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Introduction 

This diploma thesis is part of the collaborative research center SFB453 “High-Fidelity 
Telepresence and Teleaction”. Telepresence means that a human operator feels present in 
another, remote, or not accessible environment over a technical connection, for instance 
internet or satellite. In a Teleaction application the human operator is not only passively 
present, but he can also actively intervene at the distant place. There exists many kinds of 
Teleaction application, but here a robot is used to interfere over a haptic device with the 
distant environment. A communication over a long distance comes along with time delays 
due to the connection. These delays can influence the feedback information of the system. 
Since the High-Fidelity has to be reached, the feedback perception should not be different 
from the reality. In our application, the feedback information consists of two parts, a force 
and visualisation of the surrounding of the distant place. The feedback force is given to the 
haptic device, so the operator feels the feedback information directly. The visual images are 
rendered at the monitor screen. 

Robot systems over long distance can be found in many different areas. Here, a surgical 
operation scenario has been developed. A surgeon operates over a haptic device that is 
connected to the robot with the scalpel at the end effector. For some operation the 
knowledge or dexterous hands of specialists are needed. When these specialities cannot be in 
time at the place of emergency, the operation can be performed over the Telepresence 
system. A simulation environment for performing basic operation steps has to be design. Out 
of the simulation the operator get the visual image of the distance place and the forces acting 
on his scalpel. Different surgical simulators have been developed during the last years. The 
reasons for this simulator are not to operate over long distance, but to practice the skills of 
the surgeon inside a virtual environment before entering the operating room. These pre-
operative training procedures lead to significant improvement in surgeries [1]. Ideas can be 
taken from the existing simulators. The most difficult task of this kind of simulators is 
realistically visualizing soft tissue behaviour in real time. A virtual cutting simulator should 
supply the following basic capabilities. Collision detection is needed for the control of the 
location, direction and orientation of the scalpel and for updating the intersection with the 
cut body. Another task is the updating of the simulation so the deformation of the incision is 
capture in real time. The physical model should reflect the physical behaviour as accurately 
as possible. By looking at the users interface, a haptic force feedback is invaluable in 
providing realistic interaction behaviour, both from the visual and the palpable point of 
view. 
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The goal of the work aims to support the mentioned purposes and focuses on the 
development of setting up a whole experimental platform to perform a cut with a human 
controlled robot over a haptic device. The main topics are to find a Finite-Element-Method 
(FEM) model that can deal with the discontinuity of the incision and develop a hardware 
platform for performing a cut and comparing it to the simulation. 

The thesis is subdivided into six chapters. It begins with the presentation of the theoretical 
part of the project. It contains the description of the used physical model for the deformation 
of a body. First, the standard FEM is outlined and then the explanation of the eXtended-
Finite-Element-Method (XFEM) follows. In the end of the chapter a conclusion follows 
about how to deal with strong discontinuities in a FEM mesh surrounding.  

For the comparison of the simulation with the reality, an experiment is set up to measure the 
deformation occurring during a cut procedure. The hardware set up is explained in chapter 
three. A tension plate form is developed to give the test object a certain pre-tension before 
the cut is performed. The use of two different sensors, the force and the distance sensors, is 
also described. In the end, a CAD model of the whole experimental set is shown to explain 
how the sequence of the measurements during the cut process is.  

Chapter four contains the procedures perform on the software side of the experiment. It 
comprehends the explanation of the Mesh generation with Matlab, the calculation of the 
FEM in the programming language C++ and the scanning of the scanControl Device.  

After the presentation of the hardware and software side in the previous two chapters, the 
results of the simulation and the measurements are compared in chapter five. In different 
figures the advantages and disadvantage of the used simulations methods are pointed out. 
The last chapter summarizes results and gives an outlook for future works. 
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1 Principle of Finite Element Method 
 
There are many ways to develop a model for elastic bodies. Thereby, the goal of the 
modelling is to reproduce the elastic behaviours of the body. The most popular approaches 
of modelling elastic bodies are the mass-spring system, modal systems and the Finite 
Element Method. Every approach has its advantages and disadvantages related to 
deformation effects and computation effort. Modal systems use certain eigenvalues for 
describing the whole deformation of a body. The method has normally a small number of 
degrees of freedom and therefore can be computed fast. The disadvantages are that nonlinear 
effects, huge deformation and nonlinear material properties are not included in the model. 
To describe these effects, it is better to use the Finite Element Method. More degrees of 
freedom are used, which leads to more computational time, but the model can cope with 
large deformation. So, the FEM has been chosen for the present work. 

In section 2.1 a general formulation of the standard FEM is derived. The basic steps of the 
linear elasticity formulation of standard FEM are described. To capture singularities in an 
element, the eXtended Finite Element Method (XFEM) is introduced in section 2.2. As it 
can be seen from the name of the method, the XFEM is an extension of the standard FEM. 
The XFEM method is introduced in the 1D case to see how the shape functions behave. In 
the 2D case several deformation situation are compared and the effects of the XFEM are 
described. Instead of using the XFEM, a remeshing at the edges of the singularities gives 
also the deformation. A comparison between the two methods is given. In the end of section 
2.2 the implementation of the 3D case is shown. Finally, a conclusion shows advantages and 
disadvantages. An advice for an application under certain circumstances is given. 

1.1 Derivation of the Finite Element Method for 3D elasticity 

In engineering mechanics, all physical phenomena are dealing with differential equations, 
and usually the problem is too complicated to be solved by classical analytical method. The 
finite element method (FEM) is a numerical approach by which partial differential equations 
with given boundary conditions can be solved in an approximate manner. 

The most widely known model in solid mechanics is the linear elastic model. Based on this 
model, the FEM equations are derived in four basic steps according to [2]: 

1. Establish the strong formulation of the problem 
2. Obtain the weak form of the problem 
3. Make an element wise approximation over the entire body of the unknown function 
4. Choose the weight function in accordance with the Galerkin method 

With the help of the Cauchy equation, the strong formulation of solid mechanics is obtained. 
When the strong formulation is multiplied by an arbitrary function, the weak formulation is 
found which is the starting point for every solution of a FEM routine. In the end, the 
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Galerkin method is chosen to replace the arbitrary function with a linear approximation over 
the elements. 

1.1.1 Strong formulation of solid mechanics 

The strong formulation of a mechanical problem is obtained summarizing all forces of a 
body. For this the body is considered as a standard cube, see Figure 1.1. 

 

 

The derivative of the stress tensor is formulated for every direction of the coordinate system 
and summed up with the corresponding body forces ௜ܾ. The following equations are 
obtained: 

ଵଵߪ߲ 
ଵݔ߲

+
ଵଶߪ߲
ଶݔ߲

+
ଵଷߪ߲
ଷݔ߲

+ ܾଵ = 0, 

ଶଵߪ߲
ଵݔ߲

+
ଶଶߪ߲
ଶݔ߲

+
ଶଷߪ߲
ଷݔ߲

+ ܾଶ = 0, 

ଷଵߪ߲
ଵݔ߲

+
ଷଶߪ߲
ଶݔ߲

+
ଷଷߪ߲
ଷݔ߲

+ ܾଷ = 0. 

(1.1) 

These three equations are formulated in matrix notation, using the matrices સ෩் and ો, 

 

સ෩் =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
߲
ଵݔ߲

0 0
߲
ଶݔ߲

0
߲
ଷݔ߲

0
߲
ଶݔ߲

0
߲
ଵݔ߲

߲
ଷݔ߲

0

0 0
߲
ଷݔ߲

0
߲
ଶݔ߲

߲
⎦ଵݔ߲

⎥
⎥
⎥
⎥
⎥
⎤

 and  ો =

⎣
⎢
⎢
⎢
⎢
⎡
ଵଵߪ
ଶଶߪ
ଷଷߪ
ଵଶߪ
ଵଷߪ
⎦ଶଷߪ

⎥
⎥
⎥
⎥
⎤

  . (1.2) 

Finally, the strong formulation in matrix form can be written as 

 સ෩୘ો+ ܊ = 0. (1.3) 

1.1.2 The weak formulation of solid mechanics 
The weak formulation is obtained in three steps. First, the strong formulation is multiplied 
by an arbitrary function ݒ. In the next step the equation is integrated over the volume of the 

1 
2 

3 

 ଵଵߪ

 ଵଶߪ

 ଵଷߪ

 ଶଵߪ

 ଶଶߪ

 ଶଷߪ

 ଷଵߪ

 ଷଶߪ

 ଷଷߪ

Figure 1.1:     Stresses on standard cube 
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whole test object. In the last step, the Green-Gauss theorem is applied and the final equation 
states 

 
න ൫∇෩ܞ൯

୘
ોܸ݀ =

௏
න ܵ݀ܜ୘ܞ + න ܸ݀܊୘ܞ

௏௏
, (1.4) 

which is the weak formulation of the differential equations of equilibrium (1.1) subjected to 
the boundary conditions ܜ, called the Neumann-boundary conditions. 

As the weight vector ܞ is arbitrary, equation (1.4) holds for any constitutive relation. The 
weak formulation is often termed the virtual work equation or virtual work principle. 

1.1.3 Element wise approximation of the unknown function 

Several elements can be used for the discretization of the unknown shape function. A 
detailed discussion of 3D elements is given in Hughes[3], Gallagher[4] and Zienkiewitz and 
Talyor[5]. To save up computation time, the linear tetrahedral is used.  

 

 

The concept of isoparametric finite elements is used to perform the integration over the 
volumes of the elements. The elements are first defined in local coordinates ߦ୧ and then 
transformed in global coordinates x୧ by the Jacobi matrix, see Figure 1.2. This procedure 
was first introduced by Taig[6]. 

For a given nodal point i the shape functions Φi
e are then defined according to the Kronecker 

delta property 

 Φ୧
ୣ = ൜1 at nodal point i

0 at all other nodal points. 
(1.5) 

So the following shape functions of the tetrahedral in local coordinates are 

 

઴ሬሬሬ⃗ = ൦

Φଵ
Φଶ
Φଷ
Φସ

൪ = ൦

1− ଵߦ − ଶߦ − ଷߦ
ଵߦ
ଶߦ
ଷߦ

൪  , 
(1.6) 

4 
2 

3 

1 

Xଶ 

Xଵ 

Xଷ 

1 2 
4 

3 

 ଶߦ

 ଷߦ

 ଵߦ

Figure 1.2:      Isoparametric transformation 
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where the index of Φ௜ describes the number of the node. Furthermore the derivatives of the 
shape functions are needed to perform the Galerkin method 

 

઴క =
߲઴௜

௝ߦ߲
=

⎣
⎢
⎢
⎢
⎡
ଵߔ߲
ଵߦ߲

ଵߔ߲
ଶߦ߲

ଵߔ߲
ଷߦ߲

⋮ ⋮ ⋮
ସߔ߲
ଵߦ߲

ସߔ߲
ଶߦ߲

ସߔ߲
ଷߦ߲ ⎦

⎥
⎥
⎥
⎤

= ቎
−1 −1 −1
1 0 0
0
0

1
0

0
1

቏  . 
(1.7) 

To map the local shape function into the global, the Jacobi transformation is used. It is 
important to notice that numbering of the element cannot be chosen arbitrary due to the 
transformation. As it can be seen in the Figure 1.2, the local element is defined in a right 
handed coordinate system. The numbering of this element must be maintained in the global 
one. An easy right hand rule can be developed for controlling the numbering, see Figure 1.3. 

 

 

The vertical arrow represents the thumb and the rest of the arrows the fingers. The nodes [1 
2 3] present a plane on which the thumb points in the positive direction of the normal vector 
of the plane. In the same direction of the normal vector has to lie node 4. 

Using the definition of the local shape functions ઴క  and applying the inverse of the Jacobi 
matrix, the global shape functions are given by 

 

઴௑ = డ઴೔
డଡ଼ೕ

=

⎣
⎢
⎢
⎡
డఃభ
డଡ଼భ

డఃభ
డଡ଼మ

డఃభ
డଡ଼య

⋮ ⋮ ⋮
డఃర
డଡ଼భ

డఃర
డଡ଼మ

డఃర
డଡ଼య⎦

⎥
⎥
⎤

= డ઴೔
డకೖ

(۸)ିଵ  with   ۸ =  .઴૆(܍)܆
(1.8) 

The vector ܆(௘) contains the coordinates of the element and looks like: 

 
(௘)܆ = ቎

ܺଵଵ ⋯ ܺସଵ

ܺଵଶ ⋯ ܺସଶ

ܺଵଷ ⋯ ܺସଷ
቏  . 

