
ISSN 0280-5316
ISRN LUTFD2/TFRT--5863--SE

From CAD-design to force
controlled robot manufacturing

Ana Grau Torres

Department of Automatic Control
Lund University
September 2010

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

September 2010
Document Number

ISRN LUTFD2/TFRT--5863--SE
Author(s)

Ana Grau Torres

Supervisor

Anders Robertsson Automatic Control, Lund
Rolf Johansson Automatic Control, Lund (Examiner)

Sponsoring organization

Title and subtitle

From CAD-design to force controlles robot manufacturing (Från CAD-ritning till tillverkning med
kraftreglerad robotstyrning)

Abstract

This Master Thesis presents the necessary steps to manufacture a piece, starting from the draw
in the software Pro/ENGINEER and then processing the generated G-code to create a RAPID
program understandable for the robot. Some additions required to make the code work on the
Teach Pendant of the IRB 2400-16 are explained in detail. Apart from the RAPID program, the
robot is also controlled with the help of a Simulink controller created to avoid collisions and to
assure a compliant behaviour with the environment. An extra application is included in order to
obtain information about the shape of the workpiece that the robot will machine.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280-5316
ISBN

Language

English
Number of pages

76
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

Acknowledgements

First of all, I would like to thank to my supervisor Anders Robertsson the great
opportunity he gave to come to Lund University to do this Master Thesis. I really
appreciate his help and prompt reply to all my questions despite his busy daily
routine. Working in such an amazing place has been an incredible experience.

Special mention to my family for believing in me during all this time and
never giving up. To my sister Alicia and my parents because they were able to see
my potential and always kept encouraging me to get farther. They have been a
huge support during these years even when I was discouraged. I know hearing my
stories and complaints about faculty issues is not easy but they were there for me.

Of course, I am very grateful to all my friends who help me when the lack
of ideas attacks or just when I need a break. Thanks to: Vicente, Rubén, José,
Jorge, Jana, Pablo and all the crew from the ETSII.

It has been a long journey but now it is getting to an end. I have learnt a lot
and I expect to learn much more in the future. The satisfaction of a well done
work is irreplaceable.

5

Contents

1. Introduction...11
1.1 Background..11
1.2 Problem formulation..11
1.3 Outline...11

2. Tools and scenario...12
2.1 Hardware tools...12
2.2 Software tools..15
2.3 Interconnection between software and hardware elements.......................16

3. Theoretical base...18
3.1 Homogeneous transformations..18
3.2 Joint and frames description..19
3.3 Forward kinematics...20
3.4 Inverse kinematics...21
3.5 Jacobian (differential kinematics)...22
3.6 Force control..23

4. Pro/ENGINEER..27

5. Postprocessor...28
5.1 Postprocessor output: Corrections and notes...28

6. RobotStudio...30
6.1 Program structure..30
6.2 Variable details..31
6.3 Variable definition...32

7. Robot control: ideas and basis...34
7.1 Gravity compensation..34
7.2 Impedance controller...39
7.3 Contact algorithm..39
7.4 Machining algorithm...40

8. Robot control: practical tests...41
8.1 Contact program..41
8.2 Contact algorithm results...46
8.3 Machining task..48
8.4 Machining algorithm results..51

9. Conclusion..54

References..56

7

Appendix A: Pro/ENGINEER guide...57
 A.1 Creating the file and adding the model..58
 A.2 Creating the workpiece, milling volume or milling window...................59
 A.3 Operation setup..62
 A.4 Machining sequence:...63
 A.5 Tool path and NC code..66

Appendix B: State machine..68

Appendix C: Basic velocity..70

Appendix D: Surf.m..71

Appendix E: M_adapt..73

Appendix F: Integral draining...74

8

1. Introduction

1.1 Background

In today's industry there are many important factors that make a difference
between companies. Quality, costs and production time have to be taken into
account when it comes to plant scheduling and all of them should be balanced to
obtain the best results.

One aspect that can help to improve the previous parameters is automation.
By introducing automation elements in the factory time is drastically reduced,
costs come down because of the production increase and quality reaches more
homogeneous and controllable values. On the other hand, in many cases, replacing
human operators with automatic devices avoids accidents and tedious jobs for the
worker.

Robotic arms are more and more used in order to achieve these targets.
They can carry out many different tasks simply by changing the tool attached. This
Master Thesis deals with all these ideas. Machining pieces with the help of robots
as an alternative to CNC machines (Computed Numerically Controlled machines)
could lead to cost reductions and more flexible processes.

1.2 Problem formulation

The main objective in this Thesis is to develop a protocol that allows to integrate
the whole chain of production, from design to final manufacture so the robot can
create pieces or components starting from a drawing generated using
Pro/ENGINEER. Then it would be possible to obtain the code for a CNC machine
and postprocess it with the software Winpost to get a RAPID program.

In order to make the process more complete the robot must be able to find
the workspace where the raw piece or workpiece is located and then, carry out the
necessary movements as specified in the RAPID code.

1.3 Outline

In the first chapters some theoretical aspects about the robot and its dynamics are
be presented. A brief explanation to force controllers is also included due to its
importance in this Thesis.

A short chapter about Pro/ENGINEER is introduced to show its relevance
in the project, and a more detailed manual about this program is included in the
first Appendix with the necessary steps to begin the design process.

After that a couple of chapters explain how to convert the code coming
from Pro/ENGINEER into something understandable for the robot.

Finally, the main controllers for the practical tasks are presented and the
conclusions from the experiments are shown.

11

2. Tools and scenario

All the work developed during this Thesis took place in the Robotic Lab at the
Department of Automatic Control at LTH, Lund University.

2.1 Hardware tools

Robot
Nowadays there are many kinds of industrial robots available in the market. They
can be sorted following different criteria [1]. Robots are built with a certain
number of solid links connected by joints. Concerning joints two main distinctions
can be found:

� Revolute joints when they rotate around an axis coincident with the link.
� Prismatic joints when they move along the link.

Other types like spherical or cylindrical joints can also be used but they are
adapted to more specific requirements.

The number of joints is also a typical criterion for the classification and it
usually defines the number of degrees of freedom (DOF) of the robot. Many
robots just use three joints because they are designed for very concrete jobs. For
instance, SCARA robots have two revolute joints and one prismatic joint and they
can be found in pick and place tasks because of their simplicity.

Now it is also very common to work in pick and place jobs with parallel
kinematic robots, also known as delta robots. They are built as a closed kinematic
chain with some rigid links hanging from a base where the motors are located and
connected in the last joint. These robots are really fast and precise but the space
reached is small and their stiffness is low.

Anthropomorphic or robotic arms are widely found in industry. They
consist of three revolute joints with three extra joints in the end of the robot, in
this way more positions and orientations can be reached.

During this thesis the main tool used was the ABB [2] robot manipulator
IRB 2400-16 like the one shown in Figure 2. Thanks to its six revolute joints this
robotic arm has six degrees of freedom which means that every position of the end
effector can be described with six independent coordinates (three for the position

12

Figure 1: SCARA and parallel kinematic robots

and three for the orientation), the workspace or volume of space reached is bigger
and there is more than one way to get to some points [3].

This kind of robot in particular is ready to work in many different
environments or tasks just by changing the tool attached to its wrist. For the
present work some requirements have to be fulfilled:

� The machining tasks, depending on the material, could need high strength
and robustness.

� Precision and repeatability are absolutely necessary in order to obtain a
proper final piece.

� High velocity is highly recommended to make the process as much optimal
as possible.
Other robots could also work if they meet the previous requisites but some

of the requested characteristics make inappropriate the use of parallel robots or
with less than six DOF.

S4CPlus cabinet
The robot is controlled with the help of the S4CPlus and its Teach Pendant, see
Figure 2. This computer performs the emergency stops when the required velocity
is to high and supervises the right behaviour of the different joints in the robot. It
also communicates the robot with the external computer that acts as controller
with programs created by the user, providing all the data required: joint positions,
velocities, accelerations, etc.

13

Figure 3: Teach Pendant

Figure 2: IRB 2400-16 and S4CPlus control cabinet
with the Teach Pendant produced by ABB

The Teach Pendant that appears in Figure 3 is the user's console. RAPID
programs can be uploaded and reviewed there. It also allows the user to jog the
robot manually with its joystick. The dead man's switch is included there, it has to
be pressed to release the brakes and start the movement, if the behaviour of the
robot is not the expected the brakes can be activated by pressing deeper or
releasing this button. A screen informs about different data coming from the robot
and it is also used to configure some parameters.

Force Sensor
The robot by itself is unable to feel the environment. Once it is programmed with
one path it will repeat it even when an obstacle is placed in the middle of the
trajectory. In the same way, if the task involves contact the robot needs a
complement to let it know how hard it is touching the workpiece.

In order to obtain this information a force sensor is attached to the wrist of
the robot. This is only valid to know the force exerted on the tool so the
environment should be really controlled to avoid accidents.

For this Thesis a JR3 100M40 I63 force sensor is used [4]. It provides
measurements of force in [N] and torque in [Nmm] in the three axes of the sensor
frame thanks to the foil strain gauges that it contains. A measure coming from the
sensor is expressed as:

F��
F x

F y

F z

�x

�y

�z

�
14

Figure 4: JR3 force sensor with the tool holder attached
to the wrist of the IRB 2400-16 in the Robotic Lab

The sensor does not make any distinction between the origin of the force
(tool weight, contact force, inertia due to the movement, etc) so the measurements
have to be corrected. This will be explained further ahead in the text.

2.2 Software tools

The main software necessary for this Thesis is now briefly described:

- Pro/ENGINEER [5]: It is a CAD/CAM/CAE program with a 3D interface that
helps in the design of accurate industrial devices. It can produce different outputs
starting from the most simple scheme to advanced animations containing the
whole movement of a complex device. It also can generate the G-code for a
specific CNC machine with the necessary movements, velocities, positions, etc.

- Winpost: It is a really simple application that converts the file containing the G-
code coming from Pro/ENGINEER into a RAPID program. This way the
movements for the CNC machine are understandable for the robot. Some
reference frames and input/output signals must be declared afterwards to finish the
process. For this Thesis the Winpost program with the necessary ABB modules
was provided by Giorgos Nikoleris from the Department of Design Sciences at
Lund University.

- RobotStudio [2]: This program created by ABB helps with the simulations of the
workspace. It is a very useful application to get a good idea how the robot and its
controller works. It is possible to load the generated RAPID code and check how
the robot will move.

- MATLAB [6]: This mathematical program is the main software tool used in this
Thesis. All the calculations will be done using MATLAB. Its tool Simulink will

15

Figure 5: Extctrl library available in the Robotic Lab

be also widely used. With the Real Time Workshop (RTW) it is possible to build
controllers and programs to communicate with the robot and the sensor. A block
library called extctrl [7] developed by Isolde Dressler at the Department of
Automatic Control at LTH, Lund University is also necessary to obtain the
kinematic and dynamic equations of the robot, see Figure 5.

- Opcom: This is the user interface available in the Robotic Lab that shows the
state of the robot computer and the sensor. It also allows to control some variables
coming from the controller created by the user in Simulink.

2.3 Interconnection between software and hardware elements

All the components described previously have to be interconnected in order to run
the system. Starting from the robot the first controller is the S4CPlus with its axes
computer. A main computer controls both devices but to allow experiments an
external regulator is introduced. This extra part acts in between the axes computer
and the main computer and loads the programs created in Simulink with the RTW.
The user can supervise all this communications with the Opcom interface through
a local area network.

The force sensor is directly connected to a different computer and this one
to the local area network. It can communicate with the external controller built in
Simulink but the S4CPlus does not have any direct interaction with it.

Finally, the user's computer where the programs are created can access the
local area network and send the Simulink controller. The user can see the Opcom
interface in this computer, so it acts as a data center for the whole system.

A graphic with the connections between all the elements can be seen in
Figure 7.

