
ISSN 0280-5316
ISRN LUTFD2/TFRT--5866--SE

Development of Interactive
Simulator for Telepresence Robot

in Surgical Applications

Christoph Haas

Department of Automatic Control
Lund University

June 2010

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

June 2010
Document Number

ISRN LUTFD2//TFRT--5866--SE
Author(s)

Christoph Haas

Supervisor

Keita Ono at TU München, Germany
Anders Robertsson Automatic Control,Lund
Rolf Johansson Automatic Contro, Lundl (Examiner)
Sponsoring organization

Title and subtitle

Development of Interactive Simulator for Telepresence Robot in Surgical Applications. (Utveckling av
interaktiv simulator för robot med närvarokänsla i kirurgi)

Abstract

The purpose of this Diploma thesis is to develop and implement an interactive simulator for a surgical
robot in a Telepresence application. The focus is on an incision procedure of a scalpel during an
operation. The geometric deformation of the simulation is based on a Finite Element Method (FEM)
model which has to cope with discontinuity due to the incision through the body. The FEM modelling
can be done using e.g. FEM with remeshing method or XFEM which treats the cut in the body as a
type of material discontinuity. A detailed analyse of the eXtended Finite Element Method (XFEM)
and a comparison to the FEM with remeshing is made. For the implementation of simulation, a FEM
remeshing method is used. A scalpel mounted to the end effector of a robot is controlled by a Haptic
device and cuts through a silicone block. The deformation of the real test object are measured by a 2D
scanning device and compared to the results of the simulation. The deviation of the reality and
simulation were less than 1% based on the dimension of the body.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280-5316
ISBN

Language

English
Number of pages

75
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

Meinen Eltern

Acknowledgement – Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Diplomarbeit am Lehrstuhl für
Angewandte Mechanik der Technischen Universität München. Bei Herrn Prof. Dr.-Ing Dr.-
Ing habil. Heinz Ulbrich bedanke ich mich für die Vergabe und Betreuung der Diplomarbeit.
Besonderen Dank schulde ich Herrn Keita Ono, der mit der Betreuung meiner Diplomarbeit
vertraut wurde. Durch seine engagierte Betreuung und stete Diskussionsbereitschaft mit
vielseitigen Denkanstößen half er mir bei der Erstellung dieser Arbeit.

Ganz herzlich bedanke ich mich bei meinen Geschwistern Lena und Tillmann und meinem
Freund Lucas für die intensive Auseinandersetzung mit meiner Arbeit gerade im Endspurt.
Schließlich gilt ein besonderer Dank meinen Eltern Astrid und Joachim, deren Vertrauen
und Unterstützung mir stets die Verfolgung meiner Ziele ermöglichen.

Abstract 5

Contents

Abstract ... 2

Introduction .. 7

1 Principle of Finite Element Method .. 9

1.1 Derivation of the Finite Element Method for 3D elasticity 9

1.1.1 Strong formulation of solid mechanics ... 10

1.1.2 The weak formulation of solid mechanics .. 10

1.1.3 Element wise approximation of the unknown function 11

1.1.4 The Galerkin method ... 13

1.2 General Formulation of Extended Finite Element Method 15

1.3 Comparison the XFEM method with the FEM 16

1.3.1 1D elements ... 16

1.3.2 2D elements ... 18

1.3.3 3D elements ... 24

1.4 Discussion ... 30

2 Experimental set-up ... 31

2.1 Tension platform ... 31

2.1.1 Shape of test object .. 32

2.1.2 Mounting of the test object ... 32

2.1.3 Material properties of test object .. 33

2.2 Description of the “Blue robot” ... 34

2.3 2D Scanning of test object ... 35

2.4 Fixing of the scalpel at the robot.. 36

2.5 Experimental setup online calculation ... 37

3 Software implementation ... 39

3.1 Create Mesh with Matlab .. 39

3.2 Introduction of the C++ ... 43

3.3 Static FEM calculation .. 44

3.3.1 Input parameters .. 44

3.3.2 Initialisation of matrices and loading from TXT-file 44

3.3.3 Calculation of stiffness matrix .. 45

3.3.4 Applying boundary conditions ... 45

3.3.5 Solving equation .. 46

3.4 Remesh algorithm ... 48

3.5 Scanning object ... 49

3.5.1 Reading out data from the scanCONTROL 50

Abstract 6

3.5.2 Scanning of profile ... 51

3.6 Visualisation ... 52

4 Results .. 56

4.1 Identification material properties ... 56

4.2 Deformation around the cut ... 59

5 Summary .. 63

A Matlab: Create mesh toolbox ... 65

B List of tables .. 67

C List of figures .. 68

D Programme Structure .. 70

E List of abbreviations ... 72

Reference ... 73

Erklärung .. 75

Introduction 7

Introduction

This diploma thesis is part of the collaborative research center SFB453 “High-Fidelity
Telepresence and Teleaction”. Telepresence means that a human operator feels present in
another, remote, or not accessible environment over a technical connection, for instance
internet or satellite. In a Teleaction application the human operator is not only passively
present, but he can also actively intervene at the distant place. There exists many kinds of
Teleaction application, but here a robot is used to interfere over a haptic device with the
distant environment. A communication over a long distance comes along with time delays
due to the connection. These delays can influence the feedback information of the system.
Since the High-Fidelity has to be reached, the feedback perception should not be different
from the reality. In our application, the feedback information consists of two parts, a force
and visualisation of the surrounding of the distant place. The feedback force is given to the
haptic device, so the operator feels the feedback information directly. The visual images are
rendered at the monitor screen.

Robot systems over long distance can be found in many different areas. Here, a surgical
operation scenario has been developed. A surgeon operates over a haptic device that is
connected to the robot with the scalpel at the end effector. For some operation the
knowledge or dexterous hands of specialists are needed. When these specialities cannot be in
time at the place of emergency, the operation can be performed over the Telepresence
system. A simulation environment for performing basic operation steps has to be design. Out
of the simulation the operator get the visual image of the distance place and the forces acting
on his scalpel. Different surgical simulators have been developed during the last years. The
reasons for this simulator are not to operate over long distance, but to practice the skills of
the surgeon inside a virtual environment before entering the operating room. These pre-
operative training procedures lead to significant improvement in surgeries [1]. Ideas can be
taken from the existing simulators. The most difficult task of this kind of simulators is
realistically visualizing soft tissue behaviour in real time. A virtual cutting simulator should
supply the following basic capabilities. Collision detection is needed for the control of the
location, direction and orientation of the scalpel and for updating the intersection with the
cut body. Another task is the updating of the simulation so the deformation of the incision is
capture in real time. The physical model should reflect the physical behaviour as accurately
as possible. By looking at the users interface, a haptic force feedback is invaluable in
providing realistic interaction behaviour, both from the visual and the palpable point of
view.

Introduction 8

The goal of the work aims to support the mentioned purposes and focuses on the
development of setting up a whole experimental platform to perform a cut with a human
controlled robot over a haptic device. The main topics are to find a Finite-Element-Method
(FEM) model that can deal with the discontinuity of the incision and develop a hardware
platform for performing a cut and comparing it to the simulation.

The thesis is subdivided into six chapters. It begins with the presentation of the theoretical
part of the project. It contains the description of the used physical model for the deformation
of a body. First, the standard FEM is outlined and then the explanation of the eXtended-
Finite-Element-Method (XFEM) follows. In the end of the chapter a conclusion follows
about how to deal with strong discontinuities in a FEM mesh surrounding.

For the comparison of the simulation with the reality, an experiment is set up to measure the
deformation occurring during a cut procedure. The hardware set up is explained in chapter
three. A tension plate form is developed to give the test object a certain pre-tension before
the cut is performed. The use of two different sensors, the force and the distance sensors, is
also described. In the end, a CAD model of the whole experimental set is shown to explain
how the sequence of the measurements during the cut process is.

Chapter four contains the procedures perform on the software side of the experiment. It
comprehends the explanation of the Mesh generation with Matlab, the calculation of the
FEM in the programming language C++ and the scanning of the scanControl Device.

After the presentation of the hardware and software side in the previous two chapters, the
results of the simulation and the measurements are compared in chapter five. In different
figures the advantages and disadvantage of the used simulations methods are pointed out.
The last chapter summarizes results and gives an outlook for future works.

Principle of Finite Element Method 9

1 Principle of Finite Element Method

There are many ways to develop a model for elastic bodies. Thereby, the goal of the
modelling is to reproduce the elastic behaviours of the body. The most popular approaches
of modelling elastic bodies are the mass-spring system, modal systems and the Finite
Element Method. Every approach has its advantages and disadvantages related to
deformation effects and computation effort. Modal systems use certain eigenvalues for
describing the whole deformation of a body. The method has normally a small number of
degrees of freedom and therefore can be computed fast. The disadvantages are that nonlinear
effects, huge deformation and nonlinear material properties are not included in the model.
To describe these effects, it is better to use the Finite Element Method. More degrees of
freedom are used, which leads to more computational time, but the model can cope with
large deformation. So, the FEM has been chosen for the present work.

In section 2.1 a general formulation of the standard FEM is derived. The basic steps of the
linear elasticity formulation of standard FEM are described. To capture singularities in an
element, the eXtended Finite Element Method (XFEM) is introduced in section 2.2. As it
can be seen from the name of the method, the XFEM is an extension of the standard FEM.
The XFEM method is introduced in the 1D case to see how the shape functions behave. In
the 2D case several deformation situation are compared and the effects of the XFEM are
described. Instead of using the XFEM, a remeshing at the edges of the singularities gives
also the deformation. A comparison between the two methods is given. In the end of section
2.2 the implementation of the 3D case is shown. Finally, a conclusion shows advantages and
disadvantages. An advice for an application under certain circumstances is given.

1.1 Derivation of the Finite Element Method for 3D elasticity

In engineering mechanics, all physical phenomena are dealing with differential equations,
and usually the problem is too complicated to be solved by classical analytical method. The
finite element method (FEM) is a numerical approach by which partial differential equations
with given boundary conditions can be solved in an approximate manner.

The most widely known model in solid mechanics is the linear elastic model. Based on this
model, the FEM equations are derived in four basic steps according to [2]:

1. Establish the strong formulation of the problem
2. Obtain the weak form of the problem
3. Make an element wise approximation over the entire body of the unknown function
4. Choose the weight function in accordance with the Galerkin method

With the help of the Cauchy equation, the strong formulation of solid mechanics is obtained.
When the strong formulation is multiplied by an arbitrary function, the weak formulation is
found which is the starting point for every solution of a FEM routine. In the end, the

Principle of Finite Element Method 10

Galerkin method is chosen to replace the arbitrary function with a linear approximation over
the elements.

1.1.1 Strong formulation of solid mechanics

The strong formulation of a mechanical problem is obtained summarizing all forces of a
body. For this the body is considered as a standard cube, see Figure 1.1.

The derivative of the stress tensor is formulated for every direction of the coordinate system
and summed up with the corresponding body forces ௜ܾ. The following equations are
obtained:

ଵଵߪ߲
ଵݔ߲

+
ଵଶߪ߲
ଶݔ߲

+
ଵଷߪ߲
ଷݔ߲

+ ܾଵ = 0,

ଶଵߪ߲
ଵݔ߲

+
ଶଶߪ߲
ଶݔ߲

+
ଶଷߪ߲
ଷݔ߲

+ ܾଶ = 0,

ଷଵߪ߲
ଵݔ߲

+
ଷଶߪ߲
ଶݔ߲

+
ଷଷߪ߲
ଷݔ߲

+ ܾଷ = 0.

(1.1)

These three equations are formulated in matrix notation, using the matrices સ෩் and ો,

સ෩் =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
߲
ଵݔ߲

0 0
߲
ଶݔ߲

0
߲
ଷݔ߲

0
߲
ଶݔ߲

0
߲
ଵݔ߲

߲
ଷݔ߲

0

0 0
߲
ଷݔ߲

0
߲
ଶݔ߲

߲
⎦ଵݔ߲

⎥
⎥
⎥
⎥
⎥
⎤

 and ો =

⎣
⎢
⎢
⎢
⎢
⎡
ଵଵߪ
ଶଶߪ
ଷଷߪ
ଵଶߪ
ଵଷߪ
⎦ଶଷߪ

⎥
⎥
⎥
⎥
⎤

 . (1.2)

Finally, the strong formulation in matrix form can be written as

 સ෩୘ો+ ܊ = 0. (1.3)

1.1.2 The weak formulation of solid mechanics
The weak formulation is obtained in three steps. First, the strong formulation is multiplied
by an arbitrary function ݒ. In the next step the equation is integrated over the volume of the

1
2

3

 ଵଵߪ

 ଵଶߪ

 ଵଷߪ

 ଶଵߪ

 ଶଶߪ

 ଶଷߪ

 ଷଵߪ

 ଷଶߪ

 ଷଷߪ

Figure 1.1: Stresses on standard cube

Principle of Finite Element Method 11

whole test object. In the last step, the Green-Gauss theorem is applied and the final equation
states

න ൫∇෩ܞ൯

୘
ોܸ݀ =

௏
න ܵ݀ܜ୘ܞ + න ܸ݀܊୘ܞ

௏௏
, (1.4)

which is the weak formulation of the differential equations of equilibrium (1.1) subjected to
the boundary conditions ܜ, called the Neumann-boundary conditions.

As the weight vector ܞ is arbitrary, equation (1.4) holds for any constitutive relation. The
weak formulation is often termed the virtual work equation or virtual work principle.

1.1.3 Element wise approximation of the unknown function

Several elements can be used for the discretization of the unknown shape function. A
detailed discussion of 3D elements is given in Hughes[3], Gallagher[4] and Zienkiewitz and
Talyor[5]. To save up computation time, the linear tetrahedral is used.

