMs are divided 

into individual tree crowns using segmentation algorithms (Shendryk, 2013). Species specific 

allometric AGB functions, derrived using field measured tree heights as predictor variable and 
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field measured AGB estimates as response variable, are then typically applied to all separable 

trees in the CHM individually (Cao, 2014).  

3. Materials and Methods 

3.1 Study area 

 

The Romperöd forest is located outside Glimåkra in north-eastern Scania, Sweden (56° 

20’00” N 14° 06’45” E) (Figure 3). The study area covers the part of Romperöd characterized 

by selective thinning (approximately 52.5 ha).   

 

Figure 3. The red dot pinpoints the location of the Romperöd forest in north-eastern Scania,  

Sweden. The red border in the aerial image outlines the study area. © Kommunerna i Skåne 

The most dominating soil type in the area is sandy moraine but fen peat can also be found 

(SGU, 2015). The silviculture practiced has led to a highly diverse forest, both regarding 

species and age-class distribution (D. Göransson, personal communication, April 14
th

, 2015). 

The most dominating tree species is Norway spruce (Picea abies), but Scots pine (Pinus 

sylvestris), English oak (Quercus robur), European beech (Fagus sylvatica), silver birch 

(Betula pendula) and downy birch (Betula pubescens) are also common (D. Göransson, 
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personal communication, April 14
th

, 2015). The forest floor is covered with bilberry 

(Vaccinium myrtillus), mosses, and lichens and signal species indicating high nature values 

can be found (Leverin, 2014). Examples, showing the variation of the Romperöd forest can be 

seen in figure 4 a-f. 

  

  

  

Figure 4. A) Typical mixed forest in Romperöd. B) Spruce forest stand. C) Wind thrown area with natural plant 

succession taking place, resulting in a mix of spruce and pine saplings together with taller birch. D) Young mixed 

forest E) Beech forest with some small spruce trees around. F) Vegetation around the research tower (the base of 

the tower can be seen in the center of the picture). 
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3.2 Method overview 

 

The characterization of the Romperöd forest was carried out using several different methods, 

equipment, and software and can be broken up into five parts:  

 Field measurements – where information about tree species, measures of tree trunk 

diameter at breast height (DBH) and tree heights were manually collected in field 

plots.  

 Reference biomass estimations – AGB was estimated for the field plots using the 

forest variables mentioned above and empirical biomass functions. 

 Land cover mapping – Both a pixel-based and an object-based land cover 

classification were carried out on high resolution multispectral aerial photography and 

compared using ground truth points collected in field. 

 Digital elevation modelling – where a DTM and a CHM were extracted from LiDAR 

data to characterize the vertical structure of the forest and its underlying terrain. 

Accuracy assessment was conducted using ground elevation and tree heights 

measured in field.  

 Biomass estimates for the whole study area – The AGB estimates based on the field 

plot measurements were upscaled to cover the entire study area. AGB was also 

estimated using LiDAR metrics as predictors in a regression model. Finally, the 

results were compared with estimates from other sources.  
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3.3 Field measurements 

Forest parameters (tree species, tree height and DBH) were measured for 18 field plots 

(Figure 5) to be used to estimate reference biomass, serve as input for the regression analysis 

carried out and to assess the accuracy of the results.  

Eight field plots were already measured in the 

summer of 2014 and data were provided by 

the Department of Physical Geography and 

Ecosystem Science at Lund University. Ten 

new field plots were sampled between 

November 15
th

, 2014 and March 10
th

, 2015. 

The locations of the plots were chosen in the 

same way as the previous ones, by systematic 

sampling in four different cardinal directions 

around the flux tower (white star in figure 4). 

As the old sites were located 50 and 100 m 

away from the tower in northern, eastern, 

southern and western directions, four new 

cardinal directions with the same distance to 

the tower were used for the new sites (NE, NW, SE, SW). Two additional plots were chosen 

in the NW direction to include a young birch forest in a wind thrown opening 200 m from the 

tower and a mature beech forest 325 m from the tower.  

All field plots were circular with an area of 200 m
2
. The extent of the field plots was defined 

using a Vertex IV hypsometer (Haglöf Sweden AB; Haglöf, 2012). The hypsometer uses 

ultrasonic signals to measure the distance between the instrument and a transponder placed in 

the center of each field plot. The height of the trees within each field plot was measured by 

fastening the transponder on a tree trunk at breast height (130 cm). The instrument was then 

aimed at the transponder and then at the top of the tree crown where several readings were 

saved (Figure 6). The height of the tree is calculated based on the average distance and angle 

between the instrument and the transponder and the angle between the instrument and the top 

of the tree. The hypsometer has a horizontal resolution of 0.01 m and a vertical resolution of 

0.1 m according to the manual (Haglöf, 2012).  

Figure 5. Aerial view of the study area with the 

field plots marked by red dots and the flux  

tower by a white star.  
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Figure 7. The Topcon GRS-1 

and the external antenna 

attached to a 2 m carbon pole. 

 

Figure 6. The vertex measuring procedure where A is the top  

of the tree, B is the ground level, C is the instrument position  

and D is the transponder position (from Haglöf, 2012). 

The DBH of all trees was measured two times in opposite directions around the tree trunk and 

averaged to get one representative DBH for each tree. Only trees higher than 2 m and with a 

DBH above 3 cm were measured as the allometric functions used to estimate AGB (described 

in section 3.6) do not apply for smaller trees and because the biomass of these trees was 

considered insignificant in relation to the total AGB.  

Center coordinates, including elevation above sea level, were 

collected for all field plots using a Topcon GRS-1 global 

navigation satellite system (GNSS) receiver together with an 

external antenna (PG-A1) (Figure 7). The GRS-1 uses signals 

from both GPS and GLONASS satellites to reach an accuracy 

of one meter or better. The external antenna enables real time 

kinematic (RTK) data collection on a centimeter level by 

receiving correction signals from the Swedish Land Survey 

via a GSM cellular modem (Topcon, 2009). The horizontal 

accuracy while measuring the field plots pended between 1 

and 30 cm and the vertical accuracy was approximately 1 m 

according to the instrument.  
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Ground truth data for assessing the accuracy of the image classification were collected by 

visiting 150 points in field using the Topcon GRS-1. A point generator was used to randomly 

distribute two points within each cell of a 10x10 grid system covering the study area (ESRI, 

2014). The minimum allowed distance between points was restricted to 20 m to spread the 

validation points evenly over the study area and to avoid local clusters of points in the same 

land cover class. For each visited point, the land cover was recorded. If a point was in an 

unsuitable location, like in a swamp or between different land cover classes it was moved to 

the closest appropriate spot where the land cover was possible to determine. All coordinates 

were stored as a point file in SWEREF99 TM, the Swedish national geodetic reference 

system. Ten of the points were later discarded after plotting them above the aerial image as 

adjacent canopies made it hard to delineate their land cover class, leaving 140 points 

remaining. The horizontal accuracy while locating the points in field pended between 1 and 

50 cm according to the instrument.  

3.4 Remotely sensed data 

3.4.1 Spectral data 

Two aerial multi-spectral photos were used for the land cover classification. The images were 

made available through collaboration between Geodatacenter Skåne AB and the GIS centre at 

Lund University. Both images were collected on June 2
nd

, 2010 using a large format digital 

aerial camera (Vexcel UltraCamXp) mounted on an aircraft flying at an altitude of 2900 m 

(Strandberg, 2010). The images consist of four spectral wavelength bands (red, green, blue 

and near-infrared) and have a spatial resolution of 25 cm (Strandberg, 2010).  

To correct for radial displacement the data had been orthorectified (adjusted for topographic 

relief, lens distortion and sensor tilt). The resulting orthophoto is an accurate representation of 

the Earth’s surface, which allows for direct measurements of distances, angles and areas. To 

achieve this, aerial triangulation techniques has been carried out using measured ground 

elevation points together with elevation data from the new national elevation model, resulting 

in an average horizontal deviation of 0.06 m and an average vertical deviation of 0.30 m 

(Strandberg, 2010).  

Two additional aerial orthophotos from May, 3
rd

, 2012 were acquired to be used for shadow 

filling. The imagery was gathered and processed by the Swedish Land Survey using a digital 

mapping camera (Z/l DMC01-0050) mounted on an aircraft flying at 2500 m altitude (The 

Swedish Land Survey, 2012). The images were made available by the Swedish University of 
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Agricultural Sciences through their geographic extraction tool (GET). The images have been 

collected in three wave length bands (red, green and blue) and have a spatial resolution of 1 

m. 

