ISSN 0280-5316
ISRN LUTFD2/TFRT--5876--SE

Resource Management
for Mobile Robots

Mikael Kralmark

Department of Automatic Control
Lund University
August 2010

Lund University Document name

Department of Automatic Control MASTER THESIS

Date of issue

Box 118 August 2010

SE'221 00 Lund Sweden Document Number
ISRN LUTFD/TFRT--5876--SE

Author(s) Supervisor

Mikael Kralmark Mikael Lindberg Automatic Control Lund, Sweden
Karl-Erik Arzén Automatic Control Lund, Sweden
(Examiner)

Sponsoring organization

Title and subtitle
Resource Management for Mobile Robots. (Resurshantering for mobila robotar)

Abstract

As more functionality and complex systems are combined in limited settings the need for
resource management is becoming increasingly important. Resources such as computing
capacity, battery power and communication channels need to be divided between different
applications and hardware to achieve the highest global performance. Traditionally the
computing capacity has been handled by the system scheduler, but in dynamic systems with
complex usage scenarios the system analysis that needs to be done off-line in order to guarantee
stability does not only grow more unfeasible, but since such an analysis must be done
considering the worst case scenario, this may provide an unnecessarily pessimistic result. In the
case of mobile robotics, a key feature is the ability for the robot to adapt to a changing
environment, the usage scenarios may vary from one time to another, the task to be performed
could vary and the surroundings of the robot may change. Heavy computing load may cause
specific parts of the system to overheat, thereby limiting the performance. To increase the
performance and to make the system more flexible in terms of new hardware configuration, an
adaptive resource management framework is needed. An adaptive resource management
framework that does the system analysis on-line would reduce the configuration time, and
increase the performance and flexibility.

In this thesis, an existing resource managemet framwork has been ported to a mobile robot
patform. The thesis also proposes a method for controlling the CPU temperature, by using the
system utilization and adaptive resource allocation as a mean to keep the CPU temperature
bounded.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 40

Security classification

http://www.control.lth.se/publications/

Contents

1. Imtroduction o
1.1 Problem formulation and objectives
1.2 Outline

System description Lo
3.1 Pioneer P3-DX
3.2 SCHED EDFkernel
3.3 ACTORS Resource Manager
3.4 Robotsoftware, HAM
3.5 Hardware monitoring and thermal control

4. Implementation L
4.1 Adapting the robot platform torunthe RM
4.2 Adapting the RM to the robot platform
4.3 Load-simulationclient
44 Adapting HAMtotheRM,
4.5 Processor thermal control

5. Experimental setup andresults
5.1 Assigning quality of service
52 Threadgroups
5.3 Temperature control

6. Conclusions and futurework
7. Bibliography

1. Introduction

1.1 Problem formulation and objectives

As more functionality and complex systems are combined in limited settings the need
for resource management is becoming increasingly important. Resources such as
computing capacity, battery power and communication channels need to be divided
between different applications and hardware to achieve the highest global perfor-
mance as illustrated in Figure 1.1.

Traditionally the computing capacity has been handled by the system scheduler, but
in dynamic systems with complex usage scenarios the system analysis that needs to
be done off-line in order to guarantee stability does not only grow more unfeasible,
but since such an analysis must be done considering the worst case scenario, this may
provide an unnecessarily pessimistic result.

In the case of mobile robotics, a key feature is the ability for the robot to adapt to a
changing environment, the usage scenarios may vary from one time to another, the
task to be performed could vary and the surroundings of the robot may change. Heavy
computing load may cause specific parts of the system to overheat, thereby limiting
the performance.

If, e.g. large amount of data is to be collected from the robot while it is running, this
needs to be handled without the robot misbehaving due to insufficient CPU band-
width. Also, the ability to mount new hardware without having to do extensive sys-
tem analysis would provide a more flexible system.

To increase the performance and to make the system more flexible in terms of new
hardware configuration, an adaptive resource management framework is needed. An
adaptive resource management framework that does the system analysis on-line would
reduce the configuration time, and increase the performance and flexibility.

In this thesis the Resource Manager (RM) that is being developed within the AC-
TORS project (www.actors-project.eu) has been ported to a mobile robot (Figure 3.1).
By using feedback control the RM handles the scheduling on-line, thereby increasing
the global performance of the system.

Even though the RM at the time of writing this, is not fully implemented and some
important features are missing, the basic functionality of such a framework can be
tested and one might be able to draw conclusions of what kind of system would be
useful for adaptive resource management in robotics.

Most parts of the system has been developed prior to this thesis so the most effort has
been made on getting all parts to work together, both to configure the system to run
the RM and to configure the RM to run on this specific system, and also to adapt the
robot software to be able to work with the RM.

Since the Actors RM is just partly implemented, only the existing parts have been
tested here, and some “ad hoc” solutions have been implemented to get everything
to work. The RM has also been extended with a CPU thermal controller that uses
adaptive resource allocation as a mean to keep the CPU temperature bounded.

Chapter 1. Introduction

1.2 Outline

In Chapter 2, some tools that have been used are presented, and the different parts of
the system are described in Chapter 3. In Section 3.1 the robot is described, and Sec-
tion 3.2 describes the Earliest Deadline First kernel that has been used. Section 3.3
gives an introduction to the Resource Management Framework, both a summary of
the internal structure and its main features, and the requirements made on client appli-
cations. The robot control application is described in Section 3.4, and in Section 3.5
is a description of a hardware monitoring system that has been used for the thermal
control.

Chapter 4 explains how the different parts of the system have been adjusted to fit
together. The upgrades made to the system in order to run the resource management
framework is covered in section 4.1. How the recourse management framework has
been adapted to be able to run on this system is described in Section 4.2. Section 4.3
describes a client application that has been used in this project. In Section 4.4 is a
description of how the robot software has been adapted to be able to interact with the
resource manager. Section 4.5 describes how the temperature control of the CPU has
been implemented.

Chapter 5 covers the experimental setup, and also presents some results, and Chap-
ter 6 concludes with some discussion.

| Resource allocator |

|

Image processing
Trajectory Motor control
generation systems

Map generation

Figure 1.1 An example of how different parts of a system must work together to achieve a
common goal

2. Tools

Listed below are some software tools that has been used in this project.

D-Bus

The D-Bus message bus system is a simple way for applications to talk to each other.
The low-level reference implementation uses an XML representation for messages
so the only required dependency is an XML parser. This makes it independent of the
platform and of the implementing method for client applications. Most Linux systems
already makes heavy use of D-Bus for communication between desktop applications
and different D-Bus bindings is present in most Linux repositorys. More information
on how to use D-Bus can be found on www.freedesktop.org/wiki/Software/dbus.

Qt and Qt D-Bus bindings

The Qt C++ libraries are a powerful cross-platform application and Ul framework.
Especially important to this project are its C++ to D-Bus bindings, that enables gen-
eration of D-Bus messages from C++ methods, and connecting methods to D-Bus
signals. (qt.nokia.com)

C/C++

C++ has been the implementing method for all code in this project. C++ combines
an object oriented environment with the powerful C code standard.

