
Robust Security Updates
for Connected Devices
Jonathan Sönnerup && Jonathan Karlsson, Lund University

T
he Internet of Things (IoT) revolution
has just started and there is a tremen-
dous increase in the number of devices

connected to the Internet. Some companies
estimate it to reach a number between 20 and
50 billion connected devices by the year of
2020.

With such a remarkable amount of devices, society
will face an unprecedented security challenge. The
software does not only need to implement security
features and be built in a robust way, it also has to
stay updated by receiving security patches in case
vulnerabilities are found. A big problem is products
using obsolete software versions – products no longer
maintained by the manufacturing company. All of
these products can pose a threat to the society and
user privacy if the software is outdated and exposed
to the Internet. Recently (January 2016), exploitable
IoT devices have been easier to find due to the search
engine Shodan which lets users search the internet
for connected devices, often vulnerable ones. One
can easily find a camera feed, lacking authentication
mechanisms, of sleeping babies for example. It is of
utmost importance to find viable ways to increase
the security in all IoT devices, even the older ones. In
a survey, it is presented that it takes on average 100-
120 days for businesses to remediate a vulnerability,
after it has been publicly known. It is also shown that
only after 40-60 days, there is a 90 per cent risk that
the vulnerability already has been exploited. With
a cost efficient and fast security update mechanism,
the security can be maintained in the long term.

One way to increase the security is to always keep
the devices up-to-date. In order to achieve this, a
well-defined patch management process is necessary,
here depicted in Figure 1. Since the devices may

Figure 1: The process of keeping things up-to-date

be located in inaccessible areas, automatic updates
are of interest. This process may be utilized in any
area of software patch management, but the focus
will be on IoT devices. IoT devices differ from the
usual computers and smartphones. They often have
a small, low-power processor, or microcontroller unit
(MCU) with a small amount of flash memory and
RAM. Due to the resource constrains in the devices,
ordinary communication and security protocols are
often not applicable. New, optimized protocols are
developed targeting smaller devices but the choice
is left to the developers. Security has always come
in second hand and for IoT, there is no exception.
It is a difficult task to implement robust security
in devices with small memory and slow processors
but it is an absolute necessity. The thesis work has
been done at a camera company, hereinafter known
as “CC”.

Page 1 of 2



Results and Conclusions

• We have analyzed the current solutions of assess-
ing software vulnerabilities to determine their
strengths and weaknesses. We then applied the
current methods to known vulnerabilities to
determine what can be improved. By taking
configuration and environment parameters into
account, one gets a more efficient evaluation
which is more fine-grained. This is also eas-
ier to automate and will thus reduce the time
for companies to remediate vulnerabilities. The
improved process is seen in Figure 2, where ad-
ditions to the normal systems (CVSS, CWSS
etc.) have been added, as well as configuration
and environmental considerations.

• We have also looked into use cases of current up-
date processes of different devices. As references,
two well-working update processes were consid-
ered – Android OS and Chrome OS. Those were
compared to update processes at customers of
CC and the IoT world to map problems and pos-
sibilities. A proposed general solution for IoT
devices and also bigger systems is presented and
here seen in Figure 3. This is a semi-automated
solution which needs some form of user input, for
example a IT department that decides when to
update. A fully automated solution was also pre-
sented, which is the same as the semi-automated
but without the user input.

• We have implemented a proof-of-concept pro-
gram to update files on a CC camera and to
show the need for a signed and verified firmware.
An example of the program in use is seen in
Table 1, where our patch is compared to the
current update process at CC with replacing the
whole firmware.

Table 1: Amount of data being saved by patching com-
pared to sending a full firmware.

Full Firmware 61 MiB
Patch 0.3 MiB

Difference 60 MiB

Data saved (1M devices) 60 TiB

Figure 2: The process of keeping things up-to-date

Figure 3: The process of keeping things up-to-date

Page 2 of 2