All spectral data were referenced according to the Swedish national geodetic projected 

coordinate system SWEREF 99 TM. 

3.4.2 LiDAR data  

A discrete-return small-footprint LiDAR dataset was acquired from GET. It was collected 

between April 2
nd

 and April 3
rd

, 2010 using a Leica ALS50-II LiDAR system mounted on an 

aircraft flying at an altitude of 1700-2300 m with a scanning angle of ± 20° and a footprint 

size of 0.5-0.7 m (The Swedish Land Survey, 2011). The dataset includes two point clouds 

covering the study area with an average point density of 0.85 points/m
2
. The data has been 

referenced to the SWEREF 99 TM projected coordinate system and RH2000 height system. 

The vertical mean accuracy is 0.1 m and the horizontal mean accuracy is 0.3 m, assessed 

using field measured validation points (The Swedish Land Survey, 2011).  

3.4.3 Reference AGB data 

A biomass raster layer was acquired from the SLU Forest Map (earlier known as kNN-

Sweden), freely available from the Swedish University of Agricultural Sciences (SLU). The 

biomass estimation is based on satellite data from 2010 (same year as the main spectral image 

and the LiDAR data) provided by the national land survey in their geoportal SACCESS and 

the National Forest Inventory (SLU, 2015). The layer has been referenced in RT90 2,5 gon V 

and has a spatial resolution of 25 x 25 m. 

3.5 Field plot biomass estimations  

Aboveground biomass (AGB) will in this study refer to the total dry biomass of the stem and 

bark (ST) and the branches and foliage (CR) of the tree and was estimated for all tree types 

within the field plots using empirical functions (Table 1). AGB was used instead of carbon 

content to be able to compare the results with AGB estimations from other sources. The 

relationship between the biomass and carbon content of vegetation typically varies between 

45 and 50 % (Schlesinger 1991). A study from Ireland, comparing five even-aged 

monospecies Sitka spruce (Picea sitchensis) stands ranging from 9 to 45 years old found that 

the carbon content of the mean tree component varied between 45.1±0.48 % to 46.5±0.84 % 

and that the ratio showed no significant difference with age and size of the tree (Tobin and 
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Nieuwenhuis, 2007). This shows that AGB can with fairly high accuracy be directly 

converted to carbon storage. 

Table 1. Summary of the functions used for biomass estimations. H = tree height (m), DBH = diameter at breast 

height (cm), n = number of trees used for deriving the function, R
2 
= coefficient of determination, a-d = model 

parameters, ln = natural logarithm, CR = crown biomass (kg), ST = stem biomass (kg) and AGB = aboveground 

biomass (kg). The functions have been derived by empirical studies of the relationship between DBH, tree height 

and AGB (Marklund, 1988; Johansson, 1999; Hochbichler, 2002; Brandini & Tabbachi, 1996). 

Tree 
species Output n R

2
 Equation a b c d 

Spruce ln(CR) 544 0.95 a+b·[DBH/(DBH+13)]+c·H+d·ln(H) -1.2063 10.9708 -0.0124 -0.4923 

Spruce ln(ST) 546 0.99 a+b·[DBH/(DBH+14)]+c·H+d·ln(H) -2.1702 7.469 0.0289 0.6858 

Pine ln(CR) 482 0.92 a+b·[DBH/(DBH+10)]+c·ln(H) -2.5413 13.3955 -1.1955 - 

Pine ln(ST) 488 0.99 a+b·[DBH/(DBH+13)]+c·H+d·ln(H) -2.6768 7.5939 0.0151 0.8799 

Oak AGB 94 0.95 a+b·DBH
2
·H -0.6165 0.03582 - - 

Beech ln(AGB) 42 0.99 a+b·ln(DBH)+c·ln(H) -2.872 2.095 0.678 - 

Birch AGB - 0.99 a·(DBH·10)
b
 0.00087 2.28639 - - 

 

Biomass fractions (ST and CR) were estimated for Norway spruce (Picea abies) and Scots 

pine (Pinus sylvestris) using functions developed by Marklund (1988) (Table 1). The 

Marklund functions describe the relationship between tree height, DBH and biomass fractions 

and have been derived by destructive sampling of 1286 trees in 131 different forest stands in 

Sweden after which the dry weight biomass has been measured. Both silver birch (Betula 

pendula) and downy birch (Betula pubescens) were estimated using a function for silver birch 

created by Johansson (1999). The function used yields AGB directly based on DBH and the 

two model parameters shown in Table 1. European beech (Fagus sylvatica) AGB was 

estimated using a function from a study conducted in Austria (Hochbichler, 2002). No 

appropriate function for English oak (Quercus robur) could be found so a function derived in 

an Italian study of Holm oak (Quercus ilex) was used in its place (Brandini & Tabbachi, 

1996). Rowan (Sorbus aucuparia) and Alder (Alnus glutinosa) were also present in the field 

plots but very few and were therefore treated as birch and beech respectively. Using these 

functions instead of functions intended for the tree species might give rise to small estimation 

errors but these were considered insignificant in relation to the total AGB of the plots. 
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The AGB of the field plots was averaged and scaled to the entire study area to compare the 

results with the modelled AGB.  

3.6 Land cover classification 

Exelis Visual Information Solutions (ENVI) was used to carry out both a pixel-based and an 

object-based land cover classification approach (Exelis VIS, 2015).  

3.6.1 Pre-processing spectral data 

A normalized difference vegetation index (NDVI) was derived using the red and NIR 

wavelength bands. NDVI is a vegetation index used to quantify the concentration of green 

leaf vegetation which has proved to be highly correlated with biomass accumulation, leaf 

chlorophyll levels, leaf area index and the photosynthetically active radiation absorbed by a 

plant (Lillesand et al, 2008). NDVI is based on an inversed relationship between the reflection 

of healthy vegetation in the NIR and red bands and can be expressed as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑟𝑒𝑑)

(𝑁𝐼𝑅+𝑟𝑒𝑑)
   (1) 

where NIR is the near infrared wavelength band (700-1300 nm) and red is the red visible band 

(620–700 nm) (Lillesand et al, 2008). 

NDVI values ranges from -1 to +1 and healthy vegetation is displayed with high values since 

the pigments in plant leaves (chlorophyll) strongly absorbs incident radiation in the red 

wavelength band for use in photosynthesis while the cell structure of the leaves strongly 

reflects NIR radiation (Lillesand et al, 2008). Rock and bare soil reflect highly in both bands 

and therefore yield index values close to zero while clouds, water and snow reflect more in 

the visible spectrum than in the NIR and therefore are represented with negative values 

(Lillesand et al, 2008). 

NDVI was for this study calculated using digital numbers (DN) rather than actual surface 

reflectance and will therefore henceforth be referred to as pseudo NDVI (pNDVI). A true 

NDVI would need to be derived using surface reflectance, which is the fraction of the total 

incident solar radiant energy (J) reflected back to the sensor and has to be calibrated taking 

atmospheric effects (i.e. absorption from clouds and other atmospheric components) into 

account (Lillesand et al, 2008).  

The images including the color (RGB) and near-infrared (NIR) bands were fused with the 

pNDVI layers to create five band composites. These composites were merged to create a 
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single mosaic covering the whole study area. A vector mask outlining the study area was then 

created and used to spatially subset the mosaics. This to ensure that only forest characterized 

by selective thinning was chosen and analyzed. 

A stretch renderer was applied to the composites to increase the contrast in the images and to 

make it easier to distinguish between different land cover types when creating the training 

sites for the SVM classifier. A linear stretch of 2 % was chosen after visually comparing 

different alternatives. The stretch was achieved by computing a cumulative histogram and 

setting the lowest and highest 2 % of the values to 0 and 255 respectively after which all the 

intermediate values were linearly stretched.  

3.6.2 Segmentation 

The multiband mosaics were first reduced to single band images using a Sobel edge detection 

method (Jin, 2012). The procedure identifies features with distinct boundaries in the image 

(like trees or buildings) by finding the maximum gradient across all bands in the image. The 

output is an image where areas with high pixel contrast are represented by high gradient 

values and areas with uniform pixel values by low gradient values. To control how many 

segments that was created a cumulative distribution function was used to discard the lowest 

25 % of the gradient values. The number was decided after visually previewing the 

segmentation result and comparing it to the unsegmented images through a movable 

magnification window on top of the images.  

The Vincent and Soille watershed algorithm (Roerdink and Meijster, 2001) was applied but 

instead of using elevation data, the gradient images were used. The algorithm floods the 

image, starting from the lowest areas (gradient values) and partition it into basins (features 

with similar gradient values) based on where water coming from different basins would meet. 

