
ISSN 0280-5316
ISRN LUTFD2/TFRT--5858--SE

Optimal tracking and identification
of paths for industrial robots

Henrik Nilsson
Björn Olofsson

Department of Automatic Control
Lund University

June 2010

2

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

June 2010
Document Number

ISRN LUTFD2/TFRT--5858--SE
Author(s)

Henrik Nilsson and Björn Olofsson

Supervisor

Anders Robertsson, Johan Åkesson
Automatic Control, Lund
Rolf Johansson Automatic Control, Lund (Examiner)
Sponsoring organization

Title and subtitle

Optimal tracking and identification of paths for industrial robots (Optimal följning och identifiering av banor
för industrirobotar)

Abstract

In many application areas in industrial production, industrial robots are utilised for performing
various tasks. Frequently a predefined geometric path exists, such that the robot should track
this path with its tool centre point. The tracking is often to be performed with certain criteria
specified, such as minimisation of time or energy. Accordingly, path tracking problems can often
conveniently be formulated as optimisation problems. This thesis concerns the problem of time-
optimal path tracking for industrial robots. The path tracking is experimentally evaluated on a
robot from ABB of type IRB140 available in the Robotics Lab at the Department of Automatic
Control, Lund University. In the thesis, mainly the optimisation software JModelica.org has
been used for optimisation purposes. In cases where the path only is defined by a motion of a
tool along a contour of an object, experimental methods are required in order to determine the
corresponding geometric motion of the robot. In the thesis a contact-force control approach for
determining of the joint positions along the desired path is considered. Further, in a time-
optimal path tracking, one control signal is saturated in every time instance. Consequently, the
robustness to modelling errors and disturbances is low. In order to make the control more
robust, an earlier developed control structure called path velocity controller is implemented and
tested in the robot system. Both contact-force controlled path identification and optimal path
tracking are evaluated in simulations and in experiments on the robot system.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280-5316
ISBN

Language

English
Number of pages

88
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

Contents

Preface . 5

Acronyms and symbols . 6

1. Introduction . 9

1.1 Path tracking for industrial robots 9

1.2 Method . 11

1.3 Outline of the thesis . 11

2. Theory . 13
2.1 Optimisation . 13

2.2 Robotics . 14

2.3 Solution methods for the path tracking problem 20

2.4 Time-optimal path tracking with the phase plane method . 20

2.5 Formulation of an optimisation problem 22
2.6 Solution of the optimisation problem 24

2.7 Singular points in the path tracking problem 26

2.8 Control of the robot system 26

3. Example of a path tracking problem 31
3.1 Path tracking problem . 31

3.2 Time-optimal path tracking with the phase plane method . 32

3.3 Optimal path tracking with cone constraints 33

3.4 Solution of the optimisation problem with JModelica.org . . 34

3.5 Experimental verification . 36

4. Robot modelling and path identification 39

4.1 Robot modelling . 39

4.2 Path to be tracked . 42

4.3 Calibration of TCP and force sensor 44

4.4 Control structure for path identification 47
4.5 Experimental results from path identification 54

5. Path optimisation and experimental results 58

5.1 Optimisation problem in JModelica.org 58

5.2 Implementation of PVC in Simulink 61

5.3 Simulation results of optimal path tracking 64
5.4 Experimental results from optimal path tracking 65

6. Conclusions and future work 75

6.1 Conclusions . 75

6.2 Future work . 76

7. Bibliography . 77

A. Robot system in Robotics Lab 80
A.1 Communication with robot system 80

A.2 Robot system . 81

A.3 Force sensor . 82

B. Code listings . 83

B.1 Modelica code for example in Chapter 3 83
B.2 Modelica code for path tracking problem in Chapter 5 . . . 84

C. Simulink implementations . 87

3

4

Preface

The current thesis is the final part of our education leading to a Master

of Science degree in Engineering Physics. The thesis took place at the

Department of Automatic Control at Lund University.

We would like to express our great gratitude to our supervisors Asso-
ciate Professor Anders Robertsson and Assistant Professor Johan Åkesson,

both with the Department of Automatic Control, for many interesting dis-

cussions and advice during our project. Anders has introduced us to the

robot system in the Robotics Lab and helped us with robot control in gen-
eral. Johan has facilitated our work with optimisation in general and JMod-

elica.org in particular.

Further, we would like to thank those who have helped us in various

ways and in different stages of the project and those who have read our

report and given comments on its content and form.
The subject of this thesis is optimal path tracking for industrial robots.

The background for the subject is a PhD thesis entitled Path Constrained

Robot Control performed in the Robotics Lab at the Department of Au-

tomatic Control in the early 1990s by Ola Dahl. This thesis concerns the
subject of time-optimal control of an industrial robot. In recent years, a new

optimisation platform called JModelica.org has been developed at the De-

partment of Automatic Control. With the PhD thesis by Ola Dahl and the

new optimisation platform JModelica.org as foundation, a Master thesis
project entitled Optimal Control and Path Following for Industrial Robots

was done in 2008–2009 by Martin Hast concerning optimal path tracking.

During that project new ideas emerged that could not be explored due to

the limited time available for the project. These ideas led to the current
project, which was performed as a continuation of the Master thesis by

Martin Hast.

Lund, June 2010

5

Acronyms and symbols

Acronyms

ABB Asea Brown Boveri

DAE Differential Algebraic Equation

NLP Nonlinear Program

ORCA Open Robot Control Architecture

PVC Path Velocity Controller

TCP Tool Centre Point

General symbols

q joint position vector

q̇ joint velocity vector

q̈ joint acceleration vector

τ torque vector

M(q) inertia matrix

C(q, q̇) Coriolis and centrifugal matrix

D viscous friction matrix

�(q) gravitational vector

J(q) Jacobian

v linear velocity

ω angular velocity

T44 transformation matrix

s path parameter

ṡ path velocity

s̈ path acceleration

f (s) path

f ′(s) derivative of the path

f ′′(s) second derivative of the path

Γ1(s) parameter in general rewritten robot dynamics

Γ2(s, ṡ) parameter in general rewritten robot dynamics

m(s) parameter in rewritten robot dynamics

c(s) parameter in rewritten robot dynamics

�(s) parameter in rewritten robot dynamics

η weighting parameter in the cost function

()r reference

(̇) first derivative with respect to time

(̈) second derivative with respect to time

()′ first derivative with respect to s

()′′ second derivative with respect to s

6

Acronyms and symbols

Convex optimisation formulation

α corresponds to s̈

β corresponds to ṡ2

Path velocity controller

σ path parameter (corresponds to s)

σ̇ path velocity (corresponds to ṡ)

σ̈ path acceleration (corresponds to s̈)

β 1 first coefficient of the parametrised control law

β 2 second coefficient of the parametrised control law

vf path velocity feedback

γ adaptively updated scaling parameter

α gain of the path velocity feedback

k time-constant in the γ -adaptation

Force control and path identification

f force

fN normal force

fc control signal for the force controller

Mz torque in the z-direction

Mc control signal for the torque controller

n normal of the plane of the path

vt tangential direction

�� ⋅ �� 2-norm

7

Acronyms and symbols

8

1. Introduction

The following chapter introduces concepts and ideas that are important in

this thesis. Initially, the main theme, namely path tracking for industrial

robots, is presented. This naturally leads on to the closely related subjects

of robotics and optimisation. Further, the method that has been used in this

thesis is presented. Finally, an outline of the report is given.

1.1 Path tracking for industrial robots

In a number of application areas in industrial production, industrial ma-
nipulators are utilised. A few examples of these, like moving a part from

point A to point B, painting in the automotive industry and gluing in a

manufacturing industry can be mentioned. In all of these application ar-

eas, the work that the robot performs means that the working environment
for the employees in the industry is improved. This is especially the case

in the mentioned application areas of painting and gluing, because these

might have a negative health impact on the employees in the industry.

Strategy for motion planning

The problem of motion planning for industrial robots is often divided into

two phases. This method is commonly referred to as the decoupled approach
[LaValle, 2006]. The two phases can be stated as:

1. Planning of the path.

2. Determining of a control strategy of the robot system, such that the

path is tracked as close as possible.

The reason for this approach is that the complexity of the second phase,

the control phase, is reduced if a predefined path is available.

Planning phase In the first phase a path from a starting point A to an
endpoint B is defined, such that the robot is supposed to follow this path

with its tool centre point, abbreviated TCP. This is done without consider-

ing the entire dynamics of the robot [Verscheure, 2009]. The path can be
defined as the result of a desire to move for example a tool along a con-

tour of an object or it can be the result of a mathematical path planning
process from point A to point B. In the first case, experimental methods

are required in order to determine the corresponding motion of the robot.

In this thesis contact-force control has been considered for this task. When

the path in the latter case is planned in the space R
3, such as physical

obstacles are considered, see Figure 1.1. Also the corresponding paths for

other robots within the same working area are taken into account in order

to avoid collisions. However, mathematical path planning algorithms have

not been examined in this thesis.

Control phase In the second phase a control strategy is determined off-

line such that the path that was planned in the first phase is tracked as

close as possible. Thereby, the whole dynamics of the robot system has to be

9

Chapter 1. Introduction

x

y

z

A
B

Figure 1.1 In the figure a schematic illustration of a path and obstacles in the

space R
3 can be seen.

considered [Verscheure, 2009]. This means that a model of the current robot
has to be available. With the model at hand, suitable feedforward control
signals can be decided in advance. These control signals are then sent to

the robot system during the traverse of the path. Often, there are multiple

criteria that are desirable to fulfill during the traverse of the path, e.g., as

a result of time and energy considerations. Hence, a suitable formulation

of the path tracking problem is in the form of an optimisation problem.

Modelling errors and disturbances Because of the limited validity of

the robot model and disturbances from different sources, the theoretically

calculated control signals along the path will not work satisfactory on a
real robot system. Therefore it is appropriate to use feedback from the

measured signals of the robot as a complement to the feedforward signals.

The feedback is then responsible for the real-time path tracking, in the face

of modelling errors and disturbances.

Criteria that have to be considered during control

In the previous section it was mentioned that there are often certain cri-

teria that have to be fulfilled during the control. Naturally, it is common

that the robot is to traverse the path with as high speed as possible, i.e.,

the elapsed time for the traverse from starting point to endpoint is min-
imised. The time consumed by the robot, in for example a manufacturing

industry, is completely decisive for the production rate and therefore the

income of the company. Another criterion is the energy consumed during

the traverse. It is always of interest to minimise the consumption of energy
in order to make the wear of the robot as low as possible.

The above specifications are of a type that can be called soft criteria

because it is desirable, but not critical, that they are obeyed during the

traverse of the path. However, in robot control there are also other criteria,
that can be called hard criteria, which have to be considered. These criteria

arise naturally as a result of the physical limitations of what is possible

to achieve in the robot system in terms of control signals and internal

10

1.2 Method

limitations. As an example, the motors that realise the torques on the

robot joints have limitations in terms of the angular acceleration that they

can realise in the robot system.

As a consequence of the mentioned specifications, the control of the path

tracking can be determined as the solution of an optimisation problem.
In the optimisation problem, a cost function which is to be minimised is

introduced. This function typically expresses time and energy consumption.

The minimisation of the cost function is subjected to certain constraints.

The constraints in this application are such as the robot dynamics, physical
limitations of control signals and the path itself.

1.2 Method

In order to obtain optimal path tracking for industrial robots, optimisation
by means of different software devoted to solving optimisation problems

numerically, has been done. The software used in the thesis will be de-

scribed later. Simulation and implementation of control systems for indus-

trial robots have been done with the tools SIMULINK/Real-Time Workshop
in MATLAB. For simulation purposes, the simulation tool Dymola has also

been used. Dymola uses the modelling language Modelica for formulation

of the simulation model.

Further, a force control approach has been considered for identification

of a path to be tracked. This strategy can be used for determining of the

geometric motion of the robot when the path to be tracked is defined by a
tool that is to be moved along a contour of an object. Force control allows

interaction between the robot and the environment and is accordingly well

suited for the task of path identification.

Execution of a control system implemented in SIMULINK on a real robot

system is made possible on an IRB140 industrial robot [ABB Robotics,
2009] from the international company ABB. This robot is available in the
Robotics Lab at the Department of Automatic Control, Lund University.

The low level control of the robot is performed by a control cabinet of

model IRC5, also from ABB. Further, the control cabinet at hand has a re-
designed interface that allows execution of a control system implemented

in SIMULINK. To be able to use the interface, the model built in SIMULINK

has to be transformed into C-code. This procedure is automatically done by

Real-Time Workshop in MATLAB. With the obtained C-code and correspond-

ing object file, the control system can be executed on the real robot system
and thereby experimental results can be collected. More details regarding

the robot system in the Robotics Lab can be found in Appendix A.

1.3 Outline of the thesis

The thesis is organised in six main chapters and three appendices. The

theoretical background for this thesis is presented in Chapter 2. This in-

cludes basic optimisation theory, robotics and solution methods for path
tracking problems. Chapter 3 gives an example of a path tracking problem

and illustrates the use of the solution methods presented in Chapter 2. In

Chapter 4, robot modelling and path identification are discussed. Results

11

Chapter 1. Introduction

are presented from model identification experiments and path identifica-

tion experiments on the real robot system. The second last chapter, Chap-

ter 5, discusses optimisation of the path tracking problem in JModelica.org

and presents experimental results from optimal path tracking of a contact-
force identified path. The final chapter, Chapter 6, summarises this thesis

and gives an outline of extensions and possible improvements of the work

made in this thesis. Finally, the first appendix contains some practical de-

tails concerning the Robotics Lab and the two following appendices contain
some relevant Modelica code sections and SIMULINK implementations.

12

2. Theory

This chapter presents the theory on which this work is founded. This in-

cludes basic optimisation theory, basic robotics and different methods to

solve optimal path tracking problems. Further, a method is described that

can be used to control the robot system, given an optimisation result.

2.1 Optimisation

From the introductory chapter it follows that the path tracking problem,

with the additional desire that the time is minimised, leads to an opti-

misation problem. Generally, an optimisation problem has two parts. The
first part is a function, referred to as the cost function, whose value is

minimised or maximised over the free optimisation variables. The second

part consists of the so called constraints that have to be considered during

the optimisation. Mathematically, a general optimisation problem can be
stated as below.

DEFINITION 2.1—GENERAL OPTIMISATION PROBLEM

Minimise f (x)

such that �i(x) ≤ 0 , i = 1, . . . , j

hi(x) = 0 , i = 1, . . . , k

where x is the optimisation variables, f (x), �i(x) and hi(x) are arbitrary
functions, j is the number of inequality constraints and k is the number of
equality constraints.

Convex optimisation

A special class of optimisation problems is the convex optimisation prob-

lems. Problems belonging to this class have special very tractable character-
istics that make them less hard to solve than other optimisation problems.

These characteristics are discussed below. For a more general treatment

of the subject of convex optimisation the reader is referred to [Boyd and
Vandenberghe, 2004]. In order to formulate a general convex optimisation
problem the concepts of convex set and convex function have to be defined.

The definitions are done according to [Boyd and Vandenberghe, 2004].

DEFINITION 2.2—CONVEX SET

The set A is said to be a convex set if, for every pair of points x1 and x2 in
A, it holds that

θ x1 + (1− θ)x2 ∈ A

for all θ ∈ [0, 1].

13

Chapter 2. Theory

DEFINITION 2.3—CONVEX FUNCTION

A function � is said to be a convex function if its domain D� is a convex set
and, for every pair of values x1 and x2 in D�, it holds that

�(θ x1 + (1− θ)x2) ≤ θ�(x1) + (1− θ)�(x2)

for all θ ∈ [0, 1].

The latter definition can be interpreted geometrically in two dimensions

as follows: If the line segment between two arbitrary points, (x1,�(x1))
and (x2,�(x2)), on the function curve is above the function curve, then the
function is convex. An example of a convex function in one dimension is the

second order polynomial �(x) = x2.

General convex optimisation problem A general convex optimisation

problem can now be defined according to [Boyd and Vandenberghe, 2004].

DEFINITION 2.4—CONVEX OPTIMISATION PROBLEM

Minimise f (x)

such that �i(x) ≤ 0 , i = 1, . . . , j

aTi x = bi , i = 1, . . . , k

where x is the optimisation variables, f (x) and �i(x) are convex functions,
j is the number of inequality constraints and k is the number of equality

constraints.

The characteristic of convex optimisation problems is that if a minimum

for the problem is found, then this minimum is a global minimum of the

function f (x). This conclusion cannot be made in the general case, because
the solution in that case might be a local minimum. Consequently, it is de-

sirable to formulate the optimisation problem describing the path tracking

as a convex optimisation problem.

Solution of optimisation problems

Only in rare cases is it possible to obtain the solution of an optimisation
problem with analytic solution methods. Therefore, the solution of an op-

timisation problem, both of a general optimisation problem and a convex

optimisation problem, can be acquired with numerical software dedicated

for solving optimisation problems. In this work mainly the software JMod-
elica.org, see Section 2.6, has been examined. For convex optimisation prob-

lems, also another alternative numerical software has been examined that

might be more efficient for this kind of problems.

2.2 Robotics

In this thesis, industrial manipulators, or more specificly serial kinematic
industrial robots, have been utilised. This type of industrial robots consists

of a number of joints and corresponding links, with each link serially con-

nected to the next via each joint. Rotation of the links is realised by motors

14

2.2 Robotics

q1

q2

q3
q4

q5

q6

Figure 2.1 Illustration of the six joints, qi, i = 1, . . . , 6, of the ABB IRB140. In
the figure the robot is in its home position, i.e., the configuration where all joint

positions equal to zero.

in the joints. The construction of a serial kinematic robot is often done

such that six degrees of freedom is achieved. This means that an arbitrary
position in the workspace of the robot can be reached from an arbitrary

angle with the TCP of the robot. The robot utilised in this thesis, an ABB

IRB140, can be seen in Figure 2.1, where the six joints are indicated.

Forward kinematics To describe the motion of the serial kinematic

robot, a relation between the joint positions and the corresponding position

and orientation of the TCP is required. This relation constitutes the forward
kinematics of the robot. The forward kinematics problem is facilitated by

the introduction of a number of Cartesian coordinate systems attached to

each link of the robot, the base of the robot, the robot flange and the TCP

[Siciliano et al., 2009]. Then, the coordinates of the TCP can be expressed in
for example the base coordinate system. In Figure 2.2 two of the coordinate

systems, attached to the base and the flange, are shown.

Transformation matrices The connections between the Cartesian co-

ordinate systems attached to the robot can be established by introducing

transformation matrices. This is done by utilising basic linear algebra and

expressing the next coordinate system as a translated and reoriented ver-
sion of the former coordinate system. As an example, consider the two co-

ordinate systems in Figure 2.3, below referred to as coordinate systems 1

and 2. Consider a vector p2 = [p
x
2 p

y
2 pz2]

T describing an arbitrary point

P in coordinate system 2. Then introduce the vector r between the origins
of the two coordinate systems, expressed in coordinate system 1. Also in-

troduce a rotation matrix R of dimension 3 � 3 describing the rotation of
coordinate system 2 with respect to coordinate system 1. Then the point P

15

Chapter 2. Theory

x

y

z

x

y

z

Figure 2.2 In the figure the Cartesian coordinate systems attached to the robot

base and to the flange are shown.

can be expressed by a vector p1 = [p
x
1 p

y
1 pz1]

T in coordinate system 1
according to

p1 = r + Rp2. (2.1)

Both the translation and the rotation can be described by a single trans-

formation matrix of dimension 4� 4, see e.g., [Spong et al., 2006], denoted
T44. In order to use the T44 matrix, the vector to be multiplied with the

transformation matrix also has to be extended to four elements. The fourth
element can be introduced as 1, without interfering with the desired trans-

formation. The T44 matrix can then be established as the following block

matrix

T44 =

[
R r

0T 1

]
. (2.2)

Note that the three first elements in the fourth column in the transfor-

mation matrix express the position of the origin of the second coordinate

system in the first.

Denavit-Hartenberg convention The coordinate systems are attached

to the robot according to the Denavit-Hartenberg convention1, see e.g.,
[Spong et al., 2006]. The transformation matrices between the different
coordinate systems can then be decided stepwise via each joint starting

from the base and ending with the robot flange or the TCP. Four coordi-

nates are central in the Denavit-Hartenberg convention: The offset d, the
length a, the twist α and the angle θ , see Figure 2.3. With these coordi-
nates, a T44 matrix from the second coordinate system to the first can be

1Note that there are two versions of the Denavit-Hartenberg convention. The first is

only called Denavit-Hartenberg while the other is called modified Denavit-Hartenberg.

