
ISSN 0280-5316
ISRN LUTFD2/TFRT--5884--SE

Modeling, Control and Automatic
Code Generation for a Two-Wheeled

Self-Balancing Vehicle Using Modelica

Carlos Javier Pedreira Carabel
Andrés Alejandro Zambrano García

Department of Automatic Control
Lund University

June 2011

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

June 2011
Document Number

ISRN LUTFD2/TFRT--5884--SE
Author(s)

Carlos Javier Pedreira Carabel and
Andrés Alejandro Zambrano García

Supervisor

Dan Henriksson Dassault Systems Lund, Sweden
Karl-Erik Årzen Automatic Control Lund, Sweden
(Examiner)
Sponsoring organization

Title and subtitle

Modeling, Control and Automatic Code Generation for a Two-Wheeled Self-Balancing Vehicle Using
Modelica. (Modellering , reglering och kodgenerering för ett tvåhjulig självbalanserande fordon med
Modelica).
Abstract

The main goal of this project was to use the Modelica features on embedded systems, real-time
systems and basic mechanical modeling for the control of a two-wheeled self-balancing personal
vehicle. The Elektor Wheelie, a Segway-like vehicle, was selected as the process to control.
Modelica is an object-oriented language aimed at modeling of complex systems. The work in the
thesis used the Modelica-based modeling and simulation tool Dymola. The Elektor Wheelie has
an 8-bit programmable microcontroller (Atmega32) which was used as control unit. This
microcontroller has no hardware support for floating point arithmetic operations and emulation
via software has a high cost in processor time. Therefore fixed-point representation of real
values was used as it only requires integer operations.
In order to obtain a linear representation which was useful in the control design a simple
mechanical model of the vehicle was created using Dymola. The control strategy was a linear
quadratic regulator (LQR) based on a state space representation of the vehicle. Two methods to
estimate the platform tilt angle were tested: a complementary filter and a Kalman filter. The
Kalman filter had a better performance estimating the platform tilt angle and removing the
gyroscope drift from the angular velocity signal. The state estimators as well as the controller
task were generated automatically using Dymola; the same tasks were programmed manually
using fixed-point arithmetic in order to evaluate the feasibility of the Dymola automatically
generated code. At this stage, it was shown that automatically generated fixed-point code had
similar results compared to manual coding after slight modifications were made. Finally, a
simple communication application was created which allowed real-time plotting of state
variables and remote controlling of the vehicle, using elements of Modelica EmbeddedSystems
library.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280-5316
ISBN

Language

English
Number of pages

111
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

3

Acknowledgments

The authors of this Master’s thesis would like to thank the staff of the Automatic
Control Department at LTH, especially Rolf Braun and Stefan Skoog for the
technical support they gave during the course of the project. We would like to
give special thanks to Karl-Erik Årzén and Anders Robertsson for the interest
shown.

Thanks to all the personnel at Dassault Systèmes AB Lund for having us
as part of your company during the course of this project. We would like to thank
Hilding Elmqvist for the enthusiasm he showed for the project and Ulf Nordström
for the technical support regarding the Modelica libraries. We give a special thank
to our supervisor Dan Henriksson for the guidance and advice he gave us during
all the stages of the project.

Finally we would like to thank the students at the Automatic Control
Master’s Thesis Room during the spring semester 2011 for making the room such
a nice and interesting place to work at.

Gracias a todos/ Tack till alla/ Thanks to all.

Carlos Javier Pedreira Carabel
Andrés Alejandro Zambrano García

4

Contents

Acknowledgments ... 3

Index of Figures ... 6

Index of Tables .. 8

1. Introduction ... 10

1.1 Motivation ... 10
1.2 Problem Definition .. 10
1.3 Goal ... 10
1.4 Outline ... 11
1.5 Individual Contributions ... 11

2. Tools and Hardware ... 12

2.1 Modelica .. 12
2.2 Dymola .. 13
2.3 Modelica Libraries .. 13
2.4 Segway .. 17
2.5 Elektor Wheelie ... 18
2.6 AVR .. 19

3. Theoretical Background ... 21

3.1 Embedded and Real-Time Systems .. 21
3.2 Mathematical Model of a Two-Wheeled Self-balancing Vehicle 21
3.3 System Representation in State Space Form ... 22
3.4 State Feedback Control ... 22
3.5 Optimal Control .. 23
3.6 Fixed-Point Arithmetic.. 24
3.7 Signal Smoothing .. 26
3.8 Complementary Filter ... 26

4. Methodology .. 28

4.1 System Modeling .. 28
4.2 Control Strategy .. 31
4.3 Signals and Sensors Processing .. 32
4.4 Controller Implementation on the Atmega32 ... 41
4.5 Fixed-Point Programming ... 46
4.6 Automatic fixed-point code generation using Dymola 47
4.7 Real-Time Communication ... 53

5. Results and Analysis ... 59

5.1 Mechanical Model ... 59
5.2 Motor Identification .. 60
5.3 Linear Model ... 62
5.4 Controller Simulations .. 66
5.5 Wheel Velocity Calculation .. 67
5.6 Platform Estimators ... 68

5

5.7 Automatic Code Generation .. 70
5.8 Ride Experiments .. 73
5.9 Mode Switch Tests .. 76
5.10 Communication Program .. 78

6. Conclusions and Further Work ... 80

7. References .. 82

8. Appendix .. 85

A. Elektor Wheelie Appearance ... 85
B. Modelica Block Tasks for Code Generation .. 87
C. Modelica Communication Blocks and Mapping Functions for Motor
Interfaces .. 92
D. Modelica Communication Blocks and Mapping Functions for Wheels
Interfaces .. 93
E. Modelica Communication Blocks and Mapping Functions for Platform
Interfaces .. 96
F. Modelica Communication Blocks and Mapping Functions for Bluetooth
Communication Interfaces ... 99
G. Automatically Generated C Codes .. 100

6

Index of Figures

Figure 2.1 Double pendulum model example from Modelica Multibody
library ... 14

Figure 2.2 Double pendulum 3D model animation 14
Figure 2.3 General appearance of the Segway PT [14]. 17
Figure 2.4 General appearance of the Elektor Wheelie [16]. 18
Figure 3.1 Structure with state feedback and state observer [21]. 23
Figure 3.2 Bits and weights distribution in a Qm.n format variable 25
Figure 3.3 Basic block diagram of the complementary filter. 27
Figure 4.1 Mechanical model of the vehicle’s body. 29
Figure 4.2 Connection diagram of the final model in Dymola 31
Figure 4.3 State feedback controller simulation setup. 32
Figure 4.4 Flow chart of the angular velocity estimator with angle difference

correction. .. 34
Figure 4.5 Block diagram of the implemented Complementary Filter 37
Figure 4.6 Block diagram of the implemented Kalman Filter to estimate the

tilt angle of the platform and the drift of the gyroscope. 40
Figure 4.7 Communication between tasks interfaces. 43
Figure 4.8 Communication between the control unit and the external

hardware ... 44
Figure 4.9 Embedded system model simulation setup 48
Figure 4.10 CommunicateReal block configuration window 49
Figure 4.11 Setup for the state feedback controller code generation 53
Figure 4.12 Modified control structure in order to follow references on the

inclination angle of the platform .. 54
Figure 4.13 Controller and reference switching Statechart. 55
Figure 4.14 Communication program setup in Dymola 56
Figure 4.15 Information block for Bluetooth communication 57
Figure 4.16 Data handling in the control unit. ... 58
Figure 5.1 Two-wheeled self-balancing vehicle 3D model visualization in

Dymola ... 59
Figure 5.2 Behavior of the platform angle when the user leans forward and

the vehicle does not have a controller .. 60
Figure 5.3 PWM value input and angular velocity used during the motors

identification. ... 61
Figure 5.4 Response of the actual motor and generated models to a given

input signal. .. 61
Figure 5.5 Open loop generated model pole-zero map 63
Figure 5.6 Open loop reduced model pole-zero map 64
Figure 5.7 Open loop sampled model pole-zero map 65
Figure 5.8 Closed loop sampled model pole-zero map 65
Figure 5.9 Output response when the platform has 0.1rad initial angle 66
Figure 5.10 Output behavior during forward ride .. 67
Figure 5.11 Exponentially weighted moving average filter response for

different N values. .. 68
Figure 5.12 Complementary Filter performance. a) Accelerometer angle.

b)Gyro angular velocity. c) Complementary filter estimated angle. 69

7

Figure 5.13 Kalman Filter performance ... 70
Figure 5.14 Ride test: complementary filter manually generated code. 74
Figure 5.15 Ride test: complementary filter automatically generated code. 74
Figure 5.16 Ride test: Kalman filter manually generated code 75
Figure 5.17 Ride test: Kalman filter automatically generated code. 75
Figure 5.18 Platform performance following the angle reference. 76
Figure 5.19 Gain matrix K bumpless transfer from remote control mode to

rider onboard mode. a) K1 bumpless transfer; b) K2 bumpless transfer; c) K3
bumpless transfer ... 77

Figure 5.20 Vehicle behavior controlled by remote control from a computer
keyboard. a) Up key command to move forward the vehicle; b) Wheel angular
velocity in remote control mode; c) Platform angle and reference angle in remote
control mode .. 79

Figure 8.1 General appearance of the Elector Wheelie 85
Figure 8.2 Control unit, power switch and foot switch 85
Figure 8.3 Location of wheel encoder .. 86
Figure 8.4 Wheel encoder ... 86

8

 Index of Tables

Table 4.1 Periodic tasks implementation on the Atmega32 42
Table 4.2 Set_pwm function. a)Steer correction. b) Set motors velocities .. 45
Table 4.3 Code for fixed-point multiplication .. 46
Table 4.4 Fixed-point format selection for main variables 47
Table 4.5 Configuration of communication port for set_pwm interface 50
Table 4.6 Configuration of communication port for get_StateWheelVel

interface ... 50
Table 4.7 Range attributes and annotations for main variables. 51
Table 4.8 Modelica block for the state feedback controller 52
Table 4.9 Keyboard block function .. 57
Table 5.1 States of the linear model ... 62
Table 5.2 Type definitions in automatically generated code 71
Table 5.3 Controller variables declaration in automatically generated code71
Table 5.4 Equations file structure, input interfaces, calculations, output

interfaces, variables updating .. 72
Table 5.5 Controller equation in the automatically generated code 73
Table 8.1Wheel estimator Modelica block ... 87
Table 8.2 LQR feedback gain Modelica Block .. 89
Table 8.3 Platform estimator with complementary filter Modelica block ... 90
Table 8.4 Platform estimator with Kalman filter Modelica block 91
Table 8.5 Modelica communication block and mapping function for

set_pwm interface .. 92
Table 8.6 Modelica communication block and mapping function for

get_StateWheelVel interface ... 93
Table 8.7 Modelica communication block and mapping function for

get_ADCLeftEncoder interface ... 93
Table 8.8 Modelica communication block and mapping function for

get_ADCRightEncoder interface ... 94
Table 8.9 Modelica communication block and mapping function for

get_RightWheelDir interface ... 94
Table 8.10 Modelica communication block and mapping function for

get_LeftWheelDir interface ... 95
Table 8.11 Modelica communication block and mapping function for

set_StateWheelVel interface .. 95
Table 8.12 Modelica communication block and mapping function for

get_ADCAdxl interface ... 96
Table 8.13 Modelica communication block and mapping function for

get_ADCGyro interface ... 96
Table 8.14 Modelica communication block and mapping function for

get_StateTilt interface .. 97
Table 8.15 Modelica communication block and mapping function for

set_StateTilt interface .. 97
Table 8.16 Modelica communication block and mapping function for

get_StatePlatformVel interface .. 98
Table 8.17 Modelica communication block and mapping function for

set_StatePlatformVel interface .. 98

9

Table 8.18 Modelica communication block and mapping function for
Host_Write interface .. 99

Table 8.19 Modelica communication block and mapping function for
Host_WritRead interface ... 99

Table 8.20 Automatically generated code for controller task 100
Table 8.21 Automatically generated code for platform estimator task with

complementary filter .. 102
Table 8.22 Automatically generated code for platform estimator task with

Kalman filter .. 105
Table 8.23 Automatically generated code for wheel estimator task 108

10

1. Introduction

1.1 Motivation

Simulation of complex systems has become an essential tool in the design and
modeling of large-scale physical processes. This requires the use of dedicated
computational tools. Modelica-based tools, such as Dymola, allow the generation
of accurate models of complex systems in an efficient way. The creation of
dedicated Modelica libraries such as ModelicaEmbeddedSystems has made the
development of models in specific areas possible.

The target system of this project was a two-wheeled self-balancing vehicle
with a dedicated computer which handled the stabilizing controller. This system
has embedded characteristics which make it a suitable device for the evaluation of
the Modelica EmbededSystems library features.

1.2 Problem Definition

This project aimed to evaluate the modeling language Modelica and the Modelica-
based tool Dymola for complete model-to-code controller development for a full-
scale programmable two-wheeled self-balancing vehicle (Elektor Wheelie).

The first phase of the project consisted in the modeling and system
identification of the target process. The model must represent all the dynamics of
the vehicle without the control system. The next step was related to the control
design and its simulation; the designed controller should keep the vehicle at
upright position.

The vehicle was equipped with an accelerometer, a gyroscope, and two
encoders, which were used to measure the platform angle, platform angular
velocity and wheel angular velocity. The sensors signals needed to be translated
into physical quantities for future estimations.

One of the most common strategies for angle estimation of an inertial
system consists of the combination of the accelerometer and gyroscope
measurements. In this project two methods to obtain a precise estimation of the
platform angle were implemented: a complementary filter and a Kalman filter.

The vehicle was equipped with an Atmega32 microcontroller which does
not support floating point arithmetic operations, therefore fixed-point
representation of real variables was needed. The fixed-point programming goal in
this project was focused on the automatic code generation using Dymola.

The communication between the vehicle and Dymola simulation
environment was the last project phase.

1.3 Goal

The main goal of this project was to test the Modelica programming language in
the design of embedded control systems.

11

The project was primarily focused on the use of Modelica and Dymola
tools for the design of a control system and a bidirectional communication
program for a two-wheeled self-balancing vehicle (Elektor Wheelie).

Another goal of the project was to compare the performance of
automatically generated fixed-point code against manually generated code.

1.4 Outline

This report gives a detailed explanation of the different steps followed to achieve
the goal of the project. The Introduction chapter gives an overview of the
problem as well as an explanation of its goals. In the Tools and Hardware
chapter a description of the computer software is given, the description of the
physical and hardware characteristics of the target system is also mentioned.

A simple overview of the theoretical background in control, embedded
systems and fixed-point arithmetic is given in the Theoretical Background
chapter; then, the modeling, control and programming implementation procedures
are explained in the Methodology chapter.

The experimental results and their respective analysis are presented next and
finally the conclusions of the thesis as well as future work recommendations are
given in the final two chapters of the report.

1.5 Individual Contributions

The workload of this master thesis was equally distributed between the two
authors. Andrés Zambrano García was designated to be in charge of the system
modeling and the controller design. Carlos Pedreira Carabel was in charge of the
fixed-point code generation and the general implementation aspects in the
microcontroller. The communication program was assumed as a joint task since it
required taking into account software, hardware and modeling aspects.

Naturally, constant communication and cooperation between the authors
were necessary in order to guarantee the success of the project.

12

2. Tools and Hardware

This chapter describes the computational tools used during the project
development, as well as the physical and hardware characteristics of the self-
balancing vehicle.

2.1 Modelica

Modelica is a free object-oriented programming language, which allows the
modeling of large, complex and heterogeneous systems or physical processes.
This language can be used in different fields of engineering, for example, models
of mechatronics (robotics), automotive and aerospace applications, hydraulic and
control subsystems, applications oriented to the distribution and generation of
electrical energy or systems of electric power. The Modelica models are described
mathematically by differential, algebraic and discrete equations. Modelica-Based
tools have enough information to solve these equations automatically. Modelica is
designed with specialized algorithms to efficiently handle complex models with
more than one hundred thousand equations [1]. Modelica also allows the use of
ordinary differential equations (ODE), differential-algebraic equations (DAE),
Petri nets, finite state automata, etc. [2].

Modelica has a set of rules, which allows the translation of any class (basic
element of object-oriented programming, which defines the shape and behavior of
an object) to a simpler structure [1].

Modelica was designed with the aim of facilitating the symbolic
transformations of models, specifically assigned to continuous or discrete
equations. Therefore, the equations can be differentiated and appropriate variables
be selected as states and thus the equation systems can be transformed to a state
space system (in the form of hybrid algebraic DAE). Modelica specifications do
not define how to simulate a model, but defines a set of equations which must be
satisfied in the simulation [1].

The flat hybrid DAE form consists of [1]: declarations of variables with
their appropriate basic types, prefixes and attributes; equations from equations
sections; function calls where a call is treated as a set of equations which involve
all the input and the result variables; the number of equations must be equal to the
number of assigned variables.

Consequently, a hybrid DAE is seen as a set of equations where some of the
equations are conditionally evaluated. The initial configuration of the model
specified the initial values at the initial time only [1].

As stated, Modelica is an object-oriented programming language, such as
C++ and Java, but has two important differences: the first difference is that
Modelica is a modeling language rather than a real programming language, where
its classes are not compiled as usual, but instead translated into objects which are
used by the simulation engine. The second difference is that the classes can
contain similar algorithms to the definitions or blocks in programming languages
the basic content of which is a set of equations. The equations do not have a
predefined causality (in terms of Modelica). The simulation engine can

13

manipulate the equations symbolically to determine their order of execution and
which components of these equations are inputs and which are outputs [1].

2.2 Dymola

The Modelica modeling language requires an environment for modeling and
simulation to solve problems. This environment should allow to define a model
through a graphical user interface (composition diagram/ schematic editor), so that
the result of the graphical editing is a textual description of the model with
Modelica format. This environment also translates the generated model in
Modelica into a form that can be simulated efficiently and in an appropriate
simulation environment. This requires especially sophisticated symbolic
transformation techniques. Finally the tools should be able to simulate the
translated model with numerical integration methods and then visualize the result
[3]. Dymola is suach a tool.

Dymola (Dynamic Modeling Laboratory) is a commercial program based
on the programming language Modelica, which offers a modeling and simulation
environment for complex interactions between systems of different areas of
engineering. This program is developed by the Swedish company Dassault
Systèmes AB, Lund (a subsidiary of the French company Dassault Systemes).
Dymola can perform all necessary symbolic transformations in large models that
may have more than a thousand equations and can also run real-time applications.
It also has a graphical editor to modify the models and includes a simulation
environment [2].

Features of Dymola
Dymola is suitable for modeling of different types of physical systems. It supports
hierarchical model composition, libraries of reusable components, connectors and
composite acausal connections. Libraries for modeling of complex systems are
available for several engineering domains [4].

Dymola uses a modeling methodology based on object orientation and
equations. The program performs automatic manipulation of the formulas.
Dymola offers several other features like, quick modeling through a graphical
model composition, fast simulation (symbolic pre-preprocessing), allows users to
define their own models of components, an open interface to other programs (e.g.
a Modelica model can be transformed into a Simulink function, which can be
simulated as an I/O (input/output) block), 3D animation and real-time simulation.

2.3 Modelica Libraries

Modelica features a wide range of dedicated libraries containing packages which
are useful for specific design tasks. A description of those libraries which were
useful during the development of this project is given below.

14

Multibody Library
A multibody mechanical system can be defined as a system consisting of a
number of bodies or mechanical substructures that interact with each other [5].
The multibody library is a free Modelica package which provides three-
dimensional mechanical components for use in modeling of mechanical systems
such as robots, vehicles, mechanical parts, etc. [6]. An important feature of this
library is that all components have information for animations such as default
sizes and colors.

The goal of this library is to simplify the modeling and dynamic analysis of
mechanical systems or mechanical subsystems that are part of a larger system.
Given an idealized model of a mechanical system and external forces that
influence it, the Dymola simulation can calculate the position and orientation of
each body as a function of time. This model allows analysis of the movements of
bodies (mechanical parts), resulting from the application of forces and torques, as
well as the influence of other environmental changes [5].

Figure 2.1 shows an example of a double pendulum model designed by
interconnection of components found in the Multibody library and Figure 2.2
shows its 3D visualization.

Figure 2.1 Double pendulum model example from Modelica Multibody library

Figure 2.2 Double pendulum 3D model animation

Newton's laws are formulated in the MultiBody library and also equations of

motion and coordinate transformations, for free bodies as well as for those bodies

15

that are interconnected with certain movement restrictions. The rotation of bodies
in relation to the inertial coordinate system is also considered and is represented
by vectors of angular velocity and angular acceleration.

Other main features of the MultiBody library are [5]:
� It has about 60 major components, such as joints, forces, bodies, sensors

and visualizers, which are ready to be used. Force laws in one dimension
can be defined with components from other libraries like the Rotational and
Translational libraries, which can be connected to the components of the
MultiBody library.

� It has about 75 functions to operate on the orientation of objects, for
example, to transform vector quantities or to compute the orientation of an
object rotating in a plane.

� A world model, which must be present in every model in the higher level.
This model defines the gravity configuration, and also displays the
coordinate system to be used as a reference in the model and the default
settings for the animation.

� All components contain animation properties, allowing to perform a visual
check of the constructed model.

� Automatic handling of kinematic loops, i.e. the components can be
connected in almost any arbitrary way.

� Automatic selection of states for the joints and bodies. Dymola uses the
generalized coordinates of the joints as states if possible; if not possible the
states are selected from the coordinates of the bodies.

LinearSystems2 Library
The LinearSystems2 library is a Modelica package that provides different
representations of linear, time-invariant differential and difference equation
systems. It has the basic structures and functions for linear control systems in
accordance with the following mathematical representations: state space, transfer
function, poles and zeros and discrete state space [6].

Some sub-libraries for working with different mathematical representations
within the LinearSystems2 Library are [7]:
� Analysis: contains functions for computing eigenvalues, poles, zeros and

controllability properties.
� Design: contains functions for designing control systems.
� Plot: contains functions to calculate and plot poles and zeros, frequency

response, step response, etc.
� Conversion: contains functions to convert from one type of mathematical

representation to another, for example, from state space to transfer function.
� Transformation: provides functions to perform a similarity transformation

(i.e. matrices linear transformation under different bases), for example, to
the form of controllability.