The process stops when the theoretical water level has reached its highest peak in the 

landscape. The result is an image divided into segments separated by borders where each 

segment has been given the mean spectral values of the pixels within that segment. 

A full-lambda schedule method (Robinsson, 2002) was used to aggregate small segments 

within large objects with rough texture (like canopies) where over-segmentation was a 

problem. The algorithm merges adjacent segments based on both spectral and spatial 

information and can be described mathematically as: 

𝑡𝑖,𝑗 =
|𝑂𝑖|∗|𝑂𝑗|

|𝑂𝑖|+|𝑂𝑗|
∗ ‖𝑢𝑖 − 𝑢𝑗‖

2
/𝑙𝑒𝑛𝑔𝑡ℎ(𝜕(𝑂𝑖, 𝑂𝑗)) (2) 
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Where ti, j is the merging cost, |Oi| and |Oj| the area of two adjacent segments, ‖ui - uj‖ is the 

Euclidian distance between the mean spectral values of the Oi and Oj segments and 

length(∂(Oi,Oj)) is the length of the common boundary shared by Oi and Oj. 

The decision to merge Oi and Oj occurs when the merging cost (ti, j) is less than a predefined 

threshold value (λ) (Robinson, 2002). The threshold was set to only merge the segments with 

the 15 % lowest λ values, to only merge spectrally similar segments. 

3.6.3 SVM classification    

Training sites were created for all major land cover types in the study area, the classes chosen 

were: spruce, pine, beech, oak, succession, bare ground, and shadows. The training sites for 

the shadow class were selected by applying a threshold to the digital numbers (DN) of the red 

wavelength band in the images. Histogram thresholding methods assume a bimodal 

distribution of values with shadows occupying the lower end of the histogram; in this case the 

threshold value was set to 60 to capture all shaded areas (Figure 8).  

 

Figure 8. Distribution of digital numbers in the red wavelength band within  

the study area with shadows occupying the left side (0-60) of the histogram. 

The other seven training classes were chosen by highlighting areas in the images and 

assigning class values to them based on the coordinates collected in field. A general 

recommendation is to create training sites with at least 10 to 100 times more pixels than the 

number of spectral bands of the imagery (Muise, 2011). Each training class therefore 

consisted of about 500 pixels as the images are composed of three and five spectral bands. 

Both the Jeffries-Matusita and the Transformed Divergence measures were computed to make 

sure that the training classes were spectrally separable (Richards & Richards, 1999).  

A set of attributes, to be used in the classification, was computed for the images. The 

attributes can be grouped into spectral (e.g. brightness and color of the pixels), textural (e.g. 
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mean and variance), and spatial (e.g. area and shape) attributes (a complete list and 

description can be found in Appendinx II). The spectral attributes were computed on each of 

the five bands in the input image and were assigned to pixel-clusters sharing the same 

segmentation label. Texture attributes were computed in two steps. In the first step, a moving 

window with the size of 3x3 pixels visited each pixel in all bands of the input image. 

Attributes were then calculated for all pixels inside the window and referenced to the pixel in 

the center of the window. In the next step, the textural attributes were averaged across each 

pixel within the segments and assigned to that band’s segmentation label. A small window 

size was chosen due to the heterogeneity of the forest and to enable classification of small 

areas with high texture variance, such as different tree canopies. The spatial attributes were 

computed using the polygons defining the boundary of the segments. Since the number of 

attributes computed was large, an interval based ranking technique was used to decide what 

attributes contributed the most to the classification. The algorithm ranks the significance of 

each attribute based on their ability to differentiate between classes provided in the training 

samples (Exelis VIS, 2007). 

A Support Vector Machine (SVM) algorithm was applied to classify the rasters (Boser, 

Guyan, and Vapnik, 1992). The Gaussian radial basis kernel function was used as it often 

yields good results in SVM classifications and because the feature space of the kernel has an 

infinite number of dimensions (Chang et al, 2010; Amnon, 2009). The gamma parameter is 

the free parameter of the radial basis kernel function and was set to the reciprocal of the 

number of bands in the image (0.2) according to recommendations from Exelis VIS (2014). 

Mislabeled or unusual values in the training samples can give rise to a poorly fitted model. To 

account for this a penalty parameter was used. The parameter controls how big the effects of 

misclassifying training sites are by creating a soft margin that permits some training points on 

the wrong side of the hyperplane (Cortes and Vapnik, 1995). It was set to 100 which is a 

default value (Hsu, Chang and Lin, 2010). A lower penalty allow for a higher degree of 

misclassification of training samples while a higher value forces the creation of a more 

accurate model that may not generalize well.  

3.6.4 Post-classification 

To reduce the effects of shadows in the resulting land cover classification, the shadow class in 

the classified image from 2010 was replaced by the classes from the classified image from 

2012.  
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A majority filter was applied to the pixel-based classification to eliminate isolated pixels and 

produce a more homogeneous landscape. This was done by applying a moving window with a 

size of 9x9 pixels to the classified image and replacing the central pixel with the most 

predominant class value. 

3.6.5 Accuracy assessment 

The results were evaluated and compared to determine the most accurate classification. 

Statistical accuracy assessment was conducted by comparing the 140 points collected in field 

with the corresponding land cover class mapped in the image and confusion matrices were 

computed. The confusion matrix compare, on a class-by-class basis, the relationship between 

the ground truth data and the output from the classification and was used to derive estimates 

of overall accuracy, class specific producer’s and user’s accuracy as well as the Cohen's 

Kappa statistic (Cohen, 1960).  

The overall accuracy (Equation 3) gives the probability that a randomly chosen point (from 

field or map) is correctly mapped and is obtained by dividing the total number of correctly 

mapped pixels with the total number of reference points:  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑𝐴

𝑁
   (3) 

where sum of A is the number of correctly mapped points for all classes and N is the total 

number of points.  

The producer accuracy (Equation 4) is a measure of omission and relates to the probability 

that a ground truth point will be mapped to the correct land cover class: 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴

𝐵
  (4) 

where A is the number of correctly mapped points in each class and B is the total number of 

ground truth points. 

The user’s accuracy (Equation 5) measures the level of commission and shows the probability 

that a sample from the land cover map matches the actual land cover from the ground truth 

points: 

𝑈𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴

𝐶
   (5) 
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where A is the number of correctly mapped points in each class and C denote the total number 

of map data points. 

The Cohen’s Kappa coefficient (κ) (Equation 6) is an accuracy measure considered to be 

more robust than percent agreement calculations as it takes the agreement occurring by 

chance into consideration and can be described as: 

κ = 
𝑁𝑑−𝑞

𝑁2−𝑞
    (6) 

where N is the total number of points, d the sum of the correctly mapped points and q the sum 

of the products between the number of ground truth points and the number of map data points 

in each class. κ ranges from 0, when there is no agreement other than what would be expected 

by chance, to 1 when there is perfect agreement (Foody, 2002). 

3.7 Digital elevation modelling 

3.7.1 Terrain and canopy height modelling 

The LiDAR dataset was first clipped using the shape file covering the study area. The points 

have been pre-classified into four different classes: ground, water, bridges and unclassified 

using automated routines in TerraScan (The Swedish Land Survey, 2011). A DTM was 

computed using the last returns from the LiDAR points in the ground class and merged to a 

raster with a cell size of 3 meters. A correct cell size is important to minimize pixels with no 

data values in the output and a rule of thumb is to multiply the average point spacing of the 

LiDAR datasets (0.85 points/m
2
) with four and to set the cell size to the closest integer (ESRI, 

2011). The slope gradient, or the maximum rate of change from one cell to its surrounding 

cells in a 3 x 3 neighborhood, was calculated based on the DTM using the neighborhood slope 

algorithm (also refered to as the average maximum technique) (Burrough & McDonell, 1998). 

A DSM was generated using the first returns (to extract only the top of the canopies) from the 

unclassified LiDAR points. The cell size when converting the points to a raster was set to 0.85 

m based on the average LiDAR point spacing. This was done to be able to delineate 

individual tree canopies in the CHM that was produced. Gap filling was performed on the 

DEMs by giving empty cells the mean value of the surrounding pixels in a 3x3 pixel window.  

The slope of the terrain, or the maximum rate of change in elevation between a pixel in the 

DTM and its surrounding pixels in a 3 x 3 neighborhood, was computed using the 
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neighborhood slope algorithm (also known as the average maximum technique) (Burrough 

and McDonell, 1998). 

