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Abstract

This thesis will treat the subject of constrained statistical inference
and will have its focus on isotonic regression, which is the problem of
estimating functions that are assumed to be monotone.

A characterisation of isotonic regression and a solution to this problem
will be given. The PAVA algorithm to compute the isotonic regres-
sion estimator will be introduced along with asymptotic distribution
results for this. The aim is to investigate the properties of the esti-
mator when the observation points are random dependent variables
which also depend on the unknown function itself.
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1 Introduction

This paper will focus on constrained statistical inference where nonparamet-
ric estimation techniques will be used. The main advantages of nonpara-
metric estimation techniques are their robustness against misspecifications
in parameter models and its applicability in general settings such as estimat-
ing monotone, unimodal or convex functions. These can be used to estimate
density and probability distribution functions, hazard rates, spectral densi-
ties et cetera. This leads us to study in great detail the problem of isotonic
regression, which is the regression problem where the regressor is constrained
to be an nondecreasing function (or nonincreasing, referred to as antitonic
regression) and the corresponding PAVA algorithm for the construction of
the isotone regression function. In most cases we have an equidistant design
point on the unit interval and the observations in these points are given as a
true function f plus some noise, usually Gaussian. In other words, we obtain
observations of the form

yi = [f(t)+e

where f is an unknown increasing function, ¢; = i/n and ¢; are normally
distributed. The aim of this paper is to investigate the case where the de-
sign points are random dependent variables and in addition depend on the
unknown function f. Thus we consider a stochastic differential equation of
the form

dX(t) = f(X(t))dt + odW (t)

and we are interested in estimating f in the asymptotic case where o tends
to zero and W (t) is a Brownian motion. This is commonly referred to as
a filtering problem and has been studied by Ibragimov, Hasminski [5] and
Nussbaum [7] among others. It will be shown later that ¢ will tend to zero
at the rate n='/2 as dt tends to zero at the rate n='. As f determines the
drift in the stochastic differential equation, it is obvious that the unknown
function will affect the design points and that these are random dependent
variables since they are given by the observed stochastic process.

Thus we will start by stating and giving a characterisation to the iso-
tonic regression problem and subsequently derive the Pool Adjacent Violator
Algorithm, PAVA, which computes the isotonic regressor in practice. Fur-
thermore, it will be shown what restrictions f most follow in general in order



for the stochastic differential equation to have a solution. Limit distributions
for the isotonic regression estimator will be derived for the deterministic de-
sign point case and for a specific stochastic differential equation. Finally
simulations will be done in order to investigate the derived results for this
stochastic differential equation and also another stochastic differential equa-
tion for which there has not been derived any limit distribution results. We
will conclude by discussing the limit distribution results for the isotonic re-
gression estimator for general stochastic differential equations of the type
above.



2 Isotonic regression

We will start by doing a review of isotonic regression for the sake of com-
pleteness. The problem of isotonic regression has been treated earlier and can
be found in for instance [9], which is the standard reference for constrained
statistical inference and isotonic regression, and also [3]. Loosely speaking,
isotonic regression is the problem of finding the best estimator, subject to
some criterion function, of a regression function which has the constraint of
being nondecreasing. For this reason, we start by considering binary rela-
tions, <. If x,y, z are elements in the set T', a binary relation < defined on
T is said to be:

reflexive: z<zx
transitive: r<y,y<z=—=ux<z2
antisymmetric: r<y,y<r =uxc=y

If a binary relation is reflexive and transitive, it is said to be a quasi-order.
A binary relation which is reflexive, transitive, antisymmetric and also com-
parable, meaning that for any two elements z,y € T either x < y or vice
versa, is said to be a simple order. The standard inequality < defined on R
is easily seen to be a simple order and from here on, if not stated explicitly,
< will refer to this. We are now ready to give the definition of an isotonic
function, [10].

Definition (isotonic function):

A function f defined on a set T" with a quasi-order < is said to be isotonic
if forx,y € T, v <y = f(z) < f(y). Similarly, a function ¢ is said to
be antitonic if for z,y € T, * < y = g(y) < g(z). We will exclusively
consider the standard order < on R for which an isotonic function corre-
sponds to a monotonically increasing function and an antitonic function to
a monotonically decreasing function.

Now suppose we have observations ; which can be described as y(t;) =
m(t;) +¢€; where t; € T for some set T', m is an unknown nondecreasing func-
tion and ¢; are assumed to be independent error terms of the measurements
with variance o;. The aim is to estimate m under the constraint that m is
nondecreasing. For this reason, we define the isotonic regressor m as the



solution to

m = argminZ(y(ti>_Z(ti))2wi

zZEF i—1

where F = {z : T — R |, znondecreasing}, that is, the weighted least square
estimator restricted to nondecreasing functions defined on T'. Therefore, let
us define the norm as the weighted least squares, that is,

n

alP = ult) s

=1

If we assume that 7" is a finite set, F = {2z : T"— R , znondecreasing}
becomes a closed, convex cone, that is,

pzeF ,zeF ,p>0
pr+(1l—p)neF ,z,neF,0<p<l
{zi}l, € Fillzn— 2| — 0,n — 00 = 2z € F.

The first one is obvious since if z € F is nondecreasing, scaling it by a
constant does not change this fact. As for the second one, consider z(s) =
(pz1 4+ (1 — p)2o)(s) for s € T. Then for s <t,s,t €T

2(s) = pzi(s) + (1 = p)za(s) < pzi(t) + (1 = p)za(t) = 2(t)

since 21, 2o € F and thus z € F. The last implication holds since for {z;} € F
and s <teT,

Z”(‘S) S Zn(t) —
lim z,(s) < lim z,(t) =ssumption
n—>00 n—>00

2(s) 2(t)

where the last step requires the finiteness of T'.
Thus we wish to find the isotonic regressor m such that
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where F = {2z : T — R , znondecreasing} was shown to be a convex,closed
cone for T'= {¢;}I , finite. Now define

¢(z) = |ly— =
= (y—2zy—2)
= Z (y(t:) — 2(t:)) ws.

In the various next steps we will give a characterisation, which is given in
3], of the isotonic regressor and the conditions it needs to fulfil.

Theorem 1:

Let T" be any set, F any convex set of functions and y,w be arbitrary func-
tions defined on 7. Then

if and only if

t, €T

for z € F. The isotonic regressor m is unique if it exists.

Proof:

(=):

Assume m is the isotonic regressor. Thus m € F and since F is convex, for
an arbitrary z € F, for 0 < o < 1, (1 — o) + az € F. This gives

pl@) = lly = (1~ a)in+az)|
= D (lts) = (1= a)rin(t:) + az(t:))Pw(ts) =

¢la) = 2 Z ly(ti) — (1= a)im(ti) + az(t:))][in(t:) — z(t:)]w(t:).

By the assumption that 7 was the isotonic regressor, this implies that ()
takes its smallest value for &« = 0. Since ¢ is a quadratic function of «a, we
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must have that ¢'(0) > 0. As seen above,

#'(0) ZQEJMW—m@WMW—AWW@)

~

= (y—m,m—2)>0.

—):
£et U)J,z € F and suppose u satisfies (y — u,u — z) > 0Vz € F. This gives
ly —=2[1* = lly—u+u—2f
((y —u) + (u—2), (y —u) + (u—2))
= (y—uy—u)+2y—uu—2z)+(u—zu—2z)

ly = ull* + [Ju = 2[]* + 2(y — u,u — 2)
1y —ull* + [Ju — 2[”
ly —ull?,

>
>

where the first inequality follows by the assumption. This proves that u is
the isotonic regressor.