16

Figure 6: Opcom interface

17

Figure 7: Working environment: connection
between the different elements of the system

�������	
��
�

�������	
��
�

��	��������������
�
����������

�
�	���
��������	
��
�

��
������	
��
�

�����

�����
����

������

���	��

�������
� ���

�������
� ���

3. Theoretical base

In the next chapter a brief description of the necessary mathematical tools
associated to the control of a robot is presented. Further information about these
topics can be found in many book such as [1] or [8].

First of all the way to represent the position of a body in the space is
explained. Then specific theory about robotics is introduced as well as some
problems that can appear.

3.1 Homogeneous transformations

Geometrics play a huge role in robotics world. When it comes to the description
and control of the robot it is crucial to understand how to obtain the position and
orientation of every joint and specially the end effector or the tool.

It is usual to number the joints of a robot beginning with the base frame as
0. Unless the robot is mounted on a rail, this frame can be considered stationary.
The last joint is numbered as i, in the case of the IRB 2400-16, as 6. Other very
common names for some special joints are: the Tool Center Point (TCP) when a
tool is attached, the wrist for the last three joints due to their similarity with a
human wrist and the flange for the last joint. It is also considered that every joint
in the robot has a right-handed coordinate system attached, even the TCP.

It is possible to obtain the position from one joint to another just using
rotations and translations. To express this movements the so-called transformation
matrices are used [1]. Each column in these matrices represents the relation of the
initial origin in relation with the new frame. The whole transformation can be
written as:

Sb�Rot a
b�S a�Transb

a (1)

The robot is considered a kinematic chain in the space, then the Rot and
Trans matrices are 3x3. Sb is the new vector resulting from the rotation and
translation of Sa. As can be observed in the equation it (1) is necessary to work

18

Figure 8: Vector Sa translated and rotated to be expressed as Sb in the
new coordinate system Ob

��
��

!�

"�
��

"�

!�

�� #������

��
��

with two matrices. In order to simplify this notation the homogeneous matrices
were introduced.

Homogeneous matrices are based on homogeneous coordinates [1]. To
express a position in an n-dimensional space with homogeneous coordinates n+1
elements are necessary, for example, in 3 dimensions it would look like
p=(wx,wy,wz,w) where w is a scale factor. Using this notation it is possible to
represent in only one 4x4 matrix all the possible transformations:

T�� Rotation3x3 Translation3x1

perspective1x3 scale1x1 � (2)

The scale matrix contains the w factor. Perspective and scale matrices will
not be used in this Thesis and will remain as [0 0 0] and [1] respectively.

The values in the rotation and translation matrices depend on the specific
robot an its geometrics. In the next sections these values will be derived.

3.2 Joint and frames description

In order to allow the control of a robot a mathematical description of its
kinematics is needed. The geometry of the links and joints can be found in the
data sheet provided by ABB [3]. The most general way to work with these devices
is by using the Denavit-Hartenberg (D-H) representation [1].

Denavit and Hartenberg developed a method to describe the position of
each joint and its frame in a jointed chain so the kinematics can be derived easily.
Four parameters allow to get from one coordinate system Si-1 to the next one Si

where i represents the number of joints in the robot:
� di: distance along zi-1 to get to frame origin Oi. In prismatic joints this

parameter is variable.
� ai: distance along xi.
� �i: rotation around zi-1. In revolute joints this parameter is variable.
� �i: rotation around xi.

Using this values it is possible to obtain an injective system to describe the
robot and hence to know the position of each joint, see Figure 9. For IRB2400-16
the D-H parameters are:

di(mm) ai (mm) �i (º) �i (º)
1 615 0 �1 -90º
2 0 840 �2 0º
3 0 0 �3 -90º
4 755 0 �4 90º
5 0 0 �5 -90º
6 d6 0 �6 0º

The value of d6 depends on the tool or sensor attached to the flange.

19

3.3 Forward kinematics

Once explained how to shift between frames and how to obtain the geometrical
parameters of a robot the natural question is how to apply these concepts. By
taking them to the robotic world it is easy to find out how to switch from one joint
frame to another. The homogeneous matrix corresponding to the change from
joint i-1 to joint i can be derived by using the D-H parameters and considering the
generic form:

Ai
i	1
qi���cos�i 	sin�i�cos
i sin�i�sin
i ai�cos�i

sin�i cos�i�cos
i 	cos�i�sin
i ai�sin�i

0 sin
i cos
i di

0 0 0 1
� (3)

In matrix (3) the element qi stands for the characteristic parameter of the
joint. If it is prismatic it will be di and if it is revolute then it will be �i. The other
elements remain always constant for each joint.

With all this, the transformation matrix from the flange frame of the robot
to the base frame can calculated just by multiplying in the right order:

T44� A6
0 � A1

0
q1�� A2
1
q2�� A3

2
q3�... A6
5
q6� (4)

20

As shown in equation (4) the result is a matrix called T44 or simply T. It is
very useful to derive the different changes between vectors expressed in the flange
frame that want to be moved to the base frame. Also, in the same way that T44 has
been calculated other transformation matrices can be derived to shift to other
joints or frames farther than the flange, for instance the TCP or sensor frames.

This method is the solution for the so-called forward kinematics problem
[1]: how to obtain the position of the flange or the TCP once the values of the
characteristic parameters of each joint are known.

3.4 Inverse kinematics

It is possible to think that the position of each joint can be found out just by
coming back by the same way used before to obtain the forward kinematics, but
that is not mathematically true. This is known as the inverse kinematics problem
[8]: how to place the joints in order to move the TCP to a desired position. It is
much harder to solve than the forward kinematics problem and some extra
algorithms need to be considered.

The main difficulty is that computing the inverse of the forward kinematics
problem represents to work with twelve equations although only six unknown
values are necessary. And most of the times the solution is non-trivial or even
does not exist because some of the matrices can be singular. It also happens that
more than one solution could arise, that means that the robot can reach the same
position with different joint configurations and in the worst case with infinite if
two revolute joints are coincident.

Because of all these reasons it is usual to work with other methods to solve
the inverse kinematics problem. With a big number of industrial robots such as the
one used here the first three joints are contained in the same plane and they
determine the position of the TCP. The last three joints intersecting in the same
point and forming the wrist are responsible for the tool orientation. This way a
sixth order equation system can be split into two of third order. First of all the

21

Figure 10: Two possible joint
configurations to reach the same point

position of the first three joints is derived and finally the orientation of the wrist is
obtained.

In addition some extra constraints are used in the solution to make it as
optimal and predictable as possible, for instance: if more than one solution is
possible the one that is closer to the actual position will be chosen or limit the
necessary route of the joints from one point to another.

3.5 Jacobian (differential kinematics)

Knowing the joint velocities is as important as knowing the position. Once the
position and orientation of the TCP, written as (5) and (6), are derived, it is
possible to differentiate them with respect to the time. By doing this the linear and
angular velocities of the TCP are obtained. All this can be expressed using
matrices:

xTCP� f x
q1, q2, q3... q6� ; yTCP� f y
q1, q2, q3... q6� ; zTCP� f z
q1, q2, q3... q6� (5)

TCP� f

q1, q2, q3... q6� ; �TCP� f �
q1, q2, q3... q6� ; �TCP� f �
q1, q2, q3... q6� (6)

�
vx

v y

vz

�x

� y

� z

�
TCP

��
�x
�y
�z
�

��
��
�

TCP

�J
q��� �q1

�q2

�
�q6
� (7)

where J
q���
� f x

�q1

� f x

� q2

�
� f x

� q6

� f y

�q1

� f y

� q2

�
� f y

� q6

� � � �
� f �

�q1

� f �

� q2

�
� f �

� q6

� (8)

The notation vi and �i in equation (7) refers to linear and angular velocities
respectively. The matrix J that can be seen in (8) is known as the Jacobian matrix
and relates how changes in the joint variables affect the velocity of the TCP. The
upper half elements affect the linear velocity and the lower half elements affect the
angular velocity. All the elements contained in J change for different space
locations.

22

� �q1

�q2

�
�q6
��J	1�

v x

v y

v z

�x

� y

�z

� (9)

The inverse Jacobian can be used to calculate the values of the joint
velocities as shown in equation (9). Depending on the robot some adjustments
could be necessary such as using the pseudoinverse or keeping some values
constant. Further information can be found in [1] and [8].

In addition to all this, some extra considerations have to be done. Some
times it can happen that det(J) is equal to 0 because the robot is in a singular
configuration. In those cases it is impossible to find the inverse Jacobian. Besides,
using this method will block the motors because an extremely high velocity would
be required in the surrounding areas of a singular point.

These situations were mentioned in the inverse kinematics section. They
can be avoided by adding constraints or forbidden areas to the path of the robot.
Obviously, they will vary from one robot to another depending on its working
space, the joint configuration, the movement required, etc.

The Jacobian can be also used to find out accelerations and torques in the
motor joints as explained in [1] or [8].

3.6 Force control

Two main strategies for force control can be found as can be read in [8]. The first
one does not need a real force measurement. This is called passive interaction
control and can be used for tasks where the geometry of the environment is, at
least, roughly known. The motors of the robot or the tool present the necessary
compliance to interact with the surroundings. It is common to find this control in
procedures such as inserting pieces in holes and they usually need special tools
with springs to avoid collisions and to allow smooth movements.

The other strategy is active interaction control. The force is measured with
sensors and takes active part in the controller. Sometimes the idea is to emulate a
compliance system like the ones used for passive control with more precision but
slower. This will be the option chosen in this Thesis. Some of the different types
of controllers with active interaction control will be explained.

Direct force control
It is the simplest regulator that can be built. It acts on the force error between a
desired value and the measured force. A PI controller is very usual in order to
cancel the position error. The output is used to keep the contact with the
environment by altering the position or velocity of the TCP.

23

Hybrid position/force control
Position is also a parameter that sometimes needs to be controlled. The main
problem with pure force regulators is that when no force appears it is somehow
hard to control the behaviour of the robot. To solve this problem hybrid
controllers are introduced.

While there is no force measured by the sensor the position of the robot is
derived with one regulator but when the contact starts the force regulator begins to
work. This way none of the controllers affects each other.

Although it is a very common solution it is not easy to control the switch
from one controller to the other and depending on the application this may lead to
problems. Many times the controller also has to allow a position error to avoid
high forces acting on the joints or the tool so the force control is predominant over
the position control.

Impedance force control
This controller tries to obtain a compliance behaviour of the robot when it comes
to following position and velocity references but also to environment restraints
[9]. This means that position and velocity will be the control signals while no
force is measured but if any contact appears the robot will adapt its path to the
requirements. The idea is to imitate a mass-spring-damper system with certain
dynamics to ensure no collisions but following as much as possible the desired
trajectory with the requested velocity.

In many books impedance and admittance controllers are treated with no
distinction. However, some authors [8] point out that admittance controllers
modify position or velocity to reach the force reference while impedance
controllers try to follow the desired trajectory by producing force due to the
external restraints. The practical difference is that a force reference may be needed
as an input to the controller.

To obtain the behaviour of this controller all the forces acting on the robot
have to be considered. As the system wants to imitate the mass-spring-damper
system this will mean: a mass moving at a certain acceleration, a damper affected
by the velocity, a spring changing its position and an external force. Adding all

24

Figure 11: Mass-spring-damper system

�

�

$

%

��&
�

those elements that describe the dynamics, the equation (13) can be written. Then,
substituting (10),(11) and (12) it is possible to derive (14) as shown below.

� F�M · �x Newton's second law (10)

F s�	K ·� x Hooke's law (spring equation) (11)
F d�	D� �x Damper equation (12)

� F�F ext�F s�F d (13)

F ext�M �x�D ·� �x�K ·� x�M · �x�D ·
 �x	 �xref ��K ·
x	 xref � (14)

The parameters M, K and D represent the mass, the spring constant and the
damping coefficient respectively. They depend on the properties of the physical
element and for the controller they need to be derived to obtain the right
behaviour. The values of x and xref designate the real position of the mass and the
desired position.

