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student Karl Berntorp for many valuable comments on this report. And at
last many thanks to all my colleges at IPA for making my time in Stuttgart
a great one.

Sofie Nilsson

3



Chapter 1

Introduction

The main work of this thesis was done during 6 months at Fraunhofer Insti-
tute of Production technology and Automation (IPA) in Stuttgart, Germany.
The target robot Care-O-bot c©3, described in detail in Chapter 3, is devel-
oped in an internal project at IPA, with the objective to design a service
robot able to assist humans in everyday household work. Care-O-bot c©3 is
a wheeled mobile robot, made to be a challenging but realistic stage of de-
velopment between the household robots currently on the market, which are
mainly autonomous vacuum cleaners, and more advanced walking robotic
housekeepers.

In order to make a wheeled robot as flexible as possible, some kind of
wheel platform that is able to move and rotate in multiple directions, without
a need for time and space consuming maneuvers, is preferred as the mobile
base. Since all other components of the mobile robot are mounted on the
wheel base, the accuracy of the mobile platform is highly critical for a good
overall performance. It is therefore desirable to control the mobile base in a
way that guarantees well known behavior and optimal performance.

This thesis focuses on the lowest level of the mobile platform control, the
under-carriage control, which handles the transformation between, and con-
trol of, the robot velocities and the wheel motions. Robot velocity commands
generated in supervisory control layers are inputs to the under-carriage con-
trol. Other robot information, such as the robot position, is covered by other
parts of the robot control and therefore unknown and disregarded in the
under-carriage control.
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1.1 Task

The given mission of this thesis was to including system dynamics to the
Care-O-bot c©3 wheel platform control, a vast assignment with large possi-
bilities to define the exact task freely within the given field. In order to
choose what to focus on, the work was started with an investigation of the
entire platform control and dynamics. This exploratory phase was necessary
to find and limit the final task statement, but lies outside the main work
presented in this report. Since all the encountered research issues are highly
relevant for the overall project, they are mentioned briefly as suggestions to
future work in Chapter 7.

The final task is strongly related to the above mentioned statement: A
well known platform behavior is critical for the entire system performance.
In the existing version of the platform control, only the system kinematics is
taken into account, which sometimes causes loss of wheel coordination and
undeterministic behavior. The task therefore became to improve wheel coor-
dination by integrating steering dynamics to the control system. The work
was to specify relevant dynamics, determine how to account for the dynamics
in the control structure, implement and verify the proposed principles on the
real system.

For system analysis and evaluation a combination of recordings from tests
on the robot, analysis of the control implementation in C++, and simulations
in Matlab/Simulink mostly based on existing models, are used. The complex-
ity of the platform causes difficulties to formulate a complete mathematical
system model when dynamics are included, the analysis and evaluation is
therefore mostly based on logical reasoning.

1.2 Outline

As a more technical, yet general introduction, a short overview of the field
of mobile robotics is given in Chapter 2. Chapter 3 gives an overview of the
targeted robot and a detailed description of the mobile platform concerning
characteristics, control structure, and problem formulation.

Chapter 4 contains a presentation of the existing system model, selection
of dynamics to include, and construction of the dynamic model. Chapter 5
presents the new platform control system including specifications, control
architecture, and description of the implemented algorithm. Results of the
implementation on the robot are presented in Chapter 6, recorded measure-
ments from both the new and old control implementation is presented and
compared.
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In Chapter 7 conclusions drawn from evaluation of the new control idea
are presented together with ideas regarding future work.
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Chapter 2

Wheeled Robots

This chapter gives an introduction to the fields of mobile and service robotics,
including current technical standpoints, products, and goals; common ap-
proaches to mobile robot control systems; highlighted areas of research; an
overview of relevant related fields.

2.1 Background

When mobile robots and service robots are mentioned, people tend to refer
to science fiction where humanoid robots more or less takes over the world.
Even though humanoids exist, they are far from fully adaptable to the society
and intelligent enough to be compared to a human, so the people dreaming
about having a robot doing everything for them, will most likely have to wait
for some more decades. Walking robots are getting more and more advanced,
and some quite impressive concepts exist, like BostonDynamics Big Dog [22]
and Hondas ASIMO [23]. Even though those might appear very impressive,
especially in advertisement movies, they are still years from being complete
and robust products.

When it comes to the field of service robotics, the products on the mar-
ket today can barely be defined as robots; advanced household equipments
would be a better denomination. Examples of such robots are autonomous
vacuum cleaners such as iRobots Roomba [24] and Electrolux Trilobite [25].
A generation shift straight from today’s fairly unintelligent machines to a
fully compatible humanoid serving as well as a human employee is quite
unrealistic.

Instead, an intermediate generation that combines robustness and flexi-
bility will be needed. The concept of wheeled robots might not be as flexible
as a walking robot in its fully functional state, but offers a good solution
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on the way, and can for most environments, given that many premises and
households are handicap friendly, be flexible enough to perform most tasks.

Since the mobile base in context of mobility is in focus in this thesis, and
the research of wheeled service robotics is quite narrow, the whole area of
wheeled robots is considered a valid theoretical base. In order to draw paral-
lels to techniques used in other types of robots, a summary of some different
fields are given with relating parallels to the Care-O-bot c©3 platform. Ser-
vice robotics is only summarized shortly and a wider range of mobile robots
are considered as related concept studies.

2.2 Structures and Classifications

The structure of wheeled robots can vary widely, not only in the task they
are made to perform, but also in the number and type of wheels. In many
cases the system model is constructed for an individual robot and the control
routine is highly adapted and optimized to the specific application.

As for most other systems it is desirable to have a general representation
even for wheeled mobile robots, so that the same derivations do not have
to be reinvented for each new system. Such a general representation is the
bicycle model, where each wheel pair is modeled as one single wheel. The
bicycle model is widely used for simple kinds of wheeled robots that follow
car like structures. When the wheel structure is composed with multiple
independent steerable wheels of different types, the general bicycle model is
no longer a sufficient representation of the full system kinematics [7].

The degree of mobility for a robot is a returning concept that describes the
possible movements of the robot platform. The classification covers both fully
omnidirectional platforms to platforms with very limited steering angles. The
description also mentions the difference between omnidirectional and semi-
omnidirectional platforms, which is important to consider when choosing a
system model [7].

For a platform to be fully omnidirectional, it must at each instant of time
be able to move in any direction, with no adaption needed. Such a platform
can for example be achieved by the use of so called Swedish wheels, which
is flexible but not so smooth due to uneven wheel ground contact. A more
popular wheel is the caster wheel, which is not as complex as the Swedish
wheels, and offers an even wheel ground contact. Conventional wheels are
also widely used, both in combination with, and without caster wheels. With
unlimited steering, conventional wheels can also move in any direction, but
a reorientation procedure is needed. A platform that needs to reorient the
wheels in order to move in any direction is defined as pseudo-omnidirectional.
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2.3 Models

Despite the many possible different wheel compositions, wheeled mobile
robots (WMR) have a common ground in that they all are mechanical sys-
tems including kinematic constraints that cannot be eliminated from the
model equation [7].

The platform kinematic model is constructed from the platform design
and the kinematic constraints. System representations with such purely kine-
matic models are widely used, see [7][4][8], and the derivation procedure is
quite standardized.

In some cases it is desired to capture even the mobile platform dynamics
in the system model. Within the publications in this area, the dynamics
included are normally some variant of the energy flow, or the wheel ground
contact forces and wheel torques, see [9][10][11]. For more extreme applica-
tions, more detailed dynamic models might be needed; one example is driving
on loose soil, which is addressed in [14].

2.4 Control

The flexible structure of wheeled robots creates an interesting field for con-
trol research. In the case of omnidirectional and pseudo-omnidirectional
platforms, there is a need for quite advanced control systems. The task is to
control both the robot motions and the wheel coordination.

In many cases a system representation where the robot motion is trans-
lated to a motion around a rotation center at each instant, is used. Both
the robot motion and the wheel coordination control is then done by control
of the instantaneous center of motion (ICM). The ICM representation holds
a number of singularities, some which must be considered and avoided in
the control. The control can be done in numerous ways, for example with
dynamic feedback linearization, as in [8][4]. The ICM can also be controlled
via introduction of a pseudo-velocity together with constraint force control.
The constraint forces are then defined from the wheel velocity coordination
errors. The last mentioned approach originates from [10] where it was de-
veloped for general constrained mechanical systems, and was then applied in
control of a wheeled robot by Reister and Unseren in [3].

When the platform dynamics is considered, it normally, as mentioned
in Section 2.3, involves some variant of wheel ground contact forces. The
dynamics is then controlled by some variant of force control [16][15].
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2.5 Related Topics

When a robot is operating in dynamic environments, different levels of ad-
daptable motion planning are needed. When the path is changing or not
known from start, generation of motion trajectories online in real-time dur-
ing operation, is sometimes the most efficient approach. The field of such
trajectory computation is not at all limited to mobile robotics, thus publi-
cations in the area are mostly general for constrained mechanical systems.
In [13] trajectories for reduced maps of constrained mechanical systems are
generated by use of splines and nonlinear control. In [12], on-line trajectory
generation for synchronization of multiple degrees of freedom under dynamic
constraints is presented and applied in robot manipulator control. The work
in this thesis is similar to the work in [12], but the target system differences
cause substantial effects in the trajectory generation procedure.
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Chapter 3

Care-O-bot c©3

The first generation of Care-O-bot, built in 1998, was equipped with a touch
screen but no arm. The robot was already at this stage able to move safely
around humans performing simple transportation and information sharing
tasks. This version, shown in Figure 3.1(a), was successfully used as museum
guide robot [20].

