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1 Introduction

Heavy duty vehicles have an important role in the modern society. With increased
environmental awareness and common forces striving towards minimizing pollution
and emissions with global warming potential, laws concerning emission requirements
are passed. These legal regulations are typically made more stringent every few
years, pushing engine developers to keep up. One of the harmful emissions is soot,
a carbonaceous particulate that is the result of incomplete combustion. Soot has
been recognized to be environmentally harmful as well as a health hazard as it is
carcinogenic. Large parts of the combustion related soot emission contribution can
be assigned to diesel engines. According to [1] and references within, as much as 24 %
of the worlds soot emissions come from diesel engines of which 60 % is transportation
related (cars, trucks, buses, vessels etc.).

Understanding the problem is always key to making decisions about how to
handle it. Models serve this purpose and many have attended to soot emission
modeling over the years. It is however a difficult task and therefore simpler models
are often resorted to.

The soot emission levels from a heavy duty diesel engine are quite different in
transient operation as opposed to stationary operation. During engine development,
emission maps are always created. These give the stationary emission level as a
function of the engines operating point. A much higher soot emission level is seen
in transient operation. Thus understanding the nature of the deviations and ob-
taining a way of estimating the soot emissions during transient operation is of great
importance.

Besides stationary emission maps, performing response test on engines is com-
mon. The aim of this master thesis arose from this: Is there a way of combining
the information from stationary emission maps with response tests to estimate the
emissions during a transient drive cycle? Apart from this, the thesis includes black
box modeling of the soot mass flow using signals available to the engine control unit
(ECU) for potential online usage. The goals of this thesis can be summarized in:

1. Literature survey
A short literature survey is made to get an idea of the challenges ahead and
progress made by others.

2. Development of empirical estimation method
An investigation of the possibility of using stationary emission maps along with
step response tests to estimate the soot mass flow emission of a heavy duty
diesel engine in transient operation. Proposal of the best found empirically
developed method. Only engine speed and engine torque can be used as inputs
to this method since it is to be used in drive cycles where these variables are
the only variables known a priori.

3. Black box modeling of soot mass flow
Conduction of black box modeling using inputs available to the ECU. Eval-
uation of different model structures and model complexities. Proposal of the
best option.
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2 Background

Diesel engines are appreciated for their high efficiency. From an emission standpoint,
the high efficiency leads to low fuel consumption which is closely coupled with the
CO2 emissions. Unfortunately, diesel engine developers have been struggling with
other emissions such as nitrogen oxides (NOx) and soot for a long time. With
increasingly stringent legal requirements on emission levels, to harvest the benefits
of compression ignited diesel engines, NOx and soot must be reduced.

2.1 Physical background

In this section a short introduction to the physical background and theory for soot
formation, oxidation and net emission from a diesel engine is given, first for steady
state operation and then during transient engine operation.

2.1.1 Steady state emission

The production and emission of soot is composed of many processes and stages, some
of which are not completely or even poorly understood. Still most of the dominating
processes are somewhat known. The first stage of soot production is the formation
[6] stage. In this stage gas phase hydrocarbons produced from oxidation/pyrolysis
of fuel typically would condensate, forming nuclei, the first appearance of soot par-
ticles. These soot particles that first are formed have a diameter of less than 2 nm
but through surface growth, aggregation and coagulation the particles change size,
mass and number. Surface growth occurs when the initial small particles incorporate
gaseous compounds (various hydrocarbons such as polycyclic aromatics and poly-
acetylene analogues) to their particulate body, thus increasing in mass and diameter.
This form of growth obviously does not change the number of particles in the com-
bustion chamber. The formed particles can also collide and thereby coagulate. This
would decrease the number of particles but leave the particulate mass unchanged.
Furthermore the now fewer and larger particles can form chains and clusters through
aggregation, increasing even more in size. One important aspect is the fact that soot
particles have a lower hydrogen to carbon ratio than the precursors, leading to the
common belief that this is achieved through dehydrogenation [6].

As soon as soot is formed it can also be oxidized [6] forming among other products
carbon monoxide or carbon dioxide depending on the completeness of the reaction.
The emitted soot from a diesel engine is in fact the net result of the previously
described formation of soot and oxidation of the same. The oxidation rate of soot
increases with temperature and oxygen presence. Since the oxidation and pyrolysis
of fuel also increases with temperature (and the products from these reactions are the
precursors of soot), soot is not formed below a certain temperature. The temperature
dependency of soot formation is slightly different than for oxidation, the two reactions
have different activation energies. This results in a temperature range where the net
soot production is significant with a maximum at some temperature depending on
the engine.

Given the above description, what else affects the soot emission? Obviously the
amount of injected fuel increases the amount of precursors and thereby the amount of
soot formed. This is assuming that no measure is taken to counteract this effect (such
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as decreasing the equivalence ratio). The equivalence ratio is crucial to the amount of
emitted soot since it affects the oxidation rate of the formed soot. It has been shown
that increasing the rail1 pressure shifts the size distribution of soot particles towards
smaller particles [18]. The in-cylinder pressure also affects the formation of soot
since the condensation of precursors, the first stage of soot production, is affected by
pressure. It has been shown that the pressure also affects the oxidation rate of soot.
The geometry of the combustion chamber and especially the piston bowl has a great
impact on the soot in the way of affecting the fuel air mixture thus affecting the
presence or absence of rich and lean zones. Since the balance between the processes
formation and oxidation of soot is what determines the amount of emitted soot from
a diesel engine, one can also conclude that the distribution of injected fuel over the
crank angle degrees (CAD) is of importance. The earlier EOI comes the longer
the formed soot has to oxidize (given a certain oxygen level). Hence given this brief
introduction to the physical background, the most important variables affecting soot
emission are identified as:

• Injected fuel mass

• Equivalence ratio (fuel/air ratio divided by stoichiometric fuel/air ratio for the
combustion)

• Engine speed

• Injection pressure

• Combustion temperature

• Cylinder manifold temperature

• In-cylinder pressure

• Injection distribution CAD

• Injector and combustion chamber geometry

• Compression ratio

2.1.2 Soot emission during transient operation

During transient operation it is of course the same factors (as mentioned in 2.1.1)
that determine the soot levels. Moreover, assume that the levels of soot emission
in steady state are known. Then one can instead focus on the factors that cause
deviations from these levels in transient operation. Two very important factors that
are affected by transient operation and that in turn cause deviations from the steady
state levels are:

• Turbo inertial lag

• Temperature of cylinder and exhaust manifold
1Fuel rail in common rail engines.
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When the power of an engine is changed, the turbo needs to assume a new speed
to allow the right amount of air to be supplied to the cylinders. Since the turbo
essentially is a flywheel with a moment of inertia it cannot assume the new speed
momentarily. It takes some time for the turbo to accelerate or decelerate and this
lag is what causes air deficiency2 or excess. The current cylinder manifold tempera-
ture is the result of how the engine has been running during the recent time. Since
the cylinder manifold is thermally connected to the combustion gases (through ther-
mal inertia), the temperature of which affects the soot production, one realizes its
importance during transient operation.

2.2 Literature survey

Developing reliable soot emission models has proved to be a challenging task. The
aim of this brief survey is to present possible approaches to soot modeling and to
outline a few common ideas in the literature. Some advantages and disadvantages
of the approaches are given as well. If the reader wishes to get a more extensive
introduction to general modeling principles, this is given in [4]. A comprehensive
overview that is more specific to emission modeling was found in [15] and references
within.