� Import: contains functions to import data from a model (for linearization)
or from a file.

16

EmbeddedSystems Library:
The EmbeddedSystems library contains components for modeling embedded
systems and configuration of integrated systems [6]. The main objective of this
library is to perform the separation of a model in tasks and subtasks and to
associate device drivers with input and output signals to their respective parts.

The library implements the following notation to configure embedded
models [8]:
� Target: Identifies the machine that will handle the embedded system and

defines the type of target, for example, the type of processor.
� Task: identify a set of equations that are sorted and synchronously solved as

an entity in Modelica. There are no equations relating variables of different
tasks, because the communication to and from a task is executed through
calls to external Modelica functions. Different tasks are performed
asynchronously with the possibility of synchronization with external
function calls used for communication and possibly to run on different
processors.

� Subtask: Identify a set of equations within a task being executed in the
same way within the sub-task in terms of sampling and integration
methods, i.e. if a sub-task has continuous equations, they will be solved
with the same method of integration. Moreover, different sub-tasks can use
different methods of integration. If a subtask is sampled, it is activated in
the sampling instants and the equations of the subtask are integrated from
the instant of time of the last sample until the current sample, using the
method of integration defined. Integrators are used in real time subtasks
that run in real time systems, such as fixed step solvers. The equations of
several subtasks in a single task are automatically synchronized by sorting
the equations.
The separation of a model in different partitions is done through the use of

communication blocks. The communication blocks are the central part of the
EmbeddedSystems library, as they provide a graphical user interface. The type of
communication defines the communication that will take place between the input
and output of a communication block. The types of communication can be [8]:

� Direct Communication: This communication type is used for testing and
obtaining significant default values of the model and/or to test how a
controller behaves when noise or signals with some delay are introduced.

� Communication between two subtasks: This type specifies that the input
and output signals are produced in different subtasks. The input subtask is
periodically sampled at a defined rate.

� Communication between two tasks: This communication type defines the
input and output signals from different tasks at the same target machine.
Sets how the communication between tasks occurs, for example, using
shared memory.

� Communication to a port: This communication type states that the input
signal is sent to an I/O (input/output) device or to a bus. In this case the
communication block has no output signal. All properties of the I/O device
can be configured with the rest of the options as well as the properties of
the equations of the subtasks or tasks that generate the signal that must be
sent to the device.

17

� Communication from a port: This communication type establishes that an
output signal is received from an I/O device or from a bus. The
communication port has no input signal. All properties of the I/O device
can be configured with the rest of the options as well as the properties of
the equations of the subtasks or tasks that use the received signal.

Another interesting feature of this library is that it makes possible automatic
code generation in C-language. It also has the option to automatically translate the
code for the control system to fixed-point representation if desired. The generated
C code can be compiled or downloaded to the real device or it may be compiled
and linked with an executable simulation [9].

2.4 Segway

The Segway Personal Transporter (PT) is a two-wheeled, self-balancing electric
vehicle which was invented by Dean Kamen in 2001 and produced by Segway
Inc. of New Hampshire, USA [14]. It is a very versatile vehicle that can transport
people to places where a car or bicycle cannot, for example, in shops, offices
buildings, airports, elevators, trains, military bases, warehouses, industrial or
corporate campus, etc [15]; Figure 2.3 shows the general appearance of the
vehicle.

Figure 2.3 General appearance of the Segway PT [14].

Computers and electric motors are located at the base of the vehicle to keep

the Segway in upright position when the driver is onboard and the control system
is activated; in order to move the Segway forward or backwards, the driver must
lean slightly forward or backward, respectively, and to turn using the handlebar it
is just needed to lean it left or right. The Segway has an electric motor that allows
to reach a speed of 20.1 km/h and can take a tour of 38 km on a single battery
charge. It also has gyros, which are used to detect the inclination of the vehicle
and thus indicates how much it deviates from the perfect balance point. Motors
driving the wheels are controlled to bring the Segway back into balance [14].

The Segway has electric motors powered by lithium ion batteries based on
phosphate, which can be recharged from any electrical outlet. The vehicle is

18

balanced with the help of dual computers running an appropriate program, two tilt
sensors and five gyroscopes. The servo motors drive the wheels to rotate them
forward or backward as necessary to maintain balance or propulsion [15].

The Segway also has a mechanism to limit the speed called governor. When
the vehicle reaches the maximum speed allowed by the program, the device starts
to intentionally lean back. This allows the platform to move forward, and that the
handlebar is tilted back toward the pilot, in order to reduce speed. If not for the
governor, passengers could lean a lot more than the engine could compensate for.
The Segway also reduces the speed or stops immediately if the handlebar of the
device collides with any obstacle [14].

2.5 Elektor Wheelie

The Elektor Wheelie is a programmable Segway designed for control design
experiments. The device is sold by Elektor, a technical electronic magazine in the
United Kingdom. The Elektor Wheelie kit is composed of two DC motors, two
12V lead acid batteries, two wheels of 16 inch diameter, the case of the platform,
a casing control lever, and an assembled and tested control board with a sensor
board installed [16]. In appearance, the Elektor Wheelie is very similar to the
Segway PT (Figure 2.4), but its mechanical and electrical structures are simpler,
which makes it suitable for control experiments.

Figure 2.4 General appearance of the Elektor Wheelie [16].

Its features include [16] [17]:

� Two 500 W DC drive motors
� Two 12 V lead-acid AGM batteries, 9 Ah
� Two 16-inch wheels with pneumatic tires
� H-bridge PWM motor control up to 25 A
� Automatic power off on dismount

19

� Fail-safe emergency cutout
� Battery charge status indicator
� Maximum speed approximate 18 km/h
� Range approximately 8 km
� Weight approximately 35 kg

Sensors:
� Invensense IDG300 (or IDG500) gyroscope
� Analog Devices ADXL320 accelerometer
� Allegro ACS755SCB-100 current sensor

Microcontrollers:
� ATmega32 (motor control)
� ATtiny25 (current monitoring)

The electronics in the Elektor Wheelie processes input signals from a

control potentiometer, an acceleration sensor and a gyroscope. It also controls the
magnitude and direction of torque applied to the wheels via two electric motors
using PWM (Pulse Width Modulation) signals and MOSFET (Metal Oxide
Semiconductor Field Effect Transistor) drivers [18]. Additionally, an encoder has
been added to each wheel by the Automatic Control Department.

The ATmega32 microcontroller has two PWM output ports which are used
to control two DC motors through a pair of H-Bridges (MOSFET). The second
microcontroller, an ATtiny25, monitors the motor current using a Hall Effect
sensor. If an excess of current occurs, due to short circuit in the system, the
ATtiny25 interrupts power to the H-Bridges. If there is a total failure in the
system, the battery power can also be interrupted using the emergency
electromechanical device, preventing the device to get out of control. In a normal
situation the ATtiny25 notifies the ATmega32 when the engine exceeds 25 A.

The commercial version of the Elektor Wheelie includes an embedded
control system programmed into the ATmega32 controller, which takes the
measurements from the sensors via ADC ports and processes them in order to
control the motor speed. This program does not allow the vehicle to operate when
there is no rider. The aim of this work was to replace the included program with
new code generated with the help of Dymola tools.

2.6 AVR

AVR is a microcontroller type based on RISC (Reduced Instruction Set
Computer) architecture that consists of 32 8-bit general purpose registers. It was
developed in 1996 by ATMEL Corporation and its name comes from the initials
of the names of its developers, Alf-Egil Bogen and Vegard Wollan, and the
microcontroller architecture RISC. The AT90S8515 was the first microcontroller
based on AVR architecture but the first to hit the market was the AT90S1200 in
1997 [19].

AVR Microcontrollers are available in three categories:
1. TinyAVR: less memory, smaller size, suitable for simple applications.
2. MegaAVR: are the most popular, have a good amount of memory (up to

256KB), greater number of integrated peripherals and are suitable for
moderate to complex applications.

20

3. XmegaAVR: used commercially for complex applications, which require
larger program memory capacity and higher speed.

ATMEL ATmega32
The Elektor Wheelie has an ATmega32 as its main processor. This is an 8 bit
processor manufactured by ATMEL. The processor's name was derived from the
following abbreviations: AT refers to the company ATMEL Corporation, Mega
means that it belongs to the category of MegaAVR microcontrollers and 32
indicates the size of the controller memory, which in this case is 32KB [19].

The most notable features of the ATmega32 which were used during the
development of this project are:

� I/O Ports: It has four I/O ports of 8 bits (PORTA, PORTB, PORTC and
PORTD).

� ADC Interface: The microcontroller is equipped with eight ADC (analog
to digital converters) channels with a resolution of 10 bits. These channels
were used to get readings from the sensors.

� Counter/Timers: The microcontroller has two 8-bit counters and one 16-bit
counter. One timer was used to generate the periodic controller tasks,
another one was used to generate the PWM signals in order to drive the
motors.

� USART: Universal Synchronous and Asynchronous Receiver and
Transmitter, is used for serial communication (transmission of data bit by
bit) with an external device. Used during the communication interface
design.

21

3. Theoretical Background

3.1 Embedded and Real-Time Systems
The constant growth of technologies requires the development of dedicated
systems that are efficient in the performance of specific tasks. Embedded systems
can cover those specifications and have the following characteristics [10]:

� Single function: they are designed to execute a specific task, often run a
single program. This characteristic makes them optimal in the specific task
they are designed for.

� They are often highly restricted on time, performance, power
consumption or value.

� They are often reactive and real-time.

Real-time systems are those which behavior depends not just on the
computation results, but on the time those results are produced [11]. Control
systems are usually real-time systems; it is needed to periodically monitor external
signals in order to calculate control responses which are consistent with the
system at a specific time instant, otherwise the response would not be the desired
one.

In a self-balancing vehicle, the microprocessor is exclusively dedicated to
the control task, it has sensors to register changes in the inclination angle which
are periodically sampled and a control signal is applied to the wheels according to
the values recorded by sensors at a given time. Because of these characteristics,
the two-wheeled self-balancing vehicle can be properly treated as an embedded
real-time system.

3.2 Mathematical Model of a Two-Wheeled Self-balancing
Vehicle
A two-wheeled self-balancing vehicle is a platform attached to a two-wheel set
controlled independently by DC motors. The vehicle’s chassis attached to the
wheels makes the system behave as an inverted pendulum; additionally, the mass
of the user causes the center of mass of the whole system to vary, which has an
impact on the used control technique [12].

The two-wheeled inverted pendulum has been widely studied because of its
highly non-linear behavior and its open-loop instability; these characteristics make
it a typical problem in control engineering and a good process to test different
control systems. The main goal for this process is to move the wheels into a
specific position while keeping the center of mass of the system at upright
position [13].

Although there are numerous mathematical models to represent the two-
wheeled inverted pendulum, their study goes beyond the aim of this work in
which a representative model of the real process was obtained with help of a
computational tool (Dymola).

22

3.3 System Representation in State Space Form
There are multiple approaches to system analysis in the control engineering field.
However, one which is considered modern is the state space analysis; this is
because it is the basis of optimal control and overcomes the applicability
limitations of the transfer function analysis [20]. As the two-wheeled self-
balancing vehicle is a complex system with multiple outputs, this representation is
the most suitable for its analysis.

Given a MIMO (multiple inputs, multiple outputs) system, with inputs u1(t),
u2(t),…, um(t), outputs y1(t), y2(t),…, yr(t), and state variables x1(t), x2(t),…, xn(t);
the input, u(t),output, y(t) and state, x(t), vectors are defined as:

 (1)

The representation of the given system in state space form consists of a set

of first order equations [21], thus, for a LTI (linear time-invariant) system, the
corresponding state space representation is defined as:

 (2)

 (3)

where Anxn is the system matrix, Bnxm is the input matrix, Crxn is the output
matrix and Drxm is the feed through matrix. The matrices contain time-invariant
coefficients which depend on the system’s physical characteristics or parameters.

3.4 State Feedback Control
A fundamental structure that allows the implementation of multivariable
controllers which are more complex than the classical PID controllers
(Proportional, Integral, Derivative controllers), is the feedback from reconstructed
states [22].

The state feedback changes the closed-loop behavior of the system using the
following control law:

 (4)

where r(t) is the reference signal the system is supposed to follow and Kmxn

is the time-invariant feedback gain matrix.
The state-feedback control law can be applied to the system as long as all its

states can be measured, otherwise a reconstruction of the states is necessary; a
state observer is able to do this work. It can be shown that the following system
provides a reconstruction of the original system’s states when it does not have a
feed forward term [21]:

23

 (5)

 (6)

where and are the reconstructed state vector and the reconstructed

output vector, respectively, and L is the observer matrix gain. Thus, the feedback
of the reconstructed states can be represented as shown in Figure 3.1.

Figure 3.1 Structure with state feedback and state observer [21].

3.5 Optimal Control
The optimal control problem consists of selection of the controller parameters
based on the minimization or maximization of a performance index which is
dependent on the control signal and the state vector. During the study of linear
quadratic regulators (LQR), the main goal is not just to determine the parameters
of the controller, but the proper selection of the respective performance index
[22]. The state observers counterpart is the so called Kalman filter, which
corresponds to the optimal linear quadratic estimator (LQE); the control structure
which combines an LQR with the Kalman filter is called LQG (linear quadratic
Gaussian control system).

 Linear Quadratic Regulator
Given a system described by equations (2) and (3), the LQR problem consists of
selecting the gain matrix K in the control law:

 (7)

24

such that the performance index J is minimized:

 (8)

where, Q and R are positive-definite matrices which determine the relative
importance of the error in the states and the control signal respectively.

It can be shown [23] that the optimal gain matrix K is given by:

 (9)

where, the matrix P is the positive-definite solution to the Ricatti equation:

 (10)

 Kalman Filter
In cases where it is impossible to obtain measurements of the states without error,
it is reasonable to use an optimal state estimator. The Kalman filter provides a
mathematical model capable of suppressing the measurement noises in an optimal
way [21].

Assuming that the system is affected by white Gaussian states and
measurement noise v1(t) and v2(t), with intensities R1 and R2 and with cross
spectra R12, the equations can be written as:

 (11)

 (12)

The Kalman filter stationary solution consists of determining the gain L of a

state observer as the one described by equations (5) and (6), such that:

 (13)

where P is the positive-definite symmetric solution to the following
equation:

 (14)

3.6 Fixed-Point Arithmetic

Since most of the microprocessors available on the market do not have hardware
capable of supporting floating-point calculations, it is often needed to resort to
emulation software in order to solve such calculations. However, these solutions
generally reduce the execution rate of the algorithms. The implementation of
fixed-point arithmetic operations is a valid option because it uses the integer-
dedicated hardware available on small microprocessors [24].

25

Qm.n Format
At processor level, variables have a specific bit size (commonly 8, 16 or 32 bits).
The fixed-point representation X of a real number x, is to assign a certain amount
of those bits to represent the integer part of the number and another amount to the
fractional part. In order to write a real number as a fixed-point number the Qm.n
format is used, where m is the number of bits in X assigned to represent the integer
part of x and n is the number of bits used to represent its fractional part.
Additionally, an extra bit is required to denote the sign when the variable can take
positive and negative values [25]. It is then easy to convert between the real
number x and its respective X (bit size N=m+n+1) as follows:

 (15)

 (16)

This way, a virtual decimal point is generated by programming, which
separates the bits and their weights as shown in Figure 3.2, so any given number
in Qm.n format can represent a real number between -2m and 2m-2-n (assuming two
complement is used).

Figure 3.2 Bits and weights distribution in a Qm.n format variable

 Addition and Multiplication
Arithmetic of numbers in Qm.n format is not analogous to the arithmetic of real
numbers, so it is necessary to define the basic operations for numbers in this
format. Given three real numbers x, y, z, and their respective fixed-point
representations XϵQmx.nx, YϵQmy.ny, ZϵQmz.nz with nx>ny, the basic sum and
multiplication operations are defined as:

 (17)

 (18)

It is important to note that there is a possible risk of overflow in the sum and
the intermediate result of multiplication, this phenomenon should be considered
when programming fixed-point operations. Similarly, it is notable that the
divisions by the base two powers can be taken as binary shifts to the right, which
is convenient because such operations tend to take little processor time.

26

3.7 Signal Smoothing

Signal smoothing algorithms have the purpose to eliminate small peaks caused by
perturbations, having as result a smoother signal. The importance of these
algorithms is that they are an effective way to generate suitable signals for further
analysis and processing. In general there are many signal smoothing algorithms;
here are two of the most common, which were used during the development of
this project.

 Moving Average Filters
The moving average filter calculates the average on a set of n points of the input
signal, i.e.:

 (19)

It can be shown that the moving average filter does not have a desirable
behavior in the frequency domain, making it less efficient when it acts like a low
pass filter; however, it is an efficient filter in removing random noise while
keeping sharp changes of the input signal, making it an optimal filter in signal
smoothing [26].

 Exponentially Weighted Moving Average Filter
The exponentially weighted moving average filter is a moving average filter with
an exponential-decreasing weighting on the input values; this way, more recent
values of the input signal have a stronger influence on the output signal. The
equation for this filter is:

 (20)

The smoothness of the output signal depends on the coefficient; when

the filter does not work and the output signal equals the input signal;
when , the filtering is extreme, ignoring the input signal completely [27].

3.8 Complementary Filter

The complementary filter is used to obtain the estimation of a signal out of two
redundant information sources [28], which have their origin from different
measurements from different transducers (i.e. sensors or detectors). The
complementary filter obtains estimation by filtering the signals through
complementary networks, which means that if one of the signals is disturbed by
high frequency noise, then it is appropriate to choose a low pass filter and
consequently obtaining a high pass filter for the other signal.

The basic complementary filter is shown in Figure 3.3 where and are
noisy measurements of some signal and is the estimate of produced by the
filter. Assuming that has mostly high frequency noise andy has low frequency

27

noise, then acts as low pass filter to filter out the high frequency noise in .
Therefore is the complement, i.e., a high pass filter which filters out
the low frequency noise in [29]. No detailed description of the noise processes
are considered in complementary filtering [30].

Figure 3.3 Basic block diagram of the complementary filter.

 High-pass
Fil

Low-pass
Fil

28

4. Methodology

In the following sections the methodology and experimental procedures carried
out for modeling and control of the self-balancing vehicle (Elektor Wheelie) are
explained in detail.

4.1 System Modeling

Modeling of physical processes is maybe the most important function of
Modelica, so the decision of modeling the self-balancing vehicle using a
Modelica-based tool such as Dymola was natural. The Dymola environment and
the drag and drop block interconnection mode were used for this purpose.

Modeling of the Vehicle Body
Modeling of any dynamic system is the process of coming up with a set of
mathematical equations which rule its physical behavior. In the case of the self-
balancing vehicle, it was decided to obtain a representation of its physical
behavior through the use of Modelica’s Multibody library; this library allows the
interconnection of mechanical pieces as blocks.

A simple model of the self-balancing vehicle was designed through the
connection of body boxes, cylindrical bodies, revolute joints and a wheel set.
Figure 4.1 shows the resulting model in Dymola.

29

Figure 4.1 Mechanical model of the vehicle’s body.

The platform of the vehicle was modeled using two body boxes with the

same lengths as the real Elektor Wheelie. On the real vehicle, the platform is a
hollow box which accommodates the DC motors used to control the wheels;
however, it was decided to model it as a solid block with density 1822.92 Kg/m3;
this density value of a box of those lengths corresponds to the total weight of the
Elektor Wheelie (35 Kg approximately). The handlebar was modeled as three
cylinders with no mass, so they would not affect the model and have been used
just for animation purposes. The wheels were modeled using the wheel set block
in the Multibody library. The drive of each wheel is determined by an angular
velocity reference block.

The interaction between the platform and the wheels axis was simulated
using a revolute joint, which provides free movement of the platform with respect
to the wheel axis mimicking the inverted pendulum behavior. In the specific case
of the self-balancing vehicle, the inverted pendulum behavior is dominated by the
position of the center of mass of the driver, which was modeled as a 70Kg punct
mass at 1m height attached to the center of the wheel axis. In order to allow
voluntary movements of the driver whit respect to the vertical position a revolute
joint was used. This joint is not a free movement joint but has its angular position
driven by an external reference.

The ideal angle and angular velocity sensors of Dymola were used for
obtaining the three outputs of the system, the angle of the platform relative to the
vertical position, the angular velocity and the angular velocity of the wheels.

30

DC Motors Modeling
In the self-balancing vehicle, each wheel is driven by a DC motor. In order to
design a proper control system, it was necessary for the final model to behave as
similar as possible to the real motors; this is why it was important to take some
time in order to make a proper identification of the motors.

During the identification of the motors, Matlab’s System Identification
Toolbox was used to generate a linear model of the DC motors. The identification
strategy used was grey box model identification based on a state space
representation found in [31]:

 (21)

 (22)

where is the angular position of the motor, its angular velocity, a

and b are physical constants to be determined by the System Identification
Toolbox, and is the voltage input signal. During this project, the input of the
motors is not considered to be a voltage signal, but a PWM reference value
coming from the microcontroller with values between -180 and 180. The input
voltage of the motor is considered to be proportional to this reference, making
equation (21) still valid.

The input signal used for the model identification was a pseudorandom
binary sequence with values -180,180 as it is suggested in [32]. From the
registered output signal (angular velocity), several models where generated, these
models were compared with data from different experiments; the model which
had best fit was selected as the final model.

Complete Model of the Self-Balancing Vehicle
The final model of the self-balancing vehicle is the model of the vehicle’s body
connected with the state space representation of the DC motors. In order to reduce
the complexity of the controller, it was decided to use a single model for both
motors, thus a single input signal is used in order to stabilize the vehicle. The
output signals are those available through sensor measurements in the actual
Elektor Wheelie (platform angle relative to the vertical, platform angular velocity
and wheel velocity). The connection diagram in Dymola for the final model is
shown in Figure 4.2.