(Uniqueness):

To prove that there only exists one solution to the isotonic regression prob-
lem, consider the case where uq,us € F are assumed to be solutions to the
isotonic regression problem. From above, we get

(y —uy,ug —uz) >0
(y — ug,ug —uy) >0

which by adding the two gives

(y —u,up —ug) + (y —ug,up —uy) > 0=
(Y —wr,uy —ug) — (y —ug,uy —ug) > 0=
(ug, uy — ug) — (U, up —ug) > 0<=
—(up —ug,uy —ug) > 0<=

lJug —ug]]* < 0.

Since a norm is always nonnegative, we have shown that |lu; — us||* = 0,
that is, u; = us and hence the solution is unique. [J
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Theorem (¢ attains its minimum value):
Let y and w be arbitrary functions defined on the finite set 7. Then the
solution to the isotonic regression problem exists and is attained.

Proof:
Since ¢ is a convex and thus continuous function over the closed set F, due
to the finiteness of T', the minimum of ¢ on F exists and is attained. Thus
m exists in F. UJ

We will give an equivalent characterisation to the one above which will
enable us to find an algorithm that computes the solution to the isotonic
regression problem. The characterisation is given in another theorem.

Theorem 2:

Let F be any convex cone of functions defined on the set 7" and y, w arbitrary
functions also with domain 7. Then m € F is the isotonic regressor if and
only if for z € F,

(y —m,m) = 0 (2)
(3)

<
|
2
&
IA

Proof:

(=)

Let m be the solution to the isotonic regression problem and o > 0. Since
F is a convex cone this implies that z = am € F since m € F. By theorem
1 we get

(y —m,m — am) 0 <=

(AVARYS

(1 - a)(y — i, )
Since this must hold Vo > 0 we obtain for a@ > 1
(y - ma m) S O

whereas for 0 < a < 1 we get

>
>
vV
)

(y - m7m)
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This shows that (y — m,m) = 0. Using theorem 1 again,

(y—m,m—2z) > 0+
(y—m,m)— (y—1m,z) > 0+
_<y_m72> Z 07

that is, (3) is satisfied as well.

(<=):
By subtracting (3) from (2) we obtain (y —m,m — z) > 0 which by theorem
1 shows that m is the isotonic regressor. [

Theorem 2 will be used to find an algorithm which computes the isotonic
regressor, for which we will need the following theorem.

Theorem 3:
Let F be the convex cone of nondecreasing functions defined on the set 7.
Then for any z € F we can express z in the following way:

Z = Zami (4>
i=1

where «; are nonnegative weights defined on 7" and n; € F. In other words,

any function in F can be expressed as a linear combination of base functions
in F.

Proof:
2(ty) = 2(tr) — 2(tg—1) + 2(tg—1) — 2(tp—2) + 2(tg—2) — ... — 2(t1) + 2(t1)
= z(tg) — 2(tx—1) + 2(tx—1) — 2(tg—2) + ... — 2(t1) + max(z(¢1),0) +
min(z(ty),0)
= 2(tg) — 2(tk—1) + 2(tg—1) — 2(tk—2) + ... — z(t1) + max(z(t1),0) —
(—1) min(z(t1),0)
= Z a; (t)ni (te) + arima (ty) + cnama(te)
where Vi > 2

Oél<t) = Z(ti)—Z(tifl)
ni(t) = Lt <t},
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and

a;; = max(z(),0)

ajp = max(—z(t1),0)
mi(t) = It <t}
ma(t) = —1{t; <t}

The fact that z € F and max(a,0) > 0Va € R ensures that a; > 0 and,
since the indicator function is increasing, n; € F. We recall that n2(t) =
—1{t; <t} = —1Vt € T and hence an increasing function. This concludes
the proof. []

We will now restrict our attention to the case where F is the set of all
nondecreasing functions on 7', that is, F = {2z : T — R, znondecreasing}.
As was proved above, F is then a convex cone which is also closed for finite
T. The continuous case where 7' is an interval will be treated in a later
section and therefore we assume 7' is finite in this section. Thus F satisfies
theorem 1 and 2 and it was also shown that every function z € F could be
generated by base functions in F. This enables us to find the solution to the
isotonic regression problem,

m o= argginz [y(t;) — 2(t:)]*w(t;)

= argmin ¢(z2)
zeF

where y, w are arbitrary functions defined on 7" and it was shown above that
there exists a unique solution and this is attained. We now use (4) to prove
the following theorem.

Theorem 4:
Let 7; be the base functions which generate F. Then m is the isotonic re-
gressor if and only if

(y—m,m) < 0,¥Vi=1,...,n (5)

13



Proof:

(=)

By (2) we know that (y —m,2) < 0,Vz € F and (y — m,m) = 0 which,
since m € F, gives due to (2)

Now, since «; > 0Vi we obtain (y — m, ;) < 0Vi. From (3) we get

0 = (y—m,m)

Since (y — m,n;) < 0,a; > 0Vi, all terms are nonpositive and thus when
@; > 0 we must have (y —m,n;) = 0.
(=):

(y—m,2) = (y—r, Y o)
i=1

=1

since by the first assumption (5), this is a sum of nonpositive terms. Fur-
thermore,

n
(y—m,m) = Y di(y—rm) =0
i=1
as this is a sum of zero terms due to the second assumption. Subtracting the

first equation from the second gives (y — m,m — z) > 0 which by theorem 2
proves that m is the isotonic regressor. [
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Hence we obtain for the solution to the isotonic regression problem, m,

n

(y—rim) = > [y(t:) — i(t)]me(t:)w(t:)

_ Z [y(t:) — (L) L{ty < t;}w(t;)
= Z [y(t:) — m(t:)]w(t:)
i=k

) <0k=1,..,n
= O,oZk = Th(tk) —m(tk,ﬁ >0

according to (5). Moreover, since +n,(t) = £1{t; < t} = £1 are isotonic
functions on 7', we have (y — m,n;) < 0 as well as (y — m, —n;) < 0 which
implies that (y — 7, 7;) = 0. In other words, we have

n

(y—rim) = Y [y(t) — m(t)]m (t:)w(t:)

_ Z [y(t;) — m(t)]1{t: < t;}w(t,)
= Z [y(t:) — m(t)]w(t:),

which in turn gives

(y —m,m) — (y —m,m) = Z [y(t:) — m(t)]w(t;)

i=1
>0,k=1,...,n
= N R . <
=0, Gpq1 = M(tpy1) — m(ty) >0
k E o 4
> i_mtiwti,kzl,..,n
S ytyult) = 4 sz e E= 1 A
i=1 =Y om(t)w(t), k1 = Mm(tgsr) — m(ty) >0



Define the cumulative sums

which gives

Mk < Yk,k’ = 1,...,n

M, = }A/k , éék+1 = m(tk+1) — m(tk) >0

where

Voo~ W N
w(ter1) w(t)

Q41

Thus we have found a characterisation which gives a direct correspondence
between the observed values and the isotonic regressor through the cumu-
lative sums Y; and M respectively. Introducing the cumulative sum of
the weight function as Wj = Zle w(t;), by plotting pr = (Wk,Mk) and
Dr = (Wk, Yk) we obtain the following three properties:

(i)

Since
]\:@H - ]\:ﬂ: _ 1 (trr1)w(thi1) — ten)
Wk+1 — Wk w(tk+1)

which corresponds to the slope of the function that is obtained by connecting
the points pp by straight lines, we see that this function is convex since its
derivative is increasing due to m being an isotonic function. We also conclude
that m corresponds to the left derivative of the function described by the
cumulative sum M, k-

(ii)

Obviously we have that pr < p, from the characterisation above, Mk < Yk,
which implies that p, is a minorant to py.