The difficulties that have challenged engineers and researchers for many years
are due to the complexity of the problem. Soot production is constituted of many
processes and trying to model them all and merge the results to a reliable model
has proved less than trivial. Furthermore the purpose of the model is crucial (offline
prediction, realtime control, realtime fault detection etc.).

The vast majority of models found in the literature are quantitative3. This is not
surprising, the problem being an engineering problem and emission requirements be-
ing formulated that way. Also a distinction is present regarding the main modeling
approach.

• Deterministic models
Models that are based on first principles such as fundamental physical and
chemical laws.

• Empirical/stochastic models
Models developed based on experimental data.

Deterministic models are developed using fundamental principles from physics and
chemistry. These theoretical models can describe the highly nonlinear behavior of an
engine well but at a cost. The cost is computational power since the equations, often
partial differential equations, describing the complex interaction between combus-
tion zones and chemical compositions in the combustion process need to be solved
numerically. Software doing just that is available but the results are at present
not useful for realtime estimation, more so for offline optimization simulations with
limited accuracy [14].

Empirical/stochastic models are developed from experimental data, bypassing
the difficulty of first-principle modeling. This approach is a very common due to its
less computationally demanding feature. Here, some distinctions are made as well:

2During power increase and compared to steady state turbo speed.
3Giving results in real numbers, not in a categorical manner.
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• Pre-structured models (grey box)

• Models without pre-structures (black box)

Grey box models assume a specific model structure. For a certain engine, the in-
cluded parameters are fitted using experimental data. In the publications of grey
box modeling of soot emissions, two main areas are found; phenomenological models
and macro parameter dependent models.

Phenomenological models use sub-models developed to describe the different pro-
cesses (phenomena) during combustion. The sub-models can be empirically de-
veloped from observation or developed using basic physical and chemical relations
(which could be simplified). Then a compound model describing the emission levels
can be obtained by merging the sub-models. Advantages with phenomenological
models is that they are globally quite good but lack in accuracy, especially if the
accuracy of the included parameters is low. Examples of sub-models could be spray
models, lift-off length model, mixture model, evaporation model, heat release model,
ignition delay model etc. Phenomenological models (or sub-models) were developed
in [8, 9, 13, 16, 17].

To give an example of how a phenomenological model performs, the content
of one of the above cited articles is explained further. In [9], a phenomenological
model is put forward using conceptual sub-models and typical Arrhenius equations
for the soot formation and oxidation. Models were fitted and validated on two
engines; a single-cylinder engine and a six-cylinder engine. The engines had different
cylinder diameter, injection system, bore/stroke, number of nozzles, spray angle,
compression ratio etc. For each engine, the parameters of the model were fitted
for one operating point and used for several others with differing speed, load, start
of injection, equivalence ratio, intake pressure, intake temperature and injection
duration. A validation of the model at six operating points was performed for the
single cylinder engine. The model succeeded to predict the soot values at five out
of six validation points. For the six-cylinder engine, the number of validation points
were 12 and at four of them the model failed to predict the soot emission. The model
has a crank angle resolution, meaning that the soot formation rate and oxidation rate
are predicted as a function of the crank angle degrees. It is illustrated by this article
that phenomenological models have potential, they can predict the soot even when
several operating conditions are changed but the accuracy can not be guaranteed.

Another category of models is that of macro parameter dependent models. These
models are computationally low demanding and use macro parameters4 such as
engine speed, exhaust gas recirculation (EGR) rate, air/fuel ratio and fuel injec-
tion pressure. Having a model that uses macro parameters is desirable since they
are often readily available. Macro parameter dependent models were developed in
[7, 10, 11, 12].

The estimation method in the heuristic macro parameter dependent model pro-
posed in [10] uses the macro parameters engine speed, EGR rate (external and
internal), global air/fuel ratio, fuel rate etc. In addition, the method needs cycle
process parameters as a function of crank angle degrees which are obtained using
the engine simulation software GT-POWER. These are e.g. in-cylinder pressure,

4In this paragraph there is a slight abuse of notation: ’parameter’ is used instead of ’signal’ or
’variable’. This is due to the notation found in the corresponding literature.
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temperature and burned fuel fraction. The heuristic model introduces crank angle
steps (discretizes the process) and defines virtual space zones for which the heuris-
tic sub-models (soot formation, oxidation etc.) are applied during each crank angle
step. The virtual space zones are burned, unburned and burning. The model was
calibrated at one operating point and validated while running with conditions vary-
ing the EGR rate and equivalence ratio.

Black box models are models that do not assume any predefined structure. This
type of modeling is the fastest and does not require much knowledge about the sys-
tem to be modeled. In the case of engine emission modeling usually cycle averaged
data is used (time resolved).

Disclaimer
The articles cited in this section are merely a small selection and do not necessarily
represent the best achievements in the field.
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3 Data

The data collected for usage in this project were obtained for engines running in test
beds. All the engines were warm when started and they ran according to predefined
cycles in the form of engine speed and torque set points. The engines change mode
depending on predetermined conditions. For purposes of this project, the engines
were only allowed to operate in two modes, one normal mode and one transient
mode.

3.1 Micro Soot Sensor

The soot concentration in the exhaust gases of the diesel engines were measured
using the AVL 483 Micro Soot Sensor (MSS) [2, 3]. The MSS is a photo acoustic soot
sensor that uses a modulated light source. The light is absorbed by the black soot
particles resulting in thermal expansion. The rapid expansion generates a pressure
wave which can be detected acoustically. The soot concentration is proportional to
the intensity of the sound. Some relevant specifications of the MSS are given below.

Resolution 1 μg/m3

Data rate < 5 Hz (digital)
Measuring range 5 μg/m3 - 50 mg/m3

3.2 Engine data and measurement logging

The logging of engine data and external measurements whether it be from the en-
gine control unit, test cell system or from a third party measurement equipment is
collected and stored by software provided by AVL. The sampling frequency or the
rate at which the data is stored is 10 Hz. The channels connected to this software
are vast and many, normally some restriction as to what data to include is made.
The channels of importance for the work in this project are

1. Engine speed (rpm)

2. Engine torque (Nm)

3. Engine power (kW)

4. Exhaust gas flow (kg/h)

5. Soot mass concentration in exhaust gases (mg/m3)

6. Injected fuel mass per cycle (mg)

7. Lambda (from which the equivalence ratio is computed)

8. Engine mode
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4 Empirical modeling

In this section an empirical method is presented for estimating the soot mass flow
emission for a heavy duty diesel engine in a transient drive cycle using a stationary
emission map and step response tests. The proposed method is approximative,
heuristically developed and to be used as a tool during engine development. In its
simplicity the method is powerful and can give qualified indications of the emission
levels in a transient drive cycle.

4.1 Prerequisites

There are some prerequisites to the method, i.e. before the method can be applied
and the soot mass flow of a drive cycle be estimated, two different data sets need to
be collected. As initially explained, the method uses stationary emission maps and
step response tests.

A necessary part of engine development is the construction of engine emission
maps. These maps are built by choosing a set of operating points (engine speed ω
and engine torque τ) distributed over the operating range of an engine in a repre-
sentative way. Then by running the engine at each operating point long enough for
all relevant engine variables to assume stationarity (and thereby also the emissions),
a measurement of the emission can be taken. By interpolation5 a map is defined for
all engine speeds ω and engine produced torques τ in the operating range of a given
engine. Stationary emission maps are denoted:

M(ω, τ) (1)

Stationary maps are of great importance as they portray the stationary behavior of
an engine in a comprehensive way. Without any modeling the stationary emissions
of an engine can be predicted using the constructed map. The key word here is
stationary. If it is possible to assume quasi static behavior of the emission, i.e. that
the stationary map is accurate during transient operation as well, then the map is
enough for all purposes. This is seldom the case and for that reason some way of
measuring an engine’s transient behavior is also needed.