31

Figure 4.2 Connection diagram of the final model in Dymola

Model Linearization
In order to design a stabilizing controller for the self-balancing vehicle, a
linearization of the Dymola model was made around the upright position (,
with non-tilted user). Dymola’s linearization tool automatically chooses the state
variables of the mechanical model in order to generate a state space model.
During a first phase a state space representation of the vehicle was generated
using Dymola; then this representation was reduced with Matlab’s modred.

The reduced model was selected to have as states the angular velocity of the
platform, its angular velocity and the angular velocity of the wheels (),
assuming the vehicle moves in straight direction, i.e. both motors have the same
input. The outputs were chosen to be the same as the states because they are
measurements available by sensor readings (accelerometer, gyro and encoders).
The reduced model was transformed into discrete form using the c2d command in
Matlab with a sampling rate Ts=0.01s which was considered to be enough in
order to control the system.

For both the Dymola generated model and the reduced model, observability
and controlability analysis were performed using the Analysis command of the
LinearSystems2 library, also the behavior of both representations was compared
in order to establish the validity of the reduced model.

4.2 Control Strategy

A LQR control strategy was used to control the vehicle, and Modelica Linear
Systems2 lqr comand was used to get the feedback matrix K. For the selection of
matrices Q and R the relative importance of the states and control signal errors
were considered. The deviations of were highly penalized, since keeping a
straight position of the platform is the most important job for the controller. The
chosen matrices Q and R were:

 (23)

32

Once the matrix K was obtained, the controller was simulated in Dymola.
Figure 4.3 shows the block interconnection setup for the closed-loop system
simulation. Notice that in order to simulate the model, a world component was
used to set the reference system and the direction of the gravity force; additionally
the sampler blocks were needed since the K matrix was calculated based on a
sampled model. The performance of the controller was tested by simulating
diverse behaviors of the user tilt angle.

Figure 4.3 State feedback controller simulation setup.

4.3 Signals and Sensors Processing

On the real vehicle, output signals are acquired using four sensors: two angular
position sensors for the velocity of the wheels, an accelerometer for the platform’s
tilt angle and a gyroscope for its angular velocity. The sensors are connected to
the control unit through its ADC ports. Naturally, the values registered by the
microprocessor correspond to voltage values which must be processed according
to the unique characteristics of each sensor in order to be interpreted as physical
quantities.

Wheel Velocity
Two angular position sensors (MLX90316) are attached to the wheels of the
vehicle, these sensors allowed the measurement of the angular position of the
wheel between 00 and 3600. The output of each sensor corresponds to a voltage
value which is proportional to the angle position of the wheel. This value is in the
range [0.1Vref, 0.9Vref] where Vref is the feed voltage on the sensor.

One of the goals of this work was the fixed-point coding, for reasons
explained below, it was determined to use an angular scale in the range
for angular position. This range is convenient because of its symmetry and the

33

lower modulus compared to the degree scale which lets more variable space to
represent the fractional part of the values. Besides, all the variables coming as a
result of sensor processing were changed into radian units to ensure consistency.
Because of the selection of a symmetric interval, an offset constant has to be
considered. This way the angle of the wheel in a specific moment was
calculated as:

 (24)

where ADCmeasure is the 10-bit integer value registered by the ADC

corresponding to the angular position at a specific moment, ADCoffset=546 is the
offset constant which transforms the sensor readings into the symmetric interval
and is the proportional constant of the sensor for a 10-bit
ADC with reference voltage 5V.

As the design of the controller required as an input the angular velocity of
the wheels, , it was necessary to implement an estimator which uses as input the
calculated angle position. For this purpose a simple difference estimator was
chosen. The angular velocity of the wheels is calculated every Ts=0.005s, using
the current angle and the angle during the last reading as :

 (25)

The angular velocity variable may have positive or negative value,

depending on the rotating direction of the wheel; however, erroneous calculations
are made when the wheel has it angular position around and because of
the characterisctis of the sensor. For example, when the wheel is rotating in the
positive velocity direction, a negative velocity could be calculated near the
discontinuity region. In order to solve this issue, the direction bit which drives the
H-bridges was used as an auxiliary variable. When the sign of the velocity and the
wheel direction are inconsistent, a correction is made on the angular difference.
Figure 4.4 shows the flowchart of one wheel estimator with its respective
difference corrector.

34

Figure 4.4 Flow chart of the angular velocity estimator with angle difference

correction.

As the controller was designed to have a single angular velocity state, a

single estimator was needed. However, it was decided to calculate the angular
velocity for the two wheels and then to calculate the wheel velocity state as:

 (26)

Where and are the angular velocities of the left and right wheel

respectively. This approximation is useful when the vehicle is not moving straight
and the angular velocity of the wheels are different for each wheel.

Platform Tilt Angle and Angular Velocity
The vehicle has a sensor board with an accelerometer and a gyroscope, used to
measure the tilt angle and angular velocity of the platform, respectively. The
output signal of the accelerometer consists of a voltage equivalent to an
acceleration value which is expressed in Gravity units . That voltage is
converted in a register of 10 bits through one of the ports of the analog to digital
converter (ADC) of the microcontroller ATmega32. The following expression
permits to calculate the value of the input voltage :

 (27)

35

where corresponds to the read value of the ADC register, is
the ADC’s reference voltage and the constant consists of the total of
numbers that can be represented with the register of 10 bits.

It is necessary to convert the obtained value via ADC to its corresponding
acceleration value using the scaling factor. It should be taken into account that the
accelerometer has an offset voltage, which corresponds to the output voltage when
the surface of the platform is in parallel position to the ground surface, i.e., when
the angle is equal to zero. In this way the expression to calculate the acceleration
is:

 (28)

With the acceleration value it is possible to calculate the tilt angle of the

platform by using trigonometry. The measured output signal corresponds to the
axis of the accelerometer. Knowing the Gravity value () and the axis
component, is enough in order to estimate the tilt angle of the platform in relation
to ground surface. The expression that permits calculating the tilt angle of the
platform is:

 (29)

This means,
 (30)

In this case, the most important angles to be measured are the ones around

the vertical position relative to the platform’s surface. If the platform reaches an
angle higher than 30 degrees, the controller will not be able to return the platform
to its upright position, therefore, the small angle approximation can be used when
the platform is tilted forward or backward at an angle (without horizontal
acceleration) [33]:

 (31)

where, , in radians.

The expression (31) is valid while .

36

On the other side, the output signal of the gyroscope is a voltage
proportional to an angular velocity value in degrees per second units. That voltage
is converted to a 10-bit value by the ADC using Equation (27). Subsequently the
previous value is transformed to its correspondent angular velocity value using the
scaling factor and in the same way as in the accelerometer’s case, it is necessary
to take into consideration the offset voltage, which is the output voltage when the
gyroscope is in steady state. The expression to calculate the angular velocity is:

 (32)

In order to obtain the platform’s tilt angle from the angular velocity

calculated with Equation (32), first it is necessary to convert units from degrees
per second to radians per second, just to be consistent with the units in the system.
Secondly, the result of the conversion is integrated in time and in that way the
platform tilt angle is obtained. An important requirement to calculate the angle
from the angular velocity is that the sample time must remain constant in order to
have a correct calculation.

Estimation of Platform Tilt Angle Combining the Accelerometer and
the Gyroscope
In the next sections two approaches which permit the estimation of the platform
tilt angle from the combination of the output signals of the accelerometer and
gyroscope are presented.

Complementary Filter:
This type of filter is frequently implemented to obtain a precise value of the
platform’s tilt using the data from the accelerometer and gyroscope. In the
following section, it is assumed that the acquired measurements from the sensors
have been previously converted to the appropriate units by use of the scale factors
as explained previously.

The accelerometer is a very sensitive sensor and works well in stationary
state, i.e., in situations where the horizontal acceleration generated by the
platform’s movement is affected by high frequency noise. Therefore, the
accelerometer signal (in Figure 4.5) must pass through a low pass filter,
whose purpose is to pass the changes that occur over long periods of time and
filter changes that occur over short time intervals.

The gyroscope (in Figure 4.5) is a sensor which records zero (sensor’s
offset) as its output signal when in steady state and is more sensitive when it is
rotating, i.e., the gyroscope is less sensitive to the influence of vibration
measurements than the accelerometer. Complementary to the case of the
accelerometer, a high-pass filter is used, which aims to allow the pass of signals

37

that occur over long intervals of time and filters the ones that are essentially
stationary over the course time.

After filtering the respective output signals from the accelerometer and
gyroscope, these are added together to obtain the final value of the inclination
angle (Figure 4.5) of the platform.

Figure 4.5 Block diagram of the implemented Complementary Filter

It is necessary to consider the time constant of the filter, which refers to the

time that the filter will act on each signal. The following expression is used to
calculate the time constant [33]:

 (33)

 (34)

The filter coefficient (Equation (34)) is calculated using the time constant
() and the sampling period (). Usually the time constant is less than one
second, so it can ensure small variations in the estimated angle. However, it is
important to consider that the smaller the time constant the greater the noise in the
system due to the horizontal acceleration of the platform.

The expression used to estimate the tilt angle using complementary filter has
the following structure [33]:

 (35)

 where

38

 Estimated angle by the complementary filter

 Complementary filter's old estimated angle

 Gyroscope measured angle

Accelerometer measured angle

 High pass filter coefficient

 Low pass filter coefficient

High pass filter applied to the gyroscope's
signal

 Integration part, which seeks to find the new angle

of the platform using the old angle plus the change of angle (angular velocity
multiplied by the sampling period)

 Low pass filter applied to the accelerometer's signal

The design of the complementary filter was performed empirically, i.e. the

sample time was chosen so that the filter is executed a total of one hundred times
per second and a time constant of 0.05 seconds, to determine the filter coefficient.
Using Equation (34) the filter’s coefficient can be calculated:

 (36)

 (37)

 this results in:

 (38)

The filter´s coefficient is the coefficient of the high-pass filter. The chosen

value for the time constant indicates the time limit which needs to pass from
giving more relevance to the gyroscope’s measurement to giving importance to
the accelerometer’s measurement. Therefore, for time intervals of less than 0.05
seconds, the integration of the gyroscope takes higher precedence and the noise
due to horizontal acceleration is filtered. For longer periods of time constant, more
weight is given to the accelerometer’s measurement.

When the filter’s coefficient and the sampling period are inserted in
equation (35), the final complementary filter is obtained:

 (39)

One of the characteristics of the gyroscope which must be dealt with is that
it has a deviation in its measurements (drift) while the time passes, i.e. in addition

39

to the offset, therefore, it should be taken into account that the voltage increases as
time passes. This results in erroneous measurements of the angular velocity and
thus the inclination angle.

The effect of the drift in the measurements of the gyroscope is fixed by the
complementary filter, because as previously explained, the signal of the gyroscope
has higher relevance during time intervals shorter than the time constant. Thus, in
greater time intervals the signal of the accelerometer has more relevance for the
estimation of the angle.

 However, in the case of this project, even if the complementary filter was a
good way to estimate the tilt angle of the platform, which corresponds to one of
the states of the system to be controlled, it was also required to estimate the
angular velocity of the platform. While the complementary filter method is able to
correct the drift due to the gyroscope in the calculation of the tilt angle, the drift
stays present in the estimation of the angular velocity as will be shown later in the
results of the experiments.

Kalman Filter
This filter is used to estimate the tilt angle and the drift of the platform’s angular
velocity. Below is a description of the sensor signals through equations.

 (40)

 Gyroscope signal (angular velocity) in

 Real angular velocity of the platform

 Drift of in

 Noise in the gyroscope signal

 (41)

 Accelerometer signal (angle) in

 Real inclination angle of the platform in

 Horizontal acceleration of the platform considered as noise

The resulting state-space representation of equations (40) and (41) is:

 (42)

 (43)

The signal of the gyroscope was represented as an input and the

accelerometer signal as an output; under such representation it is possible to

40

obtain a Kalman filter to estimate the desired states. The gain matrix was
calculated using the Matlab command lqe given a state space system, the noise
covariance of the process () and the noise covariance of the measurements ().
The noise covariances were chosen empirically, i.e., after several trials with
various values taking into account that it should rely more on the gyroscope signal
than on the accelerometer’s signal, since equation (41) does not describe all the
dynamics of the accelerometer. It is also known that the influence of the
gyroscope’s drift is small because it has slow change (ramp behavior) over time.
The selected covariance matrices were:

 (44)

 (45)

 Corresponds to the cross-correlation (46)

The first element of the covariance indicates how the gyroscope’s noise

affects the system and the second element indicates how quickly the drift varies.
The covariance expresses the size of the accelerometer’s noise, which is the
largest value and it means that is expected that this sensor presents a greater noise
in the measurements. Then the representation of the Kalman filter was discretized
using the Matlab command c2d.

Figure 4.6 shows the block diagram of the controller unit with the
implemented Kalman filter estimator. In order to test the performance of the
Kalman filter as an inclination estimator, it was programmed and tested offline
over real data. Once its behavior was proved to be right it was included in the
control uint.

Figure 4.6 Block diagram of the implemented Kalman Filter to estimate the tilt

angle of the platform and the drift of the gyroscope.

41

 Exponentially Weighted Moving Average Filter
Naturally, the analog signals coming from sensors were affected by noise, so it
was necessary to take special care of those which were not obtained or estimated
via complex filters. Specifically, the angular velocity of the wheels and the
platform. It was decided to process the control signal in order to avoid spikes
which were translated into variations of the wheel velocity which are annoying for
the driver.

To get smoother signals, an exponentially weighted moving average filter
was implemented as:

 (47)

 (48)

The filter requires the storage of a single variable S in order to obtain a
smoother representation (yf) of the signal y with N a filter coefficient. It can be
easily shown that this implementation corresponds to an exponentially weighted
moving average filter with . This way the filter effect is stronger when N
increases.

In order to check the behavior of the filter and to determine an optimal value
for N, the filter was tested on the actual control unit for different values of the
coefficient N.

4.4 Controller Implementation on the Atmega32

Taking into account the characteristics of the self-balancing vehicle, it was natural
to view the microcontroller as an embedded system with the single function of
providing the stabilizing control. The main goals for the programming of the
control unit (Atmega32) were the generation of periodic tasks corresponding to
control and estimation tasks as well as the handling of fixed-point representation
of floating point variables.
 The program was structured as a task dispatcher with three different
periodic tasks, the controller itself, the wheel estimator (velocity calculator) and
the platform estimator (complementary filter or Kalman filter). In order to create a
periodic dispatcher one of the timer interrupts in the Atmega32 was used. The 8-
bit timer (timer 2) was set into top interrupt mode at 15625Hz. By changing the
timer counter register TCNT2 it was possible to obtain faster timer interrupts than
1/15625s.
 It was decided to set the controller execution period to Ts=0.01s which is
the sample time set during the design of the controller. The estimators were set to
run with Ts=0.005s. The reason that the estimators are running at a higher
frequency is that some estimators need certain number of iterations in order to get
a reliable estimation, so it is convenient to have them running at a higher
frequency. The maximum wheel velocity corresponds to an 11Hz frequency, the
frequency of the estimator is much higher so it would not cause sampling
problems. The wheel and platform estimators were set to have the same frequency
but they are treated as separate tasks, which is useful for future applications if
different estimators want to be tested.

42

The interrupt routine is shown in Table 4.1a. The interrupt period was set
to Ti=0.005s, this number is convenient as it is possible to get the periods of all
the three tasks by using the minimum amount of interrupts. Note that computing
tasks are not performed inside the interrupt handler, instead Boolean flags were
used to indicate when it is time to perform a certain task, then the computations
are performed in the main routine if the corresponding task is ready to be
performed (Table 4.1b).

Table 4.1 Periodic tasks implementation on the Atmega32
a) Timer interrupt routine

…
counter_controller++; //auxiliary period variables
counter_wheel_estimator++;
counter_platform_estimator++;

if(counter_wheel_estimator==1){ //Wheel estimator Ts = 0.005 s
flag_wheel_estimator++;
counter_wheel_estimator=0;
}
if(counter_platform_estimator==1){ // Platform Estimator Ts = 0.005 s
flag_platform_estimator++;
counter_platform_estimator=0;
}
if(counter_controller==2){ // Controller Ts = 0.01 s
flag_controller++;
counter_controller=0;
}

TCNT2=0xB1; //set timer counter, interrupts every 0.005s
….

b) Dispatcher in main function
While(1){
if(flag_controller>0){
… //controller calculations
flag_controller=0;
}
if(flag_wheel_estimator>0){
… // wheel estimators calculations
flag_wheel_estimator=0;
}
if(flag_platform_estimator>0){
… // platform estimator calculations
flag_platform_estimatoe=0;
}
}

In the same embedded system design approach, it was necessary to
establish a communication interface between tasks and between a specific task
and the hardware. In the case of the control unit, it was necessary to define
interfaces between the estimators and the controller since the controller needs the
estimated state values in order to perform its own calculations; additionally,
interfaces between the controller task and the motors as well as between the
estimator task and sensors had to be defined in order to apply the calculated

43

control signal. There is an extra advantage in programming the control unit in
such a structure; the program has three blocks which can be replaced by a
programmer who knows the interface functions, this way it is easy to experiment
with different coding or estimators.

The first set of interfaces were those which allow two tasks to
communicate with each other. The only shared resources were the variables
corresponding to the calculated states, therefore the only interfaces needed were
those to write or read these variables. The shared resources were modeled as
global variables, the functions set_StateTilt(), set_StatePlatformVel(), and
set_StateWheelVel() were simple functions which write the corresponding state
global variable, while get_StateTilt(), get_StatePlatformVel(), and
get_StateWheelVel() read the global variable. By using these functions the
communication between tasks was not direct (see Figure 4.7). The problem could
get more complex if the tasks ran in parallel so programming structures as
semaphores or locks would have to be used, however, the implemented program
structure did not allow one task to block or interrupt another task, i.e. once a task
starts its execution it would not stop until it was finished, so there was not risk of
reading wrong values or tasks trying to access the same variable at the same time.

Figure 4.7 Communication between tasks interfaces.

Controller Ts=0.01s

get_StateTilt()
get_StatePlatformVel()
get_StateWheelVel()

…
Calculate control signal

Wheel Estimator Ts=0.005s
...

Calculate wheel velocity
….

set_StateWheelVel()

Platform Estimator Ts=0.005s
…

Calculate platform angle and
velocity

….
set_StateTilt()

set_StatelPlatformVel()

Global variables

Atmega32

44

The second set of interfaces is formed by those which connect the control
unit with the motors and sensors in the vehicle (see Figure 4.8). In order to get the
reading from the sensors, four functions are required, corresponding to a simple
getADC function call for each sensor. Function set_pwm(char pwm) is basically
the interface between the control unit and the motors.

Figure 4.8 Communication between the control unit and the external hardware

It is important to detail set_pwm function separately because it has two

main purposes which are vital for the driving of the vehicle. First, it is the function
which allows the application of the control signal to the motors and second, it
handles the steering instructions. The purpose of the function is to receive a
signed value (control signal) and set the PWM duty cycle which drives the motors
according to the control signal and the steer direction.

In order to turn, the set_pwm function takes information from the steering
wheel and adds or subtracts a fixed quantity (10) to each wheel PWM reference
value depending on the direction of the turn. When the platform angle is around
the upright position the control signal tends to be small and more power is needed
in order to turn, consequently a special exception is made when the control signal
is small so the turn quantity is changed to 30 (see Table 4.2 a).
 In order to drive the motors the timer 1 in the Atmega32 was set to work in
PWM phase correct mode, the value written in registers OCR1A and OCR1B
determines the duty cycle of the input square wave signal of the left and right
motors, the smaller the written value the higher the duty cycle and therefore the
higher the speed. It is important to notice that the OCR1A and OCR1B do not
admit negative values. The effect of a negative control signal (backward
movement) is achieved through setting the H-bridge input bit which inverts the
PWM coming from the control unit.

Atmega32
get_ADCLeftEncoder()

get_ADCRightEncoder()
get_ADCGyro()

get_ADCAdxlA()
set_pwm(u)

Vehicle
Left encoder

Right encoder
Gyro
Acc

Left motor
Right motor

45

Table 4.2 Set_pwm function. a)Steer correction. b) Set motors velocities
a) set_pwm function (steer handling)
void set_pwm(short pwm){
 short set=0; //auxiliary variable
 char dir=0; //wheel direction
 char turn=0; //steering wheel direction
 short right=0; //auxiliary right wheel variable
 short left=0; //auxiliary right wheel variable

 turn = steering(); //get steering direction

 if(turn==1){ //no turn
 right=pwm;
 left=pwm;
 }
 if(turn==0){ //turn left
 if(pwm>=0){ //when fordward
 if(pwm<=20) //turn while standing still
 right=pwm+30;
 left=pwm-30;
 }
 else{ //turn while moving
 right=pwm+10;
 left=pwm-10;
 }
 }
 if(pwm<0){ //when backwards
 if(pwm>=-20){
 right=pwm+30;
 left=pwm-30;
 }

 else{
 right=pwm-10;
 left=pwm+10;
 }
 }
 }
 if(turn==2){ //turn right
 if(pwm>=0){ //when forward
 if(pwm<=20){
 right=pwm-30;
 left=pwm+30;
 }
 else{
 right=pwm-10;
 left=pwm+10;
 }
 }
 if(pwm<0){ //when backwards
 if(pwm>=-20){
 right=pwm-30;
 left=pwm+30;
 }
else{
 right=pwm+10;
 left=pwm-10;
 }
 }
 }

b) set_pwm function (set wheel speed)
 //Set left Wheel
 if (left<0){ //backwards
 set=-left;
 dir=1;
 }
 else{ //forward
 set=left;
 dir=0;
 }
 if(left>180){ //limiting
 set=180;
 }
 OCR1AL=255-set; //set velocity
 if(dir==0){ //set direction
 PORTD.6=0;
 }
 if(dir==1){
 PORTD.6=1;
 }

 /// Set Right Wheel
 if (right<0){ //backwards
 set=-right;
 dir=1;
 }
 else{ //forward
 set=right;
 dir=0;
 }
 if(right>180){ //limiting
 set=180;
 }

 OCR1BL=255-set; //set velocity
 if(dir==0){ //set direction
 PORTD.7=0;
 }
 if(dir==1){
 PORTD.7=1;
 }
}

46

4.5 Fixed-Point Programming

Once the interfaces and the main program structure were programmed it was
possible to program the three changeable sections of code (two estimators and the
controller) by knowing the function calls of the interfaces. The aim of the
programming task during this project was to automatically generate fixed-point
code for the three changeable sections using Dymola. In order to have a
comparison point the same code was also programmed manually using fixed-point
arithmetic. During the development of this project, two different estimators were
tested in order to obtain the tilt angle of the platform; making a total of two
automatically generated codes and two manually generated codes. The interfaces
did not need to be reprogrammed in every case as they just write or read global
variables and do not make any calculations.