(iii)

For the points ¢; € T such that m is strictly increasing, that is, m(t;41) >

16



m(t;), we obtained Mk = }A/k, In other words, if m is strictly increasing this
is equivalent to M being strictly convex which implied that M=Y.

(i) and (ii) imply that pj is a convex minorant to py. Since pp = py
for the points where m is strictly increasing, we cannot obtain a greater py
which satisfies (i) and (ii). Thus, we conclude that py is the greatest convex
minorant of py.

We summarise our results of the isotonic regression problem in a theorem.

Theorem 5:

Assume T is a finite set of real numbers with the usual inequality < on R,
F is the set of nondecreasing functions on 7" and y,w arbitrary functions
defined on T". Then the isotonic regressor

mo = argmin Y [y(t;) — z(t;)Pw(t;) (7)

is given by the left derivative of the greatest convex minorant of the cumu-
lative sum diagram (W, Yy).

2.1 The pool adjacent violator algorithm (PAVA)

By (7) the solution to the isotonic regression was obtained by taking the left
hand slope of the greatest convex minorant to the cumulative sum diagram
pr = (Wi, Yx). Thus, in order to get the isotonic regressor we plot py and
draw straight lines between the points. If the obtained function is convex,
the greatest convex minorant My simply becomes Y}, which would correspond
to the case where the observations y; are increasing and obviously the solu-
tion to the isotonic regression problem becomes m(t;) = y(;). Otherwise,
there exists a point p, for some k = 2, ...,n which violates the convexity and
the straight lines between p;_1, pr and py, pry1 constitute a concave function.
The greatest function which is convex and has starting point p,_; and end
point pg.q is the straight line between pyx_1 and pgyq1, which is then a mino-
rant to the cumulative sum diagram from pg_1, pr+1. Every time a violator
is encountered, this process is repeated until a convex function has been ob-
tained. Since we obtained the greatest minorant by replacing the cumulative
sum diagram with the straight lines, we have in fact obtained the greatest
convex minorant to the cumulative sum diagram, py = (Wj,Ys). The so-
lution to the isotonic regression problem is now obtained by taking the left
hand slope of this function.

17



However, the left hand slope of the cumulative sum diagram at the point
pr = (Wi, Yy) is simply for k =2,...,n

k k—1
Ye—Yeor D Wil — Do Wil
_ T k k—1
Wi = Wi Do Wi — D i Wy
WYk
= = Yk-
W

Furthermore, if we had a violator at the point p, we simply replaced the
cumulative sum diagram with the straight line from py_; to pry1. This latter
straight line has slope

k+1
Yipr — Y . Z —r Willi
- k+1 :

Wit — Wit >l wi

This is in fact an average and for notational convenience we define for ¢; <
t]‘ eT

j
Av(ts, .. t;) = M
k=i Wk
We note that Av(¢;,t;) = y;. Thus the solution to the isotonic regression
problem, 7, can be obtained by the PAVA (Pool Adjacent Violator Algo-
rithm) in the following way:
(i)
If y(t1) < y(ty) < ... <y(ty,), the isotonic regressor m(t;) =
which corresponds to Av(ty,t1) < Av(te, ta) < ... Av(t,,ty,).
(ii)
If not, there exists at least one k = 2, ..., n such that Av(tg,tx) > Av(tgr1, ter1)-
As described above, we replace the violator of the cumulative sum diagram
with the straight line between the adjacent points which yielded a slope

y(t;),i=1,..n,

k+1
between py_1,pr and pg, pry1 which was equal to zz+klw’yl = Av(tg, tri1).

Thus we replace m(tx) and 1m(tg,1) with this slope, or equivalently Av(ty, t1)
and Av(fxi1,tre1) are replaced by Av(tg,txr1). Hence, t; and t;.; belong
to the same block, by, with equal slopes. If Av(ty,t1) < Av(te, ) < ... <
Av(tr—_1,th—1) < Av(tg, tper) < ... < Av(t,,t,) , we are done.

(iii)

Otherwise, repeat this process until there are no more violators and the slope
in block ¢ < slope in block j for i < j. Then m(¢;) is given by the slope in
the block which contains ;.

18



3 Existence of solution of stochastic differen-
tial equation

This section will also be given for completeness and has been treated by
various authors before. We will follow the characterisation given in [8]. As
mentioned above, we are interested in stochastic differential equations of the
form dX(t) = f(t, X(t))dt + odW (t) where f is a function, on which we will
impose some restrictions/conditions in subsequent chapters, and W (t) is a
standard Brownian motion. Before we give a strict definition and meaning
to the stochastic differential equation of the form above, we recall some def-
initions such as o-algebras, adapted processes et cetera.

Definition o-algebra:

If Q is a given set of elements, a o-algebra F on (2 is a family F of subsets
of 2 such that

(i): Ve F

(ii): Ac F= A€ F A =Q\ A

(iii): A1, Ay,... e F = A=UX A € F.

(Q, F) is called a measureable space. (2, F,PP) is called a probability space
if P is a measure such that P : 7 — [0, 1] with the following properties:
1): P =0 ,P(Q) =1

(ii): If Ay, Ay, ... € F are disjoint sets, that is 4, N A; = 0,7 # j, then
P(UzZyA:) = 322 P(A).

Definition (measureability):
Let (€2, F,P) be a probability space and X : @ — R"™. Then X is said to
be F-measureable if

X'U) = {weQ: X(w)eU}eF
for any open set U € R™.

Definition (Adapted process):
Let {G; }+>0 be an increasing family of o-algebras of subsets of 2, G, C G, ,t <
s. Then the process g(t,w) : [0,00) x @ — R" is said to be adapted with
respect to G, if V¢ > 0, the function w — g(t, w) is Gi-measureable for each
fixed t.

We are interested in stochastic differential equations which in general take
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the form
dX(t) = p(t, X(t))dt +o(t, X (t))dW(¢)
where W (t) is a standard Brownian motion, that is,

()W (0) =0,W(t) ~ N(0,t),t >0
(i)W (t) — W(s) and W (s) are independent forvV0 < s <t,
W(t) — W(s) ~ N(0,t — s).

The stochastic differential equation is simply the differential form for

X(t) = X(O)—l—/o u(s,X(s))ds—l—/o o(s, X(s))dW (s)

where the last integral is a so called Ito integral, which is defined as follows,
see [8].

Definition (Ito integral):

Let v = v(S,T) be the class of functions f(¢,w) : [0,00) x 2 — R such that
(i) (t,w) — f(t,w) is B, F-measureable, where B denotes the Borel o-
algebra on [0, 00).

(ii) f(t,w) is Fi-adapted, where F; is the o-algebra generated by the random
variables W (s),s < t. (F; is the smallest o-algebra containing all the sets of
the form {w : W(t1) € Fy,...,W(ty) € Fy,} for k =1,2,..., t; <t and Borel
sets F;.