16

2.2 Robotics

x1

y1

z1

x2

y2

z2

a

α

d

θ

Figure 2.3 The figure illustrates the four coordinates used in the Denavit-

Hartenberg convention. Firstly, a is the distance beetwen z1 and z2. Secondly, α is
the angle beetwen z1 and z2. Thirdly, d is the distance from the origin o1 to the

intersection of z1 with x2, measured along z1. Finally, θ is the angle between x1
and x2. The positive directions of the angles are also shown in the figure.

established as follows [Spong et al., 2006]

T44 =

⎡
⎢⎢⎢⎣
cosθ − sinθ cosα sinθ sinα a cosθ

sinθ cosθ cosα − cosθ sinα a sinθ

0 sinα cosα d

0 0 0 1

⎤
⎥⎥⎥⎦ . (2.3)

Establishment of the corresponding transformation matrices from the
different coordinate systems makes it possible to translate a position or

vector in one coordinate system to another coordinate system easily. As an

example, a vector pf lan�e =
[
px
f lan�e p

y
f lan�e p

z
f lan�e 1

]T
expressed in

the flange coordinate system can be expressed in the base coordinate sys-

tem with a vector pbase = [p
x
base p

y
base p

z
base 1]

T by multiplication of the

corresponding transformation matrix T
f→b
44 from flange to base. Since the

base is connected to the flange via the chain of robot links, this transforma-

tion matrix can be determined by stepwise multiplication of all transforma-

tion matrices from base to flange, via each joint. The final transformation

can then be written according to

pbase = T
f→b
44 pf lan�e. (2.4)

Inverse kinematics The opposite procedure of forward kinematics —

i.e., to determine the joint positions given the position and orientation of

the TCP — is called the inverse kinematics problem. This is a much harder
problem to solve, due to the existence of multiple solutions of the joint

positions, given a position and orientation of the TCP [Siciliano et al., 2009].
One approach for establishing the inverse kinematics is to determine the

17

Chapter 2. Theory

solution pointwise and such that it in every point is chosen as the one

closest to the solution in the point before. However, this strategy also fails

in the singular configurations of the robot, where there are an infinite

number of solutions to the inverse kinematics problem.

Jacobian The forward kinematics relation connects the joint positions

to the position and orientation of for example the robot flange. In many

applications it is desirable to have a corresponding relationship between

the joint velocities and the velocity of the flange. This relationship is re-
alised through the introduction of the Jacobian describing the differential

kinematics of the robot [Siciliano et al., 2009]. The Jacobian connects the
joint velocities with the velocity of for example the flange. The flange ve-

locity is characterised by three linear velocities [vx vy vz]
T and three

angular velocities [ω x ω y ω z]
T , all expressed in a Cartesian coordinate

system. Mathematically the relation can be written for a robot with n joints
[Siciliano et al., 2009]

v = J(q)q̇ (2.5)

where v = [vx vy vz ω x ω y ω z]
T is the velocity of the flange, J(q) is

the Jacobian of dimension 6� n and q̇ is the n�1 vector of joint velocities.
Obviously the Jacobian depends on the current configuration of the robot,

i.e., the joint positions q. It is also to be noted that the Jacobian loses rank

in the singular configurations of the robot.

Robot model

As mentioned earlier, a demand for a good model of the robot exists when

determining the path tracking. Availability of the robot model makes it
possible to take the dynamics of the robot into consideration in the optimi-

sation. This is a requirement for obtaining accurate path tracking, which

uses maximum capacity of the robot. One frequently encountered robot

model is the rigid body model. This model describes the relation between
applied torques on the joints and the joint variables; the model can be

written as [Spong et al., 2006]

τ = M(q)q̈+ C(q, q̇)q̇+ Dq̇+ �(q) (2.6)

where q is the vector with the joint variables, M(q) is the inertia matrix,
C(q, q̇) is a matrix that describes the Coriolis and centrifugal effects, D
is a matrix describing the viscous friction, �(q) is a vector that describes
the gravitational forces and τ is a vector with the applied torques on the
robot joints. The joint variables can also be called joint positions. These two

expressions will be used interchangeably in the thesis. For a revolute joint,

which all the joints in the IRB140 are, each joint position qi, i = 1, . . . ,n,
is the same as the corresponding link angle θ in the Denavit-Hartenberg
convention.

Robot dynamics with path tracking requirements

The robot dynamics presented above can be simplified in the case where

a path is to be tracked, see e.g., [Bobrow et al., 1985]. Simplification in
this context means that the number of states in the corresponding path

tracking problem is reduced. The basis is the path, which is assumed to be

expressed in the joint positions of the robot. The path is parametrised in a

18

2.2 Robotics

so called path parameter s(t). Note that the time dependency of the path
parameter s(t) will be implicit in the rest of the presentation for notational
simplicity. The parametrised path can be written according to

f (s) =

⎡
⎢⎢⎢⎢⎣

f1(s)

f2(s)

...

fn(s)

⎤
⎥⎥⎥⎥⎦ , s ∈ [s0, s f] (2.7)

where n is the number of joints in the robot, s0 is the starting point and
s f the endpoint of the parametrisation. For path tracking it is required

that q = f (s). With this equality the following two relations are directly
obtained

q̇= f ′(s)ṡ , q̈= f ′(s)s̈+ f ′′(s)ṡ2. (2.8)

These relations are then used to rewrite the robot dynamics. Depending on

the robot model used, the results are different, which means that all robot

models cannot be used with all solution methods for the path tracking
problem. Therefore, it is here assumed that the robot dynamics can be

described by a model in accordance with the rigid body model (2.6). Then
the robot dynamics can be rewritten, by using (2.8), on the following general
form

τ = Γ1(s)s̈+ Γ2(s, ṡ) (2.9)

stated in [Dahl, 1992].
In order to be able to formulate a convex optimisation problem that

describes the path tracking problem, the even stricter assumption that the
robot model used in the optimisation can be written, by using (2.8), on the
following form

τ = m(s)s̈+ c(s)ṡ2 + �(s) (2.10)

is made in [Verscheure et al., 2009]. Note that this requirement is a special
case of the form (2.9). The following example shows that this reformulation
is possible in a case where the robot can be described by a simple model.

EXAMPLE 2.1

Assume that the robot has two joints, which can be described by a lin-
ear model. Further, the coupling between the links is assumed to be ne-
glectable. Then the model can be written

τ =

[
m1 0

0 m2

]
q̈ = Mq̈. (2.11)

Using the path tracking requirement q = f (s) and the corresponding
derivatives (2.8) gives

τ = M [f ′(s)s̈+ f ′′(s)ṡ2]. (2.12)

Identification of the coefficients in (2.10) then gives

m(s) = M f ′(s) , c(s) = M f ′′(s) , �(s) = 0.

19

Chapter 2. Theory

Remark In [Dahl, 1992] it is shown that reformulation of the robot dy-
namics to the form (2.9) is possible for all robot models that satisfy the
rigid body model (2.6). In [Verscheure et al., 2009] it is shown that refor-
mulation to the less general form (2.10) is possible for the rigid body model
(2.6) with the viscous friction term D = 0.

2.3 Solution methods for the path tracking

problem

When the robot dynamics subjected to path tracking requirements has been

formulated according to the previous section, several different methods that

can be utilised to solve the path tracking problem with various criteria spec-

ified exist. In this thesis, mainly two methods have been studied. The first
is the traditional phase plane method. With this method the time-optimal

solution of the path tracking problem is constructed in the phase plane

that is defined by the path parameter s and the corresponding path veloc-

ity ṡ. Further, methods that solve the path tracking problem as a general
optimisation problem have been studied. With these methods the solution

of the optimisation problem defines the solution of the path tracking prob-

lem. The phase plane method and optimisation methods will be presented

in Section 2.4 and Section 2.5, respectively.
Another method for solving the path tracking problem, which can be

considered as a submethod of the above mentioned methods, is to use dy-

namic programming in order to solve the path tracking problem in the

phase plane s–ṡ [Pfeiffer and Johanni, 1987; Shin and McKay, 1986]. This
method has not been examined in this thesis, wherefore the reader is re-

ferred to the mentioned references for further details.

2.4 Time-optimal path tracking with the phase

plane method

An early method to determine the time-optimal solution of the path track-

ing problem, with constraints on the joint torques, was to construct the

solution in the phase plane that is defined by the path parameter s and its
time derivative, the path velocity ṡ. Two versions of this method were pre-

sented in [Bobrow et al., 1985] and [Shin and McKay, 1985]. The method
has then been further developed in among others [Pfeiffer and Johanni,
1987; Shiller and Lu, 1992].
The idea of the method is to construct a solution in the phase plane

— i.e., determine the path velocity as a function of the path parameter —

such that the path velocity is as high as possible at every point along the

path. However, this must be done such that the limits on the joint torques
are not violated and path tracking is achieved.

Maximisation of the path velocity is achieved by maximising or min-

imising the path acceleration s̈ at every point along the path, e.g., [Bobrow
et al., 1985]. The points where the switches from one extreme to another
take place are decided as a part of the solution algorithm. To concretise,

the solution is constructed by integration in the phase plane. The integra-

tion is done with the double integrator s̈ = u with an input that is decided

20

2.4 Time-optimal path tracking with the phase plane method

by calculating maximum or minimum path acceleration s̈ at every point in

the phase plane. Expressed in formulae, the system to be integrated can

be written as

s̈ = s̈max(s, ṡ) or s̈ = s̈min(s, ṡ). (2.13)

In the further presentation of the algorithm it is assumed that the robot
model used to determine the optimal path tracking can be reformulated to

the less general form (2.10). However, the phase plane algorithm can also
be extended to cover the more general form (2.9).

Bounds on s̈ Calculations of the maximum and minimum allowed path
acceleration s̈ at every point in the phase plane, such that the limits on

the joint torques are not violated, are done by utilising the relation (2.10).
Given the limits on the torques, τmax and τmin, and a point in the phase
plane s–ṡ, the bounds can be written for each joint i, i = 1, . . . ,n [Dahl,
1992]

s̈imax =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τmin − �i(s) − ci(s)ṡ
2

mi(s)
, mi(s) < 0

τmax − �i(s) − ci(s)ṡ
2

mi(s)
, mi(s) > 0

∞ , mi(s) = 0

(2.14)

and

s̈imin =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τmax − �i(s) − ci(s)ṡ
2

mi(s)
, mi(s) < 0

τmin − �i(s) − ci(s)ṡ
2

mi(s)
, mi(s) > 0

−∞ , mi(s) = 0

(2.15)

where subscript i for m(s), �(s) and c(s) denotes the vector element be-
longing to joint i. As the constraints on the joint torques must be satisfied

for all joints, the bounds s̈min = maxi s̈
i
min and s̈max = mini s̈

i
max are chosen.

Maximum velocity curve Further, a curve is decided in the phase plane

that determines the maximum allowed path velocity for every value of the
path parameter s. All path velocities lower than the maximum are thus al-

lowed. The allowed area in the phase plane is defined by the constraint that

s̈min < s̈max [Bobrow et al., 1985]. The upper border of this area constitutes
the maximum velocity curve, denoted ṡmax .

Switching points When constructing the solution in the phase plane,

maximum path velocity at every point along the path is strived for, as

earlier mentioned. Therefore, some of the points where switches from max-

imum path acceleration s̈max to minimum path acceleration s̈min, or vice
versa, take place, will be located at the maximum velocity curve. In [Shiller
and Lu, 1992] a criterion to numerically find the switching points on the
maximum velocity curve during the solution with the phase plane algo-

rithm is presented.

Algorithm With the above presented concepts and ideas, the algorithm

can be constructed, which determines the time-optimal solution to the path

tracking problem. In this thesis, the version that is presented in [Dahl,

21

Chapter 2. Theory

ṡmax

A

B

C
D

s̈max

s̈min

s̈max

ṡ

s

Figure 2.4 In the figure a pictorial description of the different steps in the phase

plane algorithm discussed in Section 2.4 is shown.

1992] has been implemented; see examples in the next chapter. Therefore
some of the main ideas from this algorithm will be presented here.

A pictorial presentation of the algorithm is seen in Figure 2.4. The let-
ters below all refer to this figure. For simplicity, it is assumed that the

path is parametrised such that s = 0 where the path begins and that ini-
tial rest holds. The algorithm then starts at the point (0, 0) in the phase
plane (A) and integrates the double integrator with maximum path ac-
celeration s̈max(s, ṡ) until the trajectory tries to leave the allowed area in
the phase plane by intersecting the maximum velocity curve (B). From the
intersection point (B), a search along the curve is performed for increas-
ing values of the path parameter s until a possible switching point is found
(C). From the switching point (C), the double integrator is integrated back-
wards in time with minimum path acceleration s̈min(s, ṡ) until the former
integrated trajectory is intersected (D). Thereby, another switching point
is found. Then, the whole procedure is repeated, but this time starting
at the switching point (C) on the maximum velocity curve. The algorithm
terminates when the path parameter s reaches its final value s f .

2.5 Formulation of an optimisation problem

With the optimisation theory and robotics that have been presented in

the previous sections as foundation, an optimisation problem can be for-

mulated, which achieves optimal path tracking for industrial robots. The
advantage with a general optimisation problem compared to the above pre-

sented phase plane method is that the former is more flexible in terms of

the criteria that can be taken into account when determining the optimal

path tracking.

General optimisation problem When the robot dynamics has been ex-

pressed in the path parameter s and its derivatives according to Section 2.2,
an optimisation problem can be formulated with these as variables. The for-

mulation of a general optimisation problem in this thesis is done according

to [Dahl, 1992] and a convex formulation is made according to [Verscheure

22

2.5 Formulation of an optimisation problem

et al., 2009]. The cost function that is minimised consists of different com-
ponents that weight different parameters. In order to obtain a time-optimal

solution, the following term is used

t f =

∫ t f

0

1 dt =

∫ s f

s0

dt

ds
ds =

∫ s f

s0

1

ṡ
ds (2.16)

where t f is the time at the end of the path. Furthermore, a term that

weight the derivatives of the torques is introduced in the cost function.

This is motivated by the desire to reduce the wear of the robot joints. The

term can be formulated similar to the formulation in [Verscheure et al.,
2009] according to ∫ s f

s0

n∑
i=1

�τ ′i(s)� ds (2.17)

where n is the number of joints in the robot. Further, the state variable2

β (s) is introduced

β (s) = ṡ(s)2. (2.18)

With the cost function determined by the two terms above and the state

variable β (s) an optimisation problem can be formulated similar to [Dahl,
1992]

minimise

∫ s f

s0

1√
β (s)

+η

n∑
i=1

�τ ′i(s)� ds (2.19)

such that τ (s) = Γ1(s)s̈(s) + Γ2(s, ṡ) (2.20)

ṡ(s0) = ṡ(s f) = 0 , β ′(s) = 2s̈(s) , ṡ(s) ≥ 0 (2.21)

τmin ≤ τ (s) ≤ τmax , β (s) = ṡ(s)2 (2.22)

where the assumption that the robot starts and stops in rest was made.

Further, the path acceleration s̈ serves as an input to be determined while

the path parameter s serves as pseudo-time in the problem. The parameter
η is chosen in order to weight the derivatives of the torques in the cost
function.

Note that this optimisation formulation reduces the path tracking prob-

lem to a problem with only one state, namely the path velocity ṡ squared,
regardless of the number of joints in the robot model. This can be com-

pared to an ordinary optimal control problem for a robot with six degrees

of freedom that has 12 states.

Convex optimisation problem In the case where the robot model al-

lows reformulation to the less general form (2.10), the general optimisation
problem above can be reformulated according to [Verscheure et al., 2009] in
order to obtain a convex optimisation problem. The following two variables

are considered as the optimisation variables

α (s) = s̈(s) , β (s) = ṡ(s)2. (2.23)

2Note that the state variable is scaled by two compared to the state variable introduced

in [Dahl, 1992]. This is motivated by the desire to be consistent with the convex formulation.
The scaling only requires minor modifications in the optimisation formulation.

23

Chapter 2. Theory

With these variables the rewritten robot dynamics can be stated as

τ (s) = m(s)s̈(s) + c(s)ṡ(s)2 + �(s)

= m(s)α (s) + c(s)β (s) + �(s). (2.24)

Now a convex optimisation problem can be formulated with the same cost

function as in the general case [Verscheure et al., 2009]

minimise

∫ s f

s0

1√
β (s)

+η

n∑
i=1

�τ ′i(s)� ds (2.25)

such that τ (s) = m(s)α (s) + c(s)β (s) + �(s) (2.26)

β (s0) = β (s f) = 0 , β ′(s) = 2α (s) , β (s) ≥ 0 (2.27)

τmin ≤ τ (s) ≤ τmax (2.28)

2.6 Solution of the optimisation problem

The preceding section introduced the method that has been used in this

thesis to formulate an optimisation problem, which describes path track-
ing for an industrial robot. As the complexity of the optimisation prob-

lem increases, analytic solutions are not a realistic alternative. Therefore,

the solution in this thesis has been determined with numerical software

aimed at optimisation problems. Mainly the software JModelica.org has
been utilised for solving the optimisation problem.

The optimisation software JModelica.org

A numerical software for optimisation used in the thesis is JModelica.org
[Åkesson et al., 2010; JModelica.org, 2010]. This software makes it possi-
ble to solve general optimisation problems, i.e., the optimisation problem

does not need to be convex. JModelica.org was initiated in a project at

the Department of Automatic Control at Lund University [Åkesson, 2007]
and is under continuous development. Hence, the current section describes

its current configuration and functionality. In JModelica.org the modelling

language Modelica is used to describe the dynamic properties of a system.

This feature makes it possible to use a vast range of systems in JModel-
ica.org. In Modelica models however, there is no possibility to formulate

explicit optimisation problems. Therefore, optimisation problems are made

possible in JModelica.org with an extension of Modelica called Optimica

[Åkesson, 2008]. This extension makes it possible to define arbitrary cost
functions together with arbitrary constraints. In both Modelica and Opti-

mica, models and optimisation problems are defined in continuous time.

Model description In Modelica, and accordingly in JModelica.org, the

system dynamics is described by differential algebraic equations, abbrevi-

ated DAE. A general system described by DAEs can be stated as [Åkesson,
2007]

F(t, x(t), ẋ(t), y(t),u(t)) = 0 (2.29)

with consistent inital values for the variables given. The variable t is the

independent variable, x(t) is the differential variable, y(t) is a pure alge-
braic variable since its derivative is not part of the system and u(t) is the

24

2.6 Solution of the optimisation problem

Python

JModelica.org

Modelica

Optimica
C-code

SUNDIALS

IPOPT

Figure 2.5 In the figure, the usage of the optimisation software JModelica.org is

illustrated. The user utilises the scripting language Python in order to communicate

with JModelica.org. The Modelica and Optimica models created by the user written

in Modelica-code are then transformed into C-code. The C-code is compiled and used

in the software IPOPT in the numerical solution. Simulation of initial values in

the optimisation is possible with the software SUNDIALS.

input signal. Once the user has specified the model in Modelica and the
optimisation problem in Optimica, the problem can be solved automatically

by JModelica.org.

Solution of optimisation problems The solution of the optimisation
problem in JModelica.org is done by transforming the original optimisa-

tion problem expressed in continuous time — i.e., a problem with infinite

dimension — to a problem with a large, however finite, number of optimi-

sation variables. This process is called transcription and results in a large
nonlinear program, abbreviated NLP. The specific method used in JMod-

elica.org to make the transcription is called direct collocation. This is a

simultaneous method, where all continuous variables in the optimisation

problem are transformed into discrete form [Biegler et al., 2002].
During the transcription a partition of the time interval in several el-

ements is made. In every element a shape of the optimisation variables

has to be assumed, e.g., constant or linear. Further, constraints have to

be introduced at the boundary of the elements for each differential vari-
able in order to ensure continuous solutions. In JModelica.org, an orthog-

onal collocation is used, where the shapes of the variables in each element

are described using Lagrange polynomials and the positions of the colloca-

tion points are chosen as the corresponding Radau points [Åkesson, 2007].
When the whole system has been discretised, the numerical solver IPOPT
[Wächter and Biegler, 2006] is used in order to solve the NLP.
Technically, the solution of optimisation problems in JModelica.org is

organised such that the original Modelica and Optimica models are trans-

formed into C-code. The C-code is then compiled, whereby the result is used
in the numerical solution in IPOPT [Åkesson et al., 2010]. The procedure
is summarised in Figure 2.5.

Interface The interface in JModelica.org for communication between the
user and the software is the scripting language Python. With the interface

it is possible, besides solving optimisation problems, to plot and analyse the

result of the optimisation. In order to make the convergence to a solution of

the optimisation problem more robust, initial values of the variables in the
optimisation problem can be specified. These initial values can be obtained

from simulations. Simulation in JModelica.org is possible with SUNDIALS

[SUNDIALS, 2010], which is software intended for numerical integration

25

Chapter 2. Theory

of systems.