(1.9) 

The elements of the derivatives of the global shape functions ઴௑  constitute the B matrix 

1 

4 

3 
2 

Figure 1.3:      Right-Hand-Rule 
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۰ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ଵߔ߲
߲Xଵ

0 0
ଶߔ߲

߲Xଵ
0 0 ⋯

0
ଵߔ߲
߲Xଶ

0 0
ଶߔ߲

߲Xଶ
0 ⋯

0 0
ଵߔ߲
߲Xଷ

0 0
ଶߔ߲

߲Xଷ
⋯

ଵߔ߲
߲Xଶ

ଵߔ߲
߲Xଵ

0
ଶߔ߲

߲Xଶ
ଶߔ߲

߲Xଵ
0 ⋯

0
ଵߔ߲
߲Xଷ

ଵߔ߲
߲Xଶ

0
ଶߔ߲

߲Xଷ
ଶߔ߲

߲Xଶ
⋯

ଵߔ߲
߲Xଷ

0
ଵߔ߲
߲Xଵ

ଶߔ߲

߲Xଷ
0

ଶߔ߲

߲Xଵ
⋯
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  . 
(1.10) 

 

1.1.4 The Galerkin method 
In step 4, the Galerkin method is applied to the weak formulation. First, the displacement is 
approximated by the shape functions, multiplied by the displacement values at the nodes 

ܝ  = ૖(1.11) .܉ 

The Galerkin method means that the weight vector ܞ is chosen according to 

ܞ  = ૖(1.12) .܋ 

The function ܞ is arbitrary. So, the matrix ܋ is arbitrary, which leads to 

 ∇෩ܞ = where ۰   ,܋۰ = ∇෩૖. (1.13) 

Equation (1.13) insert in the weak FEM formulation gives 

 
୘܋ ቆන ۰୘ોܸ݀ −

௏
න ૖୘ܵ݀ܜ −
ௌ

න ૖୘ܸ݀܊
௏

ቇ = 0. (1.14) 

As the function ܋୘ is arbitrary, the function is cancelled out by the zero on the left side of 
equation (1.14) and the following equation is obtained 

 
න ۰୘ોܸ݀ =
௏

න ૖୘ܵ݀ܜ +
ௌ

න ૖୘ܸ݀܊
௏

. (1.15) 

The relation between stresses and strains is called the constitutive relation and a variety of 
such relations have been established for instance elasticity, plasticity, viscoelasticity, etc. 
The simplest constitutive theory is the linear elasticity and is represented in 1D by Hook’s 
law in 1676 

ߪ  = ܧ ∙  (1.16) , ߝ
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where the material constant E is named Young’s modulus. This expression shows that the 
material response is path-independent, i.e. that there exists a one-to-one relation between 
stress and strain 

 

ો =

⎣
⎢
⎢
⎢
⎢
⎡
ଵଵߪ
ଶଶߪ
ଷଷߪ
ଵଶߪ
ଵଷߪ
⎦ଶଷߪ

⎥
⎥
⎥
⎥
⎤

;۲ = ൦

ଵଵܦ ଵଶܦ ⋯
ଶଵܦ ଶଶܦ ⋯
⋮
଺ଵܦ

⋮
଺ଶܦ ⋯

    

ଵ଺ܦ
ଶ଺ܦ
⋮
଺଺ܦ

൪ ;  ઽ =

⎣
⎢
⎢
⎢
⎢
⎡
ଵଵߝ
ଶଶߝ
ଷଷߝ
ଵଶߛ
ଵଷߛ
⎦ଶଷߛ

⎥
⎥
⎥
⎥
⎤

  . 
(1.17) 

For an isotropic material, properties are the same in all directions, and the following 
constitutive matrix is obtained 

۲ =
ܧ

(1 + 1)(ݒ − (ݒ2

⎣
⎢
⎢
⎢
⎢
⎡
1 − ݒ ݒ ݒ 0 0 0
ݒ 1 − ݒ ݒ 0 0 0
ݒ ݒ 1− ݒ 0 0 0
0 0 0 0.5(1− (ݒ2 0 0
0 0 0 0 0.5(1 − (ݒ2 0
0 0 0 0 0 0.5(1 − ⎦(ݒ2

⎥
⎥
⎥
⎥
⎤

.  
(1.18) 

The coefficients ܧand ݒ are Young’s modulus and Poisson’s ratio. 

Applying linear elasticity ો = ۲ઽ and ઽ = ∇෩ܝ =  ,the equation follows as , ܉۰

 
ቆන ۰୘۲۰ܸ݀

௏
ቇ܉ = න ૖୘ܵ݀ܜ +

ௌ
න ૖୘ܸ݀܊,
௏

 (1.19) 

 
and ۹ = ቆන ۰୘۲۰ܸ݀

௏
ቇ, (1.20) 

where K is the stiffness matrix. The boundary conditions are described in the traction vector 
 which ܝ which is called the Neumann boundary condition and in the displacement vector ܜ
is called the Dirichlet boundary condition [2]. These two boundary conditions are disjoint. 
That means that exactly one condition has to be valid at every boundary section. 
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1.2 General Formulation of Extended Finite Element Method 

The extended finite element method (XFEM) is probably the most popular enriched method. 
It allows a local enrichment in subregions of the domains. In practice, it is mainly used in 
applications that involve discontinuities. A large number of such applications can be found: 
material interfaces, cracks, shocks, boundary layers, shear bands, etc. In this project, the 
XFEM method is used for describing a cut through an elastic body. 

The general formulation of an XFEM approximation of a function u(x) is of the following 
form 

 
(ݔ)ݑ = ෍߶௜

௡

௜ୀଵ

௜ݑ(ݔ) + ෍߶௝∗ଵ
௡

௝ୀଵ

(ݔ) ௝߰
ଵ(ݔ) ௝ܽ

ଵ + ⋯+ ෍߶௝∗௠
௡

௝ୀଵ

(ݔ) ௝߰
௠(ݔ) ௝ܽ

௠ . (1.21) 

 

The first part of the sum is the standard FEM approximation with the shape function 
߶௜(ݔ) and the displacements ݑ௜ at the nodal points. The rest of the term contains the 
Extended FEM part, where ߰௝(ݔ) are the discontinuous enrichment functions and ௝ܽ are the 
added nodal DOF. The shape functions of the added DOF ߶௝∗(ݔ) are not necessarily 
identical to the shape functions of the corresponding nodes. As starting point, the enriched 
shape functions are equal to the non-enriched ones [7]. 

The XFEM approximation consists of a standard FEM approximation plus additional 
enrichments. The XFEM is based on the partition of unity concept [2]. The functions ߶௝∗(ݔ) 
build a partition of unity in local parts of the domain 

 
෍߶௝∗
௡

௜ୀଵ

(ݔ) = ݔ∀  1 ∈ Ω௞∗ ,∀݇ = 1, … ,݉. (1.22) 

Using XFEM several kinds of discontinuities can be modeled. These discontinuities are 
divided in two main groups the strong ones and the weak ones. A weak discontinuity is 
characterized for instance by a kink in the displacement, i.e. a jump in the gradient. In our 
case, the cut is meant to be a strong discontinuity, because it has already a jump in the 
displacement. 

The function ߰௝  is called the global enrichment function. It defines the level sets of the 
discontinuity. Most widely used in XFEM is the Heaviside function which leads to identical 
results as the sign-function because they span the same approximation space, 

(ݔ)߰  = ൯(ݔ)߶൫ܪ = ൜0 ∶ (ݔ)߶ ≤ 0
1 ∶ (ݔ)߶ > 0   . (1.23) 

The enrichment of the nodes impacts all elements sharing the enriched nodes, i.e. the one 
ring of neighbours of the element containing the cut. Due to the additional enrichment terms 
the shape functions of the XFEM do not have the Kronecker delta property in general. 
Consequently, the displacement of the enriched nodes has to be computed as a sum of the 
components ݑ௜ + ߰௜ܽ௜. This fact also complicates the treatment of the boundary conditions. 
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To avoid the problem, the shifted enrichment functions are used instead,  

 
߰௜(ݔ) =

(ݔ)ܪ ௜ܪ−
2

, (1.24) 

where ܪ௜ is the value at the i-th node. The division by 2 ensures the Kronecker delta 
property. The effect of shifting is that the enrichment contributions only appear within the 
element, which leads to an enormous simplification of the implementation [8]. 

1.3 Comparison the XFEM method with the FEM 

In this subchapter straight line cuts are performed in different meshes by using different 
approximation functions. Starting with the 1D case the course of the shape function over the 
cut can be visualized for better understanding. Afterwards 2D elements are used. Thereby 
some effects of how the XFEM method reaction to certain loadings can be seen. There is 
also done a comparison to standard FEM with remeshing and to deleting the cut element. 
Finally, 3D elements are cut. The same comparison is performed and the use of the XFEM 
can be seen. 

1.3.1 1D elements 

Starting point for the implementation of the XFEM is the 1D bar element. Trying to keep the 
solid problem only 1D leads to an unstable system. Putting bars in a row and cut one of them 
in the middle, the static balance of forces is not secured. 

One easy way to solve this problem is to support the cut element at the end by two other 
bars. To get nearly a 1D case, the cut bar is situated on the x-axis and supported by two bars, 
one below and one above. It is demonstrated in the Figure 1.4. 

 

 

Figure 1.4:      Truss structure, left standard FEM and right XFEM 

By cutting a 1D bar in the middle, no load transmission will take place between the end 
nodes. From this it follows that the cut bar can be left out and then the other bars can be 
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calculated after the standard FEM. In Figure 1.4, the XFEM mesh is shown on the right side, 
where the bar 2 will be cut in the middle. On the left side, the FEM mesh is plotted with the 
bar number 2 missing. 

The XFEM is used with the Heaviside-enrichment function which is typically used for 
strong discontinuities and fully decouples the two parts of the domain.  

The shape function of the enriched element 2 is given by, 

ଵܯ  = ଵܰ(ݔ)ൣܪ൫߶(ݔ)൯ −  ,൯൧(ଵݔ)߶൫ܪ
ଶܯ = ଶܰ(ݔ)ൣܪ൫߶(ݔ)൯ −  ൯൧, (1.25)(ଶݔ)߶൫ܪ

 

which are decomposed into a left, negative part, and a right positive part, 

ଵܯ 
ି = ଵܰ(ݔ) ൤ܪ ൬ݔ −

1
2
൰ − ܪ ൬ݔଵ −

1
2
൰൨ = ݔ) − 1)(0− 0) = 0, 

ଵܯ
ା = ଵܰ(ݔ) ൤ܪ ൬ݔ −

1
2
൰ − ܪ ൬ݔଵ −

1
2
൰൨ = ݔ) − 1)(1 − 0) = 1−  ,ݔ

(1.26) 

for the second node, 

ଶܯ 
ି = ଶܰ(ݔ) ൤ܪ ൬ݔ −

1
2
൰ − ܪ ൬ݔଶ −

1
2
൰൨ = −0)(ݔ) 1) =  ,ݔ−

ଶܯ
ା = ଶܰ(ݔ) ൤ܪ ൬ݔ −

1
2
൰ − ܪ ൬ݔଶ −

1
2
൰൨ = 1)(ݔ) − 1) = 0, 

(1.27) 

 

The enriched shape functions are plotted in Figure 1.5 and compared to the FEM shape 
functions.  

 

 

In the middle of element 2, the enrichment shape functions ܯଵ and ܯଶ have a step to zero. 
This represents the cut in the bar and decouples the two nodes from each others, so there is 
no longer a connection between the two nodes. 

The derivatives of the shape function ܯଵ and ܯଶ are ,ܰ௫
(ݔ)ି = [−1 1 0− 1] and ,ܰ௫

ା(ݔ) =
[−1 1− 1 0] and for the stiffness matrix follows, 

 
۹ =

ିܣܧ

૛
  ∙ ଵܯ

ଵܯ் +
ାܣܧ

૛
  ∙ ଶܯ

ଶܯ் , (1.28) 
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Figure 1.5:      Shape function of the cut element 
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۹ = ିܣܧ ൦

0.5 −0.5 0 0.5
−0.5 0.5 0 −0.5

0 0 0 0
0.5 −0.5 0 0.5

൪ + ାܣܧ ൦

0.5 −0.5 0.5 0
−0.5 0.5 −0.5 0
0.5 −0.5 0.5 0
0 0 0 0

൪  . 

