

Department of Automatic Control

Model- and Hardware-in-the-Loop
Testing in a Model-Based Design

Workflow

David Bergström

Robert Göransson

MSc Thesis
ISRN LUTFD2/TFRT--5999--SE
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2016 by David Bergström and Robert Göransson. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2016

Abstract

Model-Based Design is a development method that is becoming popular to use when
creating control systems. In this thesis a demonstration of the advantages of using
this method is made for Combine Control Systems AB. The 3D simulation soft-
ware IndustrialPhysics is used to represent a real process in form of a gantry crane.
A controller for this crane is developed in Simulink and Model-in-the-Loop (MiL)
testing is done together with the 3D model. C code is then generated from the con-
troller and transferred to a PLC. A control panel with buttons is connected to the
PLC and Hardware-in-the-Loop (HiL) testing is done together with the 3D model.
The result of the thesis is a working HiL rig ready to be used on technical fairs to
demonstrate the capabilities of the Model-Based Design method.

3

Acknowledgments

We would like to thank Combine Control Systems AB for giving us a place to
work at and tools to work with. Our supervisor Simon Yngve and the whole staff
of Combine in Lund have been very helpful during this project. We would also like
to thank our supervisor Anton Cervin at the Department of Automatic Control for
the fast responses and help during our thesis. We also want to thank Georg Wünsch
at Machineering GmbH & Co. KG for answering our questions. Finally, we would
like to thank Madeleine Svensson at B&R Industriautomation AB for helping us
choosing a PLC and their customer service for helping us with the problems that
occurred.

5

Contents

List of Tables 9
List of Figures 9
1. Introduction 11

1.1 Background . 11
1.2 Goals . 11
1.3 Limitations . 12
1.4 Methodology . 12
1.5 Individual contributions . 12
1.6 Disposition . 12

2. Background 14
2.1 Model-Based Design . 14
2.2 Model-in-the-Loop . 16
2.3 Software-in-the-Loop . 16
2.4 Hardware-in-the-Loop . 16
2.5 Software . 17
2.6 Programmable Logic Controllers 18

3. Design 19
3.1 Choosing a demonstration model 19
3.2 CAD models . 19
3.3 Choosing hardware . 20
3.4 IndustrialPhysics model . 21
3.5 Simulink model . 24
3.6 Model-in-the-Loop testing . 30
3.7 Software-in-the-Loop testing 32
3.8 Hardware-in-the-Loop testing 34
3.9 Testing . 35

4. Results and Discussion 36
4.1 Chosen hardware . 36
4.2 Models . 37

7

Contents

4.3 Difference between HiL and MiL 40
4.4 Problems in the workflow . 42

5. Conclusions 44
5.1 Future work . 44

Bibliography 45
A. Developer’s Manual 48

A.1 Connecting IndustrialPhysics and Simulink 48
A.2 Connecting IndustrialPhysics and the PLC 50
A.3 Automatic code generation and implementation 52

8

List of Tables

3.1 Comparison between different PLC manufacturers models. 20
3.2 Variables used by the control model. 26

4.1 The ping times from IndustrialPhysics to Simulink and the PLC. . . . 42

A.1 How the vector of data received from IndustrialPhysics is organized. . 49

List of Figures

2.1 An overview of the V-model. The process starts in the upper left side
and follows the V shape while tests are made along the way. Adapted
from [20]. 15

3.1 An overview of IndustrialPhysics. 22
3.2 An overview of the mil file in Simulink. 24
3.3 The Stateflow graph in the control model in Simulink. 28
3.4 A simple model in Simulink. 29
3.5 The MiL part of the project where the IndustrialPhysics model runs

together with the Simulink model on the same computer. 30
3.6 The control panel in Simulink used for MiL testing. 31

9

List of Figures

3.7 The SiL part of the project where the IndustrialPhysics model runs to-
gether with the simulated PLC in Automation Studio on the same com-
puter. 32

3.8 The HiL part of the project where the IndustrialPhysics model runs on
a computer connected with an Ethernet cable to a PLC, which is con-
nected to the control panel. 34

4.1 The X20CP1381 PLC and power supply from B&R Automation [4] [3]. 36
4.2 The buttons and joystick used in the control panel. 37
4.3 The final HiL setup. 38
4.4 The complete model in IndustrialPhysics. 38
4.5 The complete model in IndustrialPhysics. 39
4.6 Difference between HiL and MiL without a P-controller. The figure

shows that Simulink (dotted line) has no oscillations while the PLC has. 40
4.7 Difference with and without a P-controller during HiL testing. The fig-

ure shows that with an P-controller makes the system more stable and
smooth. 40

4.8 Difference between HiL and MiL with a P-controller. The figure shows
that there are hardly any difference between HiL and MiL with an P-
controller . 41

4.9 Difference with and without a P-controller during MiL testing. The fig-
ure shows that the P-controller makes the control smoother. 41

A.1 The window for setting block parameters for the TCP/IP Receive block. 49
A.2 The button for generate a HiL configuration. 51
A.3 The file contents to be moved. 51
A.4 The Online Settings menu and the Build button. 52
A.5 The Code Generation menu. 53
A.6 Location of Existing File in Automation Studio. 53
A.7 Choosing files from the generated C code. 54
A.8 The I/O Mapping menu. 56

10

1
Introduction

1.1 Background

In the creation of complex control systems the Model-Based Design method is be-
coming increasingly popular to use. It is a method used for developing embedded
software and is used in fields such as industrial automation, aerospace, and automo-
tive industry. Combine Control Systems AB is a Swedish company that is promot-
ing this development method [6]. They work for companies in different technical
fields, often including control systems. This thesis was carried out at their Lund
office. Combine wants to have a way of showing the advantages of working with
the Model-Based Design method when visiting technical fairs. The idea is that vis-
itors would be able to interact with a model created using this method to show how
testing is made very easy during development.

1.2 Goals

The goal of this thesis is to show the advantages of using the Model-Based Design to
create software. To do this a model of a physical system is created using Industrial-
Physics, a software used to simulate mechatronic models in 3D. The model chosen
should be suitable for user interaction. A controller to this model is then created
in Simulink. The model and the controller should then be tested together using the
Model-in-the-Loop (MiL) method.

The next step is to automatically generate C code from the Simulink controller
and import it to a Programmable Logic Controller (PLC). The PLC should be able
to communicate with IndustrialPhysics and through the generated code be able to
control the model. This will be the Hardware-in-the-Loop test and it will also in-
clude having a control panel with buttons connected to the PLC that gives users
the ability to interact with the model and see changes in real time. An appropriate
PLC and buttons should be chosen for this. At the end of the project there should

11

Chapter 1. Introduction

be a working 3D model that is controllable both with a Simulink model and with a
control panel connected to a PLC.

1.3 Limitations

The thesis does not include creation of the CAD models that is imported to Indus-
trialPhysics.

1.4 Methodology

The first part of the project was to learn the software. This was done by reading
manuals and using samples of other models as a guideline. The next part was to cre-
ate the 3D model as well as the controller in Simulink. The modeling and the control
of the system were done in parallel and took most of the time in the project. Since
there was no available information about how to communicate between Industrial-
Physics and Simulink this had to be figured out by creating a TCP/IP connection
and send data from IndustrialPhysics. The data was then analyzed and the structure
of the communication protocol figured out.

The next part was getting to know the software and the hardware of the PLC.
Learning the hardware of the PLC was done by reading the datasheet. The informa-
tion of the software was, however, limited. There was a help documentation on the
software, but many times help came from calling the customer service.

The goals of the project were accomplished but the synchronization between
IndustrialPhysics and Simulink did not become perfect. In order to fix these changes
the software of IndustrialPhysics had to be altered, which was not possible. The
final models worked as they should and even had additional functionality that was
not planned originally.

1.5 Individual contributions

Both of the authors contributed to all parts of the project. During development of
the models David spent more time developing the Simulink model and Robert spent
more time developing the model in IndustrialPhysics.

1.6 Disposition

Introduction
This chapter covers the background, goals, limitations and the methodology used in
the project.

12

1.6 Disposition

Background
Here all the background theory is presented. It covers Model-Based Design and its
workflow, the different stages of the project such as MiL, HiL and SiL. Software
such as IndustrialPhysics and Simulink are explained. Programmable Logic Con-
trollers are also explained.

Design
This chapter explains how the model and controller were created and why different
components were chosen and designed.

Results and Discussion
Here the chosen hardware is presented as well as the model designed in Industrial-
Physics. The results from the MiL and HiL stage are presented and discussed.

Conclusion
In this chapter conclusions are drawn from the results. It is also explained how well
the Model-Based Design method worked.

13

2
Background

2.1 Model-Based Design

In traditional design methodology, there would usually be a system design engineer
to grasp the overall system specifications who would hand it over to the software
development engineer to implement the system in the software language that is
required. The main problem with this solution is that the software developer often
has a hard time interpreting the solution given from the system design developer.
This means that specifications and data run the risk of being misunderstood when
implemented [1].