Lastly a CHM was derived by subtracting the DTM from the DSM to get a raster layer with 

canopy heights above ground level. All pixels below 1 m were set to 0 m to prevent very low 

objects, like bushes or stones, to affect the biomass estimates. The coefficient of variation 

(CV) was used to compare the heterogeneity of the tree heights at different parts of the forest 

and is the ratio between the standard deviation and mean. 

3.7.2 Accuracy assessment 

The root mean square error (RMSE) (Equation 7) was used to estimate the accuracy of the 

DTM and CHM. RMSE is a measure of the difference between observed and modelled values 

and can be expressed as:  

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑥𝑖 − 𝑥̅𝑖)2𝑁

𝑖=1   (7) 

where xi are the measured values and 𝑥̅𝑖 are the predicted values. 

The DTM was validated with the 18 points collected in the center of each field plot. The 

CHM was validated by comparing the mean tree height of each field plot with the mean tree 

height of the CHM corresponding to the same geographic area. The RMSE of the CHM does 

therefore apply to the mean tree height of the plots and not individual trees. 

3.8 Biomass modelling 

The LiDAR dataset was clipped to 18 subsets using 200 m
2
 polygons created around 

coordinates collected in the center of each field plot (Figure 9). The horizontal accuracy of the 

coordinates used pended between 1 and 30 cm according to the Topcon GRS-1 instrument. 

High horizontal accuracy is crucial to make sure the subsets correspond to the exact same 

geographic location and area as the 18 field plots.  
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Figure 9. A: The LiDAR point cloud clipped using a cylinder with the same diameter as the field plots. B: The 

resulting clipped subset with the cylinder removed. The example shown is from field plot NW100. 

The FUSION software was used to compute a range of plot metrics for the subsets 

(McGaughey and Carson, 2007). The metrics include parameters such as mean canopy height, 

height percentiles divided into different return numbers and a canopy cover ratio. The canopy 

cover ratio is estimated by taking all return values above the mean, dividing them by the total 

first returns and multiplying it by 100 (Equation 8) (McGaughey, 2014). 

all returns above mean

total first returns
∗ 100   (8)  

Linear and non-linear multiple regression analysis was carried out, using the LiDAR plot 

metrics as predictor variables and the field plot AGB estimates as response variable. The 

adjusted coefficient of determination (R
2

adj) was used to find what predictors and types of 

functions were most capable of modelling AGB. The coefficient of determination (R
2
) is a 

measure used in regression analysis to quantify the proportion of the variance in a dependent 

variable that is predictable from independent variables (Rao, 1973). The R
2

adj has been 

adjusted for the number of explanatory variables and observations used in the model and can 

be described as: 

R
2

adj = 1 − (
𝑛−1

𝑛−𝑝
) ∗

𝑆𝑆𝐸

𝑆𝑆𝑇
    (9) 

where n is the number of observations, p is the number of regression coefficients estimated 

(including the intercept), SSE is the sum of squared error and SST is the sum of squared total 
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(Dufour, 2011). Compared to R
2
, R

2
adj only increases if a predictor adds more explanatory 

power to the function than would be obtained by probability and decreases when a predictor 

enhances the model less than what would be expected from chance (Dufour, 2011).  

The predictor variables yielding the highest R
2

adj were computed for the entire study area and 

converted to raster layers. A pixel-resolution of 14 x 14 m (196 m
2
) was chosen, 

corresponding roughly to the size of the field plots (200 m
2
). The functions yielding the 

highest R
2

adj were applied to the rasters containing the predictors resulting in a single raster 

layer containing the estimated AGB. The output was resampled to 25 x 25 m to be able to 

compare it with the SLU Forest Map. This was achieved using nearest neighbor assignment 

which finds the location of the closest cell center in the input raster and assigns it to the new 

cells in the output raster (ESRI, nd). 

The field plot located 50 m north of the research tower was not used in the regression model 

as the LiDAR metrics showed a mean tree height of 12.5 m while the mean tree height 

measured in field was 4.5 m, indicating that trees have been cut or wind-thrown after the 

LiDAR data was collected.  

  



   
 

28 
 

  



   
 

29 
 

4. Results & Discussion 

In this section the outcome of the field measurement, land cover classification, digital 

elevation modelling and AGB estimates will be presented. All maps are referenced according 

to the SWEREF99 TM projected coordinate system and have the following extent, left: 

444726, right: 4457389 top: 6243987, bottom: 6243012. The flux tower has been marked with 

a white star in all the maps.  

4.1 Field plot measurements and reference AGB estimations 

 

The field measurements (can be found in Appendix II) showed large variability between the 

different plots. The mean tree height (Figure 10) varies between 5.5 m in a young birch stand 

(NW200), to 21.1 m in a mature beech stand (NW325), with an average of 11.1 m and a 

standard deviation of 3.7 m between the plots. The standard deviation within the plots varies 

between 0.5 and 9.4 m. The number of trees higher than 2 m in each plot varies from 8 

(NW325) to 57 (E50).  

 
Figure 10. Mean tree height of the field plots with error bars representing +-1 standard deviation. The  

numbers on top of the errorbars represent the number of trees above 2 m in that field plot. 

The total AGB per field plot, estimated with the functions in Table 1, was multiplied by 50 to 

get the AGB/ha presented in Figure 11. The AGB ranges from 2025 kg/ha (NE200) to 272 

805 kg/ha (NW325) between the field plots, with an average of 147 744 kg/ha and a standard 

deviation of 70 417 kg/ha. Spruce is the tree species accounting for the largest part of the total 

AGB within the plots (56.2 %) followed by pine (16.0 %), beech (11.1 %), oak (7.5 %) and 
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birch (6.8 %) (Figure 12). Rowan and alder were few and only accounted for 2.5 % of the 

total AGB, the fact that their AGB was estimated with functions for birch and beech should 

therefore have a small effect on the results. Only 0.77 % of the total measured AGB comes 

from trees that are between 2 m and 5 m high, the decision not to measure trees less than 2 m 

high should therefore not have a big effect on the AGB estimates either. 

Plot NW325 had the highest mean tree height, the lowest tree count and the highest AGB, 

indicating that mean tree height has a larger influence on the total AGB than the tree count.  

 

 

4.2 Land cover classification 

The spectral signature of the beech and oak classes proved hard to separate with a Jeffries-

Matusita Distance (JM) of 1.38 and a Transformed Divergence (TD) of 1.67. Both of these 

statistics have been squared to range between 0.0 and 2.0, low values indicates poor 

separablity, while high values demonstrate that the classes are well separated (Richards & 

Richards, 1999). The beech and oak classes were therefore merged into a new class called 

broadleaved. Spruce and pine also proved hard to separate (JM: 1.51 and TD: 1.76) but both 

were kept as output classes. 

The pixel-based land cover classification (Figures 13 and 14) revealed a mixed forest with 

spruce occupying 22.1 % of the study area followed by pine (17.3 %), broadleaved trees (9.9 

%), succession (8.3 %) and bare ground (6.4 %). The biggest class was shadows which was 
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Figure 11. Total AGB (kg/ha) within the field 

plots (200 m
2
 each). 

Figure 12. Distribution of AGB between different tree 

species within the field plots.  
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reduced from 50.5 % to 35.9 % after replacing the shadow class with the classification based 

on the image from 2012. 

 

Figure 13. The resulting pixel-based land cover    

classification. © Kommunerna i Skåne 

The accuracy assessment of the pixel-based classification showed an overall accuracy of 56 % 

and a kappa value of 0.40, making it 40 % better than chance (Table 2). The bare ground class 

was overestimated with a users’s accuracy of 29 % and a producer’s accuracy of 100 %. The 

confusion matrix also shows that many pine trees were misclassified as spruce. 

Table 2. Confusion matrix for the pixel-based classification.  The horizontal axis represents ground truth classes 

based on the validation points collected in field and the vertical axis the classes assigned by the classifier. 

 

The results from the object-based classification approach (Figures 15 and 16) shows that 

spruce was by far the most dominating class (40.2 %) followed by shadows (26.6 %). Pine 

was the second most occurring tree species (13.8%) succeeded by broadleaved trees (8.7 %), 

Class Succesion Spruce Broadleaved Bare ground Pine Total User's (%) Producer's (%) 

Succession 3 1 1 0 1 6 50 70 

Spruce 0 32 6 0 6 44 73 48 

Broadleaved 0 4 15 0 0 19 79 46 

Bare ground 7 5 0 7 5 24 29 100 

Pine 0 20 6 0 21 47 45 57 

Total 10 62 28 7 33 140 

 

  

Figure 14. Distribution of classes according to the  

pixel-based classification.  
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succession (6.7 %) and bare ground (4.1 %). The shadow class was reduced from 51.5 % to 

26.6 % after shadow filling had been performed.  