It should be denoted that this matrix is also singular after introduction of boundary 
conditions, because it fully decouples the right part of the bar and no Dirichlet boundary 
conditions are imposed there. 

 

Figure 1.6:      Deformed truss structure, left standard FEM and right XFEM 

 
To obtain a non-singular stiffness matrix new Dirichlet boundary conditions at the enriched 
element stiffness matrix have to be added. After the cut, the enriched part only can act in x-
direction which means that the degrees in y-direction are equal to zero. Using this added 
boundary condition the global stiffness matrix is non-singular and can be solved for every 
applied force [9]. 

1.3.2 2D elements 
With the 2D elements, the different techniques can be shown how to implement the XFEM 
method. Rectangle elements are used as 2D elements. The shape functions are easy to derive 
and this type of element is axially symmetrical, which will lead to symmetric deformation, 
when a symmetric load is applied. This is an easy check whether our FEM programme is 
working correctly. 

Another reason for the use of rectangles is that the shape of the elements matches with the 
projection of a block in a plane. As the goal of the present work is to cut in a straight line 
through a body, the 2D mesh consisting of rectangles comes equates in some situations the 
3D simulation. 

1.3.2.1 Creation of the meshes 

Three different meshes are used in this subchapter, a XFEM mesh, a FEM mesh where the 
cut is remeshed and a FEM mesh where the cut element is completely delete. 
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Figure 1.7:      Mesh, left XFEM and right FEM 

 
In Figure 1.7, on the left hand side the XFEM mesh is plotted and on the right hand side the 
FEM mesh with remeshing. There are six elements connected to each other for the XFEM 
case. The red numbers represent the numbering of the nodes and the blue numbers the 
numbering of the elements. At the nodes [1 5 9], a deformation in the negative x-direction 
and at the nodes [4 8 12] on the opposite x-direction takes place. Through all tests, the offset 
of the deformation is kept equal at 0.4 mm. The cut will take place in the middle of element 
5 along the y-axis, represented by the red dashed line. 

To develop the same model using conventional FEM several steps have to be performed. A 
remesh is needed to describe the discontinuity at the cut edges, so there has to be added 
additional element around the cut surface. When only dividing element 5, the convergence 
criterion is violated. It is postulated that the approximation must be continuous over the 
boundaries of every element, see [2], so element 2 has to be also divided. By adding a new 
node 16 at the node 15 a gap between the elements 6 and 7 can occur, see Figure 1.7 on the 
right hand side. 

 

Figure 1.8:      Mesh, FEM element missing 

In the last mesh, the same mesh is taken as for the XFEM calculation, but the five element is 
deleted out of the mesh, see Figure 1.8. 
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1.3.2.2 Comparison between the different meshes 

Comparison between the meshes should be done with caution. As the FEM in general 
represents an approximation over the whole test body, the size and number of the elements 
have an influence on the result.  

For instance, more nodes and more elements are used in the FEM with remeshing compared 
to the XFEM mesh. To get an idea, how huge the difference regarding to the different 
meshes are, the problem is stated without the cut. This means that the element 5 is not 
enriched for the XFEM and for the FEM node 16 is not added to the mesh, so there will be 
no cut present in the meshes. The difference of the deformation regarding to the different 
mesh techniques are shown in Figure 1.9. 

 

Figure 1.9:      Deformed mesh, left FEM and right XFEM 

The deformation is symmetric around the y-axis. The nodes [2 6 10] are taken for the 
comparison. There are slight differences in the deformation. In Figure 1.10 the two different 
deformed meshes are plotted over each other. 

 

Figure 1.10: Comparison of FEM and XFEM without cut 
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To investigate the error, the absolute and the relative deviation is calculated.  

 ݁௔௕௦ = ݁ଵ − ݁ଶ 
(1.29) 

 ݁௥௘௟ =
݁ଵ − ݁ଶ
݁ଶ

 (1.30) 

The absolute deviation is the difference of the two displacements. The relative is based on 
the deviation. In Table 1.1, the absolute deviation is on the right side and on the left the 
relative. 

Absolute Deviation [mm] Relative Deviation to displacement at the node [%] 

Node 2 6 10 Node 2 6 10 
x-direction 0.00055696 -4.02E-04 0.00055696 x-direction 0.42448 0.2617 0.42448 
y-direction 0.000474 5.63E-18 -0.000474 y-direction 0.37519 41.05 0.37519 

Table 1.1: XFEM compared to FEM 

The values of the absolute deviations are small. Looking at the relative deviations, the only 
value which stands out is the relative deviation of node 6 in y-direction. At that node, the 
absolute deviation has the potency of -18. In numerical terms, it means that the displacement 
is zero. Comparing the zero displacement to the absolute value does not make sense in this 
context.  

The XFEM method is also compared to a different remeshing method. Instead of creating 
new nodes around the edges of the cut, the cut element is completely left out. 

Three different meshes (XFEM, FEM with remeshing around the edges, FEM with deleting 
the cut element) are now obtained and compared to each other to see the effects of the 
deformations. 

The first comparison is done between the two FEM meshes, 



Principle of Finite Element Method 22 

 

Figure 1.11: Comparison FEM with cut and FEM element missing 

Absolute Deviation [mm] Relative Deviation to displacement at the node [%] 

Node 2 6 10 Node 2 6 10 
x-direction -0.0046612 0.05773 0.038005 x-direction 4.3285 34.461 9.4862 
y-direction 0.0081407 -0.0021815 -0.046444 y-direction 4.1937 4.0929 598.29 

Table 1.2: Absolute/relative deviation between FEM with cut and FEM element missing 

The biggest difference between the two deformations is in node 10. This means that the 
element 6 of the FEM mesh with cut has the same stress situation regarding to directions as 
the element 4 in the other mesh. This matter can also be seen, by looking at the movements 
of the free edge 16 in the FEM mesh with remeshing compared to the node 10 of the other 
mesh. As the middle element is missing, the nodes 10 have be compared. But the node ten is 
not a free edge in the FEM mesh with remeshing, so two different situations are modelled 
which leads to two different solutions. Later in this chapter, the important of the free edges 
will be more outlined. 

In the second comparison, the deformed XFEM mesh is plotted together with the defomed 
FEM mesh with cut and as reference mesh is the not deformed FEM with cut given, 
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Figure 1.12: Comparison FEM cut to XFEM cut 

Absolute Deviation [mm] Relative Deviation to displacement at the node [%] 

Node 2 6 10 Node 2 6 10 
x-direction -0.0045596 0.057761 0.039761 x-direction 4.2342 34.48 9.9245 
y-direction 0.0088591 -0.0013216 -0.050537 y-direction 4.5638 2.4796 651.01 

Table 1.3: Absolute/relative deviation between FEM with cut and XFEM with cut 

In the table above, the biggest value for the relative deviation occurs at node ten in the x-
direction. Comparing the two Table 1.2 and Table 1.3 shows that the deviation is similar in 
all values. It seems that the XFEM method cancels out the element and creating a free edge 
at node 10, which leads us to the next comparison between the deformed XFEM mesh and 
the deformed FEM mesh with the middle element missing, see Figure 1.13. 
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Figure 1.13: Comparsion XFEM cut to FEM element missing 

Absolute Deviation [mm] Relative Deviation to displacement at the node [%] 

Node 2 6 10 Node 2 6 10 
x-direction 0.0001016 3.06E-05 0.0017557 x-direction 0.098617 0.013597 0.40026 
y-direction 0.00071842 0.00085991 -0.0040924 y-direction 0.3863 1.5499 10.58 

Table 1.4: Absolute/relative deviation between FEM and XFEM  

Having a look in the table above, all nodes are concurrent. Only the node ten has a relative 
deviation of 10.58. But it must be taken into account that this value was before by around 
600, so it is a better conformance now. It seems that the free edge of the FEM mesh 
conforms to the missing element more the XFEM method than to the remeshing method. 

1.3.3 3D elements 

As in the 2D case, there will be performed the same comparison in the 3D case. In the 3D 
case it is more difficult to develop a FEM mesh using the “remeshing method” which can be 
compared to the XFEM. A cube with the side length of one is taken and divided up into five 
tetrahedral, see Figure 1.14. 
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Figure 1.14: Standard cube divided into 5 tetrahedrons 

The cut is performed in the element with the edges [5 2 7 6]. The cut plane is situated in the 
surface of the y-, z-axis with the offset of 0.5. The cut surface of the element is represented 
by the red triangle in Figure 1.14. As described in the previous chapter, the convergence 
criterion has to be valid. This means that in the remeshing situation, new nodes are added 
around the edges of the cut. The neighbour elements have to be also subdivided due to the 
boundary continuity law. 

When the cut surface coincides with an edge of an element, a new node is created which can 
be seen in Figure 1.15, 

 

Figure 1.15: Standard cube with added nodes in cut surface 

Out of the mesh shown in Figure 1.15, the three different mesh(XFEM, FEM with 
remeshing and FEM with cut elment missing) can be created. For the XFEM case the node 
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16 is left out and the cut element possesses the nodes [12, 13, 7, 8], shown in Figure 1.16. 
The sides of the cut element are marked red. 

 

Figure 1.16: XFEM mesh 

For the remeshing situation the node 16 is add on the edge of the corners 7 and 8. As in the 
2D case the cut element is subdivided into two elements [12, 13, 7, 16] and [8, 13, 12 16]. 
By adding the new node 17 at the node 16, a gap between the two elements are possible. 

 

Figure 1.17: FEM mesh with cut element 

For the last mesh the FEM with the element missing the cut element [13, 12, 7, 8] is left out. 
Now the nodes where x equals one are pulled in x-direction by 0.3 mm, but they still can 
move freely in y- and z-direction. First a comparison between the two FEM methods is 
performed, 
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Figure 1.18: Comparsion FEM element missing to FEM cut 

Absolut Deviation [mm] 

Node 2 3 4 5 8 9 10 12 13 14 15 
x-dir. -0.0002 0.0000 0.0000 0.0009 0.0000 0.0000 -0.0019 -0.0013 -0.0027 0.0003 0.0001 
y-dir. -0.0040 -0.0030 -0.0034 -0.0035 0.0040 -0.0027 -0.0023 -0.0077 -0.0029 -0.0031 -0.0037 
z-dir. 0.0047 0.0029 0.0052 0.0039 -0.0012 0.0058 0.0048 0.0058 0.0077 0.0039 0.0051 

Relativ Deviation to displacement at the node [%] 

Node 2 3 4 5 8 9 10 12 13 14 15 
x-dir. 0.1178 0.0000 0.0000 0.5734 0.0000 0.0000 1.2681 0.8992 1.6573 0.2422 0.0477 
y-dir. 8.8145 4.8241 9.7397 11.3430 10.1910 5.9507 5.0375 19.5800 16.7860 8.0146 31.0840 
z-dir. 11.9950 20.7890 11.5300 10.7200 1.5982 10.1870 8.1124 53.2320 14.6700 70.3960 19.1300 

Table 1.5: Absolute/relative deviation between FEM with element missing and FEM cut 

In the 3D case it is hard to see effects of the deformation straight from the visualization of 
the mesh. It is better to compare the absolute and relative deviations. In Table 1.5 the 
absolute deviation for the FEM remeshing method compared to the FEM without the cut 
element are compared. All absolute deviations which are higher than 0,004 are highlighted 
yellow. For the relative deviation, the nodes with higher value of 20, are highlighted. The 
differences of the relative deviation are especially huge in z-direction. 