By rearranging the equation it is possible to work out the acceleration,
which can be integrated in order to obtain the speed and position that will be sent
to the robot.

�x�
F ext	D ·
 �x	 �xref �	K ·
x	xref �

M
 (15)

Due to the discrete nature of the controller the integrals are substituted by a
summation with the initial position x0 and the sample period Ts as necessary extra
parameters. So the calculations to be done by the controller will be like:

�xk��
i�0

k

�xi ·T s (16)

xk�x0��
i�0

k

�xi ·T s (17)

The coefficients K and D have a physical meaning but when it comes to
give them a value in the controller it turns out to be a tricky task. An analysis
about the nature of the system can be done to get a better idea of how this
variables affect the dynamics. By switching from time domain to frequency
domain the second order differential equation (14) can be expressed as:

s2� D
M

·s� K
M

�0 (18)

The characteristic equation of a second order system is represented as:

s2�2 ·� ·� · s��2�0 (19)

25

Then, comparing both of the equations the physical coefficients can be
easily derived and related to � and � to explain their relevance in the behaviour of
the system. The parameter � represents the damping factor. For values in [0,1[the
system is underdamped so oscillations will appear, if it is equal to 1 it is said that
the system is critically damped and it will not oscillate, this tendency remains for
higher values although the transient will last longer, the system then is
overdamped. The value of � refers to the natural frequency of the system, also
called cutoff frequency.

Then D and K can be calculated in order to obtain the desired dynamics.
They are expressed as:

D�2��M (20)

K��2 M (21)

26

4. Pro/ENGINEER

This is the first step necessary for the manufacturing process. With the help of
Pro/ENGINEER, the user will design the piece that the robot will produce later.

During the design process it is really important to keep in mind that the
robot will be the responsible for the machining tasks. This has an obvious
influence when it comes to parameter definition such as velocities or tool paths.

As the use of this software represents a big part of this Thesis a brief
manual to create a piece with the most general alternatives can be found in
Appendix 1. It can be avoided if the user has already experience with the program.

The usual procedure is to declare a raw block of material, also known as
workpiece, where the final part is embedded. Then, the next steps consist on
creating volumes that the milling tool will remove until the desired shape is
reached. Of course, depending on the complexity of the design, some other
options are available, such as facing flat surfaces or drilling holes. Along the
manual in Appendix 1 different techniques are presented and it is a user's decision
to choose the most optimal for each job.

For the tests in the Robotic Lab a flat picture was create in order to polish
up any mistake before using a drilling or milling machine, see Figure 12. This way
a simpler tool such as a marker or pencil can be attached to the robot so the
algorithm of control, positions and velocities may be corrected.

After completing all the steps, the output from Pro/ENGINEER is a
generic G-code that can be adapted to different CNC machines once it is
postprocessed. At this point it is important to remark that during the execution on
the robot, in order to obtain a proper behaviour, some of the positions reached by
the tool and declared in the G-code will be used to indicate to the regulator a
change in the control strategy. Therefore, the user must select carefully things such
as retract surfaces or initial points in order to obtain a consistent error-free
algorithm. These details will be further explained in the next characters.

27

Figure 12: Picture created to
test the machining algorithm

5. Postprocessor

The postprocessor just translates the code coming from Pro/ENGINEER into
some specific code that the tool machine can understand. It is usual that each
company owns a different language for these machines so it is kind of tricky to
program just by hand. Nevertheless, the code mainly involves movement
commands which can be roughly understood.

The exact postprocessor used here is Winpost V5.0 provided by Giorgos
Nikoleris from the Department of Design Sciences at Lund University. The
software is a really simple application developed just to perform the translation
from one language to another, no further information is available.

It is necessary to add in the Winpost folder a small program called abb.exe
containing the equivalences between the G-code and the ABB RAPID code so the
postprocessor can generate a new file containing the movements for the robot.

5.1 Postprocessor output: Corrections and notes

The input to Winpost is the ncl.1 coming from Pro/ENGINEER. The output after
clicking on Postprocess is a .prg file. This file can be executed by the S4CPlus
after some corrections or even simulated in RobotStudio. The raw program
without modifications looks like:

%%%
 VERSION:1
 LANGUAGE:ENGLISH
%%%

MODULE MILLING

 PROC main()
 ConfL\Off;
 Mill;

 ENDPROC

 PROC Mill
 Reset DO10_9;
 Reset DO10_10;
 SetAO AO10_1, 1500.0;
 MoveAbsJ omor,v40,z1,tool0;
 MoveAbsJ home,v40,z1,tool0;
 MoveL [[82.50,0.00,15.00],[0.0000,1.0000,0.0000,0.0000],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],v40,z0,tl1\Wobj:=;
 MoveL [[82.50,0.00,6.00],[0.0000,1.0000,0.0000,0.0000],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],v40,z0,tl1\Wobj:=;
 Set DO10_10;
 MoveL [[82.50,0.00,0.00],[0.0000,1.0000,0.0000,0.0000],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],v17,z0,tl1\Wobj:=;

.

.

.

.
 MoveL [[38.50,100.00,-20.00],[0.0000,1.0000,0.0000,0.0000],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],v1,z0,tl1\Wobj:=;
 MoveL [[38.50,100.00,15.00],[0.0000,1.0000,0.0000,0.0000],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],v1,z0,tl1\Wobj:=;
 Reset DO10_10;
 MoveAbsJ home,v40,z0,tool0;
 MoveAbsJ omor,v40,z0,tool0;
ENDPROC

The .prg containing the RAPID code can be easily modified with any text
editor. Probably, due to some errors in abb.exe, some corrections need to be done
by hand. Otherwise a warning will arise when trying to execute the .prg on the

28

S4CPlus or RobotStudio and will not allow to load the program. The necessary
changes are, at least:

- The postprocessor produces a misspelling in the RAPID code. The 'main'
procedure calls the procedure 'Mill' but the definition of this procedure has an
error in its header. A procedure with no input arguments should be declared as
'PROC procedure_name()'. This means that '()' is missing after the name of the
procedure. It has to be included by hand.

- The program, as shown before, does not has an end. ENDMODULE is
missing and has to be added after the last line.

- The commands Reset ,Set and SetAO are related to digital and analog
outputs. If the tool attached to the robot is controlled externally or does not have
those inputs it is necessary to remove or, at least, comment those commands along
the program (to comment '!' has to precede the line).

- A very important detail is the machine coordinate system. The text
'\Wobj:=' is an incomplete command. The '\' indicates that it is an optional
parameter but for this Thesis it has to be declared to obtain a proper behaviour.
Wobj refers to a coordinate system associated to the work object. That is, the
coordinate system attached to the part that the robot will machine and it has to be
defined in order to be coincident with the one created in Pro/ENGINEER and used
as Machine Zero. So, to solve the error that arises from this indeterminate
parameter it is enough with writing a name after the equal, for instance '/Wobj:=
Workobject_1'. This is only a partial solution because the coordinate system
named Workobject_1 has to be exactly declared later on with the rest of the
variables.

With all these changes the program is ready to be exported to S4CPlus or
RobotStudio but the variables such as positions or speed values have not been
defined yet. Until all those parameters are not included in a .sys file the movement
can not be simulated or run by the real robot.

29

6. RobotStudio

ABB offers a powerful simulator to test RAPID programs. RobotStudio allows to
create tools, conveyors, workers, etc. to check the behaviour of the robot under
certain circumstances and avoid or correct wrong movements depending on the
environment [2]. It is also very useful to become familiar with the Teach Pendant
that controls the real robot.

In this Thesis RobotStudio was helpful to create the .sys file containing the
variable declarations necessary to run the postprocessed program.

6.1 Program structure

Once the user has corrected all the errors in the .prg program coming from the
postprocessor it can be loaded on RobotStudio.

First of all, open RobotStudio and select a New Station, for instance
IRB2400_16kg_1.5m. Name it and press Ok. The virtual controller will be started
and the picture of the robot will be displayed on the screen. In the Offline tab go to
Load Program and select the .prg program from the folder where it is stored.

A component tree is shown on the left of the screen. Under the RAPID
label it is possible to see the structure of the program. Program Modules label
refers to the different parts of the .prg stored as .mod, in this case they are the
main procedure and the machining procedure. System Modules has three sub-
elements that can be found with the extension .sys: BASE and LINKEDM are
automatically created and contain default values and variables, User can be edited
and the necessary variables will be declared there. By doing double click on each
of those files they are opened on the main window so they can be modified or
reviewed.

30

Figure 13: Component tree in the
Offline tab

6.2 Variable details

In the program coming from Windpost some variables are used but not declared:
- omor: Swedish abbreviation for reorientation. It is a position that the

robot will use to begin and finish the movement. Depending on the task this
position may be useful to indicate to the regulator changes in the state of the
system so the control can be adapted to the new situation.

- home: Initial position. It can be declared so the robot its closer to the first
location of the machining task. With omor, it can also be used to indicate changes
to the controller.

- Tool: Accepting that the tool will remain invariable during the whole
process it is necessary to declare it. Notice that tool0 (default tool) appears in
some lines that imply a MoveAbsJ movement. The displacement with this
command is not affected by the tool or the work object but it would be more
accurate to change tool0 for tl1 in order to allow the controller a proper load
calculation.

- Zone data: This kind of parameter indicates how accurate the movement
has to be. It represents the maximum admissible space that can appear between the
programmed final position and the real location before the robot starts the next
movement. The default value is z0 but smaller values can be defined if they are
necessary. The user has to consider that depending on the material or the tool path
this parameter may affect the final aspect of the machined part.

- Speeds: Some variables defined in Pro/ENGINEER have direct
repercussion in the RAPID code. Every movement needs an execution speed. This
speed derives from the Cut_Feed parameter declared in Pro/ENGINEER, which
represents the relative velocity between the tool and the table where the workpiece
is fixed. Its units are consistent with the ones selected in the Pro/ENGINEER file
and tool machine. So, if mm were selected and the default units were unchanged
in the tool machine definition the Cut_Feed is expressed in mmpm, that is
mm/min. RAPID programs work with mm/s so this has to be taken into account.

Three possible options are available:
1) To consider the change of units since the beginning and apply the

necessary calculations: to change from mm/min to mm/s divide by 60. So if the
Cut_Feed is 1000 the speed will be 1000/60. The number is rounded towards the
next integer, so the speed will look like v17. For a desired speed the operation will
be a product: to obtain v20 the Cut_Feed should be 20*60=1200 mmpm.

2) To substitute all the speed parameters in the .prg file for the desired
values. This can be done with the Replace option in a text editor or once the
program is loaded in RobotStudio.
3) To declare a new speed variable if the desired velocity is not available in the
default definitions.

- Work object: Represents the coordinate frame attached to the part to be
machined. It has to be declared as a variable and it must be coincident with the
one defined in Pro/ENGINEER as Machine Zero. Otherwise the tool path will be
performed out of the bounds of the real block of material.

31

6.3 Variable definition

The previous variables have to be included in the user.sys file. According to
RAPID syntax [10] the declaration of variables has to be done as follows:

-Positions: For an absolute movement, with no reference to a coordinate
system the angle of each joint has to be specified, that is: six angles in degrees for
the six joints of the robot and six more angles for external extra joints if necessary,
otherwise the last six terms remain as 9E9. Special attention must be paid in order
to avoid errors such as using singular positions.

�������	
���
�����	�	���
�������	
���
������	��

- Tool: Some physical aspects of the tool need to be described here. In the
tool definition shown below the different elements described are, in order:

a) If the robot is holding the tool (TRUE).
b) The tool coordinate system placed in the TCP in relation with the wrist

coordinate system. The first three elements describe the position and the other four
express the orientation in the form of a quaternion.

c) The load of the tool with its weight in kg, the center of gravity, axes of
moment as a quaterion and moments of inertia in kgm2. If the axes of moment and
the moments of inertia are not defined the tool will be considered as a spot load.