Matlab
MathWorks Matlab has been used to analyse and present results.

3. System description

3.1 Pioneer P3-DX

The robot used in this project is a Pioneer P3-DX from Mobile Robots
[MobileRobots Inc, 2006]. It has an internal computer [Versalogic Corporation, 2007]
currently running a Debian Linux operating system and it provides the possibility to
mount different kinds of hardware and to run numerous different types of software.
In its present configuration the robot has two SICK laser scanners (ref) to map the
area around it, but other features such as stereoscopic vision and gripper could be
mounted, which makes the robot very flexible. This robot is used in several projects
at Lund University, involving e.g. more accurate position control with visual feed-
back from wheel position and there are also thoughts of equipping it with a projector
making it able to present visual information, and also to generate 3D maps using
structural light in combination with a camera.

Player

The communication between the internal computer and the robot micro controller is
done through Player which is a free software tool for robot and sensor applications.
This tool is used by more high-level software to control the motors or read sensor
values from the robot (playerstage.sourceforge.net).

Figure 3.1 The Pioneer P3-DX robot. [conscious robots, 2007]

3.2 SCHED EDF kernel

3.2 SCHED_ EDF kernel

EDF (Earliest Deadline First) scheduling is a dynamic scheduling algorithm used for
real time tasks. It places processes in a scheduling queue were the process that is
closest to its deadline is allowed to execute. The theoretical scheduleability condition
for the EDF scheduler is stated as:

n
U=2
i=1

Q

~

< 3.1

where C; is the worst case execution time and 7; is the period of task i, which is
assumed to be equal to the deadline. This means that the EDF scheduler can guarantee
that all deadlines are met provided that the total CPU utilization U is not more than
100% [Arzén, 2008]. EDF scheduling ability is not part of the linux mainline kernel,
but an implementation of the EDF scheduler for linux has been developed within
the ACTORS project [Scordino and Trimarchi, 2009]. With this kernel a new system
call has been introduced, giving EDF scheduling policy to tasks. The assignment of
scheduling parameters is done through the linux control groups virtual file system
(cgroups). The cgroups system uses a hierarchical structure where the tasks placed
at top level are given the highest priority. EDF tasks can run simultaneously with
the ordinary scheduler, but are given higher priority, providing that the relation in
Equation 3.1 still holds. Three new subfiles have been added to the cgroup system.

e cpu.edf_period_us
e cpu.edf_runtime_us
e cpu.edf_reservation_data

The cpu.edf_period_us and cpu.edf_runtime_us files are used as period and
budget for the EDF scheduling, corresponding to 7" and C in Equation 3.1, and the
cpu.edf_reservation_data file is used for feedback of how the task is using the
reservation it is given.

Chapter 3. System description

3.3 ACTORS Resource Manager

Overview

The Actors RM works at a global level, collecting information about all applica-
tions that intend to run on the system and decides about the distribution of resources
[Arzén et al., 2009]. The applications can be any type of applications as long as they
meet the requirements described below. The actual scheduling is done by the Linux
scheduler, and the RM uses Linux control groups described in Section 3.2 to create
reservations, so a Linux system is necessary to run the RM. Communication with the
RM is done through D-Bus (Section 2) which makes it independent of the way clients
are implemented, e.g. in Java, C++ etc.

Client applications that intend to work with the RM register once they have started
and unregister when they have finished executing. Once an application is registered it
will be given one or more virtual processors that will be placed on the physical cores,
a virtual processor is represented as a C++ class with two main attributes, o and A,
corresponding to the CPU share and time granularity the application will be given by
the system scheduler.

Figure 3.2 shows an overview of how the RM handles the communication between
client applications and the system scheduler.

Client 2

Client 1 Client 3

N Y

DBus communication bus

{7

Resource Manager

Control Groups

Group Scheduling

Linux EDF scheduler

Figure 3.2 Overview of the communication between three clients, the RM and the EDF
scheduler.

The RM will create new folders for the actors clients at the top level of the cgroups
system, giving these tasks the highest priority and leaving other, non Actors tasks
to use the bandwidth that is left free. 10% of the CPU will be reserved to the RM’s
control loop and to initial reservations, and 80% to Actors tasks, so 10% of the CPU
is left for non Actors tasks. To decide how an application should run, the RM solves
a linear optimization problem, and to do this the RM needs the following information
from the applications.

3.3 ACTORS Resource Manager

Application importance The application importance value is used to decide which
applications that should be granted more resources on an overloaded system.

Category The client applications will belong to one of three different categories,
low, medium or high. This value is only used when creating the initial reservation
before the application is granted a share of the CPU.

Threadgroups An application can consist of a number of threads grouped together
in one or more threadgroups. Each threadgroup is given a virtual processor with a
fixed period and a budget that will be controlled by the feedback controller of the
RM.

Service levels The service levels structure is one of the most important features in
the ACTORS RM. The service levels defines the different ways a client application
can execute, with different resource demands and different performance. Each client
application announces its service levels in the registration process with a D-Bus mes-
sage, but in the RM a service level is a struct defined in the following way.

Listing 3.1 The service level struct

struct ServiceLevel

{

unsigned int qualityOfService;

unsigned int totalBandwidth;

unsigned int granularity;

unsigned int bWDistributionDataSpecifier ;
unsigned int bWDistributionCount ;
BandwidthDistributionMap bWDistribution;

} b

e qualityOfService

The integer quality0fService defines the quality of this service level, O -
100 where 100 means highest quality. This value together with the application
importance value is used when solving the optimization problem for assigning
service levels to clients. The RM will maximize the quality of service delivered
by all registered clients limited by the available bandwidth on the system. What
good quality of service means is not defined, it could mean high performance
or save battery power.

e totalBandwidth

totalBandwidth is an integer specifying the the total bandwidth the client
need at this service level, e.g. 200 means that the application needs in total 2
complete cores.

e granularity

This value indicates the time granularity for all VPs of the client at this ser-
vice level. If e.g. an application needs 20% of one core every 100 ms the
totalBandwidth should be 20 and granularity should be 100.

Chapter 3. System description

e bWnDistributionDataSpecifier

Specifies how the values in the following BWDistributionMap should be inter-
preted.

— 0: no data specified by application
— 1: absolute values

— 2: relative values

e bWDistributionCount

Number of entries in the bWDistribution map.

e bWDistribution

Maps the different threadgrops to a value of required bandwidth. The values
should be interpreted according to the value specified by
bWDistributionDataSpecifier.