Using Model-Based Design (MBD) developers can visually create systems us-
ing mathematical models that represent different components and the interaction
between them. Simulink is a well known tool used in MBD for modeling, analyz-
ing, and simulating a very wide variety of physical and mathematical systems [1].
It enables testing of different scenarios with the virtual model and makes it easy to
find bugs in the early stages of development. The instant feedback and the interac-
tion that one is able to have with the model make it possible to verify and validate
the testing of the control system, which leads to reduced development time. This
also means that software can be tested without building any hardware. This is an
important factor because it is much more costly to repair a fault in the field than in
the development stage [22]. Costs are also reduced by removing the need to build a
physical prototype for testing. This also makes it a more environmentally friendly
method. When encountering similar problems during another project, the possibil-
ity to reuse systems and code is an advantage when working with MBD. This leads
to even greater time savings in the development stage.

There are several different kinds of workflow approaches. As the integra-
tion level changes during development, the individual test execution environment
changes as well. A workflow approach that takes this into consideration is the V-
model, which links early development activities to their corresponding testing activ-
ities later on. The V-model is used as a design process of a project and is illustrated

14

2.1 Model-Based Design

in Figure 2.1. Conventionally, the left side of the V-model represents the embedded
system design phases, while the right side represents the validation and verification
phases of the embedded system. The first step is the requirement analysis. This
phase is about establishing what the ideal system has to perform, without determin-
ing how the software will be built or designed. This is done in the section where
goal specifications and requirements are made. The second phase of the V-model is
the system design. This is the phase where the developers analyze and understand
the business of the proposed system by studying the user requirements documents
and try to enable the requirements and specifications. This is done by testing the
model continuously using MiL and coming up with solutions to the requirements
and specifications.

System Design

Software Design Unit Testing

Integration
Testing

MiL Test

SiL Test

Requirements Validation

HiL Test

Figure 2.1 An overview of the V-model. The process starts in the upper left side
and follows the V shape while tests are made along the way. Adapted from [20].

The third stage is where the code is written or generated. This is the software
design stage of the V-model. To make sure that the code is working correctly it is
tested using Software-in-the-Loop (SiL). On the right side of the V-model is unit
testing, integration testing and validation. The unit testing stage is about testing
the processor. This will not be a large part in this project since a PLC that is guar-
anteed to work by the manufacturer is used. In other cases, where the construction
of the processor is part of development, Processor-in-the-Loop (PiL) testing can be
made in this stage. The integration testing part is where the generated code is inte-

15

Chapter 2. Background

grated with the hardware and HiL testing is made. In this phase tests are made to
see if the controller that was made in the system design stage works in the system.
This links System Design together with the Integration Testing part. The last step is
to validate if the results fulfills the requirements.

2.2 Model-in-the-Loop

Model-in-the-Loop (MiL) testing is done in the early stages of development. During
this phase the dynamics of the virtual model is captured and a controller is created
based on the inputs from the virtual model. The controller and the environment are
then simulated to verify the functionality in the modeling framework without any
physical hardware components [24].

2.3 Software-in-the-Loop

Software-in-the-Loop (SiL) testing begins with code being generated from the con-
troller model. This code is then tested in a virtual environment, without any hard-
ware, to test how well the software handles the simulated system. Tests are made to
make sure the code works identical to the model when using different types of input
conditions, functions, and mathematical algorithms. SiL testing is a good approach
when simulating a real-time system that requires fast iterations, to make sure that
the software is able to handle the requirements.

2.4 Hardware-in-the-Loop

Once the generated code is verified to work the next step is Hardware-in-the-Loop
(HiL) testing. The code is now implemented in the final hardware setup [24]. HiL
simulation has to have some sort of actuators or sensors, real or simulated, that
represent the hardware of the plant. By simulating a plant or a machine the tests
that can be made are infinite, tests that could easily break or harm a real machine.
By performing these tests developers may find errors and problems early in the
developing stage instead of finding them when the control system and the plant are
integrated. Not only would it take time to repair the hardware but it could also be
very expensive to replace the broken parts. The safety of HiL simulation is very
high compared to a test with real machines doing heavy lifting, which can be very
dangerous and need high safety procedures [5].

16

2.5 Software

2.5 Software

IndustrialPhysics
IndustrialPhysics is a physics simulation software made by the German company
Machineering GmbH & Co. KG [10, 11]. Its purpose is to realistically simulate
mechatronic systems in 3D. It has support for importing CAD models, defining
physical parameters and visually simulating the models in real time. Users are able
to define which parts should be able to move in which direction, define collisions
and write control scripts in the Structured Text PLC programming language. With
its HiL interface it is also possible to control the mechatronic models using exter-
nal software. This is done by sending and receiving data using TCP/IP. That means
the control logic can run in a different software or a PLC, while the visual simu-
lation takes place in IndustrialPhysics. With this software, hardware CAD models
and controller software can be tested and optimized without building any expen-
sive prototype [25]. This reduces development costs and gives the ability to try out
different model versions and analyzing parameter data in an efficient way.

Simulink
Simulink is a graphical programming environment used for creating models with
block diagrams [14]. It is capable of simulating models using different solvers and
automatically generating code. It has a large library of function blocks and users
can also create their own customized blocks. By creating systems and subsystems
in different blocks it is easy to organize a system and to get a clear overview of the
different parts of the system in a way that is often not available when using text
based editors. Simulink is often used in MBD. The software is created by Math-
works and can share data and functionality with Matlab. By adding certain function
blocks, communication with other software is also possible, for example network
communication through TCP/IP. Through different add-ons more specialized func-
tionality can be added.

Automatic code generation
One feature that is very important to the MBD workflow is the automatic code

generation. In Simulink this is possible with the Simulink Coder add-on [15]. This
gives developers the ability to generate C or C++ code from their Simulink models
with a click of a button. It starts by generating a .rtw file that contains a representa-
tion of the model. This file is then used together with a Target Language Compiler
(.tlc file) to generate C or C++ code. By changing the .tlc file the code can be opti-
mized for different target systems. The generated code is created in appropriate files
that is ready to be compiled or included in another program.

In this project the Embedded Coder add-on for Simulink was used [12]. It cre-
ates code that is designed to be run on embedded processors. The code can be opti-
mized for parameters such as execution efficiency and RAM usage.

17

Chapter 2. Background

Automatically generated code has the advantage that the human error factor is
removed in the writing of the code. All the tests can be made with the model and
when all features have been added and the bugs have been sorted out the code is gen-
erated. Mistakes can still be made when making the model but these are easier to
detect than when writing the code manually. This can reduce errors in the final prod-
uct significantly which is something important as more and more software is used
in different products. Coding errors are very common. As an example Microsoft
estimates that 1000 lines of code usually contains 10-20 errors and it is estimated
that a car nowadays can contain 150 000 software bugs [23]. Since car manufactur-
ers sometimes have to recall millions of cars because of these bugs, reducing code
errors is something that could greatly reduce expenses.

2.6 Programmable Logic Controllers

Programmable Logic Controllers (PLCs) are dedicated control computers that are
often used in industrial automation. They can have both analog and digital inputs
and outputs and are used to control equipment like electric motors, valves and lights
[19]. They are typically used in industrial environments and are built to handle heat,
humidity, unreliable power supply and vibrations.

A PLC should be able to react quickly to external events and must therefore
run in real time. The PLC continuously reads the inputs, execute the code, and then
writes to the outputs. All modern PLCs are capable of running software written in
the programming languages defined by the IEC 61131-3 standard. These include
Ladder diagrams, Function block diagrams and Structured text. Some manufactur-
ers also include the ability to run C code. PLCs are usually programmed using an
integrated software development environment running on a personal computer.

18

3
Design

3.1 Choosing a demonstration model

IndustrialPhysics is mainly used in the field of industrial automation, especially
in the packaging industry. Since those types of applications are designed to run
automatically with little or no manual interaction they were not suitable for this
project. A model was needed where the user could move something with a set of
buttons to show that the model is interactive, while also demonstrating the rigid
body physics simulation in the software.

It was decided that the model was going to include a gantry crane, usually used
for moving shipping containers. The crane should be able to move backwards and
forwards, move the crane sideways and go up and down to pick up an object. To
make the model more entertaining to use, boxes and a truck were added. The idea
was that boxes would be created at a random location on the ground. The user would
then steer the crane to the position of the box, pick it up and then drop it in the truck.
When the truck was loaded, it would drive away, empty itself and then return.

To control the model the user would have a set of buttons on a control panel.
There would be buttons for turning the crane on and off, steering the crane in each
direction, move it up and down and for releasing the box from the hook. There
would also be a button that would switch the crane into a mode where it would
automatically find boxes, pick them up and put them in the truck.

3.2 CAD models

The CAD models of the crane and the truck that are used in IndustrialPhysics were
found online [8, 18] and edited in IronCAD [9]. The truck was manipulated in Iron-
CAD to remove all of the small parts that were not needed in the simulated model.
The imported truck model only had a flat trailer, so the walls of the trailer were
created in IndustrialPhysics. The crane, however, did not have to be manipulated

19

Chapter 3. Design

in IronCAD. There were only fine adjustments made in IndustrialPhysics, such as
removing the existing hook and creating a new hook.

3.3 Choosing hardware

Part of this thesis was the selection of the hardware. First a PLC with our spec-
ifications had to be ordered. Then the control panel had to be designed and the
appropriate buttons ordered.