Manual Fixed-Point Programming
 The first step in the fixed-point programming process was to define the

code for the basic multiplication (see Table 4.3) In order to represent the different
variables and constants in the program, signed 16-bits variables (type short) were
used. The fixed-point implementation uses regular integer operations, therefore
when multiplying two numbers it results in a higher number which might be
higher than the maximum value that a 16-bit variable can contain. In every
multiplication an intermediate result is generated. This result was stored in a 32
bit variable (type long) in order to avoid loss of data caused by overflow. No
divisions were coded since the Atmega32 does not have division support and it
has to be emulated. The controller itself and the estimators used did not have any
division of two variables, just divisions by constants which were realized as
multiplication by the inverse of the constant.

Table 4.3 Code for fixed-point multiplication
Multiplication routine (a x b=c)
short a; // format Qma.na, 16 bits
short b; // format Qmb.nb 16 bits
short c; // format Qmc.nc 32 bits
long temp;

temp=(long)a*b;
temp=temp>>(na+nb-nc)
if (temp<-32768) c=-32768;
else if (temp>32767) c=32767;
 else c=temp;

The second step while coding in fixed-point is to determine the proper Qm.n

format for each variable and constant. For this, a rule was set for all variables: the
format was chosen so the minimum amount of integer bits are used to represent
the maximum value a variable can adopt, the rest of the bits are assigned to the
fractional part of the variable. The minimum and maximum values for each
measured variable were measured in extreme conditions in order to make sure the
variable size could handle movements even outside the typical use range. A
special consideration was taken with the control signal since it is a PWM value
(dimensionless) which can adopt values between 0-255 in integer form (safely

47

limited to 180 by the set_pwm(u) interface), Therefore no fractional part was
assigned to the variable; the same consideration was taken for all integer
constants. Table 4.4 shows the chosen Q format for the three main states and the
control signal, any intermediate variable was chosen accordingly in order to
maintain coherence of the representations.

Table 4.4 Fixed-point format selection for main variables

Variable Range Q format Fixed-point range Precision
Wheel angular

velocity [-70,70] rad/s Q7.8 [-128,127.9960] rad/.s 3.906x10-3 rad/s

Platform angle [-1,1] rad Q1.14 [-2,1.999] rad 5.103x10-5 rad

Platform angular
velocity [-3.5,3.5] rad/s Q2.13 [-4,3.999] rad/s 1.220x10-4 rad/s

Control signal u [-180,180] Q15.0 [-32768,32767] 1

The wheel velocity estimator as well as the controller (K gain) were

programmed using fixed-point representation. The complementary filter and the
Kalman filter as estimators for the platform states were programmed separately;
the two implementations were tested in order to compare the performance
between the two estimators.

4.6 Automatic fixed-point code generation using Dymola

The Modelica_EmbeddedSystems library provides an environment to design and
simulate embedded systems based on the treatment of complex systems as
separated tasks and subtasks which interact together or with tasks or subtasks on
other targets. The library provides the tools to set time and type parameters for
each task, simulate different kinds of communication and interfaces between
tasks, as well as features to automatically generate code for external targets.

Task separation in Dymola
The Modelica_EmbeddedSystems library bases its operation on the fact that
complex systems can be separated into smaller tasks; special configuration blocks
are included for this purpose. For each simulation it was necessary to specify the
characteristics of the targets where the tasks are running. In order to evaluate the
self-balancing vehicle as an embedded system, the model was tested using the
separation in tasks (Figure 4.9).

48

Figure 4.9 Embedded system model simulation setup

The system formed by the simple gain feedback and the vehicle model was

divided in two tasks, one for the controller and one for the vehicle mechanics.
Each task has a subtask, these are actually the controller and the model. The
controller and the model were chosen to be executed on different targets, the
controller on a fixed-point target, which allowed the simulation of the fixed-point
resolution effects on the control of the vehicle, and the model on the dymosim
(Dymola’s simulation) target.

The model was set to be a continuous subtask while the controller was
periodic with Ts=0.01s, which matched the selection made during the design
process.

In order to simulate the partitioning of tasks, the
Modelica_EmbeddedSystems library has special communication blocks;

49

CommunicateReal (also equivalent blocks are used for integer or Boolean
communication) is the main block which partitions the scope of each task as well
as the communication types or parameters between tasks (Figure 4.10).

Figure 4.10 CommunicateReal block configuration window

The ComminicateReal block has the ability of setting the type of

communication as communication between tasks, between subtasks, between
parts of the same task (simple wire) and from/to external ports. The
communication between tasks and subtasks type has features to simulate
quantization and delays in AD/DA converters. This mode was used during the
simulations in order to separate between the control task and the actual vehicle.

During the automatic code generation, the most important communication
types handled by the block are to/ from port communication types; these allow the
inclusion of code in order to emulate external communication interfaces. These
types of communication were used during the automatic code generation because
they allowed a direct mapping to the programmed interfaces in the control unit;
this will be further explained in the following sections. Besides defining the
communication “rules” the block permits to partition tasks or targets as it keeps
the specifications of its input and output task.

Code generation
In order to automatically generate code, preparations had to be made. First, it was
necessary to create a mapping between the Modelica variables and the C functions
programmed as interfaces in the main program structure. This was achieved by
using Modelica mapping functions, which were programmed as functions that
map an external C code line corresponding to an interface call in the control unit
base code. In order to use the mapping functions, it was necessary to create a
to/from port communication block which could be used as communication type in
the CommunicateReal block.

50

 The interfaces which have the function of writing variables or obtaining
information from a task extended the PartialReadRealFromPort class; the
interfaces whose function is to send information to a task extended the
PartialWriteRealToPort. Using these conventions it was possible to set the task
separation using Dymola in the same way it was structured on the base program of
the control unit. Table 4.5 and Table 4.6 show an example of the mapping
procedure for the set_pwm(u) (write interface) and get_StateWheelVel() (read
interface) interfaces. Note that the PartialWrite/ReadTo/FromPort block has as
only function calling a Modelica function which calls the interface in the control
unit code. The function call must have an extra time parameter in order to work
properly and since void functions are not supported, the writing interfaces
required a dummy variable which acted as a fictitious output.

Table 4.5 Configuration of communication port for set_pwm interface
a) To port block
block set_pwm

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialWriteRealToPort(minValue=-
180, maxValue=180);
protected
 Real dummy(min= 0, max = 10);
equation
 dummy = Segway.ExternalC.Motor.set_pwm(integer(u),time);

end set_pwm;
b) set_pwm mapping function
function set_pwm

 input Integer u "PWM value for duty cycle";
 input Real Time;
 output Real dummy;

external "C" set_pwm(u);

end set_pwm;

Table 4.6 Configuration of communication port for get_StateWheelVel interface
a) From port block
block get_StateWheelVel

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(minValue=-
100, maxValue=100);
equation
 y = Segway.ExternalC.Wheels.get_StateWheelVel(time);

end get_StateWheelVel;
b) get_StateWheelVel mapping function
function get_StateWheelVel "Get Wheel Angular Velocity"

 input Real Time;
 output Real signal;
external "C" signal = get_StateWheelVel();

end get_StateWheelVel;

51

 Once all the interfaces were redesigned in Dymola, the controller and
estimators were coded in Modelica. In order to use the automatic fixed-point code
generation it was necessary to give additional information about the range of
certain variables as well as the desired fixed-point resolution. This was possible
by modifying the range attributes of variables and using annotations. By
modifying the min and max attributes of the variable it was possible to set the
number of bits representing the integer part of the variable and through the
fixedpoint annotation it was possible to set the number of bits used to represent its
fractional part (Table 4.7).

Table 4.7 Range attributes and annotations for main variables.

Variable Range Q format Annotation
Wheel angular

velocity [-70,70] rad/s Q7.8 (min=-70,max=70)annotation(fixedpoint(bits=8))

Platform angle [-1,1] rad Q1.14 (min=-1,max=1)annotation(fixedpoint(bits=14))

Platform angular
velocity [-3.5,3.5] rad/s Q2.13 (min=-3.5,max=3.5)annotation(fixedpoint(bits=13))

Control signal u [-180,180] Q15.0 (min=-180,max=180)annotation(fixedpoint(bits=0))

 Each programmable block in the control unit (controller and estimators)
was programmed as a Modelica block. The programmable blocks could be
designed by interconnecting blocks from the Moleica Standard libraries, but this
could bring two problems. First, the fixed-point code generation does not support
function calls so, for example, a limiter could not be used since it calls smooth
function; additionally, the interconnection of multiple blocks tends to generate a
greater number of intermediate variables which makes the analysis of the
generated code more difficult. Table 4.8 shows the code for the controller block in
Modelica, the annotations and modifications of the variable’s attributes are made
when each variable and constant are defined. Similar blocks were created for the
wheel velocity estimator and the two different platform angle and velocity
estimators.

52

Table 4.8 Modelica block for the state feedback controller

Code in Dymola of the state-feedback controller
block Controller

extends Modelica.Blocks.Interfaces.BlockIcon;
 Modelica.Blocks.Interfaces.RealInput PlatVel(min=-3.8,max=3.8)
 "Connector of Real input signal"annotation (fixedpoint(bits=13));
 Modelica.Blocks.Interfaces.RealInput PlatAng(min=-0.9,max=0.9)
 "Connector of Real input signal 2"annotation (fixedpoint(bits=14));
 Modelica.Blocks.Interfaces.RealInput WheelVel(min=-70,max=70)
 "Connector of Real input signal"annotation (fixedpoint(bits=8));
 Modelica.Blocks.Interfaces.RealOutput Control(min=-200,max=200)
 "Output signal connector" annotation (fixedpoint(bits=0));

discrete Real Sum(min=-32000,max=32000) annotation(fixedpoint(bits=0));
discrete Real Maf(min=-200,max=-200) annotation(fixedpoint(bits=0));
discrete Real Control1(min=-200,max=200) annotation(fixedpoint(bits=0));

parameter Real K1=8.9552 annotation(fixedpoint(bits=10));
parameter Real K2=278.994 annotation(fixedpoint(bits=5));
parameter Real K3=89.2559 annotation(fixedpoint(bits=7));
parameter Real K1maf(min=0, max=1) = 0.9 annotation(fixedpoint(bits=15));
parameter Real K2maf(min=0, max=0.2) = 0.1 annotation(fixedpoint(bits=15));

equation

 when sample(0,0.1) then

 Control1=K1*WheelVel+K2*PlatAng+K3*PlatVel;
 Sum = (K1maf * pre(Sum)) + Control1;
 Maf = Sum * K2maf;
 end when;

Control=Maf;

end Controller;

 As the main program in the control unit had three programmable tasks, the
code for each one was generated separately. In order to do this a simulation setup
was set for each block; Figure 4.11 shows the setup for the state feedback
controller. The communicateReal blocks had the purpose of defining the interfaces
for the tasks. In the state feedback controller four communication interfaces were
needed: three from port communication type blocks corresponding to
get_StatePlatfotmVel, get_StateTil and get_StateWheelVel and one to port
corresponding to set_pwm interface. As the corresponding Modelica mapping
functions were designed to make a call to the actual interfaces in the control unit,
it was expected to get a simple function call in the generated code for every
communicateReal block in the simulation setup. The task to be automatically
generated was set to be executed at an external fixed-point target type (the actual
vehicle). This way Dymola generated fixed-point code which could be pasted into
the main structure of the control unit. A final consideration had to be made in
order to achieve the code generation: the simulation would not run unless the
simulated model had a first order differential equation in it. As the tasks did not
have any differential equation, the equation der(x)=-x was included in all the

53

models for code generation, this had no effect in the regular calculations of the
tasks.

Figure 4.11 Setup for the state feedback controller code generation

Once a block was simulated, Dymola generated a C file containing all the

variable and constant declarations in fixed-point representation (declarations.c
file) and another one containing the match calculations in fixed-point (equations.c
file). Similar setups were implemented for each one of the three tasks in the
control unit. The generated codes were analyzed searching for any fault, modified
when necessary and then tested in the actual vehicle through test rides in order to
evaluate the performance of the controller.

4.7 Real-Time Communication

The performance of the Modelica_EmbeddedSystems library for real-time
applications was tested by designing a simple application which would allow
bidirectional communication in real time between the vehicle and Dymola. For
this, previously designed by Dassault Systemes add-on packages
(CommunicationMSWindows and Lego_Mindstorms) were used as basis for
keyboard handling and Bluetooth communication.

The designed application consisted in controlling turns and forward
movements of the vehicle using the keyboard arrows when no one was riding it,
while receiving signals from the vehicle for real-time plotting. The exchange of
data was established between a computer with Bluetooh capability and a
Bluetooth to serial converter on the vehicle.

Control Implementation Aspects
The base program on the control unit had to be modified in order to be able to
change between modes and to receive and handle instructions from the computer.
Two main aspects had to be considered, first the control aspect and second the
communication instructions.

54

The physical design of the vehicle makes its center of mass to be slightly
inclined forward with respect to the platform’s vertical position when no rider is
driving it. This resulted in a permanent trend of the vehicle to lean forwards and
consequently an acceleration of the wheels causing the vehicle to move forward
permanently. As it was desired that the vehicle was stable, even when no rider
was on it, a way to avoid the effect of the tilted center of mass had to be created.
Figure 4.12 shows the implemented alternative. The code was modified in order to
include a reference for the platform angle; this implementation solved two
problems at the same time, the permanent leaning of the platform was eliminated
by setting a negative angle reference which corresponded to the angle of the
platform when the center of mass of the chassis was in a vertical position, and the
remote control of forward movements was achieved by setting an angle reference
value slightly higher than the reference when still.

Figure 4.12 Modified control structure in order to follow references on the

inclination angle of the platform

The addition of a reference and the difference on the dynamics when a rider

is on the vehicle compared to when no rider is on it brought more implementation
issues. It was necessary to decide when and how a reference switch had to be
made. Additionally, a less aggressive controller was needed during the no rider
mode, and it was necessary to define when and how to do the switching. A
Statechart defining the algorithm for switching controller and angle reference is
shown in Figure 4.13. The controller is changed when the user rides the platform,
this event is registered by the controller unit as a signal which comes from a foot
switch on the platform. When a rider is on the platform, the angular reference
corresponds to a horizontal angle of the platform (Foot reference= 0 rad), when
there is no rider two angular references for the platform are possible, a negative
reference for compensating the inclined center of mass of the chassis (Stop
reference) which is switched to a slightly higher reference (Forward Reference)
value when a signal from keyboard is received.

55

Figure 4.13 Controller and reference switching Statechart.

The Statechart in Figure 4.13 defines the events that trigger the change of

controllers and reference values, but does not specify the structure of the actual
changes in the variables. A change in the reference value is a simple step function.
The typical behavior of a step function as reference produces a large control signal
which could result in the vehicle leaving the linear zone where the model used is
valid. A second practical consideration must be made in the particular case of the
self-balancing vehicle: when the vehicle is standing by itself, the angle reference
is a negative value. At the moment the user rides the platform the reference value
changes to zero. If that change had a step shape the vehicle would sharply
accelerate backwards and hit the user’s leg.

In order to avoid sharp changes in the control signal when changing
references, the actual reference which enters the system was calculated as:

 (49)

Where is the final angle value of the platform. The equation

represents a filter which generates a smooth and slower response than a step
response.

In a similar approach, a less aggressive controller was intended to run when
no user was on the vehicle; the controller was designed to be a state feedback gain
with different gain matrix. This change of parameters of the gain matrix could
also result in a sharp change of the control signal. The solution for a bumpless
change of matrix K in the controller was similar to the one applied to the reference
changes:

 (50)

56

Dymola Implementation Aspects
In order to send and receive data from and to the computer, elements in the
CommunicationMSWindows and Lego_Mindstorms packages
(Modelica_LinearSystems library add-on packages) were used. The setup of the
program is shown in Figure 4.14.

Figure 4.14 Communication program setup in Dymola

The program was divided into two tasks, one executed in the vehicle and

one executed in the computer. The task executing in the vehicle received
information from the computer regarding the remote controlling, and sent the
three states and the control signal via Bluetooth. The definition of this task is
purely theoretical as it does not affect the simulation, in fact the interfaces of the
vehicle tasks could be programmed as dummies.

The task executing in the PC received the four signals and sent remote
control instructions from the keyboard. The keyboard controller is based on the
keyboard features in the CommunicationMSWindows, and was set to get
information from the keyboard every 0.1s and set the output as shown in Table
4.9. The control unit was programmed to translate the output values of the
keyboard function into left, right and forward movements, combinations of the
above and no movement, when a user was not riding the vehicle.

57

Table 4.9 Keyboard block function
Up Key Left Key Right Key Output

0 0 0 0
0 0 1 -3
0 1 0 3
0 1 1 0
1 0 0 1
1 0 1 -2
1 1 0 4
1 1 1 1

 The communication interfaces are based on the Lego_Mindstorms add-on

package. The Bluetooth configuration block did not need to be modified, its
function is calling external functions in order to open the COM port in the
computer at the beginning of the simulation and close it at the end. On the other
hand, the interfaces to send and receive data via Bluetooth had to be modified in
order to set them as periodic tasks such that the task wrote the keyboard
information on the computer’s COM port and read the four data blocks from the
port every 0.1s.

Coherency Between Dymola and the Control Unit
The program in the control unit had to process and interpret the data sent by
Dymola as well as send four information blocks. In order to do this a
synchronization and communication protocol between the PC and the control unit
needed to be created.

The Bluetooth interfaces were defined such that an information block
contains six bytes organized as shown in Figure 4.15. The two first bytes were
used as synchronization bytes and the other four bytes corresponded to the 32 bit
number to write on the port sent from least significant byte to most significant
byte. The variables in the controller had 16 bit size so DATA2 and DATA3 in the
information block were set to 0x00 or 0xFF depending on whether the variable to
send was positive or negative.

0x04 0x00 DATA0 DATA1 DATA2 DATA3

Figure 4.15 Information block for Bluetooth communication

In order to achieve synchronization between Dymola and the control unit the Rx
interruption on the Atmega32 was used. Each time Dymola sent an information
block (every 0.1s), the program in the control unit processed the remote control
commands and sent back four information blocks containing the state and control
signals (Figure 4.16).

58

Figure 4.16 Data handling in the control unit.

Rx
interrupt?

Read incoming block

Correct
package?

Get remote control direction

Yes

No

No

Yes

Send State Wheel velocity
package

Send State Platform angle
package

Send State Platform angular
velocity package

Send Control signal package

59

5. Results and Analysis

This chapter presents the experiments and results obtained during the course of
this project. Each section describes the results and compares them with
simulations where deemed necessary.

5.1 Mechanical Model

Figure 5.1 shows the 3D model visualization of the two-wheeled self-balancing
vehicle when it is animated in Dymola. The simulation was setup using
components in the MultiBody library as previously shown in Figure 4.1. The
driver is visualized as a point mass which dominates the inverted pendulum
behavior.

Figure 5.1 Two-wheeled self-balancing vehicle 3D model visualization in Dymola

In order to test the behavior of the vehicle, the simulation was run with a

small initial lean angle of the driver. As it is shown in the Figure 5.2, when the
user mass leans forward, the vehicle starts to fall to the front pivoting over the
wheel axis and consequently increasing the platform angle. Since there is no
simulated floor or solid ground, the vehicle keeps falling describing a pendulum-
like movement. The vehicle behaves as an inverted pendulum when it is not
controlled being impossible to keep it in upright position.

60

Figure 5.2 Behavior of the platform angle when the user leans forward and the

vehicle does not have a controller

5.2 Motor Identification

In order to get a linear model of the motors, a pseudo-random binary sequence in
the range [-180,180] was used as PWM input signal, the output was chosen to be
the angular velocity of the wheels (Figure 5.3). The vehicle had its wheels rolling
in the air during the test.

Using the System Identification toolbox in Matlab, three different models
were generated. A two-step input signal was used in order to compare the
performance of the models against the response of the actual motors (Figure 5.4).
The chosen model was the one which best fitted the real response (89.58%):

 [3.1]

 [3.2]

During a first approach it was considered to obtain a model for each motor.

However, some previous experiments showed that both motors had very similar
responses so it was simpler and accurate enough to use a single model for both
motors.

61

Figure 5.3 PWM value input and angular velocity used during the motors

identification.

Figure 5.4 Response of the actual motor and generated models to a given input
signal.

62

5.3 Linear Model

The motor model was connected to the mechanical model in Dymola. Using the
linearize command the obtained state space model of the vehicle was:

The input is the PWM signal, the outputs are the platform angle, the wheels

velocity and the platform angular velocity. The states were automatically selected
by Dymola and are shown in Table 5.1.

Table 5.1 States of the linear model

State Physical variable
x1 x axis position of the vehicle
x2 y axis position of the vehicle
x3 Angle of the wheel axis from the x axis
x4 Left wheel angle
x5 Right wheel angle
x6 Left wheel velocity
x7 Right wheel velocity
x8 Platform angle
x9 Platform angular velocity
x10 User angle
x11 User angular velocity
x12 Motor angle
x13 Motor angular velocity

63

Figure 5.5 Open loop generated model pole-zero map

Through the pole-zero map (Figure 5.5) it is possible to determine that the

generated model is not stable, since it has one pole in the right semi-plane and six
poles in zero. Moreover, the Analysis command in Dymola shows that the system
is not controllable and not observable. A reduced-order model was needed in
order to reduce calculations and to get a controllable and detectable
representation.

