
                                          
Department of Automatic Control 
 

Distributed Model Predictive 
Control for Building Temperature 

Control 

Kirsten Carstaedt 



 
 

 

 

 

 

 

 

 

 

 

 

MSc Thesis 
ISRN LUTFD2/TFRT--5998--SE 
ISSN 0280-5316 

Department of Automatic Control 
Lund University 
Box 118 
SE-221 00 LUND 
Sweden 

© 2016 by Kirsten Carstaedt. All rights reserved. 
Printed in Sweden by Tryckeriet i E-huset 
Lund 2016 

 



Affidavit (Eidesstattliche Erklärung)

This thesis has been prepared on initiative and under guidance of
my advisors. For the preparation I have not used others than the
indicated aids.

Die vorliegende Arbeit habe ich auf Initiative und unter Anleitung
meiner Betreuer angefertigt. Bei der Erstellung habe ich keine an-
deren als die angegebenen Hilfsmittel verwendet.

Kaiserslautern, November 25, 2015

Kirsten Carstaedt





Abstract
This thesis and technical report concentrates on distributed control using a distributed model
predictive scheme. The model of a two room house and three room houses is build and a
distributed model predictive control (MPC) algorithm is implemented in order to reach
specified room temperatures with minimized energy effort in each room. For reference
tracking Target Calculation and the delta input scheme are used. The MPC optimization 
problem is solved at each time step through an iterative method, where the number of iterations is
reduced through a stopping criterion guaranteeing stability and a prespecified amount of
performance and feasibility. The optimization problem is divided up into subproblems, w h e r e
each subproblem t a k e s less computational effort than the central optimization problem. Due
to the possibility of coupling between subsystems, communication between the subsystems is
needed. The reference values are reached and iterations needed to solve the optimization are
reduced with the stopping condition. This method saves computing time and gives privacy to
each subsystem, s i n c e only required information is communicated. Also the subsystems get less
susceptible t o the failure of one coupled subsystem, since if one subsystem fails, the others
could go on. But, due to the needed communication, t h i s method is more suitable for large
systems with sparse coupling. For a small system, or too much coupling the communication 
effort will get to high.
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1 Introduction

1.1 Motivation

A house is a locally distributed system. To control the temperature of all rooms
to a specific temperature takes a lot of computational effort. Model Predictive
Control can follow a reference value and consider the constraints on temperature
and heaters. For large building-systems Distributed Model Predictive control can
be used. The house is divided into subsystems which are controlled by their own
Model Predictive unit. This way the computational effort of each unit is reduced.

1.2 Objective

The objective of this thesis is to implement the accelerated gradient algorithm
introduced in ”On feasibility, stability and performance in distributed model pre-
dictive control” [GR13]. Reference tracking and disturbance rejection are added
to the algorithm. The implemented accelerated gradient method will be com-
pared to the central solution introduced in the script ”Model Predictive Control”
[Gör15a].

1.3 Outline

The thesis is structured as follows: The Second Chapter introduces convex opti-
mization problems [BV09]. In the third Chapter the concept of Model Predictive
control is described and the reformulation of the difference equations into a pre-
diction model suitable for the accelerated gradient method [GR13], [GDK+13]
and the central model predictive control [Gör15c] without reference tracking are
done. In the fourth Chapter the differential equations for the used house-model
is build [Bol06] and discretized[Gör15b] and the corresponding parameters [www]
are listed. In Chapter 5 reference tracking through Target Calculation and Delta
Input Formulation [Gör15d] is introduced to the accelerated gradient method.
Chapter 6 discusses the results. Chapter 7 is conclusions and Future work.
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2 1 Introduction



2 Convex Optimization

2.1 Problem Formulation

The general optimization problem is to optimize the cost function f(x) with re-
spect to the equality constraints h(x) = 0 and inequality constraints g(x) ≤ 0. It
is given by:

minimize
x

f(x)

subject to x ∈ X
(2.1)

with X = {x ∈ Rn|h(x) = 0, g(x) ≤ 0}. (2.2)

We call X the feasible set, containing all variables that fulfil the constraints given
by h(x) and g(x). A x ∈ X is one of the possibilities to minimize the optimiza-
tion problem satisfying the constraints. We call x∗ the minimizing variable to
the problem (2.1). x∗ is part of the feasible set, but also minimizes the cost
function. The equality constraints h(x) contain difference equations describing
the behaviour of the modelled plant. The inequality constraints g(x) describe the
maximum and minimum value of the states of the plant model. For example:

minimize
u,x

1
2
(u1(k)

TR1u1(k) + x1(k)
TQ1x1(k))

subject to x1(k + 1) = a11x1(k) + b11u1(k) + bw11w1(k)

umin ≤ u(k) ≤ umax

xmin ≤ x(k) ≤ xmax.

(2.3)

If we solve this problem, we minimize the energy of input u1 and state x1. Our
equality constraint is the differential equation describing our system model. The
inequality constraints describe maximum and minimum of x1 and u1.
u1: input variable, stands for the heat flow of heater 1
x1: state variable, stands for the temperature in room 1
w1: disturbance variable, stands for the disturbance, outside temperature
The advantage of a convex optimization problem is that the Minimum we find is
a global one. An Optimization Problem is called convex if X is a convex set and
f(x) is a convex function.

3



4 2 Convex Optimization

2.2 Convexity

Convex Sets

If C is a convex set, the line segment between any two points x1,x2 ∈ C lies in
C. This means ∀ x1, x2 ∈ C :

αx1 + (1− α)x2 ∈ C with α[0, 1] (2.4)

Convex Functions

A convex optimization problem has a convex cost function. A cost function
f(x) : C → R is convex if and only if C is a convex set and if ∀x1, x2 ∈ C and
α ∈ [0, 1]:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (2.5)

For differentiable f there are two useful conditions:
First Order Condition: f is differentiable, C is convex and open:
∃∇f for each point of C then one has ∀x1, x2 ∈ C

f(x2) ≥ f(x2) +∇f(x1)
T (x2 − x1) (2.6)

∇ is the gradient of f(x)
Second Order Condition: f is twice differentiable, C is convex and open:
∃Hf = ∇2f ∀ x ∈ C then one has ∀ x ∈ C with C convex we have:

Hf = ∇2f(x) 	 0 (2.7)

Hf is the Hessian matrix of f(x).

Some welcome Properties

1. C convex, β ∈ R implies: βC = {x|x = βv, v ∈ C} convex

2. C1, C2 convex implies: C1 + C2 = {x|x = v1 + v2, v1 ∈ C1, v2 ∈ C2} convex

3. For C1, C2 convex: C1 ∩ C2 convex

4. The sum of convex functions is convex: fi(x) is convex on C, then f(x) =∑N
i=1 αifi(x) is convex for αi ≥ 0, i = {i, ..., N}

5. The quadratic function f(x) = xTPx is convex on X for symmetric and
positive semi-definite P. Since due to the second order condition for convex
functions we need: Hf (x) 	 0 for a quadratic and convex function.
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Examples

Cost Function
A cost function that would be used in model predictive control is for example:

f(xi, ui) = f1(xi) + f2(ui) (2.8)

f1(xi) =
1
2
xT
i Qixi (2.9)

f2(ui) =
1
2
uT
i Rui (2.10)

The weighting matrices Qi, Ri are quadratic and positive semi-definite Qi 	 0,
Ri 	 0, so the functions f1(xi) and f2(xi) are convex functions due to property
4. Due to property 3 sum of convex functions is convex.

Convex Sets
The equality constraints ATx = b are a intersection of hyperplanes called linear
variety. A intersection of convex sets is a convex set.
A hyper plane {x ∈ Rn|ATx = b}is a convex set:
With A = (aT1 , a

T
2 , . . . , a

T
n ) ∈ Rn, b ∈ R we have

ATx = aT1 x1 + aT2 x2 + · · ·+ aTnxn = b (2.11)

To proof convexity we use the variables xa, xb: A
Txa = b, ATxn = b

y = αxa + (1− α)xb

aTy = αATxa + (1− α)ATxb

= αb+ (1− α)b

= αb+ b− αb

= b

The inequality constraints Cx ≤ d are a convolution of half spaces called Polyhe-
dron. A intersection of convex sets is a convex set.
A half space {x ∈ R|CTx ≤ d}is a convex set. With C = (cT1 , c

T
2 , . . . , c

T
n )

T ∈ Rn

d ∈ R we have

CTx = c1x1 + c2x2 + ....+ cnxn = d (2.12)

To proof convexity we use the variables xa, xb: C
Txa ≤ d, CTxb ≤ d

y = αxa + (1− α)xb

CTy = αCTxa + (1− α)CTxb

≤ αd+ (1− α)d

= αd+ d− αd

= d
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2.3 The Lagrange Duality Theory

The Lagrangian relaxation turns the constraints into a part of the cost function,
where the violations of the constraints are weighted. Equality constraints h(x) =
0 as in (2.1) should be zero such that the minimum can be found, inequality
constraints g(x) ≤ 0 as in (2.1) should hold. The cost function is f0(x). The
Lagrangian is:

L(x, λ, μ) = f0(x) +
m∑
i=1

λihi(x) +

p∑
i=1

μigi(x) (2.13)

• λi: Lagrange multiplier, associated with the equality constraints hi(x) = 0

• μi ≥ 0: Lagrange multiplier, associated with the inequality constraints
gi(x) ≤ 0

We call

v(λ, μ) = infx∈DL(x, λ, μ) (2.14)

the dual function. The dual problem is now:

maxλ,μ≤0v(λ, μ) (2.15)

The solution to this problem can be used to solve the original problem. Actually
the solution to (2.14) is a lower bound.

Lower bound on the Optimal Value

Say the optimal value of the original problem (2.1) is called p∗ and the solution
to the dual optimization problem (2.14)is v∗. For any λ, μ ≥ 0 v(λ, μ) is a lower
bound on the primal solution p∗.