PLC
The PLC to be chosen had to have certain requirements to work in the project.
It had to:

• be compatible with IndustrialPhysics’ communication interface,
• be able to run C code,
• have enough inputs and outputs,
• have an Ethernet connection,
• be cost efficient.

IndustrialPhysics has a communication interface that has support for several
PLC manufacturers. These are: Siemens, Beckhoff, Schneider Electric, B&R Au-
tomation and Rockwell. Through discussion with people with experience with PLCs
it was decided not to use Rockwell or Siemens. Schneider Electric did not have any
PLCs that could run C code so they were out of the discussion. The two remaining
manufacturers, B&R Automation and Beckhoff, were contacted and gave a sugges-
tion for appropriate models.

Manufacturer Beckhoff B&R Automation
Model name CX5130-0120 X20CP1381

Runs C code Yes Yes

Ethernet Yes Yes

Number of I/O 4x4 30

Performance 1.75 GHz CPU, 4 GB RAM 200 MHz CPU, 128 MB RAM

Software 1 400 SEK/license Free trial

Price 9 890 SEK 2 900 SEK

Table 3.1 Comparison between different PLC manufacturers models.

20

3.4 IndustrialPhysics model

In Table 3.1 the difference between the two suggested models from the man-
ufacturers can be seen. Both meet the requirements, but the Beckhoff model has
better performance and a higher price. Since the application that would run on the
PLC did not require too much processor power, B&R’s model was deemed to have
sufficient performance. Since this model also had a much lower price it became the
obvious choice.

Buttons
The control panel had to be easy to understand and easy to use. The user should
quickly understand how to interact with the model. To control the crane back- and
forward and sideways it was decided to use a joystick with a button on top, the type
usually used in arcade game machines. To make the crane go up and down, buttons
with arrows in each directions were to be used to make it easy to understand. The
on and off buttons were to be green and red as they usually are and the "auto-mode"
button was going to be orange. These three buttons were all to have a light in them
that could indicate which state the machine was in. The control panel would also
have a big, red emergency button and a blue lamp indicating whether or not the
crane was able to drop the box. It was preferred that the buttons were the same size
and looked similar to each other.

3.4 IndustrialPhysics model

The graphical user interface of IndustrialPhysics can be seen in Figure 3.1. The left
side of the window shows the model structure and the right side shows the ComTCP
interface. In the middle, the 3D view of the model can be seen.

Components
When importing a CAD model to IndustrialPhysics the hierarchical structure of
the model is kept. It is possible to edit certain components or sub-components and
also to add new parts to the model. When creating a new component the user can
choose between a couple of shapes. This includes square, sphere, cone and cylin-
drical shapes. The size, mass and other physical parameters of these shapes can
be chosen. The components can have different type of characteristics such as kine-
matic, static, immaterial and dynamic. The parts of the model that was going to
move were chosen to be kinematic components. This means they are able to move
forward, which is the positive direction of the selected axis and backwards, which
is the negative direction. It is also possible to adjust the speed of the movement.

The floor is made of a static material that makes the parts above the floor stay
still instead of falling down into infinity. IndustrialPhysics also has several invisible
components that can add functionality to the model. The live statistics component
counts the number of dynamic components that is in touch with it. This is used

21

Chapter 3. Design

Figure 3.1 An overview of IndustrialPhysics.

in the truck to count the amount of boxes placed in the truck. Once enough boxes
are loaded, the truck drives away. A transient sink component is also used. This is
a component that swallows components that are generated from a transient source
which is used to generate the boxes.

Inputs and Outputs
The components used in the model may have several variables that control their
properties. They can be viewed and modified in the I/O table in the component
properties menu. The inputs and outputs can be used to send and receive data to an
external program using the ComTCP feature. On the left side of the I/O table shown
on the right side of Figure 3.1 are the inputs that are sent to the external program
and the right side are the outputs that are sent to IndustrialPhysics from the external
program. They represent coordinates, boolean signals that makes a component move
in a direction or representing that a box is attached to the hook and the speed of the
crane. The I/O can be used in scripts. With the help of a script one can create a
movement based on an input or output. The script for the truck makes it move when
there are two boxes placed in the truck and the hook has not got a box attached to
it. There are also limitations of how far the truck can move and when it should go
back to its original state. The script for the truck can be seen below.

MODEL_SCRIPT (1.5)
DEFINITIONS:
// define variables and constants
CONST boxcount := CONNECT("./ Counter?TransientsCount");
VAR Truck_FWD := CONNECT(".? KinForward");

22

3.4 IndustrialPhysics model

VAR Truck_BWD := CONNECT(".? KinBack");
CONST Truck_AXIS := CONNECT(".? KinAxis");
CONST VACUUM := CONNECT("../ physics/model/movingCrane/New_hook

/Hook?Vacuum");
STATEMENTS:
// move the truck if it has two boxes
IF boxcount = 2 AND Truck_AXIS < 24 THEN

IF NOT VACUUM THEN
Truck_FWD :=TRUE;

END_IF
ELSIF boxcount = 0 AND Truck_AXIS > 0 THEN

Truck_FWD := FALSE;
Truck_BWD := TRUE;

ELSE
Truck_FWD := FALSE;
Truck_BWD := FALSE;

END_IF
END;

HiL Mode
To establish a connection between IndustrialPhysics and other control units, the
HiL mode has to be running. This makes it possible to exchange data through
the ComTCP interface. In the interface, nodes are created that contains a name, a
TCP/IP port and a list with input signals and output signals. Each ComTCP node in
the model creates a TCP/IP server. As soon as the server is running, a control unit is
able to communicate with IndustrialPhysics through this node. The ComTCP nodes
are managed in the ComTCP view as shown in the right side of Figure 3.1.

Tracing
Every component in IndustrialPhysics has x-, y- and z-axis coordinates. When mak-
ing a component movable, an input is also created where the position can be set.
This makes it possible to spawn boxes at exact positions or spawn the boxes ran-
domly within limitations. To make the crane automatically find boxes, the usage of
a tracking component was needed. This static component is placed very close to the
floor and is able to track the location of a dynamic component that is in contact with
it. Knowing the location of the crane and the location of the box, makes it possible
to pick up the boxes and placing them in the truck automatically.

The Rope and Hook
To make the crane look realistic a rope had to be made, that had the same charac-
teristics as a swinging rope. It also needed the appearance of a crane lowering and
raising the rope. Unfortunately there is currently no function in IndustrialPhysics to
create such a component, so a compromise had to be made. The rope was divided
into two parts. The upper part consists of several kinematic cylinder components,
which makes it possible to lower and rise the rope. It has no dynamic properties and

23

Chapter 3. Design

is therefore a rigid construction. The lower part is made of dynamic components and
is capable to swing like a real rope. At the end of the lower part there is a gripper
that makes it possible to grip any other dynamic component, for example a dynamic
box.

3.5 Simulink model

The Simulink model that was used to control the IndustrialPhysics model was di-
vided into two files: mil and control. The mil file was the model used in MiL testing
and can be seen in Figure 3.2. It consists of an Input block that through TCP/IP com-
munication receives data from IndustrialPhysics. It also has a Control panel block
with a graphical user interface that uses Simulink’s Dashboard components to create
a virtual control panel with buttons and lights. The outputs from these two blocks
are connected to a Model block which uses Simulink’s Model Reference function
to include the control file. This makes developers able to have different parts of a
model in separate files. Any edit made in a referenced file will then automatically be
updated in the main file. The outputs from the Model block is connected to a Out-
put block which sends back data to IndustrialPhysics through TCP/IP. Some outputs
that control the lights also go back to the control panel.

Data
ypos
xpos
zpos

yposbox
xposbox
track

vacuum

Input

Data

up

down

release

forward

backward

left

right

yspeed

xspeed

Output

releaselight

onlight

off light

autolight

upbtn
downbtn

releasebtn
fwdbtn
bwdbtn
leftbtn
rightbtn

emergencybtn
onbtn
offbtn
autobtn

Control panel

controlypos
xpos
zpos
yposbox
xposbox
track
vacuum
upbtn
downbtn
releasebtn
fwdbtn
bwdbtn
leftbtn
rightbtn
emergencybtn
onbtn
offbtn
autobtn

up

down

release

forward

backward

left

right

releaselight

yspeed

xspeed

onlight

offlight

autolight

Model

Figure 3.2 An overview of the mil file in Simulink.

The control file only includes the actual control and was designed to work no
matter if the data is received through the MiL setup in Simulink or the HiL setup
running on the PLC. It is this file that was going to be used for code generation. This
file was designed to handle both the data going to and from IndustrialPhysics and

24

3.5 Simulink model

the signals going to and from the control panel. The data received from Industrial-
Physics is the horizontal x- and y-position of the crane, the vertical z-position of the
hook, a boolean that showed if a box was picked up and a boolean showing if the
sensor was tracking the position of any box. The data that is sent back is boolean
signals that determines if the crane should move in a certain direction or not and if
the hook should move up or down. The horizontal speed of the crane is also sent.
The data received from the control panel is boolean values that indicate if a button
is pushed or not and the data sent is boolean values that control whether the lights
should be turned on or off. All on/off values in the model have the boolean data type
and all numeric values are in the single-precision floating-point format, that is an
approximation of a real number but takes less memory than a double data type. All
the input and output variables can be seen in in Table 3.2.