A reduced order system, taking the outputs as states is given by:

 [3.1]

 [3.2]

This reduced representation is not stable because it has one pole in the right

semi-plane (Figure 5.6), but it is controllable (and stabilizable) and observable
(and detectable). This representation is more convenient because a controller and
observers could be used. The dominant poles of the system remain the same so the
behavior was expected to be similar.

64

Figure 5.6 Open loop reduced model pole-zero map

The controller sample frequency must be at least twice the frequency of the

dominant pole (3.12rad/s) and much smaller than the PWM frequency (16MHz),
then the chosen value Ts=0.01s is valid.

The gain matrix for the sampled system is:

 [3.5]

The open loop sampled system pole-zero map is shown in Figure 5.7, the

closed loop is shown in Figure 5.8. Note that the closed loop system has all its
poles inside the unit circle.

65

Figure 5.7 Open loop sampled model pole-zero map

Figure 5.8 Closed loop sampled model pole-zero map

66

5.4 Controller Simulations

The controller was implemented in Dymola using the configuration in
Figure 4.3, and two simulations were tested. In order to test the disturbance
rejection of the closed loop system, a disturbance in the platform angle was set to
act at time zero. Figure 5.9 shows the behavior of the three outputs when the
disturbance acts; the velocity of the wheels increases because of the positive
initial platform angle, making the vehicle to move forwards until the platform
reaches the upright position to finally decrease progressively to set the three
outputs to zero.

Figure 5.9 Output response when the platform has 0.1rad initial angle

The second test simulated the behavior during a regular ride; the user stays

tilted to the front for the first four seconds of simulation and then straightens. The
angle of the user causes an increase in the platform angle and a positive velocity
of the wheels while the user is tilted. When the user straightens the system
recuperates until the vehicle stops (Figure 5.10). This is the expected behavior for
a forward movement of the vehicle when the user is driving it.

67

Figure 5.10 Output behavior during forward ride

5.5 Wheel Velocity Calculation

The wheel velocity calculator was programmed in the control unit and tested
using a square wave input. The measurements were highly affected by noise
having up to 5rad/s variations when the wheel velocity was constant. It was
necessary to filter the signal in order to get a smoother input for the controller.

The wheel velocity signal was passed through three exponentially weighted
moving average filters with different values of N. Figure 5.11 shows the
performance of the programmed filters. The filters introduce a delay on the signal,
so the selection of the parameter N was a compromise between smoothness of the
response and its velocity. The chosen filter has N=10 and provides a smooth
response with a 0.2s delay.

68

Figure 5.11 Exponentially weighted moving average filter response for different N

values.

5.6 Platform Estimators

Complementary Filter
The complementary filter was programmed in the control unit. The test was to tilt
and move the platform of the vehicle and register the inputs and outputs of the
complementary filter. Figure 5.12a shows the measurements of the accelerometer.
During the last seconds of the test the platform was horizontally accelerated
producing noise in the accelerometer. The gyroscope signal (Figure 5.12b) is
affected by the time variant offset (drift). At the beginning of the test its value in
steady state is zero, and a hundred seconds later this value has increased to
0.1rad/s.

The programmed complementary filter output is presented together with a
simulated output in Figure 5.12c. In both cases the complementary filter removes
the high frequency noise in the accelerometer signal and the effect of the gyro
drift in the output angle.

69

Figure 5.12 Complementary Filter performance. a) Accelerometer angle. b)Gyro

angular velocity. c) Complementary filter estimated angle.

Kalman Filter:

Kalman estimator state space in continuous time:

 [3.6]

 [3.7]

The continuous-time Kalman filter has a pair of poles at -0.584±0.54j. The

sample time 0.005s is much faster than the system therefore it is suitable for
sampling the system:

[3.8]

The sampled system was programmed in the control unit and tested in a

similar experiment as the one carried out for the complementary filter. Figure
5.13a and Figure 5.13b show the accelerometer angle and gyro angular velocity.
The most important feature of the Kalman filter is the gyro drift estimation. In

70

order to test this feature, the data was taken several minutes after the moment the
filter started to act giving time enough for the drift to reach 2rad/s.

The outputs are presented in pairs, the actual output from the control signal
and a simulated output given real inputs. Figure 5.13c shows the estimated drift
signal, the signal mimics the offset in the gyro signal. Figure 5.13d shows the
estimated platform angle, the effects of the accelerometer noise and gyro drift are
removed in the same way as the complementary filter.

The simulated outputs take about 5s to converge to the actual values of the
estimated signals, this happened because the filter had zero initial conditions. In
the actual filter the convergence time is smaller because the drift tends to be a near
zero value, taking less time for the output to converge.

The estimated drift value is subtracted from the value of the angular velocity
of the platform in order to get a proper measurement of the state, the Kalman filter
is an improved solution compared to the complementary filter since it provides
estimated outputs from both states (angle and angular velocity).

Figure 5.13 Kalman Filter performance

5.7 Automatic Code Generation

The controller and estimators codes were automatically generated by Dymola. The
C codes were analyzed and modified in order to fit the programming requirements
of the compiler and microcontroller.
Two files were generated for each estimator and two files for the controller code;
the first file contains the variable declarations and the second file contains the
equations. The declarations file is divided in two blocks, first a definition of the
type variables is made and then the declarations are presented. The type
definitions must be changed depending on the compiler used, in this case the
int_16 and int_32 types had to be modified as shown in Table 5.2, the int_64 type
was removed as such a large variable was not needed in the program. The second

71

block of the declarations file contains the declared variables with a detailed
comment which contains the real value of the variable and the Q representation
used, this makes easier the evaluation and reading of the code; automatically
generated declarations for the controller coefficients are shown in Table 5.3.

Table 5.2 Type definitions in automatically generated code
a) Type definitions for fixed-point data types generated by Dymola
#ifndef DYMOLA_FP_TYPES
#define DYMOLA_FP_TYPES
 typedef char bool_8;
 typedef char int_8;
 typedef short int int_16;
 typedef int int_32;
 typedef long long int int_64;
#endif
b) Type definitions for fixed-point data types modified
/* Type definitions for fixedpoint data types */
#ifndef DYMOLA_FP_TYPES
#define DYMOLA_FP_TYPES
 typedef char bool_8;
 typedef char int_8;
 typedef short int_16;
 typedef long int_32;
#endif

Table 5.3 Controller variables declaration in automatically generated code
Gain matrix K variable declarations
/* parameter Real controller.K1 = 8.9552
annotation(fixedpoint(bits = 10.0));*/
int_16 controller_K1_FP = 9170; /* Q[5, 10] Derived: min = -
17.9104, max = 17.9104 */

/* parameter Real controller.K2 = 278.994
annotation(fixedpoint(bits = 5.0));*/
int_16 controller_K2_FP = 8927; /* Q[10, 5] Derived: min = -
557.988, max = 557.988 */

/* parameter Real controller.K3 = 89.2559
annotation(fixedpoint(bits = 7.0));*/
int_16 controller_K3_FP = 11424; /* Q[8, 7] Derived: min = -
178.5118, max = 178.5118 */

 The equations file is typically divided in four blocks, first the input
interfaces are called, then the calculations are performed, next the output
interfaces are called and finally the variables are updated. The interfaces calls are
mapped to the CommunicateReal block configuration depending on if a from port
or to port communication type is selected. Table 5.4 shows the file structure in the
controller case, first the three states are accessed via the get_State interfaces, then
the control signal is calculated, the control signal is applied to the motors via
set_pwm interface and finally a filter variable is updated.

72

Table 5.4 Equations file structure, input interfaces, calculations, output interfaces,
variables updating

Dymola equations file structure
/* wheel_velocity.y =
Segway.ExternalC.Wheels.get_StateWheelVel(time); */
wheelx_0velocity_y_FP = (get_StateWheelVel());

/* platform_angle.y =
Segway.ExternalC.Platform.get_StateTilt(time); */
platformx_0angle_y_FP = (get_StateTilt());

/* platform_velocity.y =
Segway.ExternalC.Platform.get_StatePlatformVel(time);*/
platformx_0velocity_y_FP = (get_StatePlatformVel());
//
//
//Equations
//
//
/* Control_signal.toPort.dummy =
Segway.ExternalC.Motor.set_pwm(integer(Control_signal.u), time);*/
set_pwm(Controlx_0signal_u_FP);

/* Update pre variables */
PREcontroller_Sum_FP = controller_Sum_FP;

 It was important to check the generated code for failures in the fixed-point

implementation. Two recurrent changes had to be made in all generated codes.
It is typical to get divisions by powers of two when fixed-point arithmetic is

performed. In the particular case of Atmega32, divisions are not included in the
instruction set, therefore they need to be emulated; in order to avoid that, all the
divisions in the generated code were replaced with right shifts (this should be also
handled by the compiler). Dymola does not consider overflow in the intermediate
results of the multiplication so it was necessary to add 32-bit variable casting for
multiplications and right shifts. A modified code example is shown in Table 5.5.

Dymola does not consider overflow of the variables either. This is not a
problem if the user has full knowledge of the system and had made an appropriate
selection of the range attributes and fixed-point annotations for each variable; but
if that is not the case, the generated code would not handle overflows causing an
erroneous and potentially dangerous behavior of the vehicle if the actual signals or
variables exceed the range set by the user.

73

Table 5.5 Controller equation in the automatically generated code
a) Controller equation generated by Dymola
/* controller.Control1 =
controller.K1*wheel_velocity.y+controller.K2*
platform_angle.y+controller.K3*platform_velocity.y; */

controller_Control1_FP = (((((controller_K1_FP *
(wheelx_0velocity_y_FP << 1)) / 2) + (((controller_K2_FP << 2) *
(platformx_0angle_y_FP << 1)) / 16)) + (((controller_K3_FP << 1) *
platformx_0velocity_y_FP) / 8))) / 262144;
b) Modified controller equation
/* controller.Control1 =
controller.K1*wheel_velocity.y+controller.K2*
platform_angle.y+controller.K3*platform_velocity.y; */

controller_Control1_FP = ((((((long)controller_K1_FP *
((long)wheelx_0velocity_y_FP << 1))
 >> 1) + ((((long)controller_K2_FP << 2) *
((long)platformx_0angle_y_FP << 1)) >> 4)) + (((
 (long)controller_K3_FP << 1) * (long)platformx_0velocity_y_FP)
>> 3))) >> 18;

5.8 Ride Experiments

A total of four different codes were tested: one manually generated fixed-point
code using a complementary filter as platform estimator, one using a Kalman filter
and one automatically generated replica of each.

The codes were tested establishing a simple routine followed by the driver. The
experiment was carried out over a period of 60 seconds, in which the rider had to
remain still for 10 seconds, then drive forward for 10 more seconds, stop and
remain still the next 10 seconds, drive backwards for another 10 seconds and
finally stop.

Figure 5.14 and Figure 5.15 show the complementary filter results. The peak
wheel velocity at the time interval between and is lower
in the case of the automatically generated code, , compared to
during the manually generated code test. This could be considered at first as a
fault in the program, but the actual explanation is that the user does not
necessarily lean at the same angle every time.

The actual performance can be evaluated observing the signal at the instants
when the rider leans to slow down or stops the vehicle (around 17s and 40s). At
these points the wheel velocity drops to zero (the vehicle stops) caused by the
decrease (or increase if the rider is moving backwards) of the control signal.

In the case of the platform angular velocity it is possible to note that it
oscillates around the zero value while the platform is not experimenting abrupt
angle changes, but it reaches peak values during the sudden brakes since the
control signal has sharp changes.

74

Figure 5.14 Ride test: complementary filter manually generated code.

Figure 5.15 Ride test: complementary filter automatically generated code.

Figure 5.16 and Figure 5.17 show the test results of the manually and

automatically generated Kalman filter codes. No significant difference could be
found, the signals behave similarly in both cases and moreover, the wheel angular
velocity and platform angle compares fairly similar to the complementary filter
experiment.

75

Figure 5.16 Ride test: Kalman filter manually generated code

Figure 5.17 Ride test: Kalman filter automatically generated code.

An important part of the vehicle performance evaluation consists of the user
experience. Despite having a similar performance in a short time range, an
important difference was noticed when riding for long time periods. The
complementary filter implementation does not handle the gyro drift, therefore the
angular velocity tends to increase in long term periods causing an increase of the
control signal. Then the platform tends to lean back to compensate the positive
control signal, which forces the user to adopt a time-variant position in order to
maintain the vehicle without moving. The Kalman filter handles the gyro drift

76

effect in both the platform angle and the platform velocity, therefore the ride
experience is similar at all times making the learning process easier.

When a comparison is made between the generated codes results and the
manual code results, no differences were found, either at signal analysis or at the
ride experience analysis.

The results were satisfactory from an experimental point of view, the
estimators and controller achieve the control objective and it was verified that the
automatic code generation by Dymola manages to be as accurate as the manual
fixed-point coding.

5.9 Mode Switch Tests

This section shows the implementation of Dymola real-time communication
functions and the controller bumpless transfer between remote control mode and
rider onboard mode.

Figure 5.18 shows how the vehicle platform angle (blue signal) follows the
angle reference (red signal) during the change of mode. During the
first , the platform was tilted backwards at the self-balancing position
without the rider (self balance-remote control mode), then the rider proceeded to
put his or her foot on the foot detect button to change the reference angle to the
platform onboard position. The transition between the two modes took
approximately . The platform angle has not a sharp response.

Figure 5.18 Platform performance following the angle reference.

Figure 5.19 shows the K matrix bumpless change from remote control mode

to rider onboard mode. The value of in the first mode corresponds to of
the second mode; this was implemented in order to have a less agressive behavior
of the vehicle while it is controlled remotely. The change of the parameters took

 approximately.
The bumpless change of parameters combined with the filtered angle

reference generates a smoother control signal during the change of mode,
avoiding the vehicle to become unstable because of a high peak in the control
signal.

77

Figure 5.19 Gain matrix K bumpless transfer from remote control mode to rider

onboard mode. a) K1 bumpless transfer; b) K2 bumpless transfer; c) K3 bumpless
transfer

78

5.10 Communication Program

The real-time communication setup in Figure 4.14 was implemented in Dymola.
The easiest way to test if there was in fact a bidirectional communication was to
send keyboard commands and wait to receive the state signals.

Figure 5.20a shows the sent keyboard command signal; a go forward
command was sent at 5 seconds and kept for the rest of the experiment. The
platform angle reference started to change as soon as the up arrow key was
pressed making the platform to lean forward (Figure 5.20c) and therefore the
wheels started to move after three seconds when the inertia was overcome (Figure
5.20b). This showed that the vehicle was receiving the correct data from Dymola;
the state signals were received in Dymola and could be real-time visualized so the
reception interfaces were working properly.

The control response is slow because the use of the reduced K gain. There is
also an apparent steady state error, which could be solved by adding integral
action to the controller. However, it was easier to manually tune the angle
reference in order to get the desired performance since there are only two possible
angle references and these are not externally accessed by the user.

Although the bidirectional communication was successful (no software
problems were found), the performance varies depending on the hardware used.
By using a simple serial cable between the personal computer and the vehicle, the
communication program works without problems, but when the RS232-
Bluethooth adapter is connected to the vehicle, the controller has slower response
even when no data is being sent or received. This is thought to be caused by
inadequate power supply for the adapter.

79

Figure 5.20 Vehicle behavior controlled by remote control from a computer

keyboard. a) Up key command to move forward the vehicle; b) Wheel angular
velocity in remote control mode; c) Platform angle and reference angle in remote

control mode

80

6. Conclusions and Further Work

This Master’s thesis has dealt with the development of a control system for a two-
wheeled self-balancing vehicle (Elektor Wheelie) based onn a model generated
using Modelica. The vehicle has an Atmega32 microcontroller with no floating
point capability serving as control unit.

A simple linear model of the vehicle was created using the Modelica
Multibody and LinearSystems2 libraries, and based on that model an LQR
controller was designed in order to stabilize the system. The performance of the
model was tested for disturbance rejections and a simple test ride was simulated,
these experiments had successful results showing that the model behaves as a self-
balancing vehicle.

Measurements of the wheel velocity, platform angle and platform angular
velocity had to be taken in real time in order to implement the designed controller.
Four sensors were available for this, two angular position sensors for the wheels,
an accelerometer and a gyroscope. The wheel angular velocity was calculated
using a simple difference estimator, the output of the estimator had to be filtered
using an exponentially moving average filter in order to obtain a smoother
response.

Two estimators for the platform angle and its angular velocity were
designed and tested. A complementary filter was designed in order to calculate the
platform angle unaffected by the noise in the accelerometer output and the time
variant offset in the gyroscope output. The second solution consisted of design of
a Kalman filter in order to estimate the platform angle and the gyroscope drift.
Both estimators had successful results estimating the platform angle but the
Kalman filter had an extra advantage since it solved the effect of the drift of the
platform angular velocity.

A base program was programmed in the vehicle control unit; this program
handled the controller and the two estimators as periodic tasks which
communicated with each other and the sensors via interfaces. Using the pre-
defined interfaces, any programmer could easily replace the tasks in order to test
different estimators or control strategies.

As the control unit did not support floating-point operations, the tasks were
programmed manually using fixed-point representation of the real variables. The
Dymola automatic code generation feature was used to generate fixed-point code
for each task. In order to do that, the estimators and special mapping functions had
to be programmed in Modelica. The generated codes had to be slightly modified
in order to adapt its structure to the microcontroller and compiler requirements.
The automatic code generation reduces the time a programmer spends designing
the tasks because he or she has to care about the range of the variables and its
desired resolution without taking into account the fixed-point arithmetic rules.
However, the generated code does not handle basic problems such as overflows
caused by a bad selection of variable ranges.

The manual and automatically generated code performance was tested
during experimental rides. There was no significant difference between both
results which shows that the automatic code generation is a useful tool
comparable to the manual coding.

81

The base program was modified in order to include bidirectional
communication between the vehicle and an external computer. The program was
able to switch between a self-stabilizing mode and regular driving mode, as well
as to receive keyboard instructions during the self-stabilizing mode. The nature of
the program made the implementation of a bumpless change of parameters and
reference filtering necessary. ModelicaEmbeddedSystems library add-on packages
were used to generate the computer program which was able to send keyboard
commands to the vehicle and receive information regarding the states in real-time.

Many new project ideas could be formulated based on the results of this
Master’s thesis. A better identification of the physical parameters of the vehicle is
needed in order to get a more accurate model, it would be useful to include a
model for the wheel friction, separate models for each motor as well as a more
complex model of the user. These models could be easily generated and simulated
using Modelica.

From the control point of view, it is needed to evaluate the effect of
different user weights and sizes in the control response, complex predictive or
adaptive algorithms could be used to obtain a better response regarding the
characteristics of the user. This implementation would have to include the
improvement of the control unit hardware.

The code generation feature still needs to be tested in systems which have
characteristics to handle more complex implementations such memory operations,
floating point and sensor integration. On the other hand, the real time and
embedded systems features could be used together with a better communication
protocol in order to run an external controller from the computer instead of the on
board control unit.

82

7. References

[1] Modelica Association (2010). “A Unified Object-Oriented Language for
Physical Systems Modeling Language Specification Version 3.2 March 24, 2010”.
Linköping, Sweden. Available online:
https://www.modelica.org/documents/ModelicaSpec32.pdf. Accessed on January
24th, 2011.

[2] Dassault Systèmes AB (2010). “Dymola (Dynamic Modeling Laboratory).
User Manual-Volume 1”. Lund, Sweden, pp. (11-133).

[3] Modelica Association (2011). “Modelica Tools”. Linköping, Sweden.
Available online: https://www.modelica.org/tools. Accessed on January 24th,
2011.

[4] Dassault Systèmes (2011). “Dymola”. France. Available online:
http://www.3ds.com/products/catia/portfolio/dymola. Accessed on January 28th,
2011.

[5] Peter Fritzson (2003). “Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1”. Linköping, Sweden, pp. (587-614)

[6] Dassault Systèmes AB (2010). “Dymola Version 7.4”. Lund, Sweden.
Available online: http://www.3ds.com/products/catia/portfolio/dymola. Accessed
on January 28th, 2011.

[7] Marcus Baur et al. “Modelica Libraries for Linear control Systems”. Modelica
seventh conference, Como, Italy (Sep 20-22, 2009), pp. (593-602).

 [8] Hilding Elmqvist et al. “Modelica for Embedded Systems”. Modelica seventh
conference, Como, Italia (Sep 20-22, 2009), pp. (354-363).

[9] Johan Åkesson et al. “Dymola and Modelica_EmbeddedSystems in Teaching-
Experiences from a Project Course”. Modelica seventh conference, Como, Italia
(Sep 20-22, 2009), pp. (603-611).

[10] Vahid, F. y Givargis, T. (2002) “Embeded Systems Design: A Unified
Hardware/Software Introduction”. Wiley, USA. First Edition, pp.(1-4)

[11] Stankovi, J. “Real-Time and Embedded Systems” ACM Computer Surveys,
Vol. 28, No.1, Mar. 1996, pp 205-208.

[12] Goher, M. y Tokhi, M. “Modeling and Control of a two Wheeled Machine: a
Genetic Algorithm-Based Optimization Approach”. Cyber Journals:
Multidisciplinary Journals in Science and Technology, Journal selected Areas in
Robotics and Control (JSRC). December 2010.

83

[13] Seo, S. et al. “Simulation of Attitude Control of a Wheeled Inverted
Pendulum”. International Conference on Control, Automation and Systems,
Seoul, Korea (Oct.17-20, 2007).

[14] Segway Inc. (2011). “How the Segway PT Works”. New Hampshire, USA.
Available online: http://www.segway.com/individual/learn-how-works.php.
Accessed on February 2nd, 2011.

[15] Jean-Vincent Defrance et al (2010). “Planning Simulation-Based Design
Study Project: SEGWAY”. Georgia Institute of Technology, USA. Available
online: http://www.srl.gatech.edu/education/ME6105/Projects/Fa10/Segway/.
Accessed on January 30th, 2011.

[16] Elektor (2011). “Elektor Wheelie”. United Kingdom. Available online:
http://www.elektor.com/projects/Elektor Wheelie-characteristics.986894.lynkx.
Accessed on January 26, 2011 .