∀()λ, μ ≥ 0) ∈ R: v(λ, μ) ≤ p∗ (2.16)

To verify this we take a x1 ∈ X, with X the feasible set defined in (2.1). Since
x1 is feasible we have the constraints:

hi(x1) = 0, gi(x1) ≤ 0 with λ, μ ∈ R (2.17)

fulfilled. Due to this we can see that:

m∑
i=1

λihi(x1) +

p∑
i=1

μigi(x1) ≤ 0. (2.18)
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Since the first sum consists of hi(x1) = 0 and the second consists of gi(x1) ≤ 0.
Inserting (2.18) into L(x1, λ, μ) we see that:

L(x1, λ, μ) = f0(x1) +
m∑
i=1

λihi(x1) +

p∑
i=1

μigi(x1) ≤ f0(x1). (2.19)

The following equation shows that g(λ, μ) is a lower bound on f0(x1):

v(λ, μ) = infx(L(x, λ, μ)) ≤ L(x1, λ, μ) ≤ f0(x1) (2.20)

For the special case that the chosen feasible x1 is the minimizer x∗ to (2.1) the
solution to the dual problem is a lower bound on the optimal value:

v∗ ≤ p∗ (2.21)

We can find that lower bound v∗ on p∗ using the Karush Kuhn Tucker Condition
(KKT condition). Note that one can solve the primal problem using the dual
problem under certain assumptions discussed in the sequel of the chapter.

The Duality Gap

The difference between the optimal value of primal (p∗) and dual problem (d∗) is
called duality gap: d∗ − p∗ ≤ 0. d∗ and p∗ are defined as:

p∗ = inf f(x) s.t. g(x) ≥ 0, h(x) = 0 (2.22)

d∗ = max v(λ, μ) s.t. μ >= 0. (2.23)

To ensure that the duality gap is zero, we need the problem to be convex and
slater’s condition to hold. Slater’s condition says if there is one feasible point:

∃x ∈ X : gi(x) < 0, h(x) = 0. (2.24)

For a feasible x , the Problem has zero duality gap. If we have some affine
inequality constraints gj(x) the condition becomes:

∃x ∈ X : gj(x) ≤ 0, gi(x) < 0, h(x) = 0 (2.25)

where gj(x) ≤ 0 is for the affine inequality constraints. For convex problems
with only affine constraints, e.g linear constraints and open domain of the cost
function, slater’s condition reduces to the feasibility conditions:

∃x ∈ X : gj(x) ≤ 0, h(x) = 0 (2.26)

and the KKT’s are sufficient and necessary.
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Karush Kuhn Tucker Conditions to solve the Convex
Optimization Problem

We have a x∗ that minimizes L(x∗, λ∗, μ∗) , so it follows:

∇f0(x
∗) +

∑
λ∗∇hi(x

∗) +
∑

μ∗
i∇gi(x

∗) = 0 (2.27)

The following conditions are called ”Karush Kuhn Tucker” (KKT) conditions:

hi(x
∗) = 0 (2.28)

gi(x
∗) ≤ 0 (2.29)

μ∗
i ≥ 0 (2.30)

μ∗
i gi(x

∗) = 0 (2.31)

∇f0(x
∗) +

∑
λ∗
i∇hi(x

∗) +
∑

μ∗
i gi(x

∗) = 0 (2.32)

The solution needs to fulfil the equality and inequality constraints . The weights
on the inequality constraints need to be positive, such that the result is a lower
bound on p∗. We need μ∗

i gi(x
∗) = 0 which means for gi(x

∗) < 0 we need μ = 0.
To fulfil μ∗

i gi(x
∗) = 0 we have either μi = 0 or gi(x

∗) = 0. We also use the
gradient of the Lagrange function L(x∗, λ∗, μ∗).
For non-convex problem these conditions are only sufficient. A x∗ that minimizes
L(x∗, λ∗, μ∗) will satisfy the conditions. But not every x that satisfies the condi-
tions will be a minimizer to L(x, λ, μ).
For convex optimization problems with differentiable objective and constraint functions satisfyin
the KKT conditions provide necessary and sufficient conditions for optimality.The
solution we get through the KKT conditions is the optimal value p∗.



3 Model Predictive Control

In Model predictive control we use a mathematical model describing the plant
dynamics to predict the behaviour of the plant over a prediction horizon. The
current plant states x(k) are measured and a prediction model is build. Based on
this prediction model we calculate the optimal input sequence U(k) to reach zero
or a specified reference value while minimizing the cost function. The first value
of this input sequence u(0) is implemented to the plant. The next time step the
new current plant states x(k) are measured and we start again by predicting the
behaviour of the plant from this new starting point and calculating the optimal
input sequence U(k). For now the reference value is zero.

3.1 Central Prediction Model

The state equations (equality constraints) are reformulated into a prediction
model only depending on the current state and input. The state equations for
the central problem are:

x(k + 1) = ax(k) + bu(k) + bww(k)

x(k + 2) = ax(k + 1) + bu(k + 1) + bww(k + 1)

= a2x(k) + abu(k) + abww(k) + bu(k + 1) + bww(k + 1)

x(k + 2) = ax(k + 2) + bu(k + 2) + bww(k + 2)

= a3x(k) + a2bu(k) + a2bww(k)

+ abu(k + 1) + abww(k + 1) + bu(k + 2) + bww(k + 2)

...

x(k +N) = aNx(k) + aN−1bu(k) + aN−1bww(k) + . . .

+ a1bu(k) + a1bww(k) + a0bu(k) + a0bww(k).

(3.1)

These state equations put together into one matrix form, whereX(k) is depending
only on the current measurement x(k) and the input sequence U(k):

X(k) = Φx(k) + ΓuU(k) + ΓwW (k) (3.2)

9



10 3 Model Predictive Control

is called prediction model. The matrices are:

X(k) =

⎛
⎜⎜⎜⎝

x(k + 1)
x(k + 2)

...
x(k +N)

⎞
⎟⎟⎟⎠ , U(k) =

⎛
⎜⎜⎜⎝

u(k)
u(k + 1)

...
u(k +N − 1)

⎞
⎟⎟⎟⎠ ,W (k) =

⎛
⎜⎜⎜⎝

w(k)
w(k + 1)

...
w(k +N − 1)

⎞
⎟⎟⎟⎠ ,

(3.3)

Φ =

⎛
⎜⎜⎜⎝

a
a2

...
aN

⎞
⎟⎟⎟⎠ ,Γu =

⎛
⎜⎜⎜⎝

a0b 0 . . . 0
a1b a0b . . . 0
...

...
. . . 0

aN−1b aN−2b . . . a0b

⎞
⎟⎟⎟⎠ ,Γw =

⎛
⎜⎜⎜⎝

a0bw 0 . . . 0
a1bw a0bw . . . 0
...

...
. . . 0

aN−1bw aN−2bw . . . a0bw

⎞
⎟⎟⎟⎠

(3.4)

The cost function (3.5)

VN(x(k), U(k)) = xT (k +N)Px(k +N) +
N−1∑
i=0

xT (k + i)Qx(k + i) + uT (k + i)Ru(k + i)

(3.5)

= xT (k)Qx(k) +XT (k)ΩX(k) + UT (k)ΨU(k) (3.6)

also needs to be reformulated in a matrix form. The following matrices

Ω =

⎛
⎜⎜⎜⎝
Q 0 0 . . . 0
0 Q 0 . . . 0

0 0 Q
. . . 0

0 0 0 . . . P

⎞
⎟⎟⎟⎠ ,Ψ =

⎛
⎜⎜⎜⎝
R 0 0 . . . 0
0 R 0 . . . 0

0 0 R
. . . 0

0 0 0 . . . R

⎞
⎟⎟⎟⎠ (3.7)

build the matrix form (3.6). The matrices Q,P are symmetric and positive-
semidefinite, P is symmetric and positive-definite:
P = P T 	 0, Q = QT 	 0, R = RT � 0 .
This implies that Ω = ΩT 	 0, Ψ = ΨT 	 0.
To eliminate the minimization over x we insert the prediction model X(k) =
Φx(k)+ΓuU(k)+ΓwW (k) into the cost function VN(x(k), U(k)) = xT (k)Qx(k)+
XT (k)ΩX(k) + UT (k)ΨU(k) simplifying the equations:

VN(x(k), U(k)) = xT (k)Qx(k)

+ (xTΦT + UT (k)ΓT
u +W T (k)ΓT

w)Ω(Φx(i) + ΓT
uU(k)

+ ΓT
wW (k)) + UT (k)ΨU(k)

= xT (k)Qx(k) + UT (k)ΨU(k)

+ (xT (k)ΦTΩ + UT (k)ΓT
uΩ +W T (k)ΓT

wΩ)Φx(k)

+ (xT (k)ΦTΩ + UT (k)ΓT
uΩ +W T (k)ΓT

wΩ)ΓuU(k)
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= (xT (k)ΦTΩ + UT (k)ΓT
uΩ +W T (k)ΓT

wΩ)ΓwW (k) (3.8)

We summarize all terms that do not include U(k) into f(x(k),W (k)).

VN(x(k), U(k)) = f(x(k),W (k)) + UT (k)ΨU(k) + UT (k)ΓT
uΩΦx(k)

+ (xT (k)ΦTΩΓuU(k) + UT (k)ΓT
uΩΓuU(k) (3.9)

+W T (k)ΓT
wΩΓuU(k) + UT (k)ΓT

uΩΓwW (k)

= UT (k)(Ψ + ΓT
uΩΓu)U(k) + 2xT (k)ΦTΩΓuU(k) (3.10)

+ 2W T (k)ΓT
wΩΓuU(k) + f(x(k),W (k))

VN(x(k), U(k)) = UT (k)
1

2
2(Ψ + ΓT

uΩΓu)U(k) + (2xT (k)ΦTΩΓu + 2W T (k)ΓT
wΩΓu)U(k)

(3.11)

+ f(x(k),W (k))

=
1

2
UT (k)HU(k) + (Fx + FR)U(k) + f(x(k),W (k)) (3.12)

Used in this reshaping is that all xTMx in the cost function are scalar, so xTMx =
xMxT . Where M is a diagonal matrix with M = MT . Without constraints the
optimization problem is

min
U(k)

VN(x(k), U(k)). (3.13)

It can be solved by building the derivative for U(k):

U(k) = −H−1(F T
x + F T

R ). (3.14)

Now we build the matrix form of the constraints only depending on x(k) and
U(k). The used model has boxed constraints, limiting the temperature and heat
flow of the heaters we do the constraints reformulation as matrix form for boxed
constraints. The constraints are:

−u(k) ≤ umin (3.15)

u(k) ≤ umax (3.16)

−y(k) ≤ ymin (3.17)

y(k) ≤ ymax. (3.18)