Assigning service levels

When assigning service levels to client applications the RM will try to maximize the
total quality of service delivered by the system. This is done by solving an optimiza-
tion problem defined as:

Maximize :
nApps nSL,
Z= Z [a Z Qa,sxms (32)
a=1 s=0
Subject to linear constraints :

nApps nSL,

Z Z Ba7sxa,s <L (33)
a=1 s=0
With bounds on variables
Xqs = Oorl 3.4)
nSL,
Y xas = 1 (3.5)
s=0
W here :
nApps = The number of registered applications.
nSL, = The number of service levels for application a.
Qus = Quality of service for application a at service level s.
1, = Theapplication importance value.
Ba,s = Bandwidth required for application a at service level s.
L = Theupper limit of bandwidth for actors tasks.
Xas = A binary value that is true (1) if application a

should be at service level s, and false (0) otherwise.

10

3.3 ACTORS Resource Manager

Equation 3.2 maximizes the sum of quality of service, delivered by the individual
applications, weighted by the application importance. It is bounded by Equation 3.3
that states that the sum of required bandwidth for the applications must not exceed
the total bandwidth reserved to ACTORS tasks.

The solution to this problem is the binary array x. The bounds in Equation 3.4 and 3.5
state that one and only one of x, ... x4,s1, Will be true, i.e. application a will be
given one service level.

Assigning physical cores

Once the RM has decided what service levels to use for the client applications there
is another optimization problem to solve, how to place the virtual processors on the
physical cores. The RM will keep 10% of one core to initial reservations and to the
RM control loop, and leave 10% on each core free for non Actors applications so
there will be 80% reserved to Actors applications on the first core and 90% on the
other, if any, cores. Each threadgroup will have its own virtual processor and this can
not be split on different cores.

Figure 3.3 shows an example of how this assignment of virtual processors could be
done.

Client 1 Client 2 Client 3

T T z T g

[reread] [

mread | [| | | [e d [rowead | [moweaa]
a aa

L | [/

VP VP VP VP V) VP

N\ X/ /

Core 1 Core 2 Core 3 Core 4

HELE
glefs
ala|a
3
22
gl &
@

Figure 3.3 Overview of how the threadgroups can be placed on the physical cores.

11

Chapter 3. System description

Application requirements

Applications that intend to work with by the RM needs to be “ACTORS-aware”,
which means that applications must register with the RM at startup and follow in-
structions during runtime. If the application has multiple service levels the RM can
give instructions to change service level, it is then assumed that the application do so.
The reserved bandwidth will change, so if the application keeps running in the same
service level this would cause it to either e.g. missing deadlines due to insufficient
bandwidth or to decrease the global performance when not using the bandwidth it is
given and thereby limiting the resources available to other applications.

Registration The registration process consists of a number of calls to the RM over
D-Bus. This gives the RM the necessary information of the applications existence,
initial CPU-category and its different service levels and treads. An application can
consist of only one service level, but it still has to go through the complete registra-
tion process to be accepted by the Resource Manager. When all information has been
provided a finalizing commit call is done to register the application. To complete the
registration, six methods have to be called in the order they are listed below.

Method
int registerApp(string applicationld)

This method will inform the RM of the clients existence and the name of the appli-
cation. No reservation is created since this is just the first of the six necessary calls
to the RM. The application name will be mapped against an internal list to determine
the application importance. If the application has a name that does not have a pre
determined importance it will be given a default value.

Parameters
string applicationId: The name of the application to register.

Returns
Integer value, 0 on success, error code otherwise.

Method
int announceCPUCategory(int category)
With this call the applications CPU category is made known to the RM.

Parameters
int category: The category to be used for creating the initial reservation.

Returns
Integer value, 0 on success, error code otherwise.

Method

int announceServiceLevels(int initialServiceLevel,
int nbrOfServicelLevels,

list<ServiceLevel> ServiceLevels)

This call will let the RM know what service levels the application has, and what ser-
vice level it will start to run in.

12

3.3 ACTORS Resource Manager

Parameters
int initialServiceLevel: The index into the following serviceLevels list, at which
the application is running initially.

int nbr0fServiceLevels: The number of entries in the following serviceLevels
list.

list<ServiceLevel> ServiceLevels: A list of serviceLevels, as specified in List-
ing 3.1.

Returns
Integer value, 0 on success, error code otherwise.

Method
int createThreadGroup(int groupld)

Creates an empty threadgroup to be filled with threads. The groupld is an integer
value that can be chosen freely by the application, the grouplds must be be unique
per application only.

Parameters
int groupId: The id of the group to create.

Returns
Integer value, 0 on success, error code otherwise.

Method

int addThreadsToGroup(int groupld,
int nbrOfThreads,
list<int> threadlds)

This call adds the thread IDs of the threads in the application.

Parameters
int groupId: The id of the group i which to place the following threads.

int nbr0fThreads: The number of entries in the following list of threadlds.

list<int> threadIds: A list containing the Ids of the threads to be placed in this
group.

Returns
Integer value, 0 on success, error code otherwise.

Method
int commit()

This call will make the client active. The RM will now solve the optimization prob-
lems to assign service levels and physical cores to the registered application.

Returns
Integer value, 0 on success, error code otherwise.

13

Chapter 3. System description

Running Once the application is registered it could send feedback to the RM about
how it is performing with the CPU time it is given. The application can report its hap-
piness which is a number in the range of 0 - 100, where 100 means the application is
performing at its best. The RM can measure the bandwidth used by an application so
the happiness value can be used to find out if there is another resource demand, such
as data flow from another applications or access to an IO device that is not met.

The RM can send signals to application when they should change service level. This
is done through a D-Bus signal changeServiceLevel and the applications are ex-
pected to be connected to and listen to this signal. Figure 3.4 shows an overview of
how the communication between two applications and the RM is done.

Client 1 Resource Manager Client 2

Client 1 Starts "
registerApp () > H
announceCPUCategory () > H
announceServiceLevels () > H
Registration '
createThreadGroup () > H
addThreadsToGroup () > H
commit () N H
'
Client 2 starts
e« registerapp ()
” announceCPUCategory ()
” announceServiceLevels ()
Registration
e createThreadGroup ()
Running
e addThreadsToGroup ()
e commit ()
e changeServiceLevel ()
changesServiceLevel () >
unregister () ‘b
Running
v .o Changeservicerevel) .. »|
<- unregister ()
v v

Figure 3.4 Timeline of two clients running with the RM.

14

3.3 ACTORS Resource Manager

Current state

What described above is the way the RM is intended to work, some parts are however
not yet implemented. Below is a list of things that is not working yet:

Relative values of resource demands The relative values of the
bWDistributionDataSpecifier in the service levels (see Listing 3.1) are not im-
plemented, so for an application to run as is should one must specify the abso-
lute values of the resource demands. All values given in the totalBandwidth and
bWDistribution will be interpreted as absolute values, regardless of the value spec-
ified in bWDistributionDataSpecifier.

Assigning physical cores to applications The first optimization problem that as-
sign service levels to applications takes the total bandwidth of the system as limit of
utilization. But consider the case of three applications registering on a system with
two cores, each application with a resource demand of 50%. The total bandwidth
for Actors applications is 170% (90 + 80) and the sum of resource demands for the
applications is 150% (50 + 50 + 50) so the optimization problem assigning service
levels will say that the problem has a feasible solution. However there is no way to
place these applications on the physical cores, one application each on the two cores
will give 30% left on one core and 40% left on the other core so there is not sufficient
space to run the third application on one of these cores. In the current state the RM
will crash with a segmentation fault at this point.

