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2 Introduction

2.1 Problem formulation

The topic of this master thesis is to develop a simulation environment in Mat-
lab/Simulink which also should be used for code generation for real-time control
experiments in a force feedback scenario, controlling a Gantry-Tau robot using
two force sensors. A lead-through scenario will be used to test the implemented
controller. One of the force sensors is used to implement the lead-through con-
troller and the other force sensor is use as a safe-guard, making sure the tool
of the robot is not subjected to too big contact forces. In the implementation,
different types of force controllers will be investigated and validated using a new
type of parallel kinematic robot, the Gantry-Tau.

2.2 Motivation of work

In a lead-through scenario a human operator controlls the robot motion by
applying a force, measured by a force sensor, to some kind of grip or handle
that may or may not be attached to the robot. A big advantage using lead-
through instead of conventional joystick from the operators point of view is
that it is a very intuitive way of moving the robot. However, if no means of
safety measurements are implemented in the robot system and the robot is only
controlled by the operator’s command, situations can occur that may damage
the tool attached to the robot, the robot itself or in the worst case scenario harm
the operator. A very basic security measure would be to limit the workspace for
the robot, but objects put inside the workspace or people entering the workspace
would still lead to potential hazards. An approach used in this thesis is to use
an extra force sensor that measures the force acting on the tool of the robot.
Using this information appropriate measures can be taken if the contact forces
grow to large. Another application of this extra sensor is in situations where a
constant contact force is desired, e.g. in cutting and grinding applications where
unknown surfaces are being processed. To summarize this section the main
motivation is to implement a control system that ensures that large undesired
contact forces are avoided as a mean of ensuring robot and operator safety. The
implementation may also be useful in applications involving contact forces in
general.

2.3 Outline

In Chapter 2 a short introduction to the subject of this theses is given. Chapter
3 introduces different type of industrial robots and presents the Gantry-Tau
parallel robot concept. Chapter 4 presents basic theory, with purpose to intro-
duce the reader with preliminaries on the subject of robot modeling and force
control. The chapter is also recommended for readers with experience of the
subject as the chapter introduces frames and concepts used later in the report.
Chapter 5 describes the methods used in the thesis. In Chapter 6, the developed
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Simulink kinematics library for the GTP is presented. Chapter 7 and Chapter
8 presents simulation and experimental results respectively. A summary of the
master thesis is presented in Chapter 9 and finally conclusion and future work
are found in Chapter 10.
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3 Industrial robotics

3.1 Brief History

For some decades now industrial robots, IRBs, have been used in industry,
especially as a part of industrial production. For a period of time there was a
strong belief that the industrial robots would totally replace the need for human
labor in production. High expectations were put in the IRBs and advantages
were seen, for example there would be no need for lighting when robots perform
the work instead of the human counterpart. As of today we know that this
scenario has not played out. The first industrial robots performed rather simple
tasks, such as material transfers which only involved moving the robot arm from
a point A to a point B etc. More advanced tasks, such as welding and grinding,
require a more complex approach in robot control as the robot needs to take into
account sensor information due to increased interaction with its environment.

3.2 Robot types

3.2.1 Serial robots

The serial robot is by far the most common robot type used in industry. A
typical serial robot, the ABB IRB 2400, is shown in Fig. 1. These types of
robots are based on serial chain of rigid links creating a open kinematic chain.
Since each link contributes to robot reach, one of the main advantages with serial
robots is their large workspace with respect to robot size. Another advantage
compared to parallel robots is the reach around obstacles, since parallel robots
generally have fewer degrees of freedom.

Figure 1: Left: a ABB IRB 2400, a typical serial robot. Right : The ABB IRB
360 FlexPicker, based on parallel structure[1]
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3.2.2 Parallel robots

In many ways serial and parallel robots are dual, the weak points of one design is
the strong point of the other. In general the strong points in a parallel design is
greater rigidity, higher speeds and in some means higher accuracy. A substantial
disadvantage with the conventional serial robot is the low ratio between load
capacity and robot mass. This problem is due to each robot link contributes
to the total moving mass. One type of parallel robot, the ABB FlexPicker,
can be seen in Fig. 1. As a weak point parallel robots have in general a small
workspace in relation to robot volume.

3.3 The Gantry-Tau concept

The Gantry-Tau robot is a parallel robot concept partly developed to find an
approach suitable for small medium enterprises. The concept offers a large
workspace compared to other parallel kinematic [10] and the possibility to re-
configure according to application. Figure 4 shows a 3 degree-of-freedom, 3
DOF, Gantry-Tau parallel robot based on a patent by ABB. The robot is a
Gantry variation of the Tau parallel robot, hence the name. The basic vari-
ant has three degrees of freedom consisting of three kinematic chains. Each link
consists of a cart moving along a track. One of the carts is shown in Fig. 2. The
carts are connected to a mounting plate, shown in Fig. 3, using six light-weight
carbon fiber links configured in clusters of 1, 2 or 3 links. The configuration is
referred to as Tau-configuration which assures a constant orientated mounting
plate regardless of cart positions. In a paper by Isolde Dressler [9] it is shown
that the accuracy when mounting the tracks is not vital.

3.3.1 Additional Degrees of freedom

The original Ganty-Tau concept presented a robot with 3 degrees of freedom,
i.e. TCP was not able to reorient. Some applications however require the ability
to reorient the TCP. To meet the demand of a more versatile setup a number
of solutions have been suggested to add additional degrees of freedom to the
original design concept. The prototype used at the Robotics Lab, Department
of Automatic Control, Lund, has by mounting a two link serial wrist at the
mounting plate achieved a setup with 5-degrees of freedom. A pleasant fea-
ture using this solution is that the parallel chain and the serial chain can be
solved separately, which considerably reduces the complexity when modeling
the kinematics. More on this matter in Chapter 4.

8



Figure 2: One of the three carts of the GTP. The cart consists of a electric
motor running along a track. When modeled the cart are modeled as prismatic
joints

Figure 3: Shows the mounting plate which connects the carts using sets of 1,
2 or 3 parallel links. The mounting configuration is referred to as the Tau-
configuration.
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Figure 4: A schematic scheme of the 3 degrees of freedom Gantry-Tau parallel
robot. The base frame and TCP frame is visible in the figure

4 Theory

The theory chapter in this report is written to give the reader the basic knowl-
edge about the fundamental theory behind robotics [2]. The math behind robot
modeling is briefly presented in the first part of the chapter. Section 4.4 in-
volves robot kinematics, such as determining the tool center point, TCP, given
the robot joint angles, also known as the forward kinematics problem, see sec-
tion 4.4.1. The inverse kinematics problem: determining the robot joint angles
given the position and orientation of TCP is presented in section 4.4.2. The
velocity Jacobian, gives a relation between joint velocities and the velocities of
the TCP and is introduced in section 4.4.3.