For the next generation an arm, tiltable sensors, and adjustable walking
supporters were added. The arm was equipped with a gripper, which enabled
the robot to grasp objects, like plates and cups, as well as performing simple
manipulator tasks. Care-O-bot II that can be seen in Figure 3.1(b), was built
in 2002 and could be used as walking assistance [21].

(a) Care-O-bot I [20]. (b) Care-O-bot II [21].

Figure 3.1: The previous Care-O-bot generations.
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The current version, Care-O-bot c©3, is more or less an interactive butler,
developed with the goal of a mobile robot able to assist humans in their daily
life. Today the robot is able to move safely around humans, detect, grasp,
and move household objects in an interactive way. With the ability to plan
a collision free path in an environment with both stationary and dynamical
objects, in combination with a highly flexible arm, the robot is a useful tool
in any household. It can reach objects both from the floor and from high
shelves, and even open doors blocking the path. Despite that the robot is
intentionally designed to not look like a human, it is able to perform some
human gestures like nodding and bowing for the purpose of intuitive user
feedback [19].

(a) Care-O-bot III
overview [18].

(b) Care-O-bot c©3 in the laboratory kitchen.

Figure 3.2: Care-O-bot III.

In Figure 3.3(a) the robot is shown without its soft cover, allowing for a
more detailed view of the robot’s subsystems. As can be seen in the figure,
Care-O-bot c©3 consists of mainly 4 parts head, tray, arm, and mobile plat-
form. The head is equipped with tiltable cameras, which with help of image
processing provides the robot with information about the surrounding. The
tray can be automatically positioned either in front of the robot or folded to
the side, it is useful both for carrying objects on, and for human interaction
via a built in touch screen. The light weight arm is equipped with a highly
flexible hand, designed for grasping various things. The wheel platform, that
is responsible for the mobility of the robot, is the target system for this thesis
and described in detail in Section 3.1.

The robot is controlled by three onboard PCs, connected according to
Figure 3.3(b). PC1 is responsible for the arm and tray control, PC2 handles
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the head, including camera motion and image processing, and PC3 (PC4 in
the figure) manages the control and planning of the mobile platform. All
onboard PCs are using a Linux kernel and can be reached via WLAN.

(a) Care-O-bot c©3 without its cover. (b) Subsystem connection diagram.

Figure 3.3: Care-O-bot III subsystem view.

3.1 The Mobile Platform

The Care-O-bot c©3 platform is rectangular and approximately 70 cm long
and 50 cm wide with one driven steerable wheel module in each corner. Each
wheel module holds two motors, one for driving and one for steering, which
are connected to the wheel via worm gears, allowing unlimited rotation in
both steering and driving. The wheels have a radius of 75 mm, are supplied
with solid rubber tires, and are positioned approximately 7,5 cm from their
steer rotation center, as in Figure 3.5. The offset implies that each steering
motion must be coordinated with a compensating drive motion [2].

The requested platform motions can be specified in different ways; by a
person with a joystick, from a graphical user interface where paths in the
surrounding are specified, or ordered by the arm control.

The rotational velocity of the two motors in each wheel module, are con-
trolled by on-board Elmo motor controllers. The total four Elmo controllers
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Figure 3.4: The Care-O-bot c©3 platform [1].

are connected to the platform PC via CAN-bus. The platform computer is in
charge of everything related to the platform motion, such as path planning,
obstacle avoidance, communication, and much more. To not make the path
planning unnecessarily complicated, only set points for the robot configu-
ration, meaning linear and rotational velocities, are considered in the path
planning [2]. The lowest level of the platform control, from here on referred
to as the under-carriage control, translates the robot set points to wheel set
points and controls the platform to follow the target values.

Figure 3.5: The Care-O-bot c©3 wheel module [1].

3.1.1 Platform Control System

The under-carriage control system can be described by the block diagram
in Figure 3.6. The commanded robot velocities and robot rotational rate
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are decided on a supervisory control level and serve as the input vector
robcmd = [Vx, Vy, θ̇]cmd to the under-carriage controller. The robot target
generator block modifies the commanded robot velocities with help of esti-
mations of the current velocities, robest, generated from Elmo measurement
vectors in the robot estimator block, to smoothen the robot motions for safe
operation. The wheel driveing and steering command generator translates
the commanded robot velocities, robtarget, to corresponding wheel driving
and steering references, vwheel and φ∗. The steering angle position control,
resulting in steering velocity commands, φ̇∗, is done independently for each
wheel with impedance control in the steer control block. The wheel velocity
command generator finally adds the steering velocity and drive velocity cou-
pling and calculates the corresponding wheel rotational velocity commands,
ωcmd, for the Elmo drives.

The input vector is sent to the under-carriage controller, from the su-
pervisory control layer, with an interval of approximately 20 ms, varying
slightly depending on the command generator and the computational load.
Each command to the under-carriage control corresponds to one control cy-
cle, which implies that the robot references can change in each cycle, and
that the wheel commands to the Elmo controllers are passed on with the
same interval as the robot commands.

Figure 3.6: Block diagram for the under-carriage control.

The outputs from the under-carriage control computer to the Elmo wheel
controllers are given in form of steering and driving velocity references for
each wheel. The Elmo controllers hold two parallel velocity controllers. Each
one is using a cascade structure, where the velocity is controlled with a reg-
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ular PI controller in the outer loop, generating a torque command, which
results in a current command to the inner current loop. The rotational
rate of each motor is measured by encoders, allowing the motor velocities
to be calculated and fed back, together with calculated motor positions, as
measurements from the Elmo blocks. The measurements from the Elmo con-
trollers are the only measurements available for the entire platform. Within
the under-carriage controller, the measurements are used both directly for
steering angle control, and as inputs to the robot state estimator, estimating
the velocities and rotations of the whole platform. The Elmo modules can
also be configured to send estimated measurements of the motor torques, but
that feature is not used in the present version of the control.

3.1.2 Alternative Control Method

The under-carriage control structure described in Section 3.1.1 is the first
out of two currently implemented under-carriage control alternatives. This
first version is referred to as the geometrical variant, and the other version is
called the spherical variant. As mentioned in the previous section, the wheel
set points are in the geometrical variant calculated directly from the robot
set points according to the steering angle constraint equations. The steering
angles are then controlled independently to reach their targets.

The spherical control method is a bit more complex. Here the instan-
taneous center of motion (ICM), introduced in Chapter 2, for the robot is
calculated. The estimated ICM is then controlled to reach its target and
in the same time avoid singularities using a potential field controller. The
ICM is here represented and controlled in spherical coordinates for computa-
tional singularity elimination. The spherical ICM position and velocities are
mapped to the commanded steering velocities and steering angles. The steer-
ing angle changes are here results of the steering velocities, but the steering
velocities are, due to the still purely kinematic system model, considered,
from the coordination point of view, to follow their targets instantaneously.
More about this method can be found in [2].

Even though the spherical version handles the wheel coordination much
better than the geometrical, the geometrical implementation is still the more
robust one. The robustness in combination with the simple structure, made
the geometrical version to the one best suited to be used as the base for the
new under-carriage control developed in Chapter 5.
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3.2 Problems

For the geometrical control structures, the use of a purely kinematic view
on the steering angle coordination, results in that wheel coordination is only
guaranteed is steady state. Moving from one command to another is in the
kinematic model represented by an instantaneous jump to the new target,
which in reality will require an unknown number of control cycles. Since
the demanded angle change might differ for the wheels, they will most likely
require different number of samples to reach their targets. Fast and large set
point variations might therefore cause the wheel angles to drift according to
each other, resulting in an unpredictable behavior of the robot.

With the spherical control structure, the coordination is much better,
coordination is here only guaranteed when the steering velocities behave as
their targets. If the targets change slowly enough they can be reached fast
and the wheels are kept coordinated, but for a more aggressive ICM control,
the wheels will drift slightly even here, since different wheels might not reach
their steering velocity targets simultaneously.
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Chapter 4

System Model

An exact model of a real system is always impossible, and mostly even unde-
sirable, to achieve. In a complex system like the Car-O-bot c©3 platform, it
is of interest to keep the model as simple as possible, but of course without
losing valuable information. In most papers, for example [3], [8], [4], only
a kinematic model is considered due to simplicity. Completely disregarding
the dynamics works fine in many situations but will, at least in the Care-
O-bot c© 3 case, described in Section 3.2, meet some difficulties when the
maneuvers become more complex. One of the main parts of this thesis is to
introduce dynamics into the previous model, which will be done shortly, but
since the kinematics still is the basis of the model, a detailed derivation is
presented as a start.