In Figure 1.19 a comparison is made between the XFEM method and the FEM with 
remeshing. The red line represents the XFEM mesh and the green the FEM with remeshing. 
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Figure 1.19: Comparison XFEM to FEM remeshing 

Absolut Error [mm] 

Node 2 3 4 5 8 9 10 12 13 14 15 
x-direction 0.0008 0.0000 0.0000 -0.0015 0.0000 0.0000 0.0028 0.0047 0.0048 -0.0005 0.0001 
y-direction 0.0061 0.0076 0.0078 0.0058 0.0040 0.0079 0.0045 0.0089 0.0056 0.0055 0.0058 
z-direction -0.0073 -0.0105 -0.0081 -0.0057 -0.0088 -0.0088 -0.0069 -0.0095 -0.0100 -0.0057 -0.0076 
Relativ Error to displacement at the node [%] 

Node 2 3 4 5 8 9 10 12 13 14 15 
x-direction 0.6194 0.0000 0.0000 1.0389 0.0000 0.0000 1.8445 3.1099 2.9459 0.4594 0.0684 
y-direction 12.4420 11.8770 24.6890 21.3060 11.2470 18.5780 10.5270 18.9910 39.3320 15.3850 37.4180 
z-direction 21.0990 94.4030 20.2260 17.5230 11.8540 13.8690 10.7320 56.5220 16.5620 59.8600 34.8290 

Table 1.6: Absolute/relative deviation between XFEM and FEM remeshing 

In Table 1.6:  the absolute and relative deviation of the comparison between the XFEM and 
FEM remeshing is performed. The highlighting system is used as above. Here the y- and z-
direction are out of place. All deformation in y- and z-direction mismatches. 
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Figure 1.20: Comparison XFEM cut to FEM element missing 

Absolut Error [mm] 

Node 2 3 4 5 8 9 10 12 13 14 15 
x-direction 0,0006 0,0000 0,0000 -0,0007 0,0000 0,0000 0,0009 0,0033 0,0022 -0,0003 0,0002 
y-direction 0,0021 0,0047 0,0044 0,0023 0,0080 0,0052 0,0022 0,0012 0,0027 0,0024 0,0021 
z-direction -0,0026 -0,0076 -0,0029 -0,0018 -0,0100 -0,0029 -0,0021 -0,0036 -0,0023 -0,0018 -0,0024 
Relativ Error to displacement at the node [%] 

Node 2 3 4 5 8 9 10 12 13 14 15 

x-direction 0,5024 0,0000 0,0000 0,4595 0,0000 0,0000 0,5998 2,2386 1,3375 0,2161 0,1161 
y-direction 4,7245 7,6259 12,5450 7,5469 20,2920 11,5220 4,9596 3,1297 15,9440 6,1372 17,9650 
z-direction 6,5737 53,9880 6,3636 4,9248 13,2630 5,0954 3,4907 33,3770 4,3218 31,6030 9,0357 

Table 1.7: Absolute/relative deviation between XFEM and FEM element missing 

A better conformity is achieved in the last case when the XFEM method is compared to the 
standard FEM with the cut element missing. 
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1.4 Discussion 

The goal of the work is the real-time simulation of a cut procedure. Additionally, the visual 
effects of the deformation should be obtained. The big advantage of the XFEM is that there 
is no need to mesh and remesh the discontinuity surfaces. Comparing XFEM and FEM, the 
computational cost of the enrichment is lower than the cost for remeshing due to the 
stiffness matrix. Using the XFEM, the visualisation of the cut edges are missing or have to 
be done in a post processing algorithm, because the discontinuity is restricted to the edges of 
the mesh. The cutting force is predicted by a different model which is decoupled from the 
FEM calculation. It means that there are two models, one for visualisation and one for 
predicting the cut forces. There could be a possibility to get the two models together in the 
XFEM. The origin of the XFEM is the propagation of various discontinuities through a 
material. The amount of propagation is defined by the load at the break point of the 
discontinuity. This is formulated in an equation. Instead of defining the load as propagation, 
the velocity of the knife of the body can be taken, so the force model for the cut and the 
deformation model can be integrated. 

As the remeshing can be really time consuming, it can be considered to delete the cut 
element out of the mesh instead of remeshing around the edges of the singularity. It can be a 
fair approximation, considering that small chippings are generated by a cut. The elements 
must have the same size as the absorbed material, so the mesh has to be fine around the cut. 
In medical surgeries, the position of the cut is normally known before the operation. By 
refining the area of the cut, an easy cut algorithm can be implemented. There are two ways 
of cutting the element. First, if the cut is near the edges of the element, it takes place 
between the elements by decoupling the nodes. Second, if the cut is in the middle, the entries 
of the stiffness matrix are deleted, so no connection between the nodes exists. 



Experimental set-up 31 

2 Experimental set-up 
In this chapter there is given a description of the hardware components of the experimental 
set-up. The tension platform fulfils the task to set the test object under a certain pre-tension 
before the cut. The platform is also used for determine the material properties of the silicone. 
The scanning device scanCONTROL 2700-100 from the company Micro Epsilon allows 
measuring the real deformation of the test object around the cut edges and comparing it in a 
post-processing algorithm with the results of the simulation. In a previous project at the 
department of applied mechanics at the Technical University of Munich, a modular robot 
has been developed by Mr. Dr. Robert Engelke. The robot is called the blue robot due to his 
painting. A scalpel from the company Sollingen is used to perform the cut. It is mounted to 
the end effector of the blue robot. 

2.1 Tension platform 

To get a predefined tension in the test object, a tension platform has been developed. Using 
an adjustment mechanism, a predefined tension can be exposed to the object. In Figure 2.1, a 
CAD drawing of the tension platform is shown. 

 

Figure 2.1:      Tension platform 

The tension platform consists of the following components: 

1. Ground plate 
2. Adjusting mechanism 
3. Mounting of test object 
4. Force sensor 
5. Profile rail 
6. Profile trolley 
7. Test object 
8. Hard silicon for mounting 
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9. Cut line of scalpel 
10. Stretching block 
11. Fixing of adjustment mechanism 

 
In the following a detail description of the shape, material type and mounting of the test 
object will given. 

2.1.1 Shape of test object 
The tension platform should be suitable for different kinds of test objects. Within of the 
collaborative research project SFB 453 an abdominal surgery should be imitated by a test 
object. The platform can be used for two applications. In Figure 2.1, the first application is 
shown, where the fixing block of the adjustment mechanism is mounted at a distance of 300 
mm to the stretching block. In this application, test objects of the size of 150x300 mm can 
be mounted. In the second application, the fixing block can be disarrange to the end of the 
ground plate, so test objects of the size 300x300mm fit in. The height of the stretching block 
is 100 mm. An average human being has a maximal abdominal of 200x200 mm, so platform 
can be used for later experiments on more complex test objects. 
First, a rectangle block is chosen for the shape of the test object. The block is easy to mesh 
for the later FEM simulation and the mould will not be of a complicated shape. 

2.1.2 Mounting of the test object 

To ensure a proper mounting of the test object, different techniques have been investigated. 
Silicone possesses the property not to stick to anything, so it cannot be just glued to a plate. 
The first idea was to clip the edges of the silicone block between two metal plates. There 
occur two problems. At first it is hard to define the boundary condition for the later 
simulation and secondly the silicone is a soft tissue material which will slip through the 
metal plates after a certain tension.  
Another idea was to mould the fixing into the test object, see Figure 2.2. As fixing an 
aluminium bar was chosen. Now the bar can be mounted over screws to the stretching block. 
The same is done for the fixing at the adjustment mechanism. By pulling the two ends apart, 
tension is applied to the test object. Where the edges of the moulded bar touch with the 
silicone block, a tension peak will occur, so a cracks occurs already after a small amount of 
load and will lead to a break of the mounting. 
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Figure 2.2:      Mounting moulded into the test object 

The developed solution is to use two different kinds of silicones and glue them together by 
themselves, see Figure 2.3. The middle part has much lower elasticity than the two outer 
parts. The test object can be mounted to the tension platform by squashing the stiffer silicon. 
The hard silicone block for fixing also deforms at a certain loading and will influence the 
deformation of the soft part. So, there should be drawn attention that there is no significant 
deformation of the hard silicon part. 

 

Figure 2.3:      Mounting moulded into the test object 

The procedure of creating the silicone blocks is to first mould the two stiffer silicone blocks. 
Afterwards a mould with two open ends is used. At the open ends the two stiffer silicone 
blocks will be placed, so during the moulding process the middle part can glue to the outer 
parts. 

2.1.3 Material properties of test object 

The material properties have to fulfil certain requirements, as well being similar to the 
human skin as being suitable for the FEM simulation. As described in the previous chapter 
the material law is linear elastic, which means that the chosen material has to satisfy this 
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condition. The material should also have the behaviour of a soft tissue material, to deform 
like a human skin. This is a trade off, because most soft tissues have nonlinear material 
behaviour. As a solution soft silicone rubber is chosen. It is not so soft as skin, but as it can 
be seen in the chapter “Result”, silicone rubber deforms linear to certain loadings. There 
exist many types of different silicones rubber. As another requirement is to create different 
kind of shapes, a moulding material is used to create the wanted shapes by our self. The 
chosen moulding material comes from the company Breddermannm Kunstharze, and is 
named silicone-moulding material, shortening SI6GB. The first two letters of the shortening 
stand for silicone and the number stands for the hardness of the material. It is two 
component combinations of silicone rubber and hardener with a fast processing time.  

In our application the test object is a block consisting of silicone. In the adjusting 
mechanism, the vertical displacement of the test object can be adjusted by a jack screw over 
the round grip at the end. The profile rail prevents movement the in the y-axis and ensure 
that the force sensor measure only forces in x-direction. The friction of the profile rail is 
small compared to the forces in x-direction. 

To determine the material properties of the silicone which are not given by the producer, the 
force sensor from the company Schunk is used. The displacement between the two tension 
plates is measured and plotted against the corresponding tension. The elasticity modulus can 
be found with the help of the Hooks law. For Poisson ratio the displacement is compared to 
the side contraction of the test object. A more detail description will be given in the chapter 
five “Result”. 

2.2 Description of the “Blue robot” 

The cut is performed by the blue robot (see (1) in Figure 2.4), which has been developed in a 
previous project at the Institute of Applied Mechanics. There exists different configuration 
for the robot. The chosen configuration has four joints, see Figure 2.4. For the first step the 
cut is of a straight line, so the first joint is locked. For more information about the set up of 
the robot, see [10]. For a detail description of the inverse kinematic of the robot 
configuration and of the trajectory, it is referred to [11]. 
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Figure 2.4:      Test bench with blue robot 

 

2.3 2D Scanning of test object 

A rectangular solid, which is used in this part of the project, can be described by straight 
lines. In later projects, more complex shapes will be used. For this purpose, the exact 
dimension of the test object has to be determined. After obtaining the outer dimension of the 
test object, a mesh generator helps to fill the object with finite elements. The device 
scanCONTROL is mounted to the end effector of the blue robot to scan the outer surface of 
the test object. There are two different configurations to mount the 2D scanner on the end 
effector, see Figure 2.5. 

 

Figure 2.5:      Different configuration for mounting the scanCONTROL 
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In Figure 2.6, the scanning of a test object is shown. In this work the scanning is not done 
for the purpose of generating a mesh, but the results of the simulation will be compared to 
the real deformation by the scanCONTROL. 

 

Figure 2.6:      Scanning of the test object 

The Scanning configuration consists of the following components: 
1. Tension platform 
2. Blue Robot 
3. scanCONTROL 
4. Effective range 

Two routines are written for the scanning the object. At first the scanning coordinates are 
transformed via the direct kinematic into the absolute coordinate system. In this approach 
the scaling of the robot is crucial. If the dimension of the robot is not exact determined, the 
different measurements from different position of the blue robot cannot be compared to each 
other.  

In the second routine the edges of the test object are detected by the scanCONTROL and 
taken origin for the absolute coordinate system. It means that the absolute coordinate system 
lies on the top of the silicone block. A more detailed description of the two routines can be 
found in chapter 4 “Software Implementation”. 

2.4 Fixing of the scalpel at the robot 

The scalpel is mounted to the end effector of the blue robot. For the configuration of the blue 
robot, the scalpel is mounted to modul 70 of the robot, see Figure 2.7. 
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Figure 2.7:      Fixing of the scalpel to the end effector 

The mounting of the scalpel consists of the following components: 
1. Scalpel 
2. Attachment of the scalpel 
3. Six axis force sensor form the company Automation Instrument 
4. Mounting plate to modul 70mm of the blue robot 
5. Modul 70mm 

A force model for the cut process will be developed. To get experimental data, the scalpel is 
not mounted directly to the robot, but there is a 3D force-momentum sensor attach between. 
Using the measured position and velocity of the scalpel a force model for the cut process can 
be developed. 

2.5 Experimental setup online calculation 

In the experimental setup the FEM calculation is controlled online, i.e. during the cut 
measurements with the scanCONTROL take place and are compared online to the 
simulation. The scanCONTROL device is not mounted to the blue robot for this application. 
A mounting device has been developed to fix the scanCONTROL at a certain hight and at a 
certain angle, see Figure 2.8. The mounting device consists of the following components: 

1. Base plate 
2. Shaft 
3. Fixing plate for scanCONTROL 
4. Twist mechanism 
5. Effective range 
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The shaft can be fixed in different heights. The twist mechanism makes it possible to adjust 
certain angles. Particular attention should be paid to the effective range of the 
scanCONTROL. As it is not possible to measure straight over the test object due to the 
movements of the blue robot, the scanning takes place from the side. There occurs certain 
measurement shadows when scanning from the side, i.e. some regions cannot be scanned. 