4.1 Modeling

Robots consist of chains of links connected with joints to form kinematic links.
The two main type of joints are the revolute joint and the prismatic joint, see
Fig. 5. These joints both have one degree of freedom, namely

qi =
{

θi if joint is revolute
di if joint is prismatic (1)

Even though joints in many cases have more than one degree-of-freedom it is
possible to model them as successive combinations of prismatic and revolute
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Figure 5: The upper figure shows two links connected with a revolute joint, and
below shows two link connected with a prismatic joint. All type of joints can
be modeled by connecting appropriate combinations of revolute and prismatic
joints in series.

joints. To each link a frame is rigidly attached, used when referring to the
robot, see 4.3.1

4.2 Representation

An arbitrary point in space, with respect to a given frame o0x0y0z0, can be
represented by a vector p, where

p0 =

⎛
⎝ x

y
z

⎞
⎠ (2)

where x, y and z are the coordinates in the given frame. The superscript is
used to clarify which frame of reference is used in the representation. Intiuitivly
one can imagine that representing the point given another frame of reference,
o1x1y1z1, the coordinates for the point given in 2 will differ. One way to describe
a frame is to specify where in space the origin of the frame is located. Of
course this point given the coordinates of the frame to be describe will have
the coordinates: (0, 0, 0). Given a different frame the point will however have a
non-trivial coordinates.

To describe an object in space an orientation of the object is needed, hence
a position is not sufficient. Orientation describes the relative rotation between
two frames.
Frames are right orthogonal, normalized. The axes are oriented according the
screw-rule and have coordinate axes of unit length.
One way to specify a rotation matrix is to specify the coordinate vectors for the
axes of one frame with respect to the coordinate vectors of another frame. By
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Figure 6: The relative position and orientation of the base frame and the TCP
frame assuming that q5 = 0 Note that the relative position and orientation
between these frames are depends on the joint values qi, i = 1...5

projecting each of the coordinate vectors of the frame with respect to the new
frame the following matrix can be constructed

R0
1 =

⎛
⎝ x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0

x1 · z0 y1 · z0 z1 · z0

⎞
⎠ (3)

R0
1 is denoted the rotation matrix that projects the coordinates vector of frame

o1x1y1z1 onto the frame o0x0y0z0 Vector and quaternion representation

4.3 Frames and transformations

4.3.1 Frames

• Base frame - The base frame is the global frame of reference. The base
frame has a fixed position and orientation in the workspace.

• Flange frame - The flange, sometimes referred to as the mounting interface,
is the mounting point for the tool on the robot.

• Sensor frames - To each sensor used a frame is attached. The sensor
frame of the JR3 sensor is oriented with the X and Y axes in the plane
of the sensor body and the Z axis perpendicular to the X and Y axes.

12



Figure 7: The relative position and orientation of the flange frame, sensor frame
and TCP frame. Note that the relative position and orientation between these
three frames are constant.

The geometrical center of the sensor is the reference point for the sensor
frame. For the ATI sensor the sensor frame is also oriented with the X
and Y axes in the plane of the sensor body and the Z axis perpendicular
to the X and Y axes, but instead of the geometrical center of the sensor
the reference point for the sensor frame is located on the surface of the
sensor body.

• TCP frame - Tool Center Point, this frame is attached to the tool center
point.

All the frames presented, except the base frame are rigidly attached to some
specific part of the robot, sensor or tool.

4.3.2 Transformation matrices

Working with different frames requires the ability to express a vector in several
frames since the relative position and orientation of the frames are dependent
on the robot joint values. Let v0

1 be a vector expressed in frame 0 and let v1
1 be

the same vector expressed in frame 1. A homogeneous transformation is a trans-
formation that transforms a vector between different frames. A homogeneous
transformation can be divided in two parts, one translation and one rotation.
The translation part describes how the frames are oriented relative each other

13



Figure 8: A vector given in Frame 1 can be expressed in Frame 2 using a
homogeneous transformation. The x, y, z axis of Frame 2 are expressed in Frame
1, representing the rotation part. The origin of Frame 2 is expressed in Frame
1, representing the translation.

and the translation part describes the offset between the two frames, see Fig. 8.

H =
[
R d
0 1

]
, R ∈ SO(3), d ∈ R (4)

Homogeneous transforms combine rotation and translation and are used to per-
form coordinate transformation between different frames.

4.4 Kinematics

The duality between serial and parallel robots are also reflected in the math-
ematics surrounding the kinematics. As an example the forward kinematics
problem is regarded as a quite easy problem to solve regarding serial robots,
where as for parallel robots the same problem is more complex. For inverse
kinematics the opposite holds, the inverse kinematics is generally more difficult
to solve for a serial robot than for a parallel robots. This section discusses the
kinematics from a parallel robot perspective, but some concepts for serial robots
is also included as the robot wrist forms a serial chain.

4.4.1 Forward kinematics

The forward kinematics is the relationship between the individual joints, q, and
the position and orientation of the tool or end effector [2]. A systematic approach
when developing the forward kinematics is to assign a frame of reference for each
of the link and derive homogeneous transformations between one link to another.
A commonly used convention for selecting the frames of reference in robotics is
the Denavit-Hartenberg conventions where the link length ai, link twist αi, link
offset di and joint angle θi parameters are used to derive a T44 transformation
matrix from link to link.

14



T i
i−1 =

⎡
⎢⎢⎣

cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) aicos(αi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(αi)

0 sin(αi) cos(αi) di

0 0 0 1

⎤
⎥⎥⎦ (5)

The T44 in equation 5 is the transformation matrix between link i−1 and link i.
In serial robotics the Denvite-Hartenberg conventions prove very useful because
the final forward kinematics for a robot manipulator with n links is the product
of the derived transformation matrices

T flange
base (q) =

n∏
i=1

T i
i−1(q) (6)

However, 6 is only valid in a serial setup and consequently only be used for the
wrist link 4 and 5 of the Gantry-Tau parallel robot.

For the 5-DOF Gautry-Tau robot the forward kinematics problem can be di-
vided into two problems that can be solved separately.

• Find the relationship between the cart positions and the position and
orientation of the mounting plate

• Find the relationship between the mounting plate and the position and
orientation of the mounting flange

The relationship between the mounting plate and the position and orienta-
tion of the mounting flange can, as mentioned above, be solved using Denavite-
Hartenberg conventions as described.
To derive the relation between the carts and the mounting interface other meth-
ods are used [10]. Let lX denote the length of the links connected to cart X.
For fixed cart positions A, B and C the intersection between three spheres
with radius lA, lB and lC and midpoints at respective cart describe all possible
positions of the mounting plate. The midpoints of the spheres are located at
respective cart position as mentioned

A = (xa ya za)base (7)
B = (xb yb zb)base (8)
C = (xc yc zc)base (9)

and the possible mounting plate positions are given by the intersection of the
following spheres.

(xa − x)2 + (ya − y)2 + (za − z)2 = l2A (10)

(xb − x)2 + (yb − y)2 + (zb − z)2 = l2B (11)

(xc − x)2 + (yc − y)2 + (zc − z)2 = l2C (12)
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Figure 9: An illustration of the possibility of multiple solutions when solving the
forward kinematics problem. Let each circle represent a cart that can move in
the x-direction. Each circle represents possible link positions for the individual
links in the x-y plane, hence the intersection points between the three circles
represent possible mounting interface positions. The example illustrated in this
Fig. has two possible solutions to the forward kinematics problem

As shown in [10] this geometrical problem can have multiple solutions, see
Fig. 9. This is solved by defining different mounting plate configuration in which
case a unique solution can be found if solutions exists for those cart positions.
Due to the mechanical construction of the Gantry-Tau, 3.3, the orientation of
the mounting plate in relation to the base frame will be fixed for all possible
cart positions.