4.1 Approximations

Just as in [7] some formal simplifications will be made. It is from here on
assumed that the robot wheels are non deformable, which due to their solid
rubber structure seems reasonable even without a detailed study; the wheel
ground contact area is approximated by a single point; the robot is considered
to move on a flat horizontal surface; the wheels have perfect contact to the
ground; the load is supposed to be equally distributed over all wheels.

4.2 Coordinate Systems

In most papers, robot motions are described in relation to a global frame,
since the goal normally is to achieve a desired position in the surround-
ing room. Motions of subsystems as well as the robot velocity are then
mapped to the world coordinate frame, see [7],[3],[8]. In the Care-O-bot c©3
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under-carriage control, the robot motions are only represented as the linear
velocities and rotation rate. No information about the robot’s position with
respect to any global frame is available; mapping the known velocities to
such a frame is thereby undesirable. Instead the robot coordinate plane is
chosen as the outermost frame.

The robot coordinate plane, (xrob, yrob), Figure 4.1(a), is defined as the
coordinate system fixed to the robot platform on ground level, with the
positive x-axis pointing in the platform forward direction with zero steering
angle. The coordinate system’s origo is placed in the geometrical midpoint of
the platform. Likewise, the four wheel coordinate planes, (xwi , ywi), i = 1..4,
are defined parallel to the robot coordinate plane, with the origo in the
wheel steering rotational center, (dxi, dyi). The wheel offset is fixed along
the negative y-axis, ywi , for all wheels. Zero steering angles on all of the
wheels then result in the platform configuration shown in Figure 4.1(a). The
wheel steering angle, φi, is defined as the angle between the robot coordinate
plane x-axis, xrob, and the wheel coordinate plane x-axis, xwi , as in Figure
4.1(b).

yw1

xw2

yw2

xw1

xrob

xw4

yw4yw3

xw3

yrob

(a) Definition of robot and wheel coordinate
planes.

yrob

dyi

dxi

xrob

xw

yw

φi

vi

(b) Definition of wheel steer angle.

Figure 4.1: Definition of robot and wheel coordinate planes and platform
model labels.
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4.3 Kinematics

The kinematics of a system covers the relation between the motions of dif-
ferent parts of a rigid body, in this case the relations between the robot and
the wheel motions. The kinematics enables to study possible steady state
wheel setups, not taking into account forces causing motion or forces in the
system as inertia and friction. The transitions between steady states are not
modeled and therefore considered to be instantaneous. A purely kinematic
model will then be a good system representation when the system itself can
change fast enough for the state transformation approximation to be valid.

4.3.1 Constraints

When a wheel, with the in Section 4.1 mentioned approximations, rolls on
a surface, it is supposed to fulfill the pure rolling without slipping condition
[7]. The linear velocity then corresponds to the wheel rotational velocity and
equals the actual forward velocity of the wheel. A displacement of the wheel
can then only occur in the direction of the wheel. The linear velocity of the
wheel in the wheel coordinate frame is then given by:

vw =

[
ω ∗ radius

0

]
. (4.1)

When four wheels are mounted on a rigid body, the pure rolling condition
for each of the wheels will result in kinematic constraints relating the wheels’
directions and rotational velocities to each other. A widely used approach,
used in [7][4][3] etc., to realize and to visualize the relation between the
coordinated wheels, is to consider each motion of the wheel base as a rotation
around an instantaneous center of motion (ICM), see Figure 4.2). The motion
around the ICM is seen as a circular motion known from classical physics,
which results in Equation 4.2, where the forward velocity, vj, of a point
moving around the center, is orthogonal to the radius, rj, and equal to the
product of the rotational velocity, θ̇, and the distance from the rotation
center, rj. When driving straight the turning radius will approach infinity
and all the wheels will have the same linear velocity.

vj = θ̇ ∗ rj (4.2)

The ICM is given from the linear velocity and rotational rate of the robot,
since the correlation between those entities decides the turning radius, which
equals the distance to the ICM orthogonal to the forward velocity. When
the robot wheels are coordinated, the ICM will be the point in which all of
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Figure 4.2: The wheel velocities/ICM relations.

the virtual extended wheel axes intersect. Thus the steering angles can be
directly connected to the ICM, resulting in four constraints for the system.

Steering Constraints

As can be seen in Figure 4.3, the ICM position vector rr equals the sum of the
wheel position vector di, which is the location of the wheel rotational center in
the robot coordinate plane, and the ICM wheel vector ri. The Figure depicts
one wheel only, but the relation holds for all wheels. The wheel turning radius
and required steering angle can then be found from Equation 4.3 resulting in
Equation 4.4, where β is the angle between ri and xrob as defined in Figure 4.2

and Figure 4.3, di =

[
dxi

dyi

]
, and rr =

[
xrob

ICM

yrob
ICM

]
=

[
XICM

YICM

]
.

[
XICM

YICM

]
=

[
dxi

dyi

]
+

[
ri ∗ cos(βi)
ri ∗ sin(βi)

]
(4.3)

βi = atan2(
sin(βi)

cos(βi)
) = atan2(

YICM − dyi

XICM − dxi

) (4.4)

For each β two different steering angle possibilities fulfill the constraints,
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φ = β + π/2 or φ = β − π/2. Which one of those two alternatives to use
depends on the desired wheel configuration.

Figure 4.3: System notation definitions and vector relations.

Wheel Velocity Constraints

Since the rotational velocity around the ICM must be the same for the whole
system, the different wheel ICM distances will result in different wheel ve-
locities. For each ICM there exists two different possible robot motions;
clockwise and counterclockwise rotation around the ICM. The forward ro-
tational direction of the wheel is defined to be the positive x direction in
the wheel coordinate system. Depending on which steering angle alternative
chosen, the linear wheel velocity is pointing either in negative or positive xw

direction. The rotational velocities of the wheels are then dependent on both
the target robot velocity and the steering angles.

The wheel offset from its rotational center will also play a part in the
choice of commanded wheel velocities. Depending on which of the steering
angle alternatives chosen, the wheel will either be closer to or farther away
from the ICM than the wheel rotational center is. Since the distance to
the ICM together with the rotational velocity around it decides the linear
velocity of the wheel, the chosen steering angle will matter even for the speed
of the wheel, not just the rotation direction. The resulting wheel velocity
can be found from Equation 4.5, where dr is the wheel offset described in
Section 3.1, which is equal for all wheels.
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vi =

⎧⎨
⎩

θ̇
|ri|−dr

, if βi = φi − Π
2

θ̇
|ri|+dr

, if βi = φi + Π
2

(4.5)

4.3.2 Singularities

One of the problems with the classical ICM representation is the introduction
of computational singularities, resulting from that the radius approaches in-
finity when the robot is driving straight. One way around this problem is to
transfer the ICM to spherical coordinates, like in [1]. During the development
of the new control method described in Chapter 5, it was highly important to
easily visualize the ICM path. With a ICM represented in spherical coordi-
nates, it is not so straight forward to quickly understand which robot motion
that corresponds to a given ICM. For this work it was thereby preferred to
keep the classical ICM representation.

In order to avoid the computational singularities, the classical represen-
tation was used for radius up to a certain limit, above which all motions are
considered as straight. This way to represent the ICM is described more in
Section 5.4. The ICM radius limiting extension to the classical representa-
tion does indeed offer a way around the computational problems, but is only
good as a temporary solution. It is not continuous and the jumps it includes
will cause problems in the control.

Some system singularities also exist; when the ICM is placed directly on
the coordinate of a wheel, the wheel can no longer rotate around the ICM
and follow the direction of the robot. When controlling the system, the
real singularities should preferably be avoided if possible; more about this in
Section 5.5.

4.4 Dynamics

When the transition between kinematic states has a noticeable effect on the
overall system, the purely kinematic model needs to be extended with some
dynamics in order to be a valid representation of the system. In the Care-
O-bot c©3’s case, the flexible structure of the platform in combination with
complex motion demands on the steering of the wheels, will, as described in
previous chapter, cause the wheels to lose coordination with respect to each
other. What happens is that one or more of the wheels are unable to reach
the demanded steering angle fast enough, due to dynamical limitations that
are not considered in the kinematic-based motion planning.
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In order to include the dynamic limitations in the motion planning, a
model over the reference values effect on the actual steering angles and ve-
locities must be constructed. The steering angle change over a certain period
of time will always be the integral of the actual steering velocity, thus focus
for the dynamic model is to represent the relation between a commanded
and measured steering velocity within a sample.

4.4.1 The Choice of Included Dynamics

Building a dynamic model can basically be done in two different ways, either
directly from known dynamic equations, or constructed from experimental
results. In most cases a study over which dynamic parts that have most
significant impact on the system is needed in order to keep the model as
simple as possible.

Setting up all the dynamic equations and convert to a single mathematic
model for the Care-O-bot c©3 platform, is a very complex task. Looking at
the gear friction and the slip forces, the steering angles, steering velocities,
and drive velocities will be linked, and the forces will be nonlinear. This
approach was tried out, but the resulting model even for a single wheel
module became to complicated to be valuable as an analytical model, and
no usable dynamical platform model was constructed with this approach.