The concept of isoparametric finite elements is used to perform the integration over the
volumes of the elements. The elements are first defined in local coordinates ߦ୧ and then
transformed in global coordinates x୧ by the Jacobi matrix, see Figure 1.2. This procedure
was first introduced by Taig[6].

For a given nodal point i the shape functions Φi
e are then defined according to the Kronecker

delta property

 Φ୧
ୣ = ൜1 at nodal point i

0 at all other nodal points.
(1.5)

So the following shape functions of the tetrahedral in local coordinates are

઴ሬሬሬ⃗ = ൦

Φଵ
Φଶ
Φଷ
Φସ

൪ = ൦

1− ଵߦ − ଶߦ − ଷߦ
ଵߦ
ଶߦ
ଷߦ

൪ ,
(1.6)

4
2

3

1

Xଶ

Xଵ

Xଷ

1 2
4

3

 ଶߦ

 ଷߦ

 ଵߦ

Figure 1.2: Isoparametric transformation

Principle of Finite Element Method 12

where the index of Φ௜ describes the number of the node. Furthermore the derivatives of the
shape functions are needed to perform the Galerkin method

઴క =
߲઴௜

௝ߦ߲
=

⎣
⎢
⎢
⎢
⎡
ଵߔ߲
ଵߦ߲

ଵߔ߲
ଶߦ߲

ଵߔ߲
ଷߦ߲

⋮ ⋮ ⋮
ସߔ߲
ଵߦ߲

ସߔ߲
ଶߦ߲

ସߔ߲
ଷߦ߲ ⎦

⎥
⎥
⎥
⎤

= ቎
−1 −1 −1
1 0 0
0
0

1
0

0
1

቏ .
(1.7)

To map the local shape function into the global, the Jacobi transformation is used. It is
important to notice that numbering of the element cannot be chosen arbitrary due to the
transformation. As it can be seen in the Figure 1.2, the local element is defined in a right
handed coordinate system. The numbering of this element must be maintained in the global
one. An easy right hand rule can be developed for controlling the numbering, see Figure 1.3.

The vertical arrow represents the thumb and the rest of the arrows the fingers. The nodes [1
2 3] present a plane on which the thumb points in the positive direction of the normal vector
of the plane. In the same direction of the normal vector has to lie node 4.

Using the definition of the local shape functions ઴క and applying the inverse of the Jacobi
matrix, the global shape functions are given by

઴௑ = డ઴೔
డଡ଼ೕ

=

⎣
⎢
⎢
⎡
డఃభ
డଡ଼భ

డఃభ
డଡ଼మ

డఃభ
డଡ଼య

⋮ ⋮ ⋮
డఃర
డଡ଼భ

డఃర
డଡ଼మ

డఃర
డଡ଼య⎦

⎥
⎥
⎤

= డ઴೔
డకೖ

(۸)ିଵ with ۸ = .઴૆(܍)܆
(1.8)

The vector ܆(௘) contains the coordinates of the element and looks like:

(௘)܆ = ቎

ܺଵଵ ⋯ ܺସଵ

ܺଵଶ ⋯ ܺସଶ

ܺଵଷ ⋯ ܺସଷ
቏ .

(1.9)

The elements of the derivatives of the global shape functions ઴௑ constitute the B matrix

1

4

3
2

Figure 1.3: Right-Hand-Rule

Principle of Finite Element Method 13

۰ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ଵߔ߲
߲Xଵ

0 0
ଶߔ߲

߲Xଵ
0 0 ⋯

0
ଵߔ߲
߲Xଶ

0 0
ଶߔ߲

߲Xଶ
0 ⋯

0 0
ଵߔ߲
߲Xଷ

0 0
ଶߔ߲

߲Xଷ
⋯

ଵߔ߲
߲Xଶ

ଵߔ߲
߲Xଵ

0
ଶߔ߲

߲Xଶ
ଶߔ߲

߲Xଵ
0 ⋯

0
ଵߔ߲
߲Xଷ

ଵߔ߲
߲Xଶ

0
ଶߔ߲

߲Xଷ
ଶߔ߲

߲Xଶ
⋯

ଵߔ߲
߲Xଷ

0
ଵߔ߲
߲Xଵ

ଶߔ߲

߲Xଷ
0

ଶߔ߲

߲Xଵ
⋯
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .
(1.10)

1.1.4 The Galerkin method
In step 4, the Galerkin method is applied to the weak formulation. First, the displacement is
approximated by the shape functions, multiplied by the displacement values at the nodes

ܝ = ૖(1.11) .܉

The Galerkin method means that the weight vector ܞ is chosen according to

ܞ = ૖(1.12) .܋

The function ܞ is arbitrary. So, the matrix ܋ is arbitrary, which leads to

 ∇෩ܞ = where ۰ ,܋۰ = ∇෩૖. (1.13)

Equation (1.13) insert in the weak FEM formulation gives

୘܋ ቆන ۰୘ોܸ݀ −

௏
න ૖୘ܵ݀ܜ −
ௌ

න ૖୘ܸ݀܊
௏

ቇ = 0. (1.14)

As the function ܋୘ is arbitrary, the function is cancelled out by the zero on the left side of
equation (1.14) and the following equation is obtained

න ۰୘ોܸ݀ =
௏

න ૖୘ܵ݀ܜ +
ௌ

න ૖୘ܸ݀܊
௏

. (1.15)

The relation between stresses and strains is called the constitutive relation and a variety of
such relations have been established for instance elasticity, plasticity, viscoelasticity, etc.
The simplest constitutive theory is the linear elasticity and is represented in 1D by Hook’s
law in 1676

ߪ = ܧ ∙ (1.16) , ߝ

Principle of Finite Element Method 14

where the material constant E is named Young’s modulus. This expression shows that the
material response is path-independent, i.e. that there exists a one-to-one relation between
stress and strain

ો =

⎣
⎢
⎢
⎢
⎢
⎡
ଵଵߪ
ଶଶߪ
ଷଷߪ
ଵଶߪ
ଵଷߪ
⎦ଶଷߪ

⎥
⎥
⎥
⎥
⎤

;۲ = ൦

ଵଵܦ ଵଶܦ ⋯
ଶଵܦ ଶଶܦ ⋯
⋮
଺ଵܦ

⋮
଺ଶܦ ⋯

ଵ଺ܦ
ଶ଺ܦ
⋮
଺଺ܦ

൪ ; ઽ =

⎣
⎢
⎢
⎢
⎢
⎡
ଵଵߝ
ଶଶߝ
ଷଷߝ
ଵଶߛ
ଵଷߛ
⎦ଶଷߛ

⎥
⎥
⎥
⎥
⎤

 .
(1.17)

For an isotropic material, properties are the same in all directions, and the following
constitutive matrix is obtained

۲ =
ܧ

(1 + 1)(ݒ − (ݒ2

⎣
⎢
⎢
⎢
⎢
⎡
1 − ݒ ݒ ݒ 0 0 0
ݒ 1 − ݒ ݒ 0 0 0
ݒ ݒ 1− ݒ 0 0 0
0 0 0 0.5(1− (ݒ2 0 0
0 0 0 0 0.5(1 − (ݒ2 0
0 0 0 0 0 0.5(1 − ⎦(ݒ2

⎥
⎥
⎥
⎥
⎤

.
(1.18)

The coefficients ܧand ݒ are Young’s modulus and Poisson’s ratio.

Applying linear elasticity ો = ۲ઽ and ઽ = ∇෩ܝ = ,the equation follows as , ܉۰

ቆන ۰୘۲۰ܸ݀

௏
ቇ܉ = න ૖୘ܵ݀ܜ +

ௌ
න ૖୘ܸ݀܊,
௏

 (1.19)

and ۹ = ቆන ۰୘۲۰ܸ݀

௏
ቇ, (1.20)

where K is the stiffness matrix. The boundary conditions are described in the traction vector
 which ܝ which is called the Neumann boundary condition and in the displacement vector ܜ
is called the Dirichlet boundary condition [2]. These two boundary conditions are disjoint.
That means that exactly one condition has to be valid at every boundary section.

Principle of Finite Element Method 15

1.2 General Formulation of Extended Finite Element Method

The extended finite element method (XFEM) is probably the most popular enriched method.
It allows a local enrichment in subregions of the domains. In practice, it is mainly used in
applications that involve discontinuities. A large number of such applications can be found:
material interfaces, cracks, shocks, boundary layers, shear bands, etc. In this project, the
XFEM method is used for describing a cut through an elastic body.

The general formulation of an XFEM approximation of a function u(x) is of the following
form

(ݔ)ݑ = ෍߶௜

௡

௜ୀଵ

௜ݑ(ݔ) + ෍߶௝∗ଵ
௡

௝ୀଵ

(ݔ) ௝߰
ଵ(ݔ) ௝ܽ

ଵ + ⋯+ ෍߶௝∗௠
௡

௝ୀଵ

(ݔ) ௝߰
௠(ݔ) ௝ܽ

௠ . (1.21)

The first part of the sum is the standard FEM approximation with the shape function
߶௜(ݔ) and the displacements ݑ௜ at the nodal points. The rest of the term contains the
Extended FEM part, where ߰௝(ݔ) are the discontinuous enrichment functions and ௝ܽ are the
added nodal DOF. The shape functions of the added DOF ߶௝∗(ݔ) are not necessarily
identical to the shape functions of the corresponding nodes. As starting point, the enriched
shape functions are equal to the non-enriched ones [7].

The XFEM approximation consists of a standard FEM approximation plus additional
enrichments. The XFEM is based on the partition of unity concept [2]. The functions ߶௝∗(ݔ)
build a partition of unity in local parts of the domain

෍߶௝∗
௡

௜ୀଵ

(ݔ) = ݔ∀ 1 ∈ Ω௞∗ ,∀݇ = 1, … ,݉. (1.22)

Using XFEM several kinds of discontinuities can be modeled. These discontinuities are
divided in two main groups the strong ones and the weak ones. A weak discontinuity is
characterized for instance by a kink in the displacement, i.e. a jump in the gradient. In our
case, the cut is meant to be a strong discontinuity, because it has already a jump in the
displacement.

The function ߰௝ is called the global enrichment function. It defines the level sets of the
discontinuity. Most widely used in XFEM is the Heaviside function which leads to identical
results as the sign-function because they span the same approximation space,

(ݔ)߰ = ൯(ݔ)߶൫ܪ = ൜0 ∶ (ݔ)߶ ≤ 0
1 ∶ (ݔ)߶ > 0 . (1.23)

The enrichment of the nodes impacts all elements sharing the enriched nodes, i.e. the one
ring of neighbours of the element containing the cut. Due to the additional enrichment terms
the shape functions of the XFEM do not have the Kronecker delta property in general.
Consequently, the displacement of the enriched nodes has to be computed as a sum of the
components ݑ௜ + ߰௜ܽ௜. This fact also complicates the treatment of the boundary conditions.

Principle of Finite Element Method 16

To avoid the problem, the shifted enrichment functions are used instead,

߰௜(ݔ) =

(ݔ)ܪ ௜ܪ−
2

, (1.24)

where ܪ௜ is the value at the i-th node. The division by 2 ensures the Kronecker delta
property. The effect of shifting is that the enrichment contributions only appear within the
element, which leads to an enormous simplification of the implementation [8].

1.3 Comparison the XFEM method with the FEM

In this subchapter straight line cuts are performed in different meshes by using different
approximation functions. Starting with the 1D case the course of the shape function over the
cut can be visualized for better understanding. Afterwards 2D elements are used. Thereby
some effects of how the XFEM method reaction to certain loadings can be seen. There is
also done a comparison to standard FEM with remeshing and to deleting the cut element.
Finally, 3D elements are cut. The same comparison is performed and the use of the XFEM
can be seen.

1.3.1 1D elements

Starting point for the implementation of the XFEM is the 1D bar element. Trying to keep the
solid problem only 1D leads to an unstable system. Putting bars in a row and cut one of them
in the middle, the static balance of forces is not secured.

One easy way to solve this problem is to support the cut element at the end by two other
bars. To get nearly a 1D case, the cut bar is situated on the x-axis and supported by two bars,
one below and one above. It is demonstrated in the Figure 1.4.

Figure 1.4: Truss structure, left standard FEM and right XFEM

By cutting a 1D bar in the middle, no load transmission will take place between the end
nodes. From this it follows that the cut bar can be left out and then the other bars can be

Principle of Finite Element Method 17

calculated after the standard FEM. In Figure 1.4, the XFEM mesh is shown on the right side,
where the bar 2 will be cut in the middle. On the left side, the FEM mesh is plotted with the
bar number 2 missing.

The XFEM is used with the Heaviside-enrichment function which is typically used for
strong discontinuities and fully decouples the two parts of the domain.

The shape function of the enriched element 2 is given by,

ଵܯ = ଵܰ(ݔ)ൣܪ൫߶(ݔ)൯ − ,൯൧(ଵݔ)߶൫ܪ
ଶܯ = ଶܰ(ݔ)ൣܪ൫߶(ݔ)൯ − ൯൧, (1.25)(ଶݔ)߶൫ܪ

which are decomposed into a left, negative part, and a right positive part,

ଵܯ
ି = ଵܰ(ݔ) ൤ܪ ൬ݔ −

1
2
൰ − ܪ ൬ݔଵ −

1
2
൰൨ = ݔ) − 1)(0− 0) = 0,

ଵܯ
ା = ଵܰ(ݔ) ൤ܪ ൬ݔ −

1
2
൰ − ܪ ൬ݔଵ −

1
2
൰൨ = ݔ) − 1)(1 − 0) = 1− ,ݔ

(1.26)

for the second node,

ଶܯ
ି = ଶܰ(ݔ) ൤ܪ ൬ݔ −

1
2
൰ − ܪ ൬ݔଶ −

1
2
൰൨ = −0)(ݔ) 1) = ,ݔ−

ଶܯ
ା = ଶܰ(ݔ) ൤ܪ ൬ݔ −

1
2
൰ − ܪ ൬ݔଶ −

1
2
൰൨ = 1)(ݔ) − 1) = 0,

(1.27)

The enriched shape functions are plotted in Figure 1.5 and compared to the FEM shape
functions.

