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Abstract: The Tomten-1 drilling at Torbjörntorp in Västergötland, southern Sweden, penetrated 29.85 m of Cam-

brian Series 2 and 3, Furongian, and Lower and Middle Ordovician strata. The biostratigraphy, sedimentology and 

carbon isotope (δ13Corg) stratigraphy of the core have been analysed. The succession is interrupted by numerous 

stratigraphic gaps (i.e. hiatuses) of variable magnitudes. There also appear to be several stratigraphic gaps within 

the Exsulans Limestone Bed. In the Cambrian Series 3 through Furongian Alum Shale Formation, agnostoids and 

trilobites have been identified to species level and the succession is subdivided into nine biozones (in ascending 

order): the Ptychagnostus gibbus, P. atavus, Lejopyge laevigata, Agnostus pisiformis, Olenus gibbosus, Parabolina 

spinulosa, Ctenopyge tumida, C. bisculata and C. linnarssoni zones. Lithological characteristics have been studied 

macroscopically as well as microscopically through thin section petrography, allowing for identification of uncon-

formities and general depositional environments. The characteristics of the strata have rendered it possible to divide 

the drill core into important lithostratigraphic units that reflect sea level changes and allow for a correlation with 

other drill cores in Sweden. Two negative δ13Corg excursions have been recorded from the lowermost part of the 

Alum Shale Formation. The most distinctive of these has a net shift of 2.14 ‰ and occurs below the Exsulans 

Limestone Bed, in strata that seem to be equivalent to the Ptychagnostus gibbus Zone. It may correspond to an un-

named excursion that has been recorded from the Cambrian Stage 5 in Scania, southern Sweden, and South China, 

but in the absence of useful biostratigraphic evidence, this identification is problematic. Another, but very poorly 

developed excursion in the lower P. atavus Zone possibly represents the Drumian Carbon Isotope Excursion 

(DICE) as described from the GSSP section at Drum Mountains in Utah, western United States. However, the val-

ues are not low enough to be considered diagnostic for the DICE. Detailed and dense sampling is required in order 

to delimit the range and amplitude of this minor excursion in the Tomten-1 drill core. The Steptoean Positive Car-

bon Isotope Excursion (SPICE) has not been recorded, largely because of lack of δ13Ccarb-sampling in the lithologi-

cally highly variable Kakeled Limestone Bed and the incompleteness of the lower Furongian (Paibian Stage). Col-

lectively, the data suggest that the Tomten area was shallow enough to be exposed at low sea-level and that Väster-

götland was subaerial during long periods of time. 
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Sammanfattning: Tomten-1 borrkärnan från Västergötland i södra Sverige omfattar en 29.85 m mäktig lagerföljd 

från kambrium serie 2 och 3, furongium och undre och mellersta ordovicium. Borrkärnan har studerats med avse-

ende på bio- och kolisotopstratigrafi (δ13Corg) samt sedimentologi. Lagerföljden innehåller många stratigrafiska 

luckor av olika omfattning. Agnostider och trilobiter i alunskifferformationen från kambrium serie 3 och furongium 

har identifierats till artnivå, vilket resulterat i att nio biozoner har identifierats (i stigande ordning): zonerna med 

Ptychagnostus gibbus, P. atavus, Lejopyge laevigata, Agnostus pisiformis, Olenus gibbosus, Parabolina spinulosa, 

Ctenopyge tumida, C. bisculata och C. linnarssoni. Litologiska egenskaper har studerats på såväl makroskopisk 

som mikroskopisk nivå för att identifiera faunaförändringar, diskontinuitetsytor och depositionsmiljöer. Litologier-

na i borrkärnan har gjort det möjligt att dela in borrkärnan i viktiga litostratigrafiska enheter som speglar havsnivå-

förändringar och som i sin tur är korrelerbara med enheter från andra borrkärnor i Sverige. Två negativa koliso-

topexkursioner har påvisats i den understa delen av alunskifferformationen. Den undre av dessa är distinkt och före-

kommer i ett fossilfattigt intervall med alunskiffer under exsulanskalkstenen. Detta intervall kan förmodligen räk-

nas till Ptychagnostus gibbus-zonen. En motsvarande, inte namngiven exkursion har beskrivits från kambrium 

etage 5 i Skåne och södra Kina. En annan exkursion förekommer i den undre delen av O. atavus-zonen. Denna ex-

kursion är inte lika distinkt, men kan åtminstone delvis motsvara Drumian Carbon Isotope Excursion (DICE) såsom 

den har beskrivits från Drum Mountains i Utah, västra USA. Tätare och mer detaljerad provtagning av Tomten-1-

kärnan krävs emellertid för att säkert fastställa om det rör sig om DICE. Steptoean Positive Carbon Isotope Excurs-

ion (SPICE) har inte identifierats, men delar av denna finns troligen i kakeledskalkstenen. Den sammantagna bilden 

av Tomtenborrkärnan är att avlagringarna avsatts under relativt grunda förhållanden. Periodvis utgjorde Västergöt-

land ett landområde som utsattes för denudation med borttransport av sediment.  
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1  Introduction 
The Cambrian Period was characterized by rather sta-

ble conditions with regards to the Baltoscandian plat-

form, with no known volcanic activity within the con-

tinent. However, the margins surrounding the palaeo-

continent were affected by violent tectonic processes 

during this time (Bergström & Gee 1985; Cocks & 

Torsvik 2005). During the Cambrian, Baltica was geo-

graphically situated 30–60° south of the palaeoequator 

and inverted relative to its present configuration 

(Torsvik & Rehnström 2001), and large areas were 

submerged, resulting in shallow shelf environments 

during most of the period (Cocks & Torsvik 2005). 

The entire Cambrian Period and most of the Ordovi-

cian witnessed a global rise in sea-level (Martinsson 

1974; Haq & Schutter 2008). However, several karst 

horizons have recently been identified in the “middle” 

Cambrian through Early Ordovician Alum Shale For-

mation, suggesting that subaerial conditions were pre-

sent at times (Lehnert et al. 2012; Newby 2012).  

 The basal Cambrian succession of Scandinavia was 

largely deposited on a Precambrian peneplain (i.e. pla-

nar subsurface) which in parts of Scandinavia was 

rather well developed following an extensive period of 

weathering and erosion (Martinsson 1974). The lower-

most part of the succession is of early Cambrian age 

(provisional Cambrian epochs 1 and 2) and dominated 

by siliciclastic deposits (Andersson et al. 1985). These 

sediments had a proximal origin (Karlsson 2001). 

The environmental conditions during Cambrian 

Epoch 3 in Scandinavia were characterized by vast 

areas with low topography and mostly with influx of 

fine-grained sediments (Cocks & Torsvik 2005). The 

lowermost part of Cambrian Series 3 consists of rela-

tively coarse-grained sediments and is overlain by dis-

tinctly greyish and greenish shales and siltstones. Up-

wards in the stratigraphy these grade into darker and 

more kerogen-rich shales that form the Cambrian Se-

ries 3 through lower Tremadocian Alum Shale For-

mation (Bergström & Gee 1985).  

During the Ordovician, Baltica continued its move-

ment towards the north. The paleolatitude of the cen-

tral parts of Baltica was, however, almost the same as 

during the Cambrian, although considerable rotation of 

the continent had effect on local areas. In the Ordovi-

cian there was significant deposition of limestone on 

Baltica (Cocks & Torsvik 2005). 

The Alum Shale Formation consists of black to 

dark grey shale with subordinate limestone beds and 

lenses, colloquially referred to as ‘Orsten’ or stink-

stone (Andersson et al. 1985). The formation crops out 

in many areas of Scandinavia and ranges stratigraph-

ically from Cambrian Series 3 to the Lower Ordovi-

cian (Buchardt et al. 1997; Nielsen & Schovsbo 2011). 

The thickness of the Alum Shale Formation is varying; 

normally it is 20–30 m thick, whereas the Oslo area, 

Norway, and Scania, the southernmost province of 

Sweden, have approximately 100 m thick successions 

(Buchardt et al. 1997; Bergström & Gee 1985). The 

Alum Shale was predominantly deposited under 

dysoxic conditions, with sedimentation rates as low as 

1–10 mm/1000 years (Thickpenny 1987; Buchardt et 

al. 1997). The presence of local hiatuses, wide areal 

extension and the relative thinness of the alum shale 

suggest deposition on a stable platform, with only mi-

nor vertical movements (Bergström & Gee 1985). 

The biostratigraphy of the Cambrian Series 3 and 

Furongian of Scandinavia is based on agnostoids and 

polymerid trilobites. These series are divided into 

superzones which are further divided into zones. In the 

province of Västergötland, south-central Sweden, sev-

eral of these are lacking or are incomplete, forming 

hiatuses in the succession. 

The Cambrian Series 3 of Scandinavia embraces 

three superzones (in ascending order): the Acadopara-

doxides oelandicus, Paradoxides paradoxissimus and 

Paradoxides forchhammeri superzones. The A. oe-

landicus Superzone is largely absent in Västergötland, 

and the latter two are incomplete. The Furongian Se-

ries includes the six superzones (in ascending order): 

the Olenus, Parabolina, Leptoplastus, Protopeltura, 

Peltura and Acerocarina superzones. In Västergötland 

the upper Acerocarina Superzone is absent, whereas 

the other five are partially incomplete (Nielsen et al. 

2014). The Alum Shale Formation is generally richly 

fossilferous, and the faunas consist mainly of polymer-

id trilobites and agnostoids. 

The purpose of this thesis is to present a high-

resolution biostratigraphy of the Alum Shale For-

mation of the Tomten-1 drill core from Västergötland. 

Moreover, the succession is correlated with other coe-

val ones in Sweden. The biostratigraphic investigation 

also allows for hiatuses to be identified. Carbon iso-

tope (δ13Corg) stratigraphy is made for further correla-

tion, by identifying excursions occurring globally. 

Studies of lithological characteristics, microfacies and 

the microfossil content are done in order to interpret 

the depositional environment, taphonomy and biota. 

 

2 Location and general remarks  
The Tomten-1 drill core was retrieved in 2005 from 

the now abandoned Tomten Quarry, situated approxi-

mately 1.5 km northeast of the municipality of Tor-

björntorp, Västergötland, southern Sweden (Fig. 1). 

The drilling was made by Skårby Kärnborrning AB on 

behalf of the Department of Geology, Lund Universi-

ty, Sweden. The purpose of the drilling was to obtain 

information from the exposed Furongian and the un-

quarried Cambrian Series 3 strata. Westergård (1922) 

described the upper part of the interval in the Tomten 

quarry, mainly with regards to the fossil content and 

ranges of biostratigraphically important taxa. 

The drilling reached a depth of 29.85 m and recov-

ered strata of, from top to bottom, the Lower Ordovi-

cian (0−1.5 m), Furongian (1.5−11.55 m), Cambrian 

Series 3 (11.55−26.45 m) and Cambrian Series 2 

(26.45−29.85 m) (Appendix A). 

The major portion of the drill core is represented 
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by the Alum Shale Formation, mainly consisting of 

dark shale and generally subordinate black bituminous 

limestone. The Alum Shale Formation in Västergöt-

land has been studied by, for instance, Westergård 

(1922, 1946), Ahlberg & Ahlgren (1996) and Terfelt 

(2003). The Furongian successions have been exten-

sively studied with regards to biostratigraphy (e.g. 

Westergård 1922) and their potential as economic re-

sources (Andersson et al. 1985). 

 

3 Materials and methods 
 
3.1 Lithology and facies 
The Tomten-1 drill core was studied lithologically, 

i.e., with regards to texture, particle size, colour chang-

es and presence of pyrite. Hydrochloric acid (5‒10%) 

was applied to several parts of the drill core in order to 

identify carbonate intervals. A lithological succession 

was subsequently generated based on the available 

information. Both overview and detail photographs 

were taken (with a digital Nikon L29 camera) prior to 

sampling and splitting of the drill core. 

Nineteen levels were sampled for more detailed 

studies of lithology and (micro) facies. Samples were 

selected in order to cover the complete range of differ-

ent lithologies and facies types represented in the drill 

core. The samples were cut vertically with a rock saw 

and subsequently polished with a diamond paste. Im-

ages of the polished slabs were generated using a com-

puter flatbed scanner. In addition, twenty-nine petro-

graphic thin sections were produced from the polished 

slabs. These were examined in an optical binocular 

light microscope in order to further assess the mineral-

ogy, lithological characteristics and faunal composi-

tion. Photomicrographs were taken of representative 

thin sections. 

 

3.2 Fossil content and biostratigraphy 
In order to evaluate the fossil content and biostratigra-

phy of the drill core, the shale intervals were split up 

approximately every centimeter, using a chisel and 

hammer. The limestone intervals were split up approx-

imately every 5 cm. Higher resolution splitting of the 

limestones was not feasible due to the harder lithology. 

The top and bottom surface of each core slab were 

examined in a stereo microscope and all fossils were 

marked with a coloured pencil for more detailed obser-

vation and their occurrence was noted in a spread 

sheet. Subsequently each fossil was thoroughly studied 

and identified as accurately as possible using relevant 

published literature (e.g. Westergård 1922; 1946; 

1947; Henningsmoen 1957; Robison 1984; Axheimer 

& Ahlberg 2003; Terfelt 2003, Høyberget & Bruton 

2012 & Weidner & Nielsen 2014). Still, several speci-

mens had to be left in open nomenclature because of 

their poor state of preservation. Selected representative 

specimens were coated with ammonium chloride in 

order to enhance the contrast, contours and detailed 

morphology, prior to being photographed using a digi-

tal Canon 550D camera mounted on a table set camera 

holder with four external light sources. 