To only include the most limiting dynamics, the measurement based ap-
proach was chosen. As introduced in Section 3.1.2, the measured steering
angles and velocities are collected by the under-carriage control from the
Elmos once per sample, and the wheel velocity references are passed to the
Elmos with the same time interval. Since the purpose of the dynamic model
is to represent the behavior of the steering velocities during a sample, mea-
surements for model building purpose needs to be collected with a much
higher sample rate than what is done in the under-carriage control loop.

Due to the software architecture, a major system modification would be
needed in order to get the required measurements. However, a Simulink
model of the platform physics existed, developed in a bachelor thesis by a
previous student. The simulation model, covering the whole system from
Elmo reference values to actual robot motions, is the best available repre-
sentation of the platform physics. Slip, friction, and steer drive coupling, as
well as the total wheel forces acting on the platform is included. By tempo-
rary system modifications, no longer available, the model accuracy had been
investigated and validated, see [17].

By investigating the steering velocity response to different sizes of input
steps, the limiting system parameters could be detected. The top graph in
Figure 4.4 shows the result of a large steering velocity reference step (yellow
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Figure 4.4: Steering angle velocity and acceleration step responses for large
input step. Top graph: y-axis rad/s, x-axis seconds, yellow commanded,
purple measured, dotted green approximated. Bottom graph: y-axis rad/s2,
x-axis seconds, yellow measured, green approximated.

curve). As can be seen the corresponding velocity response (purple curve) in-
creases with an approximately constant slope until the target value is reached.
It can also be seen that the response initially increases with a higher slope
then later on, but overall an approximation with a ramp function (green
dotted line) seems like a fairly good and simple representation.

For a smaller reference step, Figure 4.5 top graph, the target is reached
faster, but the velocity behavior is the same as for the large input step,
except that the initial transient here covers a more significant part of the
total response. The transient effect then becomes more visual, but the ramp
function approximation (green dotted line) does, just as in the Figure 4.4,
seem like a good representation also here.

Decreasing the reference step even more, results in the step response in
the top graph of Figure 4.6. Here the target is reached before the initial
transient has disappeared, and the ramp approximation is not as good as
in above cases. Comparing the ramp approximation (green line) with the
simulated measurement (purple line), they both reach their target almost
simultaneously, and the area under both lines are approximately equal, so
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Figure 4.5: Steering angle velocity and acceleration step responses for
medium input step. Top graph: y-axis rad/s, x-axis seconds, yellow com-
manded, purple measured, dotted green approximated. Bottom graph: y-
axis rad/s2, x-axis seconds, yellow measured, green approximated.

also in this case the ramp function seems like a valid representation.
A ramp-like velocity behavior corresponds to a constant acceleration. The

velocity ramp function approximation would then give a step acceleration
curve. The bottom graphs in Figures 4.4, 4.5, 4.6 show the corresponding
acceleration curves for the velocity responses. The green dotted line is the ap-
proximated acceleration resulting in the top graph’s velocity approximation.
Just as for the velocities the approximation is best for Figure 4.4.

The source of the presented velocity and acceleration behavior is the
motor current limits. In an electrical permanent magnet motor, the current
through the stator windings create a magnetic flux resulting in a torque on
the rotor. The current and the torque are almost linearly related. The torque
produces an acceleration of the motor. The motor currents are limited due to
the limited heat sink capacity of the motor. For increased performance, the
rated motor current is normally allowed to be exceeded during short periods
of time in order to help during for example start up, to overcome the static
friction. The initial high current limit is only used for some milliseconds, and
does then decrease to rated current value.
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Figure 4.6: Steering angle velocity and acceleration step responses for small
input step. Top graph: y-axis rad/s, x-axis seconds, yellow commanded,
purple measured, dotted green approximated. Bottom graph: y-axis rad/s2,
x-axis seconds, yellow measured, green approximated.

To fully use the motor capacity and reach velocity targets as fast as
possible, the motor current limit value is mostly put out to the motor when
acceleration is required. The motor acceleration limit curve will then be
shaped like the current limit, which explains the initial overshoot on the
acceleration graphs and the initially increased slope in the velocity graphs,
as can be seen in Figures 4.4, 4.5, 4.6.

From the above experiments, the constraint acceleration seems to be the
main cause of the steering angle control limits. Naturally there is also a
velocity limit, but for normal steering commands the reference angle does
not shift more than half a revolution at once. For such small steer reference
changes, the maximal velocity will not be reached before the angle reaches its
target. For safety reasons the maximal allowed velocity cannot be completely
disregarded, but for an as simple dynamical model it is not of interest.

The focus so far has been the steering angles, since those are the ones
causing problems, but something about the drive velocity dynamics is worth
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mentioning. If the smoothness of the robot motion would not be considered,
the torque limitations of the drive motors would be limiting the forward mo-
tion, in the same way as the steering motor torque. Due to the much higher
inertia in the drive than in the steer module, the torque limit would result
in larger acceleration restrictions than it does for the steer motors. In real-
ity, applying maximal driving acceleration to all the wheels would cause the
robot to accelerate much quicker than would seem safe for the surrounding,
modeling the drive in the same way as the steering would thereby not be use-
ful. For the drive, the maximal velocity will instead have much more impact
and will therefore have to be considered in the motion planning.

4.4.2 Constant Acceleration Model

In the previous section the limiting steering dynamics was specified from sim-
ulated measurements. The steering acceleration behavior was approximated
by constant acceleration limits according to Equation 4.6. In order to use
this model for control purposes, it needs to be delimited to a 20 ms interval,
since the purpose of the model is to describe how a velocity command affects
the actual steering velocity, and the velocity commands are passed on with
a 20 ms interval.

φ̈ =

⎧⎪⎨
⎪⎩

φ̈max, φ̇∗ > φ̇

0, φ̇∗ = φ̇

φ̈min, φ̇∗ < φ̇

(4.6)

Since the reference only can be changed once per sample, there are three
possible alternatives for a command; accelerate, decelerate, or keep the cur-
rent velocity. Even though acceleration and deceleration are approximated
as constant when a velocity change is needed, they are only applied until the
target is reached or the next command is received, the total acceleration or
deceleration amount within the sample can thereby be varied by the choice
of velocity command. Knowing the acceleration the maximal useful velocity
command can also be calculated.

The velocity command of the k’th sample φ̇∗(k) will then result in that
a constant acceleration is applied for a time ta < Ts, resulting in a velocity
ramp function within the sample like in Figure 4.7 for acceleration, and
Figure 4.8 for deceleration. ta is the time it takes to reach the commanded
value, given in Equation 4.8, and Ts is the sample time. Summarizing in
mathematical terms gives Equation 4.7, where a is the amplitude on the
acceleration step. Since the deceleration and acceleration only differs by sign
according to the simulations, Equation 4.7 covers both cases.
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Figure 4.7: Model for acceleration command.

Figure 4.8: Model for deceleration command.

φ̇(t) − φ̇(k − 1) =

{
at, t < ta
ata, ta ≤ t ≤ Ts

(4.7)

ta =
φ̇∗(k) − φ̇(k − 1)

a
≤ Ts (4.8)

Since the steering angle change equals the integral of the steering velocity,
the angle change over one sample can be calculated by integrating the velocity
according to Equation 4.9. Assuming that the inequality in Equation 4.8 is
fulfilled, implies that the velocity command is reachable, thus φ̇(k) = φ̇∗(k),
Equation 4.8 and Equation 4.9 can be combined to Equation 4.10 for the
steering angle after k samples.
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Δφ = φ(k) − φ(k − 1) =
Ts∫
0

φ̇(t) dt

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ̇(k − 1)Ts +
ta∫
0

at dt +
Ts∫
ta

ata dt, φ̇(k)
∗

> φ̇(k − 1)

φ̇(k − 1)Ts, φ̇(k)
∗

= φ̇(k − 1)

φ̇(k − 1)Ts +
ta∫
0
−at dt +

Ts∫
ta

−ata dt, φ̇(k)
∗

< φ̇(k − 1)

(4.9)

φ(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(k − 1) + φ̇(k)Ts − (φ̇(k)−φ̇(k−1))
2

2a
, φ̇(k)

∗
> φ̇(k − 1)

φ(k − 1) + φ̇(k)Ts, φ̇(k)
∗

= φ̇(k − 1)

φ(k − 1) + φ̇(k)Ts + (φ̇(k)−φ̇(k−1))
2

2a
, φ̇(k)

∗
< φ̇(k − 1)

(4.10)

Using this steering angel model, a transition from one velocity to another
has to be built up by one or more of those ramp functions in such a way
that each velocity command does not exceed the maximal within one sample
reachable velocity change, meaning that the velocity command must obey
Equation 4.11 at all times.

|φ̇∗(k) − φ̇(k − 1)| ≤ aTs (4.11)

4.4.3 Model Validation

The Simulink model used for dynamic behavior investigation is, as previously
mentioned, the only available representation of the system dynamics during
the time between under-carriage control measurements are collected. The
constructed constant acceleration model will therefore be validated within
the simulation envirornment. Experimental validation from the real system
will only be done in combination with the control implementation described
in the next chapter. Such experimental results are presented in Chapter 6.