Reformulation of the optimisation problem to a cone problem

In the thesis another alternative formulation of the convex optimisation

problem describing the path tracking has also been studied. The reformu-
lation is done according to [Verscheure et al., 2009]. This is done such that
the optimisation problem (2.25)–(2.28) presented above is rewritten in or-
der to get constraints in the shape of second order cones. It is assumed

that the stronger assumption (2.10) on the robot dynamics holds, i.e., the
optimisation problem is convex. The reformulation is further done such

that the convexity of the optimisation problem is maintained. The refor-

mulation also includes a transcription. This transcription has to be done

manually in contrast to solving the optimisation problem in JModelica.org.
The reader is referred to [Verscheure et al., 2009] for the details regarding
the reformulation.

In order to solve the reformulated optimisation problem, YALMIP [Löf-
berg, 2004] has been used in order to formulate the optimisation problem
in MATLAB and then the numerical solver SDPT–3 [Toh et al., 1999] has
been utilised in order to solve the formulated optimisation problem.

2.7 Singular points in the path tracking problem

A problem that can arise when determining the time-optimal solution to
the path tracking problem is that certain points in the phase plane s–

ṡ are singular in the optimisation [Shiller, 1994]. In order to understand
this phenomenon, the parametrisation (2.10) of the torques τ (s) is studied.
When one or more of the elements in the vector m(s) is zero, the bounds on
the torques, τmin ≤ τ (s) ≤ τmax , for the corresponding joints only constrain
the path velocity and not the path acceleration. In Section 2.4 on the phase

plane method it was mentioned that during time-optimal path tracking,

the path acceleration is always maximised or minimised. Therefore, a sit-

uation in a singular point can arise, where maximum or minimum path
acceleration cannot be used. Instead, averaged path acceleration has to be

used [Shiller, 1994]. If the algorithm determining the time-optimal path
tracking does not consider the singular points, oscillations can be seen in

the solution, and thereby in the joint torques. The reason is that the al-
gorithm tries to achieve the averaged path acceleration by averaging the

maximised or minimised path acceleration.

Examples of the phenomenon of singular points will be shown in a path

tracking problem in Chapter 3. In that chapter, also some solutions to the
problem with singular points will be discussed.

2.8 Control of the robot system

When an optimal solution has been determined with one of the methods

for solving the path tracking problem, a suitable control strategy has to
be decided, such that the path is traversed without violating the criteria

specified. Under ideal circumstances it would be satisfying to directly apply

the optimised values of the joint torques. As the model that is used in

26

2.8 Control of the robot system

the optimisation cannot describe all the dynamic properties of the robot

system, the model is only approximate compared to the real robot system.

Under mild assumptions it can be shown that in a time-optimal solution

to the path tracking problem, one and only one of the joints is saturated
in every time instance in terms of applied torque [Chen and Desrochers,
1989]. Thereby follows that the sensitivity to modelling errors is high and
a strategy has to be introduced such that the sensitivity is reduced and

that the path tracking is not violated.

Feedback Consequently, feedback is introduced in this thesis as a com-

plement to the optimised values. The feedback is introduced according to

a control structure presented in [Dahl, 1992]. The structure is called path
velocity controller, abbreviated PVC, and is illustrated in Figure 2.6. In the

PVC the results from the optimisation — i.e., the path velocity ṡ(s) and the
path acceleration s̈(s)— are used. Note that the solution obtained from the
optimisation specifies these variables as a function of the path parameter
s. Therefore, also in the PVC the path velocity and corresponding path ac-

celeration are specified as a function of the path parameter s. In the PVC

the notations σ , σ̇ and σ̈ are used in order to describe the traverse of the
path in terms of the path parameter and its time derivatives. The idea
in the PVC structure is to drive this chain of integrators such that path

tracking is achieved, in spite of modelling errors and disturbances, with

the optimised values as a basis. The price paid in order to achieve the path

tracking is that the time of the path traverse is increased.

Results from the optimisation The nominal values of σ̈ (σ) are ob-
tained from the solution of the optimisation problem, namely the path ac-

celeration s̈, here considered as function of σ . The nominal values, though,
have to be limited due to modelling errors and other disturbances in order

not to violate the hard constraints on the joint torques and consequently

the path tracking. Therefore bounds on σ̈ (σ) are determined online dur-
ing the control. When the nominal values are within the allowed interval

no limitation is done, meanwhile in case of limit violation the nominal
values are saturated. This saturation can violate the path tracking, be-

cause the robot system can be driven to a point where there are no allowed

joint torques that retain the path tracking. Consequently, also feedback is

introduced from the optimised path velocity. The control structure called
PVC can be considered as built up of several different components, see

Figure 2.6, which all will be presented below.

Internal controller for feedback from robot system

In the PVC a controller is used for feedback from the measured signals
from the robot system. The signals consist of the joint positions q and

corresponding time derivatives q̇. The reference values to this controller are

the path positions f (σ) and the corresponding first and second derivatives,
f ′(σ) and f ′′(σ), with respect to the path parameter. The PVC does not
specify the controller to be used in order to achieve the feedback. This gives

large freedom when choosing the internal controller. The only requirement

is that the control law — i.e., the calculation of the joint torques τ — can
be parametrised on the form [Dahl, 1992]

τ = β 1σ̈ + β 2 (2.30)

27

Chapter 2. Theory

Internal feedback

and

limitations etc.

γ -adaptation

Optimisation

results

1

s

1

s

Internal
controller

β 1σ̈ + β 2
Calculations

of β 1 and β 2

Path and

derivatives

Robot

s̈(σ)

ṡ(σ)

γ

σ̈

σ̇ σ

β 1

β 2

f

f ′

f ′′

τ

q

q̇

Figure 2.6 In the figure, the structure of the PVC by [Dahl, 1992] used in this
thesis is illustrated.

where β 1 and β 2 do not depend on σ̈ . In order to show that this parametri-
sation is possible, an example is given below.

EXAMPLE 2.2
Assume that the controller for the linear robot model in EXAMPLE 2.1 is
described by a control law based on passivity according to [Spong et al.,
2006]

τ = M [q̈r − Λ(q̇− q̇r)] − K [(q̇− q̇r) + Λ(q− qr)] (2.31)

where K and Λ are diagonal matrices that determine the gain and super-
script r denotes the desired values of the joint positions q and their time
derivatives. Insertion of the path tracking requirement qr = f (σ) and its
time derivatives (2.8) then gives

τ = M [f ′(σ)σ̈ + f ′′(σ)σ̇ 2 − Λ(q̇− f ′(σ)σ̇)] −

K [(q̇− f ′(σ)σ̇) + Λ(q− f (σ))]. (2.32)

Identification of the coefficients β 1 and β 2 thus gives

β 1 = M f
′(σ) (2.33)

β 2 = M [f
′′(σ)σ̇ 2 − Λ(q̇− f ′(σ)σ̇)] −

K [(q̇− f ′(σ)σ̇) + Λ(q− f (σ))], (2.34)

which is on the specified form.

28

2.8 Control of the robot system

Calculation of bounds on σ̈

From the parametrisation (2.30) of the control law for the internal con-
troller, bounds on σ̈ can be calculated, such that each joint torque is in the
allowed interval [τmin,τmax]. Thereby, the same idea as in the phase plane
method described in Section 2.4 is used. The bounds on σ̈ can be written
for each joint i = 1, . . . ,n according to [Dahl, 1992]

σ̈ imax =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τmin − β i2
β i1

, β i1 < 0

τmax − β i2
β i1

, β i1 > 0

∞ , β i1 = 0

(2.35)

and

σ̈ imin =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τmax − β i2
β i1

, β i1 < 0

τmin − β i2
β i1

, β i1 > 0

−∞ , β i1 = 0

(2.36)

where the assumption was made that all joints have the same limitations

on their torques. The calculations, though, can easily be extended to the
case with different constraints on the joint torques. As the constraints on

the torques τ have to be fulfilled for all joints, the limitations on σ̈ are
chosen such that σ̈min = maxi σ̈

i
min and σ̈max = mini σ̈

i
max.

Feedback from the path velocity

From the optimisation, values of the path velocity as function of the path

parameter are also obtained. These values are used in the PVC in order

to increase the quality of the control of the robot system further. In [Dahl,
1992] it is shown that this feedback v̄ f (σ) can be introduced according to

v̄ f (σ) =
α

2
(ṡ(σ)2 − σ̇ (σ)2) (2.37)

where α is a parameter used to choose the gain of the feedback and ṡ(σ)
is the optimised path velocity. This choice of feedback achieves asymptotic

tracking of the optimised path velocity when the path acceleration is not

saturated. The time constant in the tracking is determined by the param-
eter α [Dahl, 1992]. This feedback is used to adjust the nominal path ac-
celeration s̈(σ) such that the path tracking is not violated. More specificly,
this is done by addition of v̄ f (σ) with s̈(σ).

Scaling of the path velocity

In order to further ensure that the path tracking is achieved as well as

possible, a scaling of the optimised path velocity is introduced in the PVC

structure. This is motivated by the fact that the time-optimal solution in

practice often have one or more points where the optimised path velocity
ṡ(σ) is higher than the maximum allowed path velocity due to modelling
errors [Dahl, 1992], see Section 2.4 on the phase plane method. Therefore, a
scaling of the optimised path velocity ṡ(σ)with a parameter γ is introduced.

29

Chapter 2. Theory

The scaling is updated adaptively, whereby it is updated only when the

path acceleration is saturated and such that the scaling only decreases.

The decrease of the parameter γ is thereby chosen such that the optimised
path velocity ṡ(σ) scaled with the parameter γ , converges to the current
path velocity σ̇ (σ). In [Dahl, 1992] it is shown that the scaling can be
introduced with the desired properties by modifying the optimised path

acceleration s̈(σ) to
s̈(σ) → γ 2 s̈(σ) (2.38)

and the feedback from the optimised path velocity is modified according to

v̄ f (σ) → vf (σ) =
α

2
(γ 2 ṡ(σ)2 − σ̇ (σ)2). (2.39)

The adaptation of the parameter γ is given by the algorithm

γ̇ =

⎧⎨
⎩
kσ̇ (σ)

[
σ̇ (σ)
ṡ(σ)

− γ

]
, γ ṡ(σ) ≥ σ̇ (σ) and σ̈ saturated

0 , otherwise

(2.40)

where k is a parameter chosen to get the desired time constant in the

adaptation. From the latter equation it is apparent that the parameter γ
only decreases because γ̇ ≤ 0 ∀ σ .

Summary of the PVC structure

To summarise the section on the PVC, the control structure can be de-

scribed by the following relations according to above

dσ

dt
= σ̇ (2.41)

dσ̇

dt
= σ̈ (2.42)

σ̈ =

⎧⎪⎨
⎪⎩

σ̈max , v(σ) > σ̈max

v(σ) , σ̈min ≤ v(σ) ≤ σ̈max

σ̈min , v(σ) < σ̈min

(2.43)

v(σ) = γ 2 s̈(σ) + vf (σ) = γ 2 s̈(σ) +
α

2
(γ 2 ṡ(σ)2 − σ̇ (σ)2) (2.44)

γ̇ =

⎧⎨
⎩
kσ̇ (σ)

[
σ̇ (σ)
ṡ(σ)

− γ

]
, γ ṡ(σ) ≥ σ̇ (σ) and σ̈ saturated

0 , otherwise.

(2.45)

30

3. Example of a path

tracking problem

In this chapter an example of a problem for optimal path tracking and the

solution thereof will be presented. The solution methods discussed above

in the theory chapter will all be applied on the same example in order to

illustrate the use of the methods and allow comparison of the results. The

result is experimentally verified on a lab process.

3.1 Path tracking problem

In this section an example of a time-optimal path tracking problem will

be presented. The example is borrowed from [Dahl, 1992]. The robot has
two joints, which both are modelled with a linear model and the coupling
between the joints is neglected; the model can be written

τ =

[
τ1

τ2

]
=

[
m1 0

0 m2

]
︸ ︷︷ ︸

M

q̈= Mq̈. (3.1)

where m1 andm2 are the masses of respective link, which both are assumed
to be 1. The constraints on the torques are τmin = −1 and τmax = 1. The
path to be tracked is specified directly in the two joint variables according

to

f1(s) = 2 sin(s) (3.2)

f2(s) = 1− cos(s) (3.3)

with s ∈ [0, 2π]. The path and the joint positions of the two robot joints can
be seen in Figure 3.1. Using the result from EXAMPLE 2.1, the parameters
m(s), c(s) and �(s) in the rewritten robot dynamics according to Chapter 2
are obtained as

m(s) = M f ′(s) =

[
2m1 cos(s)

m2 sin(s)

]
(3.4)

c(s) = M f ′′(s) =

[
−2m1 sin(s)

m2 cos(s)

]
(3.5)

�(s) = 0. (3.6)

Note that this robot model satisfies the stronger assumption (2.10), which
means that a convex optimisation problem can be formulated. The param-
eters above will be used in the solution methods in order to determine

the time-optimal path tracking. The three different methods presented in

Chapter 2 will be used to solve this problem.

31

Chapter 3. Example of a path tracking problem

0 1 2 3 4 5 6

−2

−1

0

1

2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

f1(s) and f2(s)

f2(f1(s))

Figure 3.1 In the upper plot the joint position of joint 1 (solid blue) and joint 2
(dashed red) for the example in this chapter are shown. In the lower plot the joint
position of joint 2 is plotted as a function of the joint position of joint 1.

3.2 Time-optimal path tracking with the phase

plane method

In this section, the solution of the path tracking problem obtained with the

phase plane method that was described in Section 2.4 will be presented.
With the phase plane method, only a time-optimal solution can be decided

and weighting of energy and other aspects are not possible. In the imple-

mentation the discretisation was done such that 105 equally spaced points

are obtained in the interval [0, 2π]. In the numerical integration of the dou-
ble integrator system a simple method is used, namely forward Euler. The

algorithm for phase plane optimisation determines the path velocity ṡ as

function of the path parameter s, and the switching points where changes

from maximum to minimum path acceleration, or vice versa, take place.

Hence, the path acceleration s̈ is determined. As both of these quantities
are determined as function of the path parameter s, the joint torques to be

applied on the robot system can be calculated according to

τ (s) = m(s)s̈+ c(s)ṡ2. (3.7)

Splines During the solution, the two paths f1(s) and f2(s) are repre-
sented as cubic splines, i.e., as piecewise third order polynomials. Even
though it is not necessary to represent the current paths as splines, the

problem is more general if the spline representation is chosen. This is be-

cause a realistic path is often given as a large set of data points, rather

than a mathematical expression. The spline representation also makes it
possible to differentiate the paths two times, which is necessary in this

method. The derivatives of the path with respect to the path parameter s

are decided by differentiation of the splines describing the paths.

32

3.3 Optimal path tracking with cone constraints

0 1 2 3 4 5 6
0

0.5

1

1.5

0 1 2 3 4 5 6
−2

−1

0

1

2

Path velocity ṡ(s)

Joint torques τ1(s) and τ2(s)

Figure 3.2 In the figure the solution obtained with the phase plane method to

the path tracking problem studied in this chapter is shown. Both the path veloc-

ity and the joint torques are presented as function of the path parameter s. In

the phase plane s–ṡ in the upper plot, the trajectory parts where maximum path

acceleration (solid blue) holds and the trajectory parts where minimum path ac-
celeration (dash-dotted red) holds are indicated. Further, the maximum velocity
curve (dashed green) is shown. In the lower plot, the torques τ1 (dashed blue) and
τ2 (solid red) are shown.

Observations The solution obtained with the phase plane method is
presented in Figure 3.2. In the solution a few observations can be made.

At first the torques in two points are clearly outside the allowed interval

and exhibit large oscillations. The reason for this behaviour is that these

two points are singular in the optimisation, see Section 2.7 on singular
points. In the singular points the traditional phase plane method has to be

modified in order to work properly. One such modification is suggested in

[Shiller and Lu, 1992]. In this thesis this modification has not been imple-
mented. Instead, a more satisfying solution is determined with the other
methods for solving the path tracking problem, which have been presented

in Chapter 2.

3.3 Optimal path tracking with cone constraints

In this section the solution to the path tracking problem obtained with the

optimisation problem (2.25)–(2.28) will be presented. The solution is done
with the reformulation described in [Verscheure et al., 2009]. Thereby a
discrete optimisation problem with cone constraints is obtained. The paths

are represented, in the same way as in the solution with the phase plane

method, by cubic splines. In the solution 1000 points in the interval [0, 2π]
have been used in the discretisation of the optimisation problem.

Parameters In the convex optimisation problem there is a possibility to

33

Chapter 3. Example of a path tracking problem

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

Path velocity ṡ(s)

Joint torques τ1(s) and τ2(s)

Figure 3.3 In the figure the solution obtained with cone constraints in the opti-

misation problem and parameter choice 1 is shown. In the lower plot, the torques τ1
(dotted blue) and τ2 (solid red) are shown. Note the similarity of this result to the
solution obtained with the phase plane method and the behaviour at the singular

points.

weight the derivatives of the torques, with the parameter η. In the solution,
the following two parameter choices have been used

1. η = 0 (3.8)

2. η = 10−6. (3.9)

The solution obtained when YALMIP is used to formulate the optimisation

problem in MATLAB and SDPT–3 is used to solve the cone problem can be

seen in Figure 3.3 for parameter choice 1 and in Figure 3.4 for parameter
choice 2. The solution in both cases gives the torques τ to be applied on the
joints and the variables α (s) = s̈ and β (s) = ṡ2. Hence, the path velocity
and the path acceleration can be calculated from the solution.

Conclusions From the result in Figure 3.3 and Figure 3.4 certain con-
clusions can be drawn. The similarity of the solution obtained with the

phase plane method is apparent. In the case with parameter choice 1 it

is seen that problems arise in the singular points, where the joint torques

τ oscillate. This is obviously not satisfactory. Therefore the derivatives of
the joint torques are weighted with the parameter η in parameter choice
2 according to [Verscheure et al., 2009]. It is obvious that the weighting is
an efficient way to eliminate the oscillations in the singular points.

3.4 Solution of the optimisation problem with

JModelica.org

In this section the solution of the optimisation problem describing the path

34

3.4 Solution of the optimisation problem with JModelica.org

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

Path velocity ṡ(s)

Joint torques τ1(s) and τ2(s)

Figure 3.4 In the figure the solution obtained with cone constraints in the opti-

misation problem and parameter choice 2 is shown. In the plot below, the torques

τ1 (dotted blue) and τ2 (solid red) are shown. Note in particular that the weight-
ing of the derivatives of the torques with the parameter η makes the result also
satisfactory at the singular points.

tracking obtained with JModelica.org will be presented. The optimisation
problem to solve is specified, precisely as in the case with the cone con-

straints above, by (2.25)–(2.28). The parameter η in the cost function has
been selected according to

η = 0, (3.10)

i.e., pure time-optimality is strived for. This section also serves as an illus-

tration of how optimisation problems are solved in JModelica.org. Therefore

the code solving the path tracking problem will be presented. The optimi-

sation problem in JModelica.org is specified in continuous variables. The
transcription to discrete form is then made automatically by the software.

The user, though, has to specify the number of elements that the contin-

uous problem will be divided into and how many points in every element

that will be used in the collocation. In this example 200 elements have been
used in the interval [0, 2π] and in every element three collocation points
have been selected.

Spline implementation In order to represent the paths as function

of the path parameter, cubic splines are used in the same way as in the

other solution methods presented above. As splines are not yet supported by
JModelica.org, a separate Modelica model has been created, which provides

the value of a spline in a certain point. The implementation of the model

is done with if- and else-clauses. The design of the model is in the shape

of an exponential search tree, wherefore the search for correct spline value
can be made with a binary search. The creation of the Modelica model is

facilitated by a MATLAB-script modified during the thesis, but originating

from the original Optimica compiler.

35

Chapter 3. Example of a path tracking problem

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

Path velocity ṡ(s)

Joint torques τ1(s) and τ2(s)

Figure 3.5 In the figure the solution obtained with JModelica.org of the optimi-

sation problem describing the path tracking problem is shown. In the lower plot,

the torques τ1 (dashed blue) and τ2 (solid red) are shown.

Modelica code In Appendix B.1 the code formulating the optimisation

problem in Modelica and Optimica is presented in its entity. The robot dy-
namics subjected to path tracking requirements is described by a Modelica-

model called robDyn, meanwhile the optimisation problem as such is de-

scribed by ellips_Opt.

In the code in Appendix B.1 it is seen that there is a Modelica model
called ellips_Init_Opt, that is used in order to determine initial values to

the main optimisation. The convergence of the optimisation is more robust

if good initial values have been found beforehand. The dilemma is, of course,

to know what good initial values are when the correct solution is not known.