(iii) f s f(t,w) )2dt] < oo.

Then the Ito integral is to be interpreted as, for f € v(S,T),

| reaaw ) = 3 )W (ti) - W)

for S =ty <ty <..<t,=T. In other words, the function f is evaluated
at the left point of the interval [t;,¢;11) and is multiplied with the forward
increment of the Brownian motion W.

Two important properties of the Ito integral as well as a theorem are
listed below. The proofs are given in [8].

fs f(t,w)dW (t )] 0
fs f(t, w)dW (¢ fs f(t,w)?dt), Tto isometry.
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Theorem 6 (Ito formula):
Let W; be a Brownian motion on (2, F,P) and let X, be the Ito process

t t
X, = X0+/ /,L(S,Xs)ds—f—/ o(s, Xs)dWy
0 0

or in differential form dX, = u(t, X¢)dt + o(t, X;)dW;. Then if g(t,z) €
C?([0,00) x R), Y; = g(t, X;) is an Tto process with differential form given by
dg dg 1% 2
Ay, = —(t, Xy)dt + = (t, X})dX; + === (t, X;)(dX
t at(a t) +a$(7 t) t+2ax2(7 t)( t)
where the infinitesimal operators are to be calculated according to dt - dt =

Theorem 7 (Existence and uniqueness theorem for stochastic dif-
ferential equations):

Let T'> 0 and u(-,-) : [0,7] x R® — R", o(-,-) : [0,T] x R — R"*™ he
measurable functions satisfying

(t, )| + lo(t, 2)] < C(L+ Jol), z € R ¢ € [0,7]
for some constant C and |o|*> = Y |0y ;|* and such that
ts) — u(t, )| + ot 2) — o(t, )| < Dl — ], 2,y € R” 1 € [0,7]

for some constant D. Let Z be a random variable which is independent of
the o-algebra F,, generated by W, s > 0 and such that E(|Z|?) < co. Then
the stochastic differential equation

dXt = H(t,Xt)dt+0<t,Xt)th,OStST,X[):Z

has a unique t-continuous solution X;, each component of which belongs to
v[0,T7].

Proof:
The interested reader is referred to [8] for the proof.
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4 Isotonic regression in a random design point
setting

The aim of this paper is to estimate the function f in the model dX(t) =
f(X(t))dt + odW (t) where W is a Wiener process and under the restriction
that f is a nondecreasing function. We recall that the stochastic differen-
tial equation above is to be interpreted in the Ito sense and thus dW (t) is
a forward increment. We start by considering the discrete case, that is a
practical situation where the stochastic process X (¢) has been observed at
the discrete time points ¢;, 7 = 1,...,n € T for some set T € R. Although
the characterisation of isotonic regression given above allowed for arbitrary
t;, we will restrict our attention to the case with equidistant time points
and without loss of generality assume that 7" = [0,1]. Thus, we consider
ti=1/n,i=0,..,n— 1. In the discrete setting we will thus have the model
as

AX(ti) = f(X(t)At+ AW (t;)

W (tiv1)—W(t;). (This is merely an approximation of the stochastic differen-
tial equation and although one might be interested in better approximations
and the order of the error term of the difference of the approximation and
the true value, we refrain from investigating this further.)

Under the constraint that f is increasing, given observations AX (¢;) we
encounter a situation similar to

ylx;)) = m(z;) + e

where m is an increasing function, ¢; are independent error terms and the
design points x; < x5 < ... < 1z, satisfy the simple order given by the stan-
dard inequality on R. Since the Wiener process has independent, stationary
increments for disjoint intervals, together with the assumption that ¢t; = i/n,
AW (t;) has the same distribution Vi = 0, 1,...,n — 1. However, in our case
the design points are X(¢;) which obviously are stochastic. To obtain the
isotonic regression model, we consider the following steps.

(i)

Take the order statistic of the observation points X (¢;) and denote it by X;
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such that

X(l) < X(g) <. < X(n)

X = kth smallest value of {X(¢;),i=1,...,n}.
(ii)

Rearrange the corresponding responses AX (¢;) accordingly to get observa-
tions of the form (X(;),Y{;) where Y{;) is given by

Yi = f(X(i))Ati + AW(E’)

where B
AT (1) = AW (1)
Taking the order statistic of the observed process corresponds to a per-
mutation

x:{Ll..on}—={x1),...x(n)} € {1,...,n}
such that

Xx(l) < ...< XX(TL)

The observation points X; obviously depend on each other and on W (t;) and
thus so will the permutation, x. If we denote by P the permutation matrix
corresponding to the order induced by x we obtain AW (¢;),t; = i/n as

AW (t;) = PW.

Now if the permutation matrix P were independent of W, we would after the
permutation still get errors that are independent, Gaussian random variables
with the same variance as before due to the following. Given the assumption
of independence, AW is a linear combination of Gaussian random variables
and hence Gaussian with expectation and variance as follows.

E[W]=PE(W) =0

AW = PW = i
{COU(AW) = PCov(W)PT = PAtPT = AtPPT = Atl.
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which would imply that when considering the regression model after the re-
arranging of the terms, we would not have affected the distribution of the
error terms. However, since P and W in general are dependent, AW (t;))
are neither independent nor Gaussian in general. A guess would be that the
rearranged errors would be weakly dependent but due to time limitations,
the distribution of the error terms in general settings was not investigated.
The fact that the error terms are not Gaussian does not affect the regression
problem, however, we must be careful of the assumptions we make regard-
ing the dependence of the error terms as we later will try to derive limit
distribution results for the estimator.

Hence we have obtained observations of the form Y{; = f(X)At; +

AW(ti) which is an isotonic regression model with random design points. As
we now have an isotonic regression model, we know how to find

n
m = argrginz [y(i) — Z(l’(i))]Qwi
&S

by taking the greatest convex minorant of the cumulative sum diagram,

D i y(@ (i) w;.
If f and o satisfy the assumptions of Theorem 7 we know that the
solution X (¢) is unique and continuous as well as E[(fOTf(t)dW(t))2] =

fOTE[fQ(s)]ds < o0 so that in particular, X is bounded on 7" = [0, 1]. Thus
the stochastic design point interval we obtain from X is well defined for the
isotonic regression model. To summarise, if we want to do isotonic regression
on the model

AX(ti) = f(X(t)Ati+ocAW(t;)

we take the order statistic of X and the corresponding values of Y and
perform isotonic regression on f on the interval

[(X(1), Xny] = [min X (t), max X ()] ,t = —,i =1,...,n.

i
n
5 Isotonic regression in the continuous case

In this section we will generalise the results in the discrete case to the con-
tinuous case. This will be done by reviewing the work in [1] and slightly

24



clarifying this. It was shown above that in the discrete case, the solution to
the isotonic regression problem

with F the set of nondecreasing functions, was given by the left hand slope
of the greatest convex minorant of the cumulative sum, ., y;w;. We will
show that this also holds in the continuous case.

Thus consider the case where we have observed g € L*[a, b], that is

b
/ g*(u)du < oo

so that g is square integrable on [a,b]. Analogously to the discrete case, we
wish to find the solution to

b

m = argmin/ (g(u) — z(u))*du
ZG]'— a

where F = {z : [a,b] — R, znondecreasing}. We make the following defi-

nitions in the continuous case, see [1].

Definition (greatest convex minorant):
The greatest convex minorant, 7', of a function y : [a,b] — R is defined as

T(y) = sup{z:la,b] — R,z <y, zconvex}.