4.4.2 Inverse kinematics

The inverse kinematics end effector and the joint angles. In serial robotics the
inverse kinematic problem is a more difficult problem than the forward kine-
matics due to the possibility of multiple solution or no solutions. Figure 10
illustrates a scenario where multiple solutions exists. The Gantry-Tau 5 DOF
configuration has only two links in a serial chain. The relative joint positions of
the serial chain however eliminates the elbow up and down problem.

In a parallel link setup the inverse kinematics problem is a a simpler problem
than the forward kinematics problem, due to the fact that each cart position
can be determined separately. Each cart position is calculated by finding the
intersection between a sphere with midpoint at the mounting plate and the
respective linear track. The diameter of the sphere is determined by the link
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Figure 10: The elbow up/down phenomena. For given position and orientation
of frame A, the inverse kinematics problem has several solutions. Figure shows
the famous elbow up/elbow down problem often encountered working with serial
robots.

length. Solving this problem normally yields two solutions for each cart which
adds up to a total of up to eight different solutions for the inverse kinematics.
As in the forward kinematics problem mounting plate configuration parameters
are used to determine the solution. The inverse kinematics problem can be
formulated as the following. Given the location of the TCP calculate A,B and
C. This problem has eight solutions.

4.4.3 Velocity Jacobian

The Jacobian relates the joint velocities with the velocity of the flange. The
relation is a function of the joint position, i.e the Jacobian is not constant. Let
J(q) be the Jacobian for the system, then the following relation holds

ẋ = J(q)q̇ (13)

The Gantry-Tau robot has 5 joints, one for each cart and two in the se-
rial link attached to the mounting interface. Expressing the flange velocities
ẋ in Cartesian coordinates with the flange frame as reference, six variables are
needed. The translation in x, y, z direction, vx, vy, vz and the angular velocities
ωx, ωy and ωz respectively. The set of linear equations to be solved to find the
relation between joint and flange velocities are given by

⎡
⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

j11 j12 j13 j14 j15
j21 j22 j23 j24 j25
j31 j32 j33 j34 j35
j41 j42 j43 j44 j45
j51 j52 j53 j54 j55
j61 j62 j63 j64 j65

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

q̇1

q̇2

q̇3

q̇4

q̇5

⎤
⎥⎥⎥⎥⎦ (14)

where jn,k is the element n, k in the J(q). In real application the inverse Jaco-
bian is often of interest for instance to calculate the joint velocities for a given
flange velocity. Since the Jacobian is a 6x5 matrix it is not invertible. If J(q)
has full rank however, it is possible to derive the pseudo inverse of the matrix
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J(q) and thereby calculate the joint velocities.

ẋ = J(q)q̇, J(q) ∈ �mxn, m > n (15)

J(q)T ẋ = J(q)T J(q)ẋ (16)

q̇ = (J(q)T J(q))−1)︸ ︷︷ ︸
J(q)†

J(q)ẋ {q|rank(J(q)) = n} (17)

where J(q)† is referred to as the pseudo-inverse of J(q).
The Gantry-Tau parallel robot used in this thesis is implemented on the ABB

IRC5 robot system. The IRB5 robot system is developed primarily for 6 DOF
serial IRBs. Due to this fact, the robot system expects a 6x6 square Jacobian.
Previous research by Isolde Dressler included implementing kinematics on the
IRC5 robot system. In order to construct a Jacobian compatible with the robot
system, a imaginary sixth joint was introduced making the Jacobian a 6x6 square
matrix. Much of the work in this thesis is based on Isolde Dressler’s research, so
the same six axis solution was implemented in the kinematics library developed
in this thesis. Even if the sixth joint is imaginary a great deal of care has to
be consided when orienting the imaginary axis. An incorrectly introduced joint
can lead to singularities in the solution. After the introduction of the sixth joint
the set of equations to be solved expands to⎡

⎢⎢⎢⎢⎢⎢⎣

j11 j12 j13 j14 j15 j16
j21 j22 j23 j24 j25 j26
j31 j32 j33 j34 j35 j36
j41 j42 j43 j44 j45 j46
j51 j52 j53 j54 j55 j56
j61 j62 j63 j64 j65 j66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

The problem can however be simplified by interpreting the physical meaning for
each element of the Jacobian and take into account what is known about the
Gantry-Tau setup. As described in section 3.3, the mounting interface of the
Gantry-Tau parallel kinematic robot will keep a constant orientation for all cart
positions, hence no angular velocities can be induced by only moving the carts.⎡

⎣j41 j42 j43
j51 j52 j53
j61 j62 j63

⎤
⎦ = Jtranslation[q1−q3]−>rotation[x] = 0 (19)

The translation and rotation flange due the fifth joint is expressed by the fol-
lowing elements in the Jacobian matrix⎡

⎢⎢⎢⎢⎢⎢⎣

j15
j25
j35
j45
j55
j65

⎤
⎥⎥⎥⎥⎥⎥⎦

= Jq̇5−>ẋ (20)
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Since the fifth joint will always be align parallel with the z-axis of the Flange
frame the only non zero element is j65 which maps a rotation of joint 5 with the
rotation of the flange along the flange z-axis.
By taking these observation into account the complexity of the velocity Jacobian
and the velocity Jacobian inverse is reduced.

4.5 Force sensors

4.5.1 The JR3 force sensors

In this thesis a control strategy using two force sensors will be presented. One
of the sensors used in the experiments was the JR3 100M40 [7]. The 100M40
is used measuring forces and torques acting on the sensor, Fsensor

Fsensor =

⎛
⎜⎜⎜⎜⎜⎜⎝

Fx

Fy

Fz

τx

τy

τz

⎞
⎟⎟⎟⎟⎟⎟⎠

(21)

where Fx, Fy and Fz are the normal forces and τx, τy and τz are the torques
acting on the sensor with respect to the x, y and z direction of the sensor frame.
The measurement Fsensor is used as force feedback for the force controllers. The
rated maximum load for the sensor is 400N and measurements are carried out
by the sensor’s internal electronics at a sampling rate of 8kHz. The two sensors
were connected to a PC in the lab and the force measurements could then be
accessed in real time through a network connection.

4.5.2 The ATI nano25 force sensor

In addition to the two JR3 sensors used, described in section 4.5.1, an ATI
nano25 [8], sensor was used. As the name insists the physical dimension of the
ATI nano25 are very small. With a diameter of merely 25mm and a height of
22mm, this sensor is one smallest force sensors in the market. The sensing range
and noise levels of the ATI nano25 is similar to the JR3 100M40, but the ATI is
much more robust to single axis overloads compared to the JR3. The robustness
feature has made the ATI force sensor popular in robotic applications.

4.6 Force control

In tasks where contact between robot and the environment occur a convenient
way of controlling the robot is to control the forces between the tool and the
environment. Forces can also be used in the interaction between robot and
operator in a so called, lead-through scenario. In a lead-through scenario the
operator can, via applying forces to a force sensor, change the position and
orientation of the robot end-effector. By doing so the operator has the ability
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Figure 11: One of the two JR3 force sensors used in experiments. The force
sensor is attached to a mounting plate that allows mounting on the robot.

Figure 12: The ATI nano25 force sensor used in experiments.
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Figure 13: A spring-mass-damper system. A mass M actual position x and de-
sired position xdes. The interaction with the environment is modeled a damper
with corresponding damping constant D and a spring with spring constant K.
A external force F is acting on the system.

to manipulate the end-effector in a way that is often more intuitive then using
a joystick or control panel. In this section three different types of force controls
will be described.