25

Chapter 3. Design

Signals from IndustrialPhysics
Name Type Description
xpos single Backwards/forwards position of the crane
ypos single Sideways position of the crane
zpos single Vertical position of the hook
yposbox single Backwards/forwards position of the latest box
xposbox single Sideways position of the latest box
track boolean Is the sensor tracking boxes?
vacuum boolean Is a box attached to the hook?

Signals from the control panel
Name Type Description
upbtn boolean Up button
downbtn boolean Down button
releasebtn boolean Button for releasing a box
fwdbtn boolean Joystick forward
bwdbtn boolean Joystick backward
leftbtn boolean Joystick left
rightbtn boolean Joystick right
emergencybtn boolean Emergency button
onbtn boolean Button for turning the crane on
offtbtn boolean Button for turning the crane off
autobtn boolean Button for activating the automatic mode

Signals to IndustrialPhysics
Name Type Description
up boolean Move the hook up
down boolean Move the hook down
release boolean Release the box
forward boolean Move crane forward
backward boolean Move crane backward
left boolean Move crane to the left
right boolean Move crane to the right
yspeed single Set forward/backward speed
xspeed single Set sideways speed

Signals to the control panel
Name Type Description
releaselight boolean Turn on realease light
onlight boolean Turn on light in on button
offlight boolean Turn on light in off button
autolight boolean Turn on light in auto button

Table 3.2 Variables used by the control model.

26

3.5 Simulink model

Discrete states
To make the model realistic it was decided to let the crane have different discrete
states just like a real machine would have. The switching between these states is
made possible by Simulink’s Stateflow add-on that makes it easy to simulate deci-
sion logic using state machines and flow charts. Users can graphically design state
machines and write Matlab or C code directly in the different states [17]. The dif-
ferent states of the control file are:

Off
The first state the crane is in when the model is run is the off state. In this state

the model will not react to any button except the on button. The red light in the off
button will be on to indicate the crane is turned off.

Button control
When the on button is pushed the button control state becomes active and the

green light is turned on while the red light is turned off. Now the crane is control-
lable and can be moved in the different directions through the buttons. When the
user places the hook on top of a box, the box becomes attached to the hook and the
release light is turned on until the release button is pushed. Limits in x- and y-axis
are defined so the crane cannot be moved too far away. There is also controller logic
that makes sure the box cannot be released and the hook cannot move up and down
while the crane is moving.

Emergency
When the emergency button is pushed down, all movement stops and no buttons

are active. Since the emergency button does not return to its original position once
it is pushed, the user has to drag the button out. When that happens the Off state
becomes active.

Reset
If no box is attached to the hook while the crane is turned on the user can push

the off button to turn it off. This will also make the crane automatically drive itself
to its original position. The red light will blink during the reset and then becomes
constantly turned on when the crane stops moving.

Auto control
If the crane is turned on and the user pushes the auto button, its light is turned

on and the Auto control state becomes active. In this state the controller reads the
coordinates of the latest spawned box from the sensor and moves the crane to that
position. The box is picked up and the crane is driven to the position of the truck
where the box is released. The coordinates for the next box is read and the process
repeated until the user pushes the auto button again.

27

Chapter 3. Design

Which state is active is controlled by the switch variable in the flowchart visible
in Figure 3.3. The values of switch represent the following states:

1. Button control
2. Off/Emergency
3. Reset
4. Auto control

blink

offlight=1;

auto

switch=4;

click2

autolight=0;

click1

autolight=1;

on

onlight=1;

offlight=0;

switch=1;

emergency

onlight=0;

offlight=1;

autolight=0;

switch=2;

reset

onlight=0;

offlight=0;

switch=3;

off

offlight=1;

switch=2;

[autobtn==0]

[autobtn==1]

2
[emergencybtn==0]

1

[offbtn==1 && movement==0]

3

[emergencybtn==0]

3

[emergencybtn==1]

[onbtn==1]

after(10,tick) 2

[emergencybtn==0]

2

[cranereset==1]

1

[autobtn==0]

[autobtn==1]

1

after(10,tick)

2

[cranereset==1]

1

Figure 3.3 The Stateflow graph in the control model in Simulink.

The Simulink model was developed using the standard building blocks available
in the Simulink library. These include different math and logic operators, switches,
data type converters, Matlab function blocks and TCP/IP communication blocks.
During HiL testing it was discovered that the delay in the PLC made the automatic
control unstable. This was fixed by letting a P-controller change the speed of the
crane.

28

3.5 Simulink model

Code generation
When generating C code from the Simulink model control, seven different files are
generated. Control.c contains entry points for code implementing the model algo-
rithm. It includes an initialization function, a step function and a terminate function
that are called in the main file. The ert_main.c file that is generated is not used.
Instead, the step function is called from the Cyclic.c file used in the PLC implemen-
tation. Control.h declares model data structure and a public interface to the model
entry points and data structures. control_types.h is a macro guard, which is used
to avoid the problem of double inclusion. That occurs when having one or more
data type definitions to a generated header file, making sure that there will be no
identifier clashes. Control_private.h contains local macros and local data that are
required by the model and subsystems. The rtwtypes.h defines data types, structures
and macro guards required by the generated code [12].

As a simple example, Figure 3.4 shows a Simulink model called add. It has one
input named In1 and one output named Out1. The output is calculated as the input
added with a constant value of one.

1

In1

1

Constant

1

Out1

Figure 3.4 A simple model in Simulink.

If code is generated from this model and the add.c file is examined, the functions
can be observed. First there is the initialize function that is meant to run in the
beginning of execution:

/* Model initialize function */
void add_initialize(void)
{

/* Registration code */

/* initialize error status */
rtmSetErrorStatus(add_M , (NULL));

/* external inputs */
add_U.In1 = 0.0;

/* external outputs */
add_Y.Out1 = 0.0;

}

29

Chapter 3. Design

Here it can be seen that both the external inputs and outputs are set to 0.0 as the
original value. Then there is the step function that runs every simulation step:

/* Model step function */
void add_step(void)
{

/* Outport: ’<Root >/Out1’ incorporates:
* Constant: ’<Root >/ Constant ’
* Inport: ’<Root >/In1’
* Sum: ’<Root >/Sum’
*/

add_Y.Out1 = add_U.In1 + add_P.Constant_Value;
}

Here it can be seen that the output value Out1 equals the sum of the input value
In1 and the Constant_Value of 1. Since this code does the same calculation as the
Simulink model, the code generation has worked well. A termination function is
also created but is empty. In this project code generation is done from the control
file and the generated code is similar to the example above. When the code is im-
plemented in the C program on the PLC, both the initialize and the step function are
called. This is further explained in Appendix A.3.

3.6 Model-in-the-Loop testing

industrialPhysics TCP/IP communication

mil file

control file Virtual control
panel

Simulink

Auto generated code exported
to Automation Studio

Communication interface
exported to Automation Studio

Figure 3.5 The MiL part of the project where the IndustrialPhysics model runs
together with the Simulink model on the same computer.

For MiL testing the mil file was designed. Its purpose is to handle communi-
cation with IndustrialPhysics and to simulate the control panel. Since there was no

30

3.6 Model-in-the-Loop testing

available documentation on how the data from IndustrialPhysics was formatted the
first step was to find out what data was sent. This was made by running the model
in IndustrialPhysics with the TCP/IP server running. A connection to the server
was then made from the Matlab command line and data was received. By chang-
ing the values and number of variables sent and analysing the data, the format of
the sent data could soon be figured out. It was discovered that IndustrialPhysics al-
ways sends a number that counts upwards for each simulation step. It also sends the
number of variables and the size of the data that is sent. Since the variables were
sent in different data types and the TCP/IP blocks in Simulink are only capable
of outputting one data type, data type conversion had to be made. The data of the
variables was converted from the uint32 data output to boolean and single values.
Before data was sent back it is converted back to uint32. In Appendix A.1 the details
of the connection between IndustrialPhysics and Simulink are explained.

Simulink has multiple Dashboard blocks which made it possible to create a
virtual control panel. Switches were used to represent the buttons and lamps were
used to represent the lights in the buttons. The user can click on these switches
while the model is running and thereby control the crane from Simulink. The virtual
control panel is shown in Figure 3.6.

Figure 3.6 The control panel in Simulink used for MiL testing.

Synchronization
Time synchronization between the Simulink model and the IndustrialPhysics model
is something that could be necessary in some projects. That means Simulink runs
one time step and then waits for IndustrialPhysics to run a time step before it con-
tinues and vice versa. This makes the two software wait for each other so they are
synchronized. Although perfect synchronization was not needed in the model for
this project, an investigation was made to see if it could work. The time step in both
programs was chosen to be 10 ms. The TCP/IP receive block in Simulink was set
to blocking mode, which means the simulation is blocked while it is waiting for the
requested data to be available [13]. This makes Simulink wait for new data so it

31

Chapter 3. Design

never runs faster than the IndustrialPhysics model. The problem was that there was
no way to make IndustrialPhysics wait for the Simulink model. The model could
be manually controlled to step forward one time step at a time but it was not possi-
ble to perform this action automatically. Machineering was contacted to solve this
problem but unfortunately they did not have the time to add this feature.