In the middle of element 2, the enrichment shape functions ܯଵ and ܯଶ have a step to zero.
This represents the cut in the bar and decouples the two nodes from each others, so there is
no longer a connection between the two nodes.

The derivatives of the shape function ܯଵ and ܯଶ are ,ܰ௫
(ݔ)ି = [−1 1 0− 1] and ,ܰ௫

ା(ݔ) =
[−1 1− 1 0] and for the stiffness matrix follows,

۹ =

ିܣܧ

૛
 ∙ ଵܯ

ଵܯ் +
ାܣܧ

૛
 ∙ ଶܯ

ଶܯ் , (1.28)

0.5
0

1

x
1

N1(x) N2(x)

M2(x)

M1(x)

Figure 1.5: Shape function of the cut element

Principle of Finite Element Method 18

۹ = ିܣܧ ൦

0.5 −0.5 0 0.5
−0.5 0.5 0 −0.5

0 0 0 0
0.5 −0.5 0 0.5

൪ + ାܣܧ ൦

0.5 −0.5 0.5 0
−0.5 0.5 −0.5 0
0.5 −0.5 0.5 0
0 0 0 0

൪ .

It should be denoted that this matrix is also singular after introduction of boundary
conditions, because it fully decouples the right part of the bar and no Dirichlet boundary
conditions are imposed there.

Figure 1.6: Deformed truss structure, left standard FEM and right XFEM

To obtain a non-singular stiffness matrix new Dirichlet boundary conditions at the enriched
element stiffness matrix have to be added. After the cut, the enriched part only can act in x-
direction which means that the degrees in y-direction are equal to zero. Using this added
boundary condition the global stiffness matrix is non-singular and can be solved for every
applied force [9].

1.3.2 2D elements
With the 2D elements, the different techniques can be shown how to implement the XFEM
method. Rectangle elements are used as 2D elements. The shape functions are easy to derive
and this type of element is axially symmetrical, which will lead to symmetric deformation,
when a symmetric load is applied. This is an easy check whether our FEM programme is
working correctly.

Another reason for the use of rectangles is that the shape of the elements matches with the
projection of a block in a plane. As the goal of the present work is to cut in a straight line
through a body, the 2D mesh consisting of rectangles comes equates in some situations the
3D simulation.

1.3.2.1 Creation of the meshes

Three different meshes are used in this subchapter, a XFEM mesh, a FEM mesh where the
cut is remeshed and a FEM mesh where the cut element is completely delete.

Principle of Finite Element Method 19

Figure 1.7: Mesh, left XFEM and right FEM

In Figure 1.7, on the left hand side the XFEM mesh is plotted and on the right hand side the
FEM mesh with remeshing. There are six elements connected to each other for the XFEM
case. The red numbers represent the numbering of the nodes and the blue numbers the
numbering of the elements. At the nodes [1 5 9], a deformation in the negative x-direction
and at the nodes [4 8 12] on the opposite x-direction takes place. Through all tests, the offset
of the deformation is kept equal at 0.4 mm. The cut will take place in the middle of element
5 along the y-axis, represented by the red dashed line.

To develop the same model using conventional FEM several steps have to be performed. A
remesh is needed to describe the discontinuity at the cut edges, so there has to be added
additional element around the cut surface. When only dividing element 5, the convergence
criterion is violated. It is postulated that the approximation must be continuous over the
boundaries of every element, see [2], so element 2 has to be also divided. By adding a new
node 16 at the node 15 a gap between the elements 6 and 7 can occur, see Figure 1.7 on the
right hand side.

Figure 1.8: Mesh, FEM element missing

In the last mesh, the same mesh is taken as for the XFEM calculation, but the five element is
deleted out of the mesh, see Figure 1.8.

Principle of Finite Element Method 20

1.3.2.2 Comparison between the different meshes

Comparison between the meshes should be done with caution. As the FEM in general
represents an approximation over the whole test body, the size and number of the elements
have an influence on the result.

For instance, more nodes and more elements are used in the FEM with remeshing compared
to the XFEM mesh. To get an idea, how huge the difference regarding to the different
meshes are, the problem is stated without the cut. This means that the element 5 is not
enriched for the XFEM and for the FEM node 16 is not added to the mesh, so there will be
no cut present in the meshes. The difference of the deformation regarding to the different
mesh techniques are shown in Figure 1.9.

Figure 1.9: Deformed mesh, left FEM and right XFEM

The deformation is symmetric around the y-axis. The nodes [2 6 10] are taken for the
comparison. There are slight differences in the deformation. In Figure 1.10 the two different
deformed meshes are plotted over each other.

Figure 1.10: Comparison of FEM and XFEM without cut

Principle of Finite Element Method 21

To investigate the error, the absolute and the relative deviation is calculated.

 ݁௔௕௦ = ݁ଵ − ݁ଶ
(1.29)

 ݁௥௘௟ =
݁ଵ − ݁ଶ
݁ଶ

 (1.30)

The absolute deviation is the difference of the two displacements. The relative is based on
the deviation. In Table 1.1, the absolute deviation is on the right side and on the left the
relative.

Absolute Deviation [mm] Relative Deviation to displacement at the node [%]

Node 2 6 10 Node 2 6 10
x-direction 0.00055696 -4.02E-04 0.00055696 x-direction 0.42448 0.2617 0.42448
y-direction 0.000474 5.63E-18 -0.000474 y-direction 0.37519 41.05 0.37519

Table 1.1: XFEM compared to FEM

The values of the absolute deviations are small. Looking at the relative deviations, the only
value which stands out is the relative deviation of node 6 in y-direction. At that node, the
absolute deviation has the potency of -18. In numerical terms, it means that the displacement
is zero. Comparing the zero displacement to the absolute value does not make sense in this
context.

The XFEM method is also compared to a different remeshing method. Instead of creating
new nodes around the edges of the cut, the cut element is completely left out.

Three different meshes (XFEM, FEM with remeshing around the edges, FEM with deleting
the cut element) are now obtained and compared to each other to see the effects of the
deformations.

The first comparison is done between the two FEM meshes,

Principle of Finite Element Method 22

Figure 1.11: Comparison FEM with cut and FEM element missing

Absolute Deviation [mm] Relative Deviation to displacement at the node [%]

Node 2 6 10 Node 2 6 10
x-direction -0.0046612 0.05773 0.038005 x-direction 4.3285 34.461 9.4862
y-direction 0.0081407 -0.0021815 -0.046444 y-direction 4.1937 4.0929 598.29

Table 1.2: Absolute/relative deviation between FEM with cut and FEM element missing

The biggest difference between the two deformations is in node 10. This means that the
element 6 of the FEM mesh with cut has the same stress situation regarding to directions as
the element 4 in the other mesh. This matter can also be seen, by looking at the movements
of the free edge 16 in the FEM mesh with remeshing compared to the node 10 of the other
mesh. As the middle element is missing, the nodes 10 have be compared. But the node ten is
not a free edge in the FEM mesh with remeshing, so two different situations are modelled
which leads to two different solutions. Later in this chapter, the important of the free edges
will be more outlined.

In the second comparison, the deformed XFEM mesh is plotted together with the defomed
FEM mesh with cut and as reference mesh is the not deformed FEM with cut given,

Principle of Finite Element Method 23

Figure 1.12: Comparison FEM cut to XFEM cut

Absolute Deviation [mm] Relative Deviation to displacement at the node [%]

Node 2 6 10 Node 2 6 10
x-direction -0.0045596 0.057761 0.039761 x-direction 4.2342 34.48 9.9245
y-direction 0.0088591 -0.0013216 -0.050537 y-direction 4.5638 2.4796 651.01

Table 1.3: Absolute/relative deviation between FEM with cut and XFEM with cut

In the table above, the biggest value for the relative deviation occurs at node ten in the x-
direction. Comparing the two Table 1.2 and Table 1.3 shows that the deviation is similar in
all values. It seems that the XFEM method cancels out the element and creating a free edge
at node 10, which leads us to the next comparison between the deformed XFEM mesh and
the deformed FEM mesh with the middle element missing, see Figure 1.13.

Principle of Finite Element Method 24

Figure 1.13: Comparsion XFEM cut to FEM element missing

Absolute Deviation [mm] Relative Deviation to displacement at the node [%]

Node 2 6 10 Node 2 6 10
x-direction 0.0001016 3.06E-05 0.0017557 x-direction 0.098617 0.013597 0.40026
y-direction 0.00071842 0.00085991 -0.0040924 y-direction 0.3863 1.5499 10.58

Table 1.4: Absolute/relative deviation between FEM and XFEM

Having a look in the table above, all nodes are concurrent. Only the node ten has a relative
deviation of 10.58. But it must be taken into account that this value was before by around
600, so it is a better conformance now. It seems that the free edge of the FEM mesh
conforms to the missing element more the XFEM method than to the remeshing method.

1.3.3 3D elements

As in the 2D case, there will be performed the same comparison in the 3D case. In the 3D
case it is more difficult to develop a FEM mesh using the “remeshing method” which can be
compared to the XFEM. A cube with the side length of one is taken and divided up into five
tetrahedral, see Figure 1.14.

Principle of Finite Element Method 25

Figure 1.14: Standard cube divided into 5 tetrahedrons

The cut is performed in the element with the edges [5 2 7 6]. The cut plane is situated in the
surface of the y-, z-axis with the offset of 0.5. The cut surface of the element is represented
by the red triangle in Figure 1.14. As described in the previous chapter, the convergence
criterion has to be valid. This means that in the remeshing situation, new nodes are added
around the edges of the cut. The neighbour elements have to be also subdivided due to the
boundary continuity law.

When the cut surface coincides with an edge of an element, a new node is created which can
be seen in Figure 1.15,

Figure 1.15: Standard cube with added nodes in cut surface

Out of the mesh shown in Figure 1.15, the three different mesh(XFEM, FEM with
remeshing and FEM with cut elment missing) can be created. For the XFEM case the node

Principle of Finite Element Method 26

16 is left out and the cut element possesses the nodes [12, 13, 7, 8], shown in Figure 1.16.
The sides of the cut element are marked red.

Figure 1.16: XFEM mesh

For the remeshing situation the node 16 is add on the edge of the corners 7 and 8. As in the
2D case the cut element is subdivided into two elements [12, 13, 7, 16] and [8, 13, 12 16].
By adding the new node 17 at the node 16, a gap between the two elements are possible.

Figure 1.17: FEM mesh with cut element

For the last mesh the FEM with the element missing the cut element [13, 12, 7, 8] is left out.
Now the nodes where x equals one are pulled in x-direction by 0.3 mm, but they still can
move freely in y- and z-direction. First a comparison between the two FEM methods is
performed,

Principle of Finite Element Method 27

Figure 1.18: Comparsion FEM element missing to FEM cut

Absolut Deviation [mm]

Node 2 3 4 5 8 9 10 12 13 14 15
x-dir. -0.0002 0.0000 0.0000 0.0009 0.0000 0.0000 -0.0019 -0.0013 -0.0027 0.0003 0.0001
y-dir. -0.0040 -0.0030 -0.0034 -0.0035 0.0040 -0.0027 -0.0023 -0.0077 -0.0029 -0.0031 -0.0037
z-dir. 0.0047 0.0029 0.0052 0.0039 -0.0012 0.0058 0.0048 0.0058 0.0077 0.0039 0.0051

Relativ Deviation to displacement at the node [%]

Node 2 3 4 5 8 9 10 12 13 14 15
x-dir. 0.1178 0.0000 0.0000 0.5734 0.0000 0.0000 1.2681 0.8992 1.6573 0.2422 0.0477
y-dir. 8.8145 4.8241 9.7397 11.3430 10.1910 5.9507 5.0375 19.5800 16.7860 8.0146 31.0840
z-dir. 11.9950 20.7890 11.5300 10.7200 1.5982 10.1870 8.1124 53.2320 14.6700 70.3960 19.1300

Table 1.5: Absolute/relative deviation between FEM with element missing and FEM cut

In the 3D case it is hard to see effects of the deformation straight from the visualization of
the mesh. It is better to compare the absolute and relative deviations. In Table 1.5 the
absolute deviation for the FEM remeshing method compared to the FEM without the cut
element are compared. All absolute deviations which are higher than 0,004 are highlighted
yellow. For the relative deviation, the nodes with higher value of 20, are highlighted. The
differences of the relative deviation are especially huge in z-direction.

In Figure 1.19 a comparison is made between the XFEM method and the FEM with
remeshing. The red line represents the XFEM mesh and the green the FEM with remeshing.