Soot emissions from a heavy duty diesel engine can not be treated in a quasi static
way. The accumulated emissions in a transient drive cycle (30 min) are in the order
of 2-10 times the quasi static emissions. Therefore to complement the stationary
emission map, step responses are used in the empirical estimation method. The step
responses are designed in such a way that steps are performed at six different engine
speeds ω = [600, 800, 1000, 1200, 1500, 1900] rpm. For each step response test, i.e.
each engine speed, three steps are made. The steps are made from no demand torque
(motoring) to demanding maximum torque that the engine is calibrated to give. The
duration of each step is 10 seconds. Furthermore the motoring time before the three
steps is different: 60 seconds, 20 seconds and 2 seconds. The step response sequence
for a given engine speed is shown in Figure 1.

5Not really interpolation, more a fit where C1-continuity is enforced.
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Figure 1: A typical step response test. The figure shows measured torque in percent
of maximum torque that the engine is designed to produce.

4.2 Method

The idea of the method is to use the emission map M(ω, τ) when the engine operation
is stationary and based on the step response tests apply a correction or compensation
whenever the operation is transient. To realize this simple idea, a number of issues
need to be resolved. The first matters that come to mind are:

1. Transient detection
A method for detecting transients is needed. This detection method must also
be able to recognize when the operation goes from being transient to being
stationary. What signal should be used for transient detection?

2. Quantification of transient operation
Naturally, not all transients are the same. Both amplitude and shape of a
power/torque increase can vary. Given this, a way of quantifying a transient
is needed.

3. Evaluation of step responses
An important question is how to extract the information from the step re-
sponses regarding the transient emission behavior. How should the compensa-
tions determined at each engine speed of the step response tests be merged for
global usage at all engine speeds?

4. Estimation formula
Perhaps the most important issue is how to choose the estimation formula, that
is how should the stationary emission map be combined with the corrections
determined from the step responses?

13



4.2.1 Detection and quantification of transients

A choice has to be made regarding what signal to use for detection and quantification
of transients. It must be possible to derive from this signal that the engine is running
in a transient manner and thus the emission level is different from what is given by
the emission map. Furthermore the signal of choice must be one of the following
signals:

1. Engine speed6 ω

2. Engine produced torque τ

3. A function f(ω, τ)

The reason for this restriction in signals allowed for usage is the fact that for an
arbitrary drive cycle, only the engine speed and engine torque is known a priori (in
fact they define the cycle).

The third option is an interesting one since the power of an engine can be derived
from engine speed and torque. If the engine speed ω is given in rad/s and the engine
torque is given in Nm, the power is given by the expression:

P = f(ω, τ) = ωτ (2)

From here on, the engine power P will be used in the presentation of the empirical
estimation method. Keep in mind that the torque τ could just as well be used.

The next step is deciding how to use P for detection of a transient. Of course some
measure of the change in power is useful. After some searching for a detection method
it was decided that the best way to incorporate both detection and quantification
is to use bandpass filters. They have the property of giving a zero signal as long
as their input is constant and a nonzero signal when their input changes. When
for instance the input to a bandpass filter is a step, the output will be a peak that
settles to zero after some time, depending on the filter design. Since the filters are
linear, it means that if the input step is doubled, so will the output of the filter.
Therefore the filters have a transient quantification ability. For reasons explained
later two filters are used. To illustrate the effect of the filters, the step responses of
the filters are shown in Figure 2.

As can be seen in Figure 2, the filters7 are of two different speeds, i.e. they
operate at different frequencies. The slow filter H1(z) (z-transform of the filter)
has a 10 second duration of its step response output. The fast filter H2(z) instead
produces a nonzero signal for two seconds following a step. Let Pf1 and Pf2 be
the filtered power signal using the designed filters, then the filtered variables are
calculated according to

Pf1(z) = H1(z)P (z) (3)

Pf2(z) = H2(z)P (z) (4)

where

H1(z) =
0.0429z2 − 0.0429

z2 − 1.901z + 0.9042
(5)

6Theoretically the engine speed can be used but in this case the engine speed was kept constant
during the step responses, hence the engine speed is not useful for transient detection.

7Designed using the MATLAB command butter.

14



H2(z) =
0.1486z2 − 0.1486

z2 − 1.652z + 0.7028
(6)

The chosen filters are second order Butterworth filters with the Bode diagram (mag-
nitude) given in Figure 3.
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Before the filtered variables Pf1 and Pf2 can be used, they need to be modified.
One can easily realize that the transient soot mass flow is not linear. With this
it is meant that if the power is increased from motoring to full power, it is not
the opposite of going from full power to motoring, emission wise. The filters given
above will however give signals with equal amplitude but different signs in both
cases. Hence some measure to distinguish or characterize a transient is also needed.
The proposed way of doing so is given below. Let the modified filtered variables be
denoted P+

fi
, i = {1, 2}. Then

P+
fi

=

{
Pfi if P ≥ 0 and Pfi ≥ 0
0 else (7)

In words this translates to setting the modified filtered variable to zero when motor-
ing or when the filtered signal is negative.

4.2.2 Determining compensation

The next step is to determine the structure/strategy of compensation when transient
operation is detected using the above described method. The so far developed tools
at hand are:

1. M(ω, τ)

2. P+
f1

and P+
f2

How should the the stationary contribution M(ω, τ) be combined with the modified
filtered signals P+

f1
and P+

f2
? Many different structures were tested and the best one

found was to simply assume that the soot mass flow Smf is the sum of the stationary
contribution M(ω, τ) and a linear combination of the filtered signals.

Smf = M(ω, τ) + θ1P
+
f1

+ θ2P
+
f2

(8)

For each of the step response tests, the parameters θ1 and θ2 need to be estimated.
Luckily the chosen structure is linear and this means that an explicit solution is
available using least squares (LS) estimation [4]. Solving for the parameters θ1 and
θ2 gives (k denotes the discrete time step):

Smf (k)−M(ω(k), τ(k)) = θ1P
+
f1
(k) + θ2P

+
f2
(k)

=
(
P+
f1
(k) P+

f2
(k)

)(
θ1
θ2

)

= φT
k θ

(9)

By letting

YN =

⎛
⎜⎜⎜⎝

Smf (1)−M(ω(1), τ(1))
Smf (2)−M(ω(2), τ(2))

...
Smf (N)−M(ω(N), τ(N))

⎞
⎟⎟⎟⎠ ΦN =

⎛
⎜⎜⎜⎝
φT
1

φT
2
...