When simulations to find the limiting dynamics were made, velocity ref-
erence steps were applied for arbitrary times and the responses were investi-
gated. For validation of the constant acceleration model, velocity referenses
were applied in 20 ms intervals, which corresponds to the commands gener-
ated once per sample by the under-carriage controller. Transitions between
targets not reachable within one interval were commanded as a series of
reachable 20 ms commands.

As a first step the maximal, according to the model, reachable velocity
command was applied for one sample, resulting in the response shown in
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Figure 4.9: Steering angle velocity and acceleration responses to one sample
maximal velocity command. Top graph: y-axis rad/s, x-axis seconds, yellow
commanded, purple measured, dotted green approximated, dotted red ap-
proximated without time delay. Bottom graph: y-axis rad/s2, x-axis seconds,
yellow measured, green approximated, dotted red approximated without time
delay.

Figure 4.9, and then for two samples, results in Figure 4.10. In the first case
the model does not match the actual value particularly well. As can be seen
in the figure, the mismatch seems to be caused mainly by a time delay in the
response, which is not modeled. Since the time delay is almost half a sample
long, it has a large impact on this short input step response. In Figure 4.10,
the time delay impact is already much smaller and the model corresponds
much better to the simulated reality.

Results for more samples corresponds well to the figures in Section 4.4.1,
from which the model was constructed. The model can thereby be considered
a good approximation of the system behavior, for all reference series longer
than one sample. For the one sample case, it would be more accurate to
add the initial time delay to the model, but the errors will be so small due
to the short time, that the model error will probably not have more impact
on the platform performance than unknown disturbances will. The constant
acceleration model is thereby considered useful to represent the limit steering
dynamics even for small reference changes.
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Figure 4.10: Steering angle velocity and acceleration responses to two samples
maximal velocity command. Top graph: y-axis rad/s, x-axis seconds, yellow
commanded, purple measured, dotted green approximated. Bottom graph:
y-axis rad/s2, x-axis seconds, yellow measured, green approximated.
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Chapter 5

Constructed Control Method

As introduced in Section 4.3, wheels mounted on a common base are required
to fulfill a number of kinematic constraints in order for the base to move prop-
erly. When the wheels are independently steered and driven, as in the case
of the Care-O-bot c©3 platform, external control for the wheel coordination is
needed. The kinematic constraints describe the correlation between the lin-
ear wheel velocities, implying that both the direction and size of the velocity
vectors need to be covered by the coordination control. It is reasonable to
split the control into two parts, one for the velocity direction, meaning the
steering angles, and one for the size of the velocity vector, which is related
to the rotational velocity of the wheels. Since the wheel speeds depend on
the steering angles, it is preferable to handle the steering control first and
use the results in the drive control. This chapter is focused on construction
of a solution to the control issues described in Section 3.2, which are related
to the steering angle control. The drive control will consequently only be
covered briefly.

As previously presented, the described control issues originate from the
use of a purely kinematic model when choosing steering commands. The
publications related to steering coordination is in most cases limited to sin-
gularity avoidance and search for better system representations of the plat-
form kinematics. The only found publication where some wheel dynamics is
included, is mostly focused on wheel-ground contact and force control [14].

As briefly mentioned in Section 2.5, Kroger et al. presents a method in
[12] for synchronization of multiple degrees of freedom where dynamic con-
straints are considered. Their target system is a robot manipulator but the
dynamic constraint model is similar to the one constructed in Section 4.4.
This chapter presents a method, to handle the coordination problem by in-
cluding the steering dynamic constraint model in the steering control refer-
ence calculation. The presented procedure resembles the one in [12] but is
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far from identical.

5.1 Specifications of New Control Method

To solve the wheel drifting problem, the goal is to make sure that all ref-
erence values that are sent to the wheel module controllers correspond to
coordinated steering angles in each sample. In this way the steering con-
straint errors will be minimized. Employing the ICM representation, defined
in Section 4.3, the control problem is reduced to position control of the ICM
within the robot coordinate plane. The task is then to:

Find a time optimal ICM trajectory from current to target state
that guarantees that each commanded ICM is reachable within one
control cycle.

Achievable ICM points from the current ICM, depend highly on the cur-
rent steering angels and steering velocities, which implies that no static map-
ping between those two parameters exists. An ICM point is reachable if the
corresponding angle change that is required for each wheel is achievable. De-
pending on where in the plane the ICM is located, the needed angle changes
will vary. Which wheel that will be subject to the largest steering angle
change will thereby depend on the ICM location within the plane. Whether
or not an angle change is achievable depends not only on the size of the
demanded step, but also, due to the limited acceleration, on the current
steering velocity of the wheel. Combining those aspects will lead to that dif-
ferent wheels will be limiting the ICM point motion at different positions and
times. In Section 4.4 a dynamic model mapping the reference velocities to
actual steering angle effects was developed. The idea is to include an inverse
of this map in the reference value calculation, and in that way find followable
wheel and ICM commands.

As mentioned in section 3.1.1 the robot references are generated from
joystick output. In this work, it is assumed that

Only the current target shall be considered.

When a new target is specified, the past ones do not have to be reached. No
steering target velocities are given explicitly, so

The target velocity and acceleration are supposed to be zero.

Deceleration to target position must therefore be considered.
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5.2 Chosen Approach

In some papers, for example [4], the current ICM is defined as the inter-
section point between two specified wheel axes. The rest of the wheels are
then coordinated according to the leading wheel pair. Problems with such a
method will arise when the ICM is located right between the wheels, since
no intersection point then can be found [4]. Another considerable drawback
is the possible effect of disturbances on one of the leading wheels causing
disturbances in the robot path. If the wheels instead could be coordinated
by a global parameter, disturbances on one wheel would not affect the oth-
ers as much. By separating the path planning and time aspect in the ICM
control, the ICM along a chosen path corresponding to each steering angle,
can be found as the wheel axes intersection with the path. When the wheels
are coordinated, the intersection points will be the same for all wheels. The
time aspect can then be added by defining ICM points along the path for
each time instant, which is the same as a discrete time ICM trajectory.

Even though it would be possible to generate the complete ICM trajec-
tory from the start to the end of the path, the fact that the target point
might change in each cycle, and the old targets then no longer ought to be
considered, would lead to that a large amount of computational power would
be spent on calculating references that would never be used. Generating the
trajectory step by step online will therefore be much more efficient and also
simpler, since the current states then will be known. Hence, online generation
of trajectories is the chosen approach.

5.3 Concept Description

In order to combine the mentioned trajectory generation idea with the ex-
isting under-carriage control architecture, some extensions are needed. The
block diagram for the new the control structure including the trajectory gen-
eration is shown in Figure 5.1, which can be compared to the old version in
Figure 3.6.

The system input vector robcmd = [Vx, Vy, θ̇]cmd represents the robot ve-
locity command from superior control levels. The robot target generator
adapts the commanded robot speed in order to avoid too sudden changes in
the robot forward motion, resulting in robot velocity target vector robtarget.
The robest vector holds a very simple estimate of the actual robot velocities,
calculated directly from the wheel measurements. Both robtarget and robest

follow the same notation as robcmd.
The trajectory generator block includes both the ICM path planning,
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Figure 5.1: Block diagram for the new under-carriage control.

generating a path for the ICM from its current to target position, and the
trajectory generator choosing a series of followable points along the path.
The model developed in Section 4.4, are used to take the steering dynamics
into account when choosing the trajectory points with the following three-
step method:

1. Calculate the maximal achievable angle change for each wheel.

2. Derive the limiting ICM for each wheel by calculating the intersection
point between the ICM path and the wheel axis that corresponds to
maximal angle changes.

3. Choose the one of the four ICM candidates that is closest to the current
ICM along the path.

The procedure is visualized in Figure 5.2- 5.4. Start with a known path from
current to target ICM, Figure 5.2. Calculate maximal achievable ICM for
each wheel, Figure 5.3. Choose the ICM candidate closest to the current one
along the path, Figure 5.4.

Within the trajectory generator block the ICM trajectory points are also
converted to the corresponding steering angle command vector φ∗ = [φ∗

1..φ
∗
4]

and steering velocity commands φ̇∗ = [φ̇∗
1..φ̇

∗
4], aiming to achieve the re-

quested steering angles. The φ̇∗ velocities are used as feed-forward to the
steering velocity controllers in the Elmo drivers. The steering error con-
troller compensates for model errors and disturbances by adding a steering
error compensation term φ̇∗

e to the Elmo steering velocity command.
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In the wheel velocity command generator block, the final Elmo commands
are generated. The steering velocity commands φ̇cmd are simply the sum of
φ̇∗ and φ̇∗

e, and the wheel rotational velocity commands ωcmd are calculated
from the steering angle commands, steering velocity commands, and robot
target velocities. The Elmo drives control the motor currents imotor and
generate position and velocity measurements from received encoder readings
resencoder.