Real-time in Simulink
Another test that was made was to run the Simulink model in real time. This was
made possible with Simulink Desktop Real-Time [16]. This software compiles the
model to a binary file and runs it using a real-time kernel. This is something that
could be useful during MiL testing and tests were made to see if it would work and
if so, what difference in performance there would be compared to normal mode.
Since the TCP/IP protocol includes a check if all data has been received correctly
it is not suitable for real-time applications. Instead the UDP protocol had to be
used. The mil model was updated to use an UDP block and a registry entry had
to be changed to enable IndustrialPhysics to use UDP. Since the difference in per-
formance between real-time mode and the normal Simulink mode turned out to be
negligible, the normal mode with TCP/IP was used. How to use UDP in Simulink
and IndustrialPhysics is explained in Appendix A.1.

3.7 Software-in-the-Loop testing

industrialPhysics TCP/IP communication

Simulated PLC

industrialPhysics
communication

interface

Control
program in C

Automation Studio

Auto generated code
from Simulink

Communication interface
from industrialPhysics

Figure 3.7 The SiL part of the project where the IndustrialPhysics model runs
together with the simulated PLC in Automation Studio on the same computer.

32

3.7 Software-in-the-Loop testing

To implement the code on the PLC, Automation Studio was used. It is a soft-
ware developed by B&R and is used for programming their PLCs. The software is
used to design, simulate and monitor processes. Programs can be made in any of
the languages in the IEC 61131-3 standard as well as ANSI C & C++. which can
also be combined as required and by the modern architecture and structuring of the
programming environment. All languages can access the same data types and use
the same libraries and variables [2].

The first step in the SiL testing was to establish a connection between Indus-
trialPhysics and Automation Studio. To do this a HiL configuration was generated
from the IndustrialPhysics model. This creates project files that can be imported
to Automation Studio, which gives details about the number of I/O, what kind of
I/O it is and a Structured Text program to establish a connection to the specific IP-
address the IndustrialPhysics server has. The HiL configuration is further explained
in Appendix A.2.

The next step was to import the C code from the automatic code generation of
the control model in Simulink. First, a new C program was created in the Automa-
tion Studio project. This creates three .c files. There is Init.c for initialization, which
is executed in the beginning, and Cyclic.c that runs every x ms, where x is the cycle
time set by the user. Finally there is Exit.c that is used when the program stops. The
files from the code generation were imported to the C program and the initialization
function was called from the Init.c file. In the Cyclic.c file the step function is called
and the inputs and outputs of the C program are connected to the outputs and inputs
from the IndustrialPhysics interface.

Testing of the code was done by running the simulation mode in Automation
Studio, which runs the code on simulated hardware. The cycle time in the simula-
tion mode was set to 100 ms since it was not possible to set a smaller cycle time in
Automation Studio. Since the connection between IndustrialPhysics and Automa-
tion Studio was established, the code was working and the SiL stage was complete.

33

Chapter 3. Design

3.8 Hardware-in-the-Loop testing

industrialPhysics

TCP/IP communication
over Ethernet

PLC

industrialPhysics
communication

interface

Control
program in C

Control panel

Figure 3.8 The HiL part of the project where the IndustrialPhysics model runs on
a computer connected with an Ethernet cable to a PLC, which is connected to the
control panel.

Once the SiL stage was done, it was possible to export the code made in Automation
Studio to the PLC knowing that the HiL configuration made from IndustrialPhysics
was working. To be able to use the inputs and outputs of the PLC they had to be
given a variable name which had to also be included in the Cyclic.c file. Here is an
excerpt from that file:

void _CYCLIC ProgramCyclic(void)
{

// Get inputs to control from IndustrialPhysics
control_U.ypos = SimInputs.physics01_AXIS;
control_U.xpos = SimInputs.movingCrane01_AXIS;
...

// Get inputs to control from the control panel
control_U.rightbtn = rightbtn;
control_U.leftbtn = leftbtn;
...

// Step forward
control_step ();

// Outputs from control to IndustrialPhysics
SimOutputs.movingCrane01_FWD = control_Y.right;
SimOutputs.movingCrane01_BWD = control_Y.left;

34

3.9 Testing

...

// Outputs from control to the control panel
releaselight = control_Y.releaselight;
onlight = control_Y.onlight;
...

}

As can be seen in the code, the variables from IndustrialPhysics and the control
panel are set as input variables to the C program. After the step function is called,
the output variables from the C program are then sent back to the IndustrialPhysics
interface and the control panel. This is possible because different programs on the
PLC can share variables.

The cycle time of both the IndustrialPhysics interface and the C program was
originally 100 ms but was set to 10 ms to reduce delay. After the code was trans-
ferred to the PLC, communication between the PLC and the computer running In-
dustrialPhysics was made with TCP/IP through an Ethernet cable. A test rig was
made with a box where the buttons was mounted. Cables connected the buttons to
the PLC inputs and the outputs of the PLC were connected to the lights.

3.9 Testing

Multiple tests were made to see the difference in performance between the MiL and
the HiL stage. During HiL testing it was noticed that the original on-off controller
for the crane was a bit unstable when using the auto control and the reset mode. This
meant that it took a long time for the crane to stop. This problem had not occurred
during MiL testing since the delay was smaller. To solve this problem a P-controller
was implemented to control the speed of the crane. The controller slowed down
the speed of the crane when the distance to the chosen position was small enough
and thereby ensuring the crane did not move past the set point before receiving the
position data.

To observe the difference, data was collected from IndustrialPhysics. The crane
was moved as far left as possible and then the reset button was pushed, moving the
crane from -5.5 m to -2.75 m in the x-axis. This test was done with and without the
P-controller both using Simulink (MiL) and the PLC (HiL). The position data was
then plotted and compared. The ping times from IndustrialPhysics to Simulink and
the PLC were also collected during the different tests. The results of these tests are
presented in the next chapter.

35

4
Results and Discussion

The aim of the thesis was to show the advantages with Model-Based Design by
controlling a virtual model in IndustrialPhysics using a PLC. The goal was to be
achieved by using a controller made in Simulink, auto generate C code from that
model and then implement the code on the PLC. In this chapter, we show that the
goals for this thesis were all achieved successfully.

4.1 Chosen hardware

The PLC that was chosen was the X20CP1381 model from B&R Automation [4]
which can be seen on the left side of Figure 4.1. It has a 200 MHz CPU, 128 GB
RAM, 30 digital inputs/outputs, two USB ports and one Ethernet connection. The
PLC required 24 V DC so a power supply was also bought from B&R [3] and can
be seen on the right side of Figure 4.1.

Figure 4.1 The X20CP1381 PLC and power supply from B&R Automation [4]
[3].

36

4.2 Models

The buttons chosen came from Schneider Electric’s Harmony XB4 series [21]
and is shown in Figure 4.2. They are 22 mm wide plastic buttons surrounded by
chromium plated metal. When pushed, they close the circuit that is normally open.
When released, a spring return it to the original position. A joystick was bought
from another manufacturer [7]. It has five switches, one for each direction and one
button on top of the joystick that acts like a release button. The whole setup of the
hardware is shown in Figure 4.3.

Figure 4.2 The buttons and joystick used in the control panel.

4.2 Models

IndustrialPhysics
Much time was spent on making the virtual model in IndustrialPhysics e.g. creating
the boxes at a random location and calibrating the damping of the system so that the
rope would not swing to much. The aim with the rope was to have the rope move
vertically and having the physics of an actual rope. Since this was not possible, a
compromise was made by dividing the rope into two parts. One that has the physics
of a rope and the other making the rope move vertically. Apart from the rope, the
model looked realistic and worked as it should. In Figure 4.4 and 4.5 the final model
can be seen with the crane, truck, ground and boxes.

37

Chapter 4. Results and Discussion

Figure 4.3 The final HiL setup.

Figure 4.4 The complete model in IndustrialPhysics.

38

4.2 Models

Figure 4.5 The complete model in IndustrialPhysics.

Simulink
The Simulink environment fulfilled all the specifications. The available TCP/IP
blocks made communication easy and since the controller could be tested against
the model all the time, fixing bugs and trying new functions could be done very fast.
The Stateflow functionality in Simulink was very helpful since this model needed
different states which would be hard to implement otherwise. Unfortunately the syn-
chronization between Simulink and IndustrialPhysics was not perfect since there
was no way to make IndustrialPhysics wait for feedback from Simulink before it
does a time step. However, in this model that was not something that had a major
impact on the functionality.

As can be seen in Table 4.1 there was no difference in performance between run-
ning Simulink in normal mode and real-time mode. As a result of this, the MiL test-
ing was done using the normal mode. It is possible that having a different Simulink
model might affect the performance and thus running Simulink in real-time mode
might be a better choice.

The mode that makes the crane automatically pick up the boxes was not origi-
nally planned but was added because this required delays to be low which made it
more interesting to test.