φT
N

⎞
⎟⎟⎟⎠ (10)

where N is the number of data points, the solution to the normal equations is

θ̂ =

(
θ̂1
θ̂2

)
= (ΦT

NΦN )−1(ΦT
NYN ) (11)

which is the least squares estimate of θ.
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4.2.3 Estimation formula

When the parameters θ1 and θ2 are estimated for each step response test (remember
that they were run at six engine speeds), they are valid for that engine speed but
of course global parameters are needed for estimation in a drive cycle. The engine
speed in a drive cycle rarely stays constant. In absence of a better guess, linear
variation of the parameters as a function of engine speed is assumed to give Θ1(ω)
and Θ2(ω). Thereby the estimation formula for soot mass flow is

Smf = M(ω, τ) + Θ1(ω)P
+
f1

+Θ2(ω)P
+
f2

(12)

4.3 Results

The developed method was evaluated for four different engines. Two of the engines
have a stroke volume of 13 liters. The other two engines have a stroke volume of
9 liters. The larger engines are 6 cylinder engines whilst the smaller engines are 5
cylinder engines. Furthermore for the two stroke volumes, engines with and without
exhaust gas recirculation (EGR) were used. A list of the engines and their denotation
is given in Table 1.

Table 1: List of engines used for evaluation of empirical method.

Reference Engine EGR
A 6 cyl,13 liters Yes
B 6 cyl,13 liters No
C 5 cyl, 9 liters Yes
D 5 cyl, 9 liters No

4.3.1 Stationary emission maps

For each of the used engines, a stationary emission map for the soot mass flow was
constructed. C1-continuity was enforced for the maps, i.e. not only must the maps
be continuous but also their gradient. This essentially says that the emission maps
are smooth. A typical stationary soot emission map is given in Figure 4.

The measurement taken at each operating point is the soot mass concentration
Sc in the exhaust gases given by the MSS. To obtain the soot mass flow, the average
exhaust gas density ρ and the exhaust gas flow q are used. At each operating point
(ω, τ), the stationary soot mass flow is given by

M(ω, τ) =
Sc(ω, τ)q(ω, τ)

ρ
(13)

where q is given in kg/h, Sc is given in mg/m3 and ρ is given in kg/m3.
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Figure 4: Example of stationary emission map of soot mass flow for a typical diesel
engine.

4.3.2 Step response tests

As described previously, six step response tests were conducted for each engine.
Least squares estimation of the correction parameters θ1 and θ2 was performed for
each data set according to 4.2.2.

In Figures 5-8, the engine power, filtered power signals, measured soot mass
flow, quasi static soot mass flow and estimated soot mass flow (using the proposed
method) are shown for the four used engines. The results are shown for each engine
running the step response test at 1900 rpm. This is not an important engine speed
for overall soot emissions since it is not often used (in comparison to engine speeds
in the range of 1000-1500 rpm). However 1900 rpm is shown as it well illustrates the
differences between the engines.

Once again, the measurement is the soot mass concentration from the MSS and
the soot mass flow Smf must be computed from the concentration Sc, exhaust gas
flow q and average exhaust gas density ρ. One issue that arises in the case of transient
operation is that the measurement of soot mass concentration in the exhaust gases
is delayed compared to the reading of the exhaust gas flow (which is calculated
by measuring fuel and air flow and has no/negligible delay from the engine power
reading). Furthermore the problem is complicated by the fact that this delay is
not constant. It depends mainly on the engine speed8 and the physical setup of

8It actually depends on the transportation time of the exhaust gases from combustion chamber
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equipment.
To solve this issue, a delay needs to be specified for each step response test. This

is not a cumbersome task however. Let this delay be denoted d for a given engine
and speed. Then the real soot mass flow is computed as

Smf (k) =
Sc(k)q(k − d)

ρ
(14)

where k denotes the sample. The delays are in the order of a second.

It can be seen in the step response tests that the soot mass flow emission has a
characteristic behavior. Immediately after a step, a peak arises. This peak lasts
for a few seconds before the emission decreases to a level still larger than the quasi
static one and then slowly decreases to the stationary level for that operating point.
It is this difference in the transient behavior that prompted the use of two filters.
Another noteworthy observation is that all engines but engine C consistently elicit
this behavior (more or less). This observation that engine C is different shall be used
later.

to measurement equipment, transportation time through the dilution tunnel and processing time
of the MSS. However the varying part of all this is the exhaust gas velocity which correlates well
with the engine speed.

19



120 130 140 150 160 170 180
0

200

400

600

800

1000

Time [s]

Power [kW]
Measured soot flow [K*mg/h]
Quasi static soot flow [K*mg/h]
Soot flow estimate [K*mg/h]
Filtered power (slow) [kW]
Filtered power (fast) [kW]

Figure 5: Step response test at 1900 rpm for engine A. K is a constant.
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Figure 6: Step response test at 1900 rpm for engine B. K is a constant.
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Figure 7: Step response test at 1900 rpm for engine C. K is a constant.
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Figure 8: Step response test at 1900 rpm for engine D. K is a constant.
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4.3.3 Parameters

In Figures 9-12 the parameters Θ1(ω) and Θ2(ω) are given for the engines A-D.
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Figure 9: Parameters Θ1(ω) and Θ2(ω) for engine A. Circles indicate engine speeds
where the step responses were run and the least squares estimation was done.
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Figure 10: Parameters Θ1(ω) and Θ2(ω) for engine B. Circles indicate engine speeds
where the step responses were run and the least squares estimation was done.
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Figure 11: Parameters Θ1(ω) and Θ2(ω) for engine C. Circles indicate engine speeds
where the step responses were run and the least squares estimation was done.
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Figure 12: Parameters Θ1(ω) and Θ2(ω) for engine D. Circles indicate engine speeds
where the step responses were run and the least squares estimation was done.
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4.3.4 World Harmonized Transient Cycle

A commonly used transient drive cycle is the World Harmonized Drive Cycle (WHTC).
This drive cycle has a duration of 30 minutes and is commonly used to evaluate the
behavior of a heavy duty engine in transient operation. The drive cycle is devised
is such a way as to cover several drive scenarios. It has been constructed to contain
three sections corresponding to urban, rural and highway driving respectively. The
drive cycle can be seen in Figure 13. It is normally scaled to fit the power level of
the engine it is meant for.
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Figure 13: The World Harmonized Transient Cycle, scaled for engine D.

The developed estimation method that resulted in the formula (12) was used with
the parameters given in 4.3.3 along with the respective soot emission map for each of
the engines A-D to estimate the accumulated soot mass emission in the WHTC. In
Figures 14-17, the results from using the empirical estimation method on the engines
A-D running the WHTC is shown. Each figure contains four plots corresponding to
estimation in the whole cycle, first section (urban), second section (rural) and third
section (highway) respectively. Satisfactory results were obtained for engines A, B
and D whilst the method applied to engine C gave unsatisfactory results. For the
three engines where the method works the relative error in the complete WHTC is
less than 13 %. This must be considered a good result considering that its a simu-
lation using only engine speed, torque and power as inputs (given the parameters in
4.3.3 and emission maps in 4.3.1).

In the upper left plot in Figures 14-17, a magenta colored curve is plotted. This
curve depicts the quasi static emissions using the emission map with a static com-
pensation factor. This static compensation factor is not known a priori but is used
to illustrate that even if the relation between dynamic and static soot emissions
was known for a given engine and drive cycle, the results are not perfect since the
engine behaves differently in the different sections. There is under compensation
in some sections and consequently over compensation in other sections. Adversely,
the proposed empirical method is consistent in this regard and the relative error is
somewhat constant during the whole estimation showing that the method success-
fully compensates at the right time (during a power increase). In other words the
shape of the estimated emission curve (red) is correct compared to the measured
emission curve (blue).
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Figure 14: Evaluation of empirical method in the WHTC for engine A.
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Figure 15: Evaluation of empirical method in the WHTC for engine B.
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Figure 16: Evaluation of empirical method in the WHTC for engine C.
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Figure 17: Evaluation of empirical method in the WHTC for engine D.
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4.3.5 Additional drive cycles

To evaluate the developed method further, it was applied to a different drive cycle
as well. The drive cycle is the Standardized On-Road Test (SORT) cycle which is
short with many starts and stops. The cycle was looped three times to get a longer
evaluation time since the duration of one iteration of the cycle is only 3 minutes.
The cycle is shown in Figure 18 where it is scaled for engine C.
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Figure 18: SORT cycle, scaled for engine C.