Its derivative is defined as

: : y(©) —y(u)
Tyl (t) = minmax =——"—.
It is clear that T is continuous since it is a convex function and by definition
is also satisfies T'(y)(t) < y(t). Moreover, it is also obvious that the end
points of T' coincide with the end points of y, that is, T'(y)(a) = y(a) and
T(y)(b) = y(b). Furthermore, T" is convex so that it has a left and a right
derivative. It can be shown that the definition of T'(y)" above coincides with
the left derivative of T'(y) and in addition,

T () = / T(y)(5)ds.
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For a proof of the statement, we refer to [1].
We will show that the solution to

m = angGH}m/ (g(u) — z(u))*du

is obtained by taking the integral of g

and subsequently taking the left derivative of the greatest convex minorant
over [a,b] of g, that is

In order to show this, we first prove a theorem regarding the support of
dT(y)', which is given in [1], where dT'(y)’ is the differential of the derivative
of the greatest convex minorant of y on [a, b].

Theorem 8 (support of d7'(y)’)
Let y be a continuous function defined on [a,b] € R and let T'(y) be the
greatest convex minorant of y. Then supp{dT'(y)'} C {T(y) = y}.

Proof:

By definition, T'(y) is continuous and satisfies T'(y)(a) = y(a) and T'(y)(b) =
y(b). Since y is also continuous, the set {x : T(y)(z) < y(z),x € [a,b]}
is open. Since every open set in R is a union of open intervals in R, the
set {z : T(y)(x) < y(z),z € [a,b]} is a union of open intervals. On such
an interval we have T'(y) < y which implies that T is linear on such an
interval for the following reason. If T' were strictly convex, that is not lin-
ear, on such an interval we could always find 7™, T™* strictly convex, such
that 7" > T on that interval. This is a contradiction which means that 7’
must be linear in order to be the greatest convex minorant. But if T'(y) is
linear, this implies that its derivative T'(y)" is a constant on such an inter-
val which in turn implies that dT'(y)" is zero on every open interval where
T(y) <y, that is {T'(y) < y} C {dT'(y)" = 0}. Taking complements yields
{dT'(y) > 0} C {T(y) = y} since the derivative of a convex function is
always nondecreasing (d7'(y)" > 0) and 7' is a minorant of y (T'(y) < y).
This concludes the proof. [
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(For a geometrical interpretation, it is often helpful to think of the greatest
convex minorant of a function as stretching a string from below the graph of
the function. For intervals where the greatest convex minorant is strictly less
than the function, making it linear instead of strictly convex corresponds to
tightening the string instead of it hanging loosely.)

As we want to minimise f; (g(s) — f(s))*ds with f € F, the set of non-
decreasing functions on [a, b], define

G(f) = / (f(s) — g(s))ds

so that we wish to find argmin ;. » G(f). In other words we minimise the L*-
norm, || f—g||2 for f € F. For this reason we consider the Gateaux derivative
at the point f € F in the direction h such that for small ¢, f4+th € F, defined
as

Gy(h) — lim G(f +th) = G(f)

t—0 t

Now we show that f = T(g)" indeed minimises G(f), f € F. The proof is
an extended version or slighty more clarified than the one given in [1].

Theorem 9 (isotonic regressor - continuous case):
Let g € L?[a,b] be a continuous function and define g(t) = fat g(s)ds. Then

~

b
f = argmin / (f(s) — 9(s))?

fer

is given by 7'(g)'(t) where T' denotes the greatest convex minorant with its
derivative defined as above.

Proof:
Let f =T (g)" and consider the Gateaux derivative at the point f in the
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direction h:

Gf(h) - tli_r)no t
iy o [00) + (F(5) — g(o))IPds — [, (F(5) — 9(5))%ds
t—0 t
g Ju [P+ 2th(5)(F(5) — g(s))]ds
t—0 t
_ tli_rI}Ot/ h?(s)ds+2/ h(s)f(s) — g(s)]ds

= / () — g(s)h(s)ds.

Now using that f = T(g)" and that g(t) = [’ g(s)ds we obtain by partial
integration

3G = [ = glh(e)as

— [0 h(t) =0+ h(@) ~ [ (T(@)(s) ~ g(s))ah(s)
— - [ @) - as)ans)

since the greatest convex minorant of y, T'(y), coincides with the function at
the end points. Now if we let h = f = T'(g)" we get

A

Gi(f) = -2 / T()(s) — g(s)]dT(5)"

Since T' is the greatest convex minorant, we recall that 7'(g)(s) — g(s) < 0
and also that its derivative is nondecreasing, which is equivalent to d7'(-)’
being nonnegative. Additionally it was proved above that the support of
dT(-)" was included in T(g) = g. Thus we do not get any contribution from

the integral above since if 7'(g) < g we get dT'(-) = 0. Hence Gf(f) = 0. For
an arbitrary f € F we have

b
Gi(f) = -2 [ 1)) - g NaT(sy
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which by the properties of T" is nonnegative, which implies that

A

b
Gi(f =) = =2 [ 1)) - g6 NaT(ry 2 0.

Define for t € [0, 1]

which has derivative

L) = tm CUAEENG =) =G+ = ])
h—s0 h
o et =D gt b = Pds
h—0 h
[P+ t(f = f) - g)%ds
h
= w2 [ (1) = FOIFE) + ¢7(6) — F5) — g(s))ds +

h—0

b
W) = 2 [ (1) = FNFe) - g(s))ds
= Gif-1f)=0
But u is the composition of a convex function G (since G is an integral of
the square function it is a linear combination of convex functions and thus
convex) and a linear function, which in turn is convex. Thus u is convex. As
u is convex, it has a nondecreasing derivative and since u'(0) > 0 we get that
u'(t) > 0Vt € [0,1] and thus u(t) > u(0)Vt € [0,1]. In particular, u(1) >

~

u(0) which is equivalent to G(f) < G(f) for any f € F. To summarise,
f = TG

= argmin/ (f(s) — g(s))*ds. O

fer
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6 Pointwise limit distributions of greatest con-
vex minorant and its derivative

We now know how to find the isotonic regressor in both the discrete and
continuous case by taking the greatest convex minorant of the cumulative
sum in the discrete case and the integral in the continuous case. The aim is
to find the limit distribution of our estimator as the number of observations
tend to infinity. We will start by considering the case of an equidistant
design point and subsequently try to generalise this to the situations where
the design point setup is given by independent random variables as well as
the stochastic differential equation setup described earlier.

Thus consider the isotonic regression problem in the equidistant design
point, that is, we have observations

y(t;) = mt) +e

where t; = i/n and ¢; are independent random variables. This means we
wish to find

m = argminz (y(tz) - m(ti))z

meF i—1

which corresponds to finding

m = argmin/0 (y(s) — m(s))?ds

meF

which by the previous section was given by
m(t) = T()(t)

where g(t) = fot y(s)ds. Many authors have treated the subject of the asym-
pototic distribution of the greatest convex minorant (or least concave majo-
rant) of stochastic processes and in this paper we will follow the scheme given
in [2], where the observed stochastic process is split into a deterministic part
and a stochastic one.