The goal is to reformulate this a: M(k+ i)x(k+ i) +E(k+ i)u(k+ i) ≤ b(k+ i).
With y(k + i) = cx(k + i). The matrices are:

M(k + i) =

⎛
⎜⎜⎝
0mxn

0mxn

−c
c

⎞
⎟⎟⎠ , E(k + i) =

⎛
⎜⎜⎝
−Imxm

Imxm

0pxm

0pxm

⎞
⎟⎟⎠ , b(k + i) =

⎛
⎜⎜⎝
−umin

umax

−ymin

ymax

⎞
⎟⎟⎠ (3.19)
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The prediction form of these inequalities is:

D(k)x(k) + Λ(k)X(k) + ε(k)U(k) ≤ β(k) (3.20)

D(k) =

⎛
⎜⎜⎜⎜⎜⎝

M(k)
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

,Λ(k) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
M(k + 1) 0 0 . . . 0

0 M(k + 2) 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . M(k +N)

⎞
⎟⎟⎟⎟⎟⎠

,

(3.21)

β(k) =

⎛
⎜⎜⎜⎜⎜⎝

b(k)
b(k + 1)
b(k + 2)

...
b(k +N)

⎞
⎟⎟⎟⎟⎟⎠

, ε(k) =

⎛
⎜⎜⎜⎜⎜⎝

E(k) 0 0 . . . 0
0 E(k + 1) 0 . . . 0

. . . . . . . . .
. . . 0

0 0 0 . . . E(k +N)
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠
(3.22)

To get a constraints form only involving U(k) and x(k) the prediction Model (3.2)
is inserted into the constraints matrix form (3.20):

D(k)x(k) + Λ(k)Φx(k) +M(k)(ΓuU(k) + ΓwW (k)) + ε(k)U(k) ≤ β(k) (3.23)

(M(k)Γu + εU(k)) ≤ β(k) + (−D(k)− Λ(k)Φ)x(k) +−Λ(k)ΓwW (k) (3.24)

AU(k) ≤ β(k) +Wx(k) +WwW (k). (3.25)

This results in a quadratic program:

min
U(k)

= VN(x(k), U(k)) s.t. AU(k) ≤ b(k)+Wx(k) (3.26)

A problem formed like this can be solved using the matlab function ”quadprog”.

3.2 Separable Prediction Model

The following prediction model is build such that it is separable:

miny
1
2
yTHy

subject to Ay = Bz0

Cy ≤ D.

(3.27)

The vector y combines all x(k), u(k) for all time steps of the prediction hori-
zon. The optimization problem is divided into parts that are solved by their own
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computational unit. The number of computational units we use to solve the dis-
tributed Model predictive control is M. Each computational unit (corresponding
to one room in our model) has the state zi and input vi.
zi, vi contain all states and inputs that correspond to this computational unit.
The Dimensions are: zi ∈ Rni , vi ∈ Rmi .
In the case of normal Target Calculation we have ni = 1,mi = 1,
in case of delta Input + Target Calculation: ni = 2, mi = 1.
The state equations transform into:⎛

⎜⎜⎜⎝
z1(k + 1)
z2(k + 1)

...
zM(k + 1)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1M
a21 a22 . . . a2M
...

...
. . .

...
aM1 aM2 . . . aMM

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

z1(k)
z2(k)
...

zM(k)

⎞
⎟⎟⎟⎠ (3.28)

+

⎛
⎜⎜⎜⎝

b11 b12 . . . b1M
b12 b22 . . . b2M
...

...
. . .

...
bM1 bM2 . . . bMM

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

v1(k)
v2(k)
...

vM(k)

⎞
⎟⎟⎟⎠ (3.29)

The related model predictive cost function without terminal constraint reads as:

VN(z(k), v(k)) =
1
2

M∑
i=1

N−1∑
τ=1

(
zi(τ)

TQizi(k) + vi(k)
TRivi(k)

)
(3.30)

= 1
2

M∑
i=1

(
zTi Ωizi + vTi Ψivi

)
(3.31)

where

zi =
(
zi(0)

T , zi(1)
T , . . . zi(N − 1)T

)T
(3.32)

vi =
(
vi(0)

T , vi(1)
T , . . . , vi(N − 1)T

)T
(3.33)

Ωi = blkdiag(Qi, Qi, . . . , Qi) (3.34)

Ψi = blkdiag(Ri, Ri, . . . , Ri) (3.35)

”blkdiag(Qi, .., Qi, Ri, ..., Ri)” means a blockdiagonal matrix with the blocks Qi

and Ri. We start the reformulation with defining the combined vector:

y =

⎛
⎜⎜⎝

y1
y2
. . .
yM

⎞
⎟⎟⎠ , yi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zi(0)
zi(1)
. . .

zi(N − 1)
vi(0)
vi(0)
. . .

vi(N − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∀i = 1, .....,M (3.36)
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The matrices H,A,B,C,D are build such that they equal (3.28) and (3.30):

⎛
⎜⎜⎜⎝

y1
y2
...
yM

⎞
⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎝
H11 0 . . . 0
0 H22 . . . 0
...

...
. . . 0

0 0 . . . HMM

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y1
y2
...
yM

⎞
⎟⎟⎟⎠ = VN(y), (3.37)

⎛
⎜⎜⎜⎝

A11 A12 . . . A1M

A21 A22 . . . A2M
...

...
. . .

...
AM1 AM2 . . . AMM

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y1
y2
...
yM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

B11 B12 . . . B1M

B21 B22 . . . BMM
...

...
. . .

...
BM1 BM2 . . . BMM

⎞
⎟⎟⎟⎠ ,

(3.38)⎛
⎜⎜⎜⎝
C11 0 . . . 0
0 C22 . . . 0
...

...
. . .

...
0 0 . . . CMM

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y1
y2
...
yM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

D1

D2
...

DM

⎞
⎟⎟⎟⎠ (3.39)

,

Hii = blkdiag(Qi, ..., Qi, Ri, ..., Ri), (3.40)

Cii = blkdiag(Cz, ..., Cz, Cv, ..., Cv), (3.41)

Di =
(
DT

1 , D
T
2 , . . . , D

T
M

)T
. (3.42)

The system model of this thesis has no input and no inequality constraints cou-
pling. This means ∀i = 1, . . . ,M, j = 1, . . . ,M with i � j Bij = 0, Cij = 0.
The cost function is decoupled by definition of the weighting matrices. To build
Aij, Bii, Cii, Di we look at the equality constraints/system equations:

−z1(1) + a11z1(0) + a12z2(0) + b11v1(0) = 0

−z1(2) + a11z1(1) + a12z2(1) + b11v1(1) = 0

...

−z1(N − 1) + a11z1(N − 2) + a12z1(N − 2) + b11v1(N − 2) = 0
−z2(1) + a21z1(0) + a22z2(0) + b22v2(0) = 0

−z2(2) + a21z1(1) + a22z2(1) + b22v2(1) = 0

...

−z2(N − 1) + a21z1(N − 2) + a22z2(N − 2) + b22v2(N − 2) = 0

constraints/boxed constraints:

−z(τ) ≤ −zmin (3.43)

z(τ) ≤ zmax
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−v(τ) ≤ −vmin

v(τ) ≤ vmax

Czzi ≤ dz (3.44)

Cvvi ≤ dv (3.45)

Now we form matrices out of these equations with the vector y as specified.

Aii =

⎡
⎢⎢⎢⎢⎢⎣

−I 0 0 . . . 0 0 0 0 0 . . . 0 0
aii −I 0 . . . 0 0 bii 0 0 . . . 0 0
0 aii −I . . . 0 0 0 bii 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 . . . aii −I 0 0 0 . . . bii 0

⎤
⎥⎥⎥⎥⎥⎦
, (3.46)

Aij =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0 0 0 0 . . . 0 0
aij 0 0 . . . 0 0 bij 0 0 . . . 0 0
0 aij 0 . . . 0 0 0 bij 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 . . . aij 0 0 0 0 . . . bij 0

⎤
⎥⎥⎥⎥⎥⎦

(3.47)

,

Bii =

⎡
⎢⎢⎢⎣

−Ix
0x
...
0x

⎤
⎥⎥⎥⎦ , Bij =

⎡
⎢⎢⎢⎣

0x
0x
...
0x

⎤
⎥⎥⎥⎦ (3.48)

Where Ix = [1; 1; ....1] ∈ Rni , 0x = [0; 0; ...; 0] ∈ Rni .

3.2.1 Dual Decomposition

For two rooms the optimization problem is:

minimize
y

1
2
yTHy

Ay = Bz0

Cy ≤ D

(3.49)

And as problem with relaxed constraints (Lagrange):

L(y, λ, μ) = 1
2
yTHy + λ(Ay − Bz0) + μ(Cy −D) (3.50)

L(y1, y2, λ1, λ2, μ1, μ2) =
1
2
yT1 H1y1 + λ1(A11y1 + A12y2 − B11z01) (3.51)
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+ μ1(C11y1 −D1) (3.52)

+ 1
2
yT2 H2y1 + λ2(A22y2 + A21y1 − B22z02)+ (3.53)

μ2(C22y2 −D2) (3.54)

We define the dual function G(λ, μ):

G(λ, μ) = inf
y1,y2

L(y, λ, μ) (3.55)

And the dual Problem:

maxλ,μG(λ, μ) = max
λ,μ

infy1,y2L(y, λ, μ) (3.56)

Thus we can use the dual decomposition to get distributed problems which can
be solved using independent computational units. First we declare y1 and y2 as
public variables and name them different for each system.
Computational unit 1: y1a, y2a,
computational unit 2: y1b, y2b with the new consistency constraint: y1a = y1b;
y2a = y2b. This way we can separate the dual optimization problem.The Lagrange
function is:

L(y1a, y2a, y2b, y1b, λ1, λ2, μ1, μ2) =
1
2
yT1aH1y1a + λ1(A11y1a + A12y2a − B11z01)

+ μ1(C11y1a −D1)

+ 1
2
yT2bH2y2b + λ2(A22y2b + A21y1b − B22z02)

+ μ2(C22y2b −D2)

(3.57)