Principle of Finite Element Method 28

Figure 1.19: Comparison XFEM to FEM remeshing

Absolut Error [mm]

Node 2 3 4 5 8 9 10 12 13 14 15
x-direction 0.0008 0.0000 0.0000 -0.0015 0.0000 0.0000 0.0028 0.0047 0.0048 -0.0005 0.0001
y-direction 0.0061 0.0076 0.0078 0.0058 0.0040 0.0079 0.0045 0.0089 0.0056 0.0055 0.0058
z-direction -0.0073 -0.0105 -0.0081 -0.0057 -0.0088 -0.0088 -0.0069 -0.0095 -0.0100 -0.0057 -0.0076
Relativ Error to displacement at the node [%]

Node 2 3 4 5 8 9 10 12 13 14 15
x-direction 0.6194 0.0000 0.0000 1.0389 0.0000 0.0000 1.8445 3.1099 2.9459 0.4594 0.0684
y-direction 12.4420 11.8770 24.6890 21.3060 11.2470 18.5780 10.5270 18.9910 39.3320 15.3850 37.4180
z-direction 21.0990 94.4030 20.2260 17.5230 11.8540 13.8690 10.7320 56.5220 16.5620 59.8600 34.8290

Table 1.6: Absolute/relative deviation between XFEM and FEM remeshing

In Table 1.6: the absolute and relative deviation of the comparison between the XFEM and
FEM remeshing is performed. The highlighting system is used as above. Here the y- and z-
direction are out of place. All deformation in y- and z-direction mismatches.

Principle of Finite Element Method 29

Figure 1.20: Comparison XFEM cut to FEM element missing

Absolut Error [mm]

Node 2 3 4 5 8 9 10 12 13 14 15
x-direction 0,0006 0,0000 0,0000 -0,0007 0,0000 0,0000 0,0009 0,0033 0,0022 -0,0003 0,0002
y-direction 0,0021 0,0047 0,0044 0,0023 0,0080 0,0052 0,0022 0,0012 0,0027 0,0024 0,0021
z-direction -0,0026 -0,0076 -0,0029 -0,0018 -0,0100 -0,0029 -0,0021 -0,0036 -0,0023 -0,0018 -0,0024
Relativ Error to displacement at the node [%]

Node 2 3 4 5 8 9 10 12 13 14 15

x-direction 0,5024 0,0000 0,0000 0,4595 0,0000 0,0000 0,5998 2,2386 1,3375 0,2161 0,1161
y-direction 4,7245 7,6259 12,5450 7,5469 20,2920 11,5220 4,9596 3,1297 15,9440 6,1372 17,9650
z-direction 6,5737 53,9880 6,3636 4,9248 13,2630 5,0954 3,4907 33,3770 4,3218 31,6030 9,0357

Table 1.7: Absolute/relative deviation between XFEM and FEM element missing

A better conformity is achieved in the last case when the XFEM method is compared to the
standard FEM with the cut element missing.

Principle of Finite Element Method 30

1.4 Discussion

The goal of the work is the real-time simulation of a cut procedure. Additionally, the visual
effects of the deformation should be obtained. The big advantage of the XFEM is that there
is no need to mesh and remesh the discontinuity surfaces. Comparing XFEM and FEM, the
computational cost of the enrichment is lower than the cost for remeshing due to the
stiffness matrix. Using the XFEM, the visualisation of the cut edges are missing or have to
be done in a post processing algorithm, because the discontinuity is restricted to the edges of
the mesh. The cutting force is predicted by a different model which is decoupled from the
FEM calculation. It means that there are two models, one for visualisation and one for
predicting the cut forces. There could be a possibility to get the two models together in the
XFEM. The origin of the XFEM is the propagation of various discontinuities through a
material. The amount of propagation is defined by the load at the break point of the
discontinuity. This is formulated in an equation. Instead of defining the load as propagation,
the velocity of the knife of the body can be taken, so the force model for the cut and the
deformation model can be integrated.

As the remeshing can be really time consuming, it can be considered to delete the cut
element out of the mesh instead of remeshing around the edges of the singularity. It can be a
fair approximation, considering that small chippings are generated by a cut. The elements
must have the same size as the absorbed material, so the mesh has to be fine around the cut.
In medical surgeries, the position of the cut is normally known before the operation. By
refining the area of the cut, an easy cut algorithm can be implemented. There are two ways
of cutting the element. First, if the cut is near the edges of the element, it takes place
between the elements by decoupling the nodes. Second, if the cut is in the middle, the entries
of the stiffness matrix are deleted, so no connection between the nodes exists.

Experimental set-up 31

2 Experimental set-up
In this chapter there is given a description of the hardware components of the experimental
set-up. The tension platform fulfils the task to set the test object under a certain pre-tension
before the cut. The platform is also used for determine the material properties of the silicone.
The scanning device scanCONTROL 2700-100 from the company Micro Epsilon allows
measuring the real deformation of the test object around the cut edges and comparing it in a
post-processing algorithm with the results of the simulation. In a previous project at the
department of applied mechanics at the Technical University of Munich, a modular robot
has been developed by Mr. Dr. Robert Engelke. The robot is called the blue robot due to his
painting. A scalpel from the company Sollingen is used to perform the cut. It is mounted to
the end effector of the blue robot.

2.1 Tension platform

To get a predefined tension in the test object, a tension platform has been developed. Using
an adjustment mechanism, a predefined tension can be exposed to the object. In Figure 2.1, a
CAD drawing of the tension platform is shown.

Figure 2.1: Tension platform

The tension platform consists of the following components:

1. Ground plate
2. Adjusting mechanism
3. Mounting of test object
4. Force sensor
5. Profile rail
6. Profile trolley
7. Test object
8. Hard silicon for mounting

Experimental set-up 32

9. Cut line of scalpel
10. Stretching block
11. Fixing of adjustment mechanism

In the following a detail description of the shape, material type and mounting of the test
object will given.

2.1.1 Shape of test object
The tension platform should be suitable for different kinds of test objects. Within of the
collaborative research project SFB 453 an abdominal surgery should be imitated by a test
object. The platform can be used for two applications. In Figure 2.1, the first application is
shown, where the fixing block of the adjustment mechanism is mounted at a distance of 300
mm to the stretching block. In this application, test objects of the size of 150x300 mm can
be mounted. In the second application, the fixing block can be disarrange to the end of the
ground plate, so test objects of the size 300x300mm fit in. The height of the stretching block
is 100 mm. An average human being has a maximal abdominal of 200x200 mm, so platform
can be used for later experiments on more complex test objects.
First, a rectangle block is chosen for the shape of the test object. The block is easy to mesh
for the later FEM simulation and the mould will not be of a complicated shape.

2.1.2 Mounting of the test object

To ensure a proper mounting of the test object, different techniques have been investigated.
Silicone possesses the property not to stick to anything, so it cannot be just glued to a plate.
The first idea was to clip the edges of the silicone block between two metal plates. There
occur two problems. At first it is hard to define the boundary condition for the later
simulation and secondly the silicone is a soft tissue material which will slip through the
metal plates after a certain tension.
Another idea was to mould the fixing into the test object, see Figure 2.2. As fixing an
aluminium bar was chosen. Now the bar can be mounted over screws to the stretching block.
The same is done for the fixing at the adjustment mechanism. By pulling the two ends apart,
tension is applied to the test object. Where the edges of the moulded bar touch with the
silicone block, a tension peak will occur, so a cracks occurs already after a small amount of
load and will lead to a break of the mounting.

Experimental set-up 33

Figure 2.2: Mounting moulded into the test object

The developed solution is to use two different kinds of silicones and glue them together by
themselves, see Figure 2.3. The middle part has much lower elasticity than the two outer
parts. The test object can be mounted to the tension platform by squashing the stiffer silicon.
The hard silicone block for fixing also deforms at a certain loading and will influence the
deformation of the soft part. So, there should be drawn attention that there is no significant
deformation of the hard silicon part.

Figure 2.3: Mounting moulded into the test object

The procedure of creating the silicone blocks is to first mould the two stiffer silicone blocks.
Afterwards a mould with two open ends is used. At the open ends the two stiffer silicone
blocks will be placed, so during the moulding process the middle part can glue to the outer
parts.

2.1.3 Material properties of test object

The material properties have to fulfil certain requirements, as well being similar to the
human skin as being suitable for the FEM simulation. As described in the previous chapter
the material law is linear elastic, which means that the chosen material has to satisfy this

Experimental set-up 34

condition. The material should also have the behaviour of a soft tissue material, to deform
like a human skin. This is a trade off, because most soft tissues have nonlinear material
behaviour. As a solution soft silicone rubber is chosen. It is not so soft as skin, but as it can
be seen in the chapter “Result”, silicone rubber deforms linear to certain loadings. There
exist many types of different silicones rubber. As another requirement is to create different
kind of shapes, a moulding material is used to create the wanted shapes by our self. The
chosen moulding material comes from the company Breddermannm Kunstharze, and is
named silicone-moulding material, shortening SI6GB. The first two letters of the shortening
stand for silicone and the number stands for the hardness of the material. It is two
component combinations of silicone rubber and hardener with a fast processing time.

In our application the test object is a block consisting of silicone. In the adjusting
mechanism, the vertical displacement of the test object can be adjusted by a jack screw over
the round grip at the end. The profile rail prevents movement the in the y-axis and ensure
that the force sensor measure only forces in x-direction. The friction of the profile rail is
small compared to the forces in x-direction.

To determine the material properties of the silicone which are not given by the producer, the
force sensor from the company Schunk is used. The displacement between the two tension
plates is measured and plotted against the corresponding tension. The elasticity modulus can
be found with the help of the Hooks law. For Poisson ratio the displacement is compared to
the side contraction of the test object. A more detail description will be given in the chapter
five “Result”.

2.2 Description of the “Blue robot”

The cut is performed by the blue robot (see (1) in Figure 2.4), which has been developed in a
previous project at the Institute of Applied Mechanics. There exists different configuration
for the robot. The chosen configuration has four joints, see Figure 2.4. For the first step the
cut is of a straight line, so the first joint is locked. For more information about the set up of
the robot, see [10]. For a detail description of the inverse kinematic of the robot
configuration and of the trajectory, it is referred to [11].

Experimental set-up 35

Figure 2.4: Test bench with blue robot

2.3 2D Scanning of test object

A rectangular solid, which is used in this part of the project, can be described by straight
lines. In later projects, more complex shapes will be used. For this purpose, the exact
dimension of the test object has to be determined. After obtaining the outer dimension of the
test object, a mesh generator helps to fill the object with finite elements. The device
scanCONTROL is mounted to the end effector of the blue robot to scan the outer surface of
the test object. There are two different configurations to mount the 2D scanner on the end
effector, see Figure 2.5.

Figure 2.5: Different configuration for mounting the scanCONTROL

Experimental set-up 36

In Figure 2.6, the scanning of a test object is shown. In this work the scanning is not done
for the purpose of generating a mesh, but the results of the simulation will be compared to
the real deformation by the scanCONTROL.

Figure 2.6: Scanning of the test object

The Scanning configuration consists of the following components:
1. Tension platform
2. Blue Robot
3. scanCONTROL
4. Effective range

Two routines are written for the scanning the object. At first the scanning coordinates are
transformed via the direct kinematic into the absolute coordinate system. In this approach
the scaling of the robot is crucial. If the dimension of the robot is not exact determined, the
different measurements from different position of the blue robot cannot be compared to each
other.

In the second routine the edges of the test object are detected by the scanCONTROL and
taken origin for the absolute coordinate system. It means that the absolute coordinate system
lies on the top of the silicone block. A more detailed description of the two routines can be
found in chapter 4 “Software Implementation”.

2.4 Fixing of the scalpel at the robot

The scalpel is mounted to the end effector of the blue robot. For the configuration of the blue
robot, the scalpel is mounted to modul 70 of the robot, see Figure 2.7.

Experimental set-up 37

Figure 2.7: Fixing of the scalpel to the end effector

The mounting of the scalpel consists of the following components:
1. Scalpel
2. Attachment of the scalpel
3. Six axis force sensor form the company Automation Instrument
4. Mounting plate to modul 70mm of the blue robot
5. Modul 70mm

A force model for the cut process will be developed. To get experimental data, the scalpel is
not mounted directly to the robot, but there is a 3D force-momentum sensor attach between.
Using the measured position and velocity of the scalpel a force model for the cut process can
be developed.

2.5 Experimental setup online calculation

In the experimental setup the FEM calculation is controlled online, i.e. during the cut
measurements with the scanCONTROL take place and are compared online to the
simulation. The scanCONTROL device is not mounted to the blue robot for this application.
A mounting device has been developed to fix the scanCONTROL at a certain hight and at a
certain angle, see Figure 2.8. The mounting device consists of the following components:

1. Base plate
2. Shaft
3. Fixing plate for scanCONTROL
4. Twist mechanism
5. Effective range

Experimental set-up 38

The shaft can be fixed in different heights. The twist mechanism makes it possible to adjust
certain angles. Particular attention should be paid to the effective range of the
scanCONTROL. As it is not possible to measure straight over the test object due to the
movements of the blue robot, the scanning takes place from the side. There occurs certain
measurement shadows when scanning from the side, i.e. some regions cannot be scanned.

Figure 2.8: Experimental set-up online calculation

Software implementation 39

3 Software implementation
In this chapter, the programming structures for different applications are explained. Before
starting with a FEM simulation, a mesh must be created. To keep track of the numbering
system in our mesh, a self-written Matlab routine is designed, introduced in section 4.1. The
rest of the written routines are implemented in programming language C++ on the platform
Microsoft Visual Studio. In section 2.2, there is given a short introduction to C++.
Afterwards the implementations of FEM programmes with their function are presented.
When the incision is performed in the FEM mesh, a remeshing method is suggested to solve
the problem. The device scanCONTROL 2700-100 creates a profile of the deformed test
body. A algorithm is written to transform the local coordinates of the scan device into the
simulation, presented in section 4.5. For the visualisation, the toolkit OpenGL is chosen for
creating images on the computer screen.