39

Chapter 4. Results and Discussion

4.3 Difference between HiL and MiL

The plots in Figure 4.6, 4.7, 4.8 and 4.9 show the x-axis position of the crane when
it is reset from -5.5 m to -2.75 m with and without a P-controller during MiL and
HiL testing.

Time [s]

0 2 4 6 8 10 12 14 16 18

P
o

s
it
io

n
 [

m
]

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

PLC Without Controller

Simulink Without Controller

Figure 4.6 Difference between HiL and MiL without a P-controller. The figure
shows that Simulink (dotted line) has no oscillations while the PLC has.

Time [s]

0 2 4 6 8 10 12 14 16 18

P
o

s
it
io

n
 [

m
]

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

PLC Witout Controller

PLC With Controller

Figure 4.7 Difference with and without a P-controller during HiL testing. The fig-
ure shows that with an P-controller makes the system more stable and smooth.

40

4.3 Difference between HiL and MiL

Time [s]

0 2 4 6 8 10 12 14 16 18

P
o

s
it
io

n
 [

m
]

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

PLC With Controller

Simulink With Controller

Figure 4.8 Difference between HiL and MiL with a P-controller. The figure shows
that there are hardly any difference between HiL and MiL with an P-controller

Time [s]

0 2 4 6 8 10 12 14 16 18

P
o

s
it
io

n
 [

m
]

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

Simulink Without Controller

Simulink With Controller

Figure 4.9 Difference with and without a P-controller during MiL testing. The
figure shows that the P-controller makes the control smoother.

Before HiL testing, an on-off controller was used to automatically move the
crane. This worked well in MiL testing but as can be seen in Figure 4.6 oscillation
occurred when using the PLC. This was because the PLC had a larger delay which
meant it took some time before it got the signal that the reference point had been

41

Chapter 4. Results and Discussion

reached. Before reducing the cycle time in Automation Studio from 100 ms to 10
ms this oscillation was even larger. To fix this problem a P-controller was introduced
and as can be seen in Figure 4.7 this worked well since there is no oscillation. Figure
4.8 shows that with the P-controller there is now almost no difference between MiL
and HiL. Figure 4.9 also shows that the introduction of the controller also made the
Simulink control a bit smoother.

The discovery of the difference between MiL and HiL shows the benefit of using
MBD. Since the model did not include the delay discovered in HiL testing, the
model had to be updated and new testing had to be done. To be able to continuously
execute test and fix bugs early in the development phase are great advantages that
MBD has compared to other methods.

Simulink Simulink Desktop Real-Time PLC
Average ping (s) 0.01 0.01 0.02

Table 4.1 The ping times from IndustrialPhysics to Simulink and the PLC.

In Table 4.1 the ping times from IndustrialPhysics to Simulink and the PLC
can be observed. The ping time when the Simulink model is run in real time is
also included. As can be seen, running Simulink in normal mode and real-time
mode makes no difference for this model. Since the time step in both Simulink and
IndustrialPhysics was set to 10 ms a delay of 10 ms means the Simulink model is
just one step behind IndustrialPhysics on average, which is as good as it gets. The
delay of the PLC varied a bit more but the average was still only 20 ms, which is
very good. When developing a real machine, delay is something that is going to be
there and thus the delay between the PLC and IndustrialPhysics is similar to what
can be expected in the real implementation.

The crane’s speed could have been faster in the x- and y-direction. It was, how-
ever, decided to keep this speed because of the dimensions of the model. If the
model would have been larger the speed would have been greater. This was made
to make the model as realistic as possible, which was the goal during the whole
project. The velocity of the crane also contributed to the oscillations, shown in Fig-
ure 4.7 and 4.6. When the velocity was increased it was noticed that even Simulink
got some oscillations when not using a P-controller because Simulink had some
delay and could not manage a very high speed.

4.4 Problems in the workflow

Overall the workflow in this thesis worked well. There were, however, some func-
tions in the software that could have been better. The best example of this is when
a HiL config is generated from IndustrialPhysics for the PLC. First, one zip file is

42

4.4 Problems in the workflow

created that contains an Automation Studio project with the communication inter-
face to IndustrialPhysics. A folder is also created, containing the information about
variables specific for the current model. The project files in the zip file had to man-
ually be merged with the files in the folder. When this was imported to Automation
Studio it did not work right away. Instead, several variables and much code had
to be manually moved to make the program work as it should. This whole pro-
cess should have worked without any manual changes to make it easier and faster.
Another issue occurred when changes to the code on the PLC was uploaded. The
program then stopped working. It was found out that this was probably related to
the memory not being reset. That meant the PLC often had to be rebooted to reset
the memory, which was very time consuming. There was also sometimes problems
with both the simulated PLC and the real PLC booting in service mode, which also
meant reboots had to be made.

The MiL part of the project worked well and communication between Simulink
and IndustrialPhysics was fast and reliable. It would have been helpful to have doc-
umentation on how the data from IndustrialPhysics is coded, but since this was
figured out after a while it was not a major problem. IndustrialPhysics has support
for HiL config generation for several PLC manufacturers, but for connection with
external software there is no existing interface. An API (Application Programmable
Interface) would have been a great addition to IndustrialPhysics since it would make
communication with other software a lot easier. Simulink and the add-ons used
worked as they should and the generated C code could easily be imported into Au-
tomation Studio without any problems.

43

5
Conclusions

This thesis has shown the advantages of using the Model-Based Design method
when developing software. To develop the same kind of demonstrator with the old
fashioned method would have been harder and would probably have taken longer
time. Being able to test the model in all the development stages made it easy to dis-
cover bugs and to try out new functions. The strong advantage of using MBD is that
errors can be discovered early in development. That made this project go smoother
and it is easy to see the great advantage this gives in a real development situation
with many different developers working on different part of the project. With em-
bedded software becoming increasingly used in technology it is possible that MBD
will soon be an important part of many companies development stage. The ability to
try out software before any hardware is built can be an advantage in software design
similar to the introduction of CAD software in mechanical hardware design.

The goals of the thesis were achieved and functions that were not planned from
the beginning were even added to the models. Hopefully the models and control
panel that were created will come to use and be able to meet the goal of showing
how Model-Based Design can be used to increase efficiency.

5.1 Future work

To further test the capabilities of IndustrialPhysics it would be interesting to try a
model where the time synchronization is of greater importance. In this thesis, the
model and controller did not have to be perfectly synchronized and the number of
variables sent was relatively small. In a complex industrial machine the synchro-
nization could be very important and the number of signals sent could be very high.
To try a model like that would be a tougher test for the software.

44

Bibliography

[1] M. Ahmadian, Z. Nazari, N. Nakhaee, and Z. Kostic. “Model Based Design
and SDR”. In: DSPenabledRadio, 2005. The 2nd IEE/EURASIP Conference
on (Ref. No. 2005/11086). 2005. URL: http://ieeexplore.ieee.org.
ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=1575352&tag=
1.

[2] B&R Automation. Automation Studio. URL: http : / / www . br -
automation.com/en-us/products/software/automation-studio/
(visited on 01/26/2016).

[3] B&R Automation. B&R: 0PS1020.0. URL: http://www.br-automation.
com / en / products / power - supplies / single - phase - power -
supplies/0ps10200/ (visited on 01/18/2016).

[4] B&R Automation. B&R: X20CP1381. URL: http : / / www . br -
automation.com/en/products/control- systems/x20- system/
x20-cpus/x20cp1381/ (visited on 01/18/2016).

[5] C. Kleijn. Introduction to Hardware-in-the-Loop Simulation. URL: http:
/ / www . hil - simulation . com / images / stories / Documents /
Introduction%20to%20Hardware-in-the-Loop%20Simulation.pdf
(visited on 01/21/2016).

[6] Combine. Combine website. URL: http://www.combine.se/ (visited on
01/22/2016).

[7] Electrokit. Köp Joystick arkad till rätt pris @ Electrokit. URL: http://www.
electrokit.com/joystick-arkad.46838 (visited on 01/26/2016).

[8] F. García. Gantry crane - 3D CAD model - GrabCAD. URL: https : / /
grabcad.com/library/gantry-crane-1 (visited on 01/18/2016).

[9] IronCAD. Ironcad website. URL: http://www.ironcad.com/ (visited on
01/25/2016).

[10] machineering GmbH & Co. KG. IndustrialPhysics manual.

45

http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=1575352&tag=1
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=1575352&tag=1
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=1575352&tag=1
http://www.br-automation.com/en-us/products/software/automation-studio/
http://www.br-automation.com/en-us/products/software/automation-studio/
http://www.br-automation.com/en/products/power-supplies/single-phase-power-supplies/0ps10200/
http://www.br-automation.com/en/products/power-supplies/single-phase-power-supplies/0ps10200/
http://www.br-automation.com/en/products/power-supplies/single-phase-power-supplies/0ps10200/
http://www.br-automation.com/en/products/control-systems/x20-system/x20-cpus/x20cp1381/
http://www.br-automation.com/en/products/control-systems/x20-system/x20-cpus/x20cp1381/
http://www.br-automation.com/en/products/control-systems/x20-system/x20-cpus/x20cp1381/
http://www.hil-simulation.com/images/stories/Documents/Introduction%20to%20Hardware-in-the-Loop%20Simulation.pdf
http://www.hil-simulation.com/images/stories/Documents/Introduction%20to%20Hardware-in-the-Loop%20Simulation.pdf
http://www.hil-simulation.com/images/stories/Documents/Introduction%20to%20Hardware-in-the-Loop%20Simulation.pdf
http://www.combine.se/
http://www.electrokit.com/joystick-arkad.46838
http://www.electrokit.com/joystick-arkad.46838
https://grabcad.com/library/gantry-crane-1
https://grabcad.com/library/gantry-crane-1
http://www.ironcad.com/

Bibliography

[11] machineering GmbH & Co. KG. Machineering website. URL: http://www.
machineering.de/en/ (visited on 01/18/2016).