������		 !
�
�� ��������"�����������#��������������������$���������������������������������������

- Speed: If the desired speed is not a multiple of five it will not be defined
by default. It can be declared in the user.sys. The elements describe the velocity of
the TCP in mm/s, the velocity of reorientation of the TCP in degrees/s, and the
same two parameter but for external axes. The real speed performed is limited by
the reachable velocity of some of the parts.

������%&��!!
�
�'�(������(��$����$�����������

- Work object: This parameter expresses where the coordinate system of
the work object is placed in relation with the coordinate system of the workspace.
The required elements for this variable are:

a) If the robot is holding the work object (FALSE).
b) If the workspace coordinate system, also know as user coordinate

system, is fixed (TRUE).
c) If the workspace coordinate system is movable a trajectory has to be included,
otherwise this field is empty.

d) User or workspace coordinate system in relation with the world
coordinate system which is usually located at the base of the robot. The two sub-
elements are position and rotation.

e) Work object coordinate system expressed in the user coordinate system.
Again declared with position and orientation.

�����)	*�!
�
�+	�,	*��-�.����/01������"���22����(�������3��������������������$������������������������

Once all the variables are declared the program can be run to see if the
trajectory of the robot is the desired. Just press Start on the editor bar in

32

RobotStudio and go to View task to see the simulation. If any error is still
uncorrected a warning will appear in the Output tab located in the lower part of
the window. If the behaviour is right the user.sys file can be saved.

Notice that if the whole program is saved with RobotStudio it will be
stored as a .pgf plus a .mod. This files are more modern than the .prg and S4CPlus
can not manage them. So the best option is to save only the user.sys and edit by
hand the .prg file with the necessary changes derived from the simulation on
RobotStudio.

33

7. Robot control: ideas and basis

In this chapter the practical part of the Thesis is explained. The robot needs to
perform some routines before running the machining process in order to calibrate
the force sensor, obtain an accurate picture of the workspace and ensure bumpless
movements.

Matlab and Simulink will be the main tools to build the robot controllers.

7.1 Gravity compensation

The main objective in this Thesis is to machine a piece which involves contact
between the robot carrying the tool and the environment. The force sensor
attached to the wrist of the robot provides the force and torque measurements
necessary to find out the value of the force and apply a control loop. The main
problem with this sensor is that it is affected by many factors other than the
contact force. So the first step is to calibrate the sensor and try to obtain real force
readings.

When the sensor is first started an offset value appears. The block called
Offset correction/reset in the extctrl library cancels the initial offset when a trigger
is activated but another problem appears. The reset is only valid when the sensor
is not reoriented. The weight attached to the flange is considered as part of the
offset so it is initially deleted but, when the wrist is moved, the effect of the
weight appears in the sensor distorting the measurement.

If there is no contact with the environment the force and torque reading is
due to the tool weight and the own weight of the sensor, as can be seen in Figure
14. It can be considered as a force pointing to the floor applied in the center of
gravity of the union tool/sensor, so the sensor registers the projection of this
magnitude on its axes. Therefore, if the angles between the weight and the sensor
axes are known it is possible to generate the profile of forces and torques and, this
way, correct the measurement as expressed in (22). This is the main idea behind
the gravity compensation.

34

F sensor��F x

F y

F z
���
weight · sin
�cos �

weight · sin
�sin�
weight ·cos
 � (22)

To generate an accurate law that simulates the effect of the weight on the
sensor some parameters need to be obtained. The sensor frame is not perfectly
parallel to the flange frame so the angle and offset from one frame to the other are
necessary, that is the Denavit-Hartenberg parameters from flange to sensor. Then
the weight of the elements outside the sensor has to be derived. The center of
gravity is also required in order to know the application point. The other element
necessary that can be obtained easily is the orientation of the flange. Once all these
parameters are available the algorithm to compensate the effect of the gravity can
be roughly understood as:

To obtain all those elements the best option is to execute some
experiments reorientating the tool. By doing this the weight and position of the
sensor frame can be estimated although the sensor is not perfect and white noise
will affect the values.

The first procedure places the z axis of the sensor parallel to the floor and
then rotates the wrist. This way the load vector is perpendicular to the floor and, in
some points coincident with x and y axis. Just considering the forces it is possible
to accept that Fz is roughly zero and Fx and Fy record the weight. A plot with the
results of the experiment is presented in Figure 16.

35

Figure 15: Gravity compensation algorithm. The weight of the tool is rotated to
be expressed in the sensor frame such as Weightsensor�R flange

base · Rsensor
flange ·Weight base .

Then it is subtracted from the measurement coming from the sensor. The result is
a new force in the sensor frame without the effect of the tool load.

#����
�'(����

��������'�
��)*�+
��� ��&����
	�����

#,,

#�������	������	�����
-�
����
.�
����
&�
����
��
����

/ ��0

�
���
�������

1

����
�
����

����
� ��(���
'��0��!�
��
����
����

36

 (a)

(b)
Figure 16: Experiment: Rotate wrist with no tool to measure the empty-load.

(a) Force measurement. The sensor is reset after sample 825.
(b) Fx in front of Fy coming from the same experiment. The estimation is done
with a circle of radius 10,27 and offsets equal to -11,3 N and 3,73 N for Fx and

Fy respectively.

The radius of the circle is coincident with the weight or external load and
the center indicates the offset, see Figure 17. The general equation of a circle is:

r��
x	a �2�
 y	b�2 (23)

With the force parameters measured the equivalences are quiet
straightforward and the next equation can be written:

Load tool� sensor��
F x	F
 x offset ��
2�
F y	F
 yoffset ��

2 (24)

Other parameter that can be obtained once the weight and offsets are
known is the angle between the flange frame and the sensor frame. In Figure 18 it
is shown the difference between the estimated force and the real measurement.
This helps to identify the different phases due to the orientation of the sensor with
respect to the flange. It is also useful to correct other values such as the weight.

37

Figure 17: General shape and parameters
for the mathematical description of a circle

Figure 18: Real measured force and estimated values. Reset after sample 825

C(a,b)

P(x,y)

r

When the offsets in x and y are calculated the same process has to be done
for z. The robot has to be jogged to some key positions where the weight is
coincident with the different axes. With those values and the orientation of the
tool the shape of the curves estimating the forces due to the tool movement can be
derived and then, subtracted from the real sensor reading to obtain the value of the
contact force without weight or offset effect.

With this concept in mind the algorithm that calculates the tool parameters
has to assure enough accuracy. The best option is to generate a program which
moves the robot to different positions, logs the data coming from the sensor and
the orientation of the tool and then, analyzes all those values by approaching them
to parametric curves and obtains the average values during the whole movement.
This program is conceptually simple but really time-consuming when it comes to
its creation.

The task explained before may seem trivial but the reality shows that it is
not so easy. As can be seen in the previous images, the real plot is not perfect: the
noise introduces a big error, so it is necessary to find the average of the values and
repeat the experiment several times to obtain accurate parameters good enough to
be used in the gravity correction. In addition, every time that a new tool is attached
it is necessary to obtain its weight, center of gravity, inertia, etc.

In the beginning a very raw approximation was done to check how
demanding the calculation was. It showed up to be a though task that requires
many tests and not a simple estimation. A program to move the robot to different
positions and get the necessary data was started but, by that time, a Simulink
program was developed by Andreas Stolt at the Department of Automatic Control
in order to compensate the gravity effect in force measurements. The program
works with a huge amount of data and it takes almost an hour to analyze them, but
it reaches very precise values.

The procedure behind this Simulink program is similar to the one
presented before: the robot is moved to certain positions and the data is logged.
Then a mathematical analysis is carried out by a .m file that approaches the force
measurement to a non linear function of weight and orientation. This way the
coefficients of this function are worked out and they can be used to predict the
value of the force depending on the position and the tool. The program outputs a
group of parameters such as tool weight, axes orientation and center of gravity
position. With them it is possible to remove the effect of the tool weight from the
sensor reading and provide reliable measurements with no gravity action just by
using the block shown in Figure 19.

38

Figure 19: Gravity compensation blocks developed by Andreas Stolt at the
Department of Automatic Control in Lund University

7.2 Impedance controller

When the characteristic parameters of the tool are known they can be used to
correct the force measurements coming from the sensor. Although a small noise
affects the reading it can be easily reduced by using a low pass filter. So, from
now on, the force reading can be considered accurate enough and just due to the
interaction between the tool attached to the robot and the environment.

In order to perform activities which involve contact the input from the
force sensor can perfectly act as a signal in a control loop. An impedance
controller is a good option when the shape of the contour is not perfectly known.
The application presented in this Thesis uses raw blocks of material with irregular
or unknown shapes so it is important to allow a certain degree of flexibility. If the
robot acts as a very stiff system the movements can cause damages and collisions.
On the other hand, the robot must resist some forces to ensure that the tool
machines the material in the right way.

The best option to meet this two demands in one controller is to use the
impedance control. With this method it is possible to reach a specific force value
with certain elasticity and also follow a given trajectory.

Two main tasks are necessary to complete the machining process: first of
all the raw piece has to be placed and located in the workspace in order to provide
the right coordinates to the program, the second task is the machining itself. In
both procedures the impedance controller can be used with some variations.

7.3 Contact algorithm

The robot needs to know the exact location of the workpiece. It can be provided
by the user but in order to obtain a really accurate position the robot will perform a
program which follows the edge of the raw block of material.

The impedance controller usually needs three inputs: force, position and
velocity. The problem in this particular case is how to provide an accurate position
reference. This input can be removed so the controller will work with velocity and
force. When an impedance controller receives only force and velocity is also
called damping control [8].

First of all some design requirements need to be established for the
algorithm. A possible scenario is the robot located in front of the workbench
where the raw block of material is placed, see Figure 20. The position of the

39

Figure 20: Working scenario

2������

�������

3������
���������

4����
��(

������

!�����

�
���(��'
&��
�����3�
�

workbench is considered invariable along the machining process. Then, on that
surface a 'probable area' where the workpiece can be found is defined, it is also
invariable. These elements should be fixed because the algorithm needs some
certainties in order to be optimal.

Once the workspace is defined the movement can be planned. The TCP of
the robot needs to be placed at an initial position, from there it will move towards
the working area with a certain direction until a force appears, meaning that the
contact with the workpiece has been reached. The next step is to direct the TCP
along the edge of the block of material trying to keep a constant contact. If at some
point the contact is lost because of a corner or some irregularity the algorithm
should lead the TCP back to the edge.

Finally, when the TCP has turned around the complete perimeter of the
workpiece it is possible to obtain its silhouette. To make it as much accurate as
possible only the points where some force was measured will be represented, this
way if the contact was lost or some bounce happened it will not appear in the
graph. With this contour-map a point that will work as coordinate system origin
for the workpiece can be chosen.

7.4 Machining algorithm

The G-code postprocessed to obtain the RAPID program with the movements of
the tool can be used to machine the workpiece. The problem again is the accuracy.
No command in the program offers information about the force required for the
machining task. This can affect the output from the process positively if the
material interacts properly with the force developed by the robot but, on the
contrary, if the robot acts with high stiffness as it is supposed to do it can break
the material, the tool or produce collisions. To solve the problem and obtain a
more flexible behaviour the impedance controller is introduced.

The difference with the contact algorithm is that now there is certainty
about what position the tool must reach, so the reference inputs to the controller
will be the position and velocity coming from the RAPID program and the desired
force. The force reference should be adjusted depending on the material and the
tool to avoid any damage.

Notice that other possibility is to run in parallel the impedance controller
modifying the velocity and position from the RAPID program but this will
produce more distortion in the trajectory and, therefore, in the final machined part.