The new constraints,which we call the ”consistency constraint” are: :

y1a = y1b (3.58)

y2a = y2b (3.59)

meaning that the y1a and y1b should have the same value since they stand for the
same state y1.
y2a should have the same value as y2b. Due to these new definition of public
variables, the function L(y1a, y21, y2b, y1b, λ1, λ2, μ1, μ2) becomes completely sepa-
rable:

L1(y1a, y2a, λ1, μ1, ) =
1
2
yT1aH1y1a + λT

1 (A11y1a + A12y2a − B11z01)+

μT
1 (C11y1a −D1)

(3.60)

L2(y1b, y2b, λ2, μ2) =
1
2
yT2bH2y2b + λT

2 (A22y2b + A21y1b − B22z02)+

μT
2 (C22y2b −D2)

(3.61)
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We can use the gradient descent method to solve this problem. We use it in two
steps. First we use it to solve the ”outer” optimization, which tries to fulfil the
consistency constraints. Again we construct a dual function:

g(ν1, ν2) = L1(y1a, y2a, λ1, μ1, ) + L2(y1b, y2b, λ2, μ2) (3.62)

+ νT
1 (y1a − y1b) + νT

2 (y2a − y2b) (3.63)

= g1(ν1, ν2) + g2(ν1, ν2) (3.64)

The goal is now to solve the two problems:

g1(ν1, ν2) = infy1a,y2aL1(y1a, y2a, λ1, μ1, ) + νT
1 y1a + νT

2 y2a (3.65)

g2(ν1, ν2) = infy1b,y2bL2(y1a, y2b, λ2, μ2)− νT
1 y1b − νT

2 y2b (3.66)

This gives us the following algorithm:
repeat

1. solve distributed optimization in parallel, constant ν1, ν2:

computational unit 1 solves g1(ν1, ν2) to get minimizing y1a, y2a

computational unit2 solves g2(ν1, ν2) to get minimizing y1b, y2b

2. exchange of the results between the computational units

3. update the dual variables ν1, ν2 in parallel, constant y1a, y2a, y1b, y2b:

computational unit1 calculates ν1 = ν1 + αk(y1a − y1b)

computational unit2 calculates ν2 = ν2 + αk(y2a − y2b)

4. exchange of the results between the computational units

5. go back to 1.

All variables can be initialized as zero-vectors of corresponding dimension. The
gradient method is a steepest descent method, so the iterative solution to g1(ν1, ν2), g2(ν1, ν2)
can be obtained by the steepest descent method. We want to solve the minimiza-
tion of f(y) using this iterative formula:
repeat

yk = yk − αk(∇f(y)) (3.67)

for a maximization respectively:

yk = yk + αk(∇f(y)) (3.68)

This means, at each iteration, we use −∇f(y) as the direction in which the
minimum of f(y) lies and take a weighted step into this direction. The weight αk
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should not be to large, otherwise the method will not converge. How to choose
αk is described in the background chapter of [Gis12] .
For now, we use αk = 0.02k−1

k+2
. The constant 0.02 is one we got through some

numerical experiments. For this αk the dual decomposition iterations converge
to the optimal value. To solve the optimizations g1(ν1, ν2), g2(ν1, ν2) we have to
repeat the following iterations:
Computational unit 1 - optimization variables Iterations:

y1a = y1a − αk(∇y1ag1(ν1, ν2))

y2a = y2a − αk(∇y2ag1(ν1, ν2))
(3.69)

computational unit 1 - dual variable updates

λ1 = λ1 + αk(∇λ1g1(ν1, ν2))

μ1 = μ1 + αk(∇μ1g1(ν1, ν2))

ν1 = ν1 + αk(∇nu1g1(ν1, ν2))

(3.70)

computational unit 2 - optimization variable Iterations

y1b = y1b − αk(∇y1bg2(ν1, ν2))

y2b = y2b − αk(∇y2bg2(ν1, ν2))
(3.71)

computational unit 2 - dual variable updates

λ2 = λ2 + αk(∇λ2g2(ν1, ν2))

μ1 = μ1 + αk(∇μ1g2(ν1, ν2))

ν2 = ν2 + αk(∇nu2g2(ν1, ν2))

(3.72)

The respective gradients are for

computational unit1

∇y1a = H1y1a + AT
11λ1 + CT

11μ1 + ν1

∇y2a = AT
12 + ν2

∇λ1 = A11y1a + A12y2a − B11z01

∇μ1 = C11y1a −D1

∇ν1 = y1a − y2a

computational unit1

∇y1b = AT
21λ2 − ν2

∇y2b = H2y2a + AT
22λ2 + CT

22μ2 − ν1

∇λ2 = A21y1b + A22y2b − B22z02

∇μ2 = C11y1a −D1

∇ν2 = y1b − y2b.

The MPC procedure is:
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1. measure new state of z(k)

2. start optimization with prediction form of state equations, inequalities, cost
functions
repeat for Δk Iterations

computational unit 1 iterates (3.69)

computational unit 1 iterates (3.71)

communication of current iteration-values of y1a, y2a, y1b, y2b

computational unit 2 iterates (3.70)

computational unit 2 iterates (3.72)

communication of current iterations-values of λ1, λ2, μ1, μ2

3. get u1(0) and u2(0) from y1, y2

4. implement u1(k), u2(k)

5. go back to 1.

This was used to calculate the reference value in the distributed case.

3.2.2 Accelerated Gradient Method

The accelerated gradient method uses not only the current gradient but a linear
combination of the previous and the new gradient as descent direction. Since the
gradients are independent of each other, we do not need dual decomposition to
seperate the two subproblems. The dual function is

VN(λ, μ, y) =
1
2
yTHyT + λT (Ay − B) + μT (Cy −D) (3.73)

We calculate the minimizing y of the dual function through derivation:

0 = Hy + ATy + CTy (3.74)

y = −H−1(ATy + CTy) (3.75)

This yield the following Iterations:

y = −H−1(ATy + CTy)

y = y + αk(y − ypast)

λ = λ+ αk(λ− λpast) +
1
L
(Ay − B)

μ = μ+ αk(μ− μpast) +
1
L
(Cy −D)

(3.76)

These are used to solve the central Problem:
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1. measure the current state vector x(k)

2. start new optimization with z0 = x(k)

calculate (3.76)

3. get u0(k) out of y

4. implement u(k)

5. go back to 1.

To implement the distributed MPC we seperate (3.76):
computational unit 1:

y1 = −H−1
1 (AT

11λ1 + AT
21λ2 + CT

11μ1)

y1 = y1 + αk(y1 − y1past)

λ1 = λ1 + αk(λ1 − λ1past) +
1
L
(A11y1 + A12y2 − B11z01))

μ1 = μ1 + αk(μ1 − μ1past) +
1
L
(C11y1 −D1)

(3.77)

computational unit 2:

y2 = −H−1
2 (AT

12λ1 + AT
22λ2 + CT

22μ2)

y2 = y2 + αk(y2 − y2past)

λ2 = λ2 + αk(λ2 − λ2past) +
1
L
(A21y1 + A22y2 − B22z02)

μ2 = μ2 + αk(μ2 − μ2past) +
1
L
(C22y2 −D2)

(3.78)

αk is the step size:

αk =
k−1
k+2

(3.79)

and 1
L
with L the Liptschitz constant is uesd as second stepsize. An upper bound

on the Lipschitz constant is calculated as follows:

L = ‖[AT , CT ]TH[AT , CT ]‖ (3.80)

The distributed model predictive control repeats the following steps:

1. measure z0 = x(k)

2. solve the Iterations

computational unit 1 iterates (3.77)

computational unit 2 iterates (3.78)

3. get u1(0), u2(0) out of y1, y2

4. implemenet u1, u2

5. go back to 1.



4 System Model for two Rooms

4.1 Heat Flow Models

The flow of heat that occurs to compensate the difference in temperature between
two places, for example two rooms which are separated by a wall, is calculated
as:

q =
T2 − T1

R12

T1: temperature of one side, e.g room 1
T2: temperature of the other side, e.g room 2
R12: thermal resistance between the two sides, e.g a wall

The damping of heat flow through the wall is described by the thermal resis-
tance ”R”.

R =
L

Ak

L: length of piece of wall
A: area of piece of wall
k: coefficient of thermal heat conductivity

The change of heat energy in the system is described as:

q1 − q2 = mc
T

dt
(4.1)

c = specific thermal capacity
m = mass of heat storage
T = temperature
q = heat flow

The following picture 4.1 shows how
a) thermal resistances in series would look like. The example is to walls behind
each other. One of concrete and one of glas wool. The heat flow goes through
both of them. b) shows how two thermal resistances in parallel would look like.

21
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Figure 4.1: example: thermal resistances

The example is a wall and a window. The heat flow divides. One part goes
through the window, another part through the wall.
a) Thermal resistances in series are calculated as follows:

Rg = R1 +R2 (4.2)

b) Thermal resistances in parallel are calculated as follows:

1

Rg

=
1

R1

+
1

R2

(4.3)

That is all we need to create our first room model:
The house is shown in 4.2 The differential equations for this example are:

Figure 4.2: example to show how to get a system model of the room model

q1 − q12 − q10 − qF = C1
dT1

dt
(4.4)

q2 + q12 − q20 − qF = C2
dT2

dt
(4.5)



4.2 The Two-Room Model 23

We define the following heat flows:

q1 = heater room 1

q2 = heater room 2

q10 =
T1 − T0

R10

q20 =
T2 − T0

R20

q12 =
T1 − T2

R12

and insert them into differential equations (4.4), (4.5):

q1− T1 − T0

R10

− T1 − T2

R12

= C1
dT1

dt
(4.6)

q2− T2 − T0

R20

+
T1 − T2

R12

= C2
dT2

dt
(4.7)

This is the differential equation describing the dynamics of the model shown in
4.2.

4.2 The Two-Room Model

The two room model from before will be expanded by a glass wool isolation as
shown in picture 4.3.