Figure 5.2: Initial state of the trajectory generator, path to target is known.

5.4 Classical ICM Representation Extension

Section 4.3.2 describes the main problem with the classical ICM representa-
tion; that straight motion places the ICM at infinity. The same section also
presents the chosen solution to the problem, namely to define a circle in the
robot coordinate plane where the classical representation is used for all ICM
points located inside the circle, and all other points will be approximately
placed on the circle. Figure 5.5 illustrates this new ICM representation.
All ICM points located on the circle will then approximately correspond to
straight motion orthogonal to the angle of the ICM in the coordinate plane.
The radius of the limiting circle is chosen such that moving from steady state
zero velocity at zero steering angle, applying maximal angle change for one
cycle, will result in a steering angle change large enough to cause a replace-
ment of the ICM, meaning move the ICM inside the circle. It shall be noticed
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Figure 5.3: Calculation of the maximal achievable path intersection for each
wheel.

that this way to represent the ICM only is a temporary solution; to achieve
a well performing system a better representation must be used, preferably
the spherical representation in [1].

5.5 ICM Path Planning

Choosing the curvature for the ICM is not completely straight forward, it
must be continuous, to not have to worry about wheel tangents intersecting
between points. Since generation time is limited, a quite simple mathemati-
cal representation, allowing for a fast calculation of the intersection points, is
preferred. Choosing the path to optimize the total steering changes, avoid-
ing problematic configurations would be most desired. Constructing such a
path is a demanding task, appropriate for a future thesis. The goal here
is to support the trajectory generation idea, since some path is required
for the trajectory idea to work, a very simple variant is constructed; when
current or target ICM is within the maximal radius, the path is given by
linear interpolation between the points, Figure 5.6(a). When both current
and target ICM is located on the limiting circle, the path follows the circle,
Figure 5.6(b). By determining the equation for the line extending the wheel
axes, each wheel axes path intersection will be found by calculation of simple
polynomial intersection points.
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Figure 5.4: Selection of the limiting ICM candidate.

For a path between two points, there will always be two actual paths
one where the turning radius is increased until the robot is moving straight
and then decreased in the opposite direction, p2, and one right where the
ICM is moving straight to the target within the cycle, p1, as can be seen in
Figure 5.6(a). The first alternative together with the special ICM represen-
tation will allow for jumps, meaning that straight motion in one direction
is equal to negative straight motion in the opposite direction. The points
on the border circle will then correspond to the same motion for points on
the opposite side of each other. Taking this into account when planning the
path, jumps on the outer circle will be possible.
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Figure 5.5: With the new ICM representation, the ICM can only be located
within the gray area or en the dotted line. An ICM located on the dotted
line corresponds to straight motion of the robot.

(a) Path by linear interpolation, two alter-
native paths exist between two points; one
straight from start to target (p1), and one
trough straight robot motion (p2) causing
ICM jump.

(b) Path along radial limit, meaning
that all wheels keep the same orientation
when changing robot direction.

Figure 5.6: The two different kinds of ICM path types that results from the
used ICM representation.
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5.6 Trajectory Generation

The trajectory generator aims to add the time aspect to the path. A series of
points along the path are chosen, corresponding to the ICM command in each
sample. The trajectory requirements state that each of the trajectory points
must be theoretically reachable, considering the wheel dynamics. In order to
find the limits for the coordinated wheels, the limit for each wheel separately
must be known. The separate limits can then be combined by a transition
to ICM representation, and the limiting ICM points can be calculated.

5.6.1 Finding the Wheel Limits

Consider a steering angle change of one wheel according to the dynamic
model in Section 4.4. Without restriction on the target steering velocity, the
time optimal angle change would be achieved by applying maximal accelera-
tion, and thereby achieve maximal average velocity, until the target angle is
reached. Adding the restrictions zero target velocity and no angle overshoot,
the time optimal change will be achieved by accelerating to highest possible
velocity allowing for deceleration without exceeding the target angle. The ve-
locity curve would then correspond to Figure 5.7. The steering angle change
is the integral of the velocity curve, and thus corresponds to the gray area in
Figure 5.7

Figure 5.7: Continuous time optimal angle velocity curve.

In a discrete system, the velocity commands are given once per sample.
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The change of velocity direction can thence not happen within a sample,
which must be considered when choosing references. The commanded top
velocity will therefore be slightly lower than for a continuous system. For
a velocity to be a possible command, it must be possible to reach it within
the sample, hold it until next sample, and decelerate from it to zero without
exceeding the demanded angle change. The time optimal velocity curve will
then correspond to Figure 5.8.

Figure 5.8: Time optimal angle velocity curve with discrete references.

According to the model in Section 4.4, the maximal acceleration and
deceleration is equal, which adds simplicity. Velocity increase in one sample
can then be decreased back in the next. Only deceleration from one sample
ahead must hence be considered when choosing velocity command. In cases
where the deceleration is lower than the acceleration, two or more samples
ahead must be taken into account. The same acceleration and deceleration
values also simplify calculations related to velocity zero crossing, where the
same slope can be used on both sides of the zero crossing.

In reality both positive and negative angle changes occur. Since both
cases follow the same procedure but with different signs, negative angle com-
mands are then reflected to positive sign. The wheel trajectory limit al-
gorithm then only needs to cover the positive case. The result from the
algorithm is then switched back to the original sign at the end of the proce-
dure.
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When the initial steering velocity is negative, deceleration to zero will
result in an angle change with wrong sign. Since the total area under the
velocity curve must equal the demanded angle change, the positive area must
then equal the sum of the commanded and deceleration angle change.

Constructing the Limiting Wheel Trajectories

Determining the maximal reachable steering angle and steering velocity com-
mand is a multi step procedure with the following steps:

1. Switch sign on current settings if needed; only positive changes are
considered for simplicity.

2. Calculate the angle change covered by deceleration from current veloc-
ity to zero, through

φdecel =
∫ φ̇

a

0
(φ̇ − at)dt =

φ̇2

2a
. (5.1)

3. Determine whether acceleration or deceleration is needed by the in-
equality Equation 5.2. If the inequality is true, the current velocity
can be kept for another sample without saturation, thus acceleration
might be possible. If the inequality is false, a decelerating velocity
command is needed.

Δφ − φdecel ≥ φ̇T s (5.2)

4. Decide which steering velocity command to choose according to:

(a) If maximal acceleration can be applied without saturation, mean-
ing that inequality Equation 5.3 is true, φ̇∗ = φ̇ + aTs

∫ tend

0

˙φ(t)dt =
(φ̇ + aTs)Ts

2
+

(φ̇ + aTs)2

2a
≤ Δφ (5.3)

(b) If inequality Equation 5.3 is false, the limiting φ̇∗ is given by

∫ tend

0

˙φ(t)dt = Δφ ⇒ φ̇∗ =
2aΔφ + φ̇2

2(aTs + φ̇)
. (5.4)
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(c) If Δφ = φdecel, maximal deceleration will result in enough angle
change and φ̇∗ is given by

φ̇∗ = 0, Δφ <
aTs2

2
φ̇ − aTs, Δφ ≥ aTs2

2
. (5.5)

(d) The last velocity command must be zero, implementing maximal
deceleration down to zero within the last sample. Limiting the de-
celeration is therefore done by choosing a velocity command allow-
ing for the target angle to be reached with maximal deceleration in
the next step. The velocity command is calculated in almost the
same way as the limiting acceleration command in Equation 5.3,
but the sign difference result in that some simplifications cannot
be made in the calculations. The velocity command will then be
the solution of a second order equation according to

φ̇∗ = −aTs − φ̇

2
+

√
(aTs − φ̇)2

2
− φ̇

2
+ aΔφ. (5.6)

5. The goal is to relate the maximal reachable steering angles to ICM
limits. The maximal angle change for each wheel, Δφ∗, is found by
integration of the estimated steering velocity within next sample ac-
cording to Equation 5.7. The steering angle command limit is then the
result of Δφ added to the current steering angle. The sign variable s is
1 when accelerating and -1 when decelerating. It shall be remembered
that this only the command limits for each wheel and not the actual
steering angle commands.

Δφ∗ =
∫ Ts

0

˙φ(t)dt = φ̇∗Ts − s ∗ (φ̇∗ − φ̇)2

2a
(5.7)

6. If the sign was shifted in step 1, the resulting steering angle and steering
velocity command limit must also be shifted, in order to get the right
sign with respect to the demanded change.

5.6.2 Choosing the Limiting ICM

When the maximal steering angle change for each wheel is known, corre-
sponding ICM limits can be found, as mentioned in Section 5.3, by calcu-
lating the intersection points between each of the wheel axes’ tangents and
the ICM path. When the ICM path is described by a simple polynomial,
like presented in Section 5.5, the intersection point can be found by simple
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polynomial intersection, since the wheel axes tangent can be represented by
a first order equation in the robot coordinate plane. Caution must be taken
when the path is described by a first order polynomial, thus the two poly-
nomials might be parallel or close to parallel. In such case the intersection
point is taken as one of the points where the path meets the radius limiting
circle, and does then correspond do a straight robot motion in orthogonal
direction.