In the following section, two types of variables are present. The variables presented in the
theory part, do not automatically coincide with the variables used in the programme. In order
to differ the variables, the theoretical ones are written with fat letter and the programming
variables with cursive letters. Names of programme functions are in cursive letters with
quotations mark.

3.1 Create Mesh with Matlab

At first a mesh is used which is created by a self-written Matlab routine. It is easier to keep
track of the numbering system when it is known how the mesh was created. This will help
later by the development of a remeshing method, because the ordering of the nodes will be
known. In later project, an external programme will be used to mesh more complex
geometries. For instance the programme Tetgen can be used to perform this task. As
elements types tetrahedral are chosen, because on one hand they preserve good
approximation results due to the shape of the element and on the other hand the linear shape
functions are easy to derive.

In the Matlab routine “Create_Mesh” the whole algorithm is implemented to create a mesh
with tetrahedral for the later calculations in the FEM calculation in C++. The routine needs
three different types of inputs. As mention before the shape of the test object is a rectangular
bock. The size of it is defined by the three parameters scx, scy and scz which are the length
of the corresponding sides. The number of cubes per side is the second input and represented
by the variables lxc, lyc and lzc for every direction. For the parameters lxc and lyc, only even
positive numbers can be chosen due to the mirroring at the coordinate axis, which can be
seen later in this chapter. But the variable ly_plus also accepts uneven numbers. The last
input of the mesh creation is the feature show or hide. The variable zeig suppresses the plot

Software implementation 40

if it is not one, if not it will be hidden. If the figure is plotted, it can be chosen, if the number
of nodes or number of elements will be shown in the plot. For these parameters the same
rule is applied as for zeig, if it is one it will be shown, otherwise it will be suppressed.

The basic idea of the mesh creation is that first a basic cube with the length of one is filled
with tetrahedral and then mirroring it until a block is created. Then this block is duplicated
until the wanted number of block is reached for every coordinate axis. In the end, the block
is scaled according to the input parameters.

The function “geom_tet” creates out of the described input the block filled with tetrahedral.
The function is divided into 8 different steps. First there is a basic cube defined, as it can be
seen in Figure 3.1.

Figure 3.1: Standard cube

One cube cannot be set one to another by changing the coordinates of the edges in each
corresponding direction, because the diagonals are not covering on the outer surfaces. This
would violate the compatibility requirement or also sometimes called the conforming
requirement. It states that the approximation of the unknown variable must be continuous
over the element boundaries. If the cubes are connected one to another, the diagonals of the
touching surfaces will cross each other and the continuous boundary condition for these
elements will be violated.

In order to avoid this violation, the basic cube is mirrored in the second step on x-axis at the
surface with the node numbers (1,4,5,8),see Figure 3.2.

Software implementation 41

Figure 3.2: Basic cube mirror at the x-axis

As it is seen now, the contact surfaces have a common diagonal which allows continuity
over the boundaries of the two elements. The same thing is done by mirroring the body
above at the y-axis, see Figure 3.3.

Figure 3.3: Cube mirrored at x- and y-axis

In the last step the four cubes filled with tetrahedral are mirrored at the z-axis, see Figure 3.4

z-
di

re
ct

io
n

x-direction y-direction

Software implementation 42

Figure 3.4: Uniform cube

The principle described above, is performed by the function “init_Edof”. This function
needs no input and gives as a result the matrix node and Edof. The matrix node contains the
coordinates of the nodes. The matrix Edof which is called the Topology matrix contains the
numbering of each element. This means that the row represents the number of the element
and in the column stands the edge numbers of the element.

Out of the basic cube, a new cube is obtained which is called uniform cube. This cube has a
conforming outer surface when placing the cubes in a row. With the function
“cal_Edof_node_lx”, the initial cube has been added in the x-direction by another by the
variable lx. For instance, this variable is one, one uniform cube is been added and so on. The
functions “cal_Edof_node_ly” and “cal_Edof_node_lz” are doing the same thing, but
instead of a cube it is the whole row of the previous created object.

In step 6, the scaling the matrix node takes place, that one edge lies at the point of origin.
The length is scaled by the parameters scx, scy and scz for every coordinate.

As output the matrices node and Edof are obtained in step 7. In the matrix node the
coordinates of every nodal point are save. The matrix is organized as follows,

݁݀݋݊ = ൥

1 ଵݔ ଵݕ ଵݖ
⋮ ⋮ ⋮ ⋮

݀݋݊݊ ௡ݔ ௡ݔ ௡ݔ
൩ . (3.1)

The subscript n stands for the total number of elements nodes. Therefore the row represents
the numbering of the nodes. For instance, for node number one, we have the coordinates in
row one.

x-direction

z-
di

re
ct

io
n

y-direction

Software implementation 43

Another important matrix is the Edof called the Topology matrix. In this matrix, the
numbering of the elements is saved, so the information is kept which node belongs to which
element. The Edof matrix is implemented in the program as follows:

݂݋݀ܧ = ൥

1 1ݎ݊_݁݀݋݊ 2ݎ݊_݁݀݋݊ 3ݎ݊_݁݀݋݊ 4ݎ݊_݁݀݋݊
⋮ ⋮ ⋮ ⋮ ⋮

݈݊݁݁ 1ݎ݊_݁݀݋݊ 2ݎ݊_݁݀݋݊ 3ݎ݊_݁݀݋݊ 4ݎ݊_݁݀݋݊
൩ (3.2)

The FEM algorithm presented in this thesis is written without the use of a seperated degree
of freedom matrix, so with the two matrices Edof and Node, the calculation of a FEM
deformation can determine. In the next section follows a short introduction to the C++
programming language, especially dealing with matrices.

3.2 Introduction of the C++

The programming languages C++ is a standard high-level programming language and has
gone through a huge development since the first appearance on the market. It was created
since 1979 from Bjarne Stroustrup from the AT&T as an extension from the programming
language C. C++ is designed for different programming paradigms, i.e. object orientated,
generic and procedural programming. C++ allows as well an efficient and machine-oriented
programming as a programming with a high degree of abstraction.[12]

In the FEM calculation, the stiffness matrix becomes high order due to the degree of
freedoms at the nodes. Dealing with matrices in C++ is involved with some restrictions. For
every entries of a matrix a certain place in the memory has to be reserved. For dynamic
matrices, i.e. change of size, the memory space has to be adapt to the situation. There exist
many different ways to do that. It is possible instead of using an own written library the C++
Standard Library [13] vector<> template class. The disadvantage of this class is that some
compiler vendors do not get the best performance out of elementary operations, because it is
so feature-rich. Also included in the C++ Standard Library is the class valarray<>. At one
time, this was supposed to be a vector-like class that was optimized for numerical
computation, including some features associated with matrices and multidimensional arrays.
However, the valarray classes were not designed very well. The class was introduced by a
committee, but they could not come to a consensus for a final definition of the class, so the
testing phase of the class is missing. Unwanted failure can occur during implementing an
algorithm. The result of this history is that C++, at least now, has a good class for vectors
and no dependable class at all for matrices or higher-dimensional arrays. These reasons lead
to provide an own written and basic library for vectors and matrices.[14]

The ideas of the memory allocation for the elements of the matrices are copied from the
book “Numerical Recipes”[14] for this part of the project and adapt to our problems. The

Software implementation 44

final implementation the matrix library is done in the header “matrix_fct.h”. For a detail
description of functions, it referred to the appendix D.

3.3 Static FEM calculation

In the finite element calculations, the differential equations, which describe the physical
problem, are assumed to be held over a certain region. This region can be 1D, 2D or 3D. The
characteristic feature of the finite element method is that instead of seeking after
approximations directly over the entire region, the region is divided into smaller parts, the so
called finite elements and the approximation is then carried out over each element.

In this work the problem is stated in a 3D manner. In the mesh generation, tetrahedral were
chosen for the element type. The FEM calculation is performed in 5 basic steps:

1. Input parameters
2. Initialisation of matrices and loading from TXT-file
3. Calculation of stiffness matrix
4. Applying boundary conditions
5. Solving equation

3.3.1 Input parameters

At first the define directories have to be filled in for the corresponding mesh parameters in
the header “stdafx.h”. These parameters obtain from the mesh generator are subdivided into
three different groups boundary, cut and TXT-file parameters. The boundary conditions are
different for every load situation. In our project, the load situation is equal for every
experimental set-up. The silicone block is fixed on one end and pulled on the opposite site
with the distance of the parameter DIST. The parameter NNOD_CUT saves the number of
cut node in the block. This number changes the size of the global stiffness matrix as a new
node is added to the system. Secondly, the dimension of the cut surface is saved in the cut
properties CUT_SX, CUT_SY and CUT_SZ. At last the text file names has to be saved into
the define directories EDOF_TXT, NODE_TXT and BC_TXT, respectively.

3.3.2 Initialisation of matrices and loading from TXT-file

Before working with the matrices, memory space has to be reserved for every matrix needed
in the programme. These procedures are done with the help of the library “matrix_fct.h”.

The needed matrices are the topology matrix Edof, the coordinate matrix of the nodes Node
and the boundary matrices Bc_0 and Bc_100. These five matrices are loaded out of the three
corresponding TXT-files defined in the header “stdafx.h”. The matrices Edof and Node are
directly loaded out of the TXT-file, i.e. if a number stands for instance in column three and
row two it is loaded in the element of the matrix with the indices three and two. The silicone

Software implementation 45

block is locked on one side for every degree of freedom. The corresponding numbers of
nodes are saved in the variable Bc_0. The opposite side is pulled in y-direction and the need
nodes for that deformation are saved in the variable Bc_100.

By the calculation of the stiffness matrix an element-wise assembling takes place which
means that the global stiffness matrix for the whole system is predefined in the variable K.

3.3.3 Calculation of stiffness matrix

The calculation of the stiffness matrix takes place in a “for” loop for every element and six
steps have to be performed for every element after equation (1.20):

1. Derivates of Local Shape Functions డ઴೔
డకೕ

 along the local coordinates

2. Coordinates of the current element ࢄ(௘)

3. Jacobi matrix ۸, Transpose of Jacobi matrix ்ࡶ and Inverse of Jacobi matrix(ࡶ)ିଵ

4. Derivative of Global Shape Function డ઴೔
డଡ଼ೕ

 along the global coordinates

5. Material Properties: constitutive ۲

6. Entity-wise calculation of the element matrix ۹܍

These six steps are executed in the functions “cal_Ke”. The function can be found in the
header “fem_fect.h”. In this header all functions need for the calculation are collected. After
obtaining the local element stiffness matrix of an element, it has to be assembled to the
global stiffness matrix via the function “assem” with the help of the topology matrix Edof.

3.3.4 Applying boundary conditions

The Dirichlet and Neumann boundary condition have to be applied to the mesh. In the
Neumann boundary conditions the known displacements at the end of the test object are
inserted after equation,

100ܿܤ)݂ , 1) = ,100ܿܤ)݂ 1) − 100ܿܤ)ܭ (100ܿܤ, ∙ 100ܿܤ ℎݐ݅ݓ (100ܿܤ)ݑ = ൥

1݀݋݊
⋮

2݀݋݊

൩ . (3.3)

The external force vector ݂ is filled with the product of stiffness matrix with displacement at
the corresponding nodes. The vector ݂(ܿܤଵ଴଴, 1) on the right hand side of equation (3.3)
represents previous values added to the force vector.

As no other boundary condition are taken into account, the Dirichlet boundary condition are
zero of all the rest of the nodes,

ݐݏ݁ݎܿܤ)݂ , 1) = ݐݏ݁ݎܿܤ ℎݐ݅ݓ 0 = (3.4) 100ܿܤ ݐݑ݋ݐ݅ݓ ݈݈ܽܿܤ

Software implementation 46

In the programme the force vector is first filled with zeros on then with the Neumann
boundary conditions.

3.3.5 Solving equation

In the static case of the standard FEM, the equation (1.7) has to be solved. On the left side,
the known outer forces are described. On the left side there is the product of the stiffness
matrix K with the displacement vector u. As the displacement is unknown, the inverse of the
stiffness matrix has to be calculated.

3.3.5.1 Inverse of the global stiffness matrix

For the calculation of the inverse of the stiffness matrix certain goals have to be fulfilled.
The chosen algorithm must be accurate, robust and asymptotically optimal in run time and
memory usage. Two algorithms the Cholesky factorization and the QR factorization are
chosen. As the system matrix is sparse, the concept of Csparse is used for the calculation of
the algorithm. In the following subchapter, the handling of sparse matrices is described.

3.3.5.2 Sparse matrix data structure

The simplest sparse matrix data structure is a list of the nonzero entries in arbitrary order.
The list consists of two integer arrays i and j and on real array x of the length equal to the
number of entries in the matrix, for instance

ۯ = ൦

4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0

3.5 0.4 0 1.0

൪
(3.5)

A zero-based data structure for an m-by-n matrix contains row and column indices in the
range 0 to m-1 and n-1, respectively. In the C++ programming language all code is zero-
based, whereas in Matlab the matrices are one-based. When transforming the mesh
parameters from the Matlab code to the C++ environment, should be done with caution due
to the different based data structure.