Anevski and Héssjer deal with sequences of stochastic processes, {x,}22 |,
on the space D(J) where J is an interval in R allowed to be infinite and D is
the space of right-continuous functions with left hand limits. These stochastic
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processes can be split into a deterministic part and a stochastic part where
the latter also lies in D(.J). Thus

Tp(t) = xpn(t) + va(t)

where 3, is deterministic and v, is a stochastic process defined on D(J).
This paper will not deal with sequences of stochastic processes and due to
this restriction we instead write

z(t) = xp(t) + v(t).

Let d,, be a sequence that tends to 0 and define the rescaled version of v at
the point ¢, as

Un(s3t0) = d,"(v(to + sdn) — v(to))

for s € d;'(J —tp) and for 1 < p < oo a fixed constant. It can be shown that
if certain assumptions are fulfilled,

d(Ty(w)(to) — x(te)) > T(|s[? +0(5))(0)
as d, tends to zero and where 7" denotes the greatest convex minorant and

o(s) = dliglo U ().

Moreover, for the derivative of T' it holds that
AP Ty (1) = 3(8) S T(|s]? + 3(s))'(0).

The various assumptions that are required to be satisfied first regard the
possibility to rescale the stochastic and determinstistic parts of the process
which satisfy certain conditions. Further, these rescaled processes must sat-
isfy some growth conditions in relation to each other. Thus we start with
the first assumptions regarding the rescaling of the processes.

Assumption 1:
The process

Ba(site) = diP(v(ty + sdy) — v(t)) S i(s)
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for some process v € D(J) as d,, tends to zero.

Assumption 2:
Define g,(s) at the point ¢y as

gn(sito) = dp"(zo(to + sdn) — ln(s))
where
In(s) = x(to) + x3,(to)sd,

that is, the first two terms in the Taylor expansion of x;, at the point tg.
Moreover, 3A > 0 such that for every ¢ > 0

sup |gn(s) — Als[’| = 0

s€[—cc]

as n — oo or equivalently d,, — 0.

The function x,(t) must be a convex function since it is assumed that
its derivative is a nondecreasing function. In most applications z}(t) also
satisfies

zp(t) = xp(to) + xy(to)(t — to) + Alt — to|P + o[t — to|7)

where, in particular, A = %xg’ (to) if p = 2, which we will encounter in a later
section. Thus, define the rescaled function as

Un(S;to) = gn(sito) + Tn(s;to).

Assumption 3:
For every § > 0 there are finite 0 < 7 = 7(J) and 0 < k = k(9) such that

lim inf P[inf (y,.(s) — k|s| > 0)] > 1—04.

n—oo ‘s|>’r

Assumption 4:
Given €,6,7 > 0,

lim sup P[ inf yn—(s)—infyn—(s) > €] <0

n—00 T<s<c S T7<s S
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and

lim sup P[ inf Unls) _ inf Un(s) < —€ <6
n—00 —c<s<—T S s<—T S
for large enough ¢ > 0.

Assumption 3 and 4 say that, for large enough s, the rescaled process y,,(s)
lies above a constant times s and in fact outgrows the identity function as we
are far enough from the origin. For the proofs of the following propositions
and theorems, the interested reader is referred to [2]. It can be shown that if
assumption 2 holds and that for every €, > 0, there exists a finite 7 = 7(¢, )
such that

lim sup P[sup |Un(8)

n—r00 [s|>T gn(s)

| >€l <0,

then assumption 3 and 4 hold.
We need a final assumption before we can state the first theorem of the
limit distribution for the greatest convex minorant.

Assumption 5:
For every €,0 > 0 there exists a 7 = 7(¢,0) > 0 such that

0(s;to)
P|su
[\s\sz Alslp

| >¢€ <0
We can state the first theorem.

Pointwise limit distribution for greatest convex minorant
Let ty be fixed and suppose assumptions 1-5 hold. Then

AP [Ty () (to) — (to)] = TIAs]? + 8(s; 1)) (0)

as n — oo with A the positive constant given in assumption 2.
As for the limit distribution of the derivative of the we need one more
assumption.

Assumption 6:
We recall the definition of y,(s) = gn(s) + U,(s) and y(s) = Als|? + 0(s).
Then it holds that

To(y.)'(0) 5 T.(y)'(0) 8)

33



as n — oo for each ¢ > 0, that is the greatest convex minorant converges on
compact intervals.

Assumption 6, namely that the greatest convex minorant converges on
compact intervals, holds basically whenever the process 0(s) in

y(s) = Alsl’+0(s)

is a Brownian motion.
Furthermore, as a consequence of assumptions 3 and 4, it can be shown
([2]) that

lim Tim |7, (yn)'(0) = Te(ya) (0)] 0 (9)
and
lim [T.(y)'(0) — Ti(y)'(0)] 5 0. (10)

c—00

Then from (8), (9) and (10), by Slutsky’s theorem, one can show that
A" T (@) (o) = i (to)] 5 T(Alsl? + (s 10))(0)

as n — 0o. We state this as a theorem.

Limit distribution for the derivative of the greatest convex mino-
rant:

Suppose that assumptions 1-6 above hold and let ¢y be a fixed point. Then

AP [T () (to) — wi(to)] = T(Als[? + 3(s510))'(0)

as n — 0.

7 Limit distribution for estimator of trend
function in

dX(t)=X(t)dt+o dW (t)

Consider the concrete example of the stochastic differential equation given
by

dX () = X ()dt + odW (2).
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We are interested in the situation when o tends to zero. This is known
as a filtering problem and has been studied by for example Ibragimov and
Hasminski [5] as well as Nussbaum [7]. Prakasa Rao has studied kernel
estimators of the trend function in stochastic differential equations driven
by fractional Brownian motions as the volatility tends to zero [6]. Since
we are interested in performing isotonic regression on the drift function, in
this case being the identity function, we are treating the increments given
by the stochastic differential equations as our observations. Thus we get
observations of the form

yi = m(t;) +&
with

§i = oné;

o, —0,n— 00

€; ~~ N(O, 1/n),611nd Oij ,i 7&]
In a practical situation we get observations on the unit interval [0, 1] with
an equidistant step size of length 1/n. In other words we obtain At; = 1/n
and dW(t) ~ N(0,1/n) is normally distributed with variance 1/n. As we

are interested in the estimation of f, we can multiply our observations by n
since

argminz (y; — 2(t;))* = argminz [n(y; — z(t;)))?

zeF i—1 zZEF i=1

and thus this does not change the constrained least squares estimator.
By multiplying with n we get observations of the form

9 = f(X(t))+no, AW (t;)

with AW (t;) ~ N(0,1/n). By properties of the Gaussian process, we know
that no, AW (t;) is distributed as

no, AW (t;) ~ N(0,no?)

and hence, for the problem to have a non-trivial solution, o,, has to decay at
the rate of n='/2. With ¢,, = 0/y/n we obtain observations of the form

g = fX)+¢G G~ N(0,0%
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which we recognise as the usual isotonic regression model with a random
design point.

Thus, consider the case of dX (t) = X (t)dt + odW (t), with o,, = o+/1/n.
The problem is now to estimate the drift function under the assumption that
this is increasing, which is done by ordering the observed stochastic process
and then order the observations A X (¢;) in correspondance with the ordering
of the observed stochastic process.

Before considering the limit distribution of the unknown function f in
the observed process points, we make a Taylor expansion so that we can split
the process parts completely into a deterministic part and a random one, as
done in [2]. Thus in the process

dX(t) = f(X(b)dt + ondW (1)

we expand the stochastic process around its expected value and since o,
tends to zero, we can expect X (¢) to be close to its expected value.