Fig. 1. Map of Västergötland, Sweden, showing Cambrian outcrop areas and the location of Tomten-1 drill site close to the mu-

nicipality of Torbjörntorp. Modified from Axheimer et al. 2006, fig. 3. 



9 

 

Fig. 2. Lithological succession of the Tomten-1 drill core, Torbjörntorp, Västergötland, Sweden. 
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3.3 Acid resistant microfossils 
Microfossil samples were collected from five intervals 

in the drill core (24.20‒24.26 m, 16.65‒16.70 m, 11.07

‒11.15 m, 7.52‒7.59 m and 1.00‒1.09 m). The lime-

stone samples were sawed vertically out of the drill 

core, crushed into cm-sized pieces with a hammer and 

subsequently dissolved in c. 10% acetic acid in accord-

ance with standard methods for retrieving acid re-

sistant microfossils (e.g. Jeppsson et al. 1999). The 

remaining acid resistant residue was then washed in 

deionized water, dried and then put in formic acid in 

order to get rid of possible dolomite prior to heavy 

liquid separation. After another cleaning in deionized 

water the sample residues were dried and picked for 

microfossils with a fine brush under a binocular light 

microscope. 

 

3.4 Chemostratigraphy 
Forty-four samples were taken from the Alum Shale 

Formation in the drill core, at intervals of approxi-

mately every half meter. In order to extract 13Corg, sam-

ple levels were identified in respect to shale, and 

avoiding limestones, pyrite and calcite. The samples 

were crushed into a fine powder using an agate mortar. 

In order to remove carbonate material, the samples 

were put in 10% formic acid and heated to 60 °C. The 

samples were then washed with deionized water sever-

al times until a pH level of approximately 6 was 

reached and subsequently dried in an oven (50 °C). 

They were thereafter pulverized with an agate mortar 

until a fine, homogeneous, powder was produced. The 

sample powder was put in vial and shipped off to an 

external laboratory for analysis (for a more detailed 

Fig. 3. Photos and photomicrographs from the lower part of the Tomten-1 drill core. Scale bars correspond to 5 mm. A. Lingulid 

sandstone with shale and intraclasts of surronunding sandstone. B. Pyrite-rich glauconitic conglomerate with large intraclasts 

resembling the underlying Lingulid Sandstone. Kvarntorp Member, Borgholm Formation (TOM1-19). C. Dark green, glauconit-

ic mud rich sandstone of the Kvarntorp Member, Borgholm Formation (TOM1-18). D. Unconformable shift from shale to glau-

conite bed. Alum Shale Formation (TOM1-17). E. Close-up of (D) showing thin laminae of glauconite occurring in the shale. 

Alum Shale Formation (TOM1-17). F. White sandstone without any distinct bedding of the Alum Shale Formation.  G. Siliclas-

tic mudstone, with thin dark laminae. In the lower part it has mud drapes whereas in the upper part of the mudstone it becomes 

cross laminated. Alum Shale Formation (TOM1-13). H. Close-up of (G) showing possible microbial mats. Alum Shale For-

mation (TOM1-13). I. Crystallized limestone in the basal part whereas the upper part consists of pack/wackstone. Alum Shale 

Formation (TOM1-14). J. Close-up of (I) showing transition from orsten to skeletal rich packstone. Alum Shale Formation 

(TOM1-14). 
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technical description of the methods used, see Berg-

ström et al. 2014). 

 

4 Lithostratigraphy  
 

4.1 Lingulid Sandstone Member, File Hai-
dar Formation (29.85−26.43 m) 
The 3.42 m Lingulid Sandstone Member of the File 

Haidar Formation is distinctly bedded in the lower part 

and becomes more coarse-grained and massive in the 

upper part (cf. Nielsen & Schovsbo 2007). Some inter-

vals are dark grey in colour. 

Grains of pyrite occur throughout the Lingulid 

Sandstone. The pyrite grains sometimes reach a few 

centimetres in diameter and weathered pyrite has 

stained the surrounding sandstone. Thin irregular, 1−2 

mm thick, shale horizons occur throughout the Lingu-

lid Sandstone. At two levels (28.07 and 27.31 m), 

these shale horizons are 3−5 mm thick, with intraclasts 

of the surrounding sandstone (Fig. 3A). The drill core 

easily splits up along the shale horizons. A possible 

trilobite fragment, preserved upside down with regards 

to its living position, has been recorded at 27.70 m. 

Throughout the Lingulid Sandstone vertical cracks 

occur  that sometimes are filled with calcite. 

In the Billingen-Falbygden area, the Lingulid Sand-

stone Member of the File Haidar Formation has a 

thickness of 28−34 m (Martinsson 1974). This implies 

the 3.42 m thick sandstone in the Tomten-1 drill core 

represents approximately the uppermost tenth part of 

the Lingulid Sandstone Member in Västergötland. 

According to Nielsen & Schovsbo (2015), the Lingulid 

Sandstone in the Tomten-1 drill core would corre-

spond to the basal upper Vergalian-Rausvian Stage. 

Martinsson (1974) noted the presence of trace fossils 

and brachiopods in the Lingulid Sandstone, and Ahl-

berg et al. (1986) described fragmentary trilobites 

from a few levels in the sandstone. Beds or lenses of 

impure carbonates occur in the Lingulid Sandstone 

(Hagström 1987). These may be derived from shelly 

marine organisms. 

 

4.2 Kvarntorp Member, Borgholm Form-
ation (26.43−25.70 m) 
The 73 cm thick Kvarntorp Member of the Borgholm 

Formation is represented by glauconitic sandstone and 

conglomerate. Its lowermost part (26.43−26.29 m) 

consists of a pyrite-rich glauconitic conglomerate with 

large intraclasts ranging in diameter from 1 to 3 cm 

(Fig. 3B). The intraclasts are grey and have the litho-

logical characteristics of the underlying Lingulid 

Sandstone Member. The lower boundary of the con-

glomerate forms an irregular erosional surface, infera-

bly representing the Hawke Bay unconformity (see 

Nielsen & Schovsbo 2007, 2015). 

The interval 26.29−25.75 m comprises dark green, 

glauconitic mud-rich sandstone (Fig. 3C). At two lev-

els (26.13 m and 26.06 m), 2 cm large, grey clasts oc-

cur. These consist of either large pyrite crystals or 

sandstone fragments from the Lingulid Sandstone. 

Pyrite occurs throughout the Kvarntorp Member, with 

large centimeter-sized concretions at 25.90 m. 

Fragments of indeterminate fossils have been found 

in the core. Acritarchs and brachiopods have been de-

Fig. 4. Photomicrographs from the Exsulans Limestone Bed. Scale bar correspond to 5 mm. A. Basal part with unconformable 

lower part. Crossbedding occurs (TOM1-20a). B. Unconformities with fillings of alum shale (TOM1-20b). C. Close-up of (B) 

showing irregular fabric within the shale (TOM1-20b). D. Reworked interval (TOM1-16). E. Close-up of (D) showing calcite 

walled brachiopods (TOM1-16). F. Different facies of limestone (TOM1-15). G. The uppermost part with several facies shifts. 

A fault occurs immediately below a possible karst horizon (TOM1-21). H. Close-up of (G) showing skeletal remains c. 10 mm 

from the top (TOM1-21). 
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scribed from the Kvarntorp Member in Östergötland 

and Närke (Westergård 1940; Eklund 1990). 

 

4.3 Alum Shale Formation (25.70−1.55 
m) 
 
4.3.1 Alum Shale 
In the Tomten-1 drill core, the unconformity at the top 

of the Borgholm Formation is overlain by a 24.15 m 

thick succession of dark grey and black shales of the 

Alum Shale Formation. 

Glauconitic beds are present at 25.52−23.31 m, 

most of them in the lower 80 cm of this interval, where 

the individual bed thickness varies from 3−5 cm. The 

transition between the glauconite beds and the shale 

are often sharp (Fig. 3D). Sporadic glauconitic laminae 

Fig. 5. A. Polished slabs of the ‘Hypagnostus Limestone Bed’, Conglomeratic Limestone, Limestone bed with Exporrecta Con-

glomerate and a photograph of an overlying limestone. The width of the drill core is 70 mm. B–I. Photomicrographs. Scale bars 

correspond to 5 mm. B. Showing the basal ‘Hypagnostus Limestone Bed’ with sharp transition from light to dark colour (TOM1

-12). C. Upper part of the ‘Hypagnostus Limestone Bed’ with transition from fine grained to cone in cone limestone (TOM1-

12). D. Conglomeratic Limestone with varied sized fragments, including beach pebbles (TOM1-11). E. Close-up of (D) showing 

brachiopods skeletal (TOM1-11). F. Cone in cone structure in the basal part of the limestone (TOM1-1a). G. Laminated lime-

stone with colour shift (TOM1-1a). H. Middle part of the limestone (TOM1-1b). I. Close-up of (H) showing calcite crack within 

the limestone (TOM1-1b). J. Karst horizon and calcite crack (TOM1-1c). K. Abundant brachiopods in the Exporrecta Conglom-

erate (TOM1-1d). L. Close-up of (K) showing echinoderms, hyoliths and brachiopods in the Exporrecta Conglomerate (TOM1-

1d). 
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of various thicknesses (Fig. 3E) are present within the 

shale. The colour and textural characteristics resemble 

those of the underlying glauconitic sandstone of the 

Borgholm Formation. This glauconitic interval appears 

to represent a transitional shift from the Borgholm to 

the Alum Shale Formation. At some areas in Väs-

tergötland, the boundary between these formations 

appears to be gradual (Nielsen & Schovsbo 2007). In 

the Tomten-1 drill core, however, there is sharp un-

conformity at the top of the Borgholm Formation. 

The characteristics of the Alum Shale vary. The 

lower part (25.70−17.40 m) of the Alum Shale For-

mation is largely composed of grey shale, often form-

ing hard planar laminated packages with mud. In the 

upper middle part of the Ptychagnostus atavus Zone 

white sandstone occurs without any distinct bedding 

(Fig. 3F). In the upper half of the P. atavus Zone 

sometimes distinctive light grey packages of siltstone 

occur (Fig. 3G). These siltstones are laminated with a 

dark material (Fig. 3H) and sometimes cross bedding 

occurs (Fig. 3G). 

In the upper parts of the Tomten-1 drill core the 

colour shifts from grey to black. The shift to darker 

shales is due to deposition of more organic material 

(Bergström & Gee 1985; this paper, Table 1). The Al-

um Shale is normally planar laminated, however, at 

proximity to lens-shaped limestone concretions the 

shale may have the same gradient as the adjacent lime-

stone concretion. At several levels, the shale is ex-

tremely fragmented and brittle. 

Thin (1–2 mm) white and yellow laminae repre-

senting pyrite and phosphate are present throughout 

the drill core. In the Furongian they appear to be more 

frequent. The weathered pyrite has stained the surface 

of large parts of the surrounding shale. 

 

4.3.2 Limestone 
The lowermost limestone bed in the Tomten-1 drill 

core is at 24.50−24.12 m. In the interval 24.01−21.31 

m limestone also occur as millimeter-thick laminae. 

These show parallel bedding or are massive. At 

21.10−1.73 m the limestone intervals become thicker 

with individual beds reaching several centimeters to 

decimeters in thickness.  

Dworatzek (1987) described two types of lime-

stone in the Alum Shale Formation of Västergötland. 

The first type occurs mainly on Mount Kinnekulle, 

whereas the second type is dominating in Mount 

Billingen, south-east of Kinnekulle. The first type is 

characterized by continuous layers and a complex 

composition, whereas the second type is characterized 

by horizontal lamination and large lenses known as 

‘stinkstones’. The Tomten-1 drill core has several in-

tervals of limestone with different characteristics. In 

the middle P. atavus Zone, a limestone occurs that is 

mainly crystalline in the lower part. In the middle it is 

truncated by an erosional surface with overlying light 

grey packstone with abundant glauconite and shell 

fragments (Fig. 3I−J). 

In the Alum Shale Formation several prominent 

limestone marker beds occur, which can be correlated 

throughout Sweden (Nielsen & Schovsbo 2007). 

An unconformity marks the basal part of a lime-

stone bed (24.49−24.12 m) described here as a lateral 

equivalent of the Exsulans Limestone Bed of Scania 

and Bornholm. The lowermost 10 cm comprises grey 

coloured quartzitic sandstone. In the basal part cross 

Fig. 6. Photomicrographs of the Kakeled Limestone Bed. Scale bar correspond to 5 mm. A. Basal part with mud-wackstone 

(TOM1-2). B. Close-up of (A) showing abundant trilobite skeletals (TOM1-2). C. Wackestone with surrounding cave filling of 

alum shale (TOM1-3). D. Crystalline limestone (TOM1-4a). E. Close-up of (D) showing cocqonid grainstone (TOM1-4a). F. 

Angled crystalline limestone (TOM1-4b). G. Close-up of (F) (TOM1-4b). H. Coarse-grained crystalline limestone (TOM1-5). 
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bedding is abundant (Fig. 4A), whereas higher up sev-

eral unconformities with fillings of mm-thick alum 

shale occur with sometimes irregular fabric (Fig. 

4B−C). Throughout the Exsulans Limestone Bed there 

is an abundance of glauconite and pyrite. The bed is 

frequently highly reworked (Fig 4D), with abundant 

brachiopod remains. In the upper part it grades (Fig. 

4E) from a planar laminated, coquinoid limestone with 

occurrences of echinoderms and brachiopods (Fig. 4F) 

to a limestone of a crystalline character. In the upper-

most part there are several colour shifts within a crys-

talline structure. Ten mm from the top there is an ir-

regular surface. Below this surface a fault occurs (Fig. 