 

 

The accuracy assessment of the object-based classification approach (Table 3) shows an 

overall accuracy of 75 % and a kappa value of 0.65, making the classification 65 % better 

than chance. The object-based approach hence outperformed the pixel-based method which 

had a kappa value of 0.40. The improvement can likely be contributed to the segmentation 

process, reducing the variability of the pixel values and to the spectral, textural and spatial 

attributes used in the classification (Hsu, et al 2010). The main difference between the two 

classifications is that the object-based approach to a higher degree classified succession in the 

open areas in the northern, center and eastern parts of the study area and resulted in less 

overshooting of the pine class. The spruce and pine classes still proved hard to separate with 

producer’s accuracies of 74 % and 79 % respectively. This had a big effect on the overall 

accuracy and kappa value of the classification. 

 

 

 

 

Figure 16. Distribution of land cover classes. Figure 15. The result from the object-based 

classification approach. © Kommunerna i Skåne 
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Table 3. Confusion matrix for the object-based classification. The horizontal axis represents ground truth classes 

based on the validation points collected in field and the vertical axis the classes assigned by the classifier. 

 

Shadows, cast from e.g. topography and trees have a severe effect on high resolution images. 

This was especially noticeable in the image from 2010. The pNDVI reduced this effect 

somewhat as it compensated for extraneous factors affecting the image such as changing 

illumination conditions, surface slope and aspect (Tucker, 1979; Bannari et al. 1995). 

Shadowfree images would have made the classification process considerably easier and 

improved the results. Aerial images collected with a smaller solar zenith angle should be used 

if the aim is to classify images at this spatial resolution (25 cm). Sacrificing spatial resolution 

for more shadow free images might result in an overall better accuracy. 

4.3 Digital terrain model 

 

The DTM (Figures 17 and 18) reveals a complex terrain, with a ridge extending in a south-

north direction. The highest areas can be found in the northern parts of the study area with a 

maximum elevation of 107.3 m.a.s.l.  The lowest terrain can be found in the eastern parts, 

with a minimum elevation of 76.2 m.a.s.l. The mean elevation is 91.3 m.a.s.l. and the standard 

deviation 7.9 m. The research tower is located 88.1 m.a.s.l. on the eastern slope of the ridge 

with most of the higher areas north or northwest of the tower. However, higher areas can also 

be found in western and southern directions.  

Class Succesion Spruce Broadleaved Bare ground Pine Total User's (%) Producer's (%) 

Succession 10 1 1 0 5 17 59 100 

Spruce 0 46 2 0 2 50 92 74 

Broadleaved 0 2 19 0 0 21 90 68 

Bare ground 0 0 0 4 0 4 100 57 

Pine 0 13 6 3 26 48 54 79 

Total 10 62 28 7 33 140     
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The steepest terrain can be found in the north-eastern and southern parts of the study area 

where the slope gradient is up to 34.1 % (Figure 19).  

 

Figure 19. Steepness of the terrain in percent (the maximum rate 

of change between a pixel in the DTM and its surrounding pixels  

in a 3 x 3 neighborhood). © Lantmäteriet i2014/764 

The accuracy assessment of the DTM showed a mean error of 1.1 m, an RMSE of 2.2 m and a 

standard deviation of 1.9 m (Figure 20 and Appendix Table 5). The lowest deviation 

Figure 18. Histogram of the elevation values. Figure 17. The DTM with a color ramp on top of a shaded 

relief. The shaded relief simulates cast shadows by 

illuminating the surface using a directional light source.  

© Lantmäteriet i2014/764 
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compared to field measured elevation points can be found in NE50 (1.17 m) and the highest in 

SE100 (7.15 m).  

Figure 20. The deviation of the DTM in relation to field measurements. RMSE: 2.2 m. 

A possible cause for the high deviation in SE100 could be that the point lies on a steep slope. 

The horizontal accuracy of LiDAR data is normally much lower than the vertical accuracy. In 

flat landscapes this is a small problem, but the effect is bigger in hilly terrain as the accuracy 

decreases with an increased slope (The Swedish Land Survey, 2011). SW50 is located in a 

very dense spruce dominated forest which could explain why it deviates -2.5 m as the point 

density declines with dense overstory (Hodgson & Bresnahan, 2004). Since spruce is an 

evergreen tree species, this still has an effect in the winter when the LiDAR data were 

collected.  

Ideally, one would like to use many validation points when assessing the accuracy of the 

DTM. However, the accuracy of the original 150 validation points collected for validating the 

classification was considered too low and only the more exact measures from the center of 

each field plot could therefore be used. 

4.4 Canopy height model 

 

The CHM (Figures 21 and 22) shows a heterogeneous canopy cover throughout the study 

area. The maximum canopy height, and therefore the highest tree in the study area, was 

estimated to 34.6 m. The average canopy height was 15.1 m with a coefficient of variation 

(CV) of 52.3 %.   
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The flux tower is surrounded by trees of varying height (Figure 21). High trees (above 30 m) 

can be found in all directions from the tower but mainly as clusters at a distance of 150 - 300 

m in northern, south eastern and western directions. The height of the canopy cover closest to 

the tower (50 m circular radius) ranged between 1.3 and 29.0 m with an average of 15.8 m 

and a coefficient of variation (CV) of 35.4 %. For the annular circular section located 50 - 100 

m away from the tower the canopy heights ranged between 1.0 - 29.7 m with an average of 

15.9 m and a CV of 37.1 %. The most uneven part of the canopy story, in terms of height, can 

be found 100 - 200 m from the tower where the canopy heights vary between 1.0 to 33.2 m 

with an average of 16.6 m and a CV of 42.8 %. Most of the high trees can be found in the 

areas between 200 and 300 m from the tower, ranging between 1.0 - 33.3 m, with an average 

of 17.6 m and a CV of 36.4 %. Three larger (> 3000 m
2
) open areas can be found in the 

middle, mid-eastern and north-western parts of the study area.  

The accuracy assessment of the CHM (Figure 23 and Appendix II, Table 5) showed a mean 

error of -0.12 m, an RMSE of 3.2 m and a standard deviation of 3.3 m. The field plot with the 

highest deviation (-7.0 m) was NE90. NE90 is today a young birch forest stand with a few 

mature spruce and pine trees and it is not inconceivable that there might have been more high 

trees within this plot when the data was collected. These trees were likely cut or wind-felled 

and subsequently replaced by plant succession. 
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Figure 21. The CHM with 50% transperacy 

and a hillshade effect on top of the aerial image 

from 2010. © Lantmäteriet i2014/764 

 

Figure 22. Histogram of the distribution of values 

for the CHM. The CHM has not been segmented 

into individual trees; the values do therefore 

represent pixels rather than individual trees.  
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Figure 23. The deviation of the CHM in relation to measured mean tree heights. RMSE: 3.2 m. 

The heterogeneity of the terrain and canopy cover surrounding the flux tower could be 

important to consider when analyzing data from the tower as the reliability of eddy-

covariance measurements often depends on meteorological assumptions such as horizontal 

homogeneity and non-advective atmospheric conditions (Vesala et al, 2008). Such conditions 

are often violated in complex sites and there has therefore been a trend emerging in modelling 

the footprint of long-term accumulated eddy-covariance flux measurements using a less 

idealized, more realistic description of vegetation structure and topography (Sogachev et al, 

2004; Gökede et al, 2006; Vesala et al, 2008; Barcza et al, 2009).  

A visual comparison of the DTM (Figure 18) and the CHM (Figure 22) shows that high trees 

can be found at both low- and high lying terrain. The correlation between the modelled 

elevation above sea level of the terrain and canopy height was found to be negligible (R
2

adj: 

0.01). Previous studies show that the relationship between local elevation differences and 

canopy height is stronger than between the general elevation of the terrain and canopy heights 

(McNab, 1989). However, although it is visually noticeable that many high trees (>30 m) are 

located on the steepest slopes of the terrain (e.g. in the north-eastern parts of the study area), 

the correlation between the modelled slope gradient and canopy height is negligible (R
2

adj: 

0.01).  
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4.5 Biomass model 

 

The regression analysis showed that the predictors able to model AGB best were the mean 

canopy height and the canopy cover ratio (described in section 3.8). Fitting a power function 

to the mean canopy heights and a linear function to the canopy cover ratio (Equation 10) 

resulted in the best model fit, yielding an R
2

adj of 0.66.  