4.6.1 Direct force control

When using a direct force control the aim of the control is to achieve a desired
force by acting on the difference between actual force and the reference force.
Using a PI controller yields the following control law in continuous time

e(t) = Fdesired(t) − Factual(t) (22)

u = Ke(t) +
K

Ti

∫ t

0

e(t)dt (23)

4.6.2 Hybrid force control

4.6.3 Impedance control

The aim with impedance control is to implement a feedback control algorithm
imposing a desired cartesian impedance [5]. The control action is separated
in two actions, one representing the motion control and the other representing
the dynamic control [4]. In the dynamic control the aim is to make the robot
interact with the environment as a specified mass-spring-damper system, see 13.

F = M(ẍ − ẍdes) + D(ẋ − ẋdes) + K(x − xdes) (24)

Implemented as

F = Mẍref + D(ẋ − ẋdes) + K(x − xdes) (25)
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where F is the force acting on the system, ẋdes and xdes is the desired speed
and desired position of the robot, ẋ and x is the actual speed and position of
the robot. M , D and K are design parameters in the impedance controller.

ẍref = M−1
{
F − D(ẋ − ẋdes) − K(x − xdes)

}
(26)

The system will behave like the specified spring-mass-damper system if the
robot system fulfills the equation above. Since the input to the robot system is
reference positions and velocities the reference acceleration has to filtered. The
following relations hold

ẋref =
∫

ẍref dx (27)

xref =
∫∫

ẍref dx (28)

In the implementation of the controller a discrete filter is used to filter the
reference position and velocity. Given the sampling time h the following rela-
tions holds

ẋref [k] = ẍref [0] +
k∑

i=1

ẍref [i]h (29)

where ẍref [0] is the initial acceleration. Filtering ẋref once more yields the
position reference, given by

xref [k] = ẋref [0] +
k∑

i=1

ẋref [i]h (30)

where ẋref [0] is the initial position. The tuning parameters in the controller are
the spring constant K, the damping constant D and the mass M . How these
parameters are chosen obviously changes the characteristics of the controller. In
control theory the following characteristic equation is often used to determine
the behavior of a second-order system

s2 + 2ζωs + ω2 = 0 (31)

where ζ is referred to as the damping ratio of the system and ω is referred to as
the angular frequency of the undamped system. A system is said to be critically
damped if ζ = 1. A critically damped system that initially is in rest will when
subjected to a step, converge without oscillating, i.e no overshoot. In robotic
motion control overshoots there is often a desire to avoid overshoots. Using
this knowledge about a second order system, a mapping between the impedance
control design parameters and the damping ratio, ζ, and the angular frequency
of the undamped system, ω is preferred. The mapping used in the thesis is the
following

D = 2Mζω (32)
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K = Mω2 (33)

As one may notice three design parameters are mapped into two. The extra
degree of freedom from a control design point of view given by the third pa-
rameters, i.e M , is that the inertia of the system can be changed, as in the
impact of K and D given a set of ζ and ω without a change of ratio between
them. However one should keep in mind that the model is used to describe the
behavior of the manipulator that ignores some aspects of the dynamics such as
actuator dynamics and transmission. For further reading on impedance control
implementation in robotics following three papers are highly recommended [4],
[5] and [6].
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5 Method

In this chapter methods used in this thesis will be presented. Section 5.1 gives
a short introduction to the ABB IRC5 robot system and the Opcom appli-
cation used to implement external controllers. Toolboxes and features used
in Matlab/Simulink is presented in section 5.2. Control design, force control
implementation and the safety-zone is presented in section 5.5. The signal pro-
cessing of the raw force measurement signal are found in section 5.6. Finally,
the experiential issues regarding gravity compensation and timing constrains
are presented in section 5.7.

5.1 The IRC5 robot system

IRC5 is a robot system developed by ABB [1], used to communicate with the
Gantry-Tau parallel robot. The IRC5 robot system uses internal controllers
for each joint. The internal controllers run on axis computers which in turn
communicate with one main computer. The main computer calculates reference
position and velocities for each joint based on sensor information from the joint
motors. The axis computers compute motor torques according to the reference
joint and velocities received from the main computer.

During calibration the robot can be moved using the robot control panel, the
FlexPendant, see Fig. 14. Moving the robot manually using the control panel
is often referred to as jogging the robot. The FlexPendant can also be used
to program the robot using the RAPID language. Simple RAPID programs
were used in validating the developed kinematic library. In order to move the
robot, jogging or using external controllers, the dead-man’s switch located on
the FlexPendant must be pressed.

5.1.1 Opcom

Opcom is a application developed to connect external controllers to the robot
system [3]. Controllers designed in Simulink are compiled into C code and

Figure 14: The FlexPendant can be used to jog the robot or execute RAPID
based programs
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Figure 15: A schematic figure of the robot system setup

downloaded to the robot system. Opcom is the graphical user interface, GUI,
used to load external controllers into the IRC5 robot system. Once the controller
is loaded it can be operated in two modes, either in Submit mode or Obtain
mode.

In Submit mode signals are sent from the main computer to the external
controller but no signals are returned to the robot system. This is essential
feature as it provides a safe way to test the external controllers with input
from the real robot without any risk of damaging the robot or harming anyone
inside the work cell. As described in section 5.2.2, the compiled controller is not
directly based on the S-function but instead based on tlc-files. Hence, there is
no guarantee that the compiled controller behaves in the same manner as the
controller used in the Simulink simulations.

In Obtain mode the output from the external controller is used as input to
the axis computers. Before any experiments are carried out in Obtain mode it
is vital that thorough testing in Submit mode is carried out, verifying that the
controller is behaving properly.

Important to note is that controllers loaded in Opcom starts running as
soon as the model is loaded. To avoid integrator windup in the controller certain
precautions are made. A boolean fswitch is introduced in the model, which when
set to true activates the controller. The default value of fswitch is set to false. In
order to avoid integrator windup the controllers are only activated(fswitch set
to true) when control signal output is sent to the actuators, i.e. while Opcom
operates in Obtain mode.

Prior to compiling Real Time Workshop provides the ability to define signals
to be logged, which is important when testing and debugging the controller. In
experiments carried out in this thesis to investigate if logging signals can effect
the real-time performance of the controller.

5.2 Matlab/Simulink

5.2.1 S-functions

S-functions is a powerful tool to extend the capabilities of Matlab Simulink. A
S-function is a language description of a Simulink block that can be written in
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Figure 16: The graphical interface Opcom used to load external controllers into
the robot system. Inlined parameters can be changed in real-time.

several programing languages. A S-function is after it is written compiled as
a MEX-file. The Simulink blocks are in this thesis used for simulation of the
robot kinematics and for designing the force controller.

5.2.2 Real-Time Workshop

Real-Time Workshop, RTW, is a tool package available in Matlab Simulink.
Using the RTW toolbox enables the user to translate and generate C source
code from Simulink models and Embedded Matlab code. The generated C
source code is used to run real time applications. The source code, for the user
defined S-functions, are not used directly by RTW, instead the RTW requires a
target language compiler file, tlc. The designer has to take extra consideration
when generating C code from user defined S-functions as the simulations are
based on the C code for the S-functions whereas the generated source code are
based on the tlc file.