The limiting ICM for the whole platform is finally chosen as the one of
the calculated intersection points closes to the current ICM along the path.
All wheels are then coordinated with respect to the chosen point and the
corresponding velocity and angle commands are calculated.

5.7 Error control

According to the dynamic model all the wheel modules are identical. In re-
ality minor variations in manufacturing and abrasion will cause differences
in the motor and gear module dynamics. Driving in a normal household
environment implies driving condition variations that in most cases will have
different impact on each wheel module. A combination of multiple small
variations will eventually have a noticeable effect on the wheel modules’ per-
formance. Such effects can be seen as unknown disturbances and are, due to
their unknown nature, hard and undesirable to comprise for in the reference
value planning. By instead adding a steering angle position control, the dis-
turbances together with modeling errors can be suppressed at the same time
as the reference value generation is kept simple.

In the previous under-carriage control version the steer angle position con-
trol was done by one impedance control for each wheel module. To acheive
the main goal of this work; to present results of the presented trajectory
generation methodology, construction of an optimal steering angle error con-
trol was not the main concern. For this purpose two different error control
varieties were used; one simple proportional controller and one impedance
controller corresponding to previous under-carriage control implementation.

5.8 Implementation

5.8.1 Description

The constructed trajectory generation method was implemented in C++
within the previous under-carriage control thread on the on-board Linux
PC handling the under-carriage control. At first the outputs from the old
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implementation were used, the new version was then running within the same
thread, but without affecting the actual outputs to the wheels. In this way
the trajectory generator was implemented and tested gradually by verifying
that the logged calculation results, achieved from the new implementation
with real inputs during normal operation of the robot, was reasonable. When
the whole concept implementation was authenticated, the previous wheel
outputs were replaced by the result from the trajectory generator.

The implemented algorithm is an implementation of the three step method
presented in Section 5.3. The main section of the trajectory generation code
can be seen in Figure 5.9, where the achievable ICM and steering angle limit
for each wheel is found by the procedure visualized with the chart in Figure
5.10, which corresponds to the functions CalculateMaxPhi and calcIntPoint
in the code.

5.8.2 Evaluation

When testing the implemented trajectory generator idea for operation of the
robot some drawbacks were noticed. An overview of the control behavior
related to the implementation is thereby presented.

For ICM Trajectories placed completely outside the wheel base and in-
side the limiting circle, or trajectories following the circle, the wheel control
appeared to work properly.

Sometimes when changing from straight to turning motion, the robot
accelerates momentarily, the reason for this behavior is probably numerical
errors associated with the robot forward velocity calculation. The drive con-
trol set points depend on the robot velocity around the ICM, which, when
the ICM is known, can be calculated either from the commanded forward
velocity or from the rotational ratio of the robot. The switch between those
two calculation methods in combination with the very simple drive velocity
control and the discontinuous ICM representation, then cause the strange
suddenly accelerations.

The very simple path planner does not aim to avoid placing ICM com-
mands close to or on a wheel. Moving the ICM in between the wheels works
fine as long as the path does not cross exactly over a wheel, if it does various
behavior occurs, mostly causing the wheels to move very slowly and then
suddenly much faster.

When the ICM path aims to bring the ICM from a location between the
wheels to outside the wheels, problems occur. The reason is probably that
different wheels try to move in different directions along the path. Since
the path direction in this implementation is decided from the direction the
wheels optimally moves, this unwanted behavior is most likely to occur, and
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indicates that the direction of the path needs to be specified in advance.
Despite those flaws the implementation was used for more detailed ana-

lyze of the trajectory generator idea, but with some limitations on possible
test cases. The results are presented in next chapter.
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Figure 5.9: Trajectory generator main loop implementation.
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Figure 5.10: Chart over the limiting ICM algorithm.
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Chapter 6

Experimental Results

The goal of this chapter is to present the trajectory generators potential to
improve the wheel coordination of the Care-O-bot c©3 platform. The motion
patterns of interest should therefore show the problems with the old control
method, and in the same way be simple enough to not cause problems with
the simplified path planner of the new implementation. The drive scenario
where the robot changes from straight to fully turning motion fulfills the
requirements for visualization of the results. Such drive scenario corresponds
to a movement from a ICM at infinity, or with the new ICM representation,
an ICM located on the crossing of the y-axis and the limiting circle; to a
ICM at the origin of the robot coordinate plane. Motions similar to the
presented one but not necessarily including completely straight or purely
turning motion will also be useful for the coordination evaluation.

All results presented in this chapter originate from measurements col-
lected from the real robot. The robot motions are in all presented cases
commanded with a joystick. Attempts to regenerate a given robot motion
did consequently not result in the exact same series of robot commands. The
measurements were recorded by writing parameters from the under-carriage
control loop to files during runtime. The presented graphs are generated by
plotting relevant parts of the collected data in Matlab.

6.1 Joint-Space Control

The purpose of this section is to present some of the drawbacks with the old
control implementation, even refered to as the joint-space controller or the
geomethrical controller, in order to provide a reference for comparison with
the new implementation.

In the old implementation the robot motion commands were converted
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directly to wheel commands as described in Chapter 5, and no ICM or axes in-
tersection points were considered within the wheel control. In order to study
the coordination and compare the ICM commands with the new implemen-
tation, the missing parameters have been calculated from known parameters
subsequently.

Figure 6.1 shows an overview of the general performance of the steering
angle control. The figure includes both the commanded and the measured
steering angles for each wheel. The measured values follow the commanded
well in most cases, which can be seen by that the two lines mostly occurs as
one line in each sub figure. It can also be seen that during transients, the
commanded lines lead the measured, which means that the measured are not
able to follow their reference fast enough, thus two lines, for each wheel, can
be seen separated in the figure.

Figure 6.1: Overview of commanded and measured steering angles for wheel
1-4 for arbitrary commands. Steering angles in radians on the y-axis and
time in seconds on the x-axis.

Corresponding commanded and measured steering velocities are shown
in Figure 6.2. In this figure the commanded and measured lines in each sub
figure seem to follow each other well since they are seen as on e line for each
wheel.

Focusing on the special problematic driving scenario presented, namely
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Figure 6.2: Overview of the commanded and measured steering angle ve-
locities corresponding to the angle changes in Figure 6.1. Steering angle
velocities on each of the y-axis are in rad/s and the x-axis shows the time in
seconds.

changing from straight to turning motion, the ICM calculated from the robot
commands are shown in Figure 6.3, where the point in (0,100) corresponds
to straight motion in the positive x direction of the robot, and the point at
(0,0) corresponds to that the robot is rotating around its own origin. As can
be seen the commanded transition between those two endpoints are sudden,
only a few intermediate points are commanded.

Studying how the under-carriage controller responds to the robot motion
commands that resulted in the ICM commands in Figure 6.3, the intersection
points between the virtual extended axes of the wheels, with the commanded
steering angles fulfilled, can be calculated. The result is shown in Figure
6.4(a). Completely coordinated wheels should result in that all the wheel axes
intersect in the same point. As can be seen in the figure, intersection points
for different wheel pairs are spread out in the plane, thus the commanded
steering angles does not correspond to coordinated wheels.

The intersection points of the virtual axes corresponding to the measured
steering angles for the same drive scenario are shown in Figure 6.4(b). Com-
paring to the commanded intersection points in Figure 6.4(a) it can be seen
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Figure 6.3: Commanded position of the ICM in the robot coordinate plane.
Calculated from the commanded robot motions ordering the robot to change
from driving straight, ICM in (0,100) to turning around its own center, ICM
at (0,0). Both the x and y axis unit is meters.

that the measured points are more spread out then the commanded, which
means that the wheels are not coordinated in reality either for the considered
robot motion.

A detailed view of the steering angles and steering velocities are shown
in Figure 6.5 and Figure 6.6. Once again the same drive commands are
considered. It can be seen in the velocity plots, Figure 6.6, that the measured
steering velocities follow their targets quite well, but the steering angles do
not. It can also be seen that the steering angles do not reach their targets
simultaneously, which was described in Chapter 5.
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(a) Axes intersection points calculated
from commanded steering angles

(b) Axes intersection points calculated
from measued steering angles

Figure 6.4: Resulting virtual wheel axes intersection points from old con-
troller for robot commands corresponding to target jump from straight for-
ward motion to pure rotation around platform center, which is the same as
the ICM commands in Figure 6.3. Coordinated wheels would result in that
all the wheel axes pairs would intersect in the same point. The unit of both
x and y axis is meter. The zoom of the figures are set to clearly visualize the
interesting phenomena, thus some points located far away from the robot is
disregarded.
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Figure 6.5: Commanded and measured steering angles from old controller
corresponding to Figure 6.3. Steering angles on the y-axes are in radians,
time on x-axes are in seconds. Commanded angles are leading the measured.
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Figure 6.6: Commanded and measured steering angle velocities from old
controller corresponding to Figure 6.5. Steering angle velocities on the y-
axes are in radians per seconds, time on x-axes is in seconds. Commanded
velocities are leading the measured.
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6.2 ICM Trajectory Based Control

The results from the new control implementation was analyzed in two parts;
first the work of the trajectory generation was investigated, then the effect
of the actual outputs to the wheels.