[12] MathWorks. Embedded Coder User’s Guide. 2015. URL: http : / / se .
mathworks.com/help/releases/R2015a/pdf_doc/ecoder/ecoder_
ug.pdf (visited on 01/21/2016).

[13] MathWorks. Receive data over TCP/IP from specified remote machine -
Simulink - MathWorks Nordic. URL: http://se.mathworks.com/help/
instrument/tcpipreceive.html (visited on 02/01/2016).

[14] MathWorks. Simulink - Simulation and Model-Based Design - MathWorks
Nordic. URL: http://se.mathworks.com/products/simulink/ (vis-
ited on 01/18/2016).

[15] MathWorks. Simulink Coder User’s Guide. 2015. URL: http : / / se .
mathworks.com/help/releases/R2015a/pdf_doc/rtw/rtw_ug.pdf
(visited on 01/21/2016).

[16] MathWorks. Simulink Desktop Real-Time - MathWorks Nordic. URL: http:
//se.mathworks.com/products/simulink-desktop-real-time/
(visited on 02/01/2016).

[17] MathWorks. State Machine - Stateflow - Simulink - MathWorks Nordic. URL:
http : / / se . mathworks . com / products / stateflow/ (visited on
01/26/2016).

[18] E. Nunez. Renault Midlum - 3D CAD model - GrabCAD. URL: https://
grabcad.com/library/renault-midlum-280-185300-with-flat-
bed (visited on 01/18/2016).

[19] G. Olsson and C. Rosen. Industrial automation applications, structures and
systems. Department of Electrical Engineering and Automation, 2005.

[20] SAMAA A. ABDEL SAMIE. Automated Model in the Loop for Embed-
ded Systems Testing. URL: http : / / www . wseas . us / e - library /
conferences/2015/Dubai/CEA/CEA-60.pdf (visited on 02/02/2016).

[21] Schneider Electric. Harmony XB4 - Schneider Electric. URL: http://www.
schneider-electric.com/en/product-range/632-harmony-xb4/
?parent-category-id=4800&parent-subcategory-id=4840 (visited
on 01/26/2016).

[22] V. Socci. “Implementing a model-based design and test workflow”. In: Sys-
tems Engineering (ISSE), 2015 IEEE International Symposium on. 2015,
pp. 130–134. URL: http://ieeexplore.ieee.org.ludwig.lub.lu.
se/stamp/stamp.jsp?tp=&arnumber=7302745&tag=1 (visited on
01/18/2016).

[23] The Economist. Tech.View: Cars and software bugs. 2015. URL: http://
www.economist.com/blogs/babbage/2010/05/techview_cars_and_
software_bugs (visited on 01/18/2016).

46

http://www.machineering.de/en/
http://www.machineering.de/en/
http://se.mathworks.com/help/releases/R2015a/pdf_doc/ecoder/ecoder_ug.pdf
http://se.mathworks.com/help/releases/R2015a/pdf_doc/ecoder/ecoder_ug.pdf
http://se.mathworks.com/help/releases/R2015a/pdf_doc/ecoder/ecoder_ug.pdf
http://se.mathworks.com/help/instrument/tcpipreceive.html
http://se.mathworks.com/help/instrument/tcpipreceive.html
http://se.mathworks.com/products/simulink/
http://se.mathworks.com/help/releases/R2015a/pdf_doc/rtw/rtw_ug.pdf
http://se.mathworks.com/help/releases/R2015a/pdf_doc/rtw/rtw_ug.pdf
http://se.mathworks.com/products/simulink-desktop-real-time/
http://se.mathworks.com/products/simulink-desktop-real-time/
http://se.mathworks.com/products/stateflow/
https://grabcad.com/library/renault-midlum-280-185300-with-flat-bed
https://grabcad.com/library/renault-midlum-280-185300-with-flat-bed
https://grabcad.com/library/renault-midlum-280-185300-with-flat-bed
http://www.wseas.us/e-library/conferences/2015/Dubai/CEA/CEA-60.pdf
http://www.wseas.us/e-library/conferences/2015/Dubai/CEA/CEA-60.pdf
http://www.schneider-electric.com/en/product-range/632-harmony-xb4/?parent-category-id=4800&parent-subcategory-id=4840
http://www.schneider-electric.com/en/product-range/632-harmony-xb4/?parent-category-id=4800&parent-subcategory-id=4840
http://www.schneider-electric.com/en/product-range/632-harmony-xb4/?parent-category-id=4800&parent-subcategory-id=4840
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=7302745&tag=1
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=7302745&tag=1
http://www.economist.com/blogs/babbage/2010/05/techview_cars_and_software_bugs
http://www.economist.com/blogs/babbage/2010/05/techview_cars_and_software_bugs
http://www.economist.com/blogs/babbage/2010/05/techview_cars_and_software_bugs

Bibliography

[24] A. Vidanapathirana, S. Dewasurendra, and S. Abeyaratne. “Model in the loop
testing of complex reactive systems”. In: Industrial and Information Systems
(ICIIS), 2013 8th IEEE International Conference on. 2013, pp. 30–35. URL:
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.
jsp?arnumber=6731950 (visited on 01/20/2016).

[25] G. Wünsch. “Simulation for optimizing energy consumption in packag-
ing machines”. Economic Engineering 2013:6 (2013), pp. 30–31. URL:
http : / / www . machineering . de / fileadmin / data / Infos _ als _
PDF / Simulation _ for _ optimization _ energy _ consumption _ in _
packaging_machines_en.pdf (visited on 01/21/2016).

47

http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?arnumber=6731950
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?arnumber=6731950
http://www.machineering.de/fileadmin/data/Infos_als_PDF/Simulation_for_optimization_energy_consumption_in_packaging_machines_en.pdf
http://www.machineering.de/fileadmin/data/Infos_als_PDF/Simulation_for_optimization_energy_consumption_in_packaging_machines_en.pdf
http://www.machineering.de/fileadmin/data/Infos_als_PDF/Simulation_for_optimization_energy_consumption_in_packaging_machines_en.pdf

A
Developer’s Manual

A.1 Connecting IndustrialPhysics and Simulink

Here it will be shown how to create a connection and send data between Industrial-
Physics and Simulink. This will make it possible to control the model in Industrial-
Physics from the Simulink model.

1. Start by creating a new node in the ComTCP-View in IndustrialPhysics.
Choose the computer’s IP address, add the inputs and outputs that are go-
ing to be used, and activate the HiL mode in the HiL menu. Do not check the
Packed data box.

2. In Simulink, open up the Library Browser and click on the Instrument Control
Toolbox. Add the TCP/IP Reveive block to your model.

3. Double click the block to open up the window shown in Figure A.1 and edit
the parameters. Set the IP address and port to the same as in IndustrialPhysics.
The Data size should be the number of inputs in the IO Table in Industrial-
Physics plus five (example: 7 inputs means the Data size should be 12). Set
the data type to uint32 and byte order to BigEndian. Blocking mode should
be enabled and the sample time should be the same as the time step size in
IndustrialPhysics (the default is 0.01 s).

4. The output data from this block will now be a vector that gets new values each
time data is received. The first five values of the vector contains information
used by IndustrialPhysics and the rest of the values contains the variables
sent. How the data in this vector is organized is shown in Table A.1.

48

A.1 Connecting IndustrialPhysics and Simulink

Figure A.1 The window for setting block parameters for the TCP/IP Receive
block.

Nr. in vector Description

1 A counter that increases with one for each time step.

2 and 3 Unknown

4 Number of variables sent multiplied with four plus four.
Example: 4 inputs gives (4×4)+4 = 20

5 Number of variables sent.

6 and forward The variables that are sent. Boolean values are ones and
zeroes and numeric values are in the single-precision
floating-point format.

Table A.1 How the vector of data received from IndustrialPhysics is organized.

5. Since the values from IndustrialPhysics have different data types and the
TCP/IP Receive block only can output one data type, data conversion is
needed before using the data. The Data Type Conversion block can be used
for conversion between uint32 and boolean values. This block is, however,
not possible to use for conversion between uint32 and single values. Instead,
a MATLAB Function block has to be used with the code below.

Conversion from uint32 to single:

function y = fcn(u)
u = typecast(uint32(u), ’single ’);

49

Appendix A. Developer’s Manual

y = u;

Conversion from single to uint32:

function y = fcn(u)
u = typecast(u, ’uint32 ’);
y = u(1);

6. When sending back data to IndustrialPhysics the TCP/IP Send block should
be used. The data has to be converted back to uint32 in one vector. The 4th
and 5th number in the vector have to be changed depending on the number of
variables that is going to be sent to IndustrialPhysics as described by Table
A.1.