40

8. Robot control: practical tests

In previous chapters the necessary concepts and ideas to carry out this Thesis have
been presented. In this point the experimental results obtained and the programs
generated will be shown. Solutions or changes adopted to correct errors or
optimize the process will be explained too.

8.1 Contact program

This program controls the robot in order to obtain the shape of the workpiece, it is
generated in Simulink. In Figure 24 the block diagram corresponding to the
contact program can be seen. The different boxes will be described to allow a
good understanding of the controller. Two points talking about the activation
signals and the script that pictures the shape of the workpiece are also included.
- 1st box:

This box contains the blocks responsible for gravity compensation. The
inputs are the signal f_switch which controls the activation of the system, force
measured by the sensor, the homogeneous matrix with the rotation and orientation
of the flange, parameters describing the tool (mass, center of gravity, etc) and
finally some limit values for the sensor to avoid any damage.

The outputs are three: a signal that changes from 0 to 1 to indicate the
beginning of the correction (it takes 50 samples to calculate some parameters), the
corrected force measurement in the sensor frame and a flag to show if the sensor is
overloaded.
- 2nd box:

This block processes the corrected force and translates it from the sensor
frame to the base frame. The sub-blocks inside this box can be seen in Figure 21.

A low pass filter is applied to reduce the noise in the reading and a dead-
zone is included to assure no force measurement when there is no contact.

A discrete low pass filter is shown in (25). The parameters �c and Ts refer
to the characteristic cutoff frequency and the sampling period of the system. The
filter introduces a certain delay in the force signal so it is important to find a
balance between the noise reduction and the introduced delay by using the right
cutoff frequency. During the experiments the frequency was 30 and the sampling

41

Figure 21: Content in box 2. Force processor: prepares the signal for the
controller

period is fixed by the system in 0.004 s (250 Hz). It is possible to modify �c in the
Opcom while the program is running, the name of the variable is omega_filt.

G
 z��1	e	�c T s

z	e	�c T s
 (25)

The dead zone outputs no force if the incoming reading is contained
between 1 and -1. This prevents errors in the control when there is no real force
applied on the sensor. A possible problem with this block is the fact that it
removes some real data within the mentioned boundaries but the sensor has an
important noise level. The filter should be really restrictive to remove that residual
noise but this would distort the signal. So no other option is left with this sensor.
Anyway, for the present task this measure is good enough.
- 3rd box:

This part is the core of the program, the impedance controller in itself.
The signals on the left of the box represent the inputs, in this case: force

and velocity. The long block is the controller, the internal components are shown
in Figure 22 and they perform the operations described in previous chapters.

At this point it is important to explain how the input signals were chosen because
they mark the behaviour of the robot. The idea is to follow the edge of a general
workpiece. Considering the surface atomically it is easy to see that in each point a
force appears perpendicular to the tool as shown in Figure 23. The trajectory has
to be reoriented according to this force direction in order to avoid collisions if the
shape is irregular.

42

Figure 22: Impedance controller

The filtered force in Newtons and expressed in the base frame is split in
two parts: x-y component and z. This is done because the program is designed to
move the TCP on a constant xy-plane so the z component should not influence the
position. Of course, the user has to take this into account to avoid collisions
because if any contact appears in z the robot will not correct its trajectory and may
cause an accident. Another possibility could be to introduce z with some
penalizing factor that reduces, but not completely removes, its influence on the
trajectory. With the x-y force components the modulus and the direction are
obtained. The modulus is then compared to the force reference. This reference
should have a low value to avoid collisions. Then the error is multiplied by the
force direction before being sent to the controller. Notice that the force reference
is subtracted from the force modulus instead of the other way around. This is done
to include the necessary change of sign in the force coming from the sensor to
represent that it is exerted on the environment by the robot.

The desired velocity in the base frame is derived using the force direction,
producing a perpendicular vector contained in the xy-plane with a certain modulus
that can be chosen externally with Vel_mod_mms. Notice that a change from mm/s
to m/s must be done with the help of a gain block.

These two signal are fed into the impedance controller. The output is an
acceleration that, once integrated to obtain a velocity, will be sent to the robot and
back to the controller as velocity signal.
- 4th box:

The blocks contained in this box transform the velocity derived in the
controller so it can be performed by the robot. Notice that a vector with (0,0,0) is
linked to the linear velocity. This is to avoid the reorientation of the tool so that it
only modifies its trajectory linearly. These elements representing the angular
velocity are required for the calculation with the inverse Jacobian matrix.

Also a restriction to prevent high velocities can be seen in red color. If the
parameters are well stated in the controller this restriction will not be activated.

In addition to the velocity derived in the impedance controller, some others
are necessary in order to produce a proper control. They should be added here, so
when they are activated by other blocks, they can be sent to the robot.
- 5th box:

Here position and velocity signals are sent to the rest of the program.
Matrix T44 from flange frame to base frame, the tool coordinates in the base
frame, the Jacobian and the inverse Jacobian are also calculated here.
- 6th box:

This is an important part of the program. Its main mission is to generate
signals to activate the different tasks, that is: to reorient the robot until it is placed
in the initial position, to start the movement until contact is reached, to store the
first point where contact occurred and, finally when the tool is back at the first
contact point, to move it back to the initial position. It basically works as a state
machine. The whole code with the considered states is shown in Appendix 2.

Three of the output signals are: vel_out which controls the robot while it is
being reoriented to the initial position, enable changes to 1 when the first position
is reached indicating that the robot is ready to move towards the workpiece and
goes back to 0 when the trajectory has been completed, finally, gen_trigger is
equivalent to enable but remains equal to 1 even when the movement is over. This
last flag may be useful for other tasks but it will not be used in this program.

43

44

Figure 24: Contact controller

4

- 7th box:
In this blocks a complement to the previous state machine can be found. It

is a subtype which acts when the robot is placed in the initial point and stops when
the tool has reached again the first contact point.

It has a big influence in the behaviour of the whole system. The idea is to
provide a basic velocity when no force is measured, this means that no force
direction can be obtained and therefore the inputs to the impedance controller are
zero and the movement is completely stopped.

The concept is similar to hybrid controllers. When no force produces no
movement this block generates a velocity that complements the impedance
controller.

First of all the block guides the tool towards the workpiece and once a
force appears producing the desired velocity this block stops. If any bounce or
irregularity such as a corner produces a discontinuity in the contact then this block
leads the tool back to the edge. The code included in this block can be found in
Appendix 3.
- 8th block:

In this part of the program some variables coming from the Opcom are
processed. M, D and K parameters are calculated here depending on the value
given by the user. Notice that, as there is no position reference, K will remain
equal to zero and D is directly controlled with the value of xi.
- 9th block:

This part is common to all the programs generated in Simulink and
contains general inputs and outputs to communicate with the robot and the sensor.
The red box has to be executed in the beginning to declare the necessary variables
and the path for the Matlab files.
- Activation signals:

The signals that trigger the system deserve special attention. The first one
is f_switch, it starts the gravity compensation algorithm but it can not be used to
activate other parts.

The gravity compensation takes 50 samples to be initialized and once it is
done a flag called trigger_finished changes from 0 to 1. That signal is the one that
should be used to start the system.

An important consideration has to be done: the force before the correction
has a big offset that goes into the low pass filter and after that into the controller.
Apart from the delay due to the inherent calculations of the gravity compensation
the filter produces an extra delay. This delay has to be taken into account when the
controller is started, otherwise an initial error will be derived. Two possible
solutions are: to intentionally include a delay in the trigger_finished signal to
cover the one produced by the filter or to multiply this flag by the corrected force
in order to avoid any input to the controller before the correction is ready. The best
option is the second one because it is not affected by changes in omega_filt which
do affect the first solution if the introduced delay is not enough to cover the effect
of the filter.

Notice that trigger_finished is only controlling the activation of the block
in box 6. In that block the movement toward the initial position, close to the
workpiece, is started and when the robot is correctly placed enable and
gen_trigger change to 1. Enable is the responsible signal for the control of the
hybrid controller formed by the impedance controller and the basic velocity.

45

The shown problem about the delays does not disappear just by generating
enable as control signal. If the robot is since the beginning at the correct initial
position then enable and trigger_finished are equivalent and the problem will keep
happening, so the solution mentioned is applied: corrected force coming from the
gravity compensation block is multiplied by enable to prevent force inputs from
going into the impedance controller and causing an initial position error.
- Surface program:

Once the execution of the Simulink program is finished a very simple
script can be run to obtain a picture of the workpiece and its position related to the
base frame. The code can be seen in Appendix 4. The program generates a matrix
with those positions where a force was measured so no jumps or discontinuities in
the contact are plotted.

8.2 Contact algorithm results

During the different tests carried out to check the program it was necessary to deal
carefully with the control parameters: M, xi, F_ref_mod_xy and Vel_mod_mms.

The combination between M and xi determines the kind of movement. If
M and xi are very small the tool tends to bounce if any contact appears, so the
trajectory is hardly continuous. For bigger values of M the influence of the force is
smaller. When xi is bigger than one it produces a more stable movement but if the
value is too big the transient to reach the force an velocity reference also grows.

F_ref_mod_xy should be fixed with care, depending on the material that
will be tested. If it is to high the tool will exert big pressure on the surface and
may break itself or the workpiece.

Two other parameters that the user needs to settle are Approach_vel_mms
and Vel_mod_xy_mms. The former has to be defined finding an equilibrium
between time reduction for the execution and possible negative effects when the
tool is close to reach contact. Vel_mod_xy_mms should not adopt high values to
avoid collisions or slips when the shapes are irregular.

In some cases omega_filt can be reduced to introduce less noise in the
force measurement, and in this way, reduce the effect in the movement. After all,
this part is not about following strictly the references but the shape of the
workpiece.

Some initial tests were done without contact with the environment. The
algorithm was slightly changed to produce a movement in the same direction of
the force so the user could move the TCP by hand and feel the effect of a change
in any of the variables. Once the parameters were calibrated to produce a low
stiffness and to prevent collisions the program was ready for real interactions.

The experiments are done using a big wooden box placed on a table, see
Figure 25. First of all the robot is jogged manually to the desired initial position.
The joint angles are introduced in the state machine that can be seen in box 6.
That will be the point where the robot will go in order to start the movement. It is
important to remember that the program will not correct the position in z or
reorient the tool, so this initial point must be chosen wisely in order to assure a
right contact with the tool but not with other parts such as the mounting plate for
the tool or even the flange. In the same way, when the matrix tool2flange
describing the transformation from tool to flange is declared in box 9, the z

46

parameter is defined as 0 because for this experiment z is considered irrelevant
and no effort is made to measure it with precision. If more accuracy in z were
necessary then that parameter could be changed in the matrix.

The execution protocol must be as follows: click on the red box to load the
variables in Matlab, then build the Simulink program using the Real Time
Workshop tool. Open the Opcom and load the program. Go to Submit, change the
necessary values for the test and press Commit. Release the robot brakes by
pressing the dead man's switch and change to Obtain.

The final values for the parameters are shown in the next table:

F_ref_mod_xy 1
Vel_mod_xy_mms 9
Approach_vel_mms 5
M 20
Omega_filt 20
xi 20

When f_switch changes from 0 to 1 the movement starts. The state
machine checks if the position is equal to the initial one to take the tool there.
Once at that point the robot will move towards the workpiece in x direction and
when it touches the surface the movement will change to follow it. When the
trajectory is completed the robot retracts back to the initial position.
While the program is on execution the user should not jog the robot using the
Teach Pendant or the behaviour may become unpredictable. If the robot loses the
contact the program is not ready to recover it when it was due to an external
signal.

47

Figure 25: Tool placed in a possible initial position,
ready to begin the Contact program.

The state machine that controls the different tasks in the controller is ready
to guarantee a good behaviour even when the program is not unloaded for the next
execution. This means that the user can change f_switch from 0 to 1 the first time
to start the program and once it is finished, with the tool back at the initial
position, a new change in f_switch from 1 to 0 and back from 0 to 1 can restart the
routine.