The evaluation of the empirical method in this drive cycle was only performed for
engines B and C. Engine C is known to behave strangely from the step response tests
and the evaluation in the WHTC. For that reason it is not expected that the method
would work for that engine. The evaluation of the method for engine B shows over
compensation of the emission due to transient operation. In the discussion section
an attempt to sort out the reasons is made.
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Figure 19: Evaluation of the empirical method in the SORT cycle, engine B.
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Figure 20: Evaluation of the empirical method in the SORT cycle, engine C.
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4.3.6 Summary

Table 2: Relative errors at the end of drive cycles.

Engine Cycle Relative error Urban1 Rural1 Highway1

A WHTC -13 % -28 % -6 % -6 %
B WHTC -9 % -15 % +7 % -16 %
C WHTC -49 % -36 % -58 % -48 %
D WHTC +9 % -9 % +25 % +13 %
B SORT +67 % - - -
C SORT -82 % - - -

4.4 Discussion

The evaluation of the empirically developed estimation method shows that the
method works for three out of four engines while running the WHTC cycle. For
those engines, the results are good and clear indications of the soot emission levels
in the WHTC are given by the proposed method using soot emission maps and step
response tests. Meanwhile the method is not perfected and it shows in the larger
relative error when estimating in the SORT cycle. In this discussion section possible
reasons for this and a proposed way of determining if the results for a certain engine
are valid or not is given.

The parameters to the method given in 4.3.3 are the results of the calibration of
the engine in question. The ECU controls a number of actuators using many pa-
rameters and complicated logics. Thereby together with the physical circumstances,
it determines the actual emission level. This is important to know. Even negative
values of the parameters are valid since two filters are used. That means that if for
a certain engine speed one of the parameters gives a negative contribution together
with the respective filtered variable, the other parameter with its filtered variable
might very well give a positive contribution that is larger in magnitude resulting in
a positive net emission estimate. Furthermore, there is nothing that restricts the
ECU to controlling the actuators in such a way as to guarantee a smooth parameter
curve and as seen in the results this is not the case.

In the estimation of soot mass flow emission in the WHTC, there were three
different sections in the cycle corresponding to different drive scenarios or analogues
of such. There seems to be a trend that the estimation method is better for rural and
highway driving as opposed to urban driving. This might be part of the explanation
to why the method did not give satisfying results in the SORT cycle as that cycle is
very urban.

The choice of using two filterers with different speeds was made because it was
found that the additional contribution of soot mass flow emission due to transient
operation appear at different speeds after an increase and for different reasons. The
initial peak after a power increase can be explained by the dynamics of the turbo
resulting in a lag and air deficiency for a few seconds. During the following time

1Sections of the cycle that resemble urban, rural and highway driving.
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interval the addition in soot emission is then a result of heat transfers and tempera-
ture equalization. In the midst of all this it is important to remember that the ECU
is very active and its control outputs also affect the transient behavior. Examples
of this is the control of EGR, start of injection (SOI), end of injection (EOI) etc.
Furthermore, the choice of filter parameters is not optimal in any sense, they were
heuristically found.

Another important question to discuss is the choice of inputs to the method.
What justifies the use of engine speed and torque as a basis? The answer is that
many functions in the ECU are mapped and controlled based on these two variables.
Thereby the behavior of the engine is assumed to be a function of the two variables.
This assumption is of course not always true but at least approximatively it can be
used.

Engine C behaved strangely. At this point it should be stated that since the
method was intended to be a tool used during engine development, the engines to
which the method is applied will be in different stages. An engine that is still in the
early stages of its development might very well behave strangely (or not in the way
assumed for this method). In the step response test for one of the engines (C) it
can be seen that the behavior is different compared to the engines A, B and D. It is
inevitable that this can occur. However, if a rule can be advised for when to use the
method and take the results as valid and when not to (in the WHTC), it would be
valuable.

Rule of estimation validity: For usage of the developed empirical estimation
method, it should be assured that the step response test (e.g. at 1900 rpm) resem-
bles9 the step response tests for engine A, B, and D. If that is the case, then at least
for the WHTC, the estimation results can be taken to be good (within 15 % relative
error).

A crucial assumption made in the development of this method is that the step
responses are enough to excite the transient dynamics in a representative way of
all transients. This is how transient compensation is determined and therefore it
could be stated that perhaps these step responses (see Figure 1) are not optimal
for this purpose. Also any differences in emission levels between the different steps
are averaged out by the least squares method. The behavior of a given engine in a
step response test seems compatible with the behavior that the engine elicits in the
WHTC, but less so with the behavior in the SORT cycle.

Finally, the developed method should be viewed as a step towards better estima-
tion of soot levels in transient drive cycles. All problems have not been solved but
promising results were obtained. Furthermore the ideas from this work can be used
for other emissions as well, possibly modifying the method to fit that emission type
(e.g. number of filters, speed of filters etc.).

9The step response has a peak during a few seconds and stationarity is approximately reached
after 10 seconds.
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5 Black box modeling

In the previous section an estimation method was developed where an engine’s spe-
cific properties were represented by stationary emission maps and step response tests
were used to explain the transient deviations from steady state emission levels. The
work presented in this section instead focuses on developing a model for the soot
emission (soot mass flow) from a diesel engine using statistical methods. No a priori
model structure is assumed which is denoted black box modeling. Experimental data
are used throughout the modeling in making modeling choices, e.g. model order. De-
riving models describing a systems behavior in relevant aspects from observed data
is referred to as system identification.

5.1 Data preprocessing

Preprocessing soot measurements
It was discovered that the soot concentration measurements were not updated at
every sample but instead a value is held for 6-9 samples. Whether this data corrup-
tion is caused by the MSS or the logging interface, it needs to be dealt with since
other logged data are updated at a higher rate (10 Hz). The assumption made is
that in a sequence of held data points, the first one is correct. Then the rest of the
points are omitted and an interpolation between the valid measurements is made.
This interpolation is performed using piecewise cubic hermite splines. The reason for
choosing this interpolation as opposed to normal cubic spline interpolation is to re-
duce oscillations usually coupled with splines. In Figure 21, the raw and interpolated
measurements are shown.

Filtering
It is often a good idea to filter the data before use in the system identification.
The nature of the filtering is low pass and serves to remove unwanted measurement
noise. The input data used in the system identification was low pass filtered using a
Butterworth filter with a cutoff frequency of π rad/s. As for the output, there is no
need for filtering due to the interpolation done.

Soot mass flow
The MSS measures the soot concentration Sc in the exhaust gases in mg/m3 but it is
the engine out soot mass flow Smf that is of interest to be modeled. To relate the soot
flow to the soot concentration, the exhaust gas flow is needed as well as the density
of the exhaust gases. Since density inherently has a temperature dependency and the
exhaust gases can elicit quite large temperature variations, some approximation is
needed. The approximation done is to use the average exhaust gas density, denoted ρ
(kg/m3), at all times regardless of actual exhaust gas temperature. Let the exhaust
gas flow be q kg/h, then the soot mass flow Smf can be expressed as follows.