In the current optimisation it turns out that it is enough to determine an
initial guess where the path acceleration, or the variable α (s), is constant
k in the interval s ∈ [0,π] and then constant −k in the interval s ∈ [π , 2π].
With this input — i.e., the path acceleration — the system is simulated

with SUNDIALS according to the description in Section 2.6. The obtained
values of the variables are then initialised in the optimisation.

Solution The solution obtained when JModelica.org solves the optimisa-

tion problem defining the path tracking problem can be seen in Figure 3.5.

It is apparent that this solution method gives the same result as the other

methods for this example. Further, this solution method has, for the cur-
rent example, no problems in the singular points, even though weighting

of the derivatives of the torques is not introduced.

3.5 Experimental verification

In order to experimentally verify the solution of the optimal path tracking

problem studied in this chapter, a suitable process that can be modelled as

36

3.5 Experimental verification

Figure 3.6 In the figure the crane process used for experimental verification of

the path tracking example studied in this chapter is shown.

two double integrators from input to output in accordance with (3.1) has
to be chosen. In this thesis the gantry crane process [Larsson and Braun,
2008] has been used. The crane, see Figure 3.6, consists of a cart that is
used to position the pivot point of the load. The load is attached to the

cart via a string. The position of the pivot point is altered by moving the

cart along two perpendicular rails, aligned in the x- and y-directions in a

Cartesian coordinate system respectively. Also, the height of the load can
be controlled. Since only positioning of the pivot point is applicable for the

purpose of path tracking in this thesis, the load was not attached to the

cart during the experiments.

Hardware

The process is connected to a PC via a RS232 communication port. This
communication channel can be used in a controller implemented in SIMULINK

with a sampling rate of h = 0.01 s. The position of the cart in the two rail
directions can be measured. The corresponding velocities are approximated

in the SIMULINK model by applying a high-pass filter on the position signals.

In order to control the position of the cart along the rails, the acceleration
in each rail direction is used as control input to the system. The accel-

eration signals given by the user are then integrated in order to get the

corresponding velocities. Two PI controllers implemented in the SIMULINK

model are responsible for the velocity control of the cart in the two rail
directions. The controllers send the voltages to be applied on the motors to

the crane process. If the velocity control loops have fast time constants, the

process can be considered as two double integrators from acceleration to

the corresponding position, one in each direction. A SIMULINK block for com-
munication with the hardware and velocity control of the cart was available

for use in the thesis.

Experimental results

The results from the solution of the path tracking problem studied in this

chapter can be used almost directly on the crane process by interpreting
the joint positions as positions for the cart along the rails instead. However,

the path must be scaled in order to fit the dimensions of the real process

and the limits on the control signals have to be adapted to the real process.

37

Chapter 3. Example of a path tracking problem

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Obtained Reference

Obtained and reference path [m]

Figure 3.7 In the figure the result from the path tracking experiments on the

crane process is shown. The position of the cart in the y-direction is plotted as

function of the position in the x-direction.

An implementation of the PVC described in Section 2.8 made in SIMULINK

was used for performing the experiments. For a more in-depth treatment
of the PVC-implementation made in this thesis, the reader is referred to

Section 5.2.

In the experiments on the crane process, the solution from the convex

optimisation formulation of the path tracking problem was used. The limits
on the acceleration signals in the optimisation were chosen to be 0.3 m/s2

due to the limited lengths of the rails. The result from this optimisation

is only a scaled version of the results presented in this chapter, wherefore

the new optimisation results are not presented.

Result The result of the path tracking on the gantry crane process is

seen in Figure 3.7. In the figure, the position in the y-direction is plotted

as a function of the position in the x-direction. The reference path, a scaled

version of the path in Figure 3.1, is also shown for comparison. It is seen
that the path tracking is working, but some parts are more difficult to

track. During the experiments the limits on the accelerations have been

chosen to be 0.42 m/s2 — i.e., slightly larger than in the optimisation —
in order to make the control more robust to modelling errors. This choice
gives space to control the process despite modelling errors.

Improvements It is crucial for the path tracking that the model of the

process is accurate. However, since the velocity control of the cart is imple-
mented in a SIMULINK model and runs with the sampling period 0.01 s, the

double integrator model might not be accurate enough. There are reasons

to believe that the path tracking can be improved if the velocity control

of the cart is implemented in hardware instead, e.g., in a micro processor.
This allows a higher sampling rate in the velocity control. Also controlling

the current in the motors can be a way to improve the velocity control of

the cart and consequently the path tracking.

38

4. Robot modelling and path

identification

In this chapter robot modelling is discussed and a suitable robot model

identified on the robot system is presented. Further, a contact-force control

approach for path identification is described. Also the implementation of

the force controller is discussed. Finally, experimental results from path

identification with force control are presented.

4.1 Robot modelling

As earlier stated in Chapter 2, a good model of the robot is required for

accurate path tracking. A natural way is to try to derive or experimentally
identify a model on the real robot system from torques τ to joint positions
q, in accordance with the rigid body model (2.6) presented above. However,
such derivation or identification is not trivial to perform. Therefore, the

decision was made that modelling of the separate joints as linear systems
is appropriate for the needs in this thesis. Further, the couplings between

the different joints in the robot were decided to be neglected.

Control structure for the independent joint control

In order to be able to identify suitable models of the robot joints, the struc-

ture in the control cabinet IRC5 chosen by the manufacturer for controlling

the joints in the IRB140 robot has to be studied. Each joint in the robot is
controlled by a cascaded structure of standard P and PI controllers. This

is a standard way of controlling the robot joints [Siciliano et al., 2009]. The
cascade structure can be seen in Figure 4.1. The cascade structure makes

it possible to control both the joint position and the joint velocity. The inner
PI controller controls the joint velocity and the outer P controller controls

the joint position. The advantage of using a cascaded structure instead of

only an outer joint position loop is that the inner loop, the velocity loop,

reacts fast on errors in the velocity control. Thereby, errors in the velocity
control do not have to propagate to the joint position in order for the con-

troller to react. As can be seen in Figure 4.1, it is possible to feedforward

joint velocities q̇r. Also, torques τ r to be applied on the joints directly can
be feedforwarded to the control structure.

P PI Joint
1
s

qq̇
qr

q̇r τ r

τ

Figure 4.1 In the figure, the cascaded control structure used to control the in-

dividual joints in the robot IRB140 is illustrated. The control structure consists of

one P controller for position control and one PI controller for velocity control. In

the figure, superscript r denotes reference or feedforward signals.

39

Chapter 4. Robot modelling and path identification

Model suitable for optimisation and path tracking

With the cascaded control structure presented above at hand, different

models can be appropriate for obtaining path tracking. The first choice

when determining a model is what variable that is most appropriate as

input signal. There are three options:

• torque τ

• position reference qr

• velocity reference q̇r.

The first choice, the torque, can be utilised if the position and veloc-

ity control loops are turned off, see Appendix A. Experiments were made
on the robot system with the torque as input signal. It was realised that

nonlinear effects are apparent in the joints from input signal to the po-

sition and velocity. The nonlinear effects are mainly caused by friction in

the joints. Experiments also showed that the friction is not constant, but
rather dependent of the joint angle and the direction of the joint velocity.

The influence of the friction makes it hard to use linear models of the robot

joints. Further, choosing the torque as input signal leads to practical prob-

lems in terms of gravity compensation in order to avoid that the second
and third link fall due to gravity. Accordingly, this choice was not made in

this thesis.

The second choice, the position reference, may lead to problems because

the input signal in a time-optimal path tracking often exhibits a so called

bang-bang character where the signal switches from one extreme value to

another in a short time. This is not appropriate for controlling the robot,
since the safety system in the robot system does not allow the joint position

reference to be too far away from the actual position. In case of too high

discrepancy, as is the case when a step in the input signal occurs, the

safety system locks the brakes on the robot. Further, it is not clear how
the joint velocity reference should be selected when only controlling the

joint position. To conclude, neither the position reference is appropriate to

consider as input signal.

The third choice, to consider the velocity reference as input signal, has

been tested in a previous Master thesis project [Hast, 2009]. This choice
makes it possible to identify a model from the joint velocity reference to
the joint velocity. Also, this choice of input signal does not suffer from

the disadvantages that the other above choices have. In order to only use

the joint velocity reference as input signal to the joint control system, the

position loop has to be turned off, see Appendix A. To summarise, this is

the most convenient input signal. Hence, this input signal was chosen in
this thesis.

Linearity and model order The second question is if a linear model can

be utilised. Certainly, the robot joints themselves are not linear from motor

input to joint position as the experiments with torque control described

above showed. However, by using the velocity reference as input to the
system it is reasonable to believe that the system from input to the joint

position can be modelled with a linear model. This is because there already

is the PI controller for the joint velocity available in the robot system.

40

4.1 Robot modelling

The third question is the order to choose for the models. Recalling the

theory chapter, where an optimisation problem was presented with a robot

model of order two, it is desirable to identify a model of second order from

the joint velocity reference to the joint position for each joint. As the joint
velocity is the derivative with respect to time of the joint position, a suitable

transfer function model to identify for each joint i, i = 1, . . . , 6, is on the
form

q̇i =
Ai

Bip+ 1
q̇ri or qi =

Ai

Bip+ 1

1

p
q̇ri (4.1)

where p is the differential operator, Ai is the gain and Bi is the time
constant. These relations can be reformulated to the form

A−1Bq̈+ A−1 q̇ = q̇r (4.2)

where A is a diagonal matrix with the gains Ai and B is a correspond-

ing diagonal matrix with the time constants Bi. From this relation it is

apparent that a second order model from joint velocity reference to joint
position has the same structure as the rigid body model (2.6). Hence, the
methods for optimal path tracking presented in the theory chapter can be

used without modifications by utilising this model.

Identification on the robot system Identification of models for the
individual joints in accordance with the model (4.1) can be made with a
step response experiment on each joint. These experiments are performed

such that the velocity reference for the joint changes abruptly from zero to

0.2 rad/s. The selection of the step size was made to ensure that the joint
operates in the linear range during the step.
During the step response experiments the velocity of the joint can be

logged. The logged joint velocity values can then be plotted in a diagram.

The parameters Ai and Bi in the first order models from joint velocity

reference to joint velocity can be read from the diagram as follows: Ai is
the ratio between the joint velocity in steady state and the chosen step

size. Further, Bi is the time from when the step occurs until the fraction

1− 1/e � 0.63 of the final step value is achieved.

Experimental results

Step response experiments were performed on the robot system for each
joint i, i = 1, . . . , 6. During initial step response experiments on the robot
system it was discovered that there is a rather long delay in the robot

system from joint velocity reference to the response in the measured joint

velocity. Measurements were made and the delay was estimated to approx-
imately 4–5 samples, or 16–20 ms, see Figure 4.2.

Since the delay is long relative to the rise time, a strategy has to be

introduced for reducing the influence of the delay. As a workaround for

the delay, it was decided to introduce lowpass filters on the inputs, i.e.,
on the joint velocity references. A first order Butterworth discrete filter

was introduced on each input. The lowpass filters were then considered as

part of the robot system. The step responses for the six joints with lowpass

filters on the inputs can be seen in Figure 4.3.
From the step responses in Figure 4.3, the parameters Ai and Bi in the

model (4.1) can be estimated for respective joint. Since the joint velocity
loop in the robot system contains an integrator, no stationary errors are

41

Chapter 4. Robot modelling and path identification

1.96 1.97 1.98 1.99 2 2.01
−1

0

1

2

3

4

5

6

7

Detail of step response [deg/s] as function of time [s]

Figure 4.2 The figure shows a detail from a step response in the joint velocity

reference for joint 2. A delay of 4-5 samples can be seen from joint velocity reference

(dashed red) to the measured joint velocity (solid blue). The sample instants are
marked with circles.

Table 4.1 The table displays the time constants Bi, i = 1, . . . , 6, in the models
identified on the six joints of the IRB140 robot.

Joint Time constant [s]

1 0.1466

2 0.1483

3 0.1513

4 0.1482

5 0.1509

6 0.1459

present in the output signal. Hence, all gains Ai are selected as 1. The time
constants were measured in the step responses and the results are shown

in Table 4.1.

4.2 Path to be tracked

When the path to be tracked is defined by a motion of a tool along a contour

of an object, experimental methods are required in order to determine the

corresponding motion of the robot as earlier mentioned. Both the position
and the orientation of the tool have to be determined during the identifi-

cation procedure. An interesting way of determining the geometric robot

motion is by letting the robot identify the path along the object by itself.

Then, interaction between the robot and its environment is vital. In this
thesis, interaction is achieved by using a force sensor attached to the robot

flange, see Appendix A. The force sensor measures forces and torques ex-

erted on it in three different orthogonal directions. With the force sensor,

42

4.2 Path to be tracked

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

Step responses [deg/s] as function of time [s]

Joint 1 Joint 2

Joint 3 Joint 4

Joint 5 Joint 6

Figure 4.3 Step responses obtained for the six joints of the IRB140 robot, when

applying a lowpass filter on the input to the robot system. The measured joint

velocities (solid blue) and the reference values (dashed red) are shown. The lowpass
filters reduce the problem with the delay in the robot system.

all contact-forces acting on the TCP can be measured, given that the sen-
sor is calibrated. First, two different approaches to determine the geometric

motion of the robot along the path are described below, where the latter is

used in this thesis.

Lead through concept

One approach for determination of the robot motion is that a human teach

the robot the path to be tracked by moving the TCP of the robot along the
desired path. This approach, obviously, requires interaction between the

robot and its environment. During the demonstration of the path the joint

positions are recorded and later used in the determination of an optimal

path tracking. This approach is developed in the lead through concept,
where a human leads the robot along the desired path. Lead through is

possible due to a force sensor measuring the force exerted on the robot

TCP by the human. A controller moves the robot such that the contact-

43

Chapter 4. Robot modelling and path identification

Figure 4.4 In the figure the path to be identified and later tracked is shown.

The path consists of a metal bar with circular cross section.

force at the TCP is kept as close to zero as possible. Consequently, the

robot follows the human demonstrator.

Force control identification

Another approach, chosen in this thesis, is to use contact-force control to

automatically identify an unknown path to be tracked by using a technique
called contour following, see e.g., [De Schutter and Van Brussel, 1988a;
De Schutter and Van Brussel, 1988b]. In the current case, the path that
the tool is to track is a metal bar with a circular cross section with a

diameter of 5 mm, see Figure 4.4. By attaching a small metal stick to the
force sensor, the path can be identified with contact-force control. The metal

stick and the path are shown in Figure 4.5. Using the fact that the force

on the stick attached to the force sensor is perpendicular to the path once

contact is achieved, the robot can be moved in the correct direction following
the path by calculating the tangential direction of the path. However, also

the friction forces arising between the path and the stick are measured

by the force sensor. This issue will be revisited later. In order to keep the

contact-force constant a force controller can be utilised.

4.3 Calibration of TCP and force sensor

Before force control experiments can be made on the real robot system, the

force sensor and the tool — i.e., the metal stick — have to be calibrated. For

the sensor, this means that the axes along which the force and torque are

measured are determined. Also, the distance from the force sensor origin
to the robot flange has to be determined. For the tool, the calibration pro-

cedure means that the position and orientation of the TCP are determined

relative to the robot flange.

44

4.3 Calibration of TCP and force sensor

Figure 4.5 The metal stick used for path identification with contact-force control

is shown to the left. Notice that the stick is in contact with the path both on the

side and underneath it. To the right, the metal stick attached to the force sensor

via a multitool is shown. The force sensor is the blue disk attached to the robot

flange.

Transformation matrices

The result of the calibration is two transformation matrices, a T44–matrix
describing the transformation from the sensor coordinate system to the

flange coordinate system and a corresponding matrix describing the trans-

formation from the TCP coordinate system to the flange coordinate system.

Tool calibration The calibration of the TCP can be made with stan-

dard routines incorporated in the robot system from ABB. The procedure
is called a four point calibration. This procedure determines the position of

the TCP relative to the flange. More specificly, the robot is placed in four

different configurations, but such that the TCP in the four configurations

have the same location in the space R
3. Then, an equation system is solved

to determine the position of the TCP relative to the flange. Further, it was
decided that the orientation of the TCP coordinate system can be the same

as the orientation of the flange coordinate system. The result from the

calibration is the transformation matrix

T44 =

⎡
⎢⎢⎢⎣
1 0 0 −68.1

0 1 0 4.7

0 0 1 275.5

0 0 0 1

⎤
⎥⎥⎥⎦ (4.3)

which describes the transformation from the TCP coordinate system to the

flange coordinate system. Note that the three first elements in the fourth
column represent the translation of the TCP coordinate system relative to

the flange coordinate system. The unit chosen in the transformation matrix

is millimeter.

45

Chapter 4. Robot modelling and path identification

m�

m�

m�
x

y

x

y

x

y

Figure 4.6 In the figure a schematic illustration of the sensor calibration pro-

cedure is shown. As joint six changes its position, the sensor and the tool will

rotate. At the same time, the x- and y-components of the gravity force in the sensor

coordinate system change as a sinusoid.

Sensor calibration Calibration of the force sensor can be made by po-

sitioning the robot in its home position, i.e., the position where all joint

positions equal to zero. Then, the gravity acting on the tool attached to

the force sensor results in a force that is measured by the force sensor. It
is known that the force sensor z-axis is oriented in the same direction as

the flange coordinate system z-axis. Hence, the sensor coordinate system

is only a rotated version of the flange coordinate system in the xy-plane.

In the home position of the robot, the gravity force on the tool only

gives components along the sensor x- and y-axes. By rotating the sixth

joint with a constant angular velocity the orientation of the force sensor
x- and y-axes can be changed, see Figure 4.6. During the rotation of the

sixth joint, the components of the gravity force in the sensor x- and y-axes

change as sinusoids. The measured force components can then be fitted

with a nonlinear least-squares approximation to a sinusoid. With the fitted
sinusoid, the rotation angle between the flange coordinate system and the

sensor coordinate system can be determined. This procedure is facilitated

by a script in MATLAB available in the Robotics Lab that makes the least-

squares approximation and determines the rotation angle.

According to the manufacturer of the force sensor, the origin of the

sensor coordinate system is located at the centre of the sensor. Accordingly,
the distance between the flange of the robot and the sensor origin can be

measured with a vernier caliper. Measurements show that the sensor origin

is located along the z-axis of the flange at a distance of 86.4 mm from the

origin of the flange. Utilising this information and the rotation angle of
the sensor coordinate system, the following transformation matrix can be

established

T44 =

⎡
⎢⎢⎢⎣
0.7456 −0.6664 0 0

0.6664 0.7456 0 0

0 0 1 86.4

0 0 0 1

⎤
⎥⎥⎥⎦ (4.4)

which describes the transformation from the sensor coordinate system to

the flange coordinate system. The unit chosen in the transformation matrix

is millimeter.

46

4.4 Control structure for path identification

Gravity compensation for the force sensor

When the robot is reoriented, the gravity force components resulting from

the tool attached to the sensor and measured in the different axes of the

sensor frame change since the force sensor coordinate system is fixed rel-

ative the flange coordinate system. Hence, in order to only measure the
real contact-forces acting on the tool, the gravity force has to be compen-

sated. The gravity force also gives raise to a measured torque that has to

be compensated.

The compensation can be done by estimating the gravity force acting
on the tool attached to the sensor and the position of the centre of gravity

for the tool. This information is also extracted from the data that is used

to determine the sensor frame with the method described above. The infor-

mation is calculated with the same script in MATLAB that determines the
sensor frame information.

With the centre of gravity and the gravity force vector known, an online

gravity compensation for the force and the torque can be implemented in

the SIMULINK controller. The compensation is recalculated in every sample
to mirror the reorientation of the robot.

4.4 Control structure for path identification

In order to use force control for path identification, a suitable force control

strategy has to be utilised. First, it is assumed that the path is located in a
two dimensional plane with a given normal vector. Then the identification

procedure can be performed by moving the TCP of the robot only in this

plane in order to follow the contour of the path. Further, this assumption

implies that the normal force on the metal stick in Figure 4.5 in every point
along the path is located in the same plane. In the presentation that follows,

it is assumed that the robot is oriented such that the z-axis of the sensor

frame is parallel to the normal of the plane in which the path is located.

The procedure of the identification will be described in the corresponding

section below and is illustrated in Figures 4.7–4.8.