4G) with glauconite occurring within a crack. There is 

planar laminated limestone with abundant shell frag-

ments 10−5 mm below the top (Fig. 4H). The upper-

most 5 mm of the Exsulans Limestone Bed again has 

an interval of crystalline structure. The top of the 

Exsulans Limestone Bed has a black irregular surface 

resembling dolomitization. 

At 17.42 m, the dip of the bedding of the alum 

shale is gradually increasing. The ‘Hypagnostus Lime-

stone Bed’ (Fig. 5A) distinctly overlies the shale with 

a dip of 39°. The dip gradually decreases within the 

limestone bed and in the middle there is a sharp transi-

tion also to a darker colour (Fig. 5B−C). At the top of 

the limestone there is a 1 cm thick horizontal package 

of Alum Shale. This lithology grades into an overlying 

conglomeratic limestone, containing abundant large 

shale clasts, resembling beach pebbles and brachiopod 

fragments (Fig. 5D−E). Above the conglomeratic 

limestone an unconformity occurs with an overlying 

limestone (Fig. 5F−G). Throughout the limestone there 

is distinct internal bedding with a dip of 45−50° (Fig. 

5H). The limestone has a large vertical crack with a 

surrounding light grey zone and filling of the overly-

ing Exporrecta Conglomerate (Fig. 5I), however, also 

smaller calcite cracks of almost vertical to 45° dip 

occur. 

The limestone has an approximately 1 cm light 

grey zone in both its lower and upper boundary (Fig. 

5J). The upper boundary has a dip of 50° relative to 

the horizontal plane. The overlying Exporrecta Con-

glomerate has abundant brachiopod remains (Fig. 5K) 

and fillings of shale and echinoderm fragments (Fig. 

5L). A 19° disconformable boundary separates the 

Exporrecta Conglomerate and an overlying limestone 

unit. The upper part of the overlying limestone con-

tains brachiopods. 

The limestone occurring immediately below the 

Exporrecta conglomerate in the Tomten-1 drill core 

has previously been reported from Västergötland (cf. 

Weidner et al. 2004). However, the limestone occur-

ring above the Exporrecta conglomerate only display 

brachiopod fragments from the acid residue sample. 

Thus, this limestone does not display the fossil rich-

ness that is characteristic of the Andrarum Limestone 

normally occurring at corresponding stratigraphic level 

(Berg-Madsen 1985). 

The Kakeled Limestone Bed (12.05−10.08 m) is a 

massive grey limestone in its lower part (Fig. 6A−B) 

but gradually becomes frequently conglomeratic with 

fillings of shale in the upper part (Fig. 6C). Crystalline 

limestone occurs at some levels (Fig. 6D). Large and 

Fig. 7. Polished slab and microphotographs of Ordovician lithologies. Scale bars correspond to 5 mm. A-C. Bjørkåsholmen 

Formation A. Polished slab. B. Coarse-grained glauconitic packstone that transists to a recrystallized mud-wackstone. The fauna 

is dominated by arthropods. Horizontal cracks of calcite are present (TOM15-1). C. Pack-wackestone that grades to glauconitic 

packstone (TOM15-2). D-E. Latorp Limestone D. Large boring (TOM1-7). E. Highly glauconitic packstone (TOM1-8). F-H. 

Lanna Limestone F. Coarse-grained pack/wackestone (TOM1-9). G. Close-up of (F) showing abundant faunal remains (TOM1-

9). H. Arthropod-dominated wackestone. Top of the Lanna Limestone (TOM1-10). 
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mature intraclasts resembling rounded beach pebbles 

are also present. There are frequent vertical cracks of 

calcite below light grey zones (1 cm). In the upper part 

of the limestone bed there are coquinoid horizons (Fig. 

6E) with mass occurrence of the brachiopod Orusia 

lenticularis. Also crystallized limestones are present 

(Figs. 6F−G). Further up in the Furongian succession 

abundant limestone concretions occur, some of which 

are crystallized (Fig. 6H) 

 

4.4 ?Bjørkåsholmen Formation (1.55−1.53 m) 
The basal Ordovician bed consists of a 1–2 cm thick, 

glauconitic packstone unit situated between two dis-

conformities here considered to represent the 

Bjørkåsholmen Formation (Fig. 7A–B). Pyrite is com-

mon in the lowermost part. The assemblage of the unit 

is dominated by arthropods and calcite cracks are pre-

sent. In the lowermost part shell fragments are sparse, 

whereas in the upper part shell fragments become 

abundant (Fig. 7B−C). The internal structure indicates 

a karren system (karst weathered limestone), similar to 

folding structures (Lehnert et al. 2012, 2013a). The 

disconformities represent karst horizons indicating 

subaerial exposure during regressions (Lehnert et al. 

2012, 2013a).  

The Bjørkåsholmen Formation conglomerate is 

very thin in the Tomten-1 drill core compared to Nor-

way and Öland (Egenhoff et al. 2010) (see Appendix 

B). This clearly illustrates the substantial weathering 

Västergötland was exposed to. Judging from the cono-

dont data of Olgun (1987), the Bjørkåsholmen For-

mation as defined biostratigraphically by Egenhoff et 

al. (2010) does not appear to be represented in the 

Tomten-1 drill core. The conodont zonation of Olgun 

(1987) places it in the P. proteus conodont zone, corre-

sponding to the M. planilimbata trilobite Zone. 

Lehnert et al. (2012), however, placed it in the upper 

P. deltifer conodont Zone. 

 

4.5 Latorp Limestone (1.53−1.10 m) 
The Latorp Limestone comprises a 43 cm thick suc-

cession that is dark grey in colour. Glauconite occurs 

Fig. 8. Comparison of the Furongian biostratigraphy of Scandinavia as based on various authors. A. Westergård (1947). B. Hen-

ningsmoen (1957). C. Ahlberg (2003). D. Terfelt et al. (2008), Høyberget & Bruton (2012), Nielsen et al. (2014), and Weidner 

& Nielsen (2014). 
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throughout the interval (Fig. 7D–E), however, in the 

lower and upper parts glauconite grains are more com-

mon. Pyrite occurs in abundance at 1.20−1.10 m. A 5 

mm thick distinctive whitish layer occurs at 1.25 m. 

Calner et al. (2013) suggested this interval was 

coeval with the Holen Limestone, however, according 

to Thorslund (1937) and Olgun (1987) this unit corre-

sponds to the Floian Latorp Limestone. 

 

4.6 Lanna Limestone (1.10−0 m) 
The uppermost part of the Tomten-1 drill core is repre-

sented by a 1.10 m thick succession of grey, often bio-

turbated ‘orthoceratite limestone’ of Mid Ordovician 

age. Lehnert et al. (2013a) assigned this limestone 

succession to the Darriwilian Holen Limestone. How-

ever, the lithological characteristics and its position in 

the sequence rather suggest that it represents the Dap-

ingian Lanna Limestone.  

The Lanna Limestone is light grey in colour. Pyrite 

is common in the lowermost part of the interval. Indi-

vidual limestone beds are separated by corrosional 

hardgrounds and thin mud horizons. Bioturbation is 

common and appears to be increasing upwards (Fig. 

7F–H). Shelly fossil fragments occur throughout the 

Lanna Limestone (Fig. 7G). At 0.95 m a large Mega-

laspis sp. occur. At 0.25 m an indeterminate fossil 

occur and a large indeterminate fossil occurs at 1.10 

m. 

The Lanna Limestone is approximately 4.5 m 

thick in the Tomten quarry, whereas the 1.10 m of the 

Lanna Limestone in the Tomten-1 drill core represents 

approximately one fourth of the lower part of the unit. 

 

5 Furongian and Cambrian Se-
ries 3 biostratigraphy of Scandi-
navia 
 
5.1 Furongian 
The Furongian (roughly corresponding to the tradition-

al ‘Upper Cambrian’, excluding the A. pisiformis 

Zone) of Scandinavia was extensively studied in the 

19th century (e.g. Linnarsson 1868; Nathorst 1869). 

Current knowledge is largely based on the work of 

Westergård (1922) who comprehensively described 

trilobites and agnostoids stratigraphically and geo-

graphically of Sweden. He divided the ‘Upper Cambri-

an’ into the following six zones (in ascending order): 

the Agnostus pisiformis, Olenus, Parabolina spinulosa 

and Orusia lenticularis, Leptoplastus and Eurycare, 

Peltura, Sphaeropthalmus and Ctenopyge, and Acer-

ocare, Cyclognathus and Parabolina zones. 

Westergård (1947) subdivided the ‘Upper Cambrian’ 

into six zones and 24 subzones (Fig. 8A). Hen-

ningsmoen (1957) continued this work and subdivided 

the Upper Cambrian into eight zones (in ascending 

order): the Agnostus pisiformis, Olenus and Agnostus 

(Homagnostus) obesus, Parabolina spinulosa, Lepto-

plastus, Protopletura praecursor, Peltura minor, Pel-

tura scarabaeoides and Acerocare zones. Hen-

ningsmoen (1957) also increased the number of sub-

zones to 32 (Fig. 8B). Nielsen & Schovsbo (1999) 

discarded three of these zones, resulting in 29 zones 

altogether. Also Ahlberg (2003) described 29 zones 

(Fig. 8C). 

Terfelt et al. (2008) divided the Furongian into two 

parallel zonations (Fig. 8D) based on agnostoids and 

polymerids, respectively. The main reason for the ag-

nostoid zonation was to provide a scheme for global 

correlation. The four agnostoid zones were (in ascend-

ing order): Glypagnostus reticulatus, Pseudagnostus 

cyclopyge, Lotagnostus americanus and Trilobagnos-

tus holmi. The zones were retained from Ahlberg 

(2003), although the nomenclature of three zones was 

modified. The Agnostus pisiformis Zone was excluded 

from the Furongian, and the base of the latter was 

characterized by FAD of G. reticulatus. The traditional 

term ‘Upper Cambrian’ was replaced with Furongian 

(Peng & Babcock 2003; Peng et al. 2004) and the Ag-

nostus pisiformis Zone was subsequently attributed to 

the Paradoxides forchhammeri Superzone of the Cam-

brian Series 3. 

Høyberget & Bruton (2012) replaced the Ctenopy-

ge affinis Zone with the broadened Ctenopyge tumida 

Zone (Fig. 8D). Weidner & Nielsen (2013) changed 

Fig. 9. Comparison of the Cambrian Series 3 biostratigraphy of Scandinavia as based on various authors. A. Westergård (1946). 

B. Nielsen et al. (2014) and Weidner & Ebbestad (2014). C. This study. 



17 

 

the name of the uppermost zone (Fig. 8D) from Acer-

ocare to Acerocarina. Nielsen et al. (2014) modified 

the nomenclature of the Furongian of Scandinavia 

(Fig. 8D) and (re)introduced the concept of super-

zones. They retained the 27 polymerid zones and five 

agnostoid zones from Terfelt et al. (2008), although 

changing the name of the lowest agnostoid zone from 

Glypagnostus reticulatus to the Homagnostus obesus 

and Glypagnostus reticulatus Zone. The three 

polymerid zones of Protopletura praecursor, Peltura 

minor and Peltura scarabaeoides, were replaced with 

the two zones Protopeltura and Peltura. The Paraboli-

na spinulosa Zone was replaced by the Spinulosa 

Superzone and the lowest zone, the Agnostus 

(Homagnostus) obesus Zone, was replaced by the Ole-

nus Superzone. The Furongian of Scandinavia is hence 

divided into (in ascending order): the Olenus, Parabo-

lina, Leptoplastus, Protopeltura, Peltura and Acer-

ocarina superzones. Rasmussen et al. (2015) replaced 

the L. angustatus and L. ovatus zones with the L. cras-

sicornis-L. angustatus Zone. 

 
5.2 Cambrian Series 3 
The subdivision of Cambrian Series 3 (roughly corre-

sponding to the traditional ‘Middle Cambrian’) in 

Scandinavia is largely based on the work of 

Westergård (1946) (Fig. 9A), who divided the ‘Middle 

Cambrian’ of Sweden into three stages (the Paradox-

ides oelandicus, P. paradoxissimus and P. forchham-

meri stages) and nine zones (in ascending order): the 

Paradoxides insularis, Paradoxides pinus, Ptychag-

nostus gibbus, Tomagnostus fissus–Ptychagnostus 

atavus, Hypagnostus parvifrons, Ptychagnostus punc-

tuosus, Ptychagnostus lundgreni–Goniagnostus 

nathorsti, Solenopleura brachymetopa and Lejopyge 

laevigata zones. 

Robison (1984) identified five global agnostoid 

zones (in ascending order): the Ptychagnostus prae-

currens, Ptychagnostus gibbus, Ptychagnostus atavus, 

Ptychagnostus punctuosus and Lejopyge laevigata 

zones. Ahlberg (1989) suppressed the Eccaparadox-

ides pinus Zone of Scandinavia with the more widely 

recognizable Ptychagnostus praecurrens Zone.  

Peng & Robison (2000) divided the ‘middle’ Cam-

brian into seven global agnostoid zones (in ascending 

order): the Ptychagnostus praecurrens, Ptychagnostus 

gibbus, Ptychagnostus atavus, Ptychagnostus punctu-

osus, Goniagnostus nathorsti, Lejopyge laevigata and 

Proagnostus bulbus zones. The base of each zone was 

defined by the first appearance of a selected, geo-

graphically widespread species, and the top by the 

base of the succeeding zone (Peng & Robison (2000). 