Parameter

First we need to specify some parameters [www]:
Parameter glass wool concrete window glass air

density [kg/m3] ρ 2.5 1700 2500 1.28
specific thermal conductivity k [W/m K] 0.04 0.7 0.96 0.024

specific thermal capacity c [J/kg K] 760 660 700 1010

There after the materials will have the indices:
glass wool will have the indices: dAwo, kwo, cwo

concrete will have the indices: dAcon, kcon, ccon
window glass will have the indices: dAwin, kwin, cwin

air will have the indices: dAair, kair, Cair
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Figure 4.3: house model with concrete walls and glaswool isolation

Areas through which Heat flows

room1 to outside: Awallo1 = lHhH + 2wH1hH − nw1hWwW (4.8)

room2 to outside: Awallo2 = lHhH + 2wH2hH − nw2hWwW (4.9)

room1 to room2: Awall12 = lHhH (4.10)

window1: Awin1 = nW1hWwW (4.11)

window2: Awin2 = nW2hWwW (4.12)

Masses that store Heat

concrete mass room 1: mcon1 = (2LconhHwH1 + 2LconhH lH)dAcon (4.13)

concrete mass room 2: mcon2 = (2LconhHwH2 + 2LconhH lH)dAcon (4.14)

glass wool mass room 1: mwo1 = (2LwohHwH1 + LwohH lH)dAwo (4.15)

glass wool mass room 2: mwo2 = (2LwohHwH2 + LwohH lH)dAwo (4.16)

air mass room 1: M1 = (lhwH1hH)dAair (4.17)
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air mass room 1: M2 = (lHwH2hh)dAair (4.18)

Heat Capacities

The heat capacities consist of the heat capacity of the air inside each room and
the heat capacit fo the surrounding concrete walls around each room and the heat
capacity of the glass wool isolation around each room.
The heat capacity is calculated as: C = mc, where c is specific heat capacity and
m is the mass of the element. The heat flow splits into single heat flows ”going
through”each of the masses. This means the masses behave as if they are parallel.
Based on the analogy to electric circuits we now that parallel capacities are added:

heat capacity room1: Cth1 = M1cair +mwo1cwo +mcon1ccon (4.19)

heat capacity room2: Cth2 = M2cair +mwo2cwo +mcon2ccon (4.20)

Thermal Resistances

The thermal resistance Ro1for heat flow from room 1 to outside splits up into

Rcon1 =
Lcon

kconAwall o1

(4.21)

Rwo1 =
Lwo

kwoAwall o1

(4.22)

Rwin1 =
Lwin

kwinAwin1

, (4.23)

(4.24)

the thermal resistance Ro2 for heat flow from room 2 to outside:

Rcon2 =
Lcon

kconAwall o2

(4.25)

Rwo2 =
Lwo

kwoAwall o2

(4.26)

Rwin2 =
Lwin

kwinAwin2

. (4.27)

(4.28)

The heat flow from room 2 to outside splits ab in the heat flow through the
wall(concrete + glass wool) and the window.

Ro1 = (
1

Rcon1 +Rwo1

+
nw1

Rwin1

)−1 (4.29)
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Ro2 = (
1

Rcon2 +Rwo2

+
nw2

Rwin2

)−1 (4.30)

Differential Equation and State Space Model

The model shown in 4.4 describes the heat flows of 4.3. This model 4.3is used to

Figure 4.4: two room model

create the differential equations.

Cth1
dT1

dt
= q1 − q12 − q10 (4.31)

Cth1
dT1

dt
= q1 − T1 − T2

R12

− T1 − T0

R10

(4.32)

Cth1
dT1

dt
= q1 − R12 +R10

R12R10

T1 +
1

R12

T2 +
1

R10

T0 (4.33)

Cth2
dT1

dt
= q2 + q12 − 120 (4.34)

Cth2
dT1

dt
= q2 +

T1 − T2

R12

− T2 − T0

R20

(4.35)

Cth2
dT1

dt
= q2 +

R12 −R20

R12R20

T2 +
1

R12

T1 − 1

R20

T0 (4.36)

which can be written as:

a11x1 + a12x2 + b11u1 + bw11d1 = ẋ1 (4.37)
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a21x1 + a21x2 + b22u2 + bw22d2 = ẋ2 (4.38)

ax+ bu+ bww = ẋ (4.39)

where x1, x2 are the states corresponding to the temperatures T1, T2 and u1, u2

are the inputs corresponding to the heat flows of the heaters q1, q2.

The coefficients are:

a11 = − R12 +R10

R12R10Cth1

a12 =
1

R12Cth1

a21 =
1

R12Cth2

a22 =
R12 −R20

R12R20Cth2

(4.40)

b11 =
1

Cth1

b12 = 0 b21 = 0 b22 =
1

Cth2

(4.41)

bw11 =
1

Cth1R10

bw12 = 0 bw21 = 0 bw22 =
1

Cth2R20

(4.42)

4.3 Discretization

To discretize the system we interpret the disturbance through the outside tem-
perature T0 as an input. The following matrices will be used:

uhilf =

⎛
⎝u1

u2

T0

⎞
⎠ , bhilf =

(
b11 b12 bw11

b21 b22 bw22

)
(4.43)

with the system: ẋ = ax + bhilfuhilf The matlab function ”c2d” can be used to
discretize this system. But this may destroy the separable structure of our system
and result in b12, b21 non zero. Thus we use the approximation of zero-order-hold
discretization, which is explained in the following:
Say we have the continuous system: acx+ bcu = ẋ and ccx = yc. The solution to
this differential equation is:

x(t) = expac(t−tk) x(tk) +

∫ t

tk

expac(t−s)) bcu(s)ds (4.44)

Since we are interested in the solution to the discretized system we consider a
discrete input of the form:

u(t) = u(tk) ∀tk ≤ t ≤ tk+1 (4.45)
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This means our input has the same value between the time steps tk and tk+1. We
insert this u(t) into (4.44).

x(tk+1) = expac(tk+1−tk) x(tk) +

∫ tk+1

tk

expac(tk+1−z) bcu(tk)dz (4.46)

and define: hk = tk+1 − tk to get:

x(tk+1) = expachk x(tk) +

∫ tk+1

tk

expac(tk+1−z) dzbcu(tk) (4.47)

Via the substitution: s = tk+1 − z we get ds
dz

= −1so, it follows dz = −ds. With
the new integration limits: s = tk+1 − tk = hk and s = 0:

x(tk+1) = expachk x(tk)−
∫ 0

hk

expacs ds bcu(tk) (4.48)

x(tk+1) = expachk x(tk) +

∫ hk

0

expacs ds bcu(tk) (4.49)

x(tk+1) = ax(tk) + bu(tk) (4.50)

The discrete system matrices are:

a = expachk b =

∫ hk

0

expacs dsbcu(tk) (4.51)

c = cc d = dc (4.52)

The Approximation uses the first two elements of the Taylor series expansion:

a = expachk = I + acts

(4.53)

b =

∫ hk

0

expacs ds bc = a−1
c (expachk −I) bc = a−1

c (I + acts− I) bc = ts bc

(4.54)

Afterwards isolate the disturbance term from the input and have the discretized
system:

x(k + 1) = ax(k) + bhilfuhilf(k) (4.55)

a = I + acts (4.56)

bhilf = tsbc (4.57)

c = cc (4.58)

d = dc (4.59)

b = bhilf[:, 1 : 2] (4.60)

bw = bhilf[:, 3] (4.61)
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4.4 Sampling Time

To calculate a useful sampling time we need to measure the rise time. We solve
this with matlab:
sys = ss(ac,bc,cc,0)
step(sys)
We pick the time t10 where the step response is 10 % and the time t90 where the
step response is 90 % of the maximum value (stationary end state). We will use
the smaller tA.
The sampling time should fulfill ts ≤ 10tA.

Figure 4.5: step response of the built system

We calculate the sampling time for the system model (4.39) using the reformu-
lation as (4.43). The points in the upper left step response of 4.5 are at the
timepoints: t10 = 44.8s
t90 = 870s
The Rise time is calculated as: tA = t90 − t10 = 825.1s
The sampling time is calculated as: ts = tA

20
= 41.26s
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5 Reference Tracking

The goal is to use Model Predictive Control (MPC) to regulate the room tem-
perature to a specified reference temperature in each room. The used algorithm
is designed for a reference value zero. To use it we reformulate the ”reference
Tracking problem” into a regulation to zero. We will use two ways:
target Calculation: The reference value is subtracted from the state and input
variables such that we regulate x̃ = x− xss and ũ = u− uss to zero.
Delta Input: The delta Input equation is u(k) = u(k − 1) − Δu(k) and this
equation is joined with the state equations. The new input is Δu(k) and u(k)
becomes a state.

We want to do reference tracking for central and distributed model predictive
control. For that we need some reformulations. We will do reformulations into a
”Target Calculation”and ”delta Input formulation” for the central and distributed
case.
central case: The central case is formulated as a quadratic program and solved
with matlab. Central means, that only ”one MPC” is used. This MPC works cen-
tral to calculate all values for all rooms. For a large system (e.g. a huge building
with many rooms) the matrix computations become very time consuming and
use a lot of computational capacity.
distributed case: To avoid those time consuming computations we use one
MPC for each room. With dual decomposition the calculations can be separated
into optimization problems only involving state and input variables of one system
(room).

31
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5.1 Target Calculation

5.1.1 Central Case

The Problem formulation, with the system equations (4.39) of chapter 3 is:

minimize
u,x

VN(x(k), u(k))

subject to x(k + 1) = ax(k) + bu(k) + bww(k)

y(k) = cx(k)

umin ≤ u(k) ≤ umax

xmin ≤ x(k) ≤ xmax

(5.1)

with the matrices:

a =

(
a11 a12
a21 a22

)
, b =

(
b11 0
0 b22

)
, bw =

(
bw11 0
0 bw22

)
, c =

(
1 0
0 1

)
(5.2)

Q =

(
Q1 0
0 Q2

)
, P =

(
P1 0
0 P2

)
, R =

(
R1 0
0 R2

)
(5.3)

and the dimensions: x ∈ Rn, u ∈ Rm, w ∈ Rnw, y ∈ Rp with n = 2,m = 1, nw =
2, p = 2.
The cost function for reference tracking is defined as:

VN(x(k), u(k)) =
1
2
(y(k +N)− r(k))Q(y(k +N)− r(k))

+ 1
2
(y(k + i)− r(k))Q(y(k + i)− r(k))

+ 1
2
uT (k + i)Ru(k + i))

= 1
2
(cxT (k +N)− r(k))P (x(k +N)− r(k))

+ 1
2

N−1∑
i=0

(cxT (k + i)− r(k))Q(cx(k + i)− r(k))

+ uT (k + i)Ru(k + i).