Force control

The main part of the force control structure is a PI controller working

on the error of the normal force, commonly referred to as a direct force

controller [Siciliano et al., 2009]. The normal force can be calculated by

projecting the measured force vector f = [fx fy fz]
T on the plane, in

which the path is located. Since it is assumed that the path is located in

a plane parallel to the xy-plane of the sensor frame, the normal force fN
can be established as follows

fN = [fx fy 0]
T . (4.5)

The control signal f̃c is calculated by the control law

f̃c = Kp(�� f
r
N �� − �� fN ��) +

1

Ki

∫ T

0

(�� f rN �� − �� fN ��) dt (4.6)

where �� ⋅ �� denotes the 2-norm, f rN is the desired normal force and Kp and
Ki are tuneable controller parameters. The direction of the control signal

47

Chapter 4. Robot modelling and path identification

is decided as the opposite direction of the normal force signal, which means

that the control signal vector fc can be written

fc = − f̃c
fN

�� fN ��
. (4.7)

The control signal is interpreted as the velocity vector in the xy-plane of

the TCP, i.e., the TCP is moved in the direction and with the velocity given

by the control signal.

Vertical position controller During initial experiments on the robot

system, it was noticed that if the path is not oriented exactly in the assumed

plane due to differences in the vertical position along the path, the contact

point between the stick and the path varies during the path identification.

Consequently, it is desirable to compensate for the slight differences in the
vertical position along the path such that the contact point is fixed. This can

be achieved by introducing a force controller in the z-direction of the force

vector and usage of a two dimensional metal stick, see Figure 4.5 where

the stick is in contact with the path both on the side and underneath it.
The two dimensional stick allows measurements of both the normal force

and the force in the z-direction.

The control law for the vertical position controller is exactly the same,

except for controller parameters, as for the normal force controller, i.e., a
PI controller. A reference value has to be selected corresponding to the

desired contact-force between the stick and the path. The control signal of

the controller is interpreted as a velocity of the TCP in the z-direction.

Tangential direction To follow the unknown path a new tangential di-

rection along the path has to be calculated in every sample. The tangential

direction is calculated such that it is perpendicular both to the measured

normal force vector fN and the normal vector n of the plane in which the
path is located. Mathematically, the tangential direction vt is calculated as

the vector product between these two vectors, i.e., as

vt = n� fN . (4.8)

The calculated vector is normalised such that its length corresponds to a

movement of the TCP along the path with 1 mm/s.

Reference value The contact-force reference value in the PI controller
can be chosen arbitrarily. Though, it is advantageous to choose a value

as low as possible. Firstly, the friction force arising in the contact point

between the stick and the path is reduced if the force reference value is

reduced. Further, the impact on the environment that the stick causes
is reduced if the force reference is as low as possible. This is important in

applications where the path to be investigated is made of a weak or flexible

material.

Torque control

During traverse of the path it is advantageous to reorient the tool such

that the contact point between the tool and the path does not change.

For this purpose the torque measurements from the force sensor can be

48

4.4 Control structure for path identification

utilised. During the path identification, the force sensor is oriented such

that the force sensor z-axis is perpendicular to the plane in which the path

is located. Consequently, the normal force acting on the tool results in a

torque in the force sensor z-axis direction.

Reorientation In order to reorient the tool correctly during the identi-

fication of the path, the torque in the z-direction can be controlled in order

to be held constant. Then, the contact point will not change. The control

structure chosen is a PI controller that acts on the difference between the
torque in the z-direction Mz and a corresponding reference value M

r
z . The

control signal Mc can be written as

Mc = K
t
p(M

r
z − Mz) +

1

Kti

∫ T

0

(Mrz − Mz) dt (4.9)

where Ktp and K
t
i are tuneable controller parameters.

The control signal is then interpreted as an angular velocity around the

z-axis of the TCP coordinate system in the opposite direction of Mc, i.e., as
an angular velocity ω expressed in the TCP coordinate system according
to

ω = [0 0 −Mc]
T . (4.10)

This is important since the reorientation has to be done around the point

of contact between the stick and the path, otherwise contact with the path

will be lost. This angular velocity is then transformed into a corresponding
velocity of the flange of the robot. Note that an angular velocity around the

z-axis of the TCP corresponds both to linear and angular velocities of the

flange.

Reference value The reference value for the PI controller can be chosen

arbitrarily as long as the torque is realisable with respect to the chosen
force control reference value and the corresponding arm length for the

force vector. An especially easy choice of torque reference is zero. This cor-

responds to a configuration where the normal force vector intersects the

sensor z-axis all the time and consequently the torque around the sensor z-
axis is equal to zero. During experiments on the robot system it was found

that it is advantageous to choose the reference value slightly larger than

zero in order to compensate for the small friction forces arising when the

metal stick is moved along the path. The reason for this is that the friction
forces also give contributions to the torque around the sensor z-axis.

Procedure

The procedure of identifying the path with contact-force control can be

described as follows. With reference to Figure 4.7, at (A), the stick is po-
sitioned in front of the path and starts to move in a prespecified direction
towards the path. At (B), the stick will come into physical contact with the
path. When the normal force magnitude �� fN �� exceeds a certain threshold
value the controller for the normal force is switched on. This controller

will now make sure that �� fN �� reaches the desired force �� f
r
N ��. Then the

stick will begin to move in a direction vz, which is parallel to the normal of

the plane in which the path is located. At (C), when the stick comes into
contact underneath the path the vertical position controller is activated

49

Chapter 4. Robot modelling and path identification

A

Stick

Path

vinit
B

fN

vz

C

fN

fz

TCPz

Figure 4.7 The figure illustrates the first steps in the procedure of the path

identification. In the figure, the stick and the cross section of the path can be

seen. (A) is the same instance here as in Figure 4.8. In (C) the z-axis of the TCP
coordinate system is also illustrated.

and will repeat the same procedure but this time for the force fz. When
the desired forces are reached in both directions the torque controller is

activated.

With reference to Figure 4.8, at (B) the force sensor will measure a
torque Mz. The torque controller will make sure the torque reaches the

desired value by rotating the tool around the point of contact, and hence
change the distance r. At (C), once the desired torque is reached the stick
will begin to move along the path in the tangential direction vt, which is

calculated according to (4.8). At (D), when the stick reaches a curve in the
path, the tangential direction will follow the arc, all according to (4.8) since
the force fN will change its direction. During the whole traverse the force

controllers are active in order to ensure that the contact-forces are kept as

close to the reference values as possible.

Implementation of force controller in Simulink

In order to test the force control structure before performing experiments
on the real robot system, a simulation model was implemented in SIMULINK.

This model allows pre-tuning of controller parameters before performing

experiments on the real robot system. During simulations, the robot system

and the forces and torques arising when the stick comes into contact with
the path are simulated.

In order to structure the simulation model, subsystems have been used

as far as possible. The main simulation model in SIMULINK can be seen in

Figure C.1 in the appendix. Below some of the main points of the imple-

mentation made in this thesis are discussed.

Library extctrl In the Robotics Lab a library called extctrl containing

SIMULINK blocks suitable for robot control has been developed. This library

was available for use in the thesis. Several of these blocks were utilised

during the implementation of the force controller. Among the most impor-
tant blocks, the block calculating the transformation matrix from the robot

flange to the base coordinate system and the block calculating the Jacobian

for the robot flange in the base coordinate system can be mentioned. Note

50

4.4 Control structure for path identification

A

Stick

Sensor
x

yz

B

vinit
fN

r

Mz

C

fN

vt

D

fN
vt

Figure 4.8 The figure illustrates the reorientation of the tool during the path

identification, seen from above. Note how the rotation of the tool (B) aligns the stick
such that its orientation is the same with respect to the path during the traverse,

see (C) and (D) respectively. (A) is the same instance here as in Figure 4.7.

that both the transformation matrix and the Jacobian have to be recalcu-

lated in every sample, because they depend on the current configuration of

the robot.

Also, blocks for resetting the force sensor, multiplying two transforma-

tion matrices and blocks for transforming velocities and forces from one

coordinate system to another are available in the library. Further, two
blocks are available for transforming the joint angles to motor angles and

vice versa. These blocks take the gear ratios of the joint motors and the

cross couplings of joint 4, 5 and 6 into account.

Simulation of forces and torques In order to simulate forces and

torques arising when the stick comes into contact with the path, a suitable
model describing the contact-forces has to be introduced. One basic model

that has been utilised is to use a linear deformation law, often referred to

as Hooke’s law, where the force fN is modelled as

fN = kx (4.11)

where k is the so called spring constant and x is the linear deformation of
the path. Obviously, a large spring constant k corresponds to a stiff material

that is hard to deform and a small spring constant to a soft material. The

direction of the force is perpendicular to the tangent of the path and can

thus easily be simulated.

With the force and its direction known, the torque in the sensor frame

can be calculated since the vector r from the sensor origin to the contact

point is known. Hence, the torque M can be calculated with the vector
product

M = r � fN . (4.12)

In order to make the simulations as close to the real experiments as pos-

sible, the simulated force and torque are transformed to the sensor frame
before transmitting the signal to the force controller. The transformation

is made with the transformation matrices described in a previous section.

Simulating the forces and torques in the sensor frame also allows easy

51

Chapter 4. Robot modelling and path identification

change between simulations and real experiments, since the block simu-

lating the forces can be replaced by the signal from the real force sensor.

Simulation of robot system The simulation model implemented in
SIMULINK can also be used for executions on the real robot system after

code generation, see Appendix A. During simulations, the robot system

has to be modelled. Since no explicit feedback is used from the joint po-

sitions and joint velocities, the robot model utilised is not that important.
In this application it is assumed that the reference values for the joint

velocities and joint positions given to the robot system are tracked virtu-

ally instantaneously. Hence, the model identified on the robot system and

used for optimisation purposes has been used during the simulations of
the force control application. A discretised version of the robot model is

utilised. Consequently, a fixed step discrete solver can be used to perform

the simulation. The robot model block is replaced by a block communicat-

ing with the robot system when performing experiments on the real robot
system.

Force controller The force controller is implemented according to the

description in a previous section. The I-parts in the different PI controllers
are discretised using forward Euler. Prior to using the force sensor signals

in the force controller, the signals are filtered with a Butterworth lowpass

filter. The reason for this approach is that the signals from the force sensor

have a notable noise component.
The control signals from the different parts of the force controller are

interpreted as velocities of the TCP. The velocities from the different parts

of the force controller are added with equal weight. The block calculating

the Jacobian from the extctrl library gives the Jacobian connecting the ve-

locities of the flange in the base coordinate system and the joint velocities.
Hence, the velocity of the TCP has to be transformed into a corresponding

velocity of the flange expressed in the base coordinate system. Since the

TCP and the robot flange forms a rigid body, the linear velocities can be

transformed to the base coordinate system by rotating the velocity vector
with the corresponding transformation matrix from the TCP coordinate

system to the base coordinate system. Note that the angular velocities of

the TCP have to be transformed with the velocity transmission block from

the extctrl library.

Jacobian The velocities calculated in the force controller — i.e., three

linear velocities and three angular velocities — of the flange have to be

transformed into corresponding joint velocities of the six joints of the robot.
For this purpose, the Jacobian block from the extctrl block can be utilised.

The Jacobian describes the transformation from joint velocities into the

corresponding velocity of the flange. By inverting the Jacobian, a given

velocity of the flange can be transformed into joint velocities. These joint
velocities can then be applied on the robot system. Since only joint velocities

are utilised and not the joint positions, the position loops in the robot

system were decided to be turned off, see Appendix A.

Safety features In order to allow a safe start procedure of the force con-

troller, a switch called f_switch was introduced in the model. This variable

was also appointed as an inline parameter, which makes it possible to alter

52

4.4 Control structure for path identification

Path

Stick

Translated path

Identified path

Figure 4.9 In the figure a schematic picture of the identified path and the cor-

responding translated path is shown.

the value of the parameter from the robot system Opcom, see Appendix A.

When f_switch is zero, the control signals sent to the robot system are set

to zero. On the contrary, when the switch is set to one, the path identifi-
cation procedure is started.

In order to stop the control of the robot in a case where the contact with

the path is lost during the path identification, a safety feature was imple-

mented that sets the control signals to the robot system to zero if contact
with the path is lost. The reason for this feature is that it is plausible that

an error has occurred if the contact with the path is lost.

Translate the path When the path is identified, the stick is moved along
the outer edge of the path. In some cases it is more interesting to know

the centre of the path. This can be achieved by translating the identified

path the corresponding offset from the contact point to the centre of the

path. This distance is oriented in the direction of the normal force. Hence,
the thickness of the path can be measured and the path translated in the

direction of the measured normal force a distance of half the thickness of

the path, see Figure 4.9.

In order to perform time-optimal path tracking, the joint positions along

the translated path also have to be determined. This is done by the pro-

cedure described in Section 2.2 called inverse kinematics. Given a position

and orientation of the robot flange, a block in the extctrl library calculates
the corresponding joint positions. Since the inverse kinematics problem has

multiple solutions, a strategy for selecting the most appropriate solution

has to be introduced. In the inverse kinematics block, the solution closest

to the previous solution is chosen. Hence, the previous solution also has to
be fed to the inverse kinematics block.

The translation procedure is made automatically during the path iden-

tification. The corresponding joint positions are logged during the entire
path identification and can accordingly be used in the path tracking opti-

misation. Note that the correct offset for the current path has to be set in

the SIMULINK model for correct path identification.

53

Chapter 4. Robot modelling and path identification

Table 4.2 The table shows the controller parameters used during the identifica-

tion of the path with the force controller.

Kp Ki

Normal force controller 0.55 10

Vertical position controller 0.25 20

Torque controller 0.95 7

4.5 Experimental results from path identification

A force control identification according to the strategy presented above was

made on the real robot system with the path seen in Figure 4.4. Thereby,

the SIMULINK model previously described was used. Before performing ex-

periments on the real robot system, controller parameters were pre-tuned

in the simulation model. Then, during robot experiments the controller
parameters were adapted to the new real environment. The controller pa-

rameters used in the robot experiment can be seen in Table 4.2. Note the

relative small values of the gains Kp, motivated by the desire not to am-

plify the remaining noise component in the measured and filtered force
and torque signals from the force sensor.

Both the identified path along the outer edge of the metal bar and the

translated path can be seen in Figure 4.10. The identified path has been

translated a distance of 1 mm in the opposite direction of the normal force.
The reason for not translating half the thickness of the path is that the tool

used for the path identification is quite flexible and accordingly contributes

to the translation.

In Figure 4.10, the measured force vector in some points along the path
is also seen. By comparing the direction of the measured force to the tan-

gent of the path, it is apparent that the friction forces make the measured

force not completely corresponding to the assumed normal force. However,

the deflection was not that significant because of the low reference values
chosen in the force controllers. Therefore, the friction forces were decided

to be neglected during the path traverse.

Further, the joint positions q and the corresponding position of the TCP

in the base coordinate system can be seen in Figure 4.11 and Figure 4.12,
respectively. These joint- and TCP-positions correspond to the translated

path. The joint positions seen in the figure are later used in the optimisa-

tion for determining of the optimal path tracking.

Finally, the controlled forces and torque during the path identification

can be seen in Figure 4.13. The reference value for the normal force con-
troller is 5 N and the reference value for the vertical position controller is

4 N. A value of 0.075 Nm is chosen as the reference value for the torque

controller. This value has been tuned in order to compensate for the friction

forces arising between the metal stick and the path, which also contribute
to the measured torque.

54

4.5 Experimental results from path identification

550 600 650

−100

−50

0

50

100

150

630 635 640 645
50

55

60

65

70

75

80

85

90

95

100

Identified Translated Normal force

Identified path [mm] and normal force

Figure 4.10 In the plot to the left, the identified path can be seen in its whole.

The TCP y-position is plotted as function of the TCP x-position. Both positions are

given in the base coordinate system. In the plot, also the translated path is shown.

The horizontal dashed line marks the start of the path used in the optimisation.

In the plot to the right, a detail of the path can be seen. The corresponding normal

force vector in some of the points along the path is also shown. Note that the friction

forces make the measured force not completely perpendicular to the path.

55

Chapter 4. Robot modelling and path identification

0 50 100 150 200 250 300 350 400
−30

−20

−10

0

10

20

30

1 2 3

0 50 100 150 200 250 300 350 400
−80

−60

−40

−20

0

20

40

60

80

100

4 5 6

Joint positions q [deg] as function of time [s]

Figure 4.11 The figure shows the identified joint positions qi, i = 1, . . . , 6, of
the robot along the path. The dashed line marks the start of the path used in the

optimisation.

56

4.5 Experimental results from path identification

0 50 100 150 200 250 300 350 400

−100

0

100

200

300

400

500

600

x y z

TCP position [mm] in base coordinate system

Figure 4.12 The figure shows the position of the TCP expressed in the x-, y-

and z-directions of the base coordinate system. Note the slight differences in the

vertical position in the z-axis direction along the path. The dashed line marks the

start of the path used in the optimisation.

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

0 50 100 150 200 250 300 350 400 450
−0.05

0

0.05

0.1

0.15

Forces [N] in normal- and z-direction

Torque [Nm] z-direction

Figure 4.13 In the upper plot, the normal force (blue) and the force in the z-axis
direction (red) during the path identification are shown. The reference value for
the normal force is 5 N and the reference value for the force in the z-direction is

4 N. In the lower plot the torque in the z-direction is shown. The reference value

is 0.075 Nm.

57

5. Path optimisation and

experimental results

This chapter presents results obtained from optimal path tracking. The re-

sults presented include optimisation results, simulations and experimental

results obtained from executions on a real robot system. The model used to

execute the simulations and experiments is also presented and discussed.

5.1 Optimisation problem in JModelica.org

Once the force identification of the path has been performed and the joint
positions of the robot along the path have been determined, the optimisa-

tion problem determining the optimal path tracking can be solved in JMod-

elica.org. The optimisation problem is defined by (2.19)–(2.22). Note that
the convex optimisation formulation of the path tracking problem cannot be
used since a viscous friction term is present in the identified robot model

(4.2). This term makes that the rewritten robot dynamics cannot be ex-
pressed affine in the path acceleration and the path velocity squared. Also

note that the input signals for the robot system are not the joint torques τ
in this case. In the current model, the joint velocity reference q̇ri for each

joint i is used as input signal. However, the optimisation problem as such

is exactly the same.

Rewritten robot dynamics

The robot dynamics subjected to path tracking requirements for the iden-

tified robot model can be decided analogous to EXAMPLE 2.1. The rewritten
robot dynamics for the model (4.1) can be written, for each joint i, i =
1, . . . , 6, according to

Aiq̇
r
i = Bi(f

′
i (s)s̈+ f

′′
i (s)ṡ

2) + f ′i (s)ṡ. (5.1)

Implementation

With the rewritten robot dynamics, it is straightforward to implement the
optimisation problem in JModelica.org. The implementation is analogue to

the implementation made in the example in Chapter 3. The paths are rep-

resented with cubic splines. Transformation of the joint positions obtained

during the path identification to a Modelica model describing the splines is
facilitated by a script written in MATLAB called robot2jmod. When creating

the splines it is neither possible nor necessary to use all the data collected

during the path identification. Since the path identification with force con-

trol is performed with a rather low speed, a lot of data values are collected.
When making the splines, a uniform decimation is selected such that the

experimentally determined paths are approximated good enough by the

splines. The number of data used for making the splines is also limited by

the capacity of the compiler in JModelica.org, as the spline implementation
requires several lines of code.

It has been found advantageous to solve the optimisation problem in

two steps when introducing derivative weighting in the cost function with

58

5.1 Optimisation problem in JModelica.org

the parameter η. First, the pure time-optimal solution is determined as
a reference solution. Then, derivative weighting is introduced in a second

step where the result from the first optimisation is used as initial values.

Issues when solving the optimisation problem

Two main issues were encountered when solving the optimisation problem

in JModelica.org. Firstly, when derivative weighting is used in the cost

function, the absolute value is not appropriate in the numerical optimisa-

tion in JModelica.org. The reason is that the absolute value function cannot
be continuously differentiated, which is required in the numerical solution.

A workaround for this problem is to use the square function instead of the

absolute value, i.e., change the cost function in the optimisation problem

to ∫ s f

s0

1√
β (s)

+η
n∑
i=1

(q̇ri (s)
′)2 ds. (5.2)

The square function also has the property that the function value always is

non-negative. However, the square function amplifies high values of q̇ri (s)
′

and reduces low values. This has to be taken into account when tuning the

weighting parameter η in the cost function, since the square function is
more aggressive than the absolute value.