5.3 Block development

Extctrl is a kinematic library [3] that supports several of the ABB serial robots.
The library includes a set of S-functions that describe the dynamics of the
robot. Such S-functions include blocks for forward and inverse kinematics and
calculation of velocity Jacobian, blocks that can be used to design external
controllers. Since the Gautry-Tau robot is in a prototype stage(at the time for
this thesis no Simulink kinematics library was available) the main purpose of
the thesis was to develop one. Throughout the development there was a desire
to keep the S-function C code as generic as possible, i.e. in as large extent as
possible using the same function calls and variables as used by the extctrl library
for the serial ABB robots. The Ph.D student Isolde Dressler had prior to this
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thesis developed C code for the Gantry-Tau, so much of the work consisted of
combining Isolde Dressler’s work with the generic structure of the extctl library
to develope a kinematics library for the Gantry-Tau parallel robot. S-functions
for the forward kinematics, inverse kinematics and Jacobian was developed,
more information on the developed library can be found in Chapter 6.

5.4 Validation

A number of steps were taken to validate the code.

• The forward kinematics was tested for a set of inputs for which Isolde
Dressler had expected outputs.

• A simple test is to send joint values to forward kinematics block. The
output is then sent to an inverse kinematics block and then compared to
the input to the forward kinematics block. If everything is correct the
output from the inverse kinematics block should match the input to the
forward kinematics block.

• A RAPID program was made using the FlexPendant where the robot was
moved between points spread around the entire workspace. The position
of the TCP given by the robot system was compared to the position
calculated by the forward kinematics block.

• The Jacobian could be evaluated by comparing small deviations in joint
positions with the corresponding deviations of the TCP.

5.5 Control Design

5.5.1 Lead-through control

In normal lead-through scenario the spring damper is set to zero because it is
desired that the robot act as a pure integrator. Setting the spring constant to
zero has the effect that the mass in the mass-spring-damper system in section,
4.6.3, will have no effect.

5.5.2 Safety zone

A safety zone was implemented to give the operator a hint that the robots TCP
is getting close to the outer borders of the robots work space. In normal opera-
tion the lead-through impedance controller operates without spring action, i.e.
the robot stays at the position given by the operator. By implementing spring
action at the outer borders of the work space the operator is given feedback by
proportional increasing spring action as the TCP enters the safety zone. By
having the different frames of reference the implementation was rather simple.
A safety zone was defined in base frames x, y, z directions. By using the base
frame as reference each direction can be implemented separately. For each di-
rection a test is made deciding weather the TCP has entered the safety zone

27



Figure 17: A schematic image of the safety zone. The outer square represents
the entire robot workspace. The inner square represents the workspace subset
where no spring force action is applied. The red zone is the zone where the
spring force is activated. The force is proportional to the distance traveled into
the safety zone and directed in the direction closes to the inner workspace.

or not. If that is the case the desired position is set to the safety zone boarder
in base frame and then transformed to the TCP frame. If a spring constant
K > 0 is applied, the difference between actual position and desired position
will introduce spring force action, see equation 26. The spring force action will,
if no other forces are applied, slowly move the robot the shortest way back to
the safety zone inner border. This implementation sends intuitive feedback to
the operator that the robot is approaching the work space borders. In some
cases however the operator might want to work in the outer areas of the robot
work space, so the safety zone implementation can be disabled by setting the
Safety Zone parameter to zero. Figure 17 shows a schematic illustration of the
safety zone.

5.5.3 Tool force sensor

5.5.4 Dual sensor setup

To further test the kinematic library a goal in set up in this thesis was to
implement two force sensors to control the robot in a lead-through scenario with
one sensor acting as safe-guard for the tool. If the force controller implemented
for the lead-through force, FLT , sensor is viewed as the main controller, MC,
and the force controller acting on the input from the force acting on the tool
force sensor, Ftool, is viewed as the secondary controller, SC, many different
implementations can be taken into consideration.

5.5.5 Hybrid control

u =
{

MC(FLT ) if switch condition = 0
SC(Ftool) if switch condition = 1 (34)

where switch condition ∈ 0, 1 and is a function of FLT and Ftool
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5.6 The force sensor signal

The signal from the JR3 force sensor is introduced to the Simulink model
through the port jr3 comedi.

5.6.1 Resetting the sensor and gravity compensation

Due to the construction of the force sensor the sensor itself will contribute to
the measured force signal. These forces, due to e.g. the weight of the sensor
itself, are not desirable when conducting force control. Due to these forces a
crucial step at start up is to reset the force sensor. In he extctrl library there
is a block used for reseting the sensor for a given signal. However, if the force
sensor is in some way reoriented the reset done at startup is no longer valid, this
is because the force sensor frame and the gravity force vector no longer have the
same relative orientation. In the case when the force sensor frame is reoriented
a gravity compensation is needed. Luckily the extctrl library also has a block
for implementing gravity compensation.

5.6.2 Noise components

The raw measurement from the JR3 force sensor was subject to noise. The
cable connecting the force sensor with the measurement PC was quite long
so to a FFT (Fast Fourier transform) was performed on the Fz component of
the signal in order to investigate if the signal was subject of some external
noise source. Figure 18 shows the measurement along with a FFT. The sample
frequency during the measurement was 250Hz, hence no frequencies over the
Nyquist frequency was shown in the FFT. No frequency peak was observed in
the FFT, so the noise can be regarded as white noise.

5.6.3 Filtering

A discrete first order low pass filter was implemented to smoothen the force
measurement signal. A higher order filter was also implemented but in order
not to introduce to much delay the first order filter was used throughout the
experiments.

5.6.4 Dead-zone

When no force was applied, oscillations was observed in the control signal,
see Fig. 19, due to noise elements making the force input to the controller
changing sign. Even if the induced control signal oscillation was small this type
of behavior can be harmful for the joint axis motors in the long run. A dead-zone
L was implemented for the force measurement

Fout =
{

max(Fin − Lsign(Fin, 0) ,∀Fin > 0
min(Fin − Lsign(Fin, 0) ,∀Fin ≤ 0 (35)
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Figure 18: The upper plot shows the noisy force measurement signal after grav-
ity compensation, no forces applied. The lower plot shows a single sided ampli-
tude spectrum of the measurement. Sample frequency 250 Hz

where Fin is the force signal into the dead-zone block and Fout is the force
signal out from the dead-zone. L is the size of the dead-zone and throughout
the experiments a value between 0.5 N was used.

5.7 Experiments

5.7.1 Gravity compensation

The force sensor is reset before experiments in order to only measure external
forces and not the weight of of the tool attached to the force sensor. This will
work as long as the tool is not reoriented. As the tool is reoriented the tool
weight will contribute to the force measurement signal. In the drill use case
scenario, reorientation of the tool may occur and therefor a compensation for
the gravity contribution to the force measurement is needed. The extctrl library
includes a block for gravity compensation. Inputs to the block are tool mass,
the flange T44 matrix and the output is a force signal that compensates the
force contribution from the tool. The tool mass can be estimated by a force
measurement experiment where the robot is jogged in a way such that the tool
will contribute to the force measurement. The goal of gravity compensation is
that the robot force measurements will stay at zero as long as no external forces
are applied, regardless of robot orientation.
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Figure 19: The upper plot shows the control signal using a PI controller when
no dead zone is implemented. Due to noise in the force signal, the lower plot,
a noisy control signal is obtained, which decreases accuracy and increases long
term actuator tear.