FXQ@) = FEX(®)+X({) - BE(X(1))
= SEX®) + f(BX@))(XE) - B(X() +
+ fUEX))/2X () — E(X(1)))* + O([X (1) — BE(X(#)]).

Denote E(X(t)) = p(t) and let X () be the integral of the observations/in-
tegrated process up to time ¢ which gives

X(t) = / f(X(s))ds + W (t)

(11)

= / [f (1)) + £ (1($))(X () = pu(s)) + O((X(s) — pu(s))*)]ds + oW (2).

0

In the case of dX (t) = X (t)dt + 0,dW (t) it is possible to obtain a closed
form solution which is obtained in the following way.

dX(t) = X(t)dt + o, dW(t) <
dX(H) — X()dt = ondW(t) <
de'X (1) = e o dW(t) <

t
e'X(t) = :r;0+an/ e fdW (s) <
0
t
X(t) = xoet+0n/ e dW (s).
0
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Now since dW (s) are Gaussian and independent and the integral is a linear
combination, we get that X (¢) is a linear combination of Gaussian random
varibles and hence Gaussian itself. Using the properties of the Ito integral
we obtain

E(X() = 2o¢ + o /0 eI (s)

since the expectation of an Ito integral is zero. By the Ito isometry we also
obtain the variance

Var(X(t)) = Var(moet—l—an/o e dW (s))
= JZVCLT(/O e dW (s))

— o2 / ¢S AW (5))?)

Thus

which implies that

X(t) —pu(t) = X(t) —zee’ ~ N(0, w).

We will now prove the following theorem about the limit distribution of the
greatest convex minorant of the integral of the observations given by the
stochastic differential equation given by

dX(t) = X(t)dt+ o, dW(2).
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Theorem:

Suppose observations of the form dX(t) = X (t)dt + 0,dW (t) have been ob-
tained and that we wish to estimate the drift function under the constraint
that this is nondecreasing. Then it holds that

23 [Tio.1) (X) (to) — X (to)] 5 T[22

+ B(s)](0)

where B(s) is a Brownian motion, Tjo1j()(%o) is the greatest convex minorant

on [0, 1] of the integrated process X (t) = f(f dX (s) evaluated in the point .
Moreover, we get

$0€

0! [Tjo (X)) (to) — h(to)] = T[=5—Isl” + B(s)]'(0)

that is,

.1'06

0¥ {Tio.1(Xin) (t0) — F(E[Xiwe(to)])] = T[=5—1s[> + B(s)]'(0).

Proof:
By considering (11) we get the integral of our observations in this case as

/ fu(s))ds + / /(1)) (X () = pu(s)) + O((X () — p1(s))*)]ds + oW (1)

Denote

Jo
{v(t) = Jo P/ (u(s))(X (5) = u(s)) + O((X(s) — pls))*)]ds + oW (1)

It is now possible to rescale these as done in Anevski and Hossjer with X (t) =

xp(t) + v(t)

t+sd " S
s o) = [ P00 - ) + A ) (o) s +

t+s6
/t O((X () — pu(8))*)ds + (W (t + s6) — W(t))

FG0)

. — u(t))? + O((X (t) — p(t)*)] +

~ SO (X () — () +
anél/QW(S)
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with T (s) being a Wiener process as well. Since
X(t) —u(t) ~ 0N, (e* —1)/2)
= o, 4
this yields
02 v(t+s0) — (b)) ~ 6 2[6onsf (1)) Z + O(62)sZ% + 0,62 W (s)].

/

We see that if ¢ is chosen as o7/ ° which implies that o, = §%/2, we get

S 2t +88) — (b)) ~ 828 2sf (u(t)Z + sO(5°) + 5°W (s))
S (u(t)Z + O(8) 25 + T (s)

= Uu(s).
Thus
o(s) = r}l_)ﬂ()loﬁn(s)
= W(s)

as & — 0. Since 0,, = n™Y/? we get that § tends to zero at the rate §j = ot =

n=1/3,
Now consider with p(s) = F(X(s)) = zpe® and with f(¢) = ¢ the identity
function,

nt) = / £ (u(s)ds

This yields (t) = f(u(t)) and zj/(t) = f/(u(t))2L(u(t)) = 1- zoe’ which are
well defined. Thus

op(t+s8) = xp(t) + 23,(¢)s0 + be(t)sZé? + O(6%)
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which implies that

" 2
52 (ay(t + 88) — zy(t) — a(t)s8) = % +0(9)
" t 2 t o2
e xy (2)3 _ .21:0625

Thus assumption 1 and 2 are well defined with o(s) ~ N(0,s) and A =
zoe' /2. We now need to check the remaining assumptions to able to state
the limit distribution.

In order to check assumptions 3 and 4, it suffices to check that for e, > 0
there exists 7(e,d) > 0 such that

lim sup P[sup | On(s)

| >¢ < O
n—oo |s|>T gn(s)

Now we have got with ¢,, = n='/2

Bn(s) = o *s £ () Z + O(07*) Z%5 + W (s)
gn(s) = 2252 + 0(07")

which gives

lim sup P[sup |U"(8) > =
nee |s|>7 gn(8)
1/3 / 2/3 9 ~
n—00 |s|>T % + O(O'n )
1/3 ¢ 2/3\ 9 ~
< lim sup P[sup low s f'(u(t)) [j |Oé(z 2/)3) s|+ [W(s)| >
e |s|>7 _33062 S ors
M3 f! 2/3\ 2
S lim SupP[Sup |U t 2Sf (M< >2)/3’ > E] + P[Sup | t (20 ) 28/‘3 > E] +
HOO sz 285+ O(a) 3 ez 295 4+ 0(0r7) 3
W
Plsup t2| o) 75 > 4
sl2r 225 4 O(0y") 3
jon” 1 () Z| 0222

€
= lim sup P[sup — > =]+ P[sup — > &+
noee T iz 2 £ O(0n?) T 3 slzr 2+ O(0n®) 3
W (s)] €
Plsup —— N 5]' (12)
ls|>7 =05— + O(on")
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Because of s in the denominator of the two first terms in (12) there exist
71(€,0) > 0 and 73(€,d) > 0 such that these two terms are smaller than 6/3.
In fact the limit superior of these terms tend to zero for any €, 9, 7 > 0 since
o, — 0. As for the third term, due to the law of the iterated logarithm which
states that

[B()|

lim sup ——+~——= = la.s
oo P V2tloglogt
where B is a Brownian motion, there exists 73(€,d) > 0 such that this third

term is also smaller than §/3. By choosing 7 = max(7y, 72, 73), we get that
(12) fulfils

o> (1) 2] 0022 e

lim sup P|sup + Plsup —; “ > =

n—s00 [|S|> ne's 4 O(o 213 3] [‘S‘Z zoe's + 002 3]
IVV( )I €

P[sup > |
127 292 4 O(0/?) 3

<5/3+5/3+6/3_5

and thus assumptions 3 and 4 are satisfied.
We also need to check assumption 5, that is, for every €, > 0 there exists
a1 =7(e0d) > 0 such that

As above this holds by applying the law of the iterated logarithm.
Assumption 6 is satisfied since the Wiener process is almost surely con-
tinuous and this is enough for assumption 6 to hold.
Thus we obtain the following results for our estimator.