[17] Elektor. “Elektor Wheelie Elektor’s DIY self-balancing vehicle”. Elektor
Magazine, 6/2009, pp. (44-45).

[18] Chris Krohne. “Elektor Wheelie The electronics behind a rather special kind
of vehicle”. Elektor Magazine 7-8/2009, pp. (66-71).

[19] EngineersGarage (2011). “AVR Microcontroller”. Available online:
http://www.engineersgarage.com/articles/avr-microcontroller. Accessed on
January 25th, 2011.

[20] Kuo, B. (1996) “Sistemas de Control Automático”, Prentice Hall, Mexico.
Seventh edition, pp. (226-228).

[21] Hendricks, E. et al (2008) “Linear Systems Control, Deterministics and
Stochastic Methods”, Springer, Berlin, Germany, pp. (9-25).

[22] Glad, T. y Ljung, L. (2000) “Control Theory, Multivariable and Nonlinear
Methods”, Taylor & Francis, England, pp. (233-276).

[23] Ogata, K. (2002) “Modern Control Engineering”, Prentice Hall, USA. Fourth
edition, pp. (897-904).

[24] Oberstar, E. (2007) “Fixed-point Representation & Fractional Math”,
Oberstar Consulting. Available online:
http://www.superkits.net/whitepapers/Fixed%20Point%20Representation%20&%
20Fractional%20Math.pdf. Accessed on February 13th, 2011.

[25] Årzén, K. (2009) “Real-Time Control Systems”, Department of Automatic
Control Lund University, Sweden, pp. (206-210).

84

[26] Smith, S. (1999) “The Scientist and Engineer’s Guide to Digital Signal
Processing”, California Technical Publishing, USA. Second Edition, pp. (277-
284).

[27] Seborg, D., et al. (2004) “Process Dynamics and Control”. Wiley, USA.
Second Edition, pp. (316-319).

[28] Bernard Favre-Bulle (2005). “Robot Motion Trajectory-Measurement with
Linear Inertial Sensors”. Cutting Edge Robotics, Germany, pp. (127-128).

[29] Gaydou David et al (2011). “Filtro complementario para estimación de
actitud aplicado al controlador embebido de un cuatrirrotor”. Centro de
Investigación en Informática para la Ingeniería, Universidad Tecnológica
Nacional, Facultad Regional Córdoba, Argentina, pp. (3-5).

[30] Walter T. Higgins, Jr. (1975). “A Comparison of Complementary and
Kalman Filtering”. IEEE Transactions on aerospace and electronic systems.
Arizona State University, USA, pp. (321-322).

[31] Ljung, L. (1987) “System Identification: Theory for the User”, Prentice Hall,
USA. First Edition, pp. (226-228).

[32] López, M. (2007) “Identificación de Sistemas. Aplicación al Modelado de un
Motor de Contínua”, Universidad de Alcalá, Departamento de Electrónica.
Available on Internet:
sicuatrirrotor.googlecode.com/svn/trunk/Documentacion/Identif.pdf. Consulted on
February 15th, 2011.

[33] Shane Colton (2007). “The Balance Filter: A Simple Solution for Integrating
Accelerometer and Gyroscope Measurements for a Balancing Platform”. MIT
University, USA. Available online: http://web.mit.edu/scolton/www/filter.pdf.
Accessed on January 30th, 2011.

85

8. Appendix

A. Elektor Wheelie Appearance

Figure 8.1 General appearance of the Elector Wheelie

Figure 8.2 Control unit, power switch and foot switch

86

Figure 8.3 Location of wheel encoder

Figure 8.4 Wheel encoder

87

B. Modelica Block Tasks for Code Generation

Table 8.1Wheel estimator Modelica block
block WheelVel

extends Modelica.Blocks.Interfaces.BlockIcon;
 Modelica.Blocks.Interfaces.RealInput ADCRightEncoder(min=0,max=1023)
 "Connector of Real input signal" annotation (fixedpoint(bits=0));
 Modelica.Blocks.Interfaces.RealInput RightWheelDir(min=0,max=1)
 "Connector of Real input signal 2" annotation (fixedpoint(bits=0));
 Modelica.Blocks.Interfaces.RealInput ADCLeftEncoder(min=0,max=1023)
 "Connector of Real input signal" annotation (fixedpoint(bits=0));
 Modelica.Blocks.Interfaces.RealInput LeftWheelDir(min=0,max=1)
 "Connector of Real input signal 2" annotation (fixedpoint(bits=0));
 Modelica.Blocks.Interfaces.RealOutput Vel(min=-70,max=70)
 "Output signal connector" annotation (fixedpoint(bits=8));

discrete Real LeftAng(min=-8,max=7) annotation(fixedpoint(bits=12));
discrete Real RightAng(min=-8,max=7) annotation(fixedpoint(bits=12));
discrete Real LeftDiff(min=-8,max=7) annotation(fixedpoint(bits=12));
discrete Real LeftDiff2(min=-8,max=7) annotation(fixedpoint(bits=12));
discrete Real RightDiff(min=-8,max=7) annotation(fixedpoint(bits=12));
discrete Real RightDiff2(min=-8,max=7) annotation(fixedpoint(bits=12));
discrete Real LeftVel(min=-70,max=70) annotation(fixedpoint(bits=8));
discrete Real RightVel(min=-70,max=70) annotation(fixedpoint(bits=8));
discrete Real LeftVel2(min=-70,max=70) annotation(fixedpoint(bits=8));
discrete Real RightVel2(min=-70,max=70) annotation(fixedpoint(bits=8));
discrete Real RightSum(min=-1024,max=1023) annotation(fixedpoint(bits=5));
discrete Real LeftSum(min=-1024,max=1023) annotation(fixedpoint(bits=5));
discrete Real RightMaf(min=-70,max=70) annotation(fixedpoint(bits=8));
discrete Real LeftMaf(min=-70,max=70) annotation(fixedpoint(bits=8));

equation

 when sample(0,0.1) then

 LeftAng = (ADCLeftEncoder - 546) * (Modelica.Constants.pi / 438);
 LeftDiff=LeftAng - pre(LeftAng);
 if (LeftDiff < 0 and LeftWheelDir <1) then
 if (LeftDiff < -0.087) then
 LeftDiff2 = LeftDiff+2*Modelica.Constants.pi;
 else
 LeftDiff2 = 0;
 end if;
 elseif (LeftDiff > 0 and LeftWheelDir >0) then
 if (LeftDiff > 0.087) then
 LeftDiff2 = LeftDiff-2*Modelica.Constants.pi;
 else
 LeftDiff2 = 0;
 end if;
 else
 LeftDiff2 = LeftDiff;
 end if;
 LeftVel=LeftDiff2*200;
 if LeftVel<-70 or LeftVel>70 then
 LeftVel2=0;
 else
 LeftVel2=LeftVel;
 end if;

88

 LeftSum = (0.9 * pre(LeftSum)) + LeftVel2;
 LeftMaf = LeftSum * 0.1;
 RightAng = (546 - ADCRightEncoder) * (Modelica.Constants.pi / 438);
 RightDiff=RightAng - pre(RightAng);
 if (RightDiff < 0 and RightWheelDir <1) then
 if (RightDiff < -0.087) then
 RightDiff2 = RightDiff+2*Modelica.Constants.pi;
 else
 RightDiff2 = 0;
 end if;
 elseif (RightDiff > 0 and RightWheelDir >0) then
 if (RightDiff > 0.087) then
 RightDiff2 = RightDiff-2*Modelica.Constants.pi;
 else
 RightDiff2 = 0;
 end if;
 else
 RightDiff2 = RightDiff;
 end if;
 RightVel=RightDiff2*200;
 if RightVel<-70 or RightVel>70 then
 RightVel2=0;
 else
 RightVel2=RightVel;
 end if;
 RightSum = (0.9 * pre(RightSum)) + RightVel2;
 RightMaf = RightSum * 0.1;

 end when;

Vel=(RightMaf+LeftMaf)*0.5;

end WheelVel;

89

Table 8.2 LQR feedback gain Modelica Block
block Controller

extends Modelica.Blocks.Interfaces.BlockIcon;
 Modelica.Blocks.Interfaces.RealInput PlatVel(min=-3.5,max=3.5)
 "Connector of Real input signal"annotation (fixedpoint(bits=13));
 Modelica.Blocks.Interfaces.RealInput PlatAng(min=-1,max=1)
 "Connector of Real input signal 2"annotation (fixedpoint(bits=14));
 Modelica.Blocks.Interfaces.RealInput WheelVel(min=-70,max=70)
 "Connector of Real input signal"annotation (fixedpoint(bits=8));
 Modelica.Blocks.Interfaces.RealOutput Control(min=-180,max=180)
 "Output signal connector" annotation (fixedpoint(bits=0));

discrete Real Sum(min=-32000,max=32000) annotation(fixedpoint(bits=0));
discrete Real Maf(min=-180,max=-180) annotation(fixedpoint(bits=0));
discrete Real Control1(min=-180,max=180) annotation(fixedpoint(bits=0));

parameter Real K1=8.9552 annotation(fixedpoint(bits=10));
parameter Real K2=278.994 annotation(fixedpoint(bits=5));
parameter Real K3=89.2559 annotation(fixedpoint(bits=7));
parameter Real K1maf(min=0, max=1) = 0.9 annotation(fixedpoint(bits=15));
parameter Real K2maf(min=0, max=0.2) = 0.1 annotation(fixedpoint(bits=15));

equation

 when sample(0,0.1) then

 Control1=K1*WheelVel+K2*PlatAng+K3*PlatVel;
 Sum = (K1maf * pre(Sum)) + Control1;
 Maf = Sum * K2maf;
 end when;

Control=Maf;

end Controller;

90

Table 8.3 Platform estimator with complementary filter Modelica block
block Platform_Angle_Velocity

 Modelica.Blocks.Interfaces.RealInput ADCAdxl(min=0,max=1023)
 "ADXL ADC signal"annotation (fixedpoint(bits=0));
 Modelica.Blocks.Interfaces.RealInput ADCGyro(min=0,max=1023)
 "Gyro ADC signal"annotation (fixedpoint(bits=0));
 Modelica.Blocks.Interfaces.RealOutput Platform_Angle(min=-1,max=1)
 "Platform Angle [radians]" annotation (fixedpoint(bits=14));
 Modelica.Blocks.Interfaces.RealOutput Platform_Velocity(min=-3.5,max=3.5)
 "Platform Angular Velocity [rads/sec]" annotation (fixedpoint(bits=13));

 discrete Real adxl_angle(min=-1,max=1) annotation(fixedpoint(bits=14));
 discrete Real gyro_angvel(min=-3.5,max=3.5) annotation(fixedpoint(bits=13));
 discrete Real gyro_angle(min=-1,max=1) annotation(fixedpoint(bits=14));
 discrete Real tilt(min=-1,max=1) annotation(fixedpoint(bits=14));
 discrete Real sum_gyro(min=-64,max=63) annotation(fixedpoint(bits=9));
 discrete Real gyro_angvel_maf(min=-4,max=3) annotation(fixedpoint(bits=13));

 parameter Real dt(min=0, max=0.01)= 0.005 "dt" annotation(fixedpoint(bits=15));
 parameter Real Kacc(min=0, max=0.1) = 0.0282 annotation(fixedpoint(bits=15));
 parameter Real Kgyro(min=0, max=0.1) = 0.04265 annotation(fixedpoint(bits=15));
 parameter Real K1maf(min=0, max=1) = 0.9 annotation(fixedpoint(bits=15));
 parameter Real K2maf(min=0, max=0.2) = 0.1 annotation(fixedpoint(bits=15));
 parameter Real K1cf(min=0, max=0.1) = 0.02 annotation(fixedpoint(bits=15));
 parameter Real K2cf(min=0, max=1) = 0.98 annotation(fixedpoint(bits=15));
 parameter Real n(min=0, max=20)= 5 "n";

equation

 when sample(0,0.1) then

 adxl_angle = (ADCAdxl - 512) * Kacc; // (adc3-
Vaccoff) x (5[V]/1023) x (1/0.174[V/g]) [radians]
 gyro_angvel = (ADCGyro - 184) * Kgyro; // (adc3-
GYROoff) x (5[V]/1023) x (1/0.002[V/deg/sec]) x (pi/180) [rad/sec]
 sum_gyro = (K1maf * pre(sum_gyro)) + gyro_angvel;
 gyro_angvel_maf = sum_gyro * K2maf;
 gyro_angle = (gyro_angvel_maf * dt) + pre(tilt); // (Gyro_AngVel * dt) + AngleF [radians]
 tilt = (adxl_angle * K1cf) + (gyro_angle * K2cf); // low-pass filter + high-
pass filter // u1 = ADXL_Angle // u2 = Gyro_Angle = Integration_Part
 //sum_tilt = (K1maf * pre(sum_tilt)) + tilt;
 //tilt_maf = sum_tilt * K2maf;

 end when;

 Platform_Angle = tilt;
 Platform_Velocity = gyro_angvel_maf;

end Platform_Angle_Velocity;

91

Table 8.4 Platform estimator with Kalman filter Modelica block

Platform angular velocity, drift and angle (Kalman Filter) estimator in Dymola
block Plat_Ang_Vel_KF

 Modelica.Blocks.Interfaces.RealInput ADCAdxl(min=0,max=1023)
 "ADXL ADC signal"annotation (fixedpoint(bits=0));
 Modelica.Blocks.Interfaces.RealInput ADCGyro(min=0,max=1023)
 "Gyro ADC signal"annotation (fixedpoint(bits=0));
 Modelica.Blocks.Interfaces.RealOutput Platform_Angle(min=-1,max=1)
 "Platform Angle [radians]" annotation (Placement(transformation(fixedpoint(bits=14));
 Modelica.Blocks.Interfaces.RealOutput Platform_Velocity(min=-3.5,max=3.5)
 "Platform Angular Velocity [rads/sec]" annotation (fixedpoint(bits=13));

 discrete Real adxl_angle(min=-1,max=1) annotation(fixedpoint(bits=14));
 discrete Real gyro_angvel(min=-3.5,max=3.5) annotation(fixedpoint(bits=13));
 discrete Real tilt(min=-1,max=1) annotation(fixedpoint(bits=14));
 discrete Real drift(min=-3.5,max=3.5) annotation(fixedpoint(bits=13));
 discrete Real sum_gyro(min=-64,max=63) annotation(fixedpoint(bits=9));
 discrete Real gyro_angvel_maf(min=-3.5,max=3.5) annotation(fixedpoint(bits=13));
 discrete Real gyro_angvel_new(min=-3.5,max=3.5) annotation(fixedpoint(bits=13));

 parameter Real Kacc(min=0, max=0.1) = 0.0282 annotation(fixedpoint(bits=15));
 parameter Real Kgyro(min=0, max=0.1) = 0.04265 annotation(fixedpoint(bits=15));
 parameter Real K1maf(min=0, max=1) = 0.9 annotation(fixedpoint(bits=15));
 parameter Real K2maf(min=0, max=0.2) = 0.1 annotation(fixedpoint(bits=15));
 parameter Real KF1(min=0, max=1) = 0.9942 annotation(fixedpoint(bits=15));
 parameter Real KF2(min=0, max=0.2) = 0.004985 annotation(fixedpoint(bits=15));
 parameter Real KF3(min=0, max=0.1) = 0.005832 annotation(fixedpoint(bits=15));
 parameter Real KF4(min=0, max=0.1) = 0.003153 annotation(fixedpoint(bits=15));

equation

 when sample(0,0.1) then

 adxl_angle = (ADCAdxl - 512) * Kacc; // (adc3-
Vaccoff) x (5[V]/1023) x (1/0.174[V/g]) [radians]
 gyro_angvel = (ADCGyro - 184) * Kgyro; // (adc3-
GYROoff) x (5[V]/1023) x (1/0.002[V/deg/sec]) x (pi/180) [rad/sec]
 sum_gyro = (K1maf * pre(sum_gyro)) + gyro_angvel;
 gyro_angvel_maf = sum_gyro * K2maf;
 /// Kalman Estimator ///
 tilt = (KF1 * pre(tilt)) - (KF2 * pre(drift)) + (KF2 * gyro_angvel_maf) + (KF3 * adxl_angle);
 drift = (KF4 * pre(tilt)) + (pre(drift)) - (KF4 * adxl_angle);
 ///////////////////////
 gyro_angvel_new = gyro_angvel_maf - drift;

 end when;

 Platform_Angle = tilt;
 Platform_Velocity = gyro_angvel_new;

end Plat_Ang_Vel_KF;

92

C. Modelica Communication Blocks and Mapping
Functions for Motor Interfaces

Table 8.5 Modelica communication block and mapping function for set_pwm
interface

a) To port block
block set_pwm

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialWriteRealToPort(minValue=-
180, maxValue=180);
protected
 Real dummy(min= 0, max = 10);
equation
 dummy = Segway.ExternalC.Motor.set_pwm(integer(u),time);

end set_pwm;
b) set_pwm mapping function
function set_pwm

 input Integer u "PWM value for duty cycle";
 input Real Time;
 output Real dummy;

external "C" set_pwm(u);

end set_pwm;

93

D. Modelica Communication Blocks and Mapping
Functions for Wheels Interfaces

Table 8.6 Modelica communication block and mapping function for
get_StateWheelVel interface

a) From port block
block get_StateWheelVel

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(minValue=-
70, maxValue=70);
equation
 y = Segway.ExternalC.Wheels.get_StateWheelVel(time);

end get_StateWheelVel;
b) get_StateWheelVel mapping function
function get_StateWheelVel "Get Wheel Angular Velocity"

 input Real Time;
 output Real signal;
external "C" signal = get_StateWheelVel();

end get_StateWheelVel;

Table 8.7 Modelica communication block and mapping function for
get_ADCLeftEncoder interface

a) From port block
block get_ADCLeftEncoder

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(
 minValue=0, maxValue=1024);
parameter Integer n = 0;
equation
 y = Segway.ExternalC.Wheels.get_ADCLeftEncoder(time,n);

end get_ADCLeftEncoder;
b) get_ADCLeftEncoder mapping function
function get_ADCLeftEncoder

input Real Time;
input Integer n;
output Real signal;
external "C" signal=read_adc(n);

end get_ADCLeftEncoder;

94

Table 8.8 Modelica communication block and mapping function for
get_ADCRightEncoder interface

a) From port block
block get_ADCRightEncoder

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(
 minValue=0, maxValue=1024);
parameter Integer n = 1;
equation
 y = Segway.ExternalC.Wheels.get_ADCRightEncoder(time,n);

end get_ADCRightEncoder;
b) get_ADCRightEncoder mapping function
function get_ADCRightEncoder

input Real Time;
input Integer n;
output Real signal;
external "C" signal=read_adc(n);

end get_ADCRightEncoder;

Table 8.9 Modelica communication block and mapping function for
get_RightWheelDir interface

a) From port block
block get_RightWheelDir

extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(
minValue=0, maxValue=2);
equation
 y = Segway.ExternalC.Wheels.get_RightWheelDir(time);

end get_RightWheelDir;
b) get_RightWheelDir mapping function
function get_RightWheelDir

input Real Time;
output Real signal;
external "C" signal=get_RightWheelDir();

end get_RightWheelDir;

95

Table 8.10 Modelica communication block and mapping function for
get_LeftWheelDir interface

a) From port block
block get_LeftWheelDir

extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(
 minValue=0, maxValue=2);
equation
 y = Segway.ExternalC.Wheels.get_LeftWheelDir(time);

end get_LeftWheelDir;
b) get_LeftWheelDir mapping function
function get_LeftWheelDir

input Real Time;
output Real signal;
external "C" signal=get_LeftWheelDir();

end get_LeftWheelDir;

Table 8.11 Modelica communication block and mapping function for
set_StateWheelVel interface

a) To port block
block set_StateWheelVel

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialWriteRealToPort(minValue=-
70, maxValue=70);
protected
 Real dummy(min= 0, max = 10);
equation
 dummy = Segway.ExternalC.Wheels.set_StateWheelVel(integer(u),time);

end set_StateWheelVel;
b) set_StateWheelVel mapping function
function set_StateWheelVel

 input Integer wheelvel "wheel velocity";
 input Real Time;
 output Real dummy;
external "C" set_StateWheelVel(wheelvel);

end set_StateWheelVel;

96

E. Modelica Communication Blocks and Mapping
Functions for Platform Interfaces

Table 8.12 Modelica communication block and mapping function for

get_ADCAdxl interface
a) From port block
block get_ADCAdxl

 extends
 Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(minValue=0, max
Value=1024);
 parameter Integer n = 3;
equation
 y = Segway.ExternalC.Platform.get_ADCAdxl(time,n);

end get_ADCAdxl;
b) get_ADCAdxl mapping function
function get_ADCAdxl

 input Real Time;
 input Integer n;
 output Real signal;
external "C" signal=read_adc(n);

end get_ADCAdxl;

Table 8.13 Modelica communication block and mapping function for
get_ADCGyro interface

a) From port block
block get_ADCGyro

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(
 minValue=0, maxValue=1024);
 parameter Integer n = 5;
equation
 y = Segway.ExternalC.Platform.get_ADCGyro(time,n);

end get_ADCGyro;
b) get_ADCGyro mapping function
function get_ADCGyro

 input Real Time;
 input Integer n;
 output Real signal;
 external "C" signal=read_adc(n);

end get_ADCGyro;

97

Table 8.14 Modelica communication block and mapping function for
get_StateTilt interface

a) From port block
block get_StateTilt

extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(minValue=-
1, maxValue=1);
equation
 y = Segway.ExternalC.Platform.get_StateTilt(time);

end get_StateTilt;
b) get_StateTilt mapping function
function get_StateTilt "Platform Tilt"

 input Real Time;
 output Real signal;
external "C" signal = get_StateTilt();

end get_StateTilt;

Table 8.15 Modelica communication block and mapping function for set_StateTilt
interface

a) To port block
block set_StateTilt

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialWriteRealToPort(minValue=-
1, maxValue=1);
protected
 Real dummy(min= 0, max = 10);
equation
 dummy = Segway.ExternalC.Platform.set_StateTilt(integer(u),time);

end set_StateTilt;
b) set_StateTilt mapping function
function set_StateTilt

 input Integer tilt "platform angle";
 input Real Time;
 output Real dummy;
external "C" set_StateTilt(tilt);

end set_StateTilt;