Once the test is done it is possible to run a script that plots the shape of the
box. The name is surf.m and receives as inputs the Cartesian position of the tool in
mm, the flag that indicates the end of the gravity compensation, the force modulus
and the tool radius. Notice that it only plots the xy-plane. See Figure 26.

8.3 Machining task

This is the most demanding part of the project. High accuracy is required but also
security and compliance in the controller.

In order to check the results and before using a real drill or mill bite
another tool was used, it consists of a marker. The provided workspace was a box
filled with foam to avoid hard coollisions. The RAPID program contains the
necessary orders to draw a picture on a flat surface such as a paper or a cardboard.
If the algorithm is able to control the robot and it produces a precise picture then it
is likely that other tools can be used instead just by changing the parameters to
adapt them to the requirements.

48

Figure 26: Plot coming from surf.m. The red semi-circle represents the base of
the robot, the blue line shows the TCP trajectory and the green thick line

represents the silhouette of the tool in each contact point. The point in the center
of the box is the geometric center.

The Simulink program appears in Figure 27. Most of the blocks do not
change with respect to the contact algorithm but some others are included. The
boxes indicate the ones that are considered important.
- 1st box:

The variables for the impedance controller are derived here. The main
difference with the contact algorithm is that now there is one M for each direction.
That is, the force is penalized differently depending on the direction. The idea is to
produce a smooth movement in z but more rigid in x and y. This can assure good
compliance with the working surface avoiding collision and a reduction of the
friction effect in the other two directions.

Other important difference that deserves special attention is the block
called M_adapt. The RAPID program with the instructions for the machining task
has two main states: when the robot is being reorientated and when the tool is
touching the workpiece to produce the machining. The first state implies large
movements with no contact, unless it is accidental. The second one is mainly
designed for contact. In each case different parameters for the impedance
controller are required to avoid trembling and effects coming from the inertia or to
adapt the stiffness.

To fulfill these objectives a block that switches between different sets of
values is built. In this way, the M_adapt block performs a change in the value of
M. When no contact is expected the behaviour of the robot will be stiffer than
when the tool is touching the workpiece. This produces better results than the use
of a common value for M. The whole code that performs these changes is shown
in Appendix 5.

The user is the responsible for the values introduce in each part and must
be aware of the consequences if a really high stiffness is settle when the tool is
working or, on the contrary, the stiffness is too small when the robot is
approaching the working position.
- 2nd box:

This box contains the inputs to the impedance controller. Now the three
components of the force expressed in the base frame are used. As in the contact
algorithm, the reference is subtracted from the force to indicate the necessary
change of sign which shows that the force is done by the robot. On the other hand,
desired velocity and position are independent from the force. They come from the
RAPID program loaded on the Teach Pendant. They are converted to Cartesian
coordinates in the base before being fed into the impedance controller.

Notice that the the angular velocities coming from the RAPID program
remain unchanged. They are joined together with the linear velocity derived by the
controller. This way the calculation of the joint velocities with the inverse
Jacobian is possible and it produces the orientation movements equal to those
included in the RAPID code with the linear adjustments produced due to the force
influence.
- 3rd box:

The content of this box generates the control signals responsible for
starting the controller and draining the integrals when the final position has been
reached so the remaining position error is removed. It works in a similar way to
the state machine created for the contact algorithm, the code is available in
Appendix 6. The blocks in 3.1 and 3.2 are the drains for the integral.

49

50

8.4 Machining algorithm results

First of all, notice that a delay has been included in the output flag from the
gravity compensation block. When the controller was run the very first time in
Obtain mode a small force appeared causing a slight movement. After analyzing
the logged data it turned out to be a remaining value of the force before ending the
correction. Just to prevent that effect in future execution the signal was delayed
ten samples, which does not affect in a significant way the rest of the program.

For these experiments it is really important to calibrate the parameters in
the right way. In the beginning the block responsible for the changes in the
variables was not included. During the execution there is a part before the robot
reaches the working position where the joints are reoriented, it was common to see
vibrations. To reduce that effect omega was increased and the effect was reduced
but not completely removed.

The problem was caused by some forces appearing due to the movement
while there was no real contact with the environment. By increasing omega the
controller was giving priority to the position reference but when the tool was in
contact with the surface the behaviour was too stiff. Another option was
increasing M to reduce the effect of the force, but again, the compliance with the
contact surface was reduced.

To solve this problem about adaptability the M_adapt block was created.
The algorithm included there only modifies the M, making it bigger while the
robot is not close to the contact position and decreasing it for the machining tasks
that need less stiffness. The program which controls the change could be easily
adjusted to include as well omega or xi in order to obtain even better results.

Concerning M it is also important to mention that very small values could
lead to vibrations, so even when there is contact between the tool and the
environment it is not advisable to reduce it under 0.4-0.5.

Other block that was included after some experiments is the one that drains
the integrals to remove the position error. When the program is launched it checks
if the position is equal to the initial position called omor in the RAPID code. If it
is different, the program waits until the robot reaches the right position and stores
it. When the RAPID code is finishing and the robot has to go back to omor the
drain algorithm removes the position error accumulated during the execution and
moves the robot to the right final position.

In order to obtain a proper control over the robot it is important to change
f_switch from 0 to 1 before starting the RAPID program on the Teach Pendant.

The values for the different parameters appear in the next table:

F_ref_mod 0
M_no_contact [10 10 5]
M_contact [5 5 0,5]
xi 5
omega 10
omega_filt 15

51

Although for the experiments only a marker was used it is important to
understand the effect of each parameter and their changes in the behaviour of the
system. In a regular machining task high stiffness is required so probably M will
have big values to reduce vibrations. Omega will rule the movement imposing the
position to obtain accurate shapes and it will have high values too. Other options
to make the controller more flexible is to separate each variable in three
component to regulate x, y and z independently.

In the next pictures some outputs from different tests performed in the lab
can be seen.

In Figure 29 two different results from some tests are plot. The first graphic shows
that smaller values of F_ref_mod act reducing the position error. On the second
plot it is possible to appreciate that lower values of M in x and y when the contact
has been reached introduce a bigger error in the position. This is because the force
term is increased when M is small and, therefore, the effect on the controller
output is bigger which produces more error and distortions.

52

Figure 28: Three-dimensional path provided by the RAPID program and the
real one. Real contact achieved.

53

(a)

(b)
Figure 29: (a) Path for low variable values of force reference: 0.5, 0,2 and 0.

 (b) Path with variations in M_contact for x and y: from 5 to 3.

9. Conclusion

After many experiments it is possible to conclude that the system reaches the
desired behaviour. The controller is able to perform the necessary corrections if
the variables are well calibrated. It is important to remark the relation between the
material and the value of the parameters. It is highly recommended to run several
tests before starting the production in order optimize as much as possible the
regulator.

The two main programs developed along this Thesis are based on an
impedance controller but each one uses different aspects. This shows the big
flexibility of the regulator to carry out diverse tasks. The imitation of a physical
system such as the mass-spring-damper led to proper results, leaving a door open
for other possible controllers inspired by other complex systems.

The work done during this Thesis could be used to generate more
sophisticated tasks, for instance: integrating artificial vision and developing a
method to convert the treated picture into a RAPID code or similar the robot could
act as a human painter.

Of course, many improvements can be done. Some of them could be the
correction of the force measured due to the movement or a higher degree of
automation. This means create a protocol to integrate all the steps carried out
during this work in order to reduce the need for user intervention. By doing this
the program could receive as input only the Pro/ENGINEER file and then generate
the whole postprocess, error correction, etc. by itself.

Other option could be including human interaction. This way an operator
could guide the robot to some key positions, run the machining program and then

54

Figure 30: Pictures of stars resulting from several tests

place it in the next position. Consequently the robot can be understood as a tool
and no longer as the main performer of the machining task.

Finally, an extra task could be added to this chain of steps to close the
whole process. As the project started with the idea of creating a substitute for a
CNC machine a natural step would be to include an extra process in order to
check the results after the machining procedures. It is possible to find in the
market sensing devices to obtain accurate measurements of the finished surface.
Integrating these 'feelers' or palpators with the robot the productive cycle would be
completed, that is: design of the model, manufacture and inspection.

55

References

[1] Barrientos, A. Fundamentos de robótica. McGraw-Hill, 1999.

[2] ABB: www.abb.com

[3] ABB IRB 2400 data-sheet.

[4] JR3 sensor: http://www.jr3.com

[5] Pro/ENGINEER: www.ptc.com/products/proengineer/

[6] MATLAB: http://www.mathworks.com/

[7] Isolde Dressler. Force control interface for ABB S4. LTH.

[8] Siciliano, B; Khatib, O. Springer Handbook of Robotics. Springer, 2008.

[9] Siciliano, B; Sciavicco, L; Villani, L; Giuseppe, O. Robotics: Modelling,
Planning and Control. Springer, 2009.

[10] ABB Automation Technologies AB, Robotics. RAPID Reference Manual,
2004.

[11] Parametric Technology Corporation. Pro/NC Topic Collection.
Pro/ENGINEER, 2001.

56

Appendix A: Pro/ENGINEER guide

This Appendix will show roughly how to obtain a G-code for a CNC machine
using the software Pro/ENGINEER. The purpose is not to make a complete
manual for the program but to draw some guidelines about some options, menus,
etc. In order to get a deeper idea about Pro/ENGINEER many tutorials can be
found with a brief search on the Internet thanks to its popularity in industry. The
specific version used here is Pro/ENGINEER Wildfire 4.0. Some options or
menus may change from one version to another.

It is important to emphasize the particular philosophy that Pro/ENGINEER
uses. In the beginning the program could seem difficult because of its menus and
options. It is prepared to work with closed tasks. This means that, unlike other
programs, one task has to be finished before continuing to the next one and most
of them are ordered rigidly so the user has to follow a fixed workflow.

When a task is completed the user has to press a check mark in the
Dashboard or the Done/Return option in the Menu Manager to close that step and
keep moving forward to the next one.

Some parameters or properties have to be defined along the process. Once
the program has led the user to the point where a setting is declared and this task is
closed it is possible to change the value by coming back. The other way around is
not allowed. It is very advisable to get a good idea of what is done in each stage of
the program in order to make future changes easier.

With the aim of making this chapter easy to understand a generic part will
be created, see Figure 32. This way the different steps and its order can be seen.
For more complex designs other additional options of the program can be used
depending on the requirements. Extra options can be found in [11].

57

Figure 31: Dashboard and Menu Manager

A.1 Creating the file and adding the model

First of all one file containing information about the desired final piece or part is
needed. These files have extension .prt. While working with Pro/ENGINEER this
definitive part is also called Reference Model since it will be the base for all the
work.

Open a Pro/ENGINEER window and set the working directory. Now
create and name a new manufacturing file with the subtype NC-assembly. It is
advisable to set the units for the file by unchecking Use default template and
selecting the right option in the window that appears after pressing OK.

The next step should be adding the Reference Model to this new file. On
the Menu Manager press Mfg Model, then Assemble and Model piece. Choose the

58

Figure 33: Creating a new file

Figure 32: Generic model used along this
Appendix to describe the procedure

proper .prt file. Other options are to create a new model instead of using a
previous one or even create a workpiece. This last option will be shown later.

When the model appears in the screen and in the Model Tree the program
will ask the user to locate it in the workspace. The option Default can be selected.
The other options in the menu are used when more parts are necessary and they
have to be placed in relation to each other.

The menu Create Reference Model arises. Choose Same model and press
OK. This will produce a connection between the model and the manufacturing
operations: if the initial model is modified the operations will change. The other
two options can be selected when working with more parts that need to be linked
and, maybe, modified.

Press Done/Return to finish this first stage.