𝐴𝐺𝐵 (𝑘𝑔) = 1.567 ∗ 10−11 ∗ 𝑥11.34 + 62.63 ∗ 𝑦  (10)  

where x is the mean tree height (m) and y is the canopy cover ratio.  

The output from the model (Figure 24) shows that the AGB varies highly across the study 

area spanning from 750 kg/ha in the blue parts of the map to more than 249 700 kg/ha in the 

red parts. The average AGB for the entire study area was 122 900 kg/ha with a standard 

deviation of 50 497 kg/ha. 

 

Figure 24. Modelled AGB (kg/ha) with a pixel resolution of 14 x 14 m.  

It is clear that the AGB estimates are governed by the mean tree heights when comparing the 

CHM (Figure 21) with the modelled AGB (Figure 24). Many of the areas with the highest 

AGB values (>249 700 kg/ha) coincide with the areas where the highest trees are found. The 

high biomass northwest from the flux tower lies partly in an opening according to the aerial 

imagery used for the land cover classification and low AGB values were therefore expected at 
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this location. This can be explained by high mean tree heights in the computed metrics. These 

trees have been removed (cut or windfelled) in 2010 after the LiDAR data was collected but 

before the aerial image was taken (within a 6-month period). This was confirmed using older 

aerial images where the trees were present. 

Three pixels had AGB values of more than 50 000 kg (2.5 million kg/ha). The cause of the 

outliers is the nature of the power-function, overshooting pixels with a mean tree height 

higher than the field plots used in the regression model (17.1 m). Since the mean tree height 

metric was raised by 11.34 in the power-function, the AGB of the model increase fast with 

increase in mean tree height. All AGB values resulting from a mean tree height above 17.1 m 

are represented in red in figure 27, as this was considered to be the upper limit of the model. 

Using a linear function would likely have resulted in more reasonable predictions for the high 

values but would not have been as accurate when predicting the values in the low- to medium 

range. Dividing the dataset and using a linear function on only the outliers would likely result 

in an overall more accurate model. Due to the small sample size the model should only be 

used on the part of Romperöd characterized by selective thinning. If one would collect more 

field data, the range and robustness of the model would most likely increase.  

Studies have shown that the integration of optical imagery and LiDAR data can result in 

substantial improvements of biomass estimates compared to using LiDAR data alone (Chen et 

al, 2007; Cao et al, 2014). In order to fuse the two data sources, CHMs are often divided into 

individual tree crowns using segmentation algorithms after which allometric functions based 

on the relationship between tree height and AGB (Figure 25) can be applied to each tree in the 

study area individually (Shendryk, 2013).  
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Figure 25. The relationship between measured tree heights and AGB based on  

all the 540 trees measured in the 17 field plots. A power function (black line)  

has been fitted to the data.  

A power function (Figure 25) managed to describe the relationship between tree height and 

AGB better (R
2

adj of 0.87) than using for example a linear or exponential function which both 

yielded lower R
2

adj values. This is in accordance with previous studies which often make use 

power functions to model AGB using tree height as the only predictor (Chen et al, 2007; 

Shendryk, 2013). However, an attempt to isolate individual tree crowns using the watershed 

algorithm (Roerdink and Meijster, 2001) unfortunately produced inconsistent results due to 

the heterogeneity of the forest and the point density of the LiDAR data, which often was as 

low as 0.25 points/m
2
. Since the canopy heights in Romperöd are so varied, and because trees 

often are standing close together, many trees are hidden by higher tree canopies. This is a 

problem in particular when estimating AGB based on CHMs as the interpolation process 

involved while creating CHMs smoothes the image, making neighboring trees inseparable 

(Reitberger et al, 2009). LiDAR data with a higher point density would therefore be needed 

for this type of analysis.  

4.6 Biomass comparison  

Approximately 12.6 % of the study area has a modelled AGB of more than 250 000 kg/ha. 

However, open areas (AGB<50 000 kg/ha) occupies 11.5 % of the study area, excluding those 

from the output increases the percentage of high AGB values (>250 000 kg/ha) to 14.2 %. 

This can be compared to a typical mixed mature (105 years old) forest, growing on medium 

fertile soils in the central part of Sweden where the AGB lies somewhere around 181 000 
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kg/ha, or to a mature (82 years old) spruce forest growing on fertile soils in southern Sweden, 

where the AGB typically amounts to approximately 277 000 kg/ha (Kunskap Direkt, 2015).  

The total AGB of the study area was modelled to 7 129 079 kg (5 771 465 kg when the CHM 

was restricted to a maximum height of 17.1 m) which is considerably lower than the total 

AGB when upscaling the field plots (123 322 279 kg). This can be contributed to the fact that 

the model based on the LiDAR data successfully predicts low AGB in areas with low canopy 

heights which the upscaling based on the field plots does not.  

The SLU Forest map differs greatly from the modelled AGB with a total AGB of 1 949 000 

kg and an average of 140 469 kg/ha for the entire study area compared to the modelled total 

of 5 771 465 kg and average of 122 900 kg/ha. The spatial distribution of the modelled AGB 

and the AGB from the SLU Forest map do not coincide (Figure 26). As an example, the SLU 

Forest Map shows low and even no AGB in the mature broadleaved forest northwest from the 

flux tower where high values were modelled (and should be expected). This is in accordance 

with a previous study which concluded that the SLU Forest Map show relatively large 

estimation errors on a stand level (Blomberg, 2010). 

 

Figure 26. To the left, AGB (kg/ha) according to the SLU Forest Map. Source: SLU Forest Map, Dept. of  

Forest Resource Management, Swedish University of Agricultural Sciences. To the right, the  

modelled AGB resampled to the same pixel-resolution (25 x 25 m) with a matching color ramp.  

The correlation between the modelled AGB and the AGB of the SLU Forest Map is negligible 

with an R
2

adj of 0.01 (Figure 27). 
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Figure 27. Modelled AGB VS SLU Forest Map AGB. Only values within the  

range of the model (750 – 250 000 kg/ha) were compared. A 1:1  

line (red) and a fitted linear regression line (black) have been added. 

When comparing the modelled AGB and the AGB from the SLU Forest Map with AGB 

estimated from field measurements (Figure 28) it is evident that the model developed 

outperforms the SLU Forest Map with R
2

adj values of 0.70 and 0.14 respectively. SLU states 

in the description of the data that it is intended for larger areas and that it should be used with 

caution if the study area is less than a couple of hundred hectares. The study area in this thesis 

covers only 47.5 hectares and does therefore not meet these requirements. 

 

Figure 28. Modelled AGB (blue circles) and SLU Forest Map AGB (red triangles) VS  

reference AGB based on field measurements. Fitted linear functions (blue & red lines)  

have been added to compare the correlation.  
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The model was validated using the field plots used in the regression analysis. Additional field 

plots should be collected for an objective accuracy assessment but measuring tree heights is 

time consuming. A solution would be to only measure DBH as there are allometric functions 

where it is the only variable needed for estimating AGB (Johansson, 1999). This would 

increase the speed of measuring field plots considerably. 

4.7 Further scope 

 

For further, more detailed, remote sensing studies of Romperöd, or forests with similar 

characteristics, new more detailed LiDAR data should be acquired. High resolution 

multispectral images with a solar zenith angle close to zero could be collected in the same 

flight to minimize the effects of shadows and in that way allow for a more complete land 

cover classification. More field plots should be measured for more robust and accurate AGB 

estimates and to validate the results objectively.  

Additional remote sensing studies of Romperöd could include forest health assessments to 

investigate what effects the forestry in Romperöd has on the forest health compared to other 

forestry methods. Multispectral data including the red-edge band would be suitable for this 

type of study as the red-edge band is particularly good at detecting changes in chlorophyll 

content. Examples of high resolution satellite systems including this band are the RapidEye, 

WorldView-2, or the WorldView-3 launched in August 13
th

, 2014 (DigitalGlobe, nd).  
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5. Conclusions 

The land cover classification showed that the forest in Romperöd is mixed regarding the 

coverage of different tree species. The object-based classification approach resulted in more 

accurate maps than the pixel-based approach with kappa values of 0.4 and 0.65 respectively. 

This proves the importance of segmentation and including spectral, textural and spatial 

attributes when classifying complex study areas, like heterogeneous forests. Most of the 

different land cover types occurring in the study area were classified with satisfying results 

but it proved hard to distinguish between English oak and European beech, which therefore 

were merged into a single class. Norway spruce and Scots pine were also problematic to 

separate but were kept as output classes with producer’s accuracies of 74 % and 79 % 

respectively.  