Differentiation of the paths The second issue concerns the individual

paths for the six joints. In the solution of the optimisation problem, the
first and second order derivatives of the paths are required. One option

that was tested was to let JModelica.org differentiate the paths during the

solution. This option led to problems when simulating initial values for the

optimisation in SUNDIALS. The simulation tool Dymola can also be used

for simulating the initial values for the Modelica models in the optimisa-
tion. Dymola was tested with satisfactory result and the results can be

imported to JModelica.org. Since it is desirable to use the simulation facil-

ity in JModelica.org for a straight workflow, it was decided to reformulate

the implementation of the optimisation problem slightly.
The reason for the problems in the simulation in SUNDIALS is that the

DAE system in the optimisation problem when JModelica.org differentiates

the paths is of an index higher than one. The index of a DAE system is

defined as the number of times parts of it have to be differentiated in order
to get a system, from which the derivatives of the variables can be solved

for [Mattsson and Söderlind, 1992].
If the index is higher than one, a procedure called index reduction can

be introduced. One approach for index reduction presented in [Mattsson
and Söderlind, 1992] is to differentiate some of the equations in the DAE
system and introducing a number of dummy variables. The differentiated

equations are then incorporated in the DAE system.

The index reduction can be executed automatically by simulation soft-
ware, as is the case with Dymola. It is advantageous to reduce the index,

because high-index DAE systems are hard to solve, see for example [Matts-
son and Söderlind, 1992]. Since index reduction is not yet implemented
in JModelica.org, a manual effort for reducing the index was made. The
reason for the high index in the optimisation problem is the differentia-

tion of the paths. Accordingly, the paths were differentiated manually and

included in the optimisation problem. This method solved the simulation

59

Chapter 5. Path optimisation and experimental results

Table 5.1 The table shows the chosen upper and lower limits on the input signals

— i.e., the joint velocity references q̇r — to the robot system. The limits are given

in rad/s and deg/s.

Joint Limit [rad/s] Limit [deg/s]

1 ± 0.6981 ± 40.0

2 ± 0.6981 ± 40.0

3 ± 0.9076 ± 52.0

4 ± 1.2566 ± 72.0

5 ± 1.2566 ± 72.0

6 ± 1.5708 ± 90.0

problems in SUNDIALS. The drawback with the method is that more code

is required in the Modelica models, and hence the compilation time when
solving the optimisation problem is increased.

Implementation in JModelica.org

The Modelica and Optimica code describing the optimisation problem can

be seen in the listing in Appendix B.2. A separate Modelica model which
is called path_tracking_Init_Opt is used for simulation in SUNDIALS of

initial values for the optimisation. The limits on the input signals have

been chosen as 20 % of the maximum realisable joint velocity according

to the manufacturer of the robot. The limits on each joint can be seen in
Table 5.1. Further, the weighting parameter η in the cost function has been
chosen as 1.0 ⋅ 10−4. The paths are parametrised in the path parameter s,
where s ∈ [0, 1].

When solving the optimisation problem in JModelica.org a suitable

number of elements has to be chosen for the transcription process. In the

current problem 235 elements were chosen and in every element 3 colloca-
tion points were selected. The choice of number of elements is a trade-off

between the accuracy in the solution, solution time and convergence prop-

erties.

When implementing the splines with if- and else-clauses, a function

called noEvent() has to be used. This function tells JModelica.org that the
included code can be calculated immediately, and no switches are required

when moving from one region of the spline to another.

Optimisation results

The result from the optimisation can be seen in Figure 5.1 and Figure 5.2.
The first figure displays the path velocity ṡ(s) and the path acceleration
s̈(s). The second figure displays the input signals, i.e., the joint velocity
references along the path. During the optimisation, the time-optimal tra-

verse time is also calculated. The theoretically time-optimal solution has a
traverse time of 6.30 s for the current path. When derivative weighting is

used with η = 1.0 ⋅ 10−4, the traverse time is increased to 6.49 s, i.e., an
increase of approximately 3 % compared to the time-optimal solution.

60

5.2 Implementation of PVC in Simulink

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

Path velocity ṡ(s)

Path acceleration s̈(s)

Figure 5.1 In the figure, the results from the optimisation in JModelica.org are

shown. The upper plot displays the path velocity ṡ(s) and the lower plot displays
the path acceleration s̈(s).

5.2 Implementation of PVC in Simulink

In order to test the different parts of the control structure obtaining the

path tracking, simulations were made prior testing on the real robot sys-

tem. The following section describes the simulation model used to make
the simulations.

Simulation model for path tracking

In a previous Master thesis project at the Department of Automatic Con-

trol at Lund University, the PVC structure described in Section 2.8 was

implemented in SIMULINK [Hast, 2009]. Though, the structure was not im-
plemented on the real robot system with satisfactory result. The new im-
plementation made in this thesis mainly follows the outline of the earlier

made implementation.

In order to test different configurations of the PVC structure described

in Chapter 2 with different robot models, a flexible implementation of a

model for simulations of optimal path tracking has been constructed in

SIMULINK. This makes it possible to test different robot models and differ-
ent parameter choices in the PVC structure. Further, the current path and

the results from the optimisation — i.e., the path velocity and the path

acceleration — are stored in a .mat-file, which is the format of MATLAB

for saving data on disk. This data structure makes it possible to change
between different paths and optimisation results from different optimisa-

tion methods in a straightforward manner. Below the main points of the

implementation made in SIMULINK will be discussed.

61

Chapter 5. Path optimisation and experimental results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 5 6

Joint velocity references q̇r [rad/s] as function of s

Figure 5.2 In the figure, the result from the optimisation in JModelica.org is

shown. The plot displays the input signals to the robot system, i.e., the six joint

velocity reference signals q̇ri , i = 1, . . . , 6. Note that one of the joints is saturated at
its limits a large part of the path. This indicates near time-optimality. The limits

on the input signals are given in Table 5.1.

Implementation A simulation model was implemented in SIMULINK for

the PVC according to Section 2.8. The model consists of several subsystems

in order to structure the model. The main model can be seen in Figure C.2
in the appendix. When more specialised functions not available in the stan-

dard library in SIMULINK are required, the embedded code blocks have been

used.

Tables In order to make the results from the optimisation, the paths
and their derivatives available in the model, look-up tables have been used.

These tables each use a variable saved in the MATLAB workspace. The vari-

able must have two columns, one with the independent variable, here the

path parameter s, and one with the dependent variable. During execution
of the model, these tables perform linear interpolation between the data

points in the variable in order to get data values also for intermediate

points.

To facilitate the procedure of transforming an optimisation result from

62

5.2 Implementation of PVC in Simulink

JModelica.org to corresponding MATLAB variables suitable for the look-up

tables, a script in MATLAB called jmod2mat was developed. It is of interest

to be able to use an arbitrary number of points in the PVC, independent

of the number of collocation points in the optimisation. Therefore spline
approximations are made of the results from the optimisation. With this

approach, an arbitrary number of points can be used in the PVC. In the

current implementation 2000 equally spaced points were chosen to be used

in the PVC.

Robot model The simulation model implemented in SIMULINK can also

be used for executions on the real robot system after code generation, see
Appendix A. In order to allow easy change between simulations and real

executions on the robot system, two blocks were built. One implements the

robot model identified on the robot system and the other communicates

with the real robot. The first block is used in the simulations. When the
PVC is to be executed on the real robot system, the identified robot model

block is replaced by the real robot block communicating with the robot

system. This allows easy change between simulations and real executions

on the robot system. Also the inputs and outputs from the robot system
described in Appendix A are incorporated in the model for communication

with the robot system.

Starting switch In order to allow a safe start procedure when running

the controller on the real robot system, a starting switch called f_switch

was introduced in the model. This switch is also defined as an inline pa-

rameter and can accordingly be changed from the robot system Opcom, see

Appendix A. When the switch is zero, the control signals are set to zero and
the integrators in the controller receive zero as input value in order not to

build up large values before starting. When the robot is ready to perform

the path tracking, the switch is set to one and the controller starts and

hence the path tracking starts.

Angle deviation As an extra safety feature in the PVC, the control of

the robot system is stopped if at least one of the current joint positions
of the robot deviates more than a certain predefined limit value from the

specified path. The reason for this feature is that if the deviation of the

joint position is larger than the limit value, it is reasonable to believe that

there is an error that has occurred during the path tracking.

Simulation configurations In order to perform the simulations in

SIMULINK, a suitable solver has to be chosen. Since the code generation
is made with a fixed step discrete solver, the same solver was chosen for

the simulations. In this way, the simulations are as close as possible to the

real experiments on the robot system. The fixed step size is determined by

the sampling period in the robot system, i.e., a sampling period h = 0.004 s.
During the simulations, the continuous time robot model has to be discre-

tised. This is straightforward to do using a zero-order-hold method with

the sampling period h.

63

Chapter 5. Path optimisation and experimental results

5.3 Simulation results of optimal path tracking

The simulation model for the PVC has been used for tuning of controller pa-

rameters but also for obtaining a suitable trade-off between time-optimality
and rate of changes in the input signals prior testing on the real robot sys-

tem. This section discusses some observations made when simulating the

PVC with various optimisation results.

Similarity of simulation with real experiments

Comparison of the results from the simulations and the real experiments

on the robot system shows that the obtained results are similar. This is

plausible since a fixed step solver with a step size equal to the sampling
time in the robot system is used in the simulations. However, as expected

the tracking errors are more evident in the real executions due to the

limited validity of the identified robot model. This is particularly the case

when the input signals — i.e., the joint velocity references — exhibit fast
changes since the actuators in the robot joints cannot realise the desired

rate of changes in the velocities.

Issues when simulating the PVC

An issue that arose when simulating the PVC in SIMULINK was that the on-
line calculated bounds on the path acceleration σ̈ in the PVC are inverted
such that σ̈max < σ̈min. This means that there is no path acceleration that
can be chosen such that the constraints on the input signals are satisfied.

This problem is already recognised in both [Dahl, 1992] and [Hast, 2009].
The first suggests a solution also used in this thesis, where the nominal

path acceleration s̈(σ) from the optimisation is used without saturation
temporarily as long as σ̈max < σ̈min. However, this solution is not optimal
since if the limits are inverted more than a few samples, the path tracking
can be severely violated because the desired input signals are not achiev-

able. This might result in that the actuators cannot keep the robot following

the desired path.

Numerical issues From the expressions for calculating the bounds on

the path acceleration σ̈ (σ) in (2.35) and (2.36) online in the PVC, it is
apparent that the limit calculations are very sensitive when β 1 is close
to zero because this results in small numerators in the expressions. This
might result in jumps in the limits and consequently in the saturated path

acceleration σ̈ (σ), which of course negatively influence the path traverse.
Further, the constant sample time h = 4 ms in the robot system sets

a limit of what is possible to achieve with the PVC. Since the integrators
in the implementation of the PVC are discretised using forward Euler, the

stability properties and accuracy of the numerical integrations are highly

dependent on the sampling rate.

Weighting of derivatives of input signals The problems in the PVC

arise as expected when the input signals exhibit fast changes since mod-

elling errors and numerical issues are most evident at these occasions.
During simulations it has been noted that weighting of the derivatives

of the input signals in the cost function in the optimisation with the pa-

rameter η is an efficient way of eliminating the problems in the PVC. A

64

5.4 Experimental results from optimal path tracking

weighting parameter greater than zero means sub-optimality, i.e., the tra-

verse time of the path is increased compared to the time-optimal. However,

satisfactory results in the PVC when performing the path tracking can be

achieved by choosing a weighting parameter such that the increase of the
traverse time is just a few percent. This shows that the pure time-optimal

solution can be used as a reference solution of what is possible to achieve

in the robot system, but is hard to realise in practise both in simulations

and consequently on the real robot system.

Tuning of weighting parameter in cost function

Finding a suitable trade-off between time-optimality and rate of changes

for the input signals requires tuning of the weighting parameter η in the
cost function in the optimisation. This parameter determines implicitly how
fast the input signals to the robot system are allowed to change. The simu-

lation model offers the possibility to test various choices of the parameter η.
Consequently, the procedure of finding a good value is an iterative process

from optimisation to simulations in SIMULINK and backwards.

Tuning of parameters in PVC

The simulation model in SIMULINK has also been used for finding suitable

values of the parameters k and α in the PVC. The parameter α determines
the gain of the internal feedback from the optimised path velocity and the
parameter k determines the gain of the adaptation of the path velocity

scaling.

Selection of these values has of course to be done such that the path

tracking is performed as well as possible and the problems in the PVC de-
scribed above are avoided. However, if the parameters are selected to be too

aggressive, the time-optimality of the path traverse may be compromised.

This is especially the case with the selection of the scaling parameter k.

During this thesis it has been found advantageous to use not too aggressive
tuning in the PVC, but instead use derivative weighting in the cost function

in the optimisation. The reason is that the derivative weighting results in

that only the fast changes in the input signals are reduced, whereas the

scaling in the PVC results in a general scaling of the whole path traverse.
Then, it is plausible to believe that the derivative weighting results in more

precise elimination of the problems that can occur in the PVC during the

optimal path traverse.

5.4 Experimental results from optimal path

tracking

Experiments were performed on the robot system with the PVC. Thereby,

the force control identification of the path in Figure 4.4 and the results
from the optimisation in JModelica.org were used. For visual evaluation of

the performance of the path tracking, a ring was attached to the tool, see

Figure 5.3.

In the PVC, an internal tracking controller is used to control the robot
system based on feedback. This controller can be arbitrarily chosen as long

as it can be rewritten to the form (2.30) subjected to path tracking require-
ments. In the current experiment, the controller was chosen as a combi-

65

Chapter 5. Path optimisation and experimental results

Figure 5.3 In the figure the ring used during experiments with the PVC is

shown. The diameter of the ring is 10 mm and the path has a diameter of 5 mm.

While traversing the path the ring must not come into contact with the path.

nation of a feedforward controller and a simple feedback controller, similar
to [Dahl, 1992]. The feedforward part was determined by inverting the
robot system dynamics and is accordingly completely determined by the

identified robot model (4.2). Further, the feedback part was chosen as a
PD controller. The combined feedforward and feedback control law can be
written

q̇r = A−1Bq̈ir + A
−1 q̇ir︸ ︷︷ ︸

feedforward

+ K̂p(qir − q) + K̂d(q̇ir − q̇)︸ ︷︷ ︸
feedback

(5.3)

where q̇r is the input signal to the robot system, K̂p and K̂d are tuneable

controller parameter matrices and subscript ir denotes internal reference

values for the controller. Rewriting this control law subjected to path track-

ing requirements analogous to EXAMPLE 2.2 gives the expression

q̇r = A−1B[f ′′(σ)σ̇ 2 + f ′(σ)σ̈] + A−1 f ′(σ)σ̇ +

K̂p(f (σ) − q) + K̂d(f
′(σ)σ̇ − q̇) (5.4)

from which the parameters β 1 and β 2 in the parametrisation q̇
r = β 1σ̈ +

β 2 can be identified. The controller parameters in the PVC used in the
experiments on the robot system can be seen in Table 5.2.

Experimental data

The experimental data collected during execution on the IRB140 robot can

be seen in Figures 5.4–5.11. In all figures, the independent variable is

chosen as the parameter σ , corresponding to the path parameter s in the
optimisation. With this choice, the connections between the plots and the
corresponding path is clear. From the figures it is also clear that the path

tracking is working well. Below, the experimental results are evaluated in

more detail in certain aspects.

66

5.4 Experimental results from optimal path tracking

Table 5.2 Table of parameter values used in the PVC during path tracking ex-

periments on the robot system.

Parameter Value

K̂p diag(10, 10, 10, 10, 10, 20)

K̂d diag(1, 1, 1, 1, 1, 1)

α 15

k 30

Evaluation of the PVC algorithm

The joint positions and corresponding joint velocities of the six joints can

be seen in Figure 5.4 and Figure 5.5, respectively. The input signals —

i.e., the joint velocity references — to the robot system can be seen in
Figure 5.6. This figure allows direct comparison with the corresponding

figure, Figure 5.2, obtained in the optimisation with JModelica.org. It can

be seen that the time-optimality is preserved by the PVC, because one of

the joints is saturated most of the path traverse. It can also be noted that
the sixth joint is saturated most of the path traverse, which is a result of

the reorientation of the tool along the path.

Path acceleration and path velocity Another measure of the perfor-

mance of the PVC is the correspondence between the obtained path acceler-

ation σ̈ (σ) and path velocity σ̇ (σ), see Figure 5.7, with the same variables
from the optimisation seen in Figure 5.1. This is a measure of how well the

PVC is able to integrate the path acceleration in order to obtain the path

velocity σ̇ (σ) and the path parameter σ . Consequently, the integration of
the path acceleration is vital in order to traverse the path in an optimal
way. The coorespondence in the current case is apparent, even though nu-

merical issues in the PVC can be noted in the results in Figure 5.7. This is

especially the case when the path parameter σ = 0.5 and σ = 0.76. These
numerical issues are further discussed below.

PVC algorithm The numerical issues seen in Figure 5.7 can be derived

to the online limit calculations in the PVC. The calculated limits, σ̈max
and σ̈min, on the path acceleration and the actual path acceleration σ̈ (σ)
can be seen in Figure 5.8. From this figure it is seen that the observed

numerical issues in the integration of the path acceleration can be linked

to the limit calculations, since the calculated limits are not smooth when
σ = 0.5 and σ = 0.76. Otherwise, the limit calculations are working well
and the calculated limits are not inverted such that σ̈max < σ̈min during the
path traverse. The closeness of the actual path acceleration to the limits

can also be seen as a measure of the time-optimality of the path tracking.
This is because if the path acceleration is saturated, one of the joints is

also saturated. It is seen in Figure 5.8 that most of the path traverse, the

path acceleration is indeed saturated. This indicates near time-optimality.

It can also be noted that the path acceleration is not saturated during the
fast changes of the input signals. This is a result of the weighting of the

derivatives of the input signals in the optimisation formulation.

Internal feedback and path velocity scaling Further, in Figure 5.9

the result of the internal feedback from the path velocity and the path

67

Chapter 5. Path optimisation and experimental results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−20

−10

0

10

20

30

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−60

−40

−20

0

20

40

60

80

100

4 5 6

Joint positions q [deg] as function of σ

Figure 5.4 The figure displays experimental results obtained from executions

on the robot system with the PVC. The figure displays the joint positions qi, i =
1, . . . , 6, during the path traverse.

velocity scaling is seen. Since the result of the internal feedback is added to

the optimised path acceleration, the influence of the internal feedback can

be estimated by comparing the magnitude of the internal feedback signal

and the magnitude of the path acceleration. This comparison shows that
the influence of the internal feedback is reasonable. This can also be seen

in Figure 5.7 where the current path velocity σ̇ (σ) tracks the optimised
path velocity ṡ(σ). The parameter α determining the gain of the internal
feedback has been tuned in order to get a suitable balance between time-
optimality and tracking performance.

The path velocity scaling seen in Figure 5.9 is determined by the param-

eter k. It is seen that the path velocity scaling algorithm in the PVC makes

the scaling parameter γ finally approaching the value 0.985. This indicates
that the optimal solution from the optimisation is preserved without too
aggressive scaling in the algorithm, since the parameter γ is close to one
when the whole path is traversed. Also notice that the scaling parameter

γ only decreases, as is expected from the theory chapter, Chapter 2.

68

5.4 Experimental results from optimal path tracking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

10

20

30

40

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−50

0

50

100

4 5 6

Joint velocities q̇ [deg/s] as function of σ

Figure 5.5 The figure displays experimental results obtained from executions

on the robot system with the PVC. The figure displays the joint velocities q̇i, i =
1, . . . , 6, during the path traverse.

Time-optimality

One of the important questions when performing time-optimal path track-

ing is the obtained traverse time of the path when performing an experi-

ment on the robot system. In the current experiment, the traverse time is
measured to be 6.62 s. This could be compared to the traverse time obtained

in the optimisation which is 6.49 s. This means that the traverse time is

increased with approximately 2 % in the experiment on the robot system,

which has to be considered as reasonable. The deviation in the traverse
time can be explained by modelling errors of the robot, numerical issues in

the implementation and the path velocity scaling made in the PVC.

Pure time-optimal solution Further, it is interesting to compare the

obtained path traverse time with the theoretically pure time-optimal tra-

verse time. Even though the pure time-optimal solution was not used in
the PVC on the real robot system, this solution serves as a reference so-

lution of what is possible to achieve in the robot system with the current

path and the current limits on the input signals. For the current path, the

69

Chapter 5. Path optimisation and experimental results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

40

60

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−50

0

50

100

4 5 6

Joint velocity references q̇r [deg/s] as function of σ

Figure 5.6 The figure displays experimental results obtained from executions

on the robot system with the PVC implementation. The plot displays the input

signal — i.e., the joint velocity references q̇ri , i = 1, . . . , 6 — as function of σ . The
saturation limits, see Table 5.1, for the different joints are also shown in the figure.

pure time-optimal traverse time is 6.30 s. This means that the obtained

traverse time in the experiment is approximately 5 % longer than the pure
time-optimal.