ZEO€

n®[Tio.1(X)(to) — X (t0)] = T[=5— s[> + W (5)](0)

where Tio 11 () (¢ ) is the greatest convex minorant on [0, 1] of the integrated
process X (t) = f dX (s) evaluated in the point t5. Moreover, we get

'3[ Tio.1y(X)'(to) — ) (t0)] 5 [””Oe ||+ W(s)]'(0)
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that is,

£ e

1! Do) (Xine) (o) — f (B[ Xurue (to))] = T[=5—1sI” + W (s)]'(0).

Hence we have obtained an estimator of our unknown, nondecreasing function
f such that this estimator converges of the order n'/? to the slope at the origin
of the greatest convex minorant of a Wiener process plus a square function.

8 Simulations

We will now simulate the process
dX(t) = X(t)dt + 0,dW(t)

and estimate the drift function for n = 100, 500, 1000, 10000 observations.
From our results above we know that this estimator should converge of the
order n'/3 and thus we will investigate the mean of the absolute errors to see
if this seems to be the case. Moreover, we will also investigate the behaviour
of the mean square integrated error.
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Figure 1: The isotonic estimator in black compared to the true function, the
identity function, in blue for n = 100




Comparison of isotonic estimator (black) with true
function in blue (n=500)
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function in blue (n=500)
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Figure 2: The isotonic estimator in black compared to the true function, the
identity function, in blue for n = 500

We will investigate the behaviour of the mean square integrated error,
MSIE, the mean absolute error for the observed process points, MAFE,,,
as well as the absolute error for the true expected process points, M AFE,.q,
which are given by

MSIE = / FEIX(8)) — FELX (0],
MAEs, = =+ 37 IF(X(0) — FX(t)
and
MAE, = ~ 3 [FEX®) - X))

for the estimator and the true estimand based on n observations. We get
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values of approximate order

n 100 500 1000 10000
MSIE 0.02 0.005 0.003 0.0007
MAFE.,s 0.10 0.050 0.040 0.020
MAFE, . 0.11 0.055 0.045 0.020

and both the MAE,,, and MAE,., seem to decrease at the order n='/3,
which is in concordance with the theoretical rate of convergence.
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Figure 3: The isotonic estimator in black compared to the true function, the
identity function, in blue for 1000 observations.
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Comparison of isotonic estimator (black) with true Comparison of isotonic estimator (black) with true
function in blue (n=10000) function in blue (n=10000)
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Figure 4: The isotonic estimator in black compared to the true function, the
identity function, in blue for 10 000 observations.

What is worth commenting on is that there might be a tendency to have
spikes at the boundary which increase with the number of observations as we
get closer and closer to the boundary. However, this seems to be a general
problem in nonparametric estimation and thus not explicit to our problem.
Another thing is that one might be interested in obtaining a more smooth
function which could be achieved by applying a kernel-smoother to the iso-
tonic regressor. If one chooses a symmetric kernel, such as for instance a
Gaussian kernel, appyling the kernel smoother to the isotonic regressor does
not change this from being isotonic. Applying a kernel smoother to obtain an
isotonised kernel estimator was investigated and although the obtained esti-
mator was much smoother and also seemed to suffer less from the boundary
value problem from which the isotonic regressor suffered, there was also evi-
dence suggesting that the quality of the isotonised kernel estimator depends
quite much on the bandwidth chosen. However, it would be interesting to
investigate further if it is possible to find an optimal bandwidth which would
enable us to find an isotonic regression estimator which is smooth and does
not suffer from boundary problems to the same extent.

We will also run some simulations for another stochastic differential equa-
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tion/filtering problem where
dX (t) =log(X(t))dt + o,dW(t).

In this case the unknown function f is the log function which is increasing.
However, it does not satisfy the Lipschitz condition on its domain as a whole.
Since it does fulfil the Lipschitz condition for values of X (¢) > 1, we choose
an initial value large enough so that the process stays above 1 Vt € [0, 1].
This is due to our main interest being in investigating how well the isotonic
estimator performs in this situation.

Doing the same calculations for the logarithm function as the unknown
function, instead of the identity function, yields errors of a magnitude as
well as a rate of convergence similar to the previous case. Increasing ¢ in
0, = 0/4/n naturally increases the magnitude of the error but there has not
been enough time to investigate how the estimator is affected by changing
the characteristics of the estimand or changing the initial values and how
these might be connected et cetera. We show some plots of the estimator in
the case where f is the logarithm for the same number of observations as the
previous case, that is, for n = 100, 500, 1000, 10000.
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Figure 5: Isotonic regressor (black) of the logarithm function (blue) for 100

and 500 observations.




Comparison of isotonic estimator (black) with log Comparison of isotonic estimator (black) with log
function in blue (n=1000) function in blue (n=1000)
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9 Conclusions and discussion

We can conclude after having given a characterisation of isotonic regression in
the discrete and continuous case that it is possible to apply isotonic regression
to the filtering problem and that it seems that a rate of convergence of (at
least) order n~'/3 can be obtained. However, on some occasions there are
spikes at the boundaries of the observed process where the isotonic regressor
does not perform as desired. Although, it seems that a kernel smoother of
the isotonic regressor might remedy this to some extent which, along with
the increased smoothness of the estimator it provides, makes it of interest to
investigate whether an optimal bandwidth can be obtained for any number of
observations, since the bandwidth has a strong influence on the performance
of the estimator.

However, something that was not managed to be shown which is of inter-
est, is to be able to find limit distribution results in the actual observation
points for a general unknown, monotone function f. For the standard iso-
tonic regression problem with

yi = m(t)+e,ti=i/n,
where m is nondecreasing and ¢; are independent, identically distributed
random varibles with mean zero and finite variance o2, it has been shown,
see [2], that by taking the greatest convex minorant on [0, 1] of the partial
sum process

1 & (nt—1/2) — 7
() = EZZJML . Yii+1
=1

where 7. = |nt — 1/2], it holds that
n'3(mlte) — m(to)) Z[4m/ (tg)o?] AT (s* + B(s))'(0),

with to € (0,1), m/(tp) > 0, B a Brownian motion and m(ty) = Tjo.1(xn)’ (o).
In [4] it has instead been considered the regression model where we have
independent observations of the bivariate random variables

(X3, Y),i=1,...,n
(X,Y)€e[0,1] x R
Yi=m(X;)+e,i=1,...,n
E(e]X; =0)
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with X, continuous random variables and m assumed to be nondecreasing,
for instance m(x) = E(Y|X = z). If we denote 02(t) = E(e?|X; = t), the
density of X; by f and let ¢y € (0, 1) be a fixed point where m is differentiable
with m/(to) > 0, it holds that

402 (t)m’(t)
f(t

where 7, (t) is the greatest convex minorant of the cumulative sum diagram
of y; as described in an earlier section and 2X(0) is distributed as the slope
at zero of the greatest convex minorant of {s?> + B(s), s € R} with B a
Brownian motion.

It seems reasonable that the limit distribution for the isotonic regressor
in a general filtering problem is similar to the limit distributions described
above. The remaining problem is to find exactly how the dependence of the
observations affects the limit distribution of the estimator and the magnitude
of this dependence. In both [2] and [4] the domains are given by [0, 1] or in
general [a,b] where a,b are fixed constants. Another aspect to the filtering
problem that would be of interest to incorporate is the initial value of the
process, since this influences the range of the process. Thus one would also
like to include the distribution of the starting value should this be random.

! (1, (£) — m(t)) 5] JV2X(0)
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