98

Table 8.16 Modelica communication block and mapping function for
get_StatePlatformVel interface

a) From port block
block get_StatePlatformVel

 extends
 Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort(minValue=
-3.5, maxValue=3.5);
equation
 y = Segway.ExternalC.Platform.get_StatePlatformVel(time);

end get_StatePlatformVel;
b) get_StatePlatformVel mapping function
function get_StatePlatformVel "Platform Angular Velocity"

 input Real Time;
 output Real signal;
external "C" signal = get_StatePlatformVel();

end get_StatePlatformVel;

Table 8.17 Modelica communication block and mapping function for
set_StatePlatformVel interface

a) To port block
block set_StatePlatformVel

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialWriteRealToPort(minValue=
-3.5, maxValue=3.5);
protected
 Real dummy(min= 0, max = 10);
equation
 dummy = Segway.ExternalC.Platform.set_StatePlatformVel(integer(u),time);

end set_StatePlatformVel;
b) set_StatePlatformVel mapping function
block set_StatePlatformVel

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialWriteRealToPort(minValue=-
10, maxValue=10);
protected
 Real dummy(min= 0, max = 10);
equation
 dummy = Segway.ExternalC.Platform.set_StatePlatformVel(integer(u),time);

end set_StatePlatformVel;

99

F. Modelica Communication Blocks and Mapping
Functions for Bluetooth Communication Interfaces

Table 8.18 Modelica communication block and mapping function for Host_Write
interface

a) To port block
block Host_Write

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialWriteRealToPort;
 parameter Real h=0.1 "Sample period";
protected
 Real dummy(min= 0, max = 10);
equation
 when sample(0, h) then
 dummy = Segway.ExternalC.Com.Host_Write(integer(u), time);
 end when;

end Host_Write;
b) Host_Write mapping function
function Host_Write

 input Integer signal "Signal";
 input Real Time;
 output Integer success;
external"C" success = host_port_write_int32(signal);

end Host_Write;

Table 8.19 Modelica communication block and mapping function for
Host_WritRead interface

a) From port block
block Host_Read

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.PartialReadRealFromPort;
equation
 when sample(0, 0.1) then
 y = Segway.ExternalC.Com.Host_Read(time);
 end when;
 end Host_Read;
b) Host_Read mapping function
function Host_Read

input Real Time;
//output Real signal;
output Integer signal;
external"C" signal = host_port_read_int32();

end Host_Read;

100

G. Automatically Generated C Codes

Table 8.20 Automatically generated code for controller task
a) Declarations
/* output Modelica.Blocks.Interfaces.RealOutput wheel_velocity.y(min = -120.0,
 max = 120.0) annotation(fixedpoint(bits = 8.0)); */
int_16 wheelx_0velocity_y_FP = 0; /* Q[7, 8] */

/* output Modelica.Blocks.Interfaces.RealOutput platform_angle.y(min = -0.9,
 max = 0.9) annotation(fixedpoint(bits = 14.0)); */
int_16 platformx_0angle_y_FP = 0; /* Q[1, 14] */

/* output Modelica.Blocks.Interfaces.RealOutput platform_velocity.y(min = -3.8,
 max = 3.8) annotation(fixedpoint(bits = 13.0)); */
int_16 platformx_0velocity_y_FP = 0; /* Q[3, 13] */

/* discrete Real controller.Control1(min = -200.0, max = 200.0) annotation(fixedpoint(
 bits = 0.0)); */
int_16 controller_Control1_FP = 0; /* Q[8, 0] */

/* discrete Real controller.Sum(min = -32000.0, max = 32000.0) annotation(fixedpoint(
 bits = 0.0)); */
int_16 controller_Sum_FP = 0; /* Q[15, 0] */

/* discrete Real controller.Maf(min = -200.0, max = -200.0) annotation(fixedpoint(
 bits = 0.0)); */
int_16 controller_Maf_FP = 0; /* Q[8, 0] */

/* input Modelica.Blocks.Interfaces.RealInput Control_signal.u(min = -180.0,
 max = 180.0) annotation(fixedpoint(bits = 0.0)); */
int_16 Controlx_0signal_u_FP = 0; /* Q[8, 0] */

/* parameter Real controller.K1 = 8.9552 annotation(fixedpoint(bits = 10.0));
 */
int_16 controller_K1_FP = 9170; /* Q[5, 10] Derived: min = -17.9104, max = 17.9104 */

/* parameter Real controller.K1maf(min = 0.0, max = 1.0) = 0.9 annotation(fixedpoint(
 bits = 15.0)); */
int_16 controller_K1maf_FP = 29491; /* Q[1, 15] */

/* parameter Real controller.K2 = 278.994 annotation(fixedpoint(bits = 5.0));
 */
int_16 controller_K2_FP = 8927; /* Q[10, 5] Derived: min = -557.988, max = 557.988 */

/* parameter Real controller.K2maf(min = 0.0, max = 0.2) = 0.1 annotation(fixedpoint(
 bits = 15.0)); */
int_16 controller_K2maf_FP = 3276; /* Q[1, 15] */

/* parameter Real controller.K3 = 89.2559 annotation(fixedpoint(bits = 7.0));
 */
int_16 controller_K3_FP = 11424; /* Q[8, 7] Derived: min = -178.5118, max = 178.5118 */

/* discrete Real PREcontroller.Sum(min = -32000.0, max = 32000.0) */
int_16 PREcontroller_Sum_FP = 0; /* Q[15, 0] */
b) Equations
 /* wheel_velocity.y = Segway.ExternalC.Wheels.get_StateWheelVel(time); */
wheelx_0velocity_y_FP = (get_StateWheelVel());

/* platform_angle.y = Segway.ExternalC.Platform.get_StateTilt(time); */

101

platformx_0angle_y_FP = (get_StateTilt());

/* platform_velocity.y = Segway.ExternalC.Platform.get_StatePlatformVel(time);
 */
platformx_0velocity_y_FP = (get_StatePlatformVel());

/* controller.Control1 = controller.K1*wheel_velocity.y+controller.K2*
 platform_angle.y+controller.K3*platform_velocity.y; */
controller_Control1_FP = ((((((long)controller_K1_FP * ((long)wheelx_0velocity_y_FP << 1))
 >> 1) + ((((long)controller_K2_FP << 2) * ((long)platformx_0angle_y_FP << 1)) >> 4)) + (((
 (long)controller_K3_FP << 1) * (long)platformx_0velocity_y_FP) >> 3))) >> 18;

/* controller.Sum = controller.K1maf*pre(controller.Sum)+controller.Control1; */
controller_Sum_FP = ((((long)controller_K1maf_FP * ((long)PREcontroller_Sum_FP << 1)) + (
 (long)controller_Control1_FP << 16))) >> 16;

/* controller.Maf = controller.Sum*controller.K2maf; */
controller_Maf_FP = ((((long)controller_Sum_FP << 2) * ((long)controller_K2maf_FP << 1))) >>
18;

/* Control_signal.u = controller.Maf; */
Controlx_0signal_u_FP = controller_Maf_FP;

/* Control_signal.toPort.dummy = Segway.ExternalC.Motor.set_pwm(integer(
 Control_signal.u), time); */
set_pwm(Controlx_0signal_u_FP);

/* Update pre variables */
PREcontroller_Sum_FP = controller_Sum_FP;

102

Table 8.21 Automatically generated code for platform estimator task with
complementary filter

a) Declarations
/* output Modelica.Blocks.Interfaces.RealOutput ADCAdxl.y(min = 0.0, max =
 1023.0) annotation(fixedpoint(bits = 0.0)); */
int_16 ADCAdxl_y_FP = 0; /* Q[10, 0] */

/* output Modelica.Blocks.Interfaces.RealOutput ADCGyro.y(min = 0.0, max =
 1023.0) annotation(fixedpoint(bits = 0.0)); */
int_16 ADCGyro_y_FP = 0; /* Q[10, 0] */

/* discrete Real platform_Angle_Velocity.gyro_angvel(min = -4.0, max = 3.0)
 annotation(fixedpoint(bits = 13.0)); */
int_16 platformx_0Anglex_0Velocity_gyrox_0angvel_FP = 0; /* Q[3, 13] */

/* discrete Real platform_Angle_Velocity.sum_gyro(min = -64.0, max = 63.0)
 annotation(fixedpoint(bits = 9.0)); */
int_16 platformx_0Anglex_0Velocity_sumx_0gyro_FP = 0; /* Q[7, 9] */

/* discrete Real platform_Angle_Velocity.gyro_angvel_maf(min = -4.0, max = 3.0)
 annotation(fixedpoint(bits = 13.0)); */
int_16 platformx_0Anglex_0Velocity_gyrox_0angvelx_0maf_FP = 0; /* Q[3, 13] */

/* input Modelica.Blocks.Interfaces.RealInput StatePlatformVel.u(min = -4.0,
 max = 4.0) annotation(fixedpoint(bits = 13.0)); */
int_16 StatePlatformVel_u_FP = 0; /* Q[3, 13] Derived: max = 3.0 */

/* discrete Real platform_Angle_Velocity.adxl_angle(min = -1.0, max = 1.0)
 annotation(fixedpoint(bits = 14.0)); */
int_16 platformx_0Anglex_0Velocity_adxlx_0angle_FP = 0; /* Q[1, 14] */

/* discrete Real platform_Angle_Velocity.gyro_angle(min = -1.0, max = 1.0)
 annotation(fixedpoint(bits = 14.0)); */
int_16 platformx_0Anglex_0Velocity_gyrox_0angle_FP = 0; /* Q[1, 14] */

/* discrete Real platform_Angle_Velocity.tilt(min = -1.0, max = 1.0)
 annotation(fixedpoint(bits = 14.0)); */
int_16 platformx_0Anglex_0Velocity_tilt_FP = 0; /* Q[1, 14] */

/* input Modelica.Blocks.Interfaces.RealInput StatePlatformTilt.u(min = -2.0,
 max = 2.0) annotation(fixedpoint(bits = 14.0)); */
int_16 StatePlatformTilt_u_FP = 0; /* Q[1, 14] Derived: min = -1.0, max = 1.0 */

/* parameter Integer ADCAdxl.fromPort.n = 3 */
int_8 ADCAdxl_fromPort_n_FP = 3; /* Q[3, 0] Derived: min = -6.0, max = 6.0 */

/* parameter Integer ADCGyro.fromPort.n = 5 */
int_8 ADCGyro_fromPort_n_FP = 5; /* Q[4, 0] Derived: min = -10.0, max = 10.0 */

/* parameter Real platform_Angle_Velocity.K1cf(min = 0.0, max = 0.1) = 0.02
 annotation(fixedpoint(bits = 15.0)); */
int_16 platformx_0Anglex_0Velocity_K1cf_FP = 655; /* Q[1, 15] */

/* parameter Real platform_Angle_Velocity.K1maf(min = 0.0, max = 1.0) = 0.9
 annotation(fixedpoint(bits = 15.0)); */
int_16 platformx_0Anglex_0Velocity_K1maf_FP = 29491; /* Q[1, 15] */

/* parameter Real platform_Angle_Velocity.K2cf(min = 0.0, max = 1.0) = 0.98
 annotation(fixedpoint(bits = 15.0)); */

103

int_16 platformx_0Anglex_0Velocity_K2cf_FP = 32112; /* Q[1, 15] */

/* parameter Real platform_Angle_Velocity.K2maf(min = 0.0, max = 0.2) = 0.1
 annotation(fixedpoint(bits = 15.0)); */
int_16 platformx_0Anglex_0Velocity_K2maf_FP = 3276; /* Q[1, 15] */

/* parameter Real platform_Angle_Velocity.Kacc(min = 0.0, max = 0.1) = 0.0282
 annotation(fixedpoint(bits = 15.0)); */
int_16 platformx_0Anglex_0Velocity_Kacc_FP = 924; /* Q[1, 15] */

/* parameter Real platform_Angle_Velocity.Kgyro(min = 0.0, max = 0.1) = 0.04265
 annotation(fixedpoint(bits = 15.0)); */
int_16 platformx_0Anglex_0Velocity_Kgyro_FP = 1397; /* Q[1, 15] */

/* parameter Real platform_Angle_Velocity.dt(min = 0.0, max = 0.01) = 0.005
 annotation(fixedpoint(bits = 15.0)); */
int_16 platformx_0Anglex_0Velocity_dt_FP = 163; /* Q[1, 15] */

/* discrete Real PREplatform_Angle_Velocity.sum_gyro(min = -64.0, max = 63.0) */
int_16 PREplatformx_0Anglex_0Velocity_sumx_0gyro_FP = 0; /* Q[7, 9] */

/* discrete Real PREplatform_Angle_Velocity.tilt(min = -1.0, max = 1.0) */
int_16 PREplatformx_0Anglex_0Velocity_tilt_FP = 0; /* Q[1, 14] */
b) Equations
/* ADCAdxl.y = Segway.ExternalC.Platform.get_ADCAdxl(time, ADCAdxl.fromPort.n);
 */
ADCAdxl_y_FP = read_adc(ADCAdxl_fromPort_n_FP);

/* ADCGyro.y = Segway.ExternalC.Platform.get_ADCGyro(time, ADCGyro.fromPort.n);
 */
ADCGyro_y_FP = read_adc(ADCGyro_fromPort_n_FP);

/* platform_Angle_Velocity.gyro_angvel = (ADCGyro.y-184)*platform_Angle_Velocity.Kgyro;
 */
platformx_0Anglex_0Velocity_gyrox_0angvel_FP = ((((long)ADCGyro_y_FP - VgyroOff) *
 (long)platformx_0Anglex_0Velocity_Kgyro_FP)) >> 2;

/* platform_Angle_Velocity.sum_gyro = platform_Angle_Velocity.K1maf*pre(
 platform_Angle_Velocity.sum_gyro)+platform_Angle_Velocity.gyro_angvel; */
platformx_0Anglex_0Velocity_sumx_0gyro_FP =
((((long)platformx_0Anglex_0Velocity_K1maf_FP
 * (long)PREplatformx_0Anglex_0Velocity_sumx_0gyro_FP) +
((long)platformx_0Anglex_0Velocity_gyrox_0angvel_FP
 << 11))) >> 15;

/* platform_Angle_Velocity.gyro_angvel_maf = platform_Angle_Velocity.sum_gyro*
 platform_Angle_Velocity.K2maf; */
platformx_0Anglex_0Velocity_gyrox_0angvelx_0maf_FP =
((((long)platformx_0Anglex_0Velocity_sumx_0gyro_FP
 << 2) * ((long)platformx_0Anglex_0Velocity_K2maf_FP << 1))) >> 14;

/* StatePlatformVel.u = platform_Angle_Velocity.gyro_angvel_maf; */
StatePlatformVel_u_FP = platformx_0Anglex_0Velocity_gyrox_0angvelx_0maf_FP;

/* StatePlatformVel.toPort.dummy = Segway.ExternalC.Platform.set_StatePlatformVel
 (integer(StatePlatformVel.u), time); */
set_StatePlatformVel(StatePlatformVel_u_FP);

/* platform_Angle_Velocity.adxl_angle = (ADCAdxl.y-510)*platform_Angle_Velocity.Kacc;
 */

104

platformx_0Anglex_0Velocity_adxlx_0angle_FP = ((((long)ADCAdxl_y_FP - VaccOff) *
 (long)platformx_0Anglex_0Velocity_Kacc_FP)) >> 1;

/* platform_Angle_Velocity.gyro_angle = platform_Angle_Velocity.gyro_angvel_maf*
 platform_Angle_Velocity.dt+pre(platform_Angle_Velocity.tilt); */
platformx_0Anglex_0Velocity_gyrox_0angle_FP =
((((((long)platformx_0Anglex_0Velocity_gyrox_0angvelx_0maf_FP
 << 1) * ((long)platformx_0Anglex_0Velocity_dt_FP << 1)) >> 1) +
((long)PREplatformx_0Anglex_0Velocity_tilt_FP
 << 15))) >> 15;// 32768;

/* platform_Angle_Velocity.tilt = platform_Angle_Velocity.adxl_angle*
 platform_Angle_Velocity.K1cf+platform_Angle_Velocity.gyro_angle*
 platform_Angle_Velocity.K2cf; */
platformx_0Anglex_0Velocity_tilt_FP =
(((((long)platformx_0Anglex_0Velocity_adxlx_0angle_FP
 * ((long)platformx_0Anglex_0Velocity_K1cf_FP << 1)) >> 1) +
(((long)platformx_0Anglex_0Velocity_gyrox_0angle_FP
 * ((long)platformx_0Anglex_0Velocity_K2cf_FP << 1)) >> 1))) >> 15; // 32768;

/* StatePlatformTilt.u = platform_Angle_Velocity.tilt; */
StatePlatformTilt_u_FP = platformx_0Anglex_0Velocity_tilt_FP;

/* StatePlatformTilt.toPort.dummy = Segway.ExternalC.Platform.set_StateTilt(
 integer(StatePlatformTilt.u), time); */
set_StateTilt(StatePlatformTilt_u_FP);

/* Update pre variables */
PREplatformx_0Anglex_0Velocity_sumx_0gyro_FP =
platformx_0Anglex_0Velocity_sumx_0gyro_FP;
PREplatformx_0Anglex_0Velocity_tilt_FP = platformx_0Anglex_0Velocity_tilt_FP;

105

Table 8.22 Automatically generated code for platform estimator task with Kalman
filter

a) Declarations
/* output Modelica.Blocks.Interfaces.RealOutput ADCAdxl.y(min = 0.0, max = 1023.0)
annotation(fixedpoint(bits = 0.0)); */
int_16 ADCAdxl_y_FP = 0; /* Q[10, 0] */

/* output Modelica.Blocks.Interfaces.RealOutput ADCGyro.y(min = 0.0, max = 1023.0)
annotation(fixedpoint(bits = 0.0)); */
int_16 ADCGyro_y_FP = 0; /* Q[10, 0] */

/* discrete Real plat_Ang_Vel_KF.gyro_angvel(min = -4.0, max = 3.0)
annotation(fixedpoint(bits = 13.0)); */
int_16 platx_0Angx_0Velx_0KF_gyrox_0angvel_FP = 0; /* Q[3, 13] */

/* discrete Real plat_Ang_Vel_KF.sum_gyro(min = -64.0, max = 63.0)
 annotation(fixedpoint(bits = 9.0)); */
int_16 platx_0Angx_0Velx_0KF_sumx_0gyro_FP = 0; /* Q[7, 9] */

/* discrete Real plat_Ang_Vel_KF.gyro_angvel_maf(min = -4.0, max = 3.0)
 annotation(fixedpoint(bits = 13.0)); */
int_16 platx_0Angx_0Velx_0KF_gyrox_0angvelx_0maf_FP = 0; /* Q[3, 13] */

/* discrete Real plat_Ang_Vel_KF.adxl_angle(min = -1.0, max = 1.0)
 annotation(fixedpoint(bits = 14.0)); */
int_16 platx_0Angx_0Velx_0KF_adxlx_0angle_FP = 0; /* Q[1, 14] */

/* discrete Real plat_Ang_Vel_KF.drift(min = -4.0, max = 3.0) annotation(fixedpoint
(bits = 13.0)); */
int_16 platx_0Angx_0Velx_0KF_drift_FP = 0; /* Q[3, 13] */

/* discrete Real plat_Ang_Vel_KF.gyro_angvel_new(min = -4.0, max = 3.0)
 annotation(fixedpoint(bits = 13.0)); */
int_16 platx_0Angx_0Velx_0KF_gyrox_0angvelx_0new_FP = 0; /* Q[3, 13] */

/* input Modelica.Blocks.Interfaces.RealInput StatePlatformVel.u(min = -4.0,
 max = 4.0) annotation(fixedpoint(bits = 13.0)); */
int_16 StatePlatformVel_u_FP = 0; /* Q[3, 13] Derived: max = 3.0 */

/* discrete Real plat_Ang_Vel_KF.tilt(min = -1.0, max = 1.0) annotation(fixedpoint(
 bits = 14.0)); */
int_16 platx_0Angx_0Velx_0KF_tilt_FP = 0; /* Q[1, 14] */

/* input Modelica.Blocks.Interfaces.RealInput StatePlatformTilt.u(min = -2.0,
 max = 2.0) annotation(fixedpoint(bits = 14.0)); */
int_16 StatePlatformTilt_u_FP = 0; /* Q[1, 14] Derived: min = -1.0, max = 1.0 */

/* parameter Integer ADCAdxl.fromPort.n = 3 */
int_8 ADCAdxl_fromPort_n_FP = 3; /* Q[3, 0] Derived: min = -6.0, max = 6.0 */

/* parameter Integer ADCGyro.fromPort.n = 5 */
int_8 ADCGyro_fromPort_n_FP = 5; /* Q[4, 0] Derived: min = -10.0, max = 10.0 */

/* parameter Real plat_Ang_Vel_KF.K1maf(min = 0.0, max = 1.0) = 0.9
 annotation(fixedpoint(bits = 15.0)); */
int_16 platx_0Angx_0Velx_0KF_K1maf_FP = 29491; /* Q[1, 15] */

/* parameter Real plat_Ang_Vel_KF.K2maf(min = 0.0, max = 0.2) = 0.1
 annotation(fixedpoint(bits = 15.0)); */

106

int_16 platx_0Angx_0Velx_0KF_K2maf_FP = 3276; /* Q[1, 15] */

/* parameter Real plat_Ang_Vel_KF.KF1(min = 0.0, max = 1.0) = 0.9942
 annotation(fixedpoint(bits = 15.0)); */
int_16 platx_0Angx_0Velx_0KF_KF1_FP = 32577; /* Q[1, 15] */

/* parameter Real plat_Ang_Vel_KF.KF2(min = 0.0, max = 0.2) = 0.004985
 annotation(fixedpoint(bits = 15.0)); */
int_16 platx_0Angx_0Velx_0KF_KF2_FP = 163; /* Q[1, 15] */