Tracking performance

In the PVC, an internal controller for the robot system is used to obtain
the tracking of the path. The controller used in the current experiment

is stated in (5.3). This controller is tuned by changing the gains in the
position loop and in the velocity loop. The tracking performance is best

described by the plots in Figure 5.10. This plot shows the error for each of
the six joints of the robot, measured as the difference between the reference

position calculated in the PVC and actual joint position. As expected, the

joints with the highest velocities and fast changes have the least accurate

tracking performances. This is especially the case with the sixth joint. In an
attempt to reduce the tracking error of this joint, the gain of this position

loop was increased, compared to the gains in the other five position loops,

see Table 5.2. This attempt turned out to reduce the tracking error for the

70

5.4 Experimental results from optimal path tracking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Obtained Optimised

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

Obtained Optimised

Path velocity σ̇ (σ)

Path acceleration σ̈ (σ)

Figure 5.7 The figure displays experimental results obtained from executions on

the robot system with the PVC implementation. The upper plot displays σ̇ (σ) and
the lower plot displays σ̈ (σ). The corresponding results from the optimisation can
also be seen in the figure.

sixth joint notably.

Velocity loop Further, the velocity loop in the tracking controller is
important for the tracking error. This loop can be seen as the prediction

part of the controller. Unfortunately, the observed long time delay in the

robot system from joint velocity reference to the measured joint velocity

limits the possibility to increase the gain of the velocity loop. The joint
velocity signal from the robot system also has a notable noise component

even though it is filtered with a lowpass filter. This is also an obstacle for

increasing the tracking accuracy.

Path tracking The overall behaviour of the optimal path tracking can

be seen in Figure 5.11. In this figure, the force control identified path and

the path traversed by using the PVC are shown. Figure 5.11 is the most
significant figure for evaluation of the path tracking, since it includes all

steps and approximations that have been performed from the force control

identification of the path to the final path traverse with the PVC. It is seen

71

Chapter 5. Path optimisation and experimental results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

Min Max Actual

Limits σ̈max(σ) and σ̈min(σ)

Figure 5.8 The figure displays experimental results obtained from executions

on the robot system with the PVC implementation. The plot displays the online

calculated limits σ̈min and σ̈max . The actual value of σ̈ is also shown. Note that the
path acceleration is saturated most parts of the path traverse.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.985

0.99

0.995

1

Internal feedback as function of σ

γ -adaptation as function of σ

Figure 5.9 The figure displays experimental results obtained from executions

on the robot system with the PVC implementation. The upper plot displays the

internal feedback from the optimised path velocity in the PVC and the lower plot

displays the adaptation of the path velocity scaling with the parameter γ .

72

5.4 Experimental results from optimal path tracking

0 0.5 1
−0.2

−0.1

0

0.1

0.2

0 0.5 1
−0.4

−0.2

0

0.2

0.4

0 0.5 1
−0.4

−0.2

0

0.2

0.4

0 0.5 1
−0.1

−0.05

0

0.05

0.1

0 0.5 1
−0.1

−0.05

0

0.05

0.1

0 0.5 1
−0.5

0

0.5

1

Angle deviation [deg] as function of σ

Joint 1 Joint 2

Joint 3 Joint 4

Joint 5 Joint 6

Figure 5.10 The figure displays experimental results obtained from executions

on the robot system with the PVC implementation. The plots display the error in

the joint positions during the path traverse.

that the tracking is working well, but certain parts of the path are harder

to track accurately. A detailed analysis of some of these parts shows that
the spline approximations made in the optimisation of the identified path

is less accurate in these parts. Further, the detailed analysis showed that

the error, at least partially, is rather because of the spline approximations

than the tracking performance of the robot.

73

Chapter 5. Path optimisation and experimental results

520 540 560 580 600 620 640

−50

0

50

100

150

Identified Traversed

Identified and traversed path [mm]

Figure 5.11 The figure displays a comparison of the force control identified path

and the optimal path traverse obtained with the PVC. The y-coordinate of the TCP-

position is plotted as function of the x-coordinate. The positions are given in the

base coordinate system of the robot.

74

6. Conclusions and future

work

This chapter summarises the work that has been performed in this thesis.

Also, an outline of possible improvements and future work on the subject of

optimal path tracking is given in this chapter. This includes improvements

in both the optimisation and in the implementation of the robot control

system.

6.1 Conclusions

In this thesis, time-optimal path tracking for industrial robots has been

studied. The subject can be considered to consist of three main parts.

Firstly, the robot motion has to be decided, such that the tool obtains the
correct position and orientation along the path to be tracked. In this thesis

this has been done with a contact-force control approach. Secondly, opti-

misation is made off-line for determining of the input signals to the robot

system in order to achieve the path tracking. Finally, a suitable control
strategy was implemented, such that the robot system tracks the path on-

line in the face of modelling errors and disturbances.

Path identification

In order to determine the robot motion along the path to be tracked, a

contact-force control approach has been utilised. This strategy has proven

to be sucessful for the task of path identification since it allows interaction

between the robot and the environment, in this case the path itself. Exper-
imental results show that the path is identified with a high accuracy and

the orientation of the tool along the path is automatically obtained during

the path identification.

Path optimisation

The data obtained from the path identification with force control is used

in optimisation software in order to determine suitable control signals to
send to the robot system along the path traverse. Mainly, the optimisation

software JModelica.org has been used for optimisation purposes. JModel-

ica.org has proved to be well suited for the task. First, it is straightforward

to change parameters in the optimisation and second, it is straightforward
to change path when a new path identification has been performed. This

allows an iterative procedure for obtaining a good path tracking result.

Control of the robot system

In order to obtain a robust time-optimal path tracking online, an earlier

developed control structure called path velocity controller has been im-

plemented and experimentally tested in the robot system. By using this
structure, the hard constraints on the input signals to the robot system

are satisfied during the whole path traverse. Even though the pure time-

optimal solution to the path tracking problem has not been able to realise

75

Chapter 6. Conclusions and future work

satisfactory in the PVC, a near time-optimal solution can be used. The sub-

optimality measured in the traverse time is only a few percent above the

time-optimal path traverse time. Perhaps the pure time-optimal solution is

not even desirable since the wear of the robot joints is high in that case.

6.2 Future work

In the future there are certain aspects of the subject that can be developed

in order to obtain even more accurate path tracking. The improvements

can be made both in the optimisation phase and in the robot control phase.
Some of the possible improvements in both of these areas are discussed

below.

Robot model and optimisation

Due to the chosen robot model, the convex formulation of the path tracking
problem cannot be used. The reason is the viscous friction term in the robot

model. Hence, the risk of obtaining a locally optimal solution is possible.

This risk is eliminated if the convex formulation can be used, since every

optimal solution in that case is also globally optimal. One strategy that can
be used in order to be able to use the convex formulation is to identify a

robot model in accordance with the rigid body model with the joint torques

as input signals. Probably the viscous friction term can be neglected if a

more accurate rigid body model is identified on the real robot system.
Another issue is the implementation of the optimisation problem in

JModelica.org. To be able to increase the accuracy of the path representa-

tion in the optimisation, more intervals in the spline approximations are

required. This is difficult in the current implementation since the splines
and their derivatives are implemented as a Modelica model and require a

lot of code. This calls for a more efficient spline implementation in JMod-

elica.org, where the splines and their derivatives are calculated directly in

the software for highest possible efficiency.

Robot control

In order to be able to use the pure time-optimal solution in the PVC without

violating the hard constraints on the input signals, perhaps prediction can

be introduced as part of the PVC. With prediction it is possible to look
ahead and slow down the path traverse before the problems in the PVC

occur. Of course, this issue is also related to the quality of the identified

robot model, since accurate time-optimal path tracking calls for a good robot

model.
Another issue is the delay in the robot system from joint velocity refer-

ence to the measured joint velocity. If this delay is reduced it is possible to

tune the tracking controller in the PVC more aggressive in order to achieve

even better tracking properties. Even though the tracking error is reason-
able for the paths studied in this thesis, it can be improved. Improved

tracking capacity is also required if the path has for example sharp cor-

ners along its way because these are known to be difficult to track without

smoothing effects.

76

7. Bibliography

ABB Robotics (2009): “ABB IRB140 Industrial Robot Data sheet.” Data
sheet nr. PR10031 EN_R8.

Åkesson, J. (2007): Languages and Tools for Optimization of Large-Scale
Systems. PhD thesis ISRN LUTFD2/TFRT--1081--SE, Department of
Automatic Control, Lund University, Sweden.

Åkesson, J. (2008): “Optimica—an extension of Modelica supporting dy-
namic optimization.” In 6th International Modelica Conference 2008.
Modelica Association.

Åkesson, J., K.-E. Årzén, M. Gäfvert, T. Bergdahl, and H. Tummescheit

(2010): “Modeling and optimization with Optimica and JModelica.org—
Languages and tools for solving large-scale dynamic optimization

problem.” Computers and Chemical Engineering, January.

Biegler, L. T., A. M. Cervantes, and A. Wächter (2002): “Advances in
simultaneous strategies for dynamic process optimization.” Chemical
Engineering Science, 57, pp. 575–593.

Blomdell, A., I. Dressler, K. Nilsson, and A. Robertsson (2010): “Flexible
application development and high-performance motion control based

on external sensing and reconfiguration of ABB industrial robot con-

trollers.” In Proceedings of the workshop of "Innovative Robot Control
Architectures for Demanding (Research) Applications — How to Mod-
ify and Enhance Commercial Controllers", the 2010 IEEE International
Conference on Robotics and Automation (ICRA2010), pp. 62–66. Anchor-
age, Alaska, USA.

Bobrow, J. E., S. Dubowsky, and J. S. Gibson (1985): “Time-optimal
control of robotic manipulators along specified paths.” The International
Journal of Robotics Research, 4:3, pp. 3–17.

Boyd, S. and L. Vandenberghe (2004): Convex Optimization. Cambridge
University Press, Cambridge, UK.

Chen, Y. and A. A. Desrochers (1989): “Structure of minimum-time control
law for robotic manipulators with constrained paths.” In Proceedings
of 1989 IEEE International Conference on Robotics and Automation,
vol. 2, pp. 971–976. IEEE.

Dahl, O. (1992): Path Constrained Robot Control. PhD thesis ISRN
LUTFD2/TFRT--1038--SE, Department of Automatic Control, Lund
University, Sweden.

De Schutter, J. and H. Van Brussel (1988a): “Compliant robot motion I.
A formalism för specifying compliant motion tasks.” The International
Journal of Robotics Research, 7:4, pp. 3–17.

De Schutter, J. and H. Van Brussel (1988b): “Compliant robot motion II.
A control approach based on external control loops.” The International
Journal of Robotics Research, 7:4, pp. 18–33.

Dressler, I. (2009): “Force control interface for ABB S4/IRC5.” Technical
Report. Department of Automatic Control, Lund University.

77

Chapter 7. Bibliography

Hast, M. (2009): “Optimal control and path following for industrial
robots.” Master’s Thesis ISRN LUTFD2/TFRT--5842--SE. Department
of Automatic Control, Lund University, Sweden.

JModelica.org (2010): http://www.jmodelica.org.

Larsson, P.-O. and R. Braun (2008): “Construction and control of an
educational lab process — the gantry crane.” In Reglermöte 2008, Luleå.

LaValle, S. M. (2006): Planning Algorithms. Cambridge University Press.
URL: http://planning.cs.uiuc.edu/.

Löfberg, J. (2004): “YALMIP : A toolbox for modeling and optimization in
MATLAB.” In Proceedings of the CACSD Conference. Taipei, Taiwan.
URL: http://users.isy.liu.se/johanl/yalmip.

Mattsson, S. E. and G. Söderlind (1992): “A new technique for solving high-
index differential-algebraic equations using dummy derivatives.” In

Proceedings of the 1992 IEEE Symposium on Computer-Aided Control
System Design, CACSD ’92, pp. 218–224. Napa, California.

Nilsson, K. and R. Johansson (1999): “Integrated architecture for industrial
robot programming and control.” J. Robotics and Autonomous Systems,
29:4, pp. 205–226.

Pfeiffer, F. and R. Johanni (1987): “A concept for manipulator trajectory
planning.” IEEE Journal of Robotics and Automation, RA-3:2, pp. 115–
123.

Shiller, Z. (1994): “On singular time-optimal control along specified paths.”
IEEE Transactions on Robotics and Automation, 10:4, pp. 561–566.

Shiller, Z. and H.-H. Lu (1992): “Computation of path constrained time
optimal motions with dynamic singularities.” Journal of Dynamic
Systems, Measurement, and Control, 114, March, pp. 34–40.

Shin, K. G. and N. D. McKay (1985): “Minimum-time control of robotic
manipulators with geometric path constraints.” IEEE Transactions on
Automatic Control, AC-30:6, pp. 531–541.

Shin, K. G. and N. D. McKay (1986): “A dynamic programming approach
to trajectory planning of robotic manipulators.” IEEE Transactions on
Automatic Control, AC-31:6, pp. 491–500.

Siciliano, B., L. Sciavicco, L. Villani, and G. Oriolo (2009): Robotics:
Modelling, Planning and Control. Springer-Verlag, London.

Spong, M. W., S. Hutchinson, and M. Vidyasagar (2006): Robot Modeling
and Control. John Wiley & Sons.

SUNDIALS (2010): (SUite of Nonlinear and DIfferential/ALgebraic equa-
tion Solvers), https://computation.llnl.gov/casc/sundials/main.html.

Toh, K. C., M. J. Todd, and R. H. Tütüncü (1999): “SDPT3 — a Matlab
software package for semidefinite programming.” Optimization Methods
and Software, 11, pp. 545–581. URL: http://www.math.nus.edu.sg/
∼mattohkc/sdpt3.html.

Verscheure, D. (2009): Contributions to contact modeling and identification
and optimal robot motion planning. PhD thesis ISBN 978-94-6018-041-
5/UDC 681.3*I29, Katholieke Universiteit Leuven, Belgium.

78

Chapter 7. Bibliography

Verscheure, D., B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl

(2009): “Time-optimal path tracking for robots: A convex optimization
approach.” IEEE Transactions on Automatic Control, 54:10, pp. 2318–
2327.

Wächter, A. and L. T. Biegler (2006): “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear

programming.” Mathematical Programming, 106:1, pp. 25–57.

79

A. Robot system in Robotics

Lab

This appendix presents practical details concerning the robot system avail-

able in the Robotics Lab at the Department of Automatic Control, Lund

University. As earlier mentioned, the control cabinet used in this thesis,

an ABB IRC5, has a redesigned interface that allows execution of a con-

trol system implemented in SIMULINK. The procedure of executing the model
implemented in SIMULINK on the real robot system is described in this ap-

pendix.

A.1 Communication with robot system

Once the model in SIMULINK implementing the control structure has been
tested in simulations with satisfactory result, the model can be used to

control the robot. In order to control the robot system, there is one group

of signals that can be read from the robot, called irb2ext and one group of

signals that can be sent to the robot, called ext2irb. The most important
signals in the first group are the joint positions and the corresponding

joint velocities. These signals make it possible to use feedback from the

robot system. In the second group — i.e., the signals that can be sent to

the robot — the most important are the joint position reference values and
joint velocity reference values. However, the joint position and joint velocity

control can be turned off. Consequently, control with the joint torques as

control signals can be made. For a complete list of the signals in ext2irb

and irb2ext, the reader is referred to [Dressler, 2009].

Code generation

In order to execute the SIMULINK controller on the real robot system, the
model has to be transformed into C-code and then to an executable file.

This is done with the toolbox Real-Time Workshop in MATLAB. The robot

interface requires that the transformation is done with certain targets and

parameters described in [Dressler, 2009]. The targets and parameters aim
at creating a program compatible with the architecture in the robot system.

The current architecture in use was developed at Lund University and is

called Open Robot Control Architecture, abbreviated ORCA [Nilsson and
Johansson, 1999; Blomdell et al., 2010].

Graphical User Interface

The SIMULINK model implementing the controller is built on a personal com-
puter running Fedora 11. Communication between the PC and the main

computer in the control cabinet of the robot is facilitated by a graphical user

interface called Opcom, see Figure A.1. Opcom has two command windows;

one is for communication with the main computer in the control cabinet, a
G4 Power PC, and the second is for communication with the control cabinet

IRC5 itself. The user loads the controller, in the form of the executable C-

code, with Opcom and then the controller is installed in the control cabinet.

80

A.2 Robot system

Figure A.1 In the figure the graphical user interface for communication with

the robot system is shown.

In the SIMULINK model, parameters can be classified as inline parameters.
By defining a parameter as an inline parameter, the parameter can be

modified in Opcom before or during execution of the controller on the robot

system.

As an intermediate step, the loaded controller can be tested in a state

called submit, where the irb2ext signals are read, but the ext2irb signals
are not sent to the robot. This makes it possible to test the controller

before sending signals to the robot. Finally, the controller is fully executed

by switching Opcom to the state obtain. Then, experimental results can be

collected during execution of the control system.

A.2 Robot system

The control cabinet for the robot system, ABB IRC5, mainly consists of one

main computer and a so called axis computer. The main computer in the

control cabinet is run with a frequency of 250 Hz, which equals a sampling
period of h = 4 ms. The axis computer controls six axis controllers, where
each controller is responsible for one robot joint. The axis computer runs at

the higher frequency 2 kHz, which equals a sampling period of h = 0.5 ms.

Logging of signals

In order to log and save signals during execution of a controller on the real
robot system, a certain program for logging is available in the Robotics Lab.

The signals to be logged have to be specified in the SIMULINK model. More

specificly, this is done by marking the signals as test points in SIMULINK. The

logging is started by executing the logging program. Thereby, the number of
seconds to be logged and the number of data that should be saved must be

specified. The log file created when the logging is ready is then transformed

into a format that can be read and plotted in MATLAB.

81

Appendix A. Robot system in Robotics Lab

Velocity control

During the path tracking implemented in this thesis, the joint position

control loops in all six joints in the robot are turned off. The reason is that

the joint velocity reference is considered as the input signal. Hence, the

position loops are turned off by setting the gains of the P controllers in the
cascaded joint control structure in Figure 4.1 to zero. The corresponding

signal to use in the SIMULINK model for setting the gains to zero is called

parKp.

Even though the gains in the P controllers are set to zero, the safety
system in the robot system does not allow that the deviations of the current

joint positions from the position references are too large. In the case of a too

large deviation, the robot system locks the brakes of the robot and further

movement is not possible. Hence, in the current application the measured
joint positions are sent as position references to the robot system along

the path tracking. With this approach, the deviation of the reference signal

from the current position is kept small for all joints.

Torque control

In order to use the joint torques as control signals for the robot, the position

and velocity loops have to be turned off. This can be achieved in the same

manner as described above for obtaining velocity control. The position loops

are turned off by setting the gains of the P controllers to zero. Likewise,
the velocity loops are turned off by setting the gains of the P–parts and

the gains of the I–parts to zero. The parameters in the velocity loop can

be altered with the signals parKv and parKi in the SIMULINK model. Then,

these controllers do not give any contribution to the torque applied on the
robot. Instead, the joint torques can be controlled directly by applying a

feedforward torque signal. The corresponding output signal to be used in

the SIMULINK model is called trqFfw. For the same reasons as described

above for velocity control, the current joint position has to be fed to the
position reference signal for each joint.

A.3 Force sensor

In order to use force control of the robot, a force sensor measuring the

force exerted on it has to be attached to the robot flange. The force sensor
measures forces acting on it in three perpendicular directions and also the

corresponding torques acting on it. In the Robotics Lab a force sensor from

the American company JR3 is available. The raw measurements from the

force sensor are processed by a separate computer in the Robotics Lab.
The same computer links the measurements from the sensor to the loaded

controller in the control cabinet. Hence, the force measurements can be

utilised in the control system implemented in SIMULINK and force control

is thus possible. In order to use the force measurements in the SIMULINK
controller the input jr3_comedi is used.

82

B. Code listings

B.1 Modelica code for example in Chapter 3

Listing B.1 Modelica code solving the path tracking problem studied in Chap-

ter 3.