The trajectory generator is, as presented in Section 5.6, supposed to gen-
erate followable points in between the globally commanded ICM points. The
process is shown in Figure 6.7 where the initial ICM commands are plotted as
rings, and the targets generated by the trajectory generator are represented
as dots. It can be seen that the distance between the generated points are
smaller close to the platform base, which coincides with the expectations since
a specified distance between two points correspond to larger angle changes
close to the wheel base, than further away. A zoomed version of the course of
events close to the platform can be seen in Figure 6.8. It can be noticed that
not all target points are reached due to the choice to disregard old commands
when a new command is received.

Figure 6.7: Commanded ICM trajectory from the trajectory generator, green
dots, generated from commanded target points, blue rings. The unit on all
axes is meters. Starting in (0,150), ending in (0,0.2).

To analyze the wheel coordination and the followability of the ICM tra-
jectory, the wheel axes intersection points corresponding to the commanded
and measured steering angles are presented in Figure 6.10(b) and Figure
6.10(a) respectively. The commanded ICM trajectory is shown in Figure
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Figure 6.8: Zoom of Figure 6.7. All axis units are meters. Trajectory gener-
ator targets represented by rings, generated points represented by dots.

6.9, the ICM does in this case move along the negative y axis towards ori-
gin, which corresponds to a right turn instead of a left as in previous cases.
Since each angle command are calculated directly from corresponding ICM
command, all wheel axes pairs intersect in the same point, as can be seen
in Figure 6.10(a), which can be compared with the commands from the old
controller in Figure 6.4(a). The measured steering angles are not as well co-
ordinated as the commanded, this can be seen by that the axes intersection
points are slightly spread out for a given ICM command, Figure 6.10(b), but
compared with the measurements from the old controller, Figure 6.4(b), the
coordination is dramatically improved.

For the ICM trajectory to be followable, both the steering angles and
steering velocities must be able to follow their references. Figure 6.11 shows
the steering angles that correspond to the ICM trajectory in Figure 6.9.
Three dotted lines are shown in each subfigure, one represents the trajectory
generator target steering angles calculated directly from the robot commands,
and the other two represents the actually commanded and measured angles
respectively. It can be seen that the measured angles follow the commanded
angles well for all wheels, and that they both reach the external target to-
gether for all wheels.

The steering velocities that belong to the steering angles in Figure 6.11
are shown in Figure 6.12. Here the three dotted lines in each subfigure
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Figure 6.9: The end part of commanded ICM trajectory corresponding to
straight to right turn of the robot. Axes units are meters.

correspond to the steering velocity commanded from the trajectory generator,
the final commanded steering velocity including error compensation, and the
measured steering velocity. The error compensation control is here done
with a simple quite aggressive proportional controller. As can be seen in the
figure, the steering velocities do not follow their targets as well as the steering
angles, but is still quite good. The reason is most likely the included effect
of the error compensation.

Figure 6.13 shows the same concept as Figure 6.11 but for a target chang-
ing more often but with smaller steps. It can be seen that even here the com-
mands from the trajectory generator is followed very well by the measured
steering angles.

6.3 Result Evaluation

Data recordings from the robot using the old under-carriage control imple-
mentation show that the in between target commanded steering angles are
not coordinated. For complex maneuvers, the lack of coordination eventu-
ally leads to temporary but undesirable wheel drifting. Looking closer at the
case when changing from straight motion to fully turning motion, it can be
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(a) Axes intersection points calculated
from commanded steering angles by the
new comtroller. All wheel axes pairs in-
tersect in the same points, which means
that the commanded steering angles are
coordinated.

(b) Axes intersection points calculated
from measured steering angles. Compared
to the intersection points from measured
steering angles using the old controller,
Figure 6.4(b), the wheels are much better
coordinated with the new control strategy.

Figure 6.10: Resulting virtual wheel axes intersection points new old con-
troller for robot commands corresponding to target jump from straight for-
ward motion to sharp right turn. ICM commands for the interval plotted in
Figure 6.9. Coordinated wheels would result in that all the wheel axes pairs
would intersect in the same point. The unit on all axes is meters.

seen that the wheels are controlled to reach their targets independent to each
other, and thus thereby not reach their targets simultaneously.

Recordings from the trajectory generator implementation show improved
wheel coordination when moving from straight to fully turning robot mo-
tion. The results indicate that the trajectory generation idea does indeed
improve the system’s ability to coordinate the wheels. As presented in Sec-
tion 5.8.2, the trajectory generation implementation is not complete, which
strongly constrains the amount of possible test cases. The performance and
robustness for a complete implementation is yet unknown. Even though
the presented measurements indicate increased performance, some robust-
ness issues can be realized; the trajectory generator fully depends on that
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Figure 6.11: Target, commanded and measured steering angles for all the
wheels (1 in the top graph and so on). Y-axis unit is radians and x-axis unit
is seconds. The measured angles follow the commanded well and they both
reach the target together simultaneously for all wheels.

the dynamic model is a good representation of the reality. Even though the
steering error controller eliminates small model errors, no reality adaption of
the wheel trajectories are available within the trajectory generator, meaning
that the steer error controller must handle all model errors alone. If the
steering dynamics would change, for example by driving on a heavy carpet,
the generation of followable trajectories would eventually fail and problems
occur. Extending the presented idea with an adaption to actual robot motion
would thereby be necessary for a robust final performance.
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Figure 6.12: Steering angle velocities corresponding to the steering angles in
Figure 6.11. The dotted lines represents commands from the trajectory gen-
erator, final commands including error compensation, and measured steering
angles for all the wheel (1 in top graph and so on). The unit on the y-axes
is radians per second, and the unit on the x-axes is seconds.
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Figure 6.13: Steering angle targets, blue dots. Resulting commanded and
measured angles from the new under-carriage control method are represented
by red and green dots respectively. Each subfigure represents one wheel with
wheel 1 in top graph and so on.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

As a tool to solve the wheel coordination issues described in Section 3.2, a
steering dynamic model was constructed. To keep the model as simple as pos-
sible, only the, from the under-carriage control noticeable, limiting dynamics
was included. By simulation with the available platform dynamic Simulink
model, the limiting parameters could be found and modeled. The model
was validated in the simulation environment, and considered representative
enough to use in the new under-carriage control.

Due to the long sample time in the under-carriage control the possible
approaches to improved wheel coordination is limited. Since influence on
the coordination only can be done when the reference values to the motor
drivers are set, once per control cycle, the best the coordination control can
do is to make sure all driver references are followable for all wheels and
aiming towards coordinated steer angles. To construct such a coordination
control, an algorithm for online trajectory generation was successfully de-
veloped. The algorithm generates a trajectory for the robot instantaneous
center of motion (ICM) in two main steps; construct a path for the ICM,
generate trajectory points, within the dynamic limits, along the path. The
algorithm was implemented on the robot, and experimental data shows that
the wheel coordination does indeed improve with the new control approach.

The two step trajectory generator architecture is flexible and allows for
many future improvements. The steering model could be replaced or ex-
tended to better capture the limiting dynamics. The currently simplest as
possible path planner should preferably be replaced by a more complex ver-
sion covering singularity avoidance and smooth paths generation. Research
around similar areas are already taking place at the institute, mostly in con-
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text of smooth ICM control, but without dynamic inclusion. Great potential
to merge the trajectory generation concept with such systems is offered.

7.2 Future Work

Except from already suggested improvements on the developed control sys-
tem, there are a lot more that can be done for a better under-carriage control.

7.2.1 Software Structure Modifications

The work for this thesis has been constrained to a method working without
large scale system modifications. Using the currently quite long control cycle
of the entire under-carriage control might not be the most optimal way to
control the platform. If the wheel coordination part, including both steering
angle and wheel velocities, would be separated from the rest and handled in
a separate thread with a shorter cycle time, the coordination control could
most likely be improved dramatically. By connecting the new thread to the
robot control thread with proper real-time management, an efficient and
robust under-carriage control could be achieved. The faster coordination
loop would then allow for better use of the Elmo drivers abilities, such as
motor torque feed-forward, which cannot be used in combination with the
current control cycle time.

7.2.2 Wheel Force Control

In the current under carriage system, the wheel velocities are used as the
only indication of the robot velocity. In this way, the wheel ground contact
is approximately perfect. Even though higher control levels has information
about robot position in relation to surrounding objects etc. from cameras and
other sensors, the under-carriage control has no ability to adapt to changed
drive conditions and associated potential problems, such as wheel slipping
and surface deformation. By using torque measurements from the Elmo con-
trollers and eventually even robot velocity measurements, if sensors providing
such would be added, the wheel forces could be estimated, allowing for force
control of the wheels.

To take the whole thing one step further, to provide ability to drive on
troublesome surfaces, the force control could be extended with drive condition
adaption. A state machine keeping track of drive conditions should then
preferably be added to provide information to such adaption.
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