A.2 Creating the workpiece, milling volume or milling
window

When the model is created and depending on the shape and operations required in
the machining process it is possible to provide the program with three types of
information: an approximation of the raw block of material that will be used,
some 'virtual' milling volumes and surfaces or a silhouette that represents the
projection of the model. All three alternatives will be explained and the designer
can pick the best option according to the desired final part.

2.1. Option 1: Adding milling volumes or surfaces
This option is easy to use but complex models can require the creation of a big
number of 'extra' elements. It also can produce 'air milling', which represents a
waste of time in the production if the shape of the milling volume is not accurate
with respect to the real aspect of the raw block. Other disadvantage can arise if
future changes need to be done because every milling volume or surface has to be
modified individually.

A milling volume represents a virtual amount of material that the tool will
remove in order to produce the model. A milling surface defines a plane that needs
to be faced or shaped. Milling volumes or surfaces can be created right after
introducing the reference model or in each step when they are necessary.

-Milling volume :
Press Milling volume. Different options become available. In this example an
extrusion for the hole will be created. Choose Extrude and then the Placement tab
on the Dashboard. Select the frontal face of the model as Sketch plane and the
right surface as Reference. Click on Sketch.

The part is reoriented and the program allows to draw the edges of the
volume. For instance, to create the milling volume of the hole press . In Type

59

Figure 34: Placement tab on the Dashboard for the extrude option

window choose Single or Chain, select the edges of the hole and press Close. Now
quit the sketch application by clicking on the blue check mark.

Now the extrusion is represented in yellow. If its direction is not right click
on the yellow arrow that appears in one of its ends. The depth can be defined with
the length in number or by selecting the surface that acts as end. This last option is
available in the Options tab.

Once the volume has the desired shape press the green check mark on the
Dashboard to close the extrude window and the other green check mark in the
side toolbar to finish the milling volume. The new milling volume will be
displayed in the Model tree.

- Milling surface :
The process is similar to the previous one. Press Milling surface. Now a top
surface will be created to produce the face milling. Again choose Extrude and then
the Placement tab on the Dashboard. In order to create a plane covering the
frontal surface of the model the Sketch plane must be a side face and the
Reference can be any other surface. Click on Sketch.

Once the sketch window is shown press and select the edge formed by
the top surface and the side surface. Exit by clicking the blue check mark.

Make sure that the yellow arrow points towards the body of the model and
correct the size of the new surface by introducing the length in numbers or with
the Options tab.

When all this is done finish the extrude process with the green check mark
on the Dashboard and the Milling surface process with the green check mark on
the side toolbar.

2.2. Option 2: Adding a workpiece
This option is useful when the amount of removed material has to be considered
or the shape of the model is complex. Unlike the option of the milling volumes

60

Figure 35: Milling surface created to
produce a face milling

when a workpiece is added it can easily be modified and all the elements that refer
to it will change automatically. When the workpiece is included in the program it
will always be considered in all the machining processes as a tangible element.
This can avoid problems if the user forgets to define a milling volume.

The workpiece does no generates by itself the space to be machined, it
only acts as a handy template. So it is necessary to declare what parts of this
workpiece will be processed by combining them with milling volumes, surfaces,
mill windows or directly using its faces and edges in the machining sequence.

In order to create a workpiece many alternatives are available. It can be
added and placed in the same way that the reference model was introduced
previously. Other possibility is to create a new one pressing on MFG Model then
Create and Workpiece. The steps are quite straightforward and similar to the
creation of an extrusion so they will not be explained in detail.

In this example a workpiece like the showed in Figure 36 will be used.
Only the material on the top face and the hole will be milled.

Other advantage of working with a workpiece is that it allows the use of a
graphical application that shows how the raw material is removed and how the
volumes are machined.

2.3. Option 3: Using mill windows
This is the easiest option. If the parameters are stated wisely it can generate in just
one task the whole machining process. The combination with a workpiece can be
very useful too. One possible disadvantage is that 'air milling' can occur, as with
milling volumes.

A mill window works as a 'virtual bell' that covers the model. The
projection of this bell over the model produces the space that will be machined. In
other words: every surface within the contour of the window will be milled. This

61

Figure 36: Workpiece containing
the Reference Model

allows to obtain in one single task all the milling processes necessary for volumes
and surfaces.

To create a mill window press . Some options become available on the
Dashboard:

- Silhouette window type : It is a very useful option. The main idea is
to obtain the silhouette of the model and its volumes an use it as the contour that
the tool will follow. In the Placement tab the option Keep Inside Loops can be
unchecked. By doing this the program considers all the holes, cavities, volumes,
etc. within the mill window and therefore they will be machined. In the Options
tab an offset around the contour can be added to make the mill window bigger.

- Sketch window type : This option is very flexible. The user can draw
the mill window using the sketching tools.

- Chain window type : This tool can be used to create the mill window
using edges from a closed chain.

Other options that can be defined are the depth of the mill window and
also the bounds for the tool. The tool can run strictly inside the window contour,
on the contour or outside. This configuration is very important and has to be
considered depending on the tool diameter. The tool path may be strongly affected
by this parameter.

A.3 Operation setup

In this step the user can define the environment for the manufacturing operations,
that is: tool machine, coordinate systems, fixture, etc. It is also possible to do this
while defining the operation sequence.

On the Menu Manager select MFG Setup and then Operation. The
Operation Setup window appears. Name the operation that will use that tool
machine or leave the default name. The options with a red arrow have to be
defined. The fixture is not required but it could be declared here in case it is
necessary.

62

Figure 37: Operation setup window

Press to enter the Tool Machine Setup. Name the machine and select
the type. Other options can be provided if necessary such as spindle, units, travel
of the tool, etc. For this Thesis the machine type and number of axis are enough.
For the example a milling machine with three axes is chosen. Save the changes
and close the window by selecting OK.

Now the Machine Zero has to be defined. The code generated for the tool
machine indicates in every step where the tool has to be and always refers to this
coordinate system. It is common to place it on one corner of the workpiece or the
model. It is also common to find it in the center of the top surface.

In most of the tool machines the Z axis points upwards, X axis points to
the right and Y axis points backwards, into the body of the machine. This has to
be taken into account for the future because the robot will need this reference and
it has to be coincident with the one defined here.

Select the black arrow and choose a coordinate system in the workspace. If
none of the systems are right, a new one can be created now. Choose Coordinate
System on the Datum toolbar. To place the origin on one corner of the part the
three surfaces that converge in that corner have to be selected. Pressing Ctrl allows
to add more than one surface to the Reference field. Once the new coordinate
system has appeared it must be oriented in the Orientation tab so the Z axis points
upwards and X and Y axis are coincident with the edges of the part. When the
origin is created accept by pressing OK. This new coordinate system can now be
chosen to be the Machine Zero.

A.4 Machining sequence:

In this step the program already has the model to be created, the surfaces and
volumes that will be machined, the tool and the CNC-machine. Now it is time to
define the exact process.

For this example the objective is to flatten the top surface of the model and
machine the hole. Some alternatives will be presented depending on the different
methods to define the surfaces, volumes, etc. The possible strategies are presented
in Figure 38. The user can choose depending on the preferences and the
characteristics of the model.

63

Figure 38: Alternatives available for the machining sequence

���(����'
�
*�
��

����� ��&� ������'�0���	
�
��&�������
�

������������5 6��

���
�	�����'
 ��(�	���5�����5

�����
���'�����5
 ��(�	���5�0��5

On the Menu Manager press Machining and choose NC sequence. If this is
the first operation a long list of possible NC processes becomes available, if other
tasks already exist then choose New Sequence.

In general, when one task from the list is chosen and Done is pressed the
program leads the user to the Setup Sequence list. Many options can be checked
there in order to completely define the process and make it as flexible as possible.
Some options are compulsory and checked by default and some others can be
added.

Alternative 1

Task 1: Milling surfaces and volumes

Option 1.1: Face milling using a mill surface
First, the face milling task is configured. This can be done for a raw block with the
same thickness of the final part because the process only levels a surface. Select
Face in the NC sequence list and click on Done.

The basic options required in the Setup Sequence list are: Tool,
Parameters, Retract surface and Surfaces. Other parameters can be selected to
specify further information of the process.

When the user presses Done one window appears that allows to state the
parameters for the first option checked in the list. When this window is closed by
pressing OK a second window for the next parameter arises and so on until all the
options checked in the Setup Sequence list have been fully defined.

For the face milling process the displayed windows are, in order:
- Tool: Description of the specific tool, such as mill bits, drill bits, milling

cutters, etc., that will be attached to the machine. Many tools can be introduced
and included in a list so that they can be used for different tasks.

64

Figure 39: Tools setup window. Parameters for each tool can be chosen on the
right . By clicking on Apply the new tool appears on the left.

- Parameters: This window contains a table with precise aspects of the
machining process. Some values are set by default but some others need to be
introduced (they are shown as -1 or in yellow color). Notice that the units for each
box depend on the ones declared while configuring the tool machine. Most of the
fields show a picture when they are selected to make them understandable, so they
will not be explained here.

In this Thesis this step has capital importance. The precision of the
movement, speed, depth and other characteristics for the movement of the robot
depend directly on what the user sets here.

- Retract surface: A plane parallel to the work surface where the tool is
placed before starting the process and once it has finished. It is usually located at a
certain distance from the top surface in the Z axis.

- Surfaces: Now the surface that will be machined has to be selected. If it
has been created before as a mill surface the user can choose it from the model
tree. Other options are to create a new mill surface or select one plane of the
model parallel to the retract surface.

Option 1.2: Flattening a surface using milling volume
If the raw block of material is thicker than the final part it is possible to remove
the excess. As it was explained before this can be done just by using a milling
volume or in combination with a workpiece.

This NC sequence can be configured in the same way that face milling was
done previously but now Volume has to be checked in the Setup Sequence list
instead of Surface, the other options remain the same.

65

Figure 40: Parameters menu. Some of the parameters declared here will
have affect the RAPID code for the robot

Set the Tool, Parameters and Retract surface as before and choose the
milling volume to be removed from the top of the model. Again, if the milling
volume has not been created in earlier steps it can be defined now.

Task 2: Create the hole.
The hole included in this example could be drilled or milled. To drill it, choose
Holemaking in the NC sequence list and follow the steps. Otherwise, to mill it,
select Volume as it was shown before to remove the excess of material from the
top surface.

When it comes to tool definition some considerations have to be done: if
the hole is drilled the size of the drill bit has to be consistent with the diameter and
depth of the hole. In the same way, to mill the hole the mill bit needs extra space
in order to move and produce the cavity with the required dimensions.

Alternative 2: Mill window.
If the alternative chosen is the mill window instead of surfaces or volumes the
program can generate in just one task all the necessary movements. For the
example the mill window needs to be shaped as the silhouette of the model
without keeping the internal loops and placed over the frontal surface, in some
cases the depth needs to be specified from the mill window to be the bottom of the
model.

In order to create the operation Volume has to be checked in the NC
sequence list. And then, after clicking on Done, the user will select Window
instead of Volume (this options are mutually exclusive). The last step is to indicate
the window to be used for the process.

Pro/ENGINEER produces the machining of the space within the milling
window. Notice that if a workpiece is included in the file and the mill window is
not coincident with it the material that would be removed is the one contained in
the workpiece covered by the mill window. This tries to avoid 'air milling'.

A.5 Tool path and NC code

Finally, when all the NC sequences required have been defined it is possible to see
how the tool path will look like, make some changes if it is necessary and generate
de G-code understandable for the tool machine.

On the Menu Manager choose Machining then NC sequence and there
select the created process to be checked. Some new options are available there,
click on Play Path and then Screen Play. A video player appears that shows the
tool and how it will move in order to machine the model. If any property needs to
be changed it can be done by closing the video player and clicking on Seq Setup.
There the user can check again in the Setup Sequence list the parameters that
wants to change and modify them.