The global agnostoid zonation proposed by Peng & 

Robison (2000) has been widely adopted and can be 

applied also to Scandinavian strata (e.g. Axheimer & 

Ahlberg 2003; Weidner et al. 2004). The agnostoid 

zonation of Peng & Robison is used in this paper. 

The Agnostus pisiformis Zone now forms the up-

permost zone in the Cambrian Series 3 of Scandinavia. 

It was previously regarded as the basal zone of the 

traditional ‘Upper Cambrian’ (Axheimer et al. 2006). 

The strongly facies controlled Solenopleura? (or Er-

ratojincella)  brachymetopa Zone was incorporated in 

the Lejopyge laevigata Zone by Axheimer et al. 

(2006). 

Weidner & Nielsen (2014) combined Westergård’s 

(1946) Tomagnostus fissus-Ptychagnostus atavus and 

Hypagnostus parvifrons zones and named it the 

Acidusus atavus Zone. It was subdivided into a lower 

and an upper part. Nielsen & Weidner (2014) favoured 

the usage of three Scandinavian superzones in Cambri-

an Series 3 (in ascending order): the Acadoparadox-

ides oelandicus, Paradoxides paradoxissimus and Par-

adoxides forchhammeri zones (Fig. 9B). Weidner & 

Ebbestad (2014) subdivided the Cambrian Series 3 of 

Scandinavia into eight zones (in ascending order): the 

Eccaparadoxides insularis, Ptychagnostus prae-

currens (published as Acadoparadoxides pinus - Pen-

tagnostus praecurrens), Ptychagnostus gibbus 

(published as Triplagnostus gibbus), Ptychagnostus 

atavus (published as Acidusus atavus), Ptychagnostus 

punctuosus, Lejopyge lundgreni - Goniagnostus 

nathorsti, Lejopyge laevigata and Agnostus pisiformis 

zones (Fig. 9B). 

For correlation this paper uses nomenclature of 

Weidner & Ebbestad (2014), however, using the glob-

ally accepted Ptychagnostus gibbus (published as 

Triplagnostus gibbus), Ptychagnostus atavus 

(published as Acidusus atavus) and Ptychagnostus 

praecurrens (published as Acadoparadoxides pinus - 

Pentagnostus praecurrens) zones (Fig. 9C). 

 

6 Systematic notes 
Terminology. – Morphological terms adopted are those 

described by Robison (1984), Whittington (in Kaesler 

1997) and Peng & Robison (2000). 
 

Repository. – Discussed and illustrated specimens are 

stored at the Department of Geology, Lund University, 

Sweden. 

 

Class uncertain 

Order Agnostida Salter, 1864 

Family Agnostidae M´Coy, 1849 

Genus Agnostus Brongniart, 1822 
 

Agnostus pisiformis (Wahlenberg, 1818) 
 

Figs. 10A–B 
 

Material. – Hundreds of disarticulated specimens. 
 

Remarks. – In the lower, shale-dominated part of the 

A. pisiformis Zone of the Tomten-1 drill core, A. pisi-

formis is not as well preserved as in the upper, lime-

stone-dominated part. The species has been discussed 

in detail by, e.g., Westergård (1922, pp. 115–116, pl. 

1, figs. 1–4,  Westergård 1946, pp. 85–86, pl. 13, figs. 

10–14), Ahlberg & Ahlgren (1996, pp. 130–131) and 

Høyberget & Bruton (2008). Müller & Walossek 
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(1987) described exceptionally well preserved 

(phosphatized) specimens from the ‘Orsten’ type fauna 

of Västergötland. 
 

Occurrence. – Agnostus pisiformis occurs throughout 

the A. pisiformis Zone in the Tomten-1 drill core. In 

the uppermost sampled level of the zone the index 

fossil is associated with a brachiopod and an indeter-

minate polymerid trilobite.  

 

Agnostus (Homagnostus) obesus (Belt, 1867) 
 

Figs. 10C–D 
 

Material. – 12 cephala and 3 pygidia. 
 

Remarks. – The specimens are rather well preserved. 

Westergård (1922, p. 116, pl. 1, fig. 4) described it as a 

subspecies of A. pisiformis. It has been described also 

by Westergård (1947, pp. 3–4, pl. 1, figs. 10–11) and 

Ahlberg & Ahlgren (1996, p. 131, figs. 3A–F). It rang-

es throughout the five lower zones of the Olenus 

Superzone and is used for intra- and interregional cor-

relations (Ahlberg & Terfelt 2012). 
 

Occurrence. – It appears in the lower part of the O. 

gibbosus Zone in the Tomten-1 drill core. 

Associated fossils are Olenus sp., O. gibbosus and an 

indeterminate polymerid trilobite. It occurs throughout 

Scandinavia (Ahlberg & Ahlgren 1996).  

 

Family Peronopsidae Westergård, 1936 

Genus Peronopsis Hawle & Corda, 1847 
 

Peronopsis cf. insignis (Wallerius, 1895) 
 

Fig. 10E 
 

Material. – One cephalon and nine pygidia. 
 

Remarks. – The specimens at hand most closely re-

semble P. insignis, as described by Westergård (1946, 

p. 43, figs. 10–15). The specimens in the Tomten-1 

drill core have vestigial marginal spines. 
 

Occurrence. – P. cf. insignis occur in the upper part of 

the L. laevigata Zone in the Tomten-1 drill core. No 

associated species are present. P. insignis occurs 

throughout Västergötland (Westergård 1946) and has 

also been reported from the Oslo Region of Norway 

Fig. 10. Agnostoids from the Tomten-1 drill core. Scale bars correspond to 2 mm. A–B. Agnostus pisiformis (Wahlenberg, 

1818) from the A. pisiformis Zone. A. Pygidium (11.92 m). B. Mass occurrence (11.62 m). C–D. Agnostus (Homagnostus) obe-

sus (Belt, 1867) from the O. gibbosus Zone. C. Cephalon (11.14 m). D. Pygidium (11.14 m). E. Peronopsis cf. insignis 

(Wallerius, 1895), pygidium from the L. laevigata Zone (12.90 m). F. Peronopsis sp., cephalon from the L. laevigata Zone 

(13.02 m). G. Lejopyge sp., cephalon from the L. laevigata Zone (15.31 m). H–I. Ptychagnostus atavus (Tullberg, 1880) from 

the P. atavus Zone. H. Pygidium (23.67 m). I. Mass occurrence (24.04–24.01 m). J. Ptychagnostus cf. atavus, pygidium from 

the P. atavus Zone (24.09 m). 
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(Høyberget & Bruton (2008). 

 

Peronopsis sp. 
 

Fig. 10F 
 

Material. – Two cephala and 33 pygidia. 
 

Remarks. – The specimens are not well preserved, but 

resemble species of Peronopsis (e.g. Westergård 1946, 

pl. 3). 
 

Occurrence. – Peronopsis sp. occurs in the upper part 

of the L. laevigata Zone in the Tomten-1 drill core. No 

associated species occur together with Peronopsis sp.. 

 

Family Ptychagnostidae Kobayashi, 1939 

Genus Lejopyge Hawle & Corda, 1847 
 

Lejopyge sp. 
 

Fig. 10G 
 

Material. – Ten cephala. 
 

Remarks. – The specimens from the Tomten-1 drill 

core are poorly preserved and therefore left in open 

nomenclature. They have the characteristics of Lejop-

yge, as the cephala are effaced but have a well-

developed posteroglabella (e.g. Westergård 1946, pl. 

13; Robison 1984, p. 42). 
 

Occurrence. – Lejopyge sp. occurs in the lower half of 

the L. laevigata Zone of the Tomten-1 drill core. Asso-

ciated species are a brachiopod and an indeterminable 

polymerid trilobite. 

 

Genus Ptychagnostus Jaekel, 1909 
 

Ptychagnostus atavus (Tullberg, 1880) 
 

Figs. 10H–I 
 

Material. – Hundreds of specimens. 
 

Remarks. – P. atavus has been described by 

Westergård (1946, pp. 76–77, pl. 11, figs. 8–23), Robi-

son (1984, pp. 18–21, fig. 11) and Peng & Robison 

(2000, pp. 69–70, fig. 52). It was most recently de-

scribed and discussed by Ahlberg et al. (2007) and 

Hong & Choi (2015). P. atavus is an important agnos-

Fig. 11. Agnostoids and trilobites from the Tomten-1 drill core. Scale bars correspond to 2 mm. A–B. Ptychagnostus gibbus 

(Linnarsson, 1869) from the P. gibbus Zone. A. Cephalon (24.20 m). B. Pygidium (24.20 m). C. Ptychagnostus sp., pygidium 

from the P. atavus Zone (19.42 m). D. Ptychagnostus? sp., pygidium from the P. atavus Zone (21.42 m). E. Indeterminate ag-

nostoid, pygidium from the P. atavus Zone (21.59 m). F-G. Olenus gibbosus (Wahlenberg, 1818), O. gibbosus Zone. F. pygi-

dium (11.14 m). G. Juvenile pygidium (11.14 m). H. Olenus sp., pygidium. O. gibbosus Zone (11.14 m). I. Ctenopyge linnars-

soni (Westergård, 1922), cephalon from the C. linnarssoni Zone (5.78 m). J. Ctenopyge pecten (Salter, 1864), cephalon from 

the C. linnarssoni Zone (2.42 m). 
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toid for global correlations and its first appearance 

datum (FAD) defines the base of the Drumian Stage of 

Cambrian Series 3 (Babcock et al. 2005, 2007). 
 

Occurrence. – P. atavus occurs throughout the lower 

half of the P. atavus Zone in the Tomten-1 drill core. It 

occurs sporadically as well as in abundance in the drill 

core. In the upper half of the zone it is absent, except 

at one level (19.45 m). The associated fauna in the 

Tomten-1 drill core consists of Paradoxides? sp., Par-

adoxides sp. and indeterminate brachiopods. 

Ptychagnostus atavus can be recognized globally and 

has been reported from Australia, Vietnam, China, 

Korea, Russia, Kazakhstan, Sweden, Denmark, Nor-

way, the United Kingdom, Greenland, Canada and the 

Unites States (Robison 1984; Geyer & Shergold 2000; 

Babcock et al. 2007). 

 

Ptychagnostus cf. atavus (Tullberg, 1880) 
 

Fig. 10J 
 

Material. – One pygidium. 
 

Remarks. – The specimen strongly resembles the py-

gidium of P. atavus (e.g. Westergård 1946, pl. 11), 

although the axial node is not well preserved. The an-

terior furrows of the axis are not as distinguishable as 

in P. atavus, and the specimen is left in open nomen-

clature.  
 

Occurrence. – P. cf. atavus occurs in the lowest part of 

the P. atavus Zone. The P. gibbus/P. atavus boundary 

possibly occur 1 cm up in the succession with the ap-

pearance of P. atavus. It is associated with Paradox-

ides? sp. in the Tomten-1 drill core. 

 

Ptychagnostus gibbus (Linnarsson, 1869) 
 

Figs. 11A–B 
 

Material. – 25 cephala and 16 pygidia. 
 

Remarks. – The species is distinctive and characterized 

by several prominent spines (Westergård, 1946). In the 

Tomten-1 drill core only one cephalon exhibits a dis-

tinct cephalic spine, whereas the other specimens 

strongly resemble the appearance of P. gibbus. In sev-

eral pygidia the axial spine appears to be broken off. It 

has been described by, e.g., Westergård (1946, pp. 70–

71, pl. 9, figs. 17–24), Robison (1984, pp. 22–24, fig. 

13) and Høyberget & Bruton (2008, pp. 51–53, pl. 8, 

figs N–S). 
 

Occurrence. – P. gibbus occurs throughout its name 

bearing zone and it is the index fossil of the lowermost 

zone of the Alum Shale Formation in the Tomten-1 

core. It is also the lowermost zone of the P. paradoxis-

simus Superzone. It is a common and geographically 

widespread species that has been reported from several 

palaeocontinents (e.g., Westergård 1946; Robison 

1984; Høyberget & Bruton (2008). 

 

Ptychagnostus sp. 
 

Fig. 11C 

 

Material. – Three pygidia. 
 

Remarks. – The specimens are not well preserved but 

have the characteristics of Ptychagnostus, although 

species identification is difficult (e.g. Westergård 

1946, pl. 9–12).  
 

Occurrence. – Indeterminate species of Ptychagnostus 

occur in the lower–middle half of the P. atavus Zone 

in the Tomten-1 drill core. Associated fossil is a speci-

men of Paradoxides? sp. 

 

Ptychagnostus? sp. 
 

Fig. 11D 
 

Material. – Five pygidia. 
 

Remarks. – The specimens have the pygidial charac-

teristics of Ptychagnostus (e.g. Westergård 1946, pl. 9

–12), although they are not well preserved.  
 

Occurrence. – It occurs in the middle of the P. atavus 

Zone in the Tomten-1 drill core. No associated fossils 

occur with Ptychagnostus? sp. 

 

Indeterminate agnostoid 
 

Fig. 11E 
 

Material. – Seven pygidia. 
 

Remarks. – The specimens are poorly preserved, alt-

hough most likely representing agnostoids. 
 

Occurrence. – Indeterminate agnostoids occur in the 

P. atavus and L. laevigata zones in the Tomten-1 drill 

core. Associated fossils are specimens of Peronopsis 

sp. 

 
 

Class Trilobita Walch, 1771 

Order Ptychopariida Swinnerton, 1945 

Family Olenidae Burmeister, 1843 

Genus Olenus Dalman, 1827 
 

Olenus gibbosus (Wahlenberg, 1818) 
 

Figs. 11F–G 
 

Material. – Eight cranidia. 
 

Remarks. – O. gibbosus was described in detail by 

Westergård (1922, pp. 124–125, pl. 5, figs. 1–10) and 

Henningsmoen (1957, pp. 105–106, pl. 9, fig. 7). 