Smf =
Scq

ρ
(15)

The exhaust gas flow q has negligible delay and is synced with the engine speed and
engine torque. On the other hand, the soot concentration measurements given by the
MSS are delayed due to transportation time of the exhaust gases from combustion
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Figure 21: Reconstruction of soot concentration using piecewise cubic hermite spline
interpolation. The raw data is also shown.

chamber to measuring equipment and the time it takes to produce a measurement
(dilution is included). To keep the system causal and align the exhaust gas flow with
the soot concentration in the exhausts, q is delayed for one second or with the 10 Hz
sampling frequency; 10 samples.

Smf (k) =
Sc(k)q(k − 10)

ρ
(16)

5.2 Model order selection

Since black box modeling by definition does not assume any model structure, the
orders to use in the system identification are not known a priori. The orders of
the system needs to be estimated somehow to know how dynamic the soot emis-
sions are. Initially any inputs affecting the system are disregarded and experimental
output data is used to determine how many previous soot emission values need to
be considered when estimating the current soot emission level. Such models where
the current value only depends on previous values is termed autoregressive (AR)
models. Assuming an AR model structure, models of different orders (number of
previous samples considered) are fitted. Then the errors produced by comparing the
measured values and the values given by the AR model are used to create a loss
function. This function is a scalar measure of the errors that result from using the
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model. Thereby this loss function is a way of getting an initial estimate of model
orders to use by choosing the model orders that minimizes the loss function. The
model that results in minimizing the loss function is denoted the best fit. This is
however a simple validation criteria as it does not penalize the usage of high order
models. Other criteria that do include penalties for using complex models are the
Akaike’s Information Criterion (AIC) and Rissanen’s Maximum Description Length
(MDL) [4, 5]. Evaluation of all three validation criteria was performed with the same
results, namely the suggestion of model order 6. The results are shown in Figure 22.
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Figure 22: Loss function computed for the AR model structure. The AIC, MDL and
best fit choices are highlighted.

5.3 Choosing inputs

An important task is to choose what inputs to use in the system identification. From
the background section it is known that there are many inputs that affect the soot
mass flow. However some limitation regarding the number of inputs must be made
in order to have a feasible task ahead. Therefore a conscious choice of using two
input variables was made. A further restriction is that the inputs must be available
to the ECU in order for the model to be applicable for online usage. A statistical
method of determining inputs that have a great impact on the output is to compute
the cross correlation. This was done with several variables shown to be correlated
with the soot mass flow. The two signals chosen as inputs are injected fuel mass
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per cycle δ and the equivalence ratio φ. From a physical perspective, these inputs
are very plausible. In figure 23, the cross correlation function is given between δ
and Smf as well as between φ and Smf . The correlation is normalized, meaning the
maximum possible correlation is one.
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Figure 23: Cross correlation function between inputs u1, u2 and output y.

The system to identify is hence a two-input-single-output system.

System
u1

u2

y

where u1 = δ, u2 = φ and y = Smf .
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5.4 Linear models

The fact that the system that is to be modeled is nonlinear can easily be realized.
For once, the soot emission can never be negative. Also it is clear from the literature
that the soot emissions are nonlinear. Despite this it is a good idea to start by fitting
linear models. This serves to increase the understanding of the system dynamics as
well as provides a starting point for nonlinear model fitting. The validation criteria
AIC, MDL and best fit suggested sixth order dynamics when an AR model structure
was used. These results were used to select model order ranges in which to search for
linear models using several model structures. The structures used are autoregressive
models with exogenous inputs (ARX), autoregressive moving average models with
exogenous inputs (ARMAX) and output error models (OE). Block diagrams showing
the structures are given in the respective sections below.

5.4.1 ARX models

The first model structure to be investigated is the ARX structure. This model
structure has no explicit (colored) noise model but is a good starting point for further
modeling. It is basically comprised of taking the current10 inputs and a number
(determined by the orders) of previous inputs, multiplied by the coefficients of the
fitted polynomials B1 and B2 and added together. This sum is then divided by a
number (also determined by order) of previous outputs multiplied by the coefficients
of A to give the current estimate. The structure is shown below in a block diagram.

B1(z
−1)

B2(z
−1)

1
A(z−1)Σu1

u2

y

Based on the results from the model order selection of an AR model structure, a
range of orders for the ARX model identification is chosen. In Table 3, the selected
range is given. na denotes the number of parameters in the A-polynomial. Analo-
gously for the other polynomials. nki denotes the delay for input i. This means that
it is possible to not use the current input sample if there is no direct term.

Table 3: Model orders investigated with an ARX model structure.

Model structure na nb1 nb2 nk1 nk2

ARX 4-8 2-8 2-8 0-5 0-5

Models were fitted in the given range and the model fit computed. This was used
as a validation criterion as well as the AIC, MDL and best fit criteria, the results of
which are given in Table 4.

10Could be omitted if nki > 0.
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Table 4: Model orders chosen by AIC, MDL and best fit criteria.

Criterion na nb1 nb2 nk1 nk2 Reference
AIC 6 8 8 1 1 N1

MDL 6 2 8 1 1 N2

Best fit 6 8 8 1 1 N1

It was found that indeed the best performing model had the orders suggested by
two of the validation criteria (AIC and best fit), namely N1. The polynomials are
given below for the best performing ARX model. Keep in mind that the z-transform
is used.

A(z−1) =1− 5.014z−1 + 10.73z−2 − 12.58z−3 (17)

+ 8.529z−4 − 3.175z−5 + 0.5072z−6

B1(z
−1) =1.785z−1 − 6.217z−2 + 11.27z−3 − 13.87z−4 (18)

13.85z−5 − 14.08z−6 + 10.65z−7 − 3.379z−8

B2(z
−1) =− 1868z−1 + 7476z−2 − 12610z−3 + 11680z−4 (19)

− 6835z−5 + 3480z−6 + 1872z−7 − 556z−8

The output of that model (Equation 17-19) accounted for 28.1 % of the variance in
the measured output. This measure of fit is called Variance Accounted For (VAF)
and will be used throughout this report. The model is also judged based on its ability
to simulate the accumulated soot flow for reasons explained in the discussion section.
In that respect the VAF is 65.8 %. It should be noted that the validation is done
on the whole WHTC drive cycle, i.e. both identification data and validation data
which have been given equal parts of the original data set. For instance in Figure 24
the first half of the time resolved comparison is the part used in the identification,
the second half was not used in the identification and is new to the model. As seen
in Figure 25, the residuals are not uncorrelated for the ARX model with orders N1.
The residuals are the errors, the deviations between the measured outputs and the
modeled ones. Ideally, the residuals should be uncorrelated using a certain statistical
confidence level. Here, a 99 % confidence level was used.
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Figure 24: Comparison between measured and simulated output for the linear ARX
model with orders N1, given in Equation 17-19. Data retrended before comparison.
The results are for engine A running the WHTC cycle.
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Figure 25: Residual autocorrelation function with 99 % confidence level for the model
in Figure 24.
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5.4.2 ARMAX models
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e

The residuals of the best ARX model were not uncorrelated. Hence the next natural
step is to add a colored noise model (the C-polynomial), yielding an ARMAX model
structure. First the model orders from the best ARX model were used with the ad-
dition of C-polynomials with orders ranging nc = 1-5. While adding a noise model
served to improve the model fit somewhat, the gain in model fit was too insignificant
and the reduction of correlation in the residuals likewise to motivate its usage. The
performance of the model with orders [na nb1 nb2 nc nk1 nk2 ] = [6 8 8 5 1 1] along
with the residual autocorrelation is shown in Figures 26-27.
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Figure 26: Model fit ARMAX model with
orders [na nb nc nk] = [6 8 8 5 1 1]. Data
retrended before comparison. The results
are for engine A running the WHTC cycle.
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Figure 27: Residual autocorrelation func-
tion for ARMAX model with orders [na nb

nc nk] = [6 8 8 5 1 1].