 

Figure 2.8:      Experimental set-up online calculation 
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3 Software implementation 
In this chapter, the programming structures for different applications are explained. Before 
starting with a FEM simulation, a mesh must be created. To keep track of the numbering 
system in our mesh, a self-written Matlab routine is designed, introduced in section 4.1. The 
rest of the written routines are implemented in programming language C++ on the platform 
Microsoft Visual Studio. In section 2.2, there is given a short introduction to C++. 
Afterwards the implementations of FEM programmes with their function are presented. 
When the incision is performed in the FEM mesh, a remeshing method is suggested to solve 
the problem. The device scanCONTROL 2700-100 creates a profile of the deformed test 
body. A algorithm is written to transform the local coordinates of the scan device into the 
simulation, presented in section 4.5. For the visualisation, the toolkit OpenGL is chosen for 
creating images on the computer screen.  

In the following section, two types of variables are present. The variables presented in the 
theory part, do not automatically coincide with the variables used in the programme. In order 
to differ the variables, the theoretical ones are written with fat letter and the programming 
variables with cursive letters. Names of programme functions are in cursive letters with 
quotations mark. 

3.1 Create Mesh with Matlab 

At first a mesh is used which is created by a self-written Matlab routine. It is easier to keep 
track of the numbering system when it is known how the mesh was created. This will help 
later by the development of a remeshing method, because the ordering of the nodes will be 
known. In later project, an external programme will be used to mesh more complex 
geometries. For instance the programme Tetgen can be used to perform this task. As 
elements types tetrahedral are chosen, because on one hand they preserve good 
approximation results due to the shape of the element and on the other hand the linear shape 
functions are easy to derive.  

In the Matlab routine “Create_Mesh” the whole algorithm is implemented to create a mesh 
with tetrahedral for the later calculations in the FEM calculation in C++. The routine needs 
three different types of inputs. As mention before the shape of the test object is a rectangular 
bock. The size of it is defined by the three parameters scx, scy and scz which are the length 
of the corresponding sides. The number of cubes per side is the second input and represented 
by the variables lxc, lyc and lzc for every direction. For the parameters lxc and lyc, only even 
positive numbers can be chosen due to the mirroring at the coordinate axis, which can be 
seen later in this chapter. But the variable ly_plus also accepts uneven numbers. The last 
input of the mesh creation is the feature show or hide. The variable zeig suppresses the plot 



Software implementation 40 

if it is not one, if not it will be hidden. If the figure is plotted, it can be chosen, if the number 
of nodes or number of elements will be shown in the plot. For these parameters the same 
rule is applied as for zeig, if it is one it will be shown, otherwise it will be suppressed. 

The basic idea of the mesh creation is that first a basic cube with the length of one is filled 
with tetrahedral and then mirroring it until a block is created. Then this block is duplicated 
until the wanted number of block is reached for every coordinate axis. In the end, the block 
is scaled according to the input parameters. 

The function “geom_tet” creates out of the described input the block filled with tetrahedral. 
The function is divided into 8 different steps. First there is a basic cube defined, as it can be 
seen in Figure 3.1.  

 

Figure 3.1:      Standard cube 

One cube cannot be set one to another by changing the coordinates of the edges in each 
corresponding direction, because the diagonals are not covering on the outer surfaces. This 
would violate the compatibility requirement or also sometimes called the conforming 
requirement. It states that the approximation of the unknown variable must be continuous 
over the element boundaries. If the cubes are connected one to another, the diagonals of the 
touching surfaces will cross each other and the continuous boundary condition for these 
elements will be violated. 

In order to avoid this violation, the basic cube is mirrored in the second step on x-axis at the 
surface with the node numbers (1,4,5,8),see Figure 3.2. 
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Figure 3.2:      Basic cube mirror at the x-axis 

As it is seen now, the contact surfaces have a common diagonal which allows continuity 
over the boundaries of the two elements. The same thing is done by mirroring the body 
above at the y-axis, see Figure 3.3.  

 

 

Figure 3.3:      Cube mirrored at x- and y-axis 

In the last step the four cubes filled with tetrahedral are mirrored at the z-axis, see Figure 3.4 
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Figure 3.4:      Uniform cube 

The principle described above, is performed by the function “init_Edof”. This function 
needs no input and gives as a result the matrix node and Edof. The matrix node contains the 
coordinates of the nodes. The matrix Edof which is called the Topology matrix contains the 
numbering of each element. This means that the row represents the number of the element 
and in the column stands the edge numbers of the element. 

Out of the basic cube, a new cube is obtained which is called uniform cube. This cube has a 
conforming outer surface when placing the cubes in a row. With the function 
“cal_Edof_node_lx”, the initial cube has been added in the x-direction by another by the 
variable lx. For instance, this variable is one, one uniform cube is been added and so on. The 
functions “cal_Edof_node_ly” and “cal_Edof_node_lz” are doing the same thing, but 
instead of a cube it is the whole row of the previous created object.  

In step 6, the scaling the matrix node takes place, that one edge lies at the point of origin. 
The length is scaled by the parameters scx, scy and scz for every coordinate. 

As output the matrices node and Edof are obtained in step 7. In the matrix node the 
coordinates of every nodal point are save. The matrix is organized as follows, 

 
݁݀݋݊ = ൥

1 ଵݔ ଵݕ ଵݖ
⋮ ⋮ ⋮ ⋮

݀݋݊݊ ௡ݔ ௡ݔ ௡ݔ
൩  . (3.1) 

The subscript n stands for the total number of elements nodes. Therefore the row represents 
the numbering of the nodes. For instance, for node number one, we have the coordinates in 
row one. 
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Another important matrix is the Edof called the Topology matrix. In this matrix, the 
numbering of the elements is saved, so the information is kept which node belongs to which 
element. The Edof matrix is implemented in the program as follows: 

 
݂݋݀ܧ = ൥

1 1ݎ݊_݁݀݋݊ 2ݎ݊_݁݀݋݊ 3ݎ݊_݁݀݋݊ 4ݎ݊_݁݀݋݊
⋮ ⋮ ⋮ ⋮ ⋮

݈݊݁݁ 1ݎ݊_݁݀݋݊ 2ݎ݊_݁݀݋݊ 3ݎ݊_݁݀݋݊ 4ݎ݊_݁݀݋݊
൩ (3.2) 

The FEM algorithm presented in this thesis is written without the use of a seperated degree 
of freedom matrix, so with the two matrices Edof and Node, the calculation of a FEM 
deformation can determine. In the next section follows a short introduction to the C++ 
programming language, especially dealing with matrices.  

3.2 Introduction of the C++ 

The programming languages C++ is a standard high-level programming language and has 
gone through a huge development since the first appearance on the market. It was created 
since 1979 from Bjarne Stroustrup from the AT&T as an extension from the programming 
language C. C++ is designed for different programming paradigms, i.e. object orientated, 
generic and procedural programming. C++ allows as well an efficient and machine-oriented 
programming as a programming with a high degree of abstraction.[12] 

In the FEM calculation, the stiffness matrix becomes high order due to the degree of 
freedoms at the nodes. Dealing with matrices in C++ is involved with some restrictions. For 
every entries of a matrix a certain place in the memory has to be reserved. For dynamic 
matrices, i.e. change of size, the memory space has to be adapt to the situation. There exist 
many different ways to do that. It is possible instead of using an own written library the C++ 
Standard Library [13] vector<> template class. The disadvantage of this class is that some 
compiler vendors do not get the best performance out of elementary operations, because it is 
so feature-rich. Also included in the C++ Standard Library is the class valarray<>. At one 
time, this was supposed to be a vector-like class that was optimized for numerical 
computation, including some features associated with matrices and multidimensional arrays. 
However, the valarray classes were not designed very well. The class was introduced by a 
committee, but they could not come to a consensus for a final definition of the class, so the 
testing phase of the class is missing. Unwanted failure can occur during implementing an 
algorithm. The result of this history is that C++, at least now, has a good class for vectors 
and no dependable class at all for matrices or higher-dimensional arrays. These reasons lead 
to provide an own written and basic library for vectors and matrices.[14] 

The ideas of the memory allocation for the elements of the matrices are copied from the 
book “Numerical Recipes”[14] for this part of the project and adapt to our problems. The 
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final implementation the matrix library is done in the header “matrix_fct.h”. For a detail 
description of functions, it referred to the appendix D. 

3.3 Static FEM calculation 

In the finite element calculations, the differential equations, which describe the physical 
problem, are assumed to be held over a certain region. This region can be 1D, 2D or 3D. The 
characteristic feature of the finite element method is that instead of seeking after 
approximations directly over the entire region, the region is divided into smaller parts, the so 
called finite elements and the approximation is then carried out over each element. 

In this work the problem is stated in a 3D manner. In the mesh generation, tetrahedral were 
chosen for the element type. The FEM calculation is performed in 5 basic steps: 

1. Input parameters 
2. Initialisation of matrices and loading from TXT-file 
3. Calculation of stiffness matrix 
4. Applying boundary conditions 
5. Solving equation 

3.3.1 Input parameters 

At first the define directories have to be filled in for the corresponding mesh parameters in 
the header “stdafx.h”. These parameters obtain from the mesh generator are subdivided into 
three different groups boundary, cut and TXT-file parameters. The boundary conditions are 
different for every load situation. In our project, the load situation is equal for every 
experimental set-up. The silicone block is fixed on one end and pulled on the opposite site 
with the distance of the parameter DIST. The parameter NNOD_CUT saves the number of 
cut node in the block. This number changes the size of the global stiffness matrix as a new 
node is added to the system. Secondly, the dimension of the cut surface is saved in the cut 
properties CUT_SX, CUT_SY and CUT_SZ. At last the text file names has to be saved into 
the define directories EDOF_TXT, NODE_TXT and BC_TXT, respectively. 

3.3.2 Initialisation of matrices and loading from TXT-file 

Before working with the matrices, memory space has to be reserved for every matrix needed 
in the programme. These procedures are done with the help of the library “matrix_fct.h”.  

The needed matrices are the topology matrix Edof, the coordinate matrix of the nodes Node 
and the boundary matrices Bc_0 and Bc_100. These five matrices are loaded out of the three 
corresponding TXT-files defined in the header “stdafx.h”. The matrices Edof and Node are 
directly loaded out of the TXT-file, i.e. if a number stands for instance in column three and 
row two it is loaded in the element of the matrix with the indices three and two. The silicone 
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block is locked on one side for every degree of freedom. The corresponding numbers of 
nodes are saved in the variable Bc_0. The opposite side is pulled in y-direction and the need 
nodes for that deformation are saved in the variable Bc_100. 

By the calculation of the stiffness matrix an element-wise assembling takes place which 
means that the global stiffness matrix for the whole system is predefined in the variable K. 

3.3.3 Calculation of stiffness matrix 

The calculation of the stiffness matrix takes place in a “for” loop for every element and six 
steps have to be performed for every element after equation (1.20): 

1. Derivates of Local Shape Functions డ઴೔
డకೕ

 along the local coordinates 

2. Coordinates of the current element ࢄ(௘) 

3. Jacobi matrix ۸, Transpose of Jacobi matrix ்ࡶ and Inverse of Jacobi matrix(ࡶ)ିଵ 

4. Derivative of Global Shape Function డ઴೔
డଡ଼ೕ

 along the global coordinates 

5. Material Properties: constitutive ۲ 

6. Entity-wise calculation of the element matrix ۹܍ 

These six steps are executed in the functions “cal_Ke”. The function can be found in the 
header “fem_fect.h”. In this header all functions need for the calculation are collected. After 
obtaining the local element stiffness matrix of an element, it has to be assembled to the 
global stiffness matrix via the function “assem” with the help of the topology matrix Edof. 

3.3.4 Applying boundary conditions 

The Dirichlet and Neumann boundary condition have to be applied to the mesh. In the 
Neumann boundary conditions the known displacements at the end of the test object are 
inserted after equation,  

 
100ܿܤ)݂ , 1) = ,100ܿܤ)݂ 1) − 100ܿܤ)ܭ  (100ܿܤ, ∙ 100ܿܤ ℎݐ݅ݓ (100ܿܤ )ݑ = ൥

1݀݋݊
⋮

2݀݋݊

൩  . (3.3) 

The external force vector ݂ is filled with the product of stiffness matrix with displacement at 
the corresponding nodes. The vector ݂(ܿܤଵ଴଴, 1) on the right hand side of equation (3.3) 
represents previous values added to the force vector. 