Adult as well as juvenile specimens occur in the drill 

core. 
 

Occurrence. – It occurs throughout the lower part of 

the O. gibbosus Zone in the Tomten-1 drill core. Asso-

ciated species are A. (Homagnostus) obesus and Ole-

nus sp. O. gibbosus occurs throughout Scandinavia 

and in the United Kingdom (Westergård 1922; Hen-

ningsmoen 1957; Terfelt et al. 2008). 

 

Olenus sp. 
 

Fig. 11H 
 

Material. – Two cranidia and one pygidium. 
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Remarks. – The specimens resemble an Olenus species 

(e.g. Westergård 1922, pl. 3–6), although they are dif-

ficult to identify to species level because of their poor 

state of preservation. 
 

Occurrence. – The species is present in the O. gibbo-

sus Zone in the Tomten-1 drill core. Associated spe-

cies are A. (Homagnostus) obesus and O. gibbosus.  

 

Genus Ctenopyge Linnarsson, 1880 
 

Ctenopyge linnarssoni (Westergård, 1922) 
 

Fig. 11I 
 

Material. – Two cranidia. 
 

Remarks. – Ctenopyge linnarssoni was described in 

detail by Westergård (1922, pp. 162–163, pl. 13, figs. 

3–5) and Henningmoen (1957, p. 207, pl. 22, fig. 8).  
 

Occurrence. – C. linnarssoni appears in the lowest 

part of the C. linnarssoni Zone in the Tomten-1 drill 

core. It co-occurs with Peltura sp. 

Ctenopyge pecten (Salter, 1864) 
 

Fig. 11J 
 

Material. – One cephalon. 
 

Remarks. – Ctenopyge pecten was described by 

Westergård (1922, pp. 160–161, pl. 12, figs 26–33, pl. 

13, fig. 1). 
 

Occurrence. – It occurs in the upper part of the C. lin-

narssoni Zone in the Tomten-1 drill core. Associated 

species are P. s. scarabaeoides and T. humilis. It is 

distributed throughout Sweden, the United Kingdom 

and Canada (Westergård 1922). 

 

Ctenopyge tumida (Westergård, 1922) 
 

Fig. 12A 
 

Material. – 2 cephala. 
 

Remarks. – Ctenopyge tumida was described by 

Westergård (1922, pp. 155–156, pl. 11, figs. 15–20) 

and Henningsmoen (1957, pp. 198–199, pl. 20, fig. 

16). Høyberget & Bruton (2012) broadened the C. 

Fig. 12. Trilobites from the Tomten-1 drill core. Scale bars correspond to 2 mm. A. Ctenopyge tumida (Westergård, 1922), 

cephalon from the C. tumida Zone (8.54 m). B. Ctenopyge sp., cephalon from the C. linnarssoni Zone (5.35 m). C. Sphaerop-

hthalmus alatus (Boeck, 1838), cranidia. C. tumida Zone (8.50 m). D. Sphaerophthalmus sp., cranidium from the C. tumida 

Zone (8.54 m). E. Parabolinites cf. laticaudus (Westergård, 1922), cranidium from the C. tumida Zone (8.94 m). F. Peltura 

scarabaeoides scarabaeoides (Wahlenberg, 1818), pygidium from the C. linnarssoni Zone (2.42 m). G. Peltura? sp., cranidium 

from the C. tumida Zone (8.80 m). H. Triangulopyge humilis (Philips, 1848), cephala from the C. linnarssoni Zone (2.42 m). I. 

Paradoxides sp., cephalon from the P. atavus Zone (19.32 m). 
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tumida Zone concept, as C. tumida is also present in 

the formerly recognized C. affinis Zone. 
 

Occurrence. – C. tumida occurs in the middle part of 

the C. tumida Zone in the Tomten-1 drill core. It is 

associated with Sphaerophthalmus alatus, Sphaeroph-

thalmus sp. and Peltura? sp. The species has been re-

ported from Norway, Sweden, Denmark, Great Britain 

and Poland (Høyberget & Bruton 2012). 

 

Ctenopyge sp. 
 

Fig. 12B 
 

Material. – Six cephala. 
 

Remarks. – The specimens are difficult to identify to 

species level (cf. Westergård 1922, pl. 10–12) since 

they are poorly preserved. 
 

Occurrence. – It occurs throughout the C. bisculata 

and C. linnarssoni zones. Associated fossils are P. s. 

scarabaeoides and Peltura sp. 

 

Genus Sphaerophthalmus Angelin, 1854 
 

Sphaerophthalmus alatus (Boeck, 1838) 
 

Fig. 12C 
 

Material. – Three cranidia. 
 

Remarks. – One variant was inaccurately described by 

Westergård (1922, pp. 163–165, pl. 13, figs. 9–18) as 

S. alatus. It was later revised and characterized by 

Henningsmoen (1957, pp. 212–215, pl. 22, fig. 8), and 

is presently identified as T. humilis. S. alatus was re-

cently discussed also by Høyberget & Bruton (2012). 
 

Occurrence. – S. alatus occur in the C. tumida Zone in 

the Tomten-1 drill core. It is associated with 

Parabolinites cf. laticaudus, Peltura? sp. and C. tu-

mida. 

 

Sphaerophthalmus sp. 
 

Fig. 12D 
 

Material. – One cranidium. 
 

Remarks. – The cranidium resembles those of Sphaer-

ophthalmus species (e.g. Westergård 1922, pl. 13), 

although it is difficult to identify to species level. 
 

Occurrence. – It occurs in the C. tumida Zone in the 

Tomten-1 drill core, and is associated with C. tumida.  

 

Genus Parabolinites Henningsmoen 1957 
 

Parabolinites cf. laticaudus (Westergård, 1922) 
 

Fig. 12E 
 

Material. – One pygidium. 
 

Remarks. – The specimen strongly resembles the py-

gidium of Parabolinites cf. laticaudus (e.g. 

Westergård 1922, pl. 8, figs. 1–7; Henningsmoen 

1957, pl. 1, fig. 9, pl. 6). Westergård (1922) assigned 

the species to Parabolinella. Henningsmoen (1957) 

assigned it to the new genus Parabolinites. The preser-

vation is not sufficient and the specimen is left in open 

nomenclature. 
 

Occurrence. – P .cf. laticaudus occurs in the lower C. 

tumida Zone. It is associated with S. alatus in the 

Tomten-1 drill core. 

 

Genus Peltura Milne Edwards, 1840 
Peltura scarabaeoides scarabaeoides (Wahlenberg, 

1818) 
 

Fig. 12F 
 

Material. – Numerous pygidia and fragments. 
 

Remarks. – The species was described by Westergård 

(1922, pp. 173–174, pl. 15) and Henningsmoen (1957, 

pp. 237–239, pl. 26, figs. 1–2). A study of the ontoge-

ny of the species was done by Whittington (1957). 

The spines of the pygidium are indicative of the two 

subspecies of P. scarabaeoides (see Henningsmoen 

1957 for further discussion). Additional indication of 

P. s. scarabaeoides affinity of the specimens in the 

Tomten-1 drill core is the co-occurring fossils. P. s. 

westergaardi occurs only in the upper P. lobata Zone 

(Terfelt et al. 2011), which is not present in the 

Tomten-1 drill core. 
 

Occurrence. – P. s. scarabaeoides occurs in the C. 

bisculata and C. linnarssoni zones in the Tomten-1 

drill core. It co-occurs with Ctenopyge sp., C. linnars-

soni, T. humilis and C. pecten. 

 

Peltura? sp. 
 

Fig. 12G 
 

Material. – Two pygidia. 
 

Remarks. – Due to the state of preservation these py-

gidia could not be identified to species level (e.g. 

Westergård 1922, pl. 15). Also the generic affinity is 

uncertain.  
 

Occurrence. – Peltura? sp. occurs in the C. tumida 

Zone in the Tomten-1 drill core. Associated species 

are S. alatus and C. tumida. 

 

Genus Triangulopyge Høyberget & Bruton, 2012 
 

Triangulopyge humilis (Phillips, 1848) 
 

Fig. 12H 
 

Material. – Two pygidia. 
 

Remarks. – This species have been revised several 

times. Westergård (1922, pp. 215–217, pl. 22, figs. 7, 

11–15) described it as Sphaerophthalmus alatus, and 

Henningsmoen (1957) separated the species into S. 

alatus and S. humilis. Høyberget & Bruton (2012) as-

signed the species within their new genus Triangu-

lopyge. The specimens at hand lack a well preserved 

spine at the posterior margin. 
 

Occurrence. – T. humilis occurs in the upper part of 

the C. linnarssoni Zone in the Tomten-1 drill core and 
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is associated with P. s. scarabaeoides and C. pecten. 

 

Order Redlichiida Richter, 1932 

Family Paradoxididae Hawle & Corda, 1847 

Genus Paradoxides Brongniart, 1822 
 

Paradoxides sp. 
 

Fig. 12I 
 

Material. – One cranidium. 
 

Remarks. – The specimen at hand resembles cranidia 

of Paradoxides, but the poor preservation makes it 

difficult to assign to a certain species (see e.g. 

Westergård, 1953, pl. 8). 
 

Occurrence. – In the Tomten-1 drill core, Paradoxides 

sp. occurs in the lowermost P. atavus Zone and co-

occurs with P. atavus. 

 

Paradoxides? sp. 
 

Figs. 13A–B 
 

Material. – Ten cranidia and abundant thoracic 

tergites. 
 

Remarks. – The material is often highly fragmented, 

although the cranidia and especially the thoracic 

tergites appear to belong to Paradoxides (e.g. 

Westergård 1953, pl. 8). 
 

Occurrence. – Paradoxides? sp. occurs throughout the 

lower half of the P. atavus Zone and is missing in the 

upper half of the Tomten-1 drill core. The associated 

fauna in the Tomten-1 drill core consists of P. gibbus, 

P. atavus, P. cf. atavus, Paradoxides sp., Ptychagnos-

tus sp., Paradoxides sp., and indeterminate brachio-

pods. 

 

Indeterminate polymerid trilobite 
 

Fig. 13C 
 

Material. – Three pygidia. 
 

Remarks. – The material is poorly preserved and hence 

identification is difficult. 
 

Occurrence. – Indeterminate polymerid trilobites oc-

cur in the P. gibbus, L. laevigata and O. gibbus zones 

of the Tomten-1 drill core. 

 

Class Rhynchonellata Williams, Carlson, 

Brunton, Holmer & Popov, 1996 

Order Orthida Schuchert & Cooper, 1932 

Family Finkelnburgiidae Schuchert & Cooper, 

1931 

Genus Orusia Walcott, 1905 
 

Orusia lenticularis (Wahlenberg, 1818) 
 

Figs. 13D–E 
 

Material. – Hundreds of specimens. 
 

Remarks. – This orthid brachiopod is generally associ-

ated with the trilobite P. spinulosa. It also occurs in 

the lower P. brevispina Zone and in the lower part of 

the upper Leptoplastus Superzone (Terfelt et al. 2008; 

Nielsen et al. 2014). The species generally occurs in 

abundance in Västergötland (Terfelt 2000). Both the 

size and the ornamentation vary among the specimens 

recorded in the drill core. 
 

Occurrence. – In the Tomten-1 drill core O. lenticu-

laris is not associated with any other fossil. The O. 

Fig. 13. Trilobites and brachiopods from the Tomten-1 drill core. Scale bars correspond to 2 mm. A-B. Paradoxides? sp. from 

the P. atavus Zone. A. Cranidium (23.07 m). B. Fragmented segments (23.86 m). C. Indeterminate polymerid trilobite, pygi-

dium from the L. laevigata Zone (15.31 m). D–E. Orusia lenticularis (Wahlenberg, 1818), from the P. spinulosa Zone. D. large 

fine ornamented specimen (10.60 m). E. Abundant small specimens (10.53–10.58 m). F. Brachiopod from the L. laevigata Zone 

(16.64 m). 
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lenticularis is here assigned to the P. spinulosa Zone. 

 

Indeterminate linguliformean brachiopods 
 

Fig. 13F 
 

Material. – Hundreds of specimens. 
 

Remarks. – Except for Orusia, all brachiopods record-

ed from the Tomten-1 drill core are phosphatic-shelled 

linguliformeans, most likely representing lingulates. 
 

Occurrence. – In the Tomten-1 drill core indetermi-

nate brachiopods occur in the P. gibbus, P. atavus, L. 

laevigata, A. pisiformis, and O. gibbosus zones. In 

addition, brachiopods have been recorded from an 

unspecified interval between the O. gibbosus and P. 

spinulosa zones. In the lower P. atavus Zone, the bra-

chiopods are associated with Paradoxides? sp.. 

 

7 Biostratigraphical remarks 
The Alum Shale Formation of Västergötland, Sweden, 

is characterized by black shales and intercalated lime-

stones. There are several stratigraphical breaks of vari-

ous magnitudes within the succession and some bi-

ozones are missing. With the exception of the absence 

of most of the lowermost superzone (the Acadopara-

doxides oelandicus Superzone), the Cambrian Series 3 

succession is fairly complete as compared to the Fu-

rongian sequence which has more disturbed sediments 

and more hiatuses (Figs. 14–16). This is reflected also 

in the Tomten-1 drill core succession (Figs. 14–16). 