5.7.2 Opcom Timing constrains

The entire IRC5 robot system has a hard timing constrain for the entire con-
trol loop of 4 milliseconds, shown as D-A in Fig. 20. During the control loop
the robot system reads information from the system’s sensors. An external con-
troller which is loaded using Opcom and set in submit mode, receives robot joint
from the robot system and force measurements from the measurement server
via a TCP connection. The time duration for receiving and copying the infor-
mation is marked as subtask 1 in Fig. 20. In obtain mode the time duration
for calculating output from the external controller and the time duration for
sending the output to the robot system is also measured, marked as subtask 2
and 3 in Fig. 20. The control signal for the joint actuators are calculated by
each respective axis computer, shown as the IRC5 activity done after Opcom in
Fig. 20. If the loop duration exceeds 4 milliseconds the system will shut down
and enter system failure mode.
Due to the timing constrains of the entire control loop, the Opcom application
uses its own timing requirements to ensure that the Opcom face of the control
loop does not take too much time to execute. Using default settings the max-
imum allowed duration from data copied to Opcom to a new control signal is
calculated is set to 600 μs.

5.7.3 Timing statistics

After validating the kinematic library in simulations, the first experiments were
conducted. Initially strange behavior was observed during execution. The robot
would run perfectly and behave according to the simulation, but could unex-
pectedly get an over speed system failure. Much effort was put in trying to
determine the cause of the behavior. Excessive logs were conducted, at first it
seemed like the problem was caused by rapid changes in reference position and
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Figure 20: A schematic figure showing the Opcom task timing. The IRC5
task represents normal operation without an external controller. A hard timing
constraint of 4 ms is imposed between A and D. To insure that the IRC5 timing
constrains are not violated, a timing constraint is imposed on the Opcom task,
B to C. The Opcom task can, when running in Obtain mode be divided into
three subtasks. 1) Copy to Submit 2) Calculate Output 3) Copy from Obtain

velocity caused by the teach pendant even though the teach pendant was not
used during the experiments. Finding the source of this behavior was tedious,
partly due to the fact that the Robotic lab at the department of control does not
have access to the robot system source code but only to the compiled system.
So logs were sent back and fourth to helpful people at ABB robotics in Vsterrs.
With the insight from ABB, we came to the conclusion to that the problem was
due to timing constrains in Opcom was not being met, causing the robot sys-
tem to reset. When the IRC5 robot system resets, default position and velocity
references are given to the robot. That explains the steps seen in the logs.
The model was simplified in order to make sure that no timing constrains were
violated, but after a series of experiment, the strange behavior was even ob-
served in empty Simulink models that were compiled using real time workshop.
The Opcom source code was modified to give the user rich data about the loop
timings, trying to isolate the strange behavior. Finally, after great help from
Anders Blomdell, a bug in the Opcom source code was found in the method
timing the obtain loop of the Opcom application. The bug was due to timing
variable in the internal processor was stored in two separate 32-bit variables in-
stead of one 64-bit variable. In certain variable overload situation this internal
structure would cause the Opcom application to believe that the obtain loop
had broken the timing constraints. The Opcom application communicated the
error message to the IRC5 robot system which in turn caused the robot system
to reset.
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6 Gantry-Tau Simulink Kinematics Library

Time wise a big part of this master thesis work revolved around developing and
validating a Simulink library for the kinematics used by the Gantry-Tau parallel
robot.

6.1 Numerical Linear Algebra

Much effort was put into finding and testing mathematical packages which could
run the routines. As described in section 5.2.2, uses one code for simulation in
Simulink and another code when compiling into c for real time application. For
mathematical operations such as computing the matrix inverse a software pack-
age is used to perform numerical linear algebra. In simulations the software
library LINPACK [12], which makes use of BLAS (Basic Linear Algebra Sub-
programs) [13], for performing basic vector and matrix operation.
The Power PC running the compiled real time application however had at the
time for this thesis no support for LINPACK. An attempt implementing the soft-
ware library LAPACK,(Linear Algebra PACKage), [14]. LAPACK can partly
be view as a successor of LINPACK, also deping on BLAS rutines.

6.2 Motor to arm angle conversion

Signals from the IRC5 robot system that are used as input to the external
controller, irb2ext are given as motor angles, qm. The kinematic blocks in the
Gantry-Tau library uses arm angles (joint angles), q, as inputs. Therefor a
conversion between motor angles and arm angles are needed. For the Gantry-
Tau robot the following diagonal matrix is used for conversion between motor
and arm angles:

arm2motor =

⎡
⎢⎢⎢⎢⎢⎢⎣

400
1000 0 0 0 0 0
0 400

1000 0 0 0 0
0 0 400

1000 0 0 0
0 0 0 80π

180 0 0
0 0 0 0 80π

180 0
0 0 0 0 0 80π

180

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)

q = qm(arm2motor) (37)

where column 1 to 3 represents the conversion between motor angles given in
radian to joint position in mm. Column 4 and 5 represents the conversion
between degrees to radians. Since the 6th joint is imaginary the sixth column
does not represent any physical conversion, the sixth diagonal element was set
to 1. A similar conversion is used before signals are sent back to the robot
system, ext2irb.

motor2arm = arm2motor−1 (38)
qm = (motor2arm)q (39)
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Figure 21: The developed kinematics library for the Gantry-Tau parallel robot.
Upper row from the left: Forward kinematics block, Velocity Jacobian (imple-
menting LAPACK), Velocity Jacobian (implementing svdcmp). Lower row from
the left: Inverse Kinematics, Inverse Jacobian (implementing LAPACK), Inverse
Jacobian (implementing svdcmp).

6.3 Kinematic blocks

6.3.1 Forward Kinematics

Input: Joint positions, being the three cart positions and the motor angles of
joint 4 and 5.
Output 1: A T44 transformation matrix (the transformation matrix between
the base frame and the mounting interface (Flange)). The matrix is given as as
row major vector
Output 2; Returns a integer error signals if errors occurred calculating the
forward kinematics. Integer zero indicates that no errors detected

6.3.2 Inverse Kinematics

The developed inverse kinematics block does not use the exact methods ex-
plained in the theory section 4.4.2 to compute the inverse kinematics. As seen
in Fig. 21, the block is uses together with a Memory function in order to use
the previous joint positions, q(k − 1), as input to the block. One reason why
this solution was used is to create a kinematics library that matches a generic
kinematics library, in this case that means a kinematics library that in look
and feel resembles the one used for the serial robots. For serial robots different
configurations are normally used in different parts of the workspace and previ-
ous joint positions are used in order to select configuration and thereby choose
which solution is the most likely. The GTP however, in current setup, only
uses one hardware configuration at a time, and this parameter is stored in the
robotdata.h configuration file, which means that previous joint positions are not
necessary. But as mentioned a generic Simulink interface was emphasized and
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future GTP setups might use multiple hardware configuration, thats why this
solutions was chosen.
Input 1: A T44 transformation matrix given as a row major vector
Input 2: Previous joint positions as a vector input
Output 1: Joint positions, three cart positions and motor angles of joint 4,5
and 6 (imaginary). Stored in a vector
Output 2; Returns a integer error signals if errors occurred calculating the
inverse kinematics. Integer zero indicates that no errors detected

6.3.3 Jacobian

Input: Joint positions, the three cart positions and the motor angles of joint
4, 5 and 6. The joint positions are given as vector input
Output 1: The Jacobian stored in a T66 given in row major vector format
Output 2; Returns a integer error signals if errors occurred calculating the
Jacobian. Integer zero indicates that no errors detected

6.3.4 Inverse Jacobian

Inputs: The Jacobian, T66, stored as a row major vector
Output 1: The inverse Jacobian stored in a T44 given in row major vector
format

6.4 Validation

As mentioned in 5.4 a number of steps were taken to validate the kinematic
library. One of the tests conducted was gather joint values spread around the
entire robot workspacevia a RAPID program. The joint values was then used as
input to the forward kinematics block. The output was then sent to an inverse
kinematics block and then compared to the input to the forward kinematics
block. As shown in Fig. ??, the residuals from were kept small.