Simulink Desktop Real-Time
If the model is going to be run using Simulink Desktop Real-Time, UDP communi-
cation is needed instead of TCP/IP. The Packet Input and Packet Output blocks can
be used for this. In the block’s settings choose Install new board / Standard Devices
/ UDP Protocol and edit the address by clicking Board setup.

To use UDP in IndustrialPhysics it has to be manually activated in the Windows
registry. Open it up and navigate to HKEY_CURRENT_USER / Software / machi-
neering / IndustrialPhysics / ComTCP and change UseUdp from 0 to 1.

A.2 Connecting IndustrialPhysics and the PLC

These are the steps to establish a connection between IndustrialPhysics and a B&R
PLC:

1. Create a new node in the ComTCP-View in IndustrialPhysics. Choose the
computer’s IP address, add the inputs and outputs that are going to be used.
Activate the HiL mode.

2. Click the Generate HiL Config button shown in the Figure A.2. This will
open up a window where the user chooses the manufacturer of the PLC, and
in what folder the HiL configuration shall be saved.

3. This creates a folder with the HiL configuration interface. In the folder there
is a file called 01_Static.zip and folder called Logical. The 01_Static.zip con-
tains two folders called Physical and Logical. The Logical folder inside zip
file needs to be replaced by the other Logical folder outside zip file. This can
be done by unzipping 01_Static.zip to a new folder, copy the Logical folder
to the new folder and replace the files. Then create a zip file containing the
Physical and the new Logical folder.

50

A.2 Connecting IndustrialPhysics and the PLC

Figure A.2 The button for generate a HiL configuration.

4. Create a new project in Automation Studio, click import and search for the
zipped file created earlier.

5. When the file is imported, two files and one program are created in Automa-
tion Studio. For some reason, however, they do not work right away. First the
contents of the two files MNG_Global.typ and MNG_Global.var needs to be
copied respectively into the existing files Global.typ and Global.var as shown
in Figure A.3. After that they can be deleted. The next step is to create a new
ST Program, delete the existing files in this program and then move the con-
tents of the MNG_Interface program into the newly created ST Program. The
now empty MNG_Interface folder can be deleted.

Figure A.3 The file contents to be moved.

51

Appendix A. Developer’s Manual

6. The HiL configuration interface is now implemented and other programs run-
ning on the PLC can access and edit the variables in SimInputs and SimOut-
puts in the Global.var file. Click Settings... in the Online menu and connect to
the PLC. Click the Build button as shown in Figure A.4 to build the program
and upload it to the PLC.

Figure A.4 The Online Settings menu and the Build button.

A.3 Automatic code generation and implementation

These are the steps to auto generate C code from a Simulink model and importing it
to an Automation Studio project. In this guide it is assumed that the Simulink model
is called control.

1. Open up the Simulink model and click "Model Configuration Parameters"
under the Simulation menu. First choose the Solver submenu and set the stop
time to "inf". Choose "Fixed-step" as the solver and choose an appropriate
step size.

2. Click on the submenu "Code Generation" and then the browse button to
choose "ert.tlc" Embedded Coder (The Embedded Coder add-on for Simulink
is needed for this. If it is not available choose "grt.tlc" Generic Real-Time Tar-
get). Click the "Generate Code" button shown in Figure A.5. This creates a
folder called control_ert_rtw where the files are generated.

52

A.3 Automatic code generation and implementation

Figure A.5 The Code Generation menu.

3. Before importing the generated code in Automation Studio, the user first
needs to create a new C program in the project and then click on Existing
File as shown in Figure A.6.

Figure A.6 Location of Existing File in Automation Studio.

4. The user then needs to navigate to the control_ert_rtw folder and choose all
the .c and .h files except ert_main.c as shown in Figure A.7. Six files should
be imported.

53

Appendix A. Developer’s Manual

Figure A.7 Choosing files from the generated C code.

5. Once the generated C code files are imported into Automation Studio the user
needs to connect the variables from the HiL configuration and the variables
from the generated C code. The basics of this is explained in the sections 3.7
and 3.8. The code for the files used in the project can be seen below.

Init.c

#include <stddef.h>
#include <stdio.h>
#include "control.h"
#include "rtwtypes.h"

#include <bur/plctypes.h>

#ifdef _DEFAULT_INCLUDES
#include <AsDefault.h>
#endif

void _INIT ProgramInit(void)
{

control_initialize ();
}

Cyclic.c

#include <stddef.h>
#include <stdio.h>
#include "control.h"
#include "rtwtypes.h"

54

A.3 Automatic code generation and implementation

#include <bur/plctypes.h>

#ifdef _DEFAULT_INCLUDES
#include <AsDefault.h>
#endif

void _CYCLIC ProgramCyclic(void)
{

// Get inputs to control from IndustrialPhysics
control_U.ypos = SimInputs.physics01_AXIS;
control_U.xpos = SimInputs.movingCrane01_AXIS;
control_U.zpos = SimInputs.StyrDemAndra01_AXIS;
control_U.vacuum = SimInputs.Hook01_VACUUM;
control_U.xposbox = SimInputs.Sensor01_x;
control_U.yposbox = SimInputs.Sensor01_y;
control_U.track = SimInputs.Sensor01_TRACK;

// Get inputs to control from the control panel
control_U.upbtn = upbtn;
control_U.downbtn = downbtn;
control_U.rightbtn = rightbtn;
control_U.leftbtn = leftbtn;
control_U.fwdbtn = fwdbtn;
control_U.bwdbtn = bwdbtn;
control_U.releasebtn = releasebtn;
control_U.onbtn = onbtn;
control_U.offbtn = offbtn;
control_U.emergencybtn = emergencybtn;
control_U.autobtn = autobtn;

// Step forward
control_step ();

// Outputs from control to IndustrialPhysics
SimOutputs.StyrDemAndra01_FWD = control_Y.up;
SimOutputs.StyrDemAndra01_BWD = control_Y.down;
SimOutputs.Hook01_GRIP = control_Y.release;
SimOutputs.physics01_FWD = control_Y.forward;
SimOutputs.physics01_BWD = control_Y.backward;
SimOutputs.movingCrane01_FWD = control_Y.right;
SimOutputs.movingCrane01_BWD = control_Y.left;
SimOutputs.physics01_MAX_SPD = control_Y.yspeed;
SimOutputs.movingCrane01_MAX_SPD = control_Y.xspeed;

// Outputs from control to the control panel
releaselight = control_Y.releaselight;
onlight = control_Y.onlight;
offlight = control_Y.offlight;
autolight = control_Y.autolight;

}

6. The inputs and outputs to the control panel can be seen in the code with
variable names such as upbtn, downbtn etc. These variables are connected to

55

Appendix A. Developer’s Manual

different I/O ports of the PLC and can be chosen by editing the I/O mapping
as seen in Figure A.8. This menu is accessed by choosing the Physical View
and right click on X2 or X3 and choose I/O Mapping.

Figure A.8 The I/O Mapping menu.

56

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER´S THESIS
Date of issue
February 2016
Document Number
ISRN LUTFD2/TFRT--5999--SE

Author(s)

David Bergström
Robert Göransson

Supervisor
Simon Yngve, Combine AB
Anton Cervin, Dept. of Automatic Control, Lund
University, Sweden
Karl-Erik Årzén, Dept. of Automatic Control, Lund
University, Sweden (examiner)
Sponsoring organization

Title and subtitle

Model- and Hardware-in-the-Loop Testing in a Model-Based Design Workflow

Abstract

Model-Based Design is a development method that is becoming popular to use when creating control
systems. In this thesis a demonstration of the advantages of using this method is made for Combine
Control Systems AB. The 3D simulation software IndustrialPhysics is used to represent a real process
in form of a gantry crane. A controller for this crane is developed in Simulink and Model-in-the-Loop
(MiL) testing is done together with the 3D model. C code is then generated from the controller and
transferred to a PLC. A control panel with buttons is connected to the PLC and Hardware-in-the-Loop
(HiL) testing is done together with the 3D model. The result of the thesis is a working HiL rig ready
to be used on technical fairs to demonstrate the capabilities of the Model-Based Design method.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-56

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	List of Tables
	List of Figures
	Introduction
	Background
	Goals
	Limitations
	Methodology
	Individual contributions
	Disposition

	Background
	Model-Based Design
	Model-in-the-Loop
	Software-in-the-Loop
	Hardware-in-the-Loop
	Software
	Programmable Logic Controllers

	Design
	Choosing a demonstration model
	CAD models
	Choosing hardware
	IndustrialPhysics model
	Simulink model
	Model-in-the-Loop testing
	Software-in-the-Loop testing
	Hardware-in-the-Loop testing
	Testing

	Results and Discussion
	Chosen hardware
	Models
	Difference between HiL and MiL
	Problems in the workflow

	Conclusions
	Future work

	Bibliography
	Developer's Manual
	Connecting IndustrialPhysics and Simulink
	Connecting IndustrialPhysics and the PLC
	Automatic code generation and implementation