As no other boundary condition are taken into account, the Dirichlet boundary condition are 
zero of all the rest of the nodes, 

ݐݏ݁ݎܿܤ)݂  , 1) = ݐݏ݁ݎܿܤ ℎݐ݅ݓ 0 =  (3.4) 100ܿܤ ݐݑ݋ݐ݅ݓ ݈݈ܽܿܤ
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In the programme the force vector is first filled with zeros on then with the Neumann 
boundary conditions. 

3.3.5 Solving equation 

In the static case of the standard FEM, the equation (1.7) has to be solved. On the left side, 
the known outer forces are described. On the left side there is the product of the stiffness 
matrix K with the displacement vector u. As the displacement is unknown, the inverse of the 
stiffness matrix has to be calculated. 

3.3.5.1 Inverse of the global stiffness matrix 

For the calculation of the inverse of the stiffness matrix certain goals have to be fulfilled. 
The chosen algorithm must be accurate, robust and asymptotically optimal in run time and 
memory usage. Two algorithms the Cholesky factorization and the QR factorization are 
chosen. As the system matrix is sparse, the concept of Csparse is used for the calculation of 
the algorithm. In the following subchapter, the handling of sparse matrices is described.  

3.3.5.2 Sparse matrix data structure 

The simplest sparse matrix data structure is a list of the nonzero entries in arbitrary order. 
The list consists of two integer arrays i and j and on real array x of the length equal to the 
number of entries in the matrix, for instance 

 

ۯ = ൦

4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0

3.5 0.4 0 1.0

൪  
(3.5) 

A zero-based data structure for an m-by-n matrix contains row and column indices in the 
range 0 to m-1 and n-1, respectively. In the C++ programming language all code is zero-
based, whereas in Matlab the matrices are one-based. When transforming the mesh 
parameters from the Matlab code to the C++ environment, should be done with caution due 
to the different based data structure. 

In the Csparse function, to different sparse matrixes are present. At first, the triplet form is 
simple to create but difficult to use in most sparse matrix algorithms. An example is given in 
equation (3.6). 

 int ݅ [ ] =          {2     , 1     ,3     ,0    ,1     ,3      ,3     ,1    ,0    , 2    }; 

int ݆ [ ] =          {2     , 0     , 3    , 2    , 1     , 0     ,1    ,3    ,0     ,1    }; 

double ݔ [ ] = {3.0  ,3.1  ,1.0 ,3.2  ,2.9  ,3.5  ,0.4 ,0.9,4.5  ,1.7}; 

(3.6) 

The compressed-colmn form is more useful and is used in almost all functions in the 
CSparse library. A m-by-n sparse matrix that can contain up to nzmax entries is represented 
with an integer array p of length n+1, an integer array i of length nzmax, and a real array x 
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of length nzmax. Row indices of entries in column j are stored in i[p[j]] through i[p[j+1]-1], 
and the corresponding numerical values are stored in the location in x. The first p[0] is 
always zero, and p[n]≤nzmax is the number of actual entries in the matrix. The example 
matrix of equation is represented as, 

 int ݌ [ ] =         {0                      ,3                       ,6             ,8            ,10  }; 

int ݅ [ ] =          {0     , 1     , 3    , 1    , 2     , 3     ,0    ,2     ,1     ,3    }; 

double ݔ [ ] = {4.5 ,3.1   ,3.5  ,2.9 ,1.7  ,0.4  ,3.2 ,3.0 ,0.9  ,1.0}; 

(3.7) 

Both matrix types can be saved in the class cs_entry. 

3.3.5.3 Cholesky Factorization 

Classically the Gauss-Jordan algorithm is used for solving linear systems, but it is an 
inefficient algorithm for sparse matrix, so different method has to be chosen. The stiffness 
matrix of a stable FEM calculation is symmetric and positive definite matrix. This property 
allows the decomposition of the matrix ܭ into a lower triangle matrix ܮ with strictly positive 
diagonal entries and a conjugate transpose of the matrix ܮ according to  

ܭ  =  (3.8) ∗ܮܮ

This is called the Cholesky decomposition. As the stiffness matrix ܭ is positive-definite, 
there is only one lower triangle matrix ܮ with strictly positive diagonal entries. It follows 
that the Cholesky decomposition is unique. 

After obtaining the Cholesky decomposition, the sparse triangle system ݕܮ = ܾ is first 
solved. This is done with the help of the elimination tree of the toolbox Csparse. After 
obtaining the result of the elimination tree the postordering is computed and then the column 
counts, which are the number of nonzero in each column of ܮ. When the vector ݕ is known, 
the equation ݑ்ܮ = ܾ can be solved again with the help of the elimination tree. Now the 
displacement for every node is obtained. 

The Cholesky factorisation is implemented in function “cs_cholsol”. The function 
overwrites the input vector ݂ with the solution of ݑܭ = ݂. The input parameter order 
determines the input ordering used, zero stands for ܲ =  ,of the fill-reducung permutation ܫ
்ܮܮ = ்ܲܣܲ  or one for a minimum degree ordering of ܭ. The functions returns one if it was 
successful with the calculation, zero if the matrix is not positive definite or if the method ran 
out of memory. The forward/backsolve steps cannot fail because they do not allocate 
memory. 

The goal of the Cholesky algorithm, implemented in the Csparse matrix, is to keep the 
numeric factorization as simple as possible in terms of time complexity, memory usage and 
clarity of code. As it can be seen from the name, the code of the toolbox was written in C. 
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As for our project C++ is used on a Microsoft Visual Studio Platform, the code has to be 
adapted to our programming environment. It means, code bit had to be change and do not 
coincide totally with the original code. As not all functions of the code are used for the 
calculation of the Cholesky factorization, only the needed ones are added to the Header file 
“Csparse_fct.h”. 

3.3.5.4 QR factorization 

The least squares problem is to find the displacement ݑ that minimizes the 2-norm of the 
residual, ‖ݎ‖ଶ, where ݎ = ܾ − ݉ is m-by-n with ܭ and ݑܭ ≥ ݊. Multiplaying a vector by an 
orthogonal matrix ܳ does not change its 2-norm. If ܭ is factorized into the product ܣ = ܴܳ, 
then 

 
2‖ݎ‖ = ‖ܾ − 2‖ݑܭ = ‖ܾܳܶ − 2‖ݑܴ = ብቈ

ܳ1
ܾܶ − ݑ1ܴ
ܳ2
ܾܶ

቉ብ
2

= ቛቂ
1ݎ
2ݎ
ቃቛ

2
, 

(3.9) 

where ܳ is m-by-m, ܴ1 is n-by-n, and ܳ1 is m-by-n. Assuming ܣ has full rank, ܴ1 is non-singular 

and so the upper triangle system ܳ1
ܾܶ = 1ݎ can be solved, which makes ݑ1ܴ = 0 and minimizes 

 .ଶ‖ݎ‖

In the function “cs_qrsol”, ܳ = ଵܪଵܪ ௡ܪ…  is represented implicitly as a product of Householder 

reflections, and the permuted matrix ܲܭ തܳ is factorized instead of ܭ, where തܳ is fill-reducing 
column permutation. The right-hand side of the displacement vector ݑ is overwritten with 
the solution of ݔ. The input parameter order describes the kind of ordering, one stands for 
natural ordering and three for a minimum degree ordering of ܭ்ܭ 

3.4 Remesh algorithm 

For the first implementation, an easy remeshing algorithm is chosen. It is only allowed to cut 
between the elements, not through the elements. The scalpel edge has to point in the 
direction where it moves. It means that with the constellation FP1W2F [10] of the blue robot 
the scalpel can only move in a x,z plane. For this reason the assumption, it is a good 
approximation of our situation. 

The silicone block will be placed vertically to the cut plane. The mesh of test object is 
created so that a straight cut can be made parallel to the sides only between elements, i.e. no 
cut through an element. The depth of the cut can be influenced by the number of elements in 
the z-coordinate and the scaling factor of node matrix. When cutting between two elements, 
new nodes have to be defined at the cut corners. To find these nodes the function 
“get_Node_cut” is written. It finds the cut nodes out of the coordinate matrix Node and 
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creates a new node at the same place of the old node. In the end the new nodes are appended 
to the matrix Node. 

After extending the coordinate matrix with the new nodes, the topology matrix has to be 
changed, too. The separated element has to be connected to degree of freedom of the new 
created nodes, see Figure 3.5. This is done by the function “get_Edof_cut”. The cut surface 
is defined by the Hesse normal form nୌ. A search gives the elements on the negative 
direction of the Hesse normal vector and connects them with the new created nodes. 

 
 

Figure 3.5:      Adding new nodes to mesh 

 

After obtaining the new topology and new coordinate matrix, the standard FEM calculation 
can be performed as described in the previous subchapters. 

3.5 Scanning object 

The device scanCONTROL 2700-100 from the company Micro-Epsilon [15] with an 
integrated controller is used for scanning the test object. The laser line scanner uses the 
triangulation principle for a 2D acquisition of a height profile of various target surfaces. A 
laser line is generated with the help of special lenses and projected onto the target surface. 
The optical system projects the diffusely reflected light back onto a sensor matrix. In the 
sensor head, the distance information is calibrated by a controller and the sensor matrix is 
used to position along the laser line are calculated. This generated calibrated matched 
measurement values which are than output as a precise line profile. Regardless of the 
position or angle the profile data are absolute calibrated data sets in a 2D coordinate system 
that is fixed in respect to the sensor. 

The scanner is used for two purposes. First to scan the surface of a complex geometry and 
secondly to compare the simulation results with the reality. In the following the installation 
and the commissioning of the sensor is outlined. 

old new 
nୌ 
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3.5.1 Reading out data from the scanCONTROL 

The scanning algorithm is performed in four basic steps, see Figure 3.6. It starts with the 
Initialisation of the scanCONTROL device. A LLT-object has to be created and a firwire 
connection has to be set up. 

 

Figure 3.6:      Scanning algorithm 

In the second step the parameter for the configuration has to be set. All parameters are listed 
on the down left box of Figure 3.6. It depends on the situation how to set the values of the 
parameters. For more detailed information, it is referred to [15].  

The third reads the Data from the device and saves it either in a TXT-file or in a variable or 
both if demanded. The scanned profile points can also be showed on the console to make an 
online check on it. In the last the step the scanCONTROL LLT-object is deleted and the 
sensor is disconnected. 
  

Set parameters for the measurement: 

1. Set ScanControl type 
2. Set resolution 
3. Set trigger to internal 
4. Set config to PROFILE 
5. Set shutter time  
6. Set idle time 

Reading Data and Saving Data: 

1. Initialisation of the vectors ValueX nad ValueZ 
2. Get type of the measurement range 
3. Enable measurement-> wait for a while 
4. Resize the profile buffer to the maximal profile size 
5. Gets one profile in “polling-mode” 
6. Converting of profile data from the first reflection 
7. Save Data 

Shut down ScanControl: 

1. Disable measurement 
2. Disconnect the ScanControl 
3. Deletes the LLT-object 

Initialisation of scanCONTROL device: 

1. Creating a LLT-object 
2. Create a firewire Device 
3. Get available interfaces from the ScanControl-device 
4. Select device interface 
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3.5.2     Scanning of profile 

3.5.2.1 Transforming Scanned points into an absolute coordinate system 

The scanCONTROL is fixed at the end effector of the blue robot. The 2D coordinate system 
of the scanCONTROL has to be transformed into the absolute coordinate system of the blue 
robot, see Figure 3.7 first constellation. 

 

 

Figure 3.7:      Defining length of blue robot 

To obtain the exact position of the scanCONTROL, the trigonometric functions are used, 

ݔ  = sin(ߙ) ∙ ଶܮ + cos (90 + ߙ − (ߚ ∙  ,ଷܮ

ݖ = ଵܮ + cos(ߙ) ∙ ଶܮ + sin(90 + ߙ − (ߚ ∙ ଷܮ . 

(3.10) 

 

Another way of transforming the scanned data is given in the next subchapter. 