Figure 22: In the verification phase of the Gantry-Tau kinematics library resid-
uals were studied to verify the forward and inverse kinematics. As seen the
residuals are kept small.
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Figure 23: Safety zone implementation in simulation. Upper left: The force
signal in the x direction in TCP frame. Upper right: The restoring force is
activated as the TCP enters the safety zone lower left. Lower right: the restoring
force is proportional to the perpendicular distance from the safety zone border.

7 Simulation

7.1 Simulation setup

7.2 Safety zone simulation

The safety zone was tested in simulation by introducing a force on the lead
through force sensor resulting in robot movement toward the safety zone. As
seen in Fig. 23 the ”virtual force” and the introduced spring constant introduces
resistance and gradually increases as the robot moves further into the safety
zone. The lead through force is then removed to verify that the robot slowly
moves back toward the safety zone limit. The K parameters is in this case used
as a design parameter to adjust how aggressive the safety zone implementation
is to be made.

7.3 Tool sensor force simulation

In simulation, a curve was used to define a surface. The surface is modeled as as
spring, i.e, the force is proportional to the distance traveled in into the material

F = kδx (40)

where δx is the distance traveled in the material and k is the a material depen-
dent constant.

Let f(x) be the couture of the modeled surface. To shortest distance from a
point to a curve is the line perpendicular to the tangent line [11] of f(x), i.e. a
line with slope 1

f ′(x) . Assume that the shortest distance form a arbitrary point
(a, b) a, b ∈ � to the curve f(x) is the point (x0, yo) (x0, y0) ⊂ f(x). Let
g(x) define the linear equation describing the linear curve that intersects both
(a, b) and (x0, y0). Since the slope of g(x) is known, a equation system can be
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setup to solve the equation for g(x)

g(x) =
x

−f ′(x0)
+ c, c ∈ � (41)

(a, b) ⊂ g(x), (x0, y0) ⊂ g(x) ⇒ c =
a

f ′(x0)
+ b (42)

The point of interest is the intersect between f(x) and g(x)

f(x0) = g(x0) ⇒ f(x0) =
a − x0

f ′(x0)
+ bx0 = a − f ′(x0)(f(x) − b) (43)

Depending on the curve f(x), solving x0 is an optimization problem. Knowing
the intersection point the curve f(x) that lays closest the point (a, b) the modeled
force is calculated as described in 40 where the distance, d is computed using
the famous theorem of Pythagoras

d =
√

(a − x0)2 + (b − y0)2 (44)

7.4 Dual sensor simulation

In simulation a constant force was applied to the lead-through sensor moving
the TCP at constant speed toward the contour shown in Fig. 24. At contact
the modeled force described in section 7.3 acts on the tool force sensor. It is
assumed that the position and orientation of the TCP frame and force sensor
frame coincide, hence no force transformation was used. Figure 24 shows re-
sults from a simulation using dual sensors. As seen the tool sensor controller,
acting as a tool protection mechanism, prevents large contact forces building
up. Figure 25 shows some initial oscillations at contact, probably caused by
aggressive parameter setting of the PI-controller. The contact forces stabilizes
at a point corresponding to the equilibrium between the control signal from the
lead through sensor moving the tool into the contour and the control signal
generated from the contact forces. By changing the design parameters of the
tool sensor controller the magnitude of the contact forces can be tuned.
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Figure 24: Simulation of dual controllers. A impedance controller was used for
the lead-through force sensor and a PI controller was used for the tool sensor

Figure 25: Zoom in of 24. Figure shows some initial oscillations at contact.
These oscillation are probably caused by aggressive parameter setting of the
PI-controller
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8 Experiments

8.1 Drill user case scenario

A drill use case scenario was conducted to test the dual force setup. The ATI
nano25 force sensor was intended as tool sensor due to better robustness to
single axis overloads compared to the JR3 100M40 sensor. Initial tests however,
showed very poor signal to noise ratio see Fig. 26. After trying to locate the
reason for the poor performance without any success it was decided to use the
JR3 sensor instead, see Fig. 27. The Simulink implementation of the controller
is shown in Fig. 28.

Figure 26: Shows force measurement from the ATI nano25 sensor (y-axis: force,
x-axis: time). The cause of the high noise to signal ratio was not found and the
JR3 100M40 sensor was used instead

8.1.1 TCP calibration

In order to transform the sensor measurement to forces acting on the tool, a
TCP calibration was carried out. Figure 29 shows the relative position and
orientation of the flange, sensor and TCP frames. The transformation between
tool and flange was determined by a four-point TCP calibration. In a four-point
calibration the robot is jogged to a fixed point in the robot work space, with
four different orientations, resulting in four calibration points. For an arbitrary
tool sensor orientation two additional calibration points are needed. Using four
calibration points the tool frame is given the same orientation as the flange
frame. The calibration resulted in the following transformation from flange to
TCP
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Figure 27: Shows a raw force measurement from the JR3 100M40 sensor. Com-
pared to the raw measurements from the JR3, see Fig. 26, the JR3 sensor
showed a better signal to noise ratio and was therefor used in the experiments
instead for the ATI nano25 sensor.

HTCP
flange =

⎡
⎢⎢⎣

1 0 0 −71.47
0 1 0 −58.00
0 0 1 294.56
0 0 1 1

⎤
⎥⎥⎦ (45)

where the translations are given in mm.

8.1.2 Sensor to TCP force transformation

By changing the sign of the y-axis the force measurement signal was modified to
achieve a right normalized orthogonal sensor frame. The transformation matrix
between the modified force sensor frame to flange was approximated to

HSensor
flange =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 1 135
0 0 1 1

⎤
⎥⎥⎦ (46)

where the translations are given in mm.

The transformation matrices in Eq. 45 and 46 are used to derive the transfor-
mation matrix between TCP and sensor, HTCP

Sensor, using the following relation

HSensor
TCP = (HTCP

flange)
−1HTCP

Sensor (47)

The Simulink implementation is shown in Fig. 30. Since the two transforma-
tions, TCP to flange and sensor to flange, do not depend on joint values these
matrices were defined as constants in the model.
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Figure 28: Shows the Simulink implementation used in the experiential setup.
As inputs, the Simulink model takes signals from the IRC5 robot system, irb2ext,
and force measurement signals, jr3 comedi. Two force controllers were used, one
proportional controller acting as a tool protection controller and an impedance
controller was used for operator lead-through. Modified position and velocity
references are then returned to the robot system using the ext2irb outputs.
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Figure 29: The figure shows the experimental setup showing the relation be-
tween flange, sensor and TCP frame. Note that the senor frame is left orthog-
onal.