The lowermost 1.5 m of the Cambrian Series 3 in 

the drill core is, except for brachiopods, unfossilifer-

ous. The appearance of Ptychagnostus gibbus occurs 

at 24.20 m, and the FAD of Ptychagnostus atavus at 

24.09. Westergård (1946) stated that the Exsulans 

Limestone Bed belongs to the P. gibbus Zone. The P. 

gibbus Zone probably continues downwards through-

out the unfossiliferous strata in the drill core, ending 

with an unconformity at the boundary between the 

Alum Shale Formation and the Borgholm Formation in 

Västergötland (cf. Martinsson 1974; Nielsen & 

Schovsbo 2007). The lowest zone of the Cambrian 

Series 3, the Eccaparadoxides insularis Zone, is not 

present in Västergötland (Nielsen & Schovsbo 2007). 

Ptychagnostus atavus is last recorded at 19.45 m in 

the drill core, closely coinciding with the LAD of Par-

adoxides? sp. and Ptychagnostus sp. The fossil content 

is sparse until 19.32 m with only one unidentified bra-

chiopod recorded. The upper boundary of the P. ata-

vus Zone is difficult to pinpoint as the index fossil is 

not present higher up in the biozone. However, the 

boundary can tentatively be placed on the top of the 

distinct unsampled ‘Hypagnostus limestone 

bank’ (located at 17.42–17.26 m). Weidner et al. 

(2004), who sampled a conglomeratic limestone be-

tween the ‘Hypagnostus limestone bank’ and the upper 

Exporrecta Conglomerate in Västergötland described 

the presence of fossils of the P. punctuosus and G. 

nathorsti zones. 

The boundary of the G. nathorsti/L. laevigata 

zones is placed at a transition from limestone to Alum 

Shale (Weidner et al. 2004). The index fossil of the 

latter zone is not present although a specimen of 

Lejopyge was recorded at 15.31 m. The boundary of 

the L. laevigata/A. pisiformis zones is marked by the 

appearance of Agnostus pisiformis (see Ahlberg & 

Ahlgren 1996; Ahlberg & Terfelt 2012), which occurs 

in abundance. The Cambrian Series 3 and the A. pisi-

formis Zone extends upwards to 11.56 m. 

The base of the Furongian Series coincides with the 

FAD of Glyptagnostus reticulatus (see Peng et al. 

2004; Ahlberg & Terfelt 2012; Nielsen et al. 2014), 

which is not found in the drill core. However, Olenus 

gibbosus occurring at 11.55–11.14 m is indicative of 

the O. gibbosus Zone, which forms the basal polymer-

id zone in the Furongian of Scandinavia (Terfelt et al. 

2008). Also Agnostus (Homagnostus) obesus appears 

at the same level as O. gibbosus, and ranges between 

11.55 and 10.71 m in the drill core. The upper bounda-

ry of the O. gibbosus Zone is placed at 11.14 m. The 

LAD of A. (Homagnostus) obesus is generally indica-

tive of the lower part of the P. brevispina Zone 

(Ahlberg & Ahlgren 1996). However establishing a 

lower boundary of the P. brevispina Zone is problem-

atic since A. (Homagnostus) obesus might occur high-

er up in the drill core. 

Westergård (1922) estimated the thickness of the 

Olenus Superzone to be 0.2 m in the Tomten quarry, 

whereas the upper Parabolina Superzone was estimat-

ed to be 0.6 m thick. The 0.95 m thickness of the Ole-

nus Superzone in the Tomten-1 drill core is in clear 

contrast to the estimations of Westergård (1922). The 

discrepancy can be due to findings of fossils of the 

Parabolina Superzone in cave structures of the 

Kakeled Limestone Bed. Westergård (1922) only re-

ported the Olenus gibbosus of the Tomten quarry, co-

herent with the findings of the Tomten-1 drill core. 

The presence of Orusia lenticularis (10.60–10.29 

m) is an indication for the Parabolina Superzone, alt-

hough it can occur also in the lowest part of the over-

lying superzone (Terfelt et al. 2008; Nielsen et al. 

2014). It is therefore difficult to establish the upper 

and lower boundary of the Parabolina Superzone (and 

obviously also the P. brevispina/P. spinulosa? zones 

of this superzone). Orusia lenticularis is most often 

associated with the trilobite Parabolina spinulosa 

(Westergård 1922; Terfelt 2000), and here the pres-

ence of O. lenticularis is taken as indicative of the P. 

spinulosa Zone. 

The Furongian in the Tomten-1 drill core includes 

numerous biozones. However, biozones identified in 

the Furongian succession of the core may not be repre-

sentative for the succession. Westergård (1922, pp. 70

–71) identified several trilobites from the Leptoplastus 

Superzone in limestone concretions. As the drilling 

appears not to have penetrated some of these limestone 

concretions, a biased (i.e. incomplete) scheme of the 

biozones occurring in the successions of the Tomten 

quarry might occur. 

Following the Parabolina Superzone there is a 
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Fig. 14. Biostratigraphy, ranges of fossils and microfossil sample levels of the Alum Shale Formation of the Tomten-1 drill 

core, Torbjörntorp, Västergötland, Sweden. 
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Fig. 15. Cambrian Series 3 succession (west-east) of Västergötland, Sweden with the Tomten-1 drill core as comparison. Note 

that the Tomten-1 drill core was retrieved from the Billingen-Falbygden area. Green colour marks hiatuses. Based on 

Westergård (1946), Martinsson (1974), Weidner et al. (2004) and Nielsen et al. (2014). 

Fig. 16. Furongian succession (west-east) of Västergötland, Sweden with the Tomten-1 drill core as comparison. Note that the 

Tomten-1 drill core is retrieved from the Billingen-Falbygden area. Green colour marks hiatuses. Based on Westergård (1947), 

Martinsson (1974), Terfelt et al. (2008), Weidner & Nielsen (2011, 2013) and Nielsen et al. (2014). 
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considerable hiatus and the Leptoplastus and Protople-

tura superzones are missing. Correlating the δC13-

curve with corresponding curve from the Duibian sec-

tion, China (Peng et al. 2012b), suggests that the C. 

spectabilis Zone could be present in the drill core. This 

would be in concert with findings in the Billingen-

Falbygden area (see figure 15). However, the resolu-

tion of the δC13-curve of the Tomten-1 drill core is 

insufficient to clearly say this is correct. 

The first occurrence of Sphaerophthalmus alatus 

(at 8.80 m) is indicative of the base of the Ctenopyge 

tumida Zone (Terfelt et al. 2008), and the presence of 

C. tumida at 8.54 m, further establishes this biozone. 

The first appearance of Peltura scarabaeoides scara-

baeoides at 8.11 m is indicative of the base of the C. 

bisculata Zone. Although the index fossil is not found 

in the Tomten-1 drill core, the upper boundary of the 

zone can be established with the occurrence of Cteno-

pyge linnarssoni at 5.78 m. Ctenopyge linnarssoni is 

indicative of the C. linnarssoni Zone and it is only 

present in the lowest part of the zone. However, Peltu-

ra scarabaeoides scarabaeoides ranges to the highest 

sampled level (1.70 m) of the Furongian in the Tomten

-1 drill core, suggesting that the uppermost part of the 

Furongian belongs to the C. linnarssoni Zone. The 

LAD of Peltura scarabaeoides scarabaeoides pro-

vides additional evidence for the top of the C. linnars-

soni Zone (Terfelt et al. 2008). A prominent hiatus is 

present between the top of the C. linnarssoni Zone and 

strata assigned to the Bjørkåsholmen Formation. 

 

8 Remarks on preservation and 
the associated fauna 
The preservation of the fossil fauna in Västergötland is 

often excellent in the limestone and less good in the 

shale (cf. Terfelt 2003; Eriksson & Terfelt 2007). In 

addition to the frequently occurring agnostoids and 

polymerid trilobites, the Tomten-1 drill core also con-

tains brachiopods, conodont elements, fossils of uncer-

tain affinity and trace fossils. 

In the drill core, the faunal diversity increases from 

the Cambrian Series 3 to the Furongian. This coincides 

with a radiation among polymerid trilobites globally 

(e.g. Peng 2012). However, the abundance of fossils 

appears to be lower in the Furongian, with the excep-

tion of O. lenticularis that commonly occurs in great 

numbers. In the Cambrian Series 3 agnostoids, in par-

ticular P. gibbus, P. atavus and A. pisiformis, appear to 

occur in abundance at several levels in the drill core. 

Apparent minor vertical borings are occasionally 

recorded in the drill core (Fig. 17A) which is in con-

cert with the results of Newby (2012) who identified 

frequent borings in the upper part of the Furongian. In 

the Cambrian Series 3 horizontal borings are recorded 

(Fig. 17B). Irregular fabric in the alum shale (Fig. 4C) 

indicating abundant bioturbation is also present. This 

evidence of biotic activity suggests that the sea floor 

was at times oxygenated and housed infaunal taxa. 

The remains of Paradoxides? sp. in the Cambrian 

Series 3 are often fragmental in the drill core. No com-

plete specimens were found. The thorax is broken up 

and abundant thoracic segments can be seen. However, 

several cranidia are also present in the drill core. At 

one level (23.43 m) three cranidia of Paradoxides? sp. 

occur (Fig. 17C). 

Several levels in the Furongian limestones of the 

drill core yields preserved olenid eyes. The lenses of 

the olenid eyes are composed of calcite, which make 

them rather resistant to decay (Clarkson et al. 2006). 

Brachiopods (Fig. 17D) and agnostoids are occasional-

ly very poorly preserved, perhaps indicating (partial) 

dissolution (cf. Eriksson & Terfelt, 2007). The 

Kvarntorp Member contains abundant shell fragments 

of indeterminable brachiopods (Fig. 17E). Fossils of 

uncertain affinity (Figs. 17F–G) also occur in the drill 

core. 

The lowest microfossil sample (24.26–24.20 m) 

from the upper P. gibbus Zone yielded acid resistant 

skeletal remains indicative of a diverse lingulate bra-

chiopod fauna. The shells have frequent microborings 

(Fig. 17H). Alongside brachiopods, remains of hy-

oliths are also present. The sampled limestone at 16.70

–16.65 m, above the Exporrecta Conglomerate, yield-

ed highly fragmented brachiopod shells (Fig. 17I). The 

sample from the O. gibbosus Zone and the lowest cen-

timeter of an indeterminate biozone (11.07–11.15 m) 

yielded numerous conodont elements, e.g. the charac-

teristic paraconodont genus Westergaardodina (Fig. 

17J). The sample from the C. bisculata Zone (7.52–

7.59 m) was barren of microfossils. The uppermost 

sample of the Lanna Limestone (1.09–1.00 m) yielded 

abundant faunal remains, e.g. Westergaardina sp. and 

a crinoid fragment (Fig. 17K). 

At least four prominent levels lack macrofossils in 

the drill core (19.33–18.10; 15.32–14.73; 10.30–8.81; 

8.12–7.14 m). The lack of macrofossil findings in the 

interval 8.12–7.14 m coupled with no findings of mi-

crofossils in the acid treated sample from the 7.52–

7.59 m interval, suggests a so called ‘barren interval’. 

However, secondary diagenetic effects as a cause for 

these cannot be ruled out (Eriksson & Terfelt 2007). 

 

9 Remarks on the depositional 
environment 
 

9.1 Cambrian Series 2 
During late Precambrian times, weathering of the Pro-

terozoic crystalline basement resulted in a virtually flat 

Baltic peneplain. In the early Cambrian, the rising sea 

level resulted in rapid flooding and deposition of silt 

and sandstones (Nielsen & Schovsbo 2011). 

The Lingulid Sandstone, forming the basal part of 

the drill core is initiated with fine-grained planar lami-

nated sandstone that was deposited in an offshore en-

vironment. In the uppermost part of the Lingulid Sand-

stone the lithology becomes coarser grained and re-

worked, indicating a regression (Nielsen & Schovsbo 

2011). 

The global Hawke Bay regression resulted in a 
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major sea level fall (Nielsen & Schovsbo 2007, 2015), 

which contributed to subaerial conditions, resulting in 

weathering and erosion of the Lingulid sandstone and 

the forming of the conglomerate marking the base of 

the Kvarntorp Member. The sedimentation rate of the 

overlying brachiopod-dominated glauconitic sandstone 

of the Kvarntorp Member was slow and occurred dur-

ing a drowning event (Nielsen & Schovsbo 2015). 

 

9.2 Cambrian Series 3 
An unconformity in the basal part of the Alum Shale 

Formation marks a transgression with the deposition of 

shale and repeated regressions marked by deposition 

of glauconite. Thin section analyses indicate a steady 

increase of the fauna, suggesting a rising sea level 

trend. The basal part of the Exsulans Limestone Bed 

rests on an unconformity with subsequent cross bed-

ding, and several sea level changes seem to have oc-

curred as the limestone has fillings of alum shale. 

Throughout the limestone bed several facies shifts 

occur which indicate numerous sea level changes. In 

the top, weathering of a hanging wall and glauconite in 

a crack suggests a karst horizon, which indicates 

subaerial exposure. The fault occurring in the top sug-

gests tectonic activity, perhaps due to rapid isostatic 

pressure. The Exsulans Limestone Bed was deposited 

in a deep subtidal environment during a global trans-

gression (Babcock et al. 2004; Álvaro et al. 2010; 

Nielsen & Schovsbo 2105). 

The succession is continuing with repeated regres-

sions, with thin limestone seemingly replacing the 

glauconite beds. Thin sand packages occurring in the 

mid P. atavus Chron was probably deposited by bot-

tom currents during storms (Nielsen & Schovsbo 

2015). An orsten bed where the upper part shows ero-

sional characteristics occur in the mid P. atavus Chron 

marks the acme of the Atavus highstand of Nielsen & 

Schovsbo (2015). The upper P. atavus Zone is marked 

by abundant grey mudstones and siliciclastic mud-

stones with cross lamination which indicates a very 

shallow sea level. The potential microbial mats further 

indicate nearshore deposition immediately below fair 

weather wave base (Prothero & Schwab 2013).  