(5.4)

where r(k) is the reference value for y(k) that we want to reach.
The reference value for the output is yss = xss = r = (rT1 , r

T
2 )

T . We use the
difference between current state/temperature x and reference temperature called
”state deviation” x̃ = x− xss as new variable which should be regulated to zero.

x(k + 1) = ax(k) + bu(k) + bww(k) (5.5)

xss = axss + buss + bww (5.6)

Since our output is the room temperature and we have no disturbance through
state measurement our output matrix c is the identity matrix. So xss = r and
uss is the input needed to hold the state/temperature at the value xss.

x̃(k + 1) = x(k + 1)− xss
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= ax(k) + bu(k) + bww(k)− axss − buss − bww(k)

= ax(k)− axss + bu(k)− buss

= ax̃(k) + bũ(k) (5.7)

Important: disturbance is cancelled out!
Since we now regulate the state deviation to zero, the cost function looks like:

VN(x(k), u(k)) = (x̃T (k +N))P (x̃(k +N))

+
N−1∑
i=0

(x̃T (k + i))Q(x̃(k + i)) + ũT (k + i)Rũ(k + i)
(5.8)

The next step is to construct a central prediction model for x̃(k + 1) = ax̃(k) +
bũ(k).

x̃(k + 1) = ax̃(k) + bũ(k)

x̃(k + 2) = ax̃(k + 1) + bũ(k + 1)

= a2x̃(k) + abũ(k) + bũ(k + 1)

x̃(k + 3) = ax̃(k + 2) + bũ(k + 2)

= a3x̃(k) + a2bũ(k) + abũ(k + 1) + bũ(k + 2)

x̃(k + 4) = a4x̃(k) + a3bũ(k) + a2bũ(k + 1) + abũ(k + 2) + bũ(k + 3)

In matrix form:

X̃(k) = Φx̃(k) + ΓŨ(k) (5.9)

Φ =

⎛
⎜⎜⎝

a
a2

a3

a4

⎞
⎟⎟⎠ ,Γ =

⎛
⎜⎜⎝

b 0 0 0
ab b 0 0
a2b ab b 0
a3 a2b ab b

⎞
⎟⎟⎠ , X̃(k) =

⎛
⎜⎜⎝
x̃(k + 1)
x̃(k + 2)
x̃(k + 3)
x̃(k + 4)

⎞
⎟⎟⎠ , Ũ(k) =

⎛
⎜⎜⎝
ũ(k + 0)
ũ(k + 1)
ũ(k + 2)
ũ(k + 3)

⎞
⎟⎟⎠

(5.10)

The cost function becomes:

VN(x̃(k), ũ(k)) = (x̃T (k +N))P (x̃(k +N))

+
N−1∑
i=0

(x̃T (k + i))Q(x̃(k + i)) + ũT (k + i)Rũ(k + i)
(5.11)

The matrices have the following properties:
P = P T 	 0 ∈ Rnxn,
Q = QT 	 0 ∈ Qnxn,
R = RT � 0 ∈ Rmxm
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The sums are written as matrix-vector product:

VN(X̃(k), Ũ(k)) = (x̃T (k))Q(x̃(k))

+ (X̃(k))TΩ(X̃(k)) + ŨT (k)ΨŨ(k)
(5.12)

Ω =

⎛
⎜⎜⎝
Q 0 0 0
0 Q 0 0
0 0 Q 0
0 0 0 P

⎞
⎟⎟⎠ ,Ψ =

⎛
⎜⎜⎝
R 0 0 0
0 R 0 0
0 0 R 0
0 0 0 R

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝
c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

⎞
⎟⎟⎠ (5.13)

Due to the properties of Q, R, P we have: Ω 	 0,Ψ 	 0
To create a cost function that is only minimized over Ũ(k) we will insert X̃(k)
into the cost function. In the following equations (k) is omitted and x̃ = x, ũ = u,
to simplify the equations. First we look at the term (CX(k))TΩ(CX(k)):

(X(k))TΩ(X(k)) = (XTΩX)

= (xTΦT + UTΓT )Ω(Φx+ ΓU)

= (xTΦTΩΦx+ UTΓTΩΦx+ xTΦTΩΓU + UTΓTΩΓU)

= xTΦTΩΦx+ 2UTΓTΩΦx+ UTΓTΩΓU

All terms that are independent of U(k) are collected in one function,
f(x) = xTΦTΩΦx+ (x)TQ(x) such that the cost function reads as:

VN(x, U) = 2UTΓTΩΦx+ UTΓTΩΓU + UTΨU + f(x)

= UT (ΓTΩΓ + Ψ)U + (2xTΦTΩCΓ)U + f(x)

= UTHU + FxU + f(x)

Therefore the problem formulation is:

minUVN(x(k), U(k)) = UT (k)HU(k) + FxU(k) + f(x) (5.14)

Up to now the inequality constraints are missing.The box constraints for each
time step are:

ũmin ≤ ũ(k) ≤ ũmax (5.15)

ỹmin ≤ ỹ(k) ≤ ỹmax (5.16)

The required form is:

M(k + i)x̃(k + i) + E(k + i)ũ(k + i) ≤ b(k + i), ∀i ∈ 1, ..., N
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With the matrices:

M(k + i) =

⎛
⎜⎜⎝
0m+n

0mxn

−c
c

⎞
⎟⎟⎠ , E(k + i) =

⎛
⎜⎜⎝
−Imxm

Imxm

0pxm
0pxm

⎞
⎟⎟⎠ , b(k + i) =

⎛
⎜⎜⎝
−umin

umax

−ymin

ymax

⎞
⎟⎟⎠

The prediction form is D(k)x̃(k) +M(k)X̃(k) + E(k)Ũ(k) ≤ b(k)
For simplicity we say, the terminal constraints are the same as the constraint for
other time steps and receive the matrices:

D(k) =

⎛
⎜⎜⎜⎜⎜⎝

M(k)
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

,M(k) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0
M(k + 1) 0 . . . 0

0 M(k + 2) . . . 0
...

...
. . .

0 0 . . . M(k +N)

⎞
⎟⎟⎟⎟⎟⎠

, (5.17)

E(k) =

⎛
⎜⎜⎜⎝
E(k) 0 . . . 0
0 E(k + 1) . . . 0
...

...
. . .

...
0 0 . . . E(k +N − 1)

⎞
⎟⎟⎟⎠ , b(k) =

⎛
⎜⎜⎜⎜⎜⎝

b(k)
b(k + 1)
b(k + 2)

...
b(k +N)

⎞
⎟⎟⎟⎟⎟⎠

We now insert the prediction form of equality constraints X̃(k) = Φx̃(k) +
ΓŨ(k) into the prediction form of inequality constraints D(k)x̃(k)+M(k)X̃(k)+
EŨ(k) ≤ b(k):

Dx̃(k) +M(k)(Φx̃(k) + ΓŨ(k)) + E(k)Ũ(k) ≤ b(k)

(D(k) +M(k)Φ)x̃(k) + (M(k)Γ + E(k))Ũ(k) ≤ b(k)

(M(k)Γ + E(k))Ũ(k) ≤ b(k) + (−D(k)−M(k)Φ)x̃(k)

A(k)Ũ(k) ≤ b(k) +W (k)x̃(k) (5.18)

The Problem formulation wit inequalities is:

minŨ VN(x̃(k), Ũ(k)) = ŨT (k)HŨ(k) + (Fx)Ũ(k) + f(x̃)

s.t.A(k)Ũ(k) ≤ b(k) +W (k)x(k)
(5.19)

This Problem can be implemented directly in matlab using the function ”quad-
prog”.
sequence of central mpc tasks
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1. measure state/temperature x of each room

2. calculate x̃ = x− xss, ũ = u− uss

3. solve (5.19) to get U∗(k) with quadprog

4. extract ũ ∗ (k) = U∗(0)

5. calculate u = ũ+ uss

6. implement u in plant

7. go back to 1

5.1.2 Distributed Case

We still want to solve (5.1) but now in a distributed fashion. By using the
reformulation in (5.7) we avoid the disturbance term as seen in the previous case.
We need to build the prediction model in a seperable form and will use z(k) = x̃(k)
and v(k) = ũ(k) to build the prediction form of the equality constraints.
The prediction model is: AY (k) = Bz0 wit the state equations:

−z1(0) = −x1(0)

−z1(1) = a11z1(0) + a12z2(0) + b11v1(0)

−z1(2) = a11z1(1) + a21z2(1) + b11v1(1)

−z2(0) = −x1(0)

−z2(1) = a21z1(0) + a22z2(0) + b22v2(0)

−z2(2) = a21z1(1) + a22z2(1) + b22v2(1)

To write this in matrix form we put z(k) and v(k) into one combined vector build
as follows:

Y = (Y T
1 , Y T

2 )T (5.20)

Y1 = (z1(0)
T , z1(1)

T , ....., z1(N − 1)T , v1(0)
T , v1(1)

T , ..., v1(N − 1)T )T (5.21)

with the matrices for N = 4 looking like:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a11 −I 0 0 b11 0 0 0 a12 0 0 0 b12 0 0 0
0 a11 −I 0 0 b11 0 0 0 a12 0 0 0 b12 0 0
0 0 a11 −I 0 0 b11 0 0 0 a12 0 0 0 b12 0
0 0 0 0 0 0 0 0 −I 0 0 0 0 0 0 0
a21 0 0 0 b21 0 0 0 a22 −I 0 0 b22 0 0 0
0 a21 0 0 0 b21 0 0 0 a22 −I 0 0 b22 0 0
0 0 a21 0 0 0 b21 0 0 0 a22 −I 0 0 b22 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(5.22)
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0
0 0
0 0
0 0
0 −1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.23)

The inequalities are reformulated as:

Cy(k) ≤ D (5.24)

Our constraints in (5.1) were in the form:

xmin ≤ x(k) ≤ xmax (5.25)

umin ≤ u(k) ≤ umax (5.26)

and we want to rewrite them for z(k) and v(k):

vmin ≤ v(k) ≤ vmax (5.27)

zmin ≤ z(k) ≤ zmax (5.28)

First we need those written as:

Czz(k) ≤ dz (5.29)

Dvv(k) ≤ dv (5.30)

With

Cz =

(−1
1

)
, Cv =

(−1
1

)
, dz =

(−zmin

zmax

)
, dv =

(−vmin

vmax

)
(5.31)

Now the C and D look like:

C1 = diag(Cz, Cz, . . . , Cz, Cv, Cv, . . . , Cv)

C2 = diag(Cz, Cz, . . . , Cz, Cz, Cz, . . . , Cz)

C =

(
C1 0
0 C2

)
D1 = (dTz , d

T
z , . . . , d

T
z , d

T
v , d

T
v , . . . , d

T
v )

D2 = (dTz , d
T
z , . . . , d

T
z , d

T
v , d

T
v , . . . , d

T
v )

D =

(
D1

D2

)

(5.32)

The reformulated problem is:

minyVN = 1
2
yTHy

s.t.Ay = Bz0

Cy = D

(5.33)
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We use the Lagrangian relaxation for the constraints and get the dual function
L(y, λ, μ).