Figure 30: Figure shows the tool sensor to TCP transformation implemented in
Simulink. Upper section: The force measured by the tool force sensor is taken
as input and the force transformed to the TCP frame is given as output. Lower
section: The implementation of Eq. 47 in a Simulink block using quaternions.
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Test name Value Description

Kx 0.012 Proportional gain in TCP x-direction

Ky 0.012 Proportional gain in TCP y-direction

Kz 0.012 Proportional gain in TCP z-direction

DZFxyz
+/- 0.5 N Contact force dead zone

DZτxyz +/- 0.5 N Torque dead zone

Table 1: Shows the parameters used during the tool protection experiment

Figure 31: A tool protection experiment was conducted. The aim of the exper-
iment was to prevent a match stick from breaking. The wooden object shown
in the figure was used to subject the match stick to external forces

8.1.3 Tool protection experiment

A tool protection experiment was conducted using the setup shown in Fig 29. A
dremel was used to attach a match stick. The match stick was used as a dummy
tool. The goal in the experiment was to prevent the match stick breaking from
external forces induced using a wooden stick, see Fig. 31. Three proportional
controllers were used, one for each direction in the TCP frame. The parameters
used during the experiment are shown in Table 1
The controllers were able to prevent the match from braking by generating a
Cartesian velocity references to prevent too large contact forces, see Fig. 33.
The velocity reference is then transformed from the TCP frame to Base frame.
The velocity reference together with the Jacobian inverse is used to generate
joint velocity and position references sent to the robot system.
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Figure 32: The figure to the left shows the force measurement in sensor frame.
The force acting on the tool is derived using the force transformation described
in section 8.1.2 is shown to the right

Figure 33: Shows the Cartesian velocity reference generated by the tool protec-
tion mechanism. The left plot shows the velocity refenence given in the TCP
frame and the right plot shows the velocity refence given in base frame
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8.2 Lead-through scenario with safety zone

The lead-through scenario was implemented with safety zone. Due to the
strange behavior of the robot, caused by a bug in Opcom which was not discov-
ered until a very late stage of this work, the lead-through testing was conducted
with the the lead-through force sensor mounted outside the robot cell. Even
if the force sensor was not mounted on the robot the lead-through scenario
could be tested and the conclusion that it worked could be drawn. The intu-
itive feeling of the safety zone was however harder to test with the externally
mounted force sensor, but it was possible to observe the spring force in action
when approaching the work space borders.

8.3 Timing statistics

By modifying the Opcom application, richer information regarding execution
time durations of the external controller could be collected. Results from the
timing during experiments are presented in the appendix. For each experiment
a min duration, max duration and a average duration is presented. Due to the
code structure the average measurement is slightly different from the min and
max measurements. Using the illustration shown in Fig. 20, the min and max
duration measures the slowest and fastest execution of the entire opcom task,
i.e. subtask 1,2 and 3. The average measurements is a measurement for the
mean execution time for subtasks 2 and 3. As shown in 2 the real time perfor-
mance of LAPACK and SVDCMP.c are quite similar. The worse case execution
times are slightly better running LAPACK.

The next experiment was made to explore whether logging data had signifi-
cant impact on the real time performance or not. As shown in 3. A interesting
observation was that the external controller runs significantly slower with test
points defined, even when no logging is performed. A possible explanation is
that Real-Time Workshop compilation differs when test points are defined in
order to support logging.
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Test name min[μs] max[μs] avg[μs]

lapack test1 80 139 65.98

lapack test2 81 139 66.25

lapack test3 81 140 65.89

svdcmp test1 81 141 65.89

svdcmp test2 80 139 66.53

svdcmp test3 79 142 65.90

Table 2: Shows the minimum, maximum and average duration execution time
for three different models without test points defined. lapack test1 runs GTP
Jacobian, lapack test2 runs GTP Inv Jacobian and lapack test3 runs GTP Ja-
cobian and GTP Inv Jacobian in series, all three tests with constant inputs.
Equivalent models but using GTP Jacobian2 and GTP Inv Jacobian2 instead
were used in the svdcmptests

Test name min [μs] max [μs] avg [μs]

svdcmp test 4.1 86 171 96.01

svdcmp test 4.2 91 167 99.04

svdcmp test 4.3 87 174 98.22

svdcmp test 4.4 86 145 75.06

Table 3: Shows the minimum, maximum and average duration execution time
for a model using different logging behaviors. The model used in the test is
equivalent with the model used for svdcmp test3 in 8.3. In svdcmp test 4.1
the logging is initiated seconds after measurements are started to observe if the
initialization causes any peaks in loop duration. In svdcmp test 4.2 logging is
also started seconds after measurement are started, stopped seconds before the
measurements are stopped to observe if stopping the logging causes any peaks.
In svdcmp test 4.3 logging is performed throughout the test. In svdcmp test
4.4 no logging is performed, however test points are still defined. Interesting
to note is that a model runs significantly slower with test points defined even
without logging them.
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Test name min[μs] max[μs] avg[μs]

fkin test1 81 138 67.39

invkin test1 200 269 187.74

Table 4: Shows the minimum, maximum and average duration execution time
for the forward kinematics block (fkin test1 and the inverse kinematics block
(invkin test1, given constant input. Note the poor performance of the inverse
kinematics block. In this thesis there were no need for a inverse kinematics
block in the model used for the experiments.

9 Summary

The aim of this master thesis was to develop a simulation environment for the
Gantry-Tau parallel robot. The work resulted in a kinematics library includ-
ing Simulink blocks for forward kinematics, inverse kinematics, Jacobian and
inverse Jacobian. The kinematics library was validated and tested in both sim-
ulation and experiments. One force sensor was used to provide an impedance
control based lead-through and the second force sensor supplied input to a tool
protection controller. The dual sensor setup was tested in simulation. A safety
zone concept design, to provide operator feedback, was also tested and validated
in simulation with good results.

A tool protection experiment was conducted were a match stick was used as
tool. The controller was able to prevent large contact forces building up and
thereby preventing the match stick from breaking when subjected to external
forces.
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10 Conclusion and future work

Using the Gantry-Tau kinematics library for code generation for real-time appli-
cations on the IRC5 robot system demands good real-time performance. Tim-
ing benchmarks for the blocks included in the library shows that the kinematics
blocks are somewhat CPU demanding, but the overall performance was good
enough for the dual force sensors user scenario. In the scenario the inverse
kinematics block was not used and this is the block with the worst real-time
performance. Future work includes optimizing the C-code underlining the in-
verse kinematics block to improve performance in real-time applications. One
suggestion in optimizing the code would be to use the fact that the configu-
ration of the Gantry-Tau is fix, hence no need for previous joint positions. In
future work a more theoretical pleasing implementation of the Jacobian should
be evaluated. Instead of a imaginary sixth axis a pseudo-inverse implementation
should be examined.

The drill use case scenario presented in this thesis was used mainly used
to test the kinematics library. As the main effort was put in the development
and validation work, work remains to improve the performance of the designed
controller regarding optimizing the parameters for the scenario.
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