In the Csparse function, to different sparse matrixes are present. At first, the triplet form is
simple to create but difficult to use in most sparse matrix algorithms. An example is given in
equation (3.6).

 int ݅ [] = {2 , 1 ,3 ,0 ,1 ,3 ,3 ,1 ,0 , 2 };

int ݆ [] = {2 , 0 , 3 , 2 , 1 , 0 ,1 ,3 ,0 ,1 };

double ݔ [] = {3.0 ,3.1 ,1.0 ,3.2 ,2.9 ,3.5 ,0.4 ,0.9,4.5 ,1.7};

(3.6)

The compressed-colmn form is more useful and is used in almost all functions in the
CSparse library. A m-by-n sparse matrix that can contain up to nzmax entries is represented
with an integer array p of length n+1, an integer array i of length nzmax, and a real array x

Software implementation 47

of length nzmax. Row indices of entries in column j are stored in i[p[j]] through i[p[j+1]-1],
and the corresponding numerical values are stored in the location in x. The first p[0] is
always zero, and p[n]≤nzmax is the number of actual entries in the matrix. The example
matrix of equation is represented as,

 int ݌ [] = {0 ,3 ,6 ,8 ,10 };

int ݅ [] = {0 , 1 , 3 , 1 , 2 , 3 ,0 ,2 ,1 ,3 };

double ݔ [] = {4.5 ,3.1 ,3.5 ,2.9 ,1.7 ,0.4 ,3.2 ,3.0 ,0.9 ,1.0};

(3.7)

Both matrix types can be saved in the class cs_entry.

3.3.5.3 Cholesky Factorization

Classically the Gauss-Jordan algorithm is used for solving linear systems, but it is an
inefficient algorithm for sparse matrix, so different method has to be chosen. The stiffness
matrix of a stable FEM calculation is symmetric and positive definite matrix. This property
allows the decomposition of the matrix ܭ into a lower triangle matrix ܮ with strictly positive
diagonal entries and a conjugate transpose of the matrix ܮ according to

ܭ = (3.8) ∗ܮܮ

This is called the Cholesky decomposition. As the stiffness matrix ܭ is positive-definite,
there is only one lower triangle matrix ܮ with strictly positive diagonal entries. It follows
that the Cholesky decomposition is unique.

After obtaining the Cholesky decomposition, the sparse triangle system ݕܮ = ܾ is first
solved. This is done with the help of the elimination tree of the toolbox Csparse. After
obtaining the result of the elimination tree the postordering is computed and then the column
counts, which are the number of nonzero in each column of ܮ. When the vector ݕ is known,
the equation ݑ்ܮ = ܾ can be solved again with the help of the elimination tree. Now the
displacement for every node is obtained.

The Cholesky factorisation is implemented in function “cs_cholsol”. The function
overwrites the input vector ݂ with the solution of ݑܭ = ݂. The input parameter order
determines the input ordering used, zero stands for ܲ = ,of the fill-reducung permutation ܫ
்ܮܮ = ்ܲܣܲ or one for a minimum degree ordering of ܭ. The functions returns one if it was
successful with the calculation, zero if the matrix is not positive definite or if the method ran
out of memory. The forward/backsolve steps cannot fail because they do not allocate
memory.

The goal of the Cholesky algorithm, implemented in the Csparse matrix, is to keep the
numeric factorization as simple as possible in terms of time complexity, memory usage and
clarity of code. As it can be seen from the name, the code of the toolbox was written in C.

Software implementation 48

As for our project C++ is used on a Microsoft Visual Studio Platform, the code has to be
adapted to our programming environment. It means, code bit had to be change and do not
coincide totally with the original code. As not all functions of the code are used for the
calculation of the Cholesky factorization, only the needed ones are added to the Header file
“Csparse_fct.h”.

3.3.5.4 QR factorization

The least squares problem is to find the displacement ݑ that minimizes the 2-norm of the
residual, ‖ݎ‖ଶ, where ݎ = ܾ − ݉ is m-by-n with ܭ and ݑܭ ≥ ݊. Multiplaying a vector by an
orthogonal matrix ܳ does not change its 2-norm. If ܭ is factorized into the product ܣ = ܴܳ,
then

2‖ݎ‖ = ‖ܾ − 2‖ݑܭ = ‖ܾܳܶ − 2‖ݑܴ = ብቈ

ܳ1
ܾܶ − ݑ1ܴ
ܳ2
ܾܶ

቉ብ
2

= ቛቂ
1ݎ
2ݎ
ቃቛ

2
,

(3.9)

where ܳ is m-by-m, ܴ1 is n-by-n, and ܳ1 is m-by-n. Assuming ܣ has full rank, ܴ1 is non-singular

and so the upper triangle system ܳ1
ܾܶ = 1ݎ can be solved, which makes ݑ1ܴ = 0 and minimizes

 .ଶ‖ݎ‖

In the function “cs_qrsol”, ܳ = ଵܪଵܪ ௡ܪ… is represented implicitly as a product of Householder

reflections, and the permuted matrix ܲܭ തܳ is factorized instead of ܭ, where തܳ is fill-reducing
column permutation. The right-hand side of the displacement vector ݑ is overwritten with
the solution of ݔ. The input parameter order describes the kind of ordering, one stands for
natural ordering and three for a minimum degree ordering of ܭ்ܭ

3.4 Remesh algorithm

For the first implementation, an easy remeshing algorithm is chosen. It is only allowed to cut
between the elements, not through the elements. The scalpel edge has to point in the
direction where it moves. It means that with the constellation FP1W2F [10] of the blue robot
the scalpel can only move in a x,z plane. For this reason the assumption, it is a good
approximation of our situation.

The silicone block will be placed vertically to the cut plane. The mesh of test object is
created so that a straight cut can be made parallel to the sides only between elements, i.e. no
cut through an element. The depth of the cut can be influenced by the number of elements in
the z-coordinate and the scaling factor of node matrix. When cutting between two elements,
new nodes have to be defined at the cut corners. To find these nodes the function
“get_Node_cut” is written. It finds the cut nodes out of the coordinate matrix Node and

Software implementation 49

creates a new node at the same place of the old node. In the end the new nodes are appended
to the matrix Node.

After extending the coordinate matrix with the new nodes, the topology matrix has to be
changed, too. The separated element has to be connected to degree of freedom of the new
created nodes, see Figure 3.5. This is done by the function “get_Edof_cut”. The cut surface
is defined by the Hesse normal form nୌ. A search gives the elements on the negative
direction of the Hesse normal vector and connects them with the new created nodes.

Figure 3.5: Adding new nodes to mesh

After obtaining the new topology and new coordinate matrix, the standard FEM calculation
can be performed as described in the previous subchapters.

3.5 Scanning object

The device scanCONTROL 2700-100 from the company Micro-Epsilon [15] with an
integrated controller is used for scanning the test object. The laser line scanner uses the
triangulation principle for a 2D acquisition of a height profile of various target surfaces. A
laser line is generated with the help of special lenses and projected onto the target surface.
The optical system projects the diffusely reflected light back onto a sensor matrix. In the
sensor head, the distance information is calibrated by a controller and the sensor matrix is
used to position along the laser line are calculated. This generated calibrated matched
measurement values which are than output as a precise line profile. Regardless of the
position or angle the profile data are absolute calibrated data sets in a 2D coordinate system
that is fixed in respect to the sensor.

The scanner is used for two purposes. First to scan the surface of a complex geometry and
secondly to compare the simulation results with the reality. In the following the installation
and the commissioning of the sensor is outlined.

old new
nୌ

Software implementation 50

3.5.1 Reading out data from the scanCONTROL

The scanning algorithm is performed in four basic steps, see Figure 3.6. It starts with the
Initialisation of the scanCONTROL device. A LLT-object has to be created and a firwire
connection has to be set up.

Figure 3.6: Scanning algorithm

In the second step the parameter for the configuration has to be set. All parameters are listed
on the down left box of Figure 3.6. It depends on the situation how to set the values of the
parameters. For more detailed information, it is referred to [15].

The third reads the Data from the device and saves it either in a TXT-file or in a variable or
both if demanded. The scanned profile points can also be showed on the console to make an
online check on it. In the last the step the scanCONTROL LLT-object is deleted and the
sensor is disconnected.

Set parameters for the measurement:

1. Set ScanControl type
2. Set resolution
3. Set trigger to internal
4. Set config to PROFILE
5. Set shutter time
6. Set idle time

Reading Data and Saving Data:

1. Initialisation of the vectors ValueX nad ValueZ
2. Get type of the measurement range
3. Enable measurement-> wait for a while
4. Resize the profile buffer to the maximal profile size
5. Gets one profile in “polling-mode”
6. Converting of profile data from the first reflection
7. Save Data

Shut down ScanControl:

1. Disable measurement
2. Disconnect the ScanControl
3. Deletes the LLT-object

Initialisation of scanCONTROL device:

1. Creating a LLT-object
2. Create a firewire Device
3. Get available interfaces from the ScanControl-device
4. Select device interface

Software implementation 51

3.5.2 Scanning of profile

3.5.2.1 Transforming Scanned points into an absolute coordinate system

The scanCONTROL is fixed at the end effector of the blue robot. The 2D coordinate system
of the scanCONTROL has to be transformed into the absolute coordinate system of the blue
robot, see Figure 3.7 first constellation.

Figure 3.7: Defining length of blue robot

To obtain the exact position of the scanCONTROL, the trigonometric functions are used,

ݔ = sin(ߙ) ∙ ଶܮ + cos (90 + ߙ − (ߚ ∙ ,ଷܮ

ݖ = ଵܮ + cos(ߙ) ∙ ଶܮ + sin(90 + ߙ − (ߚ ∙ ଷܮ .

(3.10)

Another way of transforming the scanned data is given in the next subchapter.

3.5.2.2 Reference for the transformation at the test object

Here the outer corners of the test object are taken as reference for the transformation of the
profile data points. First all the gradients between the neighbour points are calculated. In the
second step the gradient lying between the positive or negative value of the define directory
MAXGRAD are sorted out, because the goal is to find edges. The parameter MAXGRAD has
normally the value 5. It can differ from time to time. For instance, the test body is not as
smooth the silicon, higher gradient can occur due to the rough surface. When a set of data
points is higher than the variable MAXGRAD, than the end point of the first gradient is taken
and the start point of the last gradient. The difference between the two points represents the
distance. Now there can be calculate every distance between different corners. The
algorithm is visualized in Figure 3.8.

zrel

α

x

β

z

xabs

xabs

zabs

L2

L1

L3

Software implementation 52

Figure 3.8: Find the length between two edges

It is a straight forward method to find fast the edges of the test object. Now the edge is
defined as the zero level of the test object and the simulation data points can be plotted to the
corresponding profile data points of the scanCONTROL.

3.6 Visualisation

For the visualisation, the OpenGL library is chosen to create images on the windows screen.
OpenGL is a powerful tool for producing high-quality, computer-generated images and
interactive applications using 2D and 3D objects, bitmaps, and colour images. The basic
structure is to initialize certain states that control how OpenGL renders and to specify
objects to be rendered.

OpenGL is a state machine. For instance the colour of an object represents a state which is
initialized with a certain colour. This colour remains unchanged until the state is changed.
Some other examples for states can be the current view and projection transformations, line
and polygon stipple patterns, polygon drawing modes, pixel-packing conventions, positions
and characteristics of lights, and material properties of the objects being drawn. Many states
variables refer to modes that are enabled or disabled.

Most implementations of OpenGL have a similar order of operations, a series of processing
stages called the OpenGL rendering pipeline. The diagram shows a assembly line approach,

xstart

xend

m6

m5

m4

m3

m2
m1

1. Gradient between neighbor points: ݉݅ =
1ݖ−2ݖ

1ݔ−2ݔ

 2. Sorting out gradient between: +/- MAXGRAD

3. Detecting edges: ݔ௘௡ௗ(݉ଶ) ܽ݊݀ ݔ௦௧௔௥௧(݉଺) 4. Calculate distance: ݀݅݁ܿ݊ܽݐݏ = ݀݊݁ݔ − ݐݎܽݐݏݔ

(xn/zn)

(xn-1/zn-1)

(x2/z2) (x4/z4)

(x3/z3) (x1/z1)

. . .

Software implementation 53

which OpenGL takes to processing data, see in Figure 3.9. There two main approaches to
create an image on the windows screen, through vertex data or pixel data. As in our FEM
calculation the mesh is already provided, the vertex data is used for the visualisation. In the
following, the path of the vertex data will be explain, but not the pixel data path, because it
is not used in our programmes. For a more detail description, it is referred to [16].
Geometric data follow the path through the row of boxes that includes evaluators and per-
vertex operations. In the final steps it undergoes rasterization and per-fragment operations
before the final pixel data is written into the frambuffer.

In the display list all data is saved for current use or later use. When a display list is
executed, the retained data is sent from the display list in an immediate mode. All geometric
primitives are described by vertices. When in the graphic a parametric curve is present, it
initialized by control points and polynomial functions called basic functions. In the
evaluators a method is provided for deriving the vertices used to represent the parametric
curve from the control points. This type of conversation is not needed in our programme
structure, because there are no parametric curves present in our FEM mesh. In the next
stage, the vertex data is converted into primitives. Also if there is a lightning enabled, the
lightning calculations are performed using the transformed vertex, surface normal, light
source position, material properties, and other lightning information to produce the colour
value.

In the primitive Assembly, the clipping which is a major part of primitive assembly is the
elimination of portions of geometry that fall outside a half space, defined by a plane. Point
clipping simply passes or rejects vertices, whereas line clipping can add additional vertices
depending on how the line is clipped. The results of this stage are complete geometric
primitives, which are the transformed and clipped vertices with related colour, depth, and
sometimes texture-coordinates values.

In the rasterization, the conversion form geometric data into fragments is done. Each
fragment square corresponds to a pixel in the framebuffer. Before values are actually stored
in the framebuffer, a series of operation are performed that may alter or even throw out
fragments. All these operation can be enabled or disabled, for instance texturing. Finally, the
thoroughly processed fragment is drawn into the appropriate buffer, where it becomes a
pixel.