3.5.2.2 Reference for the transformation at the test object 

 

Here the outer corners of the test object are taken as reference for the transformation of the 
profile data points. First all the gradients between the neighbour points are calculated. In the 
second step the gradient lying between the positive or negative value of the define directory 
MAXGRAD are sorted out, because the goal is to find edges. The parameter MAXGRAD has 
normally the value 5. It can differ from time to time. For instance, the test body is not as 
smooth the silicon, higher gradient can occur due to the rough surface. When a set of data 
points is higher than the variable MAXGRAD, than the end point of the first gradient is taken 
and the start point of the last gradient. The difference between the two points represents the 
distance. Now there can be calculate every distance between different corners. The 
algorithm is visualized in Figure 3.8. 

 

zrel 

α 

x 

β 

z 

xabs 

xabs 

zabs 

L2 

L1 

L3 



Software implementation 52 

 

Figure 3.8:      Find the length between two edges 

It is a straight forward method to find fast the edges of the test object. Now the edge is 
defined as the zero level of the test object and the simulation data points can be plotted to the 
corresponding profile data points of the scanCONTROL. 
 

3.6 Visualisation 

For the visualisation, the OpenGL library is chosen to create images on the windows screen. 
OpenGL is a powerful tool for producing high-quality, computer-generated images and 
interactive applications using 2D and 3D objects, bitmaps, and colour images. The basic 
structure is to initialize certain states that control how OpenGL renders and to specify 
objects to be rendered.  

OpenGL is a state machine. For instance the colour of an object represents a state which is 
initialized with a certain colour. This colour remains unchanged until the state is changed. 
Some other examples for states can be the current view and projection transformations, line 
and polygon stipple patterns, polygon drawing modes, pixel-packing conventions, positions 
and characteristics of lights, and material properties of the objects being drawn. Many states 
variables refer to modes that are enabled or disabled. 

Most implementations of OpenGL have a similar order of operations, a series of processing 
stages called the OpenGL rendering pipeline. The diagram shows a assembly line approach, 
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which OpenGL takes to processing data, see in Figure 3.9. There two main approaches to 
create an image on the windows screen, through vertex data or pixel data. As in our FEM 
calculation the mesh is already provided, the vertex data is used for the visualisation. In the 
following, the path of the vertex data will be explain, but not the pixel data path, because it 
is not used in our programmes. For a more detail description, it is referred to [16]. 
Geometric data follow the path through the row of boxes that includes evaluators and per-
vertex operations. In the final steps it undergoes rasterization and per-fragment operations 
before the final pixel data is written into the frambuffer. 

In the display list all data is saved for current use or later use. When a display list is 
executed, the retained data is sent from the display list in an immediate mode. All geometric 
primitives are described by vertices. When in the graphic a parametric curve is present, it 
initialized by control points and polynomial functions called basic functions. In the 
evaluators a method is provided for deriving the vertices used to represent the parametric 
curve from the control points. This type of conversation is not needed in our programme 
structure, because there are no parametric curves present in our FEM mesh. In the next 
stage, the vertex data is converted into primitives. Also if there is a lightning enabled, the 
lightning calculations are performed using the transformed vertex, surface normal, light 
source position, material properties, and other lightning information to produce the colour 
value. 

In the primitive Assembly, the clipping which is a major part of primitive assembly is the 
elimination of portions of geometry that fall outside a half space, defined by a plane. Point 
clipping simply passes or rejects vertices, whereas line clipping can add additional vertices 
depending on how the line is clipped. The results of this stage are complete geometric 
primitives, which are the transformed and clipped vertices with related colour, depth, and 
sometimes texture-coordinates values. 

In the rasterization, the conversion form geometric data into fragments is done. Each 
fragment square corresponds to a pixel in the framebuffer. Before values are actually stored 
in the framebuffer, a series of operation are performed that may alter or even throw out 
fragments. All these operation can be enabled or disabled, for instance texturing. Finally, the 
thoroughly processed fragment is drawn into the appropriate buffer, where it becomes a 
pixel. 
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Figure 3.9:      Order of operations 

 

OpenGL provides a powerful but primitive set of rendering commands, and all higher-level 
drawing must be done in terms of these commands. Also, OpenGL programs have to use the 
underlying mechanism of the windowing system. Several libraries enable to simplify your 
programming tasks, including the following: 

1. OpenGL Utility Library(GLU) contains several routines that use lower-level 
OpenGL commands to perform such tasks as setting up matrices for specific viewing 
orientations and projections, performing polygon tessellation, and rendering surfaces.  

2. The OpenGL Utility Toolkit(GLUT) is a window-system-independent toolkit, 
written by Mark Kilgard, to hide the complexities of differing window system APIs.  

OpenGL contains no commands for opening windows or reading events from the keyboard 
or mouse. The GLUT is used for opening windows and detecting inputs. The window 
management in the GLUT toolkit are seven routines necessary for initializing a window: 

1.  “glutInit” initializes GLUT and processes any command line arguments and it 
should be called before any other routine. 

2. “glutInitDisplayMode” specifies whether to use an RGBA or colour-index model. It 
also defines whether there should be used a single- or double-buffered windows. 

3. “glutInitWindowPosition” specifies the screen location for the wpper-left corner of 
your window. 

4. “glutInitWindowSize” specifies the size in pixels of your window. 
5. “glutCreateWindow” creates a window with an OpenGL context. It returns a unique 

identifier for the new window. 
6. “glutDisplayFunc” is the callback function in the routine. Whenever GLUT 

determines that the contents of the window need to be redisplayed, the callback 

Vertex Data 

Pixel operations 

Rasterization Per-vertex operations and 
primitive assembly 

Evaluators 

Display list 

Pixel Data 

Per-fragment operations Texture assembly 

Framebuffer 



Software implementation 55 

function is executed. It means that all redraw scenes are putted into the display 
callback function. 

7. “glutMainLoop” all windows that have been created are now shown, and rendering 
to those windows is now effective. Event processing begins, and the registered 
display callback is triggered. Once the loop is entered, it never comes back to the 
“main” function 
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4 Results 
The results of the executed experiments are presented here. First, the material properties 
have to be found for the later FEM calculations. Afterwards a cut is performed with the 
robot control by a human operator over the Haptic device. The cut surface is scanned by the 
device scanControl and the comparison between the simulation and the reality of the 
deformation is made. The tension in test object can give valuable information about the 
growing of the cut, which will be shown in a later plot. 

4.1 Identification material properties 

For the material properties, Young’s modulus and Poisson’s ratio have to be defined. 
Young’s modulus is a measure of the stiffness of an isotropic elastic material. Poisson’s 
ration is the ratio of the contraction to the extension, when a sample object is stretched.  

As mention in chapter three, silicone is taken as the material for the test object. Producers 
are normally not defining neither Young’s modulus nor Poisson’s ratio for silicone. In the 
ISO 527-1 “Plastics – Determination of tensile properties”, it is written down the definition 
of how to determine Young’s modulus and Poisson’s ratio. Special shapes of the silicone are 
needed and special devices are need to hold and measure the test object. The determination 
of the material properties are not done after the ISO norm, instead a different method is used 
due to available equipment. 

As Young’s modulus has a bigger influence on the deformation as the Possion’s ratio, the 
elasticity modulus is first determined. Two methods were pursued to find Young’s modulus 
for our simulation. In the first method the parameter is found by an own experiment. With 
the tension platform the external forces and the displacement can be measured.  

The vertical forces are read out of the ATI Industrial Automation sensor 330N over the 
serial port after expanding the test object. The extension is measured over the 
scanCONTROL device, describe in chapter 4.5.2.2. By plotting the displacement over the 
force, Young’s modulus can be obtained out of Hook’s law, according to (1.16). 
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Figure 4.1:      Plotting force against displacement for the block 1, 2, 3 and 4 

 

In Figure 4.1 , there are the results of four different blocks plotted, for the force and 
displacement ratio. To see how the material behaves after some extension and compression, 
there are made three trails per block. During the experiment of block 2, top right on Figure 
4.1, the mounting from the test object to the stiffer silicone broke, so there is only one trail. 
As it can be seen, there is a linear behaviour of the material between the force and the 
displacement. To define now Young’s modulus the following equation is used, 
ܧ  = ଶ݂ − ଵ݂

݈ଶ − ݈ଵ
∙

1
ܣ ∙ ݈଴

 . (4.1) 

 

The parameter ݂2 and ݈2 are the outer force and the length of the block, respectively, at the 
second step. The variables ܣ and ݈0 are the surface and the starting length. Young’s modulus 
is calculated between every measurement step of every trial and an average over the 
obtained Young’s modulus is built. The value of Young’s modulus obtained from the four 
blocks is 0.0385 [N/mm²]. It is nearly the same value as for rubber which lies in the range of 

Block 1: 100x100x5.6 mm Block 2: 100x100x9.5 mm 

Block 3: 43x70x11 mm Block 4: 43x80x11 mm 
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0.0100 to 0.1000 [N/mm²]. Poisson’s ratio is obtained over the lateral strain. For this 
purpose, the width of the body is taken before every trial and at the end. After the following 
equation the ratio is calculated, 
ߥ  =

ܾ଴ − ܾଵ
݈଴ − ݈ଵ

∙
݈଴
ܾଵ

 . (4.2) 

The average value for all four experiments of the Possion’s ratio is 0.4300. As next, four 
different meshes are build up each corresponding to one block. As our maximal range for the 
later predefinition of the sensors will be 10mm, the meshes of the blocks will be expanded 
by the maximum value of 10mm, see Figure 4.2. 
 
 

 
 
 

 

Figure 4.2:      The deformed meshes of the different test objects 

In Table 4.1, the forces at the deformed end are filled in for all four blocks. 
Test setup Test object - Block number: 
Nr. E-modul Poisson’s ratio Type of Calculation 1 2 3 4 

1 ? ? Force Experiment [N] 21.00 29.50 20.75 17.25 
2 0.0385 0.4300 Force Simulation  [N] 15.5559 23.9595 16.2461 14.2198 
3 0.0385 0.4739 Force Simulation  [N] 20.9888 23.9595 16.2461 14.2198 
4 0.1233 0.4900 Force Simulation  [N] 21.0051 29.7196 18.2675 16.5000 

Block 1: 100x100x5.6 mm Block 2: 100x100x9.5 mm 

Block 3: 43x70x11 mm Block 4: 43x80x11 mm 
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Table 4.1: Comparison forces between simulation and experiment 

The blocks hold the same numbering system as in Figure 4.1. There are made four different 
test setups. In all of the tests, the test object is hold at one end and deformed by 10mm in y-
direction at the opposite end. Number one of the test setups is the measured values of the 
force sensor, already plotted in Figure 4.1 on the top left. In number two the E-modulus and 
Poisson’s ratio of the experimental determination of the material properties are given as 
input the simulation and the forces at the end are determined and filled in Table 4.1. The 
values are for every block around 20 % too less. So the found values do not coincide with 
the reality, but what it is interesting that all values are equally off. Now there are two 
possibilities of adapting our material properties to the real ones. Either Young’s modulus is 
kept at the value or Poisson ratio. In our case the E-modul is kept the same and the Possion’s 
ratio is changed until the forces of the simulation coincide with the measured force for the 
first block. If now for the rest of the blocks, the same forces with the optimized values are 
obtained, the material properties are found, see number three in Table 4.1. Another way to 
gain the material properties is to look at one block and take one measurement which seems 
to represent an average of the other measurements. Block one seems to have the most linear 
behaviour compared to the others, so the measurements of it are taken for the next 
determination of the material parameters. Our range of extension will not be higher as 
10mm, so the forces at 10mm are taken. As the forces and the displacement are known for 
the FEM equations, the two material parameters are the only unknown. As our silicone 
rubber seems to have similar behaviour to standard rubber, the value of 0.5 for Possion’s 
ratio is taken. Now Young’s modulus can be adapted by a nested iterative manner until the 
force of the simulation coincide with the measured one, see number four in Table 4.1. 

4.2 Deformation around the cut 

In the following chapter, the different types of plots are present. The same block is used in 
all figures and has the dimension 100x80x17mm. The cut is not performed in the middle of 
the block in y-direction, it is at value of 45mm. In the x-direction the block is subdivided 
into 6 standard cubes, 16 in y-direction and 14 in z-direction. The dimension of the block is 
16.6667x5x1.2143mm. In x-direction, the subdivision is kept bigger as compared to the 
other two directions as it mainly interesting the deformation in y- and z-direction. 