The terrain of the study area is hilly with a ridge extending from south to north, an average 

elevation of 76.2 m.a.s.l. and a standard deviation of 7.9 m. The canopy height varies greatly 

across the whole study area with an average height of 15.1 m and a CV of 52.3 %. The flux 

tower is located 88.1 m.a.s.l. on the eastern slope of the ridge and is surrounded by a 

vertically heterogenous canopy cover.  

The AGB estimates based on a combination of LiDAR data included in the national elevation 

model and field measurements outperformed the SLU Forest Map with R
2

adj values of 0.70 

and 0.14 respectively when evaluated against estimates based on field measurements. This 

shows that the SLU Forest Map is unsuitable for the part of the Romperöd forest characterized 

by selective thinning. The LiDAR data improved the level of detail of the AGB estimates 

compared to when upscaling AGB estimates based solely on field measurements. However, 

the data was not detailed enough to delineate individual tree crowns in the study area. Being 

able to do so is particularly important in a heterogeneous forest like Romperöd as AGB may 

have high spatial variance compared to homogeneous forests where upscaling field plots 

might yield acceptable results. The inclusion of higher resolution LiDAR data, where 

individual canopies could be separated, would further improve the AGB estimates as it would 

make it possible to apply species-specific allometric functions to each tree in the study area 

individually based on the land cover classification.  

Remote sensing proved to be a valuable complement to field-based forest inventories. The 

methodology used can be applied in forest management planning or to monitor future changes 
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to the carbon stock of the forest. The characterization may aid in further studies regarding the 

Romperöd forest and its carbon exchange with the atmosphere.  
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Appendix I 

 

List of principles of the selective cutting system used at Romperöd, Glimåkra, Sweden (D. 

Göransson, personal communication, April 14th, 2015).  

1. Cut primarily the biggest trees – especially while spruce should not reach a diameter 

(at breat-height), which exceeds 60 cm (maximum for debarking machinery). 

Normally this means that spruces bigger than 50 cm should not be left. 

2. Trees of low timber quality and slow growing trees in the upper story should be 

removed. The quality and height of the remaining timber trees are improved and wil 

cause a future regeneration with improved hereditary characteristics for timber 

production. 

3. Growth should primarily be focused on big and valueable trees, and it is not so 

important to improve growth in smaller trees by thinning in dense groups – the high 

density will improve timber quality. 

4. Trees which are so small, that cutting will give no profit, should normally only be cut 

if they have so bad quality that they are not expected to develop into timber (will 

never be better than firewood). 

5. Take the risk of wind felling into consideration – do not thin too much. The cutting 

should preferably not exceed 35 % of the standing volume. Leave trees, which are 

resistant to wind felling (especially pine), and avoid making large holes for t he west 

wind. 

6. Keep a sufficient standing volume (at least 100 m3/ha, preferably 150 m3/ha or more) 

to maintain a high growth and to support regeneration. The ideal in the Southern part 

of Sweden is perhaps a standing volume of 300 m3/ha before cutting and a removal of 

100 trees and 100 m3/ha (= 1 m
3
/tree) every 10-20 years. 

7. Try always to keep the forest floor in shadow, especially for the noon sun – this is 

especially very important for stands on dry ground. Shadow hinders grass and supports 

the regeneration and decreases the share of deciduous trees in the regeneration. 

8. Implementing the above principles causes adequate regeneration – now or later – 

without any other measures. 

9. Seedlings and young trees do not need any special assitance and no consideration – 

except careful harvesting   - is needed when cutting in the upper story. Small damages 

caused when cutting the old trees, merely support a natural selection, which often is 
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wanted. Then a pre-commercial thinning in the young trees is not necessary. Spruce 

can grow for many years in shadow and will quickly respond to light with an increased 

growth. Damaged and broken tops normally don’t result in low timber quality in the 

long run. 

10. The selective cutting system normally only regenerates shadow-species as spruce. But 

heavy windfalls (expected to happen several times during a century) will occasionally 

result in regeneration of pine. If the selective cutting system should survive in a stand 

with a heavy windfall, it is important that the remaining old trees are not cut. 

Appendix II 

Table 4. Field measurements and AGB estimations.

SD is the standard deviation 

Table 5. Accuracy assessment of DEMs.

 

  

Field plot Dominant tree type Tree count (No) Tree density (No/ha) Mean diameter (cm) Diameter SD Mean tree height (m) Tree height SD AGB (kg) AGB (kg/ha)

N100 Spruce 31 1550 8.6 9.0 7.8 8.1 2418.4 120920.6

NE50 Spruce 19 950 16.2 14.6 12.3 9.1 3507.2 175358.4

NE90 Birch 32 1600 8.0 9.8 7.4 5.5 2012.7 100637.2

E50 Spruce 57 2850 7.3 7.0 7.4 6.2 2567.7 128386.5

E100 Spruce 33 1650 12.3 10.8 11.4 9.4 4816.7 240835.8

SE50 Spruce 20 1000 18.5 12.9 13.6 7.7 3809.3 190467.2

SE100 Spruce 44 2200 8.4 7.6 8.8 6.0 2698.1 134903.8

S50 Spruce 42 2100 13.1 7.4 13.6 6.9 4157.0 207847.6

S100 Birch 23 1150 15.0 14.1 12.7 8.7 4301.3 215062.7

SW50 Spruce 37 1850 12.8 9.5 11.1 6.5 3459.7 172986.3

SW100 Birch 24 1200 11.3 8.2 11.3 5.1 1770.7 88532.8

W50 Spruce/Birch 35 1750 9.6 3.7 9.8 4.5 1135.1 56756.5

W100 Spruce 27 1350 14.4 10.3 13.8 6.8 3601.2 180057.6

NW50 Spruce 27 1350 13.2 10.4 13.3 8.0 3085.7 154282.6

NW100 Spruce 24 1200 9.4 8.6 7.9 5.9 1395.8 69790.1

NW200 Birch 18 900 3.6 0.4 5.5 0.5 40.5 2023.5

NW325 Beech 8 400 27.7 13.7 21.1 9.0 5456.1 272805.9

Field plot Reference elevation (m.a.s.l.) DTM (m.a.s.l.) Elevation deviation (m) Reference mean tree height (m) CHM (m) Tree height deviation (m)

N100 86.6 86.3 0.3 7.8 13.2 -5.3

NE50 87.0 85.8 1.2 12.3 14.3 -2.0

NE90 86.3 85.0 1.3 7.4 14.4 -7.0

E50 87.3 85.9 1.4 7.4 11.9 -4.5

E100 85.8 85.4 0.4 11.4 12.3 -0.9

SE50 93.4 91.4 2.0 13.6 13.7 -0.1

SE100 97.1 89.9 7.2 8.8 8.4 0.4

S50 92.1 89.5 2.6 13.6 13.3 0.3

S100 92.2 91.5 0.7 12.7 11.9 0.8

SW50 87.3 89.8 -2.5 11.1 12.2 -1.1

SW100 96.6 93.1 3.5 11.3 10.5 0.8

W50 88.6 89.1 -0.5 9.8 6.5 3.3

W100 93.2 92.9 0.4 13.8 10.6 3.2

NW50 89.4 88.7 0.8 13.3 11.4 1.8

NW100 90.2 89.6 0.6 7.9 8.4 -0.6

NW200 101.5 101.1 0.4 5.5 0.6 4.9

NW325 99.2 99.3 -0.1 21.1 17.1 4.1
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Appendix III 

The attributes used in the classification can be seen in the tables below (ENVI, nd): 

Table 6. Spectral attributes computed for the land cover classification. 

Spectral Attribute Description 

Mean Average value of the pixels compromising the region in band x 

Max Maximum value of the pixels comprising the region in band x 

Min Minimum value of the pixels comprising the region in band x 

SD Standard deviation value of the pixels comprising the region in band x 

 

Table 7. Texture attributes computed for the land cover classification. 

Texture Attribute Description 

Range Average data range of pixels comprising the region inside the kernel. 

Mean Average value of the pixels comprising the region inside the kernel. 

Variance Average variance of the pixels comprising the region inside the kernel. 

Entropy Average entropy value of the pixels comprising the region inside the kernel. 

  

Table 8. Spatial attributes computed for the land cover classification. 

Spatial Attribute Description 

Area Total area of the polygon, minus the area of the holes. If the input image is pixel-

based, the area is the number of pixels in the segmented object. 