1 // Robot dynamics expressed in the modelling language

2 // Modelica

3

4 model robDyn

5 // Masses

6 parameter Real m1 = 1 ;
7 parameter Real m2 = 1 ;
8 // Torques

9 Real tau1 (min=−1,max=1) ;
10 Real tau2 (min=−1,max=1) ;
11 // Spline descr ib ing the path and i t s de r i va t i v e s

12 sp l ine spl ;

13 // Variable a

14 input Real a ;

15 // Variable b , s ta r t in r e s t

16 Real b (start=0, fixed=true) ;
17 equation

18 tau1 = m1∗ spl . dtra j1 ∗a + m1∗ spl . ddtraj1 ∗b ;

19 tau2 = m2∗ spl . dtra j2 ∗a + m2∗ spl . ddtraj2 ∗b ;
20 der (b) = 2∗a ;

21 end robDyn ;

22

23 // Formulation o f the opt imisat ion problem in Optimica

24 // Path parameter s s e rve s as pseudo time in the

25 // optimisat ion problem

26

27 optimization e l l ips_Opt (objective=cos t (f inalTime) ,
28 startTime=0, finalTime=2∗Modelica . Constants . pi)
29 // Cost funct ion

30 Real cos t (start=0, fixed=true) ;
31 // Variable a

32 input Real a_opt ;

33 // Object o f the type robDyn

34 robDyn rd (a (free=true)) ;
35 equation

36 rd . spl . t__ = time ;
37 // Cost funct ion s p e c i f i e d by i t s de r i va t i v e

38 der (cos t) = 1/(sqrt (rd . b + 1e−4)) ;
39 a_opt = rd . a ;
40 constraint

41 // Ends in r e s t

42 rd . b (f inalTime)=0;
43 // Pos i t i v e path v e l o c i t y

44 rd . b >= 0 ;
45 end e l l ips_Opt ;

83

Appendix B. Code listings

46

47 // Model f or c r ea t ing i n t i a l values to the opt imisat ion

48

49 model e l l i p s_ In i t _Opt

50 // Cost funct ion

51 Real cos t (start=0, fixed=true) ;
52 input Real a_opt ;

53 // Object o f the type robDyn

54 robDyn rd (a (free=true)) ;
55 equation

56 rd . spl . t__ = time ;
57 // Cost funct ion s p e c i f i e d by i t s de r i va t i v e

58 der (cos t) = 1/(sqrt (rd . b + 1e−4)) ;
59 a_opt = rd . a ;
60 end e l l i p s_ In i t _Opt ;

61

62 // Model r epre s ent ing the path and i t s de r i va t i v e s

63 // with sp l ines

64

65 model sp l ine

66 Real t__ ;

67 Real t ra j1 ;

68 Real t ra j2 ;

69 Real dtra j1 ;

70 Real dtra j2 ;

71 Real ddtraj1 ;

72 Real ddtraj2 ;

73 equation

74 // If− and e l s e c lauses implementing the sp l ines
75 end sp l ine ;

B.2 Modelica code for path tracking problem in

Chapter 5

Listing B.2 The Modelica code implementing the optimisation problem used for

optimal path tracking on the robot system in Chapter 5.

1 // A contact−f o r c e i d en t i f i e d path with i d en t i f i e d
2 // robot model

3

4 model robDyn

5 // 20 % of maximum ve l o c i t y according to manufacturer

6 parameter Real velScal = 0 . 2 ;
7 Real velRef [6] (min = velScal ∗{−3.4907 ,−3.4907 ,−4.5379 ,
8 −6.2832 ,−6.2832 ,−7.8540} ,
9 max = velScal ∗{3.4907 ,3.4907 ,4.5379 ,
10 6 .2832 ,6 .2832 ,7 .8540}) ;
11 r obot_sp l ine rsp l ;

12 // Robot dynamics

13 parameter Real A [6] = {1 ,1 ,1 ,1 ,1 ,1} ;
14 parameter Real B [6] = {0.1466 ,0.1483 ,0.1513 ,
15 0 .1482 ,0 .1509 ,0 .1459} ;
16 // Path ac c e l e ra t i on and path v e l o c i t y

17 Real dds ;

84

B.2 Modelica code for path tracking problem in Chapter 5

18 Real ds (start=0, fixed=true ,min=0) ;
19 Real b (min=0) ;
20

21 equation

22 for i in 1:6 loop

23 velRef [i] = 1/A [i] ∗ (B [i]∗ (r sp l . d tra j [i]∗ dds +
24 r sp l . ddtra j [i]∗ ds^2) + r sp l . d tra j [i]∗ ds) ;
25 end for ;

26 der (b) = 2∗dds ;

27 b = ds^2;
28 end robDyn ;

29

30

31

32 optimization path_tracking_Opt (objective=
33 c os t (f inalTime) , startTime=0, finalTime=1)
34 robDyn rd ;

35 Real cos t (start=0, fixed=true) ;
36 input Real dds_opt ;

37 Real trav_time (start=0, fixed=true) ;
38 parameter Real eta = 1.0 e−4;
39 equation

40 dds_opt = rd . dds ;
41 rd . r sp l . t__ = time ;
42 // Cost funct ion with de r i va t i v e weighting

43 der (cos t) = 1/ sqrt (rd . b + 1e−4) + eta ∗ (
44 der (rd . velRef [1])^2 + der (rd . velRef [2])^2 +
45 der (rd . velRef [3])^2 + der (rd . velRef [4])^2 +
46 der (rd . velRef [5])^2 + der (rd . velRef [6])^2) ;
47 der (trav_time) = 1/ sqrt (rd . b + 1e−4) ;
48 constraint

49 rd . ds (f inalTime)=0;
50 end path_tracking_Opt ;

51

52

53

54 optimization path_tracking_f irst_Opt (objective=
55 c os t (f inalTime) , startTime=0, finalTime=1)
56 robDyn rd ;

57 Real cos t (start=0, fixed=true) ;
58 input Real dds_opt ;

59 equation

60 dds_opt = rd . dds ;
61 rd . r sp l . t__ = time ;
62 // Pure time−optimal c o s t funct ion
63 der (cos t) = 1/ sqrt (rd . b + 1e−4) ;
64 constraint

65 rd . ds (f inalTime)=0;
66 end path_tracking_f irst_Opt ;

67

68 // Model f or c r ea t ing i n t i a l values to the opt imisat ion

69

70 model path_tracking_Init_Opt

71 robDyn rd ;

72 Real cos t (start=0, fixed=true) ;
73 input Real dds_opt ;

85

Appendix B. Code listings

74 equation

75 dds_opt = rd . dds ;
76 rd . r sp l . t__ = time ;
77 der (cos t) = 1/ sqrt (rd . b + 1e−4) ;
78 end path_tracking_Init_Opt ;

79

80 // Model r epre s ent ing the path and i t s de r i va t i v e s

81 // with sp l ines

82

83 model robot_sp l ine

84 Real t__ ;

85 Real t r a j [6] ;
86 Real dtra j [6] ;
87 Real ddtra j [6] ;
88 equation

89 // If− and e l s e c lauses implementing the sp l ines
90 end robot_sp l ine ;

86

C. Simulink

implementations

S
et

 f_
sw

itc
h

=
0

an
d

sw
itc

h
to

 fo
rc

e
se

ns
or

 b
lo

ck
 b

ef
or

e
bu

ild
W

or
kf

ra
m

e
is

 a
, p

os
si

bl
y,

 r
eo

rie
nt

ed
, b

ut
 n

ot
 tr

an
sl

at
ed

 v
er

si
on

 o
f t

he
 b

as
e

fra
m

e

Th
e

ro
bo

t h
as

 to
 b

e
or

ie
nt

ed
 s

uc
h

th
at

 th
e

to
ol

 is
 p

ar
al

le
l t

o
th

e
no

rm
al

 o
f t

he
 w

or
ki

ng
 p

la
ne

po
s_

lo
op

_s
w

itc
h

ex
t2

irb
[i]

.p
os

R
ef

10

ex
t2

irb
[i]

.tr
qD

is
9

ex
t2

irb
[i]

.p
ar

K
p

8

ex
t2

irb
[i]

.to
_t

es
t_

si
gn

al
_v

ie
w

er
[i]

7

ex
t2

irb
[i]

.p
ar

K
i

6

ex
t2

irb
[i]

.p
ar

K
v

5

ex
t2

irb
[i]

.tr
qF

fw
4

ex
t2

irb
[i]

.tr
qR

ef
3

ex
t2

irb
[i]

.a
cc

R
ef

2

ex
t2

irb
[i]

.v
el

R
ef

1

w
or

k2
ba

se

re
se

t_
jr3

ve
lF

lt

po
sR

aw
A

bs

ve
lR

ef
O

ut

po
sR

ef
O

ut

f_
sw

itc
h

f_
co

nt
ac

t_
lim

itan
gl

e_
fix

_2
40

0_
to

_1
40

_c
on

ve
nt

io
n1

u
y

af
_2

40
0t

o1
40

an
gl

e_
fix

_2
40

0_
to

_1
40

_c
on

ve
nt

io
n

u
y

af
_2

40
0t

o1
40

an
gl

e_
fix

_1
40

_t
o_

24
00

_c
on

ve
nt

io
n

u
y

af
_1

40
to

24
00

TC
P

 o
ffs

et
 b

lo
ck

n_
fo

rc
e_

w
or

kf
ra

m
e

T4
4f

la
ng

e2
ba

se

jo
in

ts

jo
in

ts
_o

ffs
et

TC
P

_o
ffs

et

S
w

itc
he

s

ve
l_

fla
ng

e_
ba

se
fra

m
e

O
ut

S
im

ul
at

e
fo

rc
e

T4
4b

as
e2

se
ns

or

tc
p_

po
s_

ba
se

Fo
rc

e
se

ns
or

fra
m

e

S
at

ur
at

io
n1

R
es

et
 a

nd
 g

ra
vi

ty
 c

om
pe

ns
at

io
n

fo
rc

e

T4
4b

as
e2

ts
en

so
r

T4
4b

as
e2

se
ns

or

T4
4f

la
ng

e2
ts

en
so

r

f_
jr3

f_
gc

om
p

IR
B

14
0B

ve
lR

ef
q dq

IR
B

 in
ve

rs
e

Ja
co

bi
an

J^
(−

1)

IR
B

 J
ac

ob
ia

n

JA
C

O
B

IA
N

 in
 b

as
e

jo
in

ts
36

*1
 J

IR
B

 F
or

w
ar

d
K

in
em

at
ic

s

FO
R

W
A

R
D

 a
rm

 jo
in

ts
 −

>
fla

ng
e

 [r
ad

]

.
T4

4

G
ro

un
d

−K
−

−K
−

−K
−

1
−K

−

−K
−

−K
−

G
ai

n

1

Fo
rc

e
co

nt
ro

lle
r

T4
4w

or
k2

se
ns

or

Fo
rc

e
se

ns
or

fra
m

e

ve
l_

fla
ng

e_
w

or
kf

ra
m

e

n_
fo

rc
e_

w
or

kf
ra

m
e

E
m

be
dd

ed
M

A
TL

A
B

 F
un

ct
io

n

T4
4w

or
k2

ba
se

ve
l_

fla
ng

e_
w

or
kf

ra
m

e

ve
l_

fla
ng

e_
ba

se
fra

m
e

fc
n

D
66

D
6

D
66

*D
6

D
66 D

6
D

6

C
ur

re
nt

 ro
bo

t_
ty

pe

IR
B

14
0B

f_
sw

itc
h

f_
co

nt
ac

t_
lim

itre
se

t_
jr3

C
al

cu
la

tio
ns

T4
4f

la
ng

e2
ba

se

T4
4b

as
e2

se
ns

or

tc
p_

po
s_

ba
se

T4
4w

or
k2

se
ns

or

C
al

cu
la

te
 tr

an
sf

or
m

at
io

n
m

at
ric

es

fla
ng

e2
ba

se

ba
se

2t
se

ns
or

ba
se

2s
en

so
r

fla
ng

e2
ts

en
so

r

irb
2e

xt
[i]

.tr
qD

is
23

jr3
_c

om
ed

i[i
]

22

jr3
_B

[i]
21

jr3
_A

[i]
20

irb
2e

xt
[i]

.p
ar

K
p

19

irb
2e

xt
[i]

.p
os

Fl
t

18
irb

2e
xt

[i]
.tr

q_
ffw

_g
ra

v
17

irb
2e

xt
[i]

.tr
qR

ef
_f

lt
16

irb
2e

xt
[i]

.tr
qR

aw
15

irb
2e

xt
[i]

.v
el

O
ut

14
irb

2e
xt

[i]
.v

el
R

aw
13

irb
2e

xt
[i]

.p
os

R
aw

_f
b

12

irb
2e

xt
[i]

.p
ar

Tr
qM

ax
11

irb
2e

xt
[i]

.p
ar

Tr
qM

in
10

irb
2e

xt
[i]

.p
ar

K
i

9

irb
2e

xt
[i]

.p
ar

K
v

8

irb
2e

xt
[i]

.tr
qF

fw
7

irb
2e

xt
[i]

.tr
qR

ef
6

irb
2e

xt
[i]

.a
cc

R
ef

5

irb
2e

xt
[i]

.v
el

R
ef

4

irb
2e

xt
[i]

.p
os

R
ef

3

irb
2e

xt
[i]

.v
el

Fl
t

2

irb
2e

xt
[i]

.p
os

R
aw

_a
bs

1

bo
_l

og
_q

[i]

bo
_l

og
_d

q[
i]

bo
_l

og
_p

ar
K

p[
i]

bo
_l

og
_o

ffs
et

_T
C

P
[i]

bo
_l

og
_o

ffs
et

_j
oi

nt
s[

i]

bo
_l

og
_f

_j
r3

[i]

Figure C.1 Implementation of force controller in SIMULINK.

87

Appendix C. Simulink implementations

ad
dp

at
h

/o
pt

/ro
bo

t/m
at

la
b/

;
ad

dp
at

h
/o

pt
/ro

bo
t/m

at
la

b/
irb

/m
ex

/;
ad

dp
at

h
/o

pt
/ro

bo
t/m

at
la

b/
irb

/m
ex

/m
ex

_I
R

B
14

0B
/;

ad
dp

at
h

/o
pt

/m
at

la
b/

m
at

la
b−

R
20

08
a/

to
ol

bo
x/

fix
ed

po
in

t/f
ix

ed
po

in
t/;

ad
dp

at
h

/h
om

e/
ro

bo
t/p

ro
je

ct
/e

xt
ct

rl/
irc

5/
si

m
ul

in
k/

;

lo
ad

 o
pt

_d
at

a;

D
O

F
=

6;
h

=
0.

00
4;

sa
m

pt
im

eI
R

C
5

=
h;

ta
u_

m
ax

 =
 0

.2
*[

3.
49

07
 3

.4
90

7
4.

53
79

 6
.2

83
2

6.
28

32
 7

.8
54

0]
;

ta
u_

m
in

 =
 −

ta
u_

m
ax

;

sf
 =

 1
;

K
 =

 d
ia

g(
[1

 1
 1

 1
 1

 1
]);

K
in

v
=

in
v(

K
);

T
=

di
ag

([0
.1

46
6

0.
14

83
 0

.1
51

3
0.

14
82

 0
.1

50
9

0.
14

59
]);

K
di

sc
 =

 d
ia

g(
[0

.0
26

92
 0

.0
26

61
 0

.0
26

09
 0

.0
26

63
 0

.0
26

16
 0

.0
27

04
]);

Td
is

c
=

di
ag

([−
0.

97
31

 −
0.

97
34

 −
0.

97
39

 −
0.

97
34

 −
0.

97
38

 −
0.

97
3]

);

K
p

=
1*

di
ag

([1
0

10
 1

0
10

 1
0

10
]);

K
d

=
di

ag
([0

 0
 0

 0
 0

 0
]);

k
=2

5;
al

ph
a

=1
0;

[b
,a

] =
 b

ut
te

r(
1,

0.
01

);

jo
in

t_
se

le
ct

or
 =

 [1
 1

 1
 1

 1
 1

];

po
s_

lo
op

_s
w

itc
h

=
1;

f_
sw

itc
h

=
0;

di
sp

(’r
ob

ot
_t

yp
e

=
’),

 ro
bo

t_
ty

pe
di

sp
(’i

ni
t d

on
e’

);

S
et

 f_
sw

itc
h

=
0

be
fo

re
 b

ui
ld

N
ot

e:
 T

he
 ro

bo
t h

as
 to

 b
e

po
si

tio
ne

d

 a
t t

he
 s

ta
rt

of
 th

e
pa

th
 p

rio
r

 s

et
tin

g
f_

sw
itc

h
=

1

po
s_

lo
op

_s
w

itc
h

ex
t2

irb
[i]

.p
os

R
ef

10

ex
t2

irb
[i]

.tr
qD

is
9

ex
t2

irb
[i]

.p
ar

K
p

8

ex
t2

irb
[i]

.to
_t

es
t_

si
gn

al
_v

ie
w

er
[i]

7

ex
t2

irb
[i]

.p
ar

K
i

6

ex
t2

irb
[i]

.p
ar

K
v

5

ex
t2

irb
[i]

.tr
qF

fw
4

ex
t2

irb
[i]

.tr
qR

ef
3

ex
t2

irb
[i]

.a
cc

R
ef

2

ex
t2

irb
[i]

.v
el

R
ef

1
ta

u_
m

in

ta
u_

m
ax

si
gm

a

K
 T

s

z−
1

sf

sf k

ve
lF

lt

po
sR

ef
In

po
sR

aw
A

bs

ga
m

m
a2

ga
m

m
a2

ga
m

m
a

ad
ap

ta
tio

n

ds
ig

m
a ds

ga
m

m
a2

ve
lR

ef
O

ut

po
sR

ef
O

ut

f_
sw

itc
h

f_
sw

itc
h

en
d_

br
ea

k

ds
ig

m
a

K
 T

s

z−
1

ds

de
v_

br
ea

k

dd
s

al
ph

a

V
el

oc
ity

 fe
ed

ba
ck

ds

ds
ig

m
a

vd
iff

TC
P

 p
os

 in
 b

as
e

pa
th

q

T

S
w

itc
h

S
at

ur
at

io
n

ur dd
si

gm
a_

lim
dd

si
gm

a

P
at

h
an

d
de

riv
at

iv
es

si
gm

a

pa
th

dp
at

h

dd
pa

th

K
p

K
in

v

K
d

In
te

gr
at

or
_s

w
itc

h1

S
w

itc
h

in
pu

t

In
O

ut

In
te

gr
at

or
_s

w
itc

h

S
w

itc
h

in
pu

t

In
O

ut

IR
B

14
0B

ve
lR

ef
q dq

G
ro

un
d

−K
−

−K
−

−K
−

−K
−

1
−K

−

−K
−

1

1

C
ur

re
nt

 ro
bo

t_
ty

pe

IR
B

14
0B

C
on

tro
lle

r

dd
si

gm
a

ds
ig

m
a f df dd
f q dq

be
ta

1

be
ta

2

ve
lR

ef

ta
u_

m
ax

f_
sw

itc
h

sf

K
in

v

K
d

K
p

k al
ph

a
ta

u_
m

in

T

0

C
al

c_
lim

its

be
ta

1

be
ta

2
dd

si
gm

a_
lim

irb
2e

xt
[i]

.tr
qD

is
23

jr3
_c

om
ed

i[i
]

22

jr3
_B

[i]
21

jr3
_A

[i]
20

irb
2e

xt
[i]

.p
ar

K
p

19

irb
2e

xt
[i]

.p
os

Fl
t

18
irb

2e
xt

[i]
.tr

q_
ffw

_g
ra

v
17

irb
2e

xt
[i]

.tr
qR

ef
_f

lt
16

irb
2e

xt
[i]

.tr
qR

aw
15

irb
2e

xt
[i]

.v
el

O
ut

14

irb
2e

xt
[i]

.v
el

R
aw

13

irb
2e

xt
[i]

.p
os

R
aw

_f
b

12

irb
2e

xt
[i]

.p
ar

Tr
qM

ax
11

irb
2e

xt
[i]

.p
ar

Tr
qM

in
10

irb
2e

xt
[i]

.p
ar

K
i

9

irb
2e

xt
[i]

.p
ar

K
v

8

irb
2e

xt
[i]

.tr
qF

fw
7

irb
2e

xt
[i]

.tr
qR

ef
6

irb
2e

xt
[i]

.a
cc

R
ef

5
irb

2e
xt

[i]
.v

el
R

ef
4

irb
2e

xt
[i]

.p
os

R
ef

3

irb
2e

xt
[i]

.v
el

Fl
t

2

irb
2e

xt
[i]

.p
os

R
aw

_a
bs

1

bo
_l

og
_d

si
gm

a
bo

_l
og

_d
ds

ig
m

a

bo
_l

og
_g

am
m

a2

bo
_l

og
_s

ig
m

a

bo
_l

og
_b

et
a1

[i]

bo
_l

og
_a

ng
le

D
iff

[i]

bo
_l

og
_q

[i]

bo
_l

og
_v

di
ff

bo
_l

og
_d

f[i
]

bo
_l

og
_d

q[
i]

bo
_l

og
_p

ar
K

p[
i]

bo
_l

og
_l

im
its

[i]

bo
_l

og
_v

el
R

ef
[i]bo

_l
og

_b
et

a2
[i]

Figure C.2 Implementation of path velocity controller in SIMULINK.

88