Software implementation 54

Figure 3.9: Order of operations

OpenGL provides a powerful but primitive set of rendering commands, and all higher-level
drawing must be done in terms of these commands. Also, OpenGL programs have to use the
underlying mechanism of the windowing system. Several libraries enable to simplify your
programming tasks, including the following:

1. OpenGL Utility Library(GLU) contains several routines that use lower-level
OpenGL commands to perform such tasks as setting up matrices for specific viewing
orientations and projections, performing polygon tessellation, and rendering surfaces.

2. The OpenGL Utility Toolkit(GLUT) is a window-system-independent toolkit,
written by Mark Kilgard, to hide the complexities of differing window system APIs.

OpenGL contains no commands for opening windows or reading events from the keyboard
or mouse. The GLUT is used for opening windows and detecting inputs. The window
management in the GLUT toolkit are seven routines necessary for initializing a window:

1. “glutInit” initializes GLUT and processes any command line arguments and it
should be called before any other routine.

2. “glutInitDisplayMode” specifies whether to use an RGBA or colour-index model. It
also defines whether there should be used a single- or double-buffered windows.

3. “glutInitWindowPosition” specifies the screen location for the wpper-left corner of
your window.

4. “glutInitWindowSize” specifies the size in pixels of your window.
5. “glutCreateWindow” creates a window with an OpenGL context. It returns a unique

identifier for the new window.
6. “glutDisplayFunc” is the callback function in the routine. Whenever GLUT

determines that the contents of the window need to be redisplayed, the callback

Vertex Data

Pixel operations

Rasterization Per-vertex operations and
primitive assembly

Evaluators

Display list

Pixel Data

Per-fragment operations Texture assembly

Framebuffer

Software implementation 55

function is executed. It means that all redraw scenes are putted into the display
callback function.

7. “glutMainLoop” all windows that have been created are now shown, and rendering
to those windows is now effective. Event processing begins, and the registered
display callback is triggered. Once the loop is entered, it never comes back to the
“main” function

Results 56

4 Results
The results of the executed experiments are presented here. First, the material properties
have to be found for the later FEM calculations. Afterwards a cut is performed with the
robot control by a human operator over the Haptic device. The cut surface is scanned by the
device scanControl and the comparison between the simulation and the reality of the
deformation is made. The tension in test object can give valuable information about the
growing of the cut, which will be shown in a later plot.

4.1 Identification material properties

For the material properties, Young’s modulus and Poisson’s ratio have to be defined.
Young’s modulus is a measure of the stiffness of an isotropic elastic material. Poisson’s
ration is the ratio of the contraction to the extension, when a sample object is stretched.

As mention in chapter three, silicone is taken as the material for the test object. Producers
are normally not defining neither Young’s modulus nor Poisson’s ratio for silicone. In the
ISO 527-1 “Plastics – Determination of tensile properties”, it is written down the definition
of how to determine Young’s modulus and Poisson’s ratio. Special shapes of the silicone are
needed and special devices are need to hold and measure the test object. The determination
of the material properties are not done after the ISO norm, instead a different method is used
due to available equipment.

As Young’s modulus has a bigger influence on the deformation as the Possion’s ratio, the
elasticity modulus is first determined. Two methods were pursued to find Young’s modulus
for our simulation. In the first method the parameter is found by an own experiment. With
the tension platform the external forces and the displacement can be measured.

The vertical forces are read out of the ATI Industrial Automation sensor 330N over the
serial port after expanding the test object. The extension is measured over the
scanCONTROL device, describe in chapter 4.5.2.2. By plotting the displacement over the
force, Young’s modulus can be obtained out of Hook’s law, according to (1.16).

Results 57

Figure 4.1: Plotting force against displacement for the block 1, 2, 3 and 4

In Figure 4.1 , there are the results of four different blocks plotted, for the force and
displacement ratio. To see how the material behaves after some extension and compression,
there are made three trails per block. During the experiment of block 2, top right on Figure
4.1, the mounting from the test object to the stiffer silicone broke, so there is only one trail.
As it can be seen, there is a linear behaviour of the material between the force and the
displacement. To define now Young’s modulus the following equation is used,
ܧ = ଶ݂ − ଵ݂

݈ଶ − ݈ଵ
∙

1
ܣ ∙ ݈଴

 . (4.1)

The parameter ݂2 and ݈2 are the outer force and the length of the block, respectively, at the
second step. The variables ܣ and ݈0 are the surface and the starting length. Young’s modulus
is calculated between every measurement step of every trial and an average over the
obtained Young’s modulus is built. The value of Young’s modulus obtained from the four
blocks is 0.0385 [N/mm²]. It is nearly the same value as for rubber which lies in the range of

Block 1: 100x100x5.6 mm Block 2: 100x100x9.5 mm

Block 3: 43x70x11 mm Block 4: 43x80x11 mm

Results 58

0.0100 to 0.1000 [N/mm²]. Poisson’s ratio is obtained over the lateral strain. For this
purpose, the width of the body is taken before every trial and at the end. After the following
equation the ratio is calculated,
ߥ =

ܾ଴ − ܾଵ
݈଴ − ݈ଵ

∙
݈଴
ܾଵ

 . (4.2)

The average value for all four experiments of the Possion’s ratio is 0.4300. As next, four
different meshes are build up each corresponding to one block. As our maximal range for the
later predefinition of the sensors will be 10mm, the meshes of the blocks will be expanded
by the maximum value of 10mm, see Figure 4.2.

Figure 4.2: The deformed meshes of the different test objects

In Table 4.1, the forces at the deformed end are filled in for all four blocks.
Test setup Test object - Block number:
Nr. E-modul Poisson’s ratio Type of Calculation 1 2 3 4

1 ? ? Force Experiment [N] 21.00 29.50 20.75 17.25
2 0.0385 0.4300 Force Simulation [N] 15.5559 23.9595 16.2461 14.2198
3 0.0385 0.4739 Force Simulation [N] 20.9888 23.9595 16.2461 14.2198
4 0.1233 0.4900 Force Simulation [N] 21.0051 29.7196 18.2675 16.5000

Block 1: 100x100x5.6 mm Block 2: 100x100x9.5 mm

Block 3: 43x70x11 mm Block 4: 43x80x11 mm

Results 59

Table 4.1: Comparison forces between simulation and experiment

The blocks hold the same numbering system as in Figure 4.1. There are made four different
test setups. In all of the tests, the test object is hold at one end and deformed by 10mm in y-
direction at the opposite end. Number one of the test setups is the measured values of the
force sensor, already plotted in Figure 4.1 on the top left. In number two the E-modulus and
Poisson’s ratio of the experimental determination of the material properties are given as
input the simulation and the forces at the end are determined and filled in Table 4.1. The
values are for every block around 20 % too less. So the found values do not coincide with
the reality, but what it is interesting that all values are equally off. Now there are two
possibilities of adapting our material properties to the real ones. Either Young’s modulus is
kept at the value or Poisson ratio. In our case the E-modul is kept the same and the Possion’s
ratio is changed until the forces of the simulation coincide with the measured force for the
first block. If now for the rest of the blocks, the same forces with the optimized values are
obtained, the material properties are found, see number three in Table 4.1. Another way to
gain the material properties is to look at one block and take one measurement which seems
to represent an average of the other measurements. Block one seems to have the most linear
behaviour compared to the others, so the measurements of it are taken for the next
determination of the material parameters. Our range of extension will not be higher as
10mm, so the forces at 10mm are taken. As the forces and the displacement are known for
the FEM equations, the two material parameters are the only unknown. As our silicone
rubber seems to have similar behaviour to standard rubber, the value of 0.5 for Possion’s
ratio is taken. Now Young’s modulus can be adapted by a nested iterative manner until the
force of the simulation coincide with the measured one, see number four in Table 4.1.

4.2 Deformation around the cut

In the following chapter, the different types of plots are present. The same block is used in
all figures and has the dimension 100x80x17mm. The cut is not performed in the middle of
the block in y-direction, it is at value of 45mm. In the x-direction the block is subdivided
into 6 standard cubes, 16 in y-direction and 14 in z-direction. The dimension of the block is
16.6667x5x1.2143mm. In x-direction, the subdivision is kept bigger as compared to the
other two directions as it mainly interesting the deformation in y- and z-direction.

The visualisation takes place in OpenGL as described in chapter 4 “Software
Implementation. The created image can be seen in.

Results 60

Figure 4.3: Image shown during simulation

As in OpenGL, it extensive to build up a GUI for instance, extracting points or drawing an
coordinate system the post processing takes place in Matlab. First the cut block is plotted,
see Figure 4.4. There is a uniform deformation of the block in x-direction. The cut means a
weakness for the structure, so the bottom at the cut lifts up by the value of 2.0960 mm. The
cut is of the depth of 8.5001. The cut edges gape to the opposite directions. The horizontal
deformation at the end of the x-direction is 6.6 mm.

Figure 4.4: Mesh

In Figure 4.5, the same plot is used as in the previous, but the scanned points of the
scanControl devise are shown too. There are made three different scans at x equals 25mm,
50mm and 75mm during the experiment. The scanned points coincide well with the
simulation.

Results 61

Figure 4.5: The deformed meshes of the different test objects

When a FEM calculation is performed, it is of interest to see the tension in the body.

The tension in an element are obtained out of the deformation of the nodal points after the
following equation,
ߪ = ∙ ࡰ ∙ ࡮ (4.3) .ݑ

The matrices ࡰ and ࡮ are already defined in equation (1.18) and (1.10), respectively. The
stress vector is written for every element as ߪ = ௫௫ߪ] ௬௬ ߪ ௭௭ߪ ௬௭ߪ ௫௬ߪ ,௭௫]. In Figure 4.6ߪ
the average of the von Mises stress are calculated for every node after equation,
௜,௠ߪ = ௫௫ଶߪ] + ௬௬ଶߪ + ௭௭ଶߪ − ௬௬ߪ௫௫ߪ − ௬௬ߪ௭௭ߪ − ௬௬ߪ௭௭ߪ + ௫௬ଶߪ3 + ௬௭ଶߪ3 + ௫௭ଶߪ3]. (4.4)

The stress ݅ߪ,݉ is the von Misses stress in node i. All node stress are compared over a colour map

rating.

Results 62

Figure 4.6: The deformed meshes of the different test objects

Figure 4.7: Comparison of measurement and simulation

In Figure 4.7, the measured profiles of the scanCONTROL device are plotted againt the
deformation obtained from the simulation. There are scanned three different profiles at x
equals 25mm(black), 50mm(green) and 75mm(red). The red line is in the cut lower than the
other two lines. The robot moves on a trajectory of a straight line. There is no control loop
for the movement of the robot. Single points are given to a function and the robot moves to
this position. But there is no check on if the robot reaches the wanted place. It means that the
robot has a small vibration during the movement. Consequently the incision is not straight.

Summary 63

5 Summary

An interactive simulator of a Finite Element (FE) calculation has been developed in this
Diploma thesis, consisting of a mesh generator for a block filled up with tetrahedral, static
FE calculation and visualisation. The computational environment takes place on a Windows
system in the programming language C++. The simulator is aimed to be used in a
Telepresence application where a robot is controlled by a haptik device over a long distance.
The feedback information of the deformed body comes from the simulation instead of from
real sensor at place of distance due to the time delay of the network connection.

A theoretical survey of an incision process for a Finite Element Method (FEM) was
examined in this thesis. The incision process was assumed with a completely sharp scalpel
and no friction force was considered. For FEM the wanted quantity varies steady over the
body. An incision means to have to deal with a strong discontinuity in the FE mesh. The
eXtended-Finite-Element-Method (XFEM) can cope with discontinuities in an element.
Another way of dealing with the discontinuity is to remesh around it and then perform a
standard FEM calculation with the new obtained mesh. The deformation of the XFEM
calculation was compared to the remeshing FEM. The advantage of the XFEM is that there
is no need of remeshing the edges of the discontinuity. But the location of the edges are not
visualized directly, so they have to be found in a post processing algorithm which leads into
a remesh. Due to the Telepresence operation, the calculation has to be in real-time. The
longest time for a static FE calculation stays by the calculation of the inverse of the stiffness
matrix. As the stiffness matrix is changed in the XFEM and the remeshing FEM, the
remeshing FEM was chosen, because a direct visualisation of the incision edges is obtained.
In the remeshing FEM, a function finds the nodes lying in the incision surface and decouples
the nodes when the cut occurs at them, so with new added nodes a free movement between
the elements are possible. An incision can only happen between the elements.

An experiment set up has been developed to evaluate the results of the simulation with the
reality. The experiment aims to imitate the incision of a human skin. Silicone was used as
material for this purpose, since it is also used as implants for different body parts. The
texture of silicone resembles human skin in sense of touch and visual effects. The tension
platform gives a certain predefined tension to the object, so the edges of the incision are
realistically posed. After the incision, the surface of the test object was scanned by a 2D
laser profile-scanner. It measured the vertical and horizontal displacement from the laser
profile-scanner. The data was transformed into the simulation and the accuracy of the
simulator can be defined.

Summary 64

The shape of test object was a quadrangle with the dimension 100x80x17 mm³. The
deviation of the simulation was defined lower than 1% of the maximal dimension of the
object compared to reality. For our silicone block, the absolute deviation must be lower than
1mm. The deviation criterion was maintained over the whole surface of the test object.

Until now, only a visualisation of the deformation of the cut has been added to the simulator.
In a previous project, a force model of the incision process has been defined. The force
model has to be adapted to the silicone material and committed to the haptic device as a
feedback signal. The cut is only done in a straight line, so the collision detection is done for
the 1D case. Here the orientation and the direction of the scalpel are not considered, only the
location is of interest. When adding more degrees of freedom to the robot, so the incision
can be done in any 3D trajectory, an efficient collision model has to be found for defining
the orientation, direction and location of the scalpel and more complicated remeshing
method has to be defined. This should be done in future work.