 

Length 

 

The combined length of all boundaries of the polygon, including the boundaries of 

the holes.  

 

Compactness A shape measure that indicates the compactness of a polygon. A circle is the most 

compact shape with a value of 1 / pi. The compactness value of a square is 1 / 

2(sqrt(pi)). 

 

Convexity Polygons are either convex or concave. This attribute measures the convexity of 

the polygon. The convexity value for a convex polygon with no holes is 1.0, while 

the value for a concave polygon is less than 1.0. 

Convexity = length of convex hull / Length. 

 

Solidity 

 

A shape measure that compares the area of the polygon to the area of a convex hull 

surrounding the polygon. The solidity value for a convex polygon with no holes is 

1.0, and the value for a concave polygon is less than 1.0. Solidity = Area / area of 

convex hull. 
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Roundness A shape measure that compares the area of the polygon to the square of the 

maximum diameter of the polygon. The "maximum diameter" is the length of the 

major axis of an oriented bounding box enclosing the polygon. The roundness 

value for a circle is 1, and the value for a square is 4 / pi. Roundness = 4 * (Area) / 

(pi * Major_Length2) 

 

Form factor A shape measure that compares the area of the polygon to the square of the total 

perimeter. The form factor value of a circle is 1, and the value of a square is pi / 4. 

Form_Factor = 4 * pi * (Area) / (total perimeter)
2
 

 

Elongation 

 

A shape measure that indicates the ratio of the major axis of the polygon to the 

minor axis of the polygon. The major and minor axes are derived from an oriented 

bounding box containing the polygon. The elongation value for a square is 1.0, and 

the value for a rectangle is greater than 1.0. 

Elongation = Major_Length / Minor_Length 

 

Rectangular fit A shape measure that indicates how well the shape is described by a rectangle. This 

attribute compares the area of the polygon to the area of the oriented bounding box 

enclosing the polygon. The rectangular fit value for a rectangle is 1.0, and the value 

for a non-rectangular shape is less than 1.0. 

Rectangular_Fit = Area / (Major_Length * Minor_Length) 

 

Main direction The angle subtended by the major axis of the polygon and the x-axis in degrees. 

The main direction value ranges from 0 to 180 degrees. 90 degrees is North/South, 

and 0 to 180 degrees is East/West. 

 

Major length The length of the major axis of an oriented bounding box enclosing the polygon. 

Values are map units of the pixel size. If the image is not georeferenced, then pixel 

units are reported. 

 

Minor length The length of the minor axis of an oriented bounding box enclosing the polygon. 

Values are map units of the pixel size. If the image is not georeferenced, then pixel 

units are reported. 

 

Number of Holes The number of holes in the polygon. Integer value. 

 

Hole area/Solid area The ratio of the total area of the polygon to the area of the outer contour of the 

polygon. The hole solid ratio value for a polygon with no holes is 1.0. 

Hole_Area/Solid_Area = Area / outer contour area 



   
 

61 
 

Institutionen för naturgeografi och ekosystemvetenskap, Lunds Universitet.  

Student examensarbete (Seminarieuppsatser). Uppsatserna finns tillgängliga på institutionens 

geobibliotek, Sölvegatan 12, 223 62 LUND. Serien startade 1985. Hela listan och själva 

uppsatserna är även tillgängliga på LUP student papers (https://lup.lub.lu.se/student-

papers/search/) och via Geobiblioteket (www.geobib.lu.se) 

The student thesis reports are available at the Geo-Library, Department of Physical 

Geography and Ecosystem Science, University of Lund, Sölvegatan 12, S-223 62 Lund, 

Sweden. Report series started 1985. The complete list and electronic versions are also 

electronic available at the LUP student papers (https://lup.lub.lu.se/student-papers/search/) 

and through the Geo-library (www.geobib.lu.se) 

335 Fei Lu (2015) Compute a Crowdedness Index on Historical GIS Data- A Case 

Study of Hög Parish, Sweden, 1812-1920 

336 Lina Allesson (2015) Impact of photo-chemical processing of dissolved 

organic carbon on the bacterial respiratory quotient in aquatic ecosystems 

337 Andreas Kiik (2015) Cartographic design of thematic polygons: a comparison 

using eye-movement metrics analysis 

338 Iain Lednor (2015) Testing the robustness of the Plant Phenology Index to 

changes in temperature 

339 Louise Bradshaw (2015) Submerged Landscapes - Locating Mesolithic 

settlements in Blekinge, Sweden 

340 Elisabeth Maria Farrington (2015) The water crisis in Gaborone: Investigating 

the underlying factors resulting in the 'failure' of the Gaborone Dam, Botswana 

341 Annie Forssblad (2015) Utvärdering av miljöersättning för odlingslandskapets 

värdefulla träd 

342 Iris Behrens, Linn Gardell (2015) Water quality in Apac-, Mbale- & Lira 

district, Uganda - A field study evaluating problems and suitable solutions 

343 Linnéa Larsson (2015) Analys av framtida översvämningsrisker i Malmö - En 

fallstudie av Castellums fastigheter 



   
 

62 
 

344 Ida Pettersson (2015) Comparing Ips Typographus and Dendroctonus 

ponderosas response to climate change with the use of phenology models 

345 Frida Ulfves (2015) Classifying and Localizing Areas of Forest at Risk of 

Storm Damage in Kronoberg County 

346 Alexander Nordström (2015) Förslag på dammar och skyddsområde med hjälp 

av GIS: En studie om löv- och klockgroda i Ystad kommun, Skåne 

347 Samanah Seyedi-Shandiz (2015) Automatic Creation of Schematic Maps - A 

Case Study of the Railway Network at the Swedish Transport Administration 

348 Johanna Andersson (2015) Heat Waves and their Impacts on Outdoor Workers 

– A Case Study in Northern and Eastern Uganda 

349 Jimmie Carpman (2015) Spatially varying parameters in observed new particle 

formation events 

350 Mihaela – Mariana Tudoran (2015) Occurrences of insect outbreaks in Sweden 

in relation to climatic parameters since 1850 

351 Maria Gatzouras (2015) Assessment of trampling impact in Icelandic natural 

areas in experimental plots with focus on image analysis of digital photographs 

352 Gustav Wallner (2015) Estimating and evaluating GPP in the Sahel using 

MSG/SEVIRI and MODIS satellite data 

353 Luisa Teixeira (2015) Exploring the relationships between biodiversity and 

benthic habitat in the Primeiras and Segundas Protected Area, Mozambique 

354 Iris Behrens & Linn Gardell (2015) Water quality in Apac-, Mbale- & Lira 

district, Uganda - A field study evaluating problems and suitable solutions 

355 Viktoria Björklund (2015) Water quality in rivers affected by urbanization:  A 

Case Study in Minas Gerais, Brazil 

356 Tara Mellquist (2015) Hållbar dagvattenhantering i Stockholms stad - En 

riskhanteringsanalys med avseende på långsiktig hållbarhet av Stockholms 

stads  



   
 

63 
 

dagvattenhantering i urban miljö 

357 Jenny Hansson (2015) Trafikrelaterade luftföroreningar vid förskolor – En 

studie om kvävedioxidhalter vid förskolor i Malmö  

358 Laura Reinelt (2015) Modelling vegetation dynamics and carbon fluxes in a 

high Arctic mire 

359 Emelie Linnéa Graham (2015) Atmospheric reactivity of cyclic ethers of 

relevance to biofuel combustion 

360 Filippo Gualla (2015) Sun position and PV panels: a model to determine the 

best orientation 

361 Joakim Lindberg (2015) Locating potential flood areas in an urban 

environment using remote sensing and GIS, case study Lund, Sweden 

362 Georgios-Konstantinos Lagkas (2015) Analysis of NDVI variation and 

snowmelt around Zackenberg station, Greenland with comparison of ground 

data and remote sensing. 

363 Carlos Arellano (2015) Production and Biodegradability of Dissolved Organic 

Carbon from Different Litter Sources 

364 Sofia Valentin (2015) Do-It-Yourself Helium Balloon Aerial Photography - 

Developing a method in an agroforestry plantation, Lao PDR 

365 Shirin Danehpash  (2015) Evaluation of Standards and Techniques for 

Retrieval of Geospatial Raster Data - A study for the ICOS Carbon Portal 

366 Linnea Jonsson (2015) Evaluation of pixel based and object based 

classification methods for land cover mapping with high spatial resolution 

satellite imagery, in the Amazonas, Brazil. 

367 Johan Westin (2015) Quantification of a continuous-cover forest in Sweden 

using remote sensing techniques 

  

 