Handling of happiness value The handling of clients happiness values is not im-

plemented. The happiness signal can be sent by an application, and the RM will
receive it, but no changes action will be taken.

15

Chapter 3. System description

3.4 Robot software, HAM

Overview

The software used to control the robot is called HAM and was developed in a project
at Lund University, aiming to study the interaction between humans and robot through
body language [Topp, 2008]. The name HAM is a short for “Human Augmented
Mapping”, and it enables the robot to go to specific places or follow users around
while mapping its surroundings using two laser scanners. This system contains the
features needed to study the effects and requirements for adaptive resource manage-
ment. The use cases can not be determined in advance and it provides a dynamic
execution where off-line analysis and scheduling could be insufficient.

Internal design

The HAM application consists of a number of threads performing different tasks. it
also creates a Qt-based Graphical User Interface where the user can interact with
the robot. The different threads are described below. The threads Follower and
Wanderer are the threads that define the behaviour of the robot and only one of
these can be active at one time. Figure 3.5 show how the threads are connected, and
how the data is transmitted through the application.

DataHandler The DataHandler thread reads values from the laser scanners and
saves the raw data in arrays containing information about the distance to objects in
360 degrees around the robot. It also calculates the robot position from the motion of
the wheels. The robots battery power is also measured by this thread, if the robot is
about to run out of battery this could cause it to misbehave, and if this is the case the
motors are turned of and the robot is left standing still.

Tracker This thread keeps track of the objects in the surroundings of the robot, it is
the thread consuming by far the greatest part of cpu capacity, but it is also essential for
the performance of the system. It takes the raw data arrays created by the DataHandler
and finds different objects that could be of interest, such as a person to follow or
obstacles to avoid. The laser scanners are located close to the ground and persons are
identified as two objects of the same size with about the same distance from the robot
and the right distance between them. This is considered being human legs and once
the Tracker has found a pair of legs it will keep track of the person.

Slammer The acronym SLAM stands for “Simultaneous Localization And Map-
ping”. This thread creates a map and displays it in the GUL. It also keeps track of how
the robot is positioned in the room.

MotionController Controls the motion of the robot. Other threads can access meth-
ods such as setGoal() and the MotionController will make sure that there is
sufficient battery power and move the robot to the goal set by this other thread.

Follower This thread collects information about the map created by Slammer and
about person objects created by the Tracker and sends motion commands to the Mo-

tionController to make the robot follow users around without hitting any obstacles.

Wanderer This thread collects information about the map created by the Slammer
and lets the robot wander randomly on its own.

16

3.4 Robot software, HAM

Behaviours
<<QThread>> <<QThread>>
Slammer > Wanderer
<<QThread>> \b <<QThread>>
DataHandler MotionController
\A <<QThreads>> <<QThread>> |
Tracker > Follower

Figure 3.5 Diagram showing the flow of data in the HAM application

Modes of operation

There are different ways for the robot to operate, the two different behaviors Follower
and Wanderer, but also a mode where only the DataHandler, Tracker and Slammer
threads are active to create a map. These threads are active at all times, but the threads
controlling the robots behaviour are active one at a time together with the three map
creating threads and Motioncontroller.

17

Chapter 3. System description

3.5 Hardware monitoring and thermal control

To handle hardware resources such as battery power some sort of hardware monitor-
ing system is needed.

Lm-sensors

Lm-sensors is a free hardware monitoring package for linux (www.lm-sensors.org),
it provides a configuration utility for finding supported hardware sensors and device
drivers. The Pioneer robot has a National Semiconductor LM83 chip

[National Semiconductor Corporation, 1999] and the kernel driver Im83

[Delvare, 2010] is used to read the temperature. Many motherboards have voltage,
temperature and fan rotation speed sensors, but the LM83 chip is a temperature-only
chip. The temperature reading is updated every other second, reading the temperature
more often will do no harm, but will return old values. The sensor accuracy is 3°C
and the resolution is 1°C. There is no hysteresis mechanism present on this chip.

CPU thermal model

To identify the dynamics of the CPU temperature a step response test has been per-
formed, the result is shown in Figure 3.6. According to this the dynamics between
utilization U and core temperature 7" can be roughly modelled as a first order system
with time delay according to Equation 3.6.

T(S) — KP ef‘rs
U(s) Ts+1

(3.6)

The system gain K,,, time constant 7" and dead time 7 that can be determined from
step response analysis.

Temperature step response for a Pentium 3 CPU

@ ®
3 3
T 1

I
8
T

Temperature (deg C)

| | | I I 1 1
[5 10 15 20 25 30
Time (min)

Utilization

Load (percentage of max)

[0 I 1 L

T T T
15 20 25 30
Time (min)

Figure 3.6 Result of a step response experiment from utilization to temperature performed
on the processor of the robot.

18

4. Implementation

4.1 Adapting the robot platform to run the RM

In order for the robot to run the RM some changes have been made to the system to
meet the dependencies.

SCHED_EDF kernel

The SCHED_ EDF kernel described in Section 3.2 has been compiled and installed
on the robot. The configuration file for the previous working kernel was used with
the modifications from [Scordino and Trimarchi, 2009].

After leaving the graphical configuration editor the configuration entries
CONFIG_CGROUP_FREEZER and CONFIG_CGROUP_NS had to be manually set to n.

Dependencies
To be able to build and run the RM the following dependencies have to be met:

e A C++ compiler
e CMake >=2.6.0

e D-Bus libraries

the Ruby scripting language >= 1.8.0

Gnu Linear Programming Kit, glpk

These libraries are all present in the standard Debian repositories. However, the ver-
sions required is not in the repositories for Debian 4.0 which was installed on the
robot. To avoid having local versions of e.g. CMake that would perhaps not be com-
patible with the rest of the system, a full system upgrade to Debian 5.0 has been
done. Once this was done the Player libraries had to be recompiled to run on the new
system.

4.2 Adapting the RM to the robot platform

To get the RM to run on the robot-platform some fixes had to be made. Since the
Actors-RM is not yet complete, some parts are buggy and some parts are designed
and tested in TrueTime (www.control.lth.se/truetime) but not implemented. The focus
in this project when adapting the RM to the robot platform has been to fix the bugs
and implement the missing parts in such a way that the RM can run on this specific
platform, the version of the RM that is currently on the robot will e.g. not work well
on a system with more than one CPU.