L(y, λ, μ) = 1
2
(yTHy) + λT (Ay − Bz0) + μT (Cy −D) (5.34)

Where λ and μ are the lagrange multipliers, weighting the violation of the con-
straints. The Problem formulation is now a maximization over λ and minimiza-
tion over y.

max
λ,μ≥0

(
min
y

L(y, λ, μ)

)
(5.35)

We start with looking at the minimization part and build the gradient over y:

∇L(y, λ) = Hy + A′λ+ C ′μ (5.36)

= 0 (5.37)

and calculate the minimizing y.

y+ = −inv(H)(A′λ+ C ′μ) (5.38)

Now we apply this y+ into L(y, λ) to eliminate the y and get:

L(λ, μ, z0) = −1
2

(
(A′λ+ C ′μ)′H−1(A′λ+ C ′μ)

)− λ′(Bz0)− μ′(D)

We get the optimization results for L(λ, μ, zo) through gradient descent method.

yk = −H−1(ATλk)

yk = yk + k−1
k+2

(yk − yk−1)

λk+1 = λk + k−1
k+2

(λk − λk−1) +
1

L
(Ayk − Bz0)

μk+1 = max(0, μk + k−1
k+2

(μk − μk−1) + 1
L
(Cy −D))

For L we use the ”Lipschitz constant” to the gradient of L(λ, μ, y).

L = norm([AT , BT ]TH−1[AT , BT ])

Choosing this Lipschitz constant L as constant step size, we have a convergent
gradient method. We choose the step size to be constant because of the computa-
tional effort to compute a suitable step size on line. Since this is the distributed
case, we need to separate the variables:

yk1 = −H−
111(A

T
11λ+ AT

21λ+ CT
11μ)

yk2 = −H−
221(A

T
12λ+ AT

22λ+ CT
11μ)

yk1 = yk1 +
k − 1

k + 2
(yk1 − yk−1

1 )

yk2 = yk2 +
k − 1

k + 2
(yk2 − yk−1

2 )

(5.39)
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λk
1 = λk

1 +
k − 1

k + 2
(λk

1 − λk−1
1 ) +

1

L
(A11y1 + A12y2 − Bz01)

λk
2 = λk

2 +
k − 1

k + 2
(λk

1 − λk−1
1 ) +

1

L
(A21y1 + A22y2 − Bz02)

μk
1 = max(0, μk

1 +
k−1
k+2

(μk
1 − μk−1

1 ) + 1
L
(C11y1 −D1))

μk
2 = max(0, μk

2 +
k−1
k+2

(μk
2 − μk−1

2 ) + 1
L
(C22y2 −D2))

(5.40)

sequence of distributed mpc tasks

1. each computational unit measures state/temperature xi of its room

2. each computational unit calculates x̃i = xi− xiss, ũi = ui− uiss

3. solve (5.19) to get U∗(k) using the seperable Iterations.repeat:

calculate yi through (5.39) .

communication

calculate λi, μi through (5.40)

communication

4. extract ũ ∗ (k) = U∗(0)

5. calculate u = ũ+ uss

6. implement u in plant

7. go back to 1

5.2 Delta Input Formulation together with

Target Calculation

Reformulate the system such that we have

• a quadratic program for the matlab function quadprog

• we have a central system we can solve with Iterations

• we can seperate the system to solve it with distributed Iterations

This chapter is structured as follows:
First we need to change the reference tracking problem into a regulation prob-
lem through Target Calculation. On top of this we will build the delta Input
system mentioned [Gör15d] through this formulation we can set constraints on
the heat flow from the heater. We reformulate it such that the system is separa-
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ble. Afterwards we build the prediction form used in [GR13]. This form can be
used to solve the central case with the matlab function ”quadprog” and with the
accelerated gradient descent method. Since it is separable we can also use the
accelerated gradient descent method mentioned in [GDK+13].

5.2.1 Reformulate into Regulation Problem

The room model is:(
x1(k + 1)
x2(k + 1)

)
=

(
a11 a12
a21 a22

)(
x1(k)
x2(k)

)
+

(
b11 b12
b21 b22

)(
u1(k)
u2(k)

)
(5.41)

+

(
bw11 bw12

bw21 bw22

)(
w1(k)
w2(k)

)
(5.42)

Say we want to reach y = r = cx with c as identity matrix, then we want to
reach x = r.To be consistent with the precious variable declaration we writexss.
xss is the sate we want to reach and hold, uss is the required input to obtain this
reference value:

xss = axss + buss + bww (5.43)

By introducing the state deviation: z(k + 1) = x(k + 1)− xss we get:

x̃(k + 1) = x(k + 1)− xss (5.44)

= ax(k) + bu+ bww −−(axss + buss + bww) (5.45)

= a(x(k)− xss) + b(u(k)− uss) (5.46)

= ax̃(k) + bũ(k) (5.47)

Now we define the delta Input equation δu = u(k) − u(k − 1) and use a new
state vector: x(k) = (x1(k)

T , x2(k)
T , u1(k)

T , u2(k)
T )T , and the new input vector

Δu(k) = (Δu1(k)
T ,Δu2(k)

T ))T .⎛
⎜⎜⎝
x1(k + 1)
x2(k + 1)
u1(k)
u2(k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a11 a12 b11 b12
a21 a22 b21 b22
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1(k)
x2(k)

u1(k − 1)
u2(k − 1)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝
b11 b12
b21 b22
1 0
0 1

⎞
⎟⎟⎠

(
Δu1(k)
Δu2(k)

)

(5.48)

Inserting zero for b12, b21, bw12 and bw21 yields the following separable system:⎛
⎜⎜⎝
x1(k + 1)
u1(k + 1)
x2(k)
u2(k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a11 b11 a12 0
0 1 0 0

a21 0 a22 b22
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1(k)
u1(k)

x2(k − 1)
u2(k − 1)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

b11 0
1 0

0 b22
0 1

⎞
⎟⎟⎠

(
Δu1(k)
Δu2(k)

)

(5.49)
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(
z1(k + 1)
z2(k + 1)

)
=

(
a11 a12
a21 a22

)(
z1(k)
z2(k)

)
+

(
b11 0
0 b22

)(
v1(k)
v2(k)

)
(5.50)

z(k + 1) = az(k) + bΔu (5.51)

Combining z and Δu into the vector y we get the prediction modelAy = Bz0
with the following vectors and matrices:

y = (yT1 , y
T
2 )

T (5.52)

y1 = (z1(0)
T , z1(1)

T , . . . , z1(N − 1)T , v1(0)
T , v1(1)

T , . . . , v1(N − 1)T )T (5.53)

y2 = (z2(0)
T , z2(1)

T , . . . , z2(N − 1)T , v2(0)
T , v2(1)

T , . . . , v2(N − 1)T )T (5.54)

A11 =

⎛
⎜⎜⎜⎜⎜⎝

−I 0 0 . . . 0 0 0 0 . . . 0 0
a11 −I 0 . . . 0 0 b11 0 . . . 0 0
0 a11 −I . . . 0 0 0 b11 . . . 0 0
...

...
. . . . . .

...
...

...
...

. . .
...

...
0 0 0 . . . a11 −I 0 0 . . . b11 0

⎞
⎟⎟⎟⎟⎟⎠

(5.55)

A22 =

⎛
⎜⎜⎜⎜⎜⎝

−I 0 0 . . . 0 0 0 0 . . . 0 0
a22 −I 0 . . . 0 0 b22 0 . . . 0 0
0 a22 −I . . . 0 0 0 b22 . . . 0 0
...

...
. . . . . .

...
...

...
...

. . .
...

...
0 0 0 . . . a22 −I 0 0 . . . b22 0

⎞
⎟⎟⎟⎟⎟⎠

(5.56)

A12 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0 0 0 . . . 0 0
a12 0 0 . . . 0 0 b12 0 . . . 0 0
0 a12 0 . . . 0 0 0 b12 . . . 0 0
...

...
. . . . . .

...
...

...
...

. . .
...

...
0 0 0 . . . a12 0 0 0 . . . b12 0

⎞
⎟⎟⎟⎟⎟⎠

(5.57)

A12 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0 0 0 . . . 0 0
a21 0 0 . . . 0 0 b21 0 . . . 0 0
0 a21 0 . . . 0 0 0 b21 . . . 0 0
...

...
. . . . . .

...
...

...
...

. . .
...

...
0 0 0 . . . a21 0 0 0 . . . b21 0

⎞
⎟⎟⎟⎟⎟⎠

(5.58)

B11 =

⎛
⎜⎜⎜⎜⎜⎝

−I
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

, B12 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

, B21 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

, B22 =

⎛
⎜⎜⎜⎜⎜⎝

−I
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

(5.59)



42 5 Reference Tracking

(
A11 A12

A21 A22

)(
y1
y2

)
=

(
B11 B12

B21 B22

)
(5.60)

The cost function is: VN = 1
2
yTHy. With:

H1 = blkdiag(Q1, Q1, . . . , Q1, R1, R1, . . . , R1) (5.61)

H2 = blkdiag(Q2, Q2. . . . , Q2, R2, R2, . . . , R2) (5.62)

H = blkdiag(H1, H2); (5.63)

Where Q1 is the weighting matrix for z1, Q2 for z2, R1 for v1, R2 for v2.
Q1, Q2, R1, R2 are multiples of the identity matrix.
We still need to reformulate the constraints:

−x ≤ −xmin (5.64)

x ≤ xmax (5.65)

−u ≤ −umin (5.66)

u ≤ umax (5.67)

into Cy ≤ D. We start with separating them and using the reference values xss

and uss to rewrite them as:

−xi+ xiss ≤ −ximin + xiss (5.68)

−(xi− xiss) ≤ −(ximin − xiss)

x̃i ≤ x̃imin

xi− xiss ≤ ximax − xiss

x̃i ≤ x̃imax

−ui+ uiss ≤ −uimin + uiss (5.69)

−(ui− uiss) ≤ −(uimin − uiss)

ũi ≤ ũimin

ui− uiss ≤ uimax − uiss

ũi ≤ ũimax.