The visualisation takes place in OpenGL as described in chapter 4 “Software 
Implementation. The created image can be seen in. 
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Figure 4.3:      Image shown during simulation 

As in OpenGL, it extensive to build up a GUI for instance, extracting points or drawing an 
coordinate system the post processing takes place in Matlab. First the cut block is plotted, 
see Figure 4.4. There is a uniform deformation of the block in x-direction. The cut means a 
weakness for the structure, so the bottom at the cut lifts up by the value of 2.0960 mm. The 
cut is of the depth of 8.5001. The cut edges gape to the opposite directions. The horizontal 
deformation at the end of the x-direction is 6.6 mm.  

 

Figure 4.4:      Mesh  

In Figure 4.5, the same plot is used as in the previous, but the scanned points of the 
scanControl devise are shown too. There are made three different scans at x equals 25mm, 
50mm and 75mm during the experiment. The scanned points coincide well with the 
simulation. 
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Figure 4.5:      The deformed meshes of the different test objects 

When a FEM calculation is performed, it is of interest to see the tension in the body.  

The tension in an element are obtained out of the deformation of the nodal points after the 
following equation, 
ߪ  = ∙ ࡰ ∙ ࡮  (4.3) .ݑ

The matrices ࡰ and ࡮ are already defined in equation (1.18) and (1.10), respectively. The 
stress vector is written for every element as  ߪ = ௫௫ߪ] ௬௬ ߪ  ௭௭ߪ  ௬௭ߪ ௫௬ߪ   ,௭௫]. In Figure 4.6ߪ 
the average of the von Mises stress are calculated for every node after equation, 
௜,௠ߪ  = ௫௫ଶߪ] + ௬௬ଶߪ + ௭௭ଶߪ − ௬௬ߪ௫௫ߪ − ௬௬ߪ௭௭ߪ − ௬௬ߪ௭௭ߪ + ௫௬ଶߪ3 + ௬௭ଶߪ3 + ௫௭ଶߪ3 ]. (4.4) 

The stress ݅ߪ,݉ is the von Misses stress in node i. All node stress are compared over a colour map 

rating. 
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Figure 4.6:      The deformed meshes of the different test objects 

 

 

Figure 4.7:      Comparison of measurement and simulation 

In Figure 4.7, the measured profiles of the scanCONTROL device are plotted againt the 
deformation obtained from the simulation. There are scanned three different profiles at x 
equals 25mm(black), 50mm(green) and 75mm(red). The red line is in the cut lower than the 
other two lines. The robot moves on a trajectory of a straight line. There is no control loop 
for the movement of the robot. Single points are given to a function and the robot moves to 
this position. But there is no check on if the robot reaches the wanted place. It means that the 
robot has a small vibration during the movement. Consequently the incision is not straight. 
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5 Summary 

An interactive simulator of a Finite Element (FE) calculation has been developed in this 
Diploma thesis, consisting of a mesh generator for a block filled up with tetrahedral, static 
FE calculation and visualisation. The computational environment takes place on a Windows 
system in the programming language C++. The simulator is aimed to be used in a 
Telepresence application where a robot is controlled by a haptik device over a long distance. 
The feedback information of the deformed body comes from the simulation instead of from 
real sensor at place of distance due to the time delay of the network connection. 

A theoretical survey of an incision process for a Finite Element Method (FEM) was 
examined in this thesis. The incision process was assumed with a completely sharp scalpel 
and no friction force was considered. For FEM the wanted quantity varies steady over the 
body. An incision means to have to deal with a strong discontinuity in the FE mesh. The 
eXtended-Finite-Element-Method (XFEM) can cope with discontinuities in an element. 
Another way of dealing with the discontinuity is to remesh around it and then perform a 
standard FEM calculation with the new obtained mesh. The deformation of the XFEM 
calculation was compared to the remeshing FEM. The advantage of the XFEM is that there 
is no need of remeshing the edges of the discontinuity. But the location of the edges are not 
visualized directly, so they have to be found in a post processing algorithm which leads into 
a remesh. Due to the Telepresence operation, the calculation has to be in real-time. The 
longest time for a static FE calculation stays by the calculation of the inverse of the stiffness 
matrix. As the stiffness matrix is changed in the XFEM and the remeshing FEM, the 
remeshing FEM was chosen, because a direct visualisation of the incision edges is obtained. 
In the remeshing FEM, a function finds the nodes lying in the incision surface and decouples 
the nodes when the cut occurs at them, so with new added nodes a free movement between 
the elements are possible. An incision can only happen between the elements.   

An experiment set up has been developed to evaluate the results of the simulation with the 
reality. The experiment aims to imitate the incision of a human skin. Silicone was used as 
material for this purpose, since it is also used as implants for different body parts. The 
texture of silicone resembles human skin in sense of touch and visual effects. The tension 
platform gives a certain predefined tension to the object, so the edges of the incision are 
realistically posed. After the incision, the surface of the test object was scanned by a 2D 
laser profile-scanner. It measured the vertical and horizontal displacement from the laser 
profile-scanner. The data was transformed into the simulation and the accuracy of the 
simulator can be defined. 
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The shape of test object was a quadrangle with the dimension 100x80x17 mm³. The 
deviation of the simulation was defined lower than 1% of the maximal dimension of the 
object compared to reality. For our silicone block, the absolute deviation must be lower than 
1mm. The deviation criterion was maintained over the whole surface of the test object. 

Until now, only a visualisation of the deformation of the cut has been added to the simulator. 
In a previous project, a force model of the incision process has been defined. The force 
model has to be adapted to the silicone material and committed to the haptic device as a 
feedback signal. The cut is only done in a straight line, so the collision detection is done for 
the 1D case. Here the orientation and the direction of the scalpel are not considered, only the 
location is of interest. When adding more degrees of freedom to the robot, so the incision 
can be done in any 3D trajectory, an efficient collision model has to be found for defining 
the orientation, direction and location of the scalpel and more complicated remeshing 
method has to be defined. This should be done in future work. 
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A      Matlab: Create mesh toolbox 

1.  [Edof,node]=cal_Edof_node_lx (lx,Edof_standard,node) 
The function cal_Edof_node_lx add to a uniform cube filled with tetrahedral in x direction 
depending on the variable lx more cubes. As output it returns the new topology matrix Edof 
and the new coordinates of the nodes, stored in the matrix node, of the mesh. 

2. [Edof,node]=cal_Edof_node_ly (ly,Edof_standard,node) 
The function cal_Edof_node_ly does the same as the cal_Edof_node_lx, but only add new 
cubes in the y-direction. 

3.  [Edof,node]=cal_Edof_node_ly_plus1 (ly,Edof_standard,node) 
The function cal_Edof_node_ly_plus1 does the same as the cal_Edof_node_ly, but only at 
the last added cube, there will be half of the uniform cube be added. 

4. [Edof,node]=cal_Edof_node_lz (lz,Edof_standard,node) 
The function cal_Edof_node_lz does the same as the cal_Edof_node_lx, but only add new 
cubes in the z-direction. 

5.  [Ex,Ey,Ez]=coordxtr(Edof,Coord,Dof,nen)  
The function coordxtr extracts element nodal coordinates from the global coordinate matrix 
Coord for elements with equal numbers of element nodes and dof’s. 

6. [Ex,Ey,Ez,Edof_with,Edof_neu,node,Dof,ndof,nele]=geom_tet(lxc,lyc,lzc,scx, scy, 
scz,zeig,num_node,num_el,y_plus1)  

The function geom_tet creates 3d block filled with cubes which consists of tetrahedral. This 
is done with the help of the functions cal_Edof_node_lx, cal_Edof_node_ly and 
cal_Edof_node_lz. Then the block is scaled and afterwards it is scaled and plotted. 

7. [Ex_z,Ey_z,Ez_z]=get_Exyz(Edof,node) 
The function get_Exyz extracts element nodal coordinates from the topology matrix Edof 
and the node coordinates matrix node. 

8. [Edof,node]=init_Edof 
The function init_Edof creates a uniform cube filled with tetrahedral, to add easier the cubes 
in the corresponding coordinate axis.  

9. Plot_def_Mesh_tet(Ex,Ey,Ez,Edof_deg,node,s1,numbers,u,n) 
The function Plot_def_Mesh_tet displays the deformed mesh by adding the displacement 
vector u to the element coordinate matrixes Ex, Ey and Ez. If the variable numbers is 1 the 
element numbers will be shown. The parameter s1 defines the line type and the colour of the 
plot. 

10. Plot_Mesh_tet(Ex,Ey,Ez,node, s1,num_node,num_el) 
The function Plot_Mesh_tet plots every tetrahedral of the given mesh through the element 
coordinate matrixes Ex, Ey and Ez. The variable s1 defines the line type and the colour of 
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the plotted figure. If one of the variables num_node and num_el equals one the node 
numbers respectively the element numbers are displayed. 
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D      Programme Structure 
1. Mesh Creation: 

 

Main: Create_Mesh 

Input 1: Size of block 
scx, scy, scz 

Input 2: Number of cubes per side 
lxc, lyc, ly_plus1, lc 

Input 3: Show or Hide 
zeig, num_node, num_el 

Function: geom_tet 

Output 3: Size of system 
          ndof, nele 

Output 1: Element Coordinates 
  Ex, Ey, Ez, node 

Output 2: Connection of nodes 
     Edof, Edof_deg, Dof  

Plot: zeig=1, num_el=1, num_node=0 Plot: zeig=1, num_el=0, num_node=1 

2. Uniform Cube 
a) Mirror x               b) Mirror y                          c) Mirror z   

3. Add Cubes in x-direction 

1. Basic Cube with 5 tetrahedrals 

4. Add Cubes in y-direction 

5. Add Cubes in z-direction 

6. Scaling the node matrix 

7. Create node, Edof, Edof_deg, Dof, Ex, Ey, Ez 

8. Plot undeformed mesh 
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2. Standard FEM calculation 

 

 

u = inv(K) ∙ f 

5. Solving Equation:  

f = K(: , vdof) ∙ u(DIST) 

4. Applying Boundary Conditions: 

Calculation of Inverse: 

Cholesky Factorization: ܂ۺۺ = ܂۾۹۾ → ܝ۾܂۾۹۾ = ܎۾ → ܡۺ = ܎۾ → ܢ܂ۺ = ܡ → ܝ =  ܢ܂۾

QR factorization:  ܀ۿ = ܂۹ → ܝ܂ۿ܂܀ = ܎ → ܡ܂܀ = ܎ → ܝ =  ܡۿ

1. Input Parameters: 
1. Boundary Parameters: DIST, NNOD_CUT 
2. Cut Properties: CUT_SX, CUT_SY; CUT_SZ 
3. Text file names: EDOF_TXT, NODE_TXT, BC_TXT 

2. Initialisation and loading from TX-file:  

Edof, Node, Bc_0, Bc_100, Ke, K 

3. Calculation of Stiffness Matrix: 

1. Derivates of Local Shape Functions 
డ઴೔

డకೕ
 along the local coordinates 

2. Coordinates of the current element ࢄ(௘) 
3. Jacobi matrix ۸, Transpose of Jacobi matrix ்ࡶ and Inverse of Jacobi matrix(ࡶ)ିଵ 

4. Derivative of Global Shape Function 
డ઴೔

డଡ଼ೕ
 along the global coordinates 

5. Material Properties: constitutive ۲ 
6. Entity-wise calculation of the element matrix ۹܍ 

Assembling of the element stiffness matrix to the global stiffness matrix: 

 insert in ۹ ܍۹

For every element IEL 
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E      List of abbreviations 

t traction vector [N/mm2] 

P force vector [N] 

A surface area [mm2] 

 ௜ Cartesian coordinate system i = 1,2,3ݔ

 ௜௝ stress components i, j = 1,2,3 [N/mm2]ߪ

S stress tensor [N/mm2] 

n surface normal  

V arbitrary volume [mm3] 

b body force vector [N/mm3] 

 ௫ arbitrary function x = 1,2,3ݒ

u displacement vector [mm] 

  ௜௜ strain tensor i, j = 1,2,3ߝ

 angle [rad] ߠ

௜௝ߛ  shear strain i ≠ j;  i,j can be 1,2,3 

E Young’s modulus [N/mm2] 

D constitutive matrix [N/mm2] 

૖ shape functions (depends on the element type) 

B derivatives of the shape functions  

 ௜ local Cartesian coordinate system in an elementߦ

J Jacobian matrix 

ܽ௜ displacement of enriched nodes 

߰௜ enrichment function 

H Heaviside function 

f force vector [N] 

K stiffness matrix[N/mm] 

M mass matrix [g] 

 density [g/mm2] ߩ

D damping matrix [N s/mm] 
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