Bugs
The RM uses two main data structures to keep track of the registered clients, a map

m_clients containing a representation of the clients with their D-Bus connection-
ID as the key, and a struct m_logicData containing vectors with data to solve the

19

Chapter 4. Implementation

optimization problems. Assuming that each client creates a D-Bus-connection and
resumes directly with the registration process the m_clients-map will be organized
from old to new since new connections will have a higher number. But new clients are
put at position 0 in the m_logicData-struct creating an order from new to old giving
new clients the data belonging to the previous registered client and so on. Also the
RM could not handle multiple registrations at the same time, which is desirable due
to the design of the robots control applications. Another property that was not im-
plemented was the ability for a client to unregister and register again without closing
the DBus connection. All these issues have been fixed by letting the m_logicData
struct be ordered as the m_clients. The RM also had some memory handling bugs
that caused the RM to segfault when erasing entries in a map, and there was also an
indexing error that made it impossible for an application to have more service levels
than threadgroups. These bugs have been fixed.

Solving the bandwidth distribution problem

The RM solves a bandwidth distribution problem to place the virtual processors on
the physical cores. This is done by spreading the virtual processors evenly on the
cores, and right now it is not possible for a client to have more virtual processors than
there are physical cores on the computer. The robot has a single core setting which
limits the clients to have only one threadgroup each. However, the bandwidth distri-
bution problem in this case is easy to solve, all virtual processors should be placed
on the only core available. On top of this, the method that updates the available CPU
bandwidth was written assuming that a client could only have one virtual processor
on each core, so this method had to be fixed also.

4.3 Load-simulation client

To test and debug the RM a simple client application has been implemented. It does
not perform any real tasks, but just consumes CPU time according to different service
levels that are specified at startup. The client application can also be used to simulate
load on the running system when testing the RM on the robot. The application is
started with

./main <c> <n> <low> <high> <output file>

This will register a client with the category ¢ and #» service levels with resource de-
mands spread equidistant between /ow and high. Output data such as in which service
level the client is running is saved to the out put file.

This application was used with some modifications when making the changes de-
scribed in Section 4.2. A script was written to start a number of these applications si-
multaneously, with different number of threadgroups and service levels, letting them
run for a while and then unregister and register again, with, or without closing the
DBus connection. In this way the RM could be thoroughly tested and the bugs could
be forced to appear and could then be identified and fixed.

20

4.4 Adapting HAM to the RM

4.4 Adapting HAM to the RM

Comunication with the RM

Rmlinterface Since all applications that intend to work with the RM should go
through the same registration process all calls to the RM have been collected in a
C++ class that handles the generation of D-Bus messages from ordinary C++ method
calls. This class is called RmlInterface and is built on the Qt D-Bus bindings. The
reason for using Qt is that HAM already uses Qt to handle the GUI events, but also
because of the complex structure of the service levels list. D-Bus low level bindings
only recognise basic data types such as integers and chars, so to avoid having to write
XML messages representing arrays, maps etc. by hand which would be very time
consuming, high level bindings must be used. The methods in the RmlInterface are
the same as presented in the RM D-Bus API in Section 3.3, and the client applications
can use them as ordinary internal methods.

changeServiceLevel To make the different pars of HAM listen to instructions from
the RM a method changeServiceLevel has been implemented. This method is con-
nected to the D-Bus signal changeServiceLevel from the RM. When the signal is
sent, all methods that are connected to this signal will be invoked, i.e. all client ap-
plications will receive the signal. The RM sends the new service level together with
the D-Bus connection id as an identifier specifying what client that is to change its
service level, so each client must compare this identifier with their own id before
changing service level. The method is presented below.

The internal variable SL_index is then used by the application to change its be-
haviour.

void changeServicelLevel (QString receivedID , int new SL)

{
if (receivedID .compare(myConnectionlD) == 0)
{
SL index = new_SL;
H
§

Assigning service levels

That the applications are Actors aware is a demand for being able to work with the
RM, but to make fully use of the RM the application should also be adaptive, i.e. have
more than one service level. In the HAM application all threads are periodic, and the
different service levels are set to have different period, and thereby different resource
demands. When designing a service level two parameters are of particular impor-
tance, the resource demand at the specific level, and the quality of service delivered
by the application at this level.

Assigning quality of service When setting up the service levels for the applications
it is useful to know how the RM will handle the service level assignment. The RM
will maximize the overall quality of service delivered by the system, weighted by
the importance value and bounded by the availiable bandwidth (Equations 3.2 - 3.3).
Consider setting the quality of service according to Figure 4.1(a) - 4.1(c), showing
how quality of service could be assigned to the service levels of an application in

21

Chapter 4. Implementation

three different ways. Here the service levels are labeled 0 to 9 where 0 is the service
level corresponding to highest performance and 9 to the lowest.

In Figure 4.1(a) the quality of service drops rapidly when going from level O to 1,
lowering the overall quality of service by a large amount. But once an application is
at level 1 the “cost” of going to level 2 will be less than changing the service level of
another application with quality of service assigned in the same way. This will result
in that if the available resources should decrease, or a new application with higher
importance should register, an application designed in this way will go to level 9 be-
fore any other application goes to level 1. Figure 4.1(b) shows the opposite situation.
The loss of quality of service increases as an application goes to a higher (lower per-
formance) level, resulting in that all applications designed in this way will go to level
1 before any application goes to level 2.

Quality of sevica
Quality of sevica

(a) The loss of quality of service decreases (b) The loss of quality of service increases
as the application goes to higher levels. as the application goes to higher levels.
o \\ IJ:I ity of sevice £ sevice level

Quality of sevica
o
el

(c) Linear relation between service level and qual-
ity of service.

Figure 4.1 Three different ways to assign quality of service to service levels.

In the case shown in Figure 4.1(c) the cost is the same at all changes of service level,
so in this case the application importance value will be used to determine the assign-
ment of service levels. Figure 4.2 - 4.3 show how the RM will assign service levels
to three applications depending on how much of the bandwidth that is blocked. All
three applications have 10 service levels each, with resource demands according to:

Sevice level o 1 2 3 4 5 6 7 8 9
Resourcedemand(%)‘% 24 22 20 18 16 14 12 10 8

The quality of service is assigned to the service levels in different ways according
to the curves in Figure 4.1(a) - 4.1(b). In this example it is assumed that there is one

22

4.4 Adapting HAM to the RM

core and that the available bandwidth for Actors applications is 80% as stated in Sec-
tion 3.3. The scale of the x-axis shows how much of the 80% that for some reason is
being blocked, and the figures show how the service level assignment would be done
in this case.

In Figure 4.2(a) all three applications have their quality of service set according to
Figure 4.1(a) and we can see that the application represented by the red line will drop
to level 9 before the green application starts to follow. In Figure 4.2(b) all applica-
tions are assigned quality of service according to Figure 4.1(b) which instead causes
the applications to change service levels together.

Beervi et Ber

Servica level
Servica level

=

i ! i
i I : : :
: I : 1 :
: I : :
SRS R SN S, R L S s S IR SN S
I

g F u_.,_JI._._.i' i i i H i F
L] El 10 13 o Fl Ju k=] a0 45 L] El 10 13 o Fl Ju k=] a0 45
Amount of blocked bandwidth Amount of blocked bandwidth
(a) Quality of service set according (b) Quality of service set according
to Figure 4.1(a). to Figure 4.1(b).