These equations can be put into matrix form:

⎛
⎜⎜⎝
1 0
0 −1
1 0
0 1

⎞
⎟⎟⎠

(
x̃i

ũi

)
≤

⎛
⎜⎜⎝
−x̃imin + x̃iss
−ũimin + uss

x̃imax − xss

ũimax − uss

⎞
⎟⎟⎠ (5.70)

Czizi ≤ dzi (5.71)
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The constraints on Δu are:

(−1
1

)
vi ≤

(−umin

umax

)
(5.72)

Cvivi ≤ dvi. (5.73)

Now we can put Czizi ≤ dzi and Cvivi ≤ dvi into one constraints Cy ≤ D with
the matrices as follows:

C = blkdiag(C1, C2) (5.74)

C1 = blkdiag(Cz1, Cz1, . . . , Cz1, Cv1, Cv1, . . . , Cv1) (5.75)

C2 = blkdiag(Cz2, Cz2, . . . , Cz2, Cv2, Cv2, . . . , Cv2) (5.76)

D = (DT
1 , D

T
2 )

T (5.77)

D1 = (dz1, dz1, . . . , dz1, du1, du1, . . . , du1) (5.78)

D2 = (dz2, dz2, . . . , dz2, du2, du2, . . . , du2) (5.79)

The final problem formulation for the separable model predictive control is:

minimize
y

VN = yTHy

subject to Ay = B

Cy ≤ D

(5.80)

5.2.2 Central Solution using quadprog

Using matlab we can simply use quadprog (see documentation):
repeat

• measure current temperature/states x̃(k)

• build current deviation z(k) = x̃(k)− xss

• get optimal y* from (5.80) through quadprog

• get Δu(0) from y*

• implement Δu(0)

• go back to one
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5.2.3 Central Solution using Accelerated Gradient
Method

The iterations we use are:

yk = −H−1(ATλ+ CTμ)

yk = yk + αk(y
k − yk−1)

λk = λk + αk(λ
k − λk−1) + 1

L
(Ayk − Bz0)

μk = max(0, μk + αk(μ
k − μk−1) + 1

L
(Cyk −D)

(5.81)

• measure current temperature/states x̃(k)

• build current deviaten z(k) = x̃(k)− xss

• get optimal y* from (5.80) through the Iterations

• get Δu(0) from y*

• implement Δu(0)

• fo back to one

5.2.4 distributed Solution using Accelerated Gradient
Method

We can separate the Iterations 5.81 as follows:
(
y1
y2

)
= −H−1(ATλ+ CTμ) + αk(y − ypast)

= −
(
H−1

1 (AT
11λ1 + AT

21λ2 + CT
11μ1

H−1
2 (AT

12λ1 + AT
22λ2 + CT

22μ2

)
+ αk

(
y1 − ypast1

y2 − ypast2

)
(
λ1

λ2

)
= λ+ αk

(
λ− λpast

)
+ 1

L
(Ay − Bz0)

=

(
λ1 + αk(λ1 − λpast

1 )
λ2 + αk(λ2 − λpast

2 )

)
+ 1

L

(
A11y1 + A12y2 − B11z01
A21y1 + A22y2 − B22z02

)
(
μ1

μ2

)
= μ+ αk(μ− μpast) + 1

L
(Cy −D)

=

(
μ1 + αk(μ1 − μpast

1 )
μ2 + αk(μ2 − μpast

2 )

)
+ 1

L

(
C11y1 −D1

C22y2 −D2

)

(5.82)

• measure current state x

• calculate deviation z = x− xss
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• calculate y* through iteration (5.82)

computational unit 1 calculates y1, λ1, μ1

computational unit 2 calculates y2, λ2, μ2

• get Δu(0) from y*a

• implement Δu(0)

• fo back to one
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6 Results

6.1 Setup

In this chapter we will discuss the results of the two reference tracking methods.
For each method ”delta Input” and ”Target Calculation”we discuss the behaviour
for the central problem solved with quadprog, the central problem solved with the
accelerated gradient method, and the distributed problem solved with accelerated
gradient method. All Iterative methods use 100 Iterations to calculate the optimal
value for each time step. Only the distributed accelerated gradient method for
the Target Calculation reference tracking problem needs more than 100 Iterations
to converge. It‘s implemented with 500 Iterations. At time step 20 the reference
value changes from 22 ◦C in each room to 20 ◦C in room 1, and 27 ◦C in room
2. The outside temperature is 10◦C and the predictin horizon is N = 12. First
we will discuss the results of Target Calculation solved with a central MPC and
distributed MPC, then results of delta Input formulation solved with central MPC
and distributed MPC.

6.2 Target Calculation

The pictures 6.1, 6.2, 6.3 show the results for central model predictive control
using quadprog to solve the optimization problem of each time step. The pic-
tures 6.4, 6.5, 6.6 show the results for central model predictive control using the
accelerated gradient method to solve the optimization problem of each time step.
The pictures 6.7, 6.8, 6.9 show the results for distributed model predictive con-
trol using the distributed accelerated gradient method to solve the distributed
optimization problem of each time step.
The reference value is reached exactly. Since there are no constraints of the
change the input can make in one time step the input can change to the specified
reference value in one time step. Due to this the results of central MPC solved
with quadprog, central MPC solved with Iterations and distributed MPC solved
with Iterations are alike.
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Figure 6.1: Target Calculation - central Problem solved with quadprog, Temper-
ature profile

Figure 6.2: Target Calculation - central Problem solved with quadprog, heat Flow
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Figure 6.3: Target Calculation - central Problem solved with quadprog, deviation
of Temperature to reference value

Figure 6.4: Target Calculation - central Problem solved with accelerated gradient
method, Temperature profile
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Figure 6.5: Target Calculation - central Problem solved with accelerated gradient
method, heat Flow

Figure 6.6: Target Calculation - central Problem solved with accelerated gradient
method, deviation of Temperature from reference value
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Figure 6.7: Target Calculation - distributed Problem solved with accelerated gra-
dient method, Temperature profile

Figure 6.8: Target Calculation - distributed Problem solved with accelerated gra-
dient method, heat Flow
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Figure 6.9: Target Calculation - distributed Problem solved with accelerated gra-
dient method, deviation of Temperature from reference value

6.3 Delta Input Formulation

6.3.1 Central MPC, quadprog

The pictures 6.10, 6.2, 6.3 show the results for the central Problem solved with
quadprog. One can see that Temperature and heat flow of room 2 have a over-
shoot but reach the reference value. Room 1, which reference temperature is
changed from 22 ◦C to 20 ◦C does not have an overshoot.

6.3.2 Central MPC, Iterations

The pictures 6.13, 6.14, 6.15 show the results of the central problem solved with
the accelerated gradient method. Neither the Temperature nor the heat flow
show an overshoot. And the reference value is faster then with central MPC and
quadprog. The largest difference one can see in the comparison of 6.12 and 6.15.
The dU of the System solved with quadprog reaches zero at time step 50 for the
first time, but due to the overshoot it leaves zero again. The dU of the System
solved with central accelerated gradient method reaches zero at 50 and does not
leave it. The behaviour of the system controlled with central MPC solved with
quadprog and the central MPC solved with the accelerated gradient method is
expected to be the same. But the solution in both cases is not optimal, and the
number of iterations for the accelerated gradient method was chosen arbitrary,
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Figure 6.10: Delta Input Formulation - central Problem solved with quadprog,
Temperature profile

which might have influenced the behaviour. We may need more optimization
iterations to result in a optimal solution. Also the prediction models of both
methods were built independent of each other, so there might be a difference in
the coefficients which produced this different behaviour.

6.3.3 Distributed MPC, Iterations

The distributed system reaches the reference value even faster without overshoot.
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Figure 6.11: Delta Input Formulation - central Problem solved with quadprog,
heat Flow

Figure 6.12: Delta Input Formulation - central Problem solved with quadprog,
change of heat flow
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Figure 6.13: Delta Input Formulation - central Problem solved with accelerated
gradient method, Temperature profile

Figure 6.14: Delta Input Formulation - central Problem solved with accelerated
gradient method, heat flow
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Figure 6.15: Delta Input Formulation - central Problem solved with accelerated
gradient method, change of heat flow

Figure 6.16: Delta Input Formulation - distributed Problem solved with acceler-
ated gradient method, Temperature profile
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Figure 6.17: Delta Input Formulation - distributed Problem solved with acceler-
ated gradient method, heat flow

Figure 6.18: Delta Input Formulation - distributed Problem solved with acceler-
ated gradient method, change of heat flow
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7 Conclusion and Future Work

7.1 Conlusion

The control of the house temperature to a specific temperature using central and
distributed target calculation and delta Input formulation was implemented. The
reference temperature is reached in all cases. The Target Calculation is not useful
to control the heaters of the house model, since the MPC algorithm build this way
cannot consider the constraints on the change of heat flow a heater can produce.
This way it is like turning the heater on or of. Also the distributed algorithm
needs a lot of iterations to converge. The delta Input Formulation combined with
Target Calculation gives the possibilty to set constraints on the change of heat
flow. This way the result gets more realistic. Here the distributed accelerated
algorithm is faster then the central accelerated algorithm.

7.2 Future Work

The following points are useful additions to this thesis:

• a stopping criterion for the Iterations

• more rooms

• more specific room and heater model

• delta Input without Target Calculation

A stopping criterion would reduce the number of Iterations needed to get a sub-
optimal result, that fulfils specified performance and stability demands. More
rooms would give more realistic results regarding the computational effort and
the time consumption through the Iterations in comparison to the central solu-
tion. The more specific room and heater model has the same purpose. The more
specific the model becomes, the more realistic the result will be. In this thesis we
used the delta Input formulation and on top of it target Calculation. It would
be interesting to implement the delta Input formulation without the additional
target Calculation and see the results.
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