The transition to the P. punctuosus chron is associ-

ated with a major sea level fall (e.g. Babcock et al. 

2015). The ‘Hypagnostus Limestone Bed’ in the upper 

Fig. 17. Associated fauna of the Tomten-1 drill core. Scale bars correspond to 2 mm. A. Vertical boring (7.13 m). B. Horizontal 

boring (23.30 m) C. Cephala of Paradoxides? sp. (24.43 m). D. Poorly preserved indeterminate brachiopod (18.09 m). E. Inde-

terminate brachiopod of the Kvarntorp Member (26.30 m). F. Fossil of uncertain affinity (24.01 m). G. Fossil of uncertain affin-

ity (16.64 m). H. Microboring of shells in the Exsulans Limestone Bed (24.26–24.20 m). I. Highly fragmented brachiopod shells 

(16.70–16.65 m). J. Westergaardodina (11.07–11.15 m). K. Crinoid fragment of the Lanna Limestone (1.09–1.00 m). 
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P. atavus Zone and overlying limestone and conglom-

erates are signs of repeated regression and the karst 

horizons and beach pebbles indicate subaerial expo-

sure (cf. Westergård 1931; Flügel 2010). The tilted 

beds have formed a cave where the Exporrecta con-

glomerate has been deposited. The tilted beds seen in 

the Tomten-1 drill core are here suggested as a result 

of collapsing beds following dissolution of the lime-

stone underneath. The shales of the lower L. laevigata 

Zone are evident of a transgression (Egenhoff et al. 

2015), with subsequent minor limestone layers indicat-

ing repeated regressions. 

 

9.3 Furongian 
The Kakeled Limestone Bed marks a varying trend 

from shallow sea to subaerial conditions. However, 

there is a lowering sea level trend throughout this in-

terval (Egenhoff et al. 2015). Several characteristics of 

subaerial conditions are present in the limestone bed, 

such as beach pebble, karst horizons and large calcite 

cracks. A cave structure also noted by Lehnert et al. 

(2012) from the Kakeled quarry, Kinnekulle, is con-

ceivably seen in the Tomten-1 drill core. In the upper 

part of the Kakeled Limestone Bed a transgression 

occurs with beds of O. lenticularis. 

The succession continues upwards with shale and 

inclusions of limestones marking episodes of trans-

gression and regression. In the Furongian it appears 

that there is higher abundance of limestone concretions 

than in the Cambrian Series 3. The growth of lime-

stone concretions occurred prior to compaction of the 

surrounding alum shale and was probably aided by 

activity of bacteria increasing the alkalinity in the pore 

waters (Buchardt et al. 1997). 

 

9.4 Ordovician 
The prominent disconformity between the Alum Shale 

and the Bjørkåsholmen conglomerate shows evidence 

of subaerial conditions. The well preserved trilobites 

originated from the underlying C. linnarssoni Zone 

suggest rapid burial and transgression (Lehnert et al. 

2013a). The increase of shell fragments upwards fur-

ther suggests a transgression. 

The gap between the Latorp Limestone and the 

underlying Bjørkåsholmen conglomerate again marks 

a long time of non-deposition or removal of sediments 

with the absence of Lower Ordovician Limestone (see 

Calner et al. 2013, Fig. 36). The Latorp and Lanna 

Limestones indicates a colder environment (Cocks & 

Torsvik 2005)  and the fauna seems to be more abun-

dant higher up in the drill core which indicates a trans-

gression (cf. Munnecke et al. 2010). 

 

10 Chemostratigraphy 
In the Cambrian rock record ten distinct carbon iso-

tope excursions (CIE) have been recorded (Zhu et al. 

2006). The CIE have become important tools for cor-

relation on both a regional and a global scale over the 

last few decades. This is especially evident (and im-

portant) in successions where biologic markers are 

absent. The CIE can thus aid in solving the problem of 

correlation between shallow water settings and outer 

shelf seas (e.g. Peng 2004). Carbon isotope excursions 

are often associated with evolutionary radiations and/

or extinctions which generally reflect oceanographic 

events associated with tectonic activity or changes in 

climate (Zhu et. al 2004; Peng et al. 2012a).  

The Cambrian Series 3 and the Furongian record 

three prominent global excursions, in stratigraphically 

ascending order: the Drumian Carbon Isotope Excur-

sion (DICE), the Steptoean Positive Carbon Isotope 

Excursion (SPICE) and the Top of Cambrian Carbon 

Isotope Excursion (TOCE) (Zhu et. al 2006; Peng 

2012). It is not possible to identify the TOCE in the 

Tomten-1 drill core, since its stratigraphic position is 

in the P. lobata/P. paradoxa biozones, which are not 

present (Fig. 14). 

The δ13Corg curve of the Tomten-1 drill core shows 

a steady increase in δ13Corg values throughout the Cam-

brian Series 3 and Furongian (Fig. 18 and Table 1). 

The recorded values are in par with the trend of the 

global CIE record of the same stratigraphic interval 

(see Zhu et al. 2006, fig. 1). 

There is a clear negative excursion from -31.57 ‰, 

at c. 19 cm above the Exsulans Limestone Bed in the 

drill core to a minimum value of -33.71 ‰ immediate-

ly below the bed. Following these two lower values 

there is again a positive shift downwards in the drill 

core. However, the values do not return to the values 

seen above the minimum peak excursion. Here this 

negative excursion is interpreted as the DICE. Howev-

er, the net shift is c. 2.14 ‰ which can be compared to 

the global net shift of DICE, recorded as approximate-

ly 3 ‰ δ13C (see; Zhu et al. 2006, fig.1). 

The GSSP of the Drumian Stage in the Drumian 

Mountains, Utah, USA, is characterized by the first 

appearance (FAD) of P. atavus (Babcock et al. 2004; 

Zhu et al; 2006). The FAD of P. atavus is often associ-

ated with a transgression, that might have been inter-

continental or even global (eustatic), and the negative 

isotopic shift of the DICE (Babcock et al. 2004; Zhu et 

al. 2006). However, the timing and relationship of the 

inferred transgression and DICE is difficult to assess 

in detail (Howley & Jiang 2010). The correlation is 

even more problematic as the timing of the first ap-

pearance of P. atavus may not be the same over the 

world, i.e., it likely is diachronous (Zhu et. al 2006). 

Several occurrences of the DICE have been docu-

mented globally (Fig. 19). Zhu et al. (2004) placed it 

below and slightly above the FAD of P. atavus in two 

sections from China, respectively. A third occurrence 

of DICE was documented above the FAD of P. atavus, 

whereas the lower excursion was considerably lower 

stratigraphically than in the two other Chinese sections 

(Peng et al. 2012b). Babcock et al. (2007) described 

the DICE from the Drum Mountains, United States, 

occurring approximately 10 meters above the FAD of 

P. atavus, whereas Howley & Jiang (2010) established 

a correlation within platform and basin successions in 
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Fig. 18. δ13Corg plot showing the Drumian Carbon Isotope Excursion (DICE) and the stratigraphic  level of which the Steptoean 

Positive Carbon Isotope Excursion (SPICE) as it would be expected in the Tomten-1 core, Torbjörntorp, Västergötland, Swe-

den. 
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the western United States, using sequence- and che-

mostratigraphy. They indicated that the DICE occurs 

above the FAD of P. atavus. 

Three previous studies from the DICE interval in 

Scandinavia have yielded three separate excursions 

from outer shelf deposits of Scania, southernmost 

Sweden. Analysis from the Almbacken drill core have 

yielded a net δ13Corg shift of more than 1.5 ‰, thus 

resembling the Tomten-1 characteristics of net shift 

values as it also includes the corresponding limestone 

bed (Lehnert et al. 2013b). The DICE in the Almback-

en drill core is situated between the top of the Gislöv 

Formation and the base of the Exsulans Limestone 

Bed, which correspond to the P. praecurrens or the 

lower P. gibbus Zone (Lehnert et al. 2013b). The re-

cords from Álvaro et al. (2010) give a clear net shift of 

6.62 ‰ δ13Ccarb in the Exsulans Limestone Bed of the 

Brantevik section of Scania. A single marker point 

from the Andrarum-3 drill core shows a 0.7 ‰ δ13Corg 

net shift, also coinciding with a limestone bed 

(Ahlberg et al. 2009). 

SPICE signals can be seen globally in the upper-

most Guzhangian, the Paiban and in the lower part of 

the Jiangshanian stages (Peng et al. 2012a). Thus, the 

stratigraphic interval should be embraced by the 

Tomten-1 drill core. In this study it is not possible to 

determine the occurrence of the SPICE because of lack 

of δ13Ccarb-sampling in the lithologically highly vari-

able Kakeled Limestone Bed (Figs. 2, 14). Since the 

agnostoid Glypagnostus reticulatus (cf. Terfelt et al. 

2008; Ahlberg & Terfelt 2012) has not been identified 

in the Tomten-1 drill core, it makes it further proble-

matic to establish a marker where the base of SPICE 

could occur (Ahlberg et al. 2009). 

 

11 Correlation 
In order to identify hiatuses in the Tomten-1 drill core 

an integrated bio- litho- and chemostratigraphic corre-

lation can be adopted. The negative DICE excursion in 

the lower P. atavus Zone can tentatively be correlated 

globally (Fig. 19). This renders the FAD of the P. ata-

vus in the Tomten-1 drill core occurring below the 

Drumian Stage (defined by the global FAD of the P.   

atavus). Thin but distinctive sandstone beds (Fig 3F) 

of the Tomten-1 drill core can be correlated with the 

Andrarum-3 drill core throughout the lower P. atavus 

Zone (Fig. 19; Appendix B). In the middle P. atavus 

Zone of Swedish drill cores there are abundant thick 

limestones, which coincide with a global δ13C negative 

excursion. In the upper P. atavus Zone in the Swedish 

drill cores brachiopods and limestone are abundant, 

whereas the fauna of the Paiban section, China, ap-

pears to display a change of appearances of fossil 

Table 1. Stable isotope data (δ13C) and carbon percentage 

from alum shale of the Tomten-1 drill core. 

Metres δ
13

CVPDB % C Zone Series 

  (‰)       

1.90 m -29.3 10.8 C. linnarssoni Furongian 

2.35 m -29.3 12.5 C. linnarssoni Furongian 

2.90 m -29.1 14.0 C. linnarssoni Furongian 

3.40 m -29.1 15.5 C. linnarssoni Furongian 

3.90 m -29.3 14.8 C. linnarssoni Furongian 

4.40 m -28.9 17.9 C. linnarssoni Furongian 

4.88 m -29.5 13.5 C. linnarssoni Furongian 

5.40 m -29.5 17.5 C. linnarssoni Furongian 

5.90 m -29.2 17.4 C. bisulcata Furongian 

6.40 m -29.1 14.9 C. bisulcata Furongian 

6.90 m -29.1 15.0 C. bisulcata Furongian 

7.35 m -29.2 13.6 C. bisulcata Furongian 

7.90 m -29.1 12.6 C. bisulcata Furongian 

8.40 m -29.4 11.4 C. bisulcata Furongian 

8.90 m -29.3 9.3 ? Furongian 

9.40 m -29.5 12.9 ? Furongian 

9.90 m -29.6 11.2 ? Furongian 

12.10 m -30.1 8.8 A. pisiformis Cambrian Series 3 

12.62 m -30.5 8.4 L. laevigata Cambrian Series 3 

13.10 m -30.4 9.4 L. laevigata Cambrian Series 3 

13.60 m -30.3 8.1 L. laevigata Cambrian Series 3 

14.10 m -30.8 8.3 L. laevigata Cambrian Series 3 

14.60 m -30.8 8.3 L. laevigata Cambrian Series 3 

15.09 m -31.0 8.3 L. laevigata Cambrian Series 3 

15.60 m -31.2 8.5 L. laevigata Cambrian Series 3 

16.10 m -31.1 6.6 L. laevigata Cambrian Series 3 

16.60 m -31.1 6.5 L. laevigata Cambrian Series 3 

17.42 m -31.4 2.7 P. atavus Cambrian Series 3 

17.90 m -31.4 1.2 P. atavus Cambrian Series 3 

18.41 m -32.2 4.9 P. atavus Cambrian Series 3 

18.90 m -32.3 4.3 P. atavus Cambrian Series 3 

19.41 m -32.0 4.3 P. atavus Cambrian Series 3 

19.90 m -32.3 2.6 P. atavus Cambrian Series 3 

20.40 m -32.5 7.5 P. atavus Cambrian Series 3 

20.90 m -32.4 7.2 P. atavus Cambrian Series 3 

21.40 m -32.3 6.8 P. atavus Cambrian Series 3 

21.89 m -32.6 9.8 P. atavus Cambrian Series 3 

22.40 m -31.9 3.3 P. atavus Cambrian Series 3 

22.90 m -32.3 6.3 P. atavus Cambrian Series 3 

23.40 m -31.8 3.8 P. atavus Cambrian Series 3 

23.91 m -31.6 3.7 P. atavus Cambrian Series 3 

24.50 m -33.7 6.1 P. gibbus Cambrian Series 3 

24.98 m -33.4 8.2 P. gibbus Cambrian Series 3 

25.54 m -33.1 6.3 P. gibbus Cambrian Series 3 

Fig. 19. Global litho-, bio- and chemostratigraphy of the P. atavus Zone. Three Swedish drill cores are included alongside the 

δ13C-curves of the GSSP and Chinese sections for comparison. The upper negative excursion of DICE can be correlated global-

ly, whereas the lower excursion occurring in the upper P. gibbus Zone cannot be correlated (modified from Axheimer & Ahl-

berg 2003; Peng et al. 2004; Zhu et al. 2004; Babcock et al. 2007; Ahlberg et al. 2009; Howley and Jiang 2010; Peng et al. 