Figure 4.2 Three identical applications change their service levels when the available band-
width is limited.

Figure 4.3 shows the case where the red application has its quality of service accord-
ing to Figure 4.1(a) and the green and blue applications according to Figure 4.1(b).
Here the cost of changing service level for the red application is very high when go-
ing from level 0 to 1 so the RM will keep it at level 0 as long as possible, but once
it is forced to change level due to insufficient bandwidth it will go directly to level 9
and the green and blue application will go back to levels with higher performance.

=

Servica level

Figure 4.3 The application represented by the red line has its quality of service set according
to Figure 4.1(a), and the green and blue applications has their quality of service according to
Figure 4.1(b).

The results shown here is a special case since all three applications are identical in
terms of their resource demands, the results are not directly applicable to the gen-
eral case of applications, but the knowledge of how the RM will handle the quality
of service is still useful when designing client applications. Different assignments of

23

Chapter 4. Implementation

quality of service will provide different results, even if the optimization problem will
be more complex than shown here.

For the HAM application different ways to assign quality of service have been tested,
and the results from this is presented in Figures 5.2 - 5.3.

Estimating the resource demands Since the RM is not yet able to handle relative
resource demands or make estimates at runtime (Section 3.3) some estimate of the
absolute values are required to be done off-line. This has been done by measuring the
average computation time for the different threads and assigning the quote between
the computation time and the period as the resource demand (Equation 4.1).

Bs = 100*1 4.1)
Ps
Where :
By = required bandwidth (resource demand) at service level s
d = duration (computation time)
ps = period of the application at service level s

The period is the design parameter that can be chosen to achieve the desired be-
haviour. All threads have been assigned 5 quality levels with period according to
Table 4.1.

Service level ‘ 0 1 2 3 4
Period (ms) ‘10 20 30 40 50

Table 4.1 All threads are assigned the same period.

As an estimate of the average computation time, measurements taken directly from
the different threads are used. For the Tracker this value varies a lot, but for the other
threads it seems that the duration has an upper limit. The values taken as the average
duration are presented in Table 4.2.

Thread Duration (ms)
DataHandler 1
Tracker 6
Slammer 0,15
MotionController 1
Follower 0,2
Wanderer 0,05

Table 4.2 The average computation time for the different threads

This results in an assignment of resource demands as presented in Table 4.3. The
resource demands of some threads are very low, and the RM can only handle integer
values and has a lower limit of 2%. If registering the Wanderer thread as an applica-
tion, the resource demands would be 0 for service level 1 - 4, and this causes the EDF
kernel to lock down, so the values in Table 4.3 have to be truncated to the nearest
integer and if they are below 2%, they are set to 2%.

24

4.4 Adapting HAM to the RM

Thread \ Service level | 0 1 2 3 4
DataHandler 10% 5% 3,33% 2,5% 2%
Tracker 60% 30% 20% 15% 12%
Slammer 1,5% 0,75% 0,5% 0,375% 0,3%
MotionController 10% 5% 3,33% 2,5% 2%
Follower 2% 1% 0,66% 0,5% 0,4%
Wanderer 0,5% 0,25% 0,166% 0,125% 0,1%

Table 4.3 The resource demands for the different threads. Calculated from Table 4.1 and 4.2
according to Equation 4.1.

Grouping threads in threadgroups
The HAM application contains 6 different threads (Section 3.4), which are listed here
again for convenience:

DataHandler

Tracker

e Slammer

MotionController

Follower
e Wanderer

These threads can be grouped together in thread groups in different ways, as de-
scribed in Section 3.3. One way would be to register HAM as one application with
many threads, but another possibility is to register each thread as an application of its
own. This would provide the possibility for each thread to have its own service lev-
els and to send happiness values even if this handling is not yet implemented in the
RM (Section 3.3). Another way to see it is that the application consists of two differ-
ent parts, one part that creates a map with the DataHandler, Tracker and Slammer
threads, and another part that defines the robots behaviour with one of Follower or
Wanderer together with MotionController. These two parts could be registered as
two individual clients with their threads placed into thread groups. Both ways have
been tested, and the results are presented in Section 5.

25

Chapter 4. Implementation

4.5 Processor thermal control

As an attempt to make the RM handle the battery power as a resource a new thread
has been introduced. This thread is a PI controller that controls the temperature of
the CPU with the utilization as control signal. In this way one can set a limit to the
CPU temperature and turn of the active cooling system, thereby limiting the power
consumption [Lindberg, 2010]. Unfortunately the robot is not equipped with any way
to control the fan, but the experiment still stands as an idea to how the RM could be
extended. As described in Section 3.5 the temperature reading is updated by the sen-
sor every other second. The periodic threads that will run have a shorter period which
result in an aliasing effect as can be seen in Figure 4.5. For the case with shorter
period the aliasing effect is still present, but is limited by the fact that the load is
more evenly spread. To handle the measurement noise the signal is filtered through
a FIR filter with a rectangular window of one minute before calculating the control
error. Using the results from the step response test in section 3.5 and adding the filter
dynamics, the system parameters in Equation 3.6 are determined to be K, = 0.37,
T =32.54 s and T = 31.1 s. Using this, a controller that runs every two seconds has
been designed using an internal model control (IMC) approach [Rivera et al., 1986].
The controller parameters are set to K = 4.1792 and 7; = 48.09. If the limit of utiliza-
tion is changed the RM will do a new service level assignment with the value from
the PI controller as the upper limit L in Equation 3.3.

The actual utilization on the system is then determined by the service level assign-
ment and bandwidth controller of the RM. Figure 4.4 show how the service level
assignment relates to the limit set by the controller in the case of running HAM with
service levels and resource demands set according to Table 4.3. The measured value
of the utilization from the RM is used when updating the integral state in the PI con-
troller to prevent integrator windup.

Figure 4.6 show a diagram of the controller setup.

Limit an e utilization

-
=

Li=7 duz 1o SL-assign=an

Figure 4.4 The limit set by the controller results in a lower utilization on the system

26

4.5 Processor thermal control

Setpoint and core lemperature

— Measured temparature |-
ool = Flltgred temperature |

[S

[r] S—
B0

0= pratur (]

[e

o 0s 1 15 2 25 3 35 4 45 5
Tissa (in)

(a) Time granularity 100 ms.

Measured temparature |
ool = Flltgred temperature |

Setpoint and core lemperature

T0f

T .

B0

7] R

0= pratur (]

7] S

0s 1 15 2 25 3 35 4 45 5
Tissa (in)

(b) Time granularity 10 ms.

Figure 4.5 Measured and filtered temperature when running an application with constant
load but different time granularity.

VW PID > N > Core >

£
@Q FIR P ——

Figure 4.6 Diagram of the controller setup, 7;- = temperature setpoint,
e = control error, U = controller output, Us = saturated output,
T = measured temperature, 7y = filtered temperature.