Using the orders from the best ARX model as an initial estimate for orders to
use in the ARMAX model identification yielded little success. Hence a more gen-
eral approach is to vary the orders of all the included polynomials in the ARMAX
model (within reasonable intervals). Such a range was set up and is given in Table 5.
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Table 5: Model orders investigated with an ARMAX model structure.

Model structure na nb1 nb2 nc nk1 nk2

ARMAX 4-8 2-8 2-8 1-5 0-5 0-5

Fitting models in the range selected in Table 5 did not result in any significant
improvement over the model given in Figure 26.

5.4.3 Output Error models

B1(z−1)
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B2(z−1)
F2(z−1)

Σu1

u2

y

e

The third and final linear model structure investigated was the output error (OE)
model structure. The reason for choosing this structure as opposed to similar ones
that include colored noise models such as Box-Jenkins models is that eventually non-
linear Hammerstein-Wiener models are to be fitted where the linear part is such an
OE model. For the observant this model structure resembles the ARX structure with
a slight difference, this being the possibility of splitting the soot dynamics between
the inputs. The A-polynomial in the ARX models (common for both channels) is
split into F1 and F2. The range of model orders investigated is given in Table 6.

Table 6: Model orders investigated with an OE model structure.

Model structure nb1 nb2 nf1 nf2 nk1 nk2

OE 2-8 2-8 4-8 4-8 0-5 0-5

In the given range it was found that the model orders resulting in the best fit are
[nb1 nb2 nf1 nf2 nk1 nk2 ] = [5 7 4 6 2 1] (hereafter referred to as N3). The model
output had a fit (VAF) of 30.3 % dynamically, i.e. time resolved soot mass flow
as a function of time. Cumulatively, i.e. accumulated soot mass as a function of
integrated power, the VAF is 88.2 %, see Figure 28.
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Figure 28: Comparison between measured and simulated output for the linear OE
model with orders N3. Data retrended before comparison. The results are for engine
A running the WHTC cycle.

5.4.4 Coherence

By now it is clear that linear models are inadequate to represent the soot emissions.
This can be further illustrated by computing the coherence function. A coherence
function with the value one for all frequencies of interest, i.e. where there are im-
portant dynamics, represents that the relationship between the inputs and outputs
is linear, that there are no disturbances, noise or unrepresented inputs. Clearly this
is not the case here, as can be seen in Figures 29-30. Therefore the identification of
nonlinear models is proceeded with next.
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Figure 29: Windowed coherence function
from u1 to y. Chebychev window.
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Figure 30: Windowed coherence function
from u2 to y. Chebychev window.
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5.5 Nonlinear models

Since linear models obviously are not enough, investigating nonlinear options is the
next natural step. The information obtained from the linear modeling will however
be used, e.g. by providing a starting point for the orders of the nonlinear models.
When it comes to nonlinear modeling, the number of possible structures and choices
rapidly increases. For that reason a restriction to using three different structures is
made. The structures are Hammerstein, Wiener and Hammerstein-Wiener models
[4]. These models are comprised of a linear part, here an output error structure (see
5.4.3), complemented with static nonlinearities. Static nonlinearities are transforma-
tion functions added to the input(s) and/or output. The static property means that
the functions are memoryless. The value of the function only depends on its current
argument. Depending one where the nonlinearity is added, the model is given one
of the above stated names. Wiener models only have a nonlinearity block on their
output channel, whereas Hammerstein models have nonlinearity block(s) on one or
both inputs. The combination of both structures, i.e. adding nonlinearities to inputs
and outputs, results in Hammerstein-Wiener models.

The nonlinearities considered in this project are simple:

• Piecewise linear functions
Functions that are linear in each of their sections. The number of sections can
be varied.

• One dimensional polynomials
Polynomials of various degrees.

5.5.1 Wiener models
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NLΣu1
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y

The structure of a Wiener models i shown in the block diagram above. As previously
stated, it is an output error model with a static nonlinearity on the output (soot
mass flow). The nonlinearities are denoted NL in block diagrams. It was investigated
whether this added block provides an improvement in the performance of the model.
The comparison is to be made with the corresponding best linear models. For the
nonlinear function block, piecewise linear functions with various number of units as
well as polynomials of different orders were used. In Table 7, the range of orders
and nonlinearities investigated are listed. For the Wiener models that were fitted
with linear model orders N1, the best performance was achieved with a 4th order
polynomial as the static output nonlinearity. The same type of nonlinearity proved
to give the best model with orders N2 for the linear model. Since the best models for
both model orders (N1 and N2) gave approximately the same fit, the one with lowest
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Table 7: Wiener models fitted.

Orders Output Nonlinearity
N1 - N3 Polynomial (degree 2-4)
N1 - N3 Piecewise linear function (4-10 units)

orders is of course the given choice. The model output is compared to the measured
output in Figure 31. The results are quite good with a VAF of 40.2 % dynamically
and 94.5 % cumulatively. It can be seen that the dynamic model output (soot mass
flow as function of time) now never assumes negative values and the overall behavior
of the model shows a vast improvement over the linear counterpart with the same
orders. The fact that the model does not give negative values can be seen in the
nonlinearity in Figure 32 where the function values are strictly positive. Wiener
models having orders N3 gave no satisfying results. As for the best Wiener model
found, it is given below (z-transform).

B1(z
−1) =z−1 − 1.003z−2 (20)

B2(z
−1) =− 1136z−1 − 942.5z−2 + 6652z−3 − 5565z−4 (21)

− 525.2z−5 + 1311z−6 + 2589z−7 − 2304z−8

F1(z
−1) =1− 3.337z−1 + 3.376z−2 + 0.6922z−3 (22)

− 3.727z−4 + 2.592z−5 − 0.5912z−6

F2(z
−1) =1− 4.171z−1 + 7.875z−2 − 8.717z−3 (23)

+ 5.989z−4 − 2.409z−5 + 0.4374z−6

The static output nonlinearity is as mentioned a 4th degree polynomial:

NL(x) = 0.000016x4 − 0.00039x3 + 0.0055x2 − 0.0020x+ 0.077 (24)

where x is the input to the nonlinearity.
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Figure 31: Wiener model with linear part using orders N2. Output nonlinearity is a
polynomial of degree 4. The results are for engine A running the WHTC cycle.
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Figure 32: Output nonlinearity for model in Figure 31.
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5.5.2 Hammerstein models
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By placing nonlinearities on the input channels instead of on the output channel,
Hammerstein models are obtained. The orders N1 - N3 for the linear part was
used here as well and the input nonlinearities were polynomials and piecewise linear
functions in the same range as the one used for fitting Wiener models. The results
from fitting Hammerstein models were not as good as when fitting Wiener models
although interesting results were obtained. It was first investigated whether a non-
linearity on either of the inputs alone could provide any good models. It was found
that a nonlinearity on the first input channel alone resulted in bad models. Instead
the second input channel was where the nonlinearity gave the best results. Also
having nonlinearities on both input channels did not improve the results. Hence the
Hammerstein modeling provided the knowledge that a piecewise linear nonlinearity
on the second input channel (u2) is what should be used for Hammerstein models. A
comparison between measured and modeled output for the best Hammerstein model
(order N2 for linear part) is given in Figure 33. In Figure 34, the input nonlinearity is
shown. The piecewise linear function has 7 units. The modeled output is not strictly
positive in the dynamic case, as the best Wiener model was. Also cumulatively, the
shape of the output is not as good.
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Figure 33: Comparison between measured and modeled output for a Hammerstein
model with linear model having orders N2 and an input nonlinearity that is a piece-
wise linear function with 7 units on input u2. The results are for engine A running
the WHTC cycle.
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Figure 34: Input nonlinearity at second input channel for the Hammerstein model
in Figure 33.