If the tool path is right and no change is necessary then the G-code can be
stored in a new file. This information is also known as CL data or Cutting
Location data. On the Menu Manager press Machining and then CL Data. Output
has to be selected and then, on the Model Tree, the desired operation. In order to
include more than one operation in just one file the option Select Set is also
available. In the example showed here, if a mill window is used only the milling

66

task that uses this mill window is selected but if mill surfaces and volumes were
created instead of the window at least two operations will be necessary to obtain
the whole process. Obviously, depending on the shape of the model this can
change.

The video player that shows the tool path is brought up. It is a good praxis
to check the Compute CL option in order to recompute the process and any
possible change. In the File tab press Save as, name the G-code file and press Ok.
This way the code is saved with extension .ncl.1 and it can be read or edited in a
common text editor.

Another option to create a file containing the G-code of one single task is
to press File and Save as when the video player is displayed in the last step of the
creation of that NC sequence.

The files coming from Pro/ENGINEER containing the G-code have to be
postprocessed depending on the tool machine that will be used in the workshop.
For this Thesis the postprocessor will allow the robot to understand the commands
and move the TCP in the proper way.

67

Figure 41: Tool path obtained to
mill the frontal surface and the

hole of the model

function[vel_out,gen_trigger,enable]=state_mach(trigfin,pos_in,force_mod,real_pos)

persistent state
persistent initial
persistent contact_pos_rad
persistent contact_pos_mm
persistent tot_distance
persistent delta_dist
persistent p1

if isempty(state)
 state = -1;
end

if isempty(initial)
% Arm-rad (pos TCP= [732,6 0 1359] =[0 -10 0 0 90 0]) , to make things easy and
% depending on the workpiece, the orientation of the joints can be obtained by
% jogging manually the robot to the desired initial-position and changing here
% the joint angles read from the pendant, [0;-11;8.9;0;81.1;0] = [732,5 0 1238,3]
 initial = [0;-11;8.9;0;81.1;0]*pi/180;
end

68

if isempty(contact_pos_rad)
 contact_pos_rad = zeros(6,1);
end

if isempty(contact_pos_mm)
 contact_pos_mm = [0;0;0];
end

if isempty(tot_distance)
 tot_distance = 0;
end

if isempty(delta_dist)
 delta_dist = 0;
end

if isempty(p1)
 p1 = 0;
end

gen_trigger = 0;
enable = 0;
vel_out = zeros(6,1);
vel = 5*pi/180; % speed rad/s (= 5deg/s)

% ---- STATE DEFINITION -----

if trigfin == 0 && state == -1
 state = 0;

elseif state == 0 && trigfin ~= 0
 state = 1; % End of the gravity comp. ready to move to init-position

elseif norm(initial-pos_in) < 1e-2 && state == 1
 state = 2; % Start impedance controller

elseif tot_distance > 100 && state == 2
 state = 3; % Approaching again the initial position after moving 100mm

elseif norm(contact_pos_mm-real_pos) < 3 && state == 3
 state = 4; % If the TCP is inside a circle of 3 mm around the initial contact

% point then finish the rotation around the workpiece

elseif norm(initial-pos_in) < 1e-2 && state == 4
% If after the whole execution the robot is back at the initial position then
% finish the program by sending it to the beginning
 state = -1;

 % Reset all the values just in case the executions starts again
 contact_pos_mm = [0;0;0];
 contact_pos_rad = zeros(6,1);
 delta_dist = 0;
 tot_distance = 0;
 p1 = 0;

end

% ------ STATE OUPTUP ----------

switch (state)
 case -1
 gen_trigger = 0;
 enable = 0;
 vel_out = zeros(6,1);

 case 0
 gen_trigger = 0;
 enable = 0;
 vel_out = zeros(6,1);

 case 1 % Approaching the initial position
 vel_out = min(abs(initial-pos_in),vel).*sign(initial-pos_in);
 gen_trigger = 0;
 enable = 0;

69

 case 2 % Approaching + contact
 gen_trigger = 1;
 enable = 1;
 vel_out = zeros(6,1);

 if force_mod > 1 && norm(contact_pos_rad) == 0
 contact_pos_rad = pos_in;
 contact_pos_mm = real_pos;
 end

 case 3 % After touching but before ending the trajectory
 gen_trigger = 1;
 enable = 1;
 vel_out = zeros(6,1);

 case 4 % Algorithm finished: coming back to initial position
 gen_trigger = 1;
 vel_out = min(abs(initial-pos_in),vel).*sign(initial-pos_in);
 enable = 0;
end

% Counter for the distance to make sure that the trajectory is started and far
from the initial point
if norm(contact_pos_rad) ~= 0
 pos_prev = p1;
 p1 = norm(real_pos - contact_pos_mm) ;
 delta_dist = abs(p1-pos_prev);

 tot_distance = tot_distance + delta_dist;
end

end

70

Appendix C: Basic velocity

Program to create a velocity which assures the contact in the Contact algorithm:

function mov = basic_vel (force_mod,force_dir,trig)

% | robot | ------> +y(base)
% _______/
% |
% |
% \|/ +x(base)
% '
% 1
% ___________
% | |
% | Workpiece |
% 4 | sides | 2
% | |
% |___________|
% 3

persistent direction
persistent opt

if isempty(opt)
 opt=-1;
end

if isempty(direction)
 direction = [0,0,0];
end

if trig == 0 % While f_switch = 0 -> no movement
 opt = -1;
elseif trig ~= 0 && opt == -1 % When f_switch!=0 -> move towards the workpiece
% unless the contact has already been reached
 opt = 0;
elseif trig ~= 0 && force_mod ~= 0 % First contact reached
 opt = 1;
end

switch opt
 case -1 %No movement
 mov = [0;0;0];

 case 0 % Approaching the workpiece
 mov = [1;0;0];

 case 1 % It works around the workpiece providing velocity to recover the

%contact if it is lost somehow
 if force_mod ~= 0
 mov = [0;0;0];
 direction = [force_dir(1); force_dir(2); 0]';

 else
 mov = [-direction(1); -direction(2); 0]; %Inversion of the force

 % (because the sensor measures the force exerted on itself)
 % Other method: mov = (cross(direction,[0,0,1]))';

 end
 otherwise
 mov = [0;0;0];

end
end

71

Appendix D: Surf.m

Program surf.m to plot the position of the workpiece:

function box = surf (modul,position,trig,radi)

% Inputs: modul = force modulus (Fmod), position = position of the TCP in
% mm (real_pos), trig = end of the gravity correction (fin_trig)

a = 1; % Row counter for the new matrix containing the positions where contact
% was found

force = trig .* modul; % Removes the values of force without gravity compensation
temp = zeros(length(modul),3); % Temporary storage matrix

% Temp receives those positions where some force was detected
for i=1:length(modul)
 if force(i) ~=0
 for j=1:3
 temp(a,j) = position(i,j);
 end
 a = a+1;
 end
end

box_tmp = zeros(a-1,3);

% Zeros in the last positions of temp are removed
for i=1:a-1
 for j=1:3
 box_tmp (i,j) = temp (i,j);
 end
end

box = box_tmp;

% ---- Generates the base of the robot as a circle to plot it ----

b= -pi/2:0.01:pi/2;
rob_base= zeros(length(b),2);

for i=1:length(b)
 rob_base(i,1) = 250*cos(b(i));
 rob_base(i,2) = 250*sin(b(i));
end

% ---- Plots circles with the tool diameter at each contact point ----

cgx = sum(box_tmp(:,1))/length(box);
cgy = sum(box_tmp(:,2))/length(box);

ang = 0 : 0.01 : 2*pi;
dot = zeros (length(box_tmp)*length(ang),2);
c = 1;
block1 = zeros(length(ang),1);
block2 = zeros(length(ang),1);
interna = zeros(length(box_tmp),2);

for i = 1:length(box_tmp)
 for j = 1:length(ang)
 dot(c,1) = box_tmp(i,1) + radi*cos(ang(j));
 dot(c,2) = box_tmp(i,2) + radi*sin(ang(j));
 block1(j)= dot(c,1);
 block2(j)= dot(c,2);
 c = c + 1;
 end

 [x,y] = min (diag);
 interna(i,1)=block1(y);

72

 interna(i,2)=block2(y);

end

% ---- Graphic ----

 figure;
 plot(dot(:,1),dot(:,2),'g');
 hold on;
 plot(cgx,cgy,'o');
 hold on;
 plot(box(:,1),box(:,2),'b');
 hold on;
 plot(rob_base(:,1),rob_base(:,2),'r--');
 axis([0 1400 -350 350],'equal')
 xlabel('X-axis Base frame (mm)');
 ylabel('Y-axis Base frame (mm)');
 title('Workpiece shape (Workspace)');

end

73

Appendix E: M_adapt

Code which controls the change in the value of M for the Machining program:

function M = M_adapt (trigger,pos,cont1,cont2,Mno,Myes)

% pos = pos_irb ---> Cartesian
% trigger = gen_trigger
% pos cont1 = low (initial position of contact)
% pos cont2 = high (last position for machining task, on retract surface)
% Mno = M values for no-contact
% Myes = M values for machining task

persistent state

if isempty(state)
 state = 0;
end

cont_cont1 = norm(cont1-pos);
cont_cont2 = norm(cont2-pos);

if trigger ~= 0
 if cont_cont1 < 10 && state == 0 % First time at contact pos
 state = 1;
 elseif state ==1 && cont_cont2 < 10 % Second time at contact pos
 state = 2;
 end

else
 state = 0;
end

switch(state)
 case 0
 M = Mno;
 case 1
 M = Myes;
 case 2
 M = Mno;
 otherwise
 M = Mno;
end

end

74

Appendix F: Integral draining

Code for draining the integrals in the Machining program:

function [gen_trig,drain,repos] = drain (pos,trigger,omor,home)

% pos = pos_irb

% repos = responsible for the right orientation of the robot. Equal to 1 until
% the robot reaches omor for the first time to start the whole routine. No
% force control is applied while repos=1. The pendant rules the movement.

% gen_trig = changes to 1 when the robot is ready to start once placed at
% omor. This flag is used as trigger for the whole system

% !drain (low level active) = activates the drains for the integrals when
% the robot is finishing the RAPID program. Eliminates position error

persistent state
persistent state_omor
persistent state_home
persistent trig
persistent drai
persistent rep

if isempty(state)
 state = -1;
end

if isempty(state_omor)
 state_omor = 0;
end

if isempty(state_home)
 state_home = 0;
end

if isempty(trig)
 trig = 0;
end

if isempty(drai)
 drai = 1;
end

if isempty(rep)
 rep = 0;
end

cont_omor = norm(omor-pos);
cont_home = norm(home-pos);

if cont_omor < 1e-2 && state_omor == 0 % First time at omor
 state_omor = 1;
elseif state_home ==0 && cont_home < 1e-2 % First time at home
 state_home = 1;
elseif state_home == 1 && cont_home > 5e-2 % Indicates robot out of home because

% program in execution
 state_home = 2;
elseif state_home == 2 && cont_omor <1e-2 % Back to omor (last movement)
 state_omor = 2;
end

if trigger == 0 && state == -1 % Initial state fswitch = 0
 state = 0;
elseif trigger ~= 0 && state == 0 % fswitch != 0
 state = 1;
elseif state_omor == 2 && state == 1 % Back to omor (end of the program)
 state = 2;

75

end

switch(state)
 case -1
 trig = 0;
 drai = 1;
 rep = 1;
 case 0
 trig = 0;
 drai = 1;
 rep = 1;
 case 1
 if state_omor == 1 % Once at omor give control to controller
 trig = 1;
 drai = 1;
 rep = 0;
 else
 trig = 0;
 drai = 1;
 rep = 1; % If not at omor give priority to pendant

 end
 case 2 % By draining the integrals the robot is positioned where it should be
 trig = 0;
 drai = 0;
 rep = 0;
end

gen_trig = trig;
drain = drai;
repos = rep;

end

76