27

S. Experimental setup and results

The tests performed here aim to show the results of different ways of assigning quality
of service and different ways of putting threads in threadgroups. Both to evaluate the
behaviour of HAM in these cases and to see that the RM acts the way it is supposed
to. All tests in Section 5.1 - 5.2 are performed in the same way, HAM registers in
follower mode with threadgroups and service levels assigned in different ways. The
client application described in Section 4.3 then registers with the RM with only one
service level, which forces the RM to give it the bandwidth it demands. The resource
demand of this application goes from 5 to 60% in steps of 5%, with 10 seconds
interval. This will cause HAM to change service levels in different ways depending
on the way the service levels are assigned.

5.1 Assigning quality of service

To see how the RM handles the service level assignment among many applications all
threads have been registered as individual clients in this test. The quality of service
are assigned according to Figure 5.1(a) - 5.1(b), and the theoretical result presented
in Figure 4.2(a) - 4.2(b) gives an idea of what to expect.

In Figure 5.2 the quality of service has been assigned to the threads according to Fig-
ure 5.1(a) and in Figure 5.3 it is set according to Figure 5.1(b). The figures show-
ing the period of the threads are produced using data from HAM, so this shows
that HAM receives and handles the changeServiceLevel signal correctly. When
comparing Figure 5.2 and Figure 5.3 we can see that the RM assign service lev-
els more equal among the threads in Figure 5.3, but all differences in these figures
can’t be explained by the difference in quality of service. At first when only the
Tracker, DataHandler and Slammer are active there is enough resources to run all
these threads at service level 0, but when the Follower and Motioncontroller
are activated the RM can choose to change the service level of either Tracker,
DataHandler or Motioincontroller. Either way this is done will result in the
same overall quality of service. In this case the decision of which client that should
change service level is simply based on which client that happens to come up first in
the implementation of the optimization problem solver, and this is the reason why the
Motioincontroller changes level in Figure 5.2(a) but not in Figure 5.3(a).

It can also bee seen that the Slammer and Follower threads does not change service
level, and this is due to the fact that they have the same resource demand for all their
service levels, so there is nothing to gain from changing level.

28

Quality of sevica

5.1 Assigning quality of service

Quality of sevice J service level Quality of sevice J service level

4] 1 2 3 4
Service lavel Service lavel

(a) The loss of quality of service decreases (b) The loss of quality of service increases
as the application goes to higher levels. as the application goes to higher levels.

Figure 5.1 Two ways to assign quality of service to the 5 different service levels.

Period of the different threads in Hak

45

40H

Tracker

Datahandler

Slammer
Follower

Periad (ms)
w
8
T

=7 Motioncantroller

25

!! i
15l : o

by : P _
nE l_l 'J"_i s e s Mt Wit Rl Wittt i

1} 20 40 G0 &0 100 120 140 160
Time (s)
(a) Period of the different threads in HAM.
Assigned hudget

6O
S50
anr

Budget (%)
-
]
T

Figure 5.2 Period of the threads, and budget assigned by the RM when quality of service is

0 20 40 60 g0 100 120 140 160
Time {s)

(b) Bandwidth assigned to the different threads by the RM.

set according to Figure 5.1(a).

29

Chapter 5. Experimental setup and results

30

Periad (ms)

Budget (%)

40

Period of the different threads in Hak

Tracker

H Datahandler

Slammer
H Follower
== Motioncontroller

1 :
- '——rL el it Rl S—— |

i 20 40 60 80 100 120 140 160 180
Time (5)

(a) Period of the different threads in HAM.

Assigned hudget

i i I 1 i i i I I i
1) 20 40 60 g0 100 120 140 160 180
Time {s)

(b) Bandwidth assigned to the different threads by the RM.

Figure 5.3 Period of the threads, and budget assigned by the RM when quality of service is
set according to Figure 5.1(b).

5.2 Threadgroups

5.2 Threadgroups

In this test the quality of service is set according to Figure 5.1(b), and the threads
have been put in threadgroups as shown in Figure 5.4. Here the different clients that
has a connection to the RM is Mapper and Behaviour, and the change of period is
distributed internally to the different threads of these clients. In this way the period
of Slammer and Follower is changed together with DataHandler and
MotionController respectively. The RM controls the bandwidth of the three dif-
ferent virtual processors, and Figure 5.5(b) and 5.6(b) shows the assigned budget. In
both Figure 5.5 and Figure 5.6 the robot is set in follower mode, and the threadgroups
and service level assignment are the same, but in Figure 5.5 the robot has been stand-
ing still during the whole test. This was achieved simply by not walking in front of
the robot, so that the tracker could not find anything to track. In Figure 5.6 the robot
has been led around a room with a lot of chairs, tables and other things that the tracker
will find interesting. The result is that the resource demands of the Tracker for one
service level varies between 10 and at least 30% in the different cases as can be seen
when comparing the budget assigned to the Tracker in Figure 5.5(b) and 5.6(b). This
problem could be solved be splitting the Tracker thread into smaller parts that e.g.
tracks one object each. These parts could then register when needed and the estimate
of the resource demand would be more accurate.

HAM

Tapper Behaviour

Threadgroup 0 Threadgroup 1 Threadgroup 0

== | | ===
Slammer MotionController

Figure 5.4 The threads of HAM are put in different threadgroups

31

Chapter 5. Experimental setup and results

Feriod of the diferent threads in HAM

50 - R
Tracker |
a5l — =~ Datanandier A
== Slammer I
a0l Follower . : y
hationcontroller I
o |
< |
s -
T
o
2a
I .I__:___;_‘__-:.‘___. U R S S
| :
b |l . e
- ; I
10k = : ; ; 1. i e ;
1) 20 40 60 &0 100 120 140 160 180
Time {s)
(a) Period of the different threads in HAM.
Assigned budget
B iy A T TP U Tracker
: Datahandler & Slammer
sal Follower & Motionconiroller
40

Budget (%)
w
3
T

i 20 40 60 &0 100 120 140 160 180
Time (5)

(b) Bandwidth assigned to the different threadgroups by the RM.

Figure 5.5 Period of the threads, and budget assigned by the RM when the robot is standing
still.

32

5.2 Threadgroups

Feriod of the diferent threads in HAM

Tracker |
a5 H — = ~Datanandier : : : |
—="Slammer : : : : |
anH Fallower R ST OURU OURPRPOIN e ..jr_‘_J..

hationcontroller

Petiod (ns)

1} 20 40 60 a0 100 1z0 140 160
Time {s)

(a) Period of the different threads in HAM.

Assigned budget

50_.5. S P PSSP [RTP i Tracker

Datahandler & Slammer

Follower & Motionconiroller

Budget (%)
w
3
T

Time (5)

(b) Bandwidth assigned to the different threadgroups by the RM.

Figure 5.6 Period of the threads, and budget assigned by the RM when the robot is moving
around.

33

Chapter 5. Experimental setup and results

5.3 Temperature control

To test the performance of the controller two experiments have been performed.