2012b; Lehnert et al. 2013 (unpublished data) and Egenhoff et al. 2015). 
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Fig. 20. Succession of the Tomten-1 drill core, Västergötland, Sweden. Green colour marks hiatuses. 
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specimens (Fig. 19). 

Based on defined boundaries of the biozones and 

identification of lithologies in the Tomten-1 drill core, 

correlation can be rendered within Scandinavia 

(Appendix B) showing that the Tomten-1 drill core 

displays often more substantial hiatuses than other 

corresponding drill cores. The data presented in this 

paper show that the succession in the Tomten-1 drill 

core is incomplete and there are several substantial 

gaps of various magnitudes (Fig. 20). 

 

12 Discussion 
 

12.1 Depositional environment 
The environment during deposition of the Alum Shale 

Formation has often been regarded as formed under 

poorly oxidized (dysoxic to anoxic) conditions (e.g. 

Thickpenny 1987; Buchardt et al. 1997). However, 

Newby (2012) studied the lithological characteristics 

of the uppermost Furongian in the Tomten-1 drill core 

and recorded several different facies, indicating distal 

to proximal settings on the shelf. Based on borings it 

appears that dysoxic conditions prevailed during depo-

sition (Newby 2012; Egenhoff et al. 2015). The find-

ings of borings in the Tomten-1 drill core show that 

dysoxic conditions, at least occasionally, were present 

during deposition of the Alum Shale Formation. 

It has been assumed by several authors (e.g. An-

dersson et al. 1985; Bergström & Gee 1985; Buchardt 

et al. 1997; Nielsen and Schovsbo 2011) that the Scan-

dinavian shelf was tectonically stable during the Cam-

brian Epoch 3 and the Furongian. However, recent 

studies (Newby 2012; Egenhoff et al. 2015) have pro-

vided evidence for tectonic activity in the Scandinavi-

an basin. The collapsed sediments at 16.95−16.72 m in 

the Tomten-1 drill core overlay a synchronic fault of 

the Andrarum-3 drill core. This could imply that tec-

tonic activity rendered the collapse of the sediments, 

however, dissolution of the basal limestone appear to 

have main cause of formation. The fault occurring in 

the top of the Exsulans Limestone Bed in the Tomten-

1 drill core suggests that some tectonic activity oc-

curred occasionally during deposition of the Alum 

Shale Formation. However, Nielsen and Schovsbo 

(2015) discuss the reasons for the major regressions 

occurring in the Scandinavian basin. Both glacial and 

tectonic factors are discussed. The evidence of tectonic 

activity seen in the drill core always appears to be as-

sociated with extreme sea-level fluctuations. However, 

glacial influence cannot be ruled out as the paleoconti-

nent was situated at low paleolatitudes during the 

Cambrian. 

If the evidence of tectonic activity seen in the up-

per Exsulans Limestone Bed has occurred over a large 

Fig. 21. Inferred Early and mid-Cambrian sea-level changes of Scandinavia. The succession occurring in the Tomten-1 drill 

core is marked. A hiatus is indicated before the Exsulans Drowning. The red line marks deposition of shale in the Tomten-1 

drill core, as seen in the lower P. gibbus Zone (Modified from Nielsen & Schovsbo 2015). 
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area this event could be correlated. Several other 

events appear to be correlatable within the Scandinavi-

an basin. The calcite crack in the Kakeled Limestone 

Bed of the Tomten-1 drill core (see figure 2) can tenta-

tively be correlated with the top of the cave structure 

seen in the Kakeled area (see Calner et al. 2013, p. 45), 

suggesting a major regression. 

The thin glauconite layers, mud and limestone beds 

of the Tomten-1 drill core could be a sign of rhythmic-

ity. In the Furongian, both a large-scale and a minor 

cyclicity can be seen (Newby 2012; Babcock et al. 

2015), however, it is beyond the scope of this report to 

study this in detail. However, karst horizons seem to 

reflect large scale cyclicty, whereas glauconite and 

limestone layers in the Cambrian Series 3 appear to 

reflect small scale rhythmicity. 

As noted by Peng (2012 and citations therein) there 

seems to be a strong relationship between the sea-level 

and the δ13C-curve in the Cambrian Series 3. In the 

Swedish drill cores this can also be observed. Brachio-

pods in particular appear at negative excursions in the 

δ13C-curve. 

 
12.2 Chemostratigraphy 
The peak δ13Corg DICE value of 2.14 ‰ measured in 

the Tomten-1 drill core is not of exceptional magni-

tude, but it is still close to the global shift of 3 ‰ (Zhu 

et al. 2006, fig. 1). As it is only recorded from one data 

point it is possible that the true value is closer to the 

global 3 ‰ (Zhu et al. 2006, fig. 1). The signature of 

the SPICE observed by Ahlberg et al. (2009), also 

gave relatively low magnitudes compared to global 

measurements, which perhaps is due to use of δ13Corg 

instead of δ13Ccarb. Diagenetic processes could, ho-

wever, possibly alter absolute δ13C values (Kump & 

Arthur 1999; Howley & Jiang 2010). 

As the curve does not return to pre-DICE values (cf. 

Zhu et al. 2006, fig. 1) there could be a hiatus in the 

lower part of the Alum Shale Formation in the drill 

core, as is indicated with the truncation of conglomer-

ate of the Borgholm Formation. 

The net shift from the Almbacken drill core is less 

prominent than the net shift of the Tomten-1 drill core. 

The prominent net shift of Álvaro et al. (2010) indi-

cates that the minimum peak value of the DICE is 

within the Exsulans Limestone Bed, although the 

study only measured two sample levels. The DICE 

signature from Ahlberg et al. (2009) is tentatively 

DICE, however the sample levels are not dense. Alt-

hough, the correlation with the Andrarum-1 drill core 

suggests that the limestone sample actually is the up-

per DICE excursion. 

Higher-density sampling of the Exsulans Limestone 

Bed and surrounding shales of the DICE interval in the 

Tomten-1 drill core could give further information of 

the signatures of the excursion.  

In order to record the SPICE excursion, sampling of 

whole rock carbon (δ13Ccarb) from the Kakeled Lime-

stone Bed at a high resolution is necessary. Detecting 

G. reticularis would further help in pinpointing the 

position of the SPICE. It must be emphasized, howev-

er, that the Tomten-1 drill core has many hiatuses in 

the interval covering the SPICE excursion (Figs. 2, 

14). 

 

12.3 Base of the P. atavus Zone and sea
-level changes 
The Exsulans Limestone of the Tomten-1 drill core is 

lithologically comparable to the Exsulans Limestone 

in the Almbacken drill core as described by Álvaro et 

al. (2010). However, compared to Almbacken there 

are abundant facies shifts in the Tomten-1 drill core. 

Hyoliths, calcite-walled brachiopods and echinoderm 

ossicles are also present, at least in some intervals, in 

the Tomten-1 drill core. Similarities in the upper part 

of the limestone bed in the Tomten-1 drill core are the 

microfossil sample yielding autigenic minerals and 

microbored shells which are in concert with the Scani-

an findings. The Tomten-1 drill core also displays dol-

omitization in the top of the Exsulans Limestone Bed. 

Thus, the top of the Exsulans Limestone in Scania 

(Almbacken) and Västergötland (Tomten) seems to 

correlate, as suggested in figure 19. 

The Exsulans Limestone Bed of the Tomten-1 drill 

core apparently contains hiatuses (Fig. 4). The basal 

part of the Exsulans Limestone Bed shows at least 

three erosional surfaces, and the shifting lithologies 

higher up in the bed could also indicate hiatuses. The 

hiatus in the upper part are in contrast to the present 

view (e.g. Nielsen & Schovsbo 2007, 2015), that Väs-

tergötland was not exposed to subaerial conditions 

during the upper half of the P. gibbus Chron. 

The upper part of the Exsulans Limestone Bed is 

associated with a rapid transgression, the Exsulans 

drowning event of Nielsen & Schovsbo (2015). It is 

not clearly understood how high the sea level was in 

the Västergötland during the Exsulans drowning event 

and the beginning of the Drumian Age. The appear-

ance of P. atavus is associated with a new transgres-

sion during the earliest Drumian (Babcock et al. 2015). 

In the Tomten-1 drill core, P. atavus appears just 

above the top of the Exsulans Limestone Bed. 

Tomagnostus fissus is a geographically widespread 

species that has been recorded from the O. gibbus and 

P. atavus zones in many parts of the world (Robison 

1994). Westergård (1946) used it as an index fossil for 

his T. fissus–P. atavus Zone, but did not define the 

base of the zone. In Scania, T. fissus appears in the 

Exsulans Limestone and it cannot be used for defining 

the base of the P. atavus Zone. T. fissus has not been 

recorded in the Tomten-1 drill core.  

If there is a hiatus above the Exulans Limestone 

Bed in the Tomten-1 drill core it probably means that 

the sea level has been much lower than suggested in 

figure 21. As there is shale deposited in the lower P. 

gibbus Zone in the Tomten-1 drill core it appears that 

not more than 40 m sea level is required for deposition 

of alum shale. 
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Although the sea-level changes are often in concert 

with the sea-level changes of Egenhoff et al. (2015), 

the Tomten-1 drill core displays additional changes. 

The extremely low sea level seen in the G. nathorsti/L. 

laevigata zones of the Tomten-1 drill may at least par-

tially correspond to the lowstand represented by the 

Andrarum Limestone in the Andrarum-3 drill core. A 

more precise correlation of, e.g. the Tomten-1 and the 

Andrarum-3 drill cores, will likely help to construct 

more detailed curve of the sea-level changes in the 

Scandinavian basin. 

 

13 Conclusions 
The Tomten-1 drill core from Västergötland, southern 

Sweden was studied with respect to bio- litho- and 

chemostratigraphy.  The succession consists of strata 

from the uppermost part of Cambrian Series 2, Cam-

brian Series 3, Furongian and the Lower and Middle 

Ordovician. The lowermost part of the succession be-

longs to the Lingulid Sandstone Member (File Haidar 

Formation), consisting of light sandstones that become 

coarse-grained and massive near the top. The Lingulid 

Sandstone is truncated by the basal conglomerate of 

the Kvarntorp Member (Borgholm Formation), which 

grades into a glauconitic sandstone forming most of 

the member. The Kvarntorp member is overlain by the 

Alum Shale Formation that consists mostly of dark 

grey to black, fine-grained mudstones with minor car-

bonate intercalations and lenses. The lower part of the 

formation has abundant thin limestone and glauconite 

beds. Four prominent limestone beds can be identified 

in the Alum Shale Formation (in ascending order): the 

Exsulans Limestone Bed, the ‘Hypagnostus Limestone 

Bed’, the Exporrecta Limestone Bed and the Kakeled 

Limestone Bed. The Alum Shale Formation is discon-

formably overlain by a thin conglomerate of the Tre-

madocian Bjørkåsholmen Formation. The uppermost 

part of the Tomten-1 succession belongs to the Middle 

Ordovician Lanna Limestone, which rests on the 

Bjørkåsholmen Formation with a prominent discon-

formity.     

The Alum Shale Formation of Cambrian Series 2 

and the Furongian can be subdivided into the follow-

ing agnostoid and polymerid biozones (in ascending 

order): the P. gibbus, P. atavus, L. lejopyge, A. pisi-

formis, O. gibbosus, P. parabolina, C. tumida, C. bis-

culata and C. linnarssoni zones. 

The varying lithologies within the Cambrian suc-

cession reflect different depositional environments. 

Sand and conglomerates were deposited in proximal, 

near-shore environments under the influence of waves 

and currents, whereas the shales and mudstones of the 

Alum Shale Formation represent more distal facies. At 

different stratigraphic levels throughout the drill core, 

beach pebbles and karst horizons have been identified, 

indicating very shallow water environments and even 

subaerial exposure.  

The Steptoean Positive Carbon Isotope Excursion 

(SPICE) has not been recorded, largely because of lack 

of δ13Ccarb-sampling in the lithologically highly vari-

able Kakeled Limestone Bed and the incompleteness 

of the lower Furongian. The Drumian Carbon Isotope 

Excursion (DICE) can be tentatively identified as one 

of two negative excursions recognized in the P. gibbus 

Zone and lower P. atavus Zone, respectively. The ne-

gative excursion in the lower P. atavus Zone is based 

on a few samples only. Detailed and dense sampling is 

required in order to delimit the range and amplitude of 

this excursion. The lower negative excursion is promi-

nent and has a recorded shift of 2.14 ‰. It is largely 

restricted to the P. gibbus Zone with a peak value just 

below the Exsulans Limstone Bed. Hence, this nega-

tive excursion seems to be older than the DICE as re-

cognized in the GSSP in the Drum Mountains, USA. A 

corresponding negative excursion was recently 

described from the P. gibbus Zone of the Almbacken 

drill core, Scania (Lehnert et al. 2013). 

Tentative attempts to correlate the Tomten-1 drill 

core with regionally (Andrarum-3 drill core) and glob-

ally, show that there are similarities in lithologies and 

facies changes, suggesting that deposition was influ-

enced by eustatic sea level changes. 

Biostratigraphical data and lithological characteris-

tics show that the succession in the Tomten-1 drill core 

is incomplete and that there are several substantial 

gaps of various magnitudes. The most significant gaps 

have been recorded in the Furongian and Lower Ordo-

vician.   
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