/* parameter Real plat_Ang_Vel_KF.KF3(min = 0.0, max = 0.1) = 0.005832
 annotation(fixedpoint(bits = 15.0)); */
int_16 platx_0Angx_0Velx_0KF_KF3_FP = 191; /* Q[1, 15] */

/* parameter Real plat_Ang_Vel_KF.KF4(min = 0.0, max = 0.1) = 0.003153
 annotation(fixedpoint(bits = 15.0)); */
int_16 platx_0Angx_0Velx_0KF_KF4_FP = 103; /* Q[1, 15] */

/* parameter Real plat_Ang_Vel_KF.Kacc(min = 0.0, max = 0.1) = 0.0282
 annotation(fixedpoint(bits = 15.0)); */
int_16 platx_0Angx_0Velx_0KF_Kacc_FP = 924; /* Q[1, 15] */

/* parameter Real plat_Ang_Vel_KF.Kgyro(min = 0.0, max = 0.1) = 0.04265
 annotation(fixedpoint(bits = 15.0)); */
int_16 platx_0Angx_0Velx_0KF_Kgyro_FP = 1397; /* Q[1, 15] */

/* discrete Real PREplat_Ang_Vel_KF.sum_gyro(min = -64.0, max = 63.0) */
int_16 PREplatx_0Angx_0Velx_0KF_sumx_0gyro_FP = 0; /* Q[7, 9] */

/* discrete Real PREplat_Ang_Vel_KF.tilt(min = -1.0, max = 1.0) */
int_16 PREplatx_0Angx_0Velx_0KF_tilt_FP = 0; /* Q[1, 14] */

/* discrete Real PREplat_Ang_Vel_KF.drift(min = -4.0, max = 3.0) */
int_16 PREplatx_0Angx_0Velx_0KF_drift_FP = 0; /* Q[3, 13] */
b) Equations
/* ADCAdxl.y = Segway.ExternalC.Platform.get_ADCAdxl(time, ADCAdxl.fromPort.n);
 */
ADCAdxl_y_FP = read_adc(ADCAdxl_fromPort_n_FP);

/* ADCGyro.y = Segway.ExternalC.Platform.get_ADCGyro(time, ADCGyro.fromPort.n);
 */
ADCGyro_y_FP = read_adc(ADCGyro_fromPort_n_FP);

/* plat_Ang_Vel_KF.gyro_angvel = (ADCGyro.y-184)*plat_Ang_Vel_KF.Kgyro; */
platx_0Angx_0Velx_0KF_gyrox_0angvel_FP = ((((long)ADCGyro_y_FP - 184) *
 (long)platx_0Angx_0Velx_0KF_Kgyro_FP)) >> 2;

/* plat_Ang_Vel_KF.sum_gyro = plat_Ang_Vel_KF.K1maf*pre(plat_Ang_Vel_KF.sum_gyro)
 +plat_Ang_Vel_KF.gyro_angvel; */
platx_0Angx_0Velx_0KF_sumx_0gyro_FP = ((((long)platx_0Angx_0Velx_0KF_K1maf_FP *
 (long)PREplatx_0Angx_0Velx_0KF_sumx_0gyro_FP) +
((long)platx_0Angx_0Velx_0KF_gyrox_0angvel_FP
 << 11))) >> 15; //32768;

/* plat_Ang_Vel_KF.gyro_angvel_maf =
plat_Ang_Vel_KF.sum_gyro*plat_Ang_Vel_KF.K2maf;
 */
platx_0Angx_0Velx_0KF_gyrox_0angvelx_0maf_FP =
((((long)platx_0Angx_0Velx_0KF_sumx_0gyro_FP

107

 << 2) * ((long)platx_0Angx_0Velx_0KF_K2maf_FP << 1))) >> 14;// 16384;

/* plat_Ang_Vel_KF.adxl_angle = (ADCAdxl.y-512)*plat_Ang_Vel_KF.Kacc; */
platx_0Angx_0Velx_0KF_adxlx_0angle_FP = ((((long)ADCAdxl_y_FP - 512) *
 (long)platx_0Angx_0Velx_0KF_Kacc_FP)) >> 1;

/* plat_Ang_Vel_KF.drift = plat_Ang_Vel_KF.KF4*pre(plat_Ang_Vel_KF.tilt)+pre(
 plat_Ang_Vel_KF.drift)-plat_Ang_Vel_KF.KF4*plat_Ang_Vel_KF.adxl_angle; */
platx_0Angx_0Velx_0KF_drift_FP = ((((((long)platx_0Angx_0Velx_0KF_KF4_FP * (
 (long)PREplatx_0Angx_0Velx_0KF_tilt_FP << 1)) >> 3) +
((long)PREplatx_0Angx_0Velx_0KF_drift_FP
 << 14)) - (((long)platx_0Angx_0Velx_0KF_KF4_FP *
((long)platx_0Angx_0Velx_0KF_adxlx_0angle_FP
 << 1)) >> 3))) >> 14; // 16384;

/* plat_Ang_Vel_KF.gyro_angvel_new = plat_Ang_Vel_KF.gyro_angvel_maf-
 plat_Ang_Vel_KF.drift; */
platx_0Angx_0Velx_0KF_gyrox_0angvelx_0new_FP =
((long)platx_0Angx_0Velx_0KF_gyrox_0angvelx_0maf_FP
 - (long)platx_0Angx_0Velx_0KF_drift_FP);

/* StatePlatformVel.u = plat_Ang_Vel_KF.gyro_angvel_new; */
StatePlatformVel_u_FP = platx_0Angx_0Velx_0KF_gyrox_0angvelx_0new_FP;

/* StatePlatformVel.toPort.dummy = Segway.ExternalC.Platform.set_StatePlatformVel
 (integer(StatePlatformVel.u), time); */
set_StatePlatformVel(StatePlatformVel_u_FP);

/* plat_Ang_Vel_KF.tilt = plat_Ang_Vel_KF.KF1*pre(plat_Ang_Vel_KF.tilt)-
 plat_Ang_Vel_KF.KF2*pre(plat_Ang_Vel_KF.drift)+plat_Ang_Vel_KF.KF2*
 plat_Ang_Vel_KF.gyro_angvel_maf+plat_Ang_Vel_KF.KF3*plat_Ang_Vel_KF.adxl_angle;
 */
platx_0Angx_0Velx_0KF_tilt_FP = ((((((((long)platx_0Angx_0Velx_0KF_KF1_FP * (
 (long)PREplatx_0Angx_0Velx_0KF_tilt_FP << 1)) >> 1) -
((((long)platx_0Angx_0Velx_0KF_KF2_FP
 << 1) * ((long)PREplatx_0Angx_0Velx_0KF_drift_FP << 1)) / 2)) >> 1) + (((
 (long)platx_0Angx_0Velx_0KF_KF2_FP << 1) *
((long)platx_0Angx_0Velx_0KF_gyrox_0angvelx_0maf_FP
 << 1)) >> 2)) + (((long)platx_0Angx_0Velx_0KF_KF3_FP *
((long)platx_0Angx_0Velx_0KF_adxlx_0angle_FP
 << 1)) >> 2))) >> 14; // 16384;

/* StatePlatformTilt.u = plat_Ang_Vel_KF.tilt; */
StatePlatformTilt_u_FP = platx_0Angx_0Velx_0KF_tilt_FP - 1606;

/* StatePlatformTilt.toPort.dummy = Segway.ExternalC.Platform.set_StateTilt(
 integer(StatePlatformTilt.u), time); */
set_StateTilt(StatePlatformTilt_u_FP);

/* Update pre variables */
PREplatx_0Angx_0Velx_0KF_sumx_0gyro_FP = platx_0Angx_0Velx_0KF_sumx_0gyro_FP;
PREplatx_0Angx_0Velx_0KF_tilt_FP = platx_0Angx_0Velx_0KF_tilt_FP;
PREplatx_0Angx_0Velx_0KF_drift_FP = platx_0Angx_0Velx_0KF_drift_FP;

108

Table 8.23 Automatically generated code for wheel estimator task
a)Declarations
/* output Modelica.Blocks.Interfaces.RealOutput ADCRightEncoder.y(min = 0.0,
 max = 1023.0) annotation(fixedpoint(bits = 0.0)); */
int_16 ADCRightEncoder_y_FP = 0; /* Q[10, 0] */

/* output Modelica.Blocks.Interfaces.RealOutput LeftWheelDir.y(min = 0.0, max =
 1.0) annotation(fixedpoint(bits = 0.0)); */
int_8 LeftWheelDir_y_FP = 0; /* Q[1, 0] */

/* output Modelica.Blocks.Interfaces.RealOutput ADCLeftEncoder.y(min = 0.0,
 max = 1023.0) annotation(fixedpoint(bits = 0.0)); */
int_16 ADCLeftEncoder_y_FP = 0; /* Q[10, 0] */

/* output Modelica.Blocks.Interfaces.RealOutput RightWheelDir.y(min = 0.0,
 max = 1.0) annotation(fixedpoint(bits = 0.0)); */
int_8 RightWheelDir_y_FP = 0; /* Q[1, 0] */

/* discrete Real wheelVel2_1.RightAng(min = -8.0, max = 7.0) annotation(fixedpoint(
 bits = 12.0)); */
int_16 wheelVel2x_01_RightAng_FP = 0; /* Q[3, 12] Derived: min = -3.42132350630669,
max = 3.91623193803659 */

/* discrete Real wheelVel2_1.RightDiff(min = -8.0, max = 7.0) annotation(fixedpoint(
 bits = 12.0)); */
int_16 wheelVel2x_01_RightDiff_FP = 0; /* Q[4, 12] Derived: min = -7.33755544434328 */

/* discrete Real wheelVel2_1.RightDiff2(min = -8.0, max = 7.0) annotation(fixedpoint(
 bits = 12.0)); */
int_16 wheelVel2x_01_RightDiff2_FP = 0; /* Q[4, 12] */

/* discrete Real wheelVel2_1.RightVel(min = -128.0, max = 127.0) annotation(fixedpoint(
 bits = 8.0)); */
int_16 wheelVel2x_01_RightVel_FP = 0; /* Q[8, 8] */

/* discrete Real wheelVel2_1.RightVel2(min = -128.0, max = 127.0)
 annotation(fixedpoint(bits = 8.0)); */
int_16 wheelVel2x_01_RightVel2_FP = 0; /* Q[8, 8] */

/* discrete Real wheelVel2_1.RightSum(min = -1024.0, max = 1023.0)
 annotation(fixedpoint(bits = 5.0)); */
int_16 wheelVel2x_01_RightSum_FP = 0; /* Q[11, 5] */

/* discrete Real wheelVel2_1.RightMaf(min = -128.0, max = 127.0) annotation(fixedpoint(
 bits = 8.0)); */
int_16 wheelVel2x_01_RightMaf_FP = 0; /* Q[7, 8] Derived: min = -102.4, max = 102.3 */

/* discrete Real wheelVel2_1.LeftAng(min = -8.0, max = 7.0) annotation(fixedpoint(
 bits = 12.0)); */
int_16 wheelVel2x_01_LeftAng_FP = 0; /* Q[3, 12] Derived: min = -3.91623193803659, max
= 3.42132350630669 */

/* discrete Real wheelVel2_1.LeftDiff(min = -8.0, max = 7.0) annotation(fixedpoint(
 bits = 12.0)); */
int_16 wheelVel2x_01_LeftDiff_FP = 0; /* Q[4, 12] Derived: min = -7.33755544434328 */

/* discrete Real wheelVel2_1.LeftDiff2(min = -8.0, max = 7.0) annotation(fixedpoint(
 bits = 12.0)); */
int_16 wheelVel2x_01_LeftDiff2_FP = 0; /* Q[4, 12] */

109

/* discrete Real wheelVel2_1.LeftVel(min = -128.0, max = 127.0) annotation(fixedpoint(
 bits = 8.0)); */
int_16 wheelVel2x_01_LeftVel_FP = 0; /* Q[8, 8] */

/* discrete Real wheelVel2_1.LeftVel2(min = -128.0, max = 127.0) annotation(fixedpoint(
 bits = 8.0)); */
int_16 wheelVel2x_01_LeftVel2_FP = 0; /* Q[8, 8] */

/* discrete Real wheelVel2_1.LeftSum(min = -1024.0, max = 1023.0)
 annotation(fixedpoint(bits = 5.0)); */
int_16 wheelVel2x_01_LeftSum_FP = 0; /* Q[11, 5] */

/* discrete Real wheelVel2_1.LeftMaf(min = -128.0, max = 127.0) annotation(fixedpoint(
 bits = 8.0)); */
int_16 wheelVel2x_01_LeftMaf_FP = 0; /* Q[7, 8] Derived: min = -102.4, max = 102.3 */

/* input Modelica.Blocks.Interfaces.RealInput StateWheelVel.u(min = -128.0, max = 127.0)
annotation(fixedpoint(bits = 8.0)); */
int_16 StateWheelVel_u_FP = 0; /* Q[7, 8] Derived: min = -102.4, max = 102.3 */

/* parameter Integer ADCLeftEncoder.fromPort.n = 0 */
int_8 ADCLeftEncoder_fromPort_n_FP = 0; /* Q[0, 0] Derived: min = -0.0, max =
 0.0 */

/* parameter Integer ADCRightEncoder.fromPort.n = 1 */
int_8 ADCRightEncoder_fromPort_n_FP = 1; /* Q[2, 0] Derived: min = -2.0, max =
 2.0 */

/* discrete Real PREwheelVel2_1.RightAng(min = -8.0, max = 7.0) */
int_16 PREwheelVel2x_01_RightAng_FP = 0; /* Q[3, 12] Derived: min =
 -3.42132350630669, max = 3.91623193803659 */

/* discrete Real PREwheelVel2_1.RightSum(min = -1024.0, max = 1023.0) */
int_16 PREwheelVel2x_01_RightSum_FP = 0; /* Q[11, 5] */

/* discrete Real PREwheelVel2_1.LeftAng(min = -8.0, max = 7.0) */
int_16 PREwheelVel2x_01_LeftAng_FP = 0; /* Q[3, 12] Derived: min =
 -3.91623193803659, max = 3.42132350630669 */

/* discrete Real PREwheelVel2_1.LeftSum(min = -1024.0, max = 1023.0) */
int_16 PREwheelVel2x_01_LeftSum_FP = 0; /* Q[11, 5] */
b) Equations
/* ADCRightEncoder.y = Segway.ExternalC.Wheels.get_ADCRightEncoder(time,
 ADCRightEncoder.fromPort.n); */
ADCRightEncoder_y_FP = read_adc(ADCRightEncoder_fromPort_n_FP);

/* LeftWheelDir.y = Segway.ExternalC.Wheels.get_LeftWheelDir(time); */
LeftWheelDir_y_FP = get_LeftWheelDir();

/* ADCLeftEncoder.y = Segway.ExternalC.Wheels.get_ADCLeftEncoder(time,
 ADCLeftEncoder.fromPort.n); */
ADCLeftEncoder_y_FP = read_adc(ADCLeftEncoder_fromPort_n_FP);

/* RightWheelDir.y = Segway.ExternalC.Wheels.get_RightWheelDir(time); */
RightWheelDir_y_FP = get_RightWheelDir();

/* wheelVel2_1.RightAng = 0.00717258596709998*(546-ADCRightEncoder.y); */
wheelVel2x_01_RightAng_FP = ((1 * (546 - (long)ADCRightEncoder_y_FP))) << 4;

110

/* wheelVel2_1.RightDiff = wheelVel2_1.RightAng-pre(wheelVel2_1.RightAng); */
wheelVel2x_01_RightDiff_FP = ((long)wheelVel2x_01_RightAng_FP -
(long)PREwheelVel2x_01_RightAng_FP);

/* wheelVel2_1.RightDiff2 = (if wheelVel2_1.RightDiff < 0 and RightWheelDir.y < 1
 then (if wheelVel2_1.RightDiff < -0.087 then wheelVel2_1.RightDiff+
 6.28318530717959 else 0) else (if wheelVel2_1.RightDiff > 0 and
 RightWheelDir.y > 0 then (if wheelVel2_1.RightDiff > 0.087 then
 wheelVel2_1.RightDiff-6.28318530717959 else 0) else wheelVel2_1.RightDiff));
 */
wheelVel2x_01_RightDiff2_FP = (((((wheelVel2x_01_RightDiff_FP < (0 << 12)) && (
 RightWheelDir_y_FP < 1))) ? (((wheelVel2x_01_RightDiff_FP < (-23 << 4)) ? (
 wheelVel2x_01_RightDiff_FP + (1608 << 4)) : (0 << 12))) : (((((
 wheelVel2x_01_RightDiff_FP > (0 << 12)) && (RightWheelDir_y_FP > 0))) ? (((
 wheelVel2x_01_RightDiff_FP > (22 << 4)) ? (wheelVel2x_01_RightDiff_FP - (1608
 << 4)) : (0 << 12))) : wheelVel2x_01_RightDiff_FP))));

/* wheelVel2_1.RightVel = wheelVel2_1.RightDiff2*200; */
wheelVel2x_01_RightVel_FP = (((long)wheelVel2x_01_RightDiff2_FP * 200)) >> 4;

/* wheelVel2_1.RightVel2 = (if wheelVel2_1.RightVel < -127 or wheelVel2_1.RightVel
 > 127 then 0 else wheelVel2_1.RightVel); */
wheelVel2x_01_RightVel2_FP = (((((wheelVel2x_01_RightVel_FP < (-127 << 8)) || (
 wheelVel2x_01_RightVel_FP > (127 << 8)))) ? (0 << 8) : wheelVel2x_01_RightVel_FP));

/* wheelVel2_1.RightSum = 0.9*pre(wheelVel2_1.RightSum)+wheelVel2_1.RightVel2;
 */
wheelVel2x_01_RightSum_FP = (((230 * (long)PREwheelVel2x_01_RightSum_FP) + (
 (long)wheelVel2x_01_RightVel2_FP << 5))) >> 8;

/* wheelVel2_1.RightMaf = wheelVel2_1.RightSum*0.1; */
wheelVel2x_01_RightMaf_FP = (((long)wheelVel2x_01_RightSum_FP * 25)) >> 5;

/* wheelVel2_1.LeftAng = 0.00717258596709998*(ADCLeftEncoder.y-546); */
wheelVel2x_01_LeftAng_FP = ((1 * ((long)ADCLeftEncoder_y_FP - 546))) << 4;

/* wheelVel2_1.LeftDiff = wheelVel2_1.LeftAng-pre(wheelVel2_1.LeftAng); */
wheelVel2x_01_LeftDiff_FP = ((long)wheelVel2x_01_LeftAng_FP -
(long)PREwheelVel2x_01_LeftAng_FP);

/* wheelVel2_1.LeftDiff2 = (if wheelVel2_1.LeftDiff < 0 and LeftWheelDir.y < 1
 then (if wheelVel2_1.LeftDiff < -0.087 then wheelVel2_1.LeftDiff+
 6.28318530717959 else 0) else (if wheelVel2_1.LeftDiff > 0 and LeftWheelDir.y
 > 0 then (if wheelVel2_1.LeftDiff > 0.087 then wheelVel2_1.LeftDiff-
 6.28318530717959 else 0) else wheelVel2_1.LeftDiff)); */
wheelVel2x_01_LeftDiff2_FP = (((((wheelVel2x_01_LeftDiff_FP < (0 << 12)) && (
 LeftWheelDir_y_FP < 1))) ? (((wheelVel2x_01_LeftDiff_FP < (-23 << 4)) ? (
 wheelVel2x_01_LeftDiff_FP + (1608 << 4)) : (0 << 12))) : (((((wheelVel2x_01_LeftDiff_FP
 > (0 << 12)) && (LeftWheelDir_y_FP > 0))) ? (((wheelVel2x_01_LeftDiff_FP > (22
 << 4)) ? (wheelVel2x_01_LeftDiff_FP - (1608 << 4)) : (0 << 12))) :
 wheelVel2x_01_LeftDiff_FP))));

/* wheelVel2_1.LeftVel = wheelVel2_1.LeftDiff2*200; */
wheelVel2x_01_LeftVel_FP = (((long)wheelVel2x_01_LeftDiff2_FP * 200)) >> 4;

/* wheelVel2_1.LeftVel2 = (if wheelVel2_1.LeftVel < -127 or wheelVel2_1.LeftVel
 > 127 then 0 else wheelVel2_1.LeftVel); */
wheelVel2x_01_LeftVel2_FP = (((((wheelVel2x_01_LeftVel_FP < (-127 << 8)) || (
 wheelVel2x_01_LeftVel_FP > (127 << 8)))) ? (0 << 8) : wheelVel2x_01_LeftVel_FP));

111

/* wheelVel2_1.LeftSum = 0.9*pre(wheelVel2_1.LeftSum)+wheelVel2_1.LeftVel2; */
wheelVel2x_01_LeftSum_FP = (((230 * (long)PREwheelVel2x_01_LeftSum_FP) + (
 (long)wheelVel2x_01_LeftVel2_FP << 5))) >> 8;

/* wheelVel2_1.LeftMaf = wheelVel2_1.LeftSum*0.1; */
wheelVel2x_01_LeftMaf_FP = (((long)wheelVel2x_01_LeftSum_FP * 25)) >> 5;

/* StateWheelVel.u = 0.5*(wheelVel2_1.RightMaf+wheelVel2_1.LeftMaf); */
StateWheelVel_u_FP = ((128 * ((long)wheelVel2x_01_RightMaf_FP +
wheelVel2x_01_LeftMaf_FP)))
 >> 8;

/* StateWheelVel.toPort.dummy = Segway.ExternalC.Wheels.set_StateWheelVel(
 integer(StateWheelVel.u), time); */
set_StateWheelVel(StateWheelVel_u_FP);

/* Update pre variables */
PREwheelVel2x_01_RightAng_FP = wheelVel2x_01_RightAng_FP;
PREwheelVel2x_01_RightSum_FP = wheelVel2x_01_RightSum_FP;
PREwheelVel2x_01_LeftAng_FP = wheelVel2x_01_LeftAng_FP;
PREwheelVel2x_01_LeftSum_FP = wheelVel2x_01_LeftSum_FP;