A Matlab: Create mesh toolbox 65

A Matlab: Create mesh toolbox

1. [Edof,node]=cal_Edof_node_lx (lx,Edof_standard,node)
The function cal_Edof_node_lx add to a uniform cube filled with tetrahedral in x direction
depending on the variable lx more cubes. As output it returns the new topology matrix Edof
and the new coordinates of the nodes, stored in the matrix node, of the mesh.

2. [Edof,node]=cal_Edof_node_ly (ly,Edof_standard,node)
The function cal_Edof_node_ly does the same as the cal_Edof_node_lx, but only add new
cubes in the y-direction.

3. [Edof,node]=cal_Edof_node_ly_plus1 (ly,Edof_standard,node)
The function cal_Edof_node_ly_plus1 does the same as the cal_Edof_node_ly, but only at
the last added cube, there will be half of the uniform cube be added.

4. [Edof,node]=cal_Edof_node_lz (lz,Edof_standard,node)
The function cal_Edof_node_lz does the same as the cal_Edof_node_lx, but only add new
cubes in the z-direction.

5. [Ex,Ey,Ez]=coordxtr(Edof,Coord,Dof,nen)
The function coordxtr extracts element nodal coordinates from the global coordinate matrix
Coord for elements with equal numbers of element nodes and dof’s.

6. [Ex,Ey,Ez,Edof_with,Edof_neu,node,Dof,ndof,nele]=geom_tet(lxc,lyc,lzc,scx, scy,
scz,zeig,num_node,num_el,y_plus1)

The function geom_tet creates 3d block filled with cubes which consists of tetrahedral. This
is done with the help of the functions cal_Edof_node_lx, cal_Edof_node_ly and
cal_Edof_node_lz. Then the block is scaled and afterwards it is scaled and plotted.

7. [Ex_z,Ey_z,Ez_z]=get_Exyz(Edof,node)
The function get_Exyz extracts element nodal coordinates from the topology matrix Edof
and the node coordinates matrix node.

8. [Edof,node]=init_Edof
The function init_Edof creates a uniform cube filled with tetrahedral, to add easier the cubes
in the corresponding coordinate axis.

9. Plot_def_Mesh_tet(Ex,Ey,Ez,Edof_deg,node,s1,numbers,u,n)
The function Plot_def_Mesh_tet displays the deformed mesh by adding the displacement
vector u to the element coordinate matrixes Ex, Ey and Ez. If the variable numbers is 1 the
element numbers will be shown. The parameter s1 defines the line type and the colour of the
plot.

10. Plot_Mesh_tet(Ex,Ey,Ez,node, s1,num_node,num_el)
The function Plot_Mesh_tet plots every tetrahedral of the given mesh through the element
coordinate matrixes Ex, Ey and Ez. The variable s1 defines the line type and the colour of

A Matlab: Create mesh toolbox 66

the plotted figure. If one of the variables num_node and num_el equals one the node
numbers respectively the element numbers are displayed.

B List of tables 67

B List of tables

Table 1.1: XFEM compared to FEM .. 21

Table 1.2: Absolute/relative deviation between FEM with cut and FEM element missing .. 22

Table 1.3: Absolute/relative deviation between FEM with cut and XFEM with cut 23

Table 1.4: Absolute/relative deviation between FEM and XFEM 24

Table 1.5: Absolute/relative deviation between FEM with element missing and FEM cut .. 27

Table 1.6: Absolute/relative deviation between XFEM and FEM remeshing 28

Table 1.7: Absolute/relative deviation between XFEM and FEM element missing 29

Table 4.1: Comparison forces between simulation and experiment 59

C List of figures 68

C List of figures

Figure 1.1: Stresses on standard cube .. 10

Figure 1.2: Isoparametric transformation ... 11

Figure 1.3: Right-Hand-Rule ... 12

Figure 1.4: Truss structure, left standard FEM and right XFEM .. 16

Figure 1.5: Shape function of the cut element .. 17

Figure 1.6: Deformed truss structure, left standard FEM and right XFEM 18

Figure 1.7: Mesh, left XFEM and right FEM ... 19

Figure 1.8: Mesh, FEM element missing ... 19

Figure 1.9: Deformed mesh, left FEM and right XFEM ... 20

Figure 1.10: Comparison of FEM and XFEM without cut ... 20

Figure 1.11: Comparison FEM with cut and FEM element missing 22

Figure 1.12: Comparison FEM cut to XFEM cut ... 23

Figure 1.13: Comparsion XFEM cut to FEM element missing... 24

Figure 1.14: Standard cube divided into 5 tetrahedrons ... 25

Figure 1.15: Standard cube with added nodes in cut surface .. 25

Figure 1.16: XFEM mesh .. 26

Figure 1.17: FEM mesh with cut element .. 26

Figure 1.18: Comparsion FEM element missing to FEM cut ... 27

Figure 1.19: Comparison XFEM to FEM remeshing ... 28

Figure 1.20: Comparison XFEM cut to FEM element missing... 29

Figure 2.1: Tension platform ... 31

Figure 2.2: Mounting moulded into the test object ... 33

Figure 2.3: Mounting moulded into the test object ... 33

Figure 2.4: Test bench with blue robot .. 35

Figure 2.5: Different configuration for mounting the scanCONTROL 35

Figure 2.6: Scanning of the test object ... 36

Figure 2.7: Fixing of the scalpel to the end effector ... 37

Figure 2.8: Experimental set-up online calculation .. 38

Figure 3.1: Standard cube .. 40

Figure 3.2: Basic cube mirror at the x-axis .. 41

Figure 3.3: Cube mirrored at x- and y-axis .. 41

Figure 3.4: Uniform cube .. 42

Figure 3.5: Adding new nodes to mesh .. 49

Figure 3.6: Scanning algorithm ... 50

Figure 3.7: Defining length of blue robot... 51

C List of figures 69

Figure 3.8: Find the length between two edges .. 52

Figure 3.9: Order of operations.. 54

Figure 4.1: Plotting force against displacement for the block 1, 2, 3 and 4 57

Figure 4.2: The deformed meshes of the different test objects ... 58

Figure 4.3: Image shown during simulation ... 60

Figure 4.4: Mesh ... 60

Figure 4.5: The deformed meshes of the different test objects ... 61

Figure 4.6: The deformed meshes of the different test objects ... 62

Figure 4.7: Comparison of measurement and simulation ... 62

D Programme Structure 70

D Programme Structure
1. Mesh Creation:

Main: Create_Mesh

Input 1: Size of block
scx, scy, scz

Input 2: Number of cubes per side
lxc, lyc, ly_plus1, lc

Input 3: Show or Hide
zeig, num_node, num_el

Function: geom_tet

Output 3: Size of system
 ndof, nele

Output 1: Element Coordinates
 Ex, Ey, Ez, node

Output 2: Connection of nodes
 Edof, Edof_deg, Dof

Plot: zeig=1, num_el=1, num_node=0 Plot: zeig=1, num_el=0, num_node=1

2. Uniform Cube
a) Mirror x b) Mirror y c) Mirror z

3. Add Cubes in x-direction

1. Basic Cube with 5 tetrahedrals

4. Add Cubes in y-direction

5. Add Cubes in z-direction

6. Scaling the node matrix

7. Create node, Edof, Edof_deg, Dof, Ex, Ey, Ez

8. Plot undeformed mesh

D Programme Structure 71

2. Standard FEM calculation

u = inv(K) ∙ f

5. Solving Equation:

f = K(: , vdof) ∙ u(DIST)

4. Applying Boundary Conditions:

Calculation of Inverse:

Cholesky Factorization: ܂ۺۺ = ܂۾۹۾ → ܝ۾܂۾۹۾ = ܎۾ → ܡۺ = ܎۾ → ܢ܂ۺ = ܡ → ܝ = ܢ܂۾

QR factorization: ܀ۿ = ܂۹ → ܝ܂ۿ܂܀ = ܎ → ܡ܂܀ = ܎ → ܝ = ܡۿ

1. Input Parameters:
1. Boundary Parameters: DIST, NNOD_CUT
2. Cut Properties: CUT_SX, CUT_SY; CUT_SZ
3. Text file names: EDOF_TXT, NODE_TXT, BC_TXT

2. Initialisation and loading from TX-file:

Edof, Node, Bc_0, Bc_100, Ke, K

3. Calculation of Stiffness Matrix:

1. Derivates of Local Shape Functions
డ઴೔

డకೕ
 along the local coordinates

2. Coordinates of the current element ࢄ(௘)
3. Jacobi matrix ۸, Transpose of Jacobi matrix ்ࡶ and Inverse of Jacobi matrix(ࡶ)ିଵ

4. Derivative of Global Shape Function
డ઴೔

డଡ଼ೕ
 along the global coordinates

5. Material Properties: constitutive ۲
6. Entity-wise calculation of the element matrix ۹܍

Assembling of the element stiffness matrix to the global stiffness matrix:

 insert in ۹ ܍۹

For every element IEL

E List of abbreviations 72

E List of abbreviations

t traction vector [N/mm2]

P force vector [N]

A surface area [mm2]

 ௜ Cartesian coordinate system i = 1,2,3ݔ

 ௜௝ stress components i, j = 1,2,3 [N/mm2]ߪ

S stress tensor [N/mm2]

n surface normal

V arbitrary volume [mm3]

b body force vector [N/mm3]

 ௫ arbitrary function x = 1,2,3ݒ

u displacement vector [mm]

 ௜௜ strain tensor i, j = 1,2,3ߝ

 angle [rad] ߠ

௜௝ߛ shear strain i ≠ j; i,j can be 1,2,3

E Young’s modulus [N/mm2]

D constitutive matrix [N/mm2]

૖ shape functions (depends on the element type)

B derivatives of the shape functions

 ௜ local Cartesian coordinate system in an elementߦ

J Jacobian matrix

ܽ௜ displacement of enriched nodes

߰௜ enrichment function

H Heaviside function

f force vector [N]

K stiffness matrix[N/mm]

M mass matrix [g]

 density [g/mm2] ߩ

D damping matrix [N s/mm]

Reference 73

Reference

[1] Virtual reality training imporoves operating room performance: Results of a
randomized, double-blinded study. N. E. Seymour, A. G. Gallagher, S.A. Roman, M. K.
O'Brien, V. K. Banasal, D. K. Andersen, and R. M. Satava. s.l. : Annals of Surgery, 2002,
Vols. 236(4):458-464.

[2] PETERSON, H. and OTTOSEN, N.: Introduciton to the finite element method. London :
Prentice Hall, 1992.

[3] HUGHES, T.J.R.: The finite Element Method. Linear Static and Dynamic Finite Element
Analysis. Englewood Cliffs,NJ : Prentice Hall, 1987.

[4] GALLAGHER, R.H.: Finite Element Analysis: Fundamentals. Englewood Cliffs,NJ :
Prentice Hall, 1975.

[5] ZIENKIEWICZ, O.C., TAYLOR, R.L. and ZHU, J.Z.: The Finite Element Method. New
York, McGraw-Hill, 1989.

[6] TAIG, I.: Structural analysis by the matrix displacement method. s.l. : Enlgish Electric
Aviation Report no. So17, 1961.

[7] FRIES, T.P.: The Extended Finite Element Method(XEFEM). Braunschweig : TU
Braunschweig, 2009.

[8] JERÁBKIVÁ, L.: Interactive Cutting of Finite Elements based Deformable Objects in
Virtual Environments. Aachen : TU Aachen, 2007.

[9] GRAVOUIL, A., ELGUEDJ, T. and MAIGRE, H.: An explicit dynamics extended finite
element method. Lyon : Université de Lyon, 2008.

[10] ENGELKE, R.: Modellierung und Optimierung von Robotern mit einseitigen
Bindungen und lokalen Verspannungen. TU München : Lehrstuhl für Angewandte
Mechanik, 2008.

[11] MANZAN, S.: Entwicklung eines Trajektoriengenerators für den AM-Teleroboter.
München : Lehrstuhl für angewandte Mechanik, TU München, 2010.

[12] LIBERTY, J.: C++ in 21 Tagen. München : Markt&Technik Verlag, 1999.

[13] JOSUTTIS, N.: The C++ Standard Library: A Tutorial and Reference. Boston :
Addison, 1999.

[14] PRESS, W.H.: Numerical Recipes in C. Cambridge : CAMBRIDGE UNIVERSITY
PRESS, 1992.

Reference 74

[15] EPSILON, MICRON: Instruction Manual. Ortenburg : s.n., 2000.

[16] SHREINER, D., et al. OpenGL Programming Guide. Boston : Pearson Education, Inc.,
2008.

[17] DAHLBLOM, A.: CALEM a Finite Element Toolbox. Sweden : KFS AB, 2004.

[18] ZIENKIEWICZ, O.C. The Finite Element Method: The Basis. Oxford : Butterworth-
Heinemann, 2000.

[19] SCHILLHUBER, G. and ULBRICH, H.: Real-time FEM for haptic applications under
consideration of human perception. Zürich : s.n., 2007.

[20] SCHILLHUBER, G, ZAEH, M.F. and ULBRICH, H.: Presence Teleoperators and
Virtual Enviroments. London : The MIT Press, 2007.

Erklärung 75

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit selbständig und ohne Benutzung
anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder
sinngemäß aus veröffentlichten und nicht veröffentlichten Schriften entnommen sind, sind
als solche kenntlich gemacht. Die Arbeit ist in gleicher oder ähnlicher Form - auch nicht
auszugsweise - noch nicht im Rahmen einer anderen Prüfung vorgelegt worden.

München, 19.04.10