In the first experiment the temperature setpoint was set to 55°C for 10 minutes and
then to 45°C for 10 minutes. A modified version of the client application described
in Section 4.3 with service levels according to Table 5.1 and only one thread was
running on the system. The application has random execution time and after about
200 seconds it decreases its use of bandwidth about 10%. The result is presented in
Figure 5.7. During the first 10 minutes the temperature limit of 55°C does not affect
the execution of the application which is running in service level 0. The slow response
from utilization to temperature that can be seen after 200 seconds is due to the FIR
filter, and it is clear that the control signal (Utilization limit) does not wind up even if
the temperature does not reach the setpoint. After 10 minutes when the temperature
setpoint changes to 45°C the temperature limit is violated and the utilization limit is
pushed down below the current measured utilization. This results in a service level
change for the running application that goes to service level 2. When the temperature
has stabilized the application can go back to service level 1 and stay at this level.

Application SL QoS Resource demand Period

name [%] [%] [ms]
Al 0 100 60 20
90 30 20
2 75 20 20

Table 5.1 Service level table for application Al

For the second experiment, two applications were running on the system. The ser-
vice levels were set according to Table 5.2 and application Al were given higher
importance. Also here the applications consists of only one thread each. The setpoint
temperature was kept at 50°C through out the experiment and the result is presented
in Figure 5.8. During the first 300 seconds application A1l are running alone, and the
temperature limit is not violated. When application A2 starts to execute the temper-
ature builds up, and about 700 seconds in to the experiment the temperature limit is
violated which forces application A2 to change service level. Since application Al
has higher importance it is left to run in service level 0 through out the experiment.

Application SL QoS Resource demand Period

name [%] [%] [ms]
Al 0 100 40 20
1 90 30 20
2 75 20 20
A2 0 100 20 20
1 85 10 40
2 35 5 80

Table 5.2 Service level table for applications A1 and A2

34

Load (percentage of max) Temperature (deg C)

Service levels

5.3 Temperature control

Reference temperature and CPU temperature

60—
Setpoint
55 Filtered temperature
50
45
40
35 1 1 1 1 1
200 400 600 800 1000
Time (s)
System utilization and utilization limit
100~
Utilization limit
——— Measured utilization
80
60
40
20
0 1 1 1 1 1
0 200 400 600 800 1000
Time (s)
Assigned service level for application A1
3~
25 .
2
1.5
1
0.5
0 1 1 1 1
0 200 400 600 800 1000

Time (s)

Figure 5.7 Performance results under normal conditions. One application running on the

system subject to changes in system temperature limit.

35

Chapter 5. Experimental setup and results

Reference temperature and CPU temperature

60—
Setpoint

— Filtered temperature
G551
o
3
Z 501
2
2
©
5 45
o
£
3
= 40+

35 1 1 1 1 1 1 1

0 200 400 600 800 1000 1200
Time (s)
System utilization and utilization limit

100~
s Utilization limit
-] 80— ——— Measured utilization
£
“
1)
& 60
o
€
3
5 40
e
K]
s 201
-

0 1 1 1 1 1 1
0 200 400 600 800 1000 1200
Time (s)
Assigned service levels for applications A1 and A2
3~
25+

Service levels
N
Cd
T

0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200
Time (s)

Figure 5.8 Performance results under overloaded conditions. Two applications running on
the system subject to system temperature constraints.

36

6. Conclusions and future work

The quality levels that have been set to HAM does not provide a change of perfor-
mance that can be measured, one could even question if a period of 10 or 50 ms
really makes any difference to the performance. The robot is not very fast, and the
surroundings does not change that fast that the robot is likely to miss obstacles when
having a period of 50 ms. The quality levels have been assigned in this way as an
effort to make the robot consume more CPU time than available to be able to see if
the RM handles this the way it is expected to. In this case where the CPU time is not
limited in a way that effects the robot (when running HAM prior to the changes made
in this project it consumed below 10% of the CPU) a far more interesting resource
to consider would be the battery power. The robot can only run for about 40 minutes
without charging the batteries and this is a limitation. More appropriate quality levels
could involve turning off the back laser when the robot is moving forward in known
areas, and other ways to change the use of hardware to achieve high performance
with low power consumption.

This raises the question of how to define high performance and quality of service.
What “good quality of service” is, is not defined by the RM, but by the individual
client applications. As shown in Section 5.1, the way of assigning quality of service
has a great impact on the service level assignment, and it would perhaps be necessary
to specify some guidelines on how the quality of service should be assigned.

The quality of service could also be affected by external factors. If good quality of
service means keeping the performance of the positioning within some error bounds
while consuming as little battery power as possible, the desired way to operate will
change e.g. if the robot travels in a large room with few obstacles or if it travels in
a tight space. In a large room the data would not need to be updated as often and a
higher motor speed could be accepted. One way to achieve this change of way to op-
erate could be by using the happiness value, but another way would be to re-register
the service levels, with different values of quality of service, letting the clients esti-
mate their performance at runtime.

Once the RM is fully implemented it will have greater potential than what has been
demonstrated in this project. Also if the control system of the robot was designed
with respect to the RM from the start, some of its features that is normally handled
internally by the control application could instead be handled by the RM, thereby giv-
ing more information to use when optimizing the performance of the entire system.
Producer-consumer situations could be considered as resource management problems
and the happiness value could be used to inform the RM of the clients performance.
One way to handle the happiness values is simply:

e Not happy — change to a lower level
e Too happy — change to a higher level

In other words, if one part of the system does not get new data at the desired rate this
would cause a low happiness value and therefore shifting it to a lower level, leaving
more resources to other applications.

37

7. Bibliography

Arzén, K.-E. (2008): “Real-time control systems.”

Arzén, K.-E., V. R. Segovia, A. Cervin, A. Neundorf, G. Fohler, and E. Bini (2009):
C‘Db3 .7’

conscious robots (2007):

http://www.conscious-robots.com/en/reviews/robots/mobilerobots-pioneer-3-p3-
dx-8.html.

Delvare, J. (2010): “Kernel driver Im83.”
http://www.mjmwired.net/kernel/Documentation/hwmon/Im83.

Lindberg, M. (2010): “Adaptive resource management for uncertain execution
platforms.”

MobileRobots Inc (2006): Pioneer 3 Operations Manual. Amherst, NH, US.

National Semiconductor Corporation (1999): LM83 Triple-Diod Input and Logical
Digital Temperature Sensor with Two-Wire Interface, DS101058.

Rivera, D. E., M. Morari, and S. Skogestad (1986): “Internal model control 4: Pid
controller design.” In Industrial and Engineering Chemestry Research, pp. 252—
265.

Scordino, C. and M. Trimarchi (2009): “D4e.”

Topp, E. A. (2008): “Human-robot interaction and mapping with a service robot:
Human augmented mapping.”

Versalogic Corporation (2007): Model VSBC-8 Reference manual. Eugene, OR, US.

38