5.5.3 Hammerstein-Wiener models
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While estimating Wiener models generated good results, a combination of Hammer-
stein and Wiener models might perform better. Such models are called Hammerstein-
Wiener models and static nonlinearities can be placed on inputs as well as on the
output. The static nonlinearities used in the estimation of Hammerstein-Wiener
model are as before: polynomials and piecewise linear functions. The Wiener mod-
eling suggested a polynomial as output nonlinearity and the Hammerstein modeling
suggested that a piecewise linear function on the input u2 be used as input nonlin-
earity. The question that arises is whether using the nonlinearity configuration from
the best Wiener model and best Hammerstein model, i.e. piecewise linear nonlin-
earity with 7 units on u2 and a 4th order polynomial on y, will provide the best
Hammerstein-Wiener model as well. Such a model was identified and is the result
is shown in Figure 35. Although an improvement is made, this improvement is not
significant enough to motivate the added complexity.

Since combining the configurations from the best Wiener model with the ones
from the best Hammerstein model did not provide a significant model fit gain, a
systematic search for the best Hammerstein-Wiener model was conducted. This was
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done using orders N1 - N3 for the linear model and all three static nonlinearities
were varied between piecewise linear functions with 4-10 units and polynomials with
degree 2-6. No major improvement on the initial guess using the configuration from
the best Wiener model and best Hammerstein model was found.
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Figure 35: Hammerstein-Wiener model with linear model having orders N2. The
input nonlinearity is placed at u2 and is a piecewise linear function with 7 units. The
output nonlinearity is a 4th order polynomial. The results are for engine A running
the WHTC cycle.

5.6 Discussion

Performing black box modeling of the soot mass flow emission proved successful with
some configurations and less so with others. The best model was achieved with a
Hammerstein-Wiener model, however the best Wiener model was almost as good.
For that reason it is not motivated nor recommended to use Hammerstein-Wiener
models. For the lesser complexity and number of needed parameters, the Wiener
model is capable of describing and representing the system of soot emission. The
total number of parameters in the best Wiener model is 27. This includes the linear
model and the static nonlinearity.

Some attention must be directed towards the linear models. A matter that is of
importance is the detrending and retrending of data. Linear models cannot handle
offsets or trends in data. Therefore before fitting a linear model any constant/linear
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trend is removed to yield a zero mean signal. Then linear models are fitted. When
it comes to using the model, it must be known what trend was removed during
identification so it can be added. For some systems the trend is constant over the
entire range where the system operates. The data used in this project came from a
log when engine A (see Table 1) was running a WHTC. Essentially what this means
is that whenever such a model is to be used, the operating conditions must be similar
to those in the WHTC (or the average soot mass flow must be known/guessed for the
actual run). Furthermore, linear models failed to retain the shape of the accumulated
soot mass curve. This is probably due to the fact that the retrending adds an average
trend for the whole cycle, but it is known (and seen from measurements) that the
average soot emissions vary in the different parts of the WHTC, as they most likely
will in general operation.

Since this whole issue can be overcome by using nonlinear models and since
the Wiener model was the better11 model, linear models can be left aside. Fitting
nonlinear models is not easy however and there are some difficulties here. First of
all, whereas linear models have a unique solution, nonlinear models do not. Taking
the Wiener model as an example, the procedure is the following. An initial guess
for the output nonlinearity is made and the linear part is identified. The errors
are computed and the nonlinearity is adjusted to decrease the errors. Then the
linear part of the model is refitted. This kind of iterative numerical solution can
be problematic. When the iterations have reached a minimum, there is no way of
guaranteeing that the minimum is global. Some measures can be taken to try to
find a lower minimum (such as trying different initial values etc.) but there are no
guarantees.

The interpolation of the soot concentration measurements was basically heuristic
and here some more work could have been done to develop a better method of
reconstruction of the real soot concentration than the proposed spline interpolation.
Another issue in the modeling is the delay between inputs and output. The problem
is that the system identification performed in this project assumes constant delays,
but this not the case. However, introducing varying delays is a task well beyond the
scope of this project. The input data used are of course cycle averaged which might
be reason of restriction to the level of model fits that are achievable.

All the models in this project were evaluated based on their ability to estimate
the accumulated emitted soot mass as a function of integrated power. The reason
making this important is that manufacturers of vehicles have attended to using
diesel particulate filters (DPF) as part of the aftertreatment system. This is a
way of reducing soot emissions and for purposes regarding DPF-functionality it is
the accumulated soot mass that is of interest since filters are physical integrators
(disregarding regeneration).

11Disregarding the Hammerstein-Wiener model due to its insignificant improvement over the
Wiener model.
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6 Conclusion

The initial question to be answered was whether stationary emission maps could be
used with step response test to estimate the soot emissions from a heavy duty diesel
engine in transient operation. Conclusively, the results are positive. The emissions
can be estimated for transient operations similar to the conditions of the WHTC
using the empirical method in Section 4. A working method was presented but
more importantly, the idea of linear combination of stationary emission maps and
bandpass filtered variables is what should be taken away from this. By modifying
the method for other emissions, there is a belief that the method is useful for other
purposes than soot estimation.

Black box modeling yielded that Wiener models are to recommend. They suc-
ceeded in representing the soot emissions in an adequate manner. Given that only
two inputs are used, the results must be considered to be good.

6.1 Future work

The empirical estimation method showed positive results for estimation in the WHTC
cycle. Future work could be to look over the method and possibly find modifica-
tions/improvements that make the method applicable in other cycles as well with
acceptable accuracy. As for the black box modeling, it was conducted on data from
engine A running the WHTC cycle. The continuation of that work is to study how
such models succeed in other conditions, perhaps less transient. Furthermore, a
larger data set is needed in the form of other engines. An advanced topic of the
identification of nonlinear black box models that could be investigated is the nu-
merical properties of the solution. During this work it was found that the scaling
of signals (input signals and output signals) drastically affected the quality of the
models.
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A Appendix

A.1 Abbreviations

Abbreviation Explanation
LS Least Squares
AR AutoRegressive
ARX AutoRegressive with eXogenous input
ARMAX AutoRegressive Moving Average with eXogenous input
OE Output Error
VAF Variance Accounted For
MDL Maximum Description Length
AIC Akaike’s Information Criteria
ECU Engine Control Unit
WHTC World Harmonized Transient Cycle
SORT Standardized On-Road Test cycle
EGR Exhaust Gas Recirculation
DPF Diesel Particulate Filter
MSS Micro Soot Sensor
CAD Crank Angle Degrees
SOI Start Of Injection
EOI End Of Injection

51


