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1. Introduction

1.1 Problem Description

This thesis deals with Model-based Friction compensation. The goal is to verify the

theory presented in the article by [Robertsson et al., 2004], where a Friction compen-

sation method, based on the LuGre model, is derived for general nonlinear systems.

The process considered is the Furuta pendulum (see figure 1.1). It is a system

with two rotational degrees of freedom, but only one, the arm angle, is actuated by

a DC motor , the other being the pendulum angle which has to be stabilized in the

upright position.

Figure 1.1 The furuta pendulum

The theory is verified in Simulation with Matlab Simulink and experimentally

using a dSPACE board.

Moreover the work from a previous thesis written by Thomas Dietz [Dietz, 2006]

is used as help for building the Simulink files and having a first knowledge about

Friction compensation. However, as the process used here is the same as the one used

in this thesis, the parameters for the plant and for the Friction Model are taken from

the identification done in this thesis.

1.2 Motivations

Friction is widely spread in most of the mechanical or electro-mechanical systems.

This property can be seen as an advantage or an inconvenient depending on the do-

main of application where friction occurs. For instance without friction it would be

impossible to move with a bike, the wheels would just slip on the ground and the
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Chapter 1. Introduction

bike would stay motionless. But now if the domain considered is robotic applied to

medicine, the robot has to be highly accurate and not to be submitted to any kind of

disturbance.

Unfortunately, as it will be explained later, one of the drawbacks of Friction is

the emergence of limit cycles. For this reason, Friction compensation has to be inves-

tigated, and solving this problem could lead to very good improvements in a lot of

domains. Moreover, as friction is highly non-linear the survey of such a phenomenon

could allow to develop new theoretical elements about non-linear control.

1.3 Phenomena Due to Friction

One of the major phenomena arising with friction uncompensated systems is the

emergence of limit cycles. Two typical limit cycles are well-known : the Hunting and

the Stick-Slip motion. These two phenomena are described in the following section,

the examples being picked from the PhD thesis of Henrik Olsson[Olsson, 1996].

A Simple Friction Model
In this part, each simulation is run using the following model for the friction :

F =

⎧⎪⎨
⎪⎩

FCsgn(v), i f v �= 0 FC : Friction force

Fe, i f v = 0 and |Fe|< FS Fe : External force

FSsgn(Fe), otherwise FS : Break-away force

(1.1)

The model is a coulomb model extended with a breakaway force. It is not the

simplest one but it allows to show phenomena due to friction. The figure 1.2 clearly

describes the model :

Figure 1.2 The friction model
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1.3 Phenomena Due to Friction

For implementational reasons, the model is slightly modified so that the behaviour

at zero velocity also occurs for a given ε . This has to be done because zero does not
really exist in a computer.

F =

⎧⎪⎨
⎪⎩

FCsgn(v), i f |v| ≥ ε
Fe, i f |v|< ε and |Fe|< FS

FSsgn(Fe), otherwise

(1.2)

Hunting
Hunting is a limit-cycle around the reference value. It is due to the integral part of

a position-controller which is applied to a system submitted to friction. The phe-

nomenon is illustrated by taking the example of a mass moving along a one-dimen-

sional axis.

The motion equation can thus write :

m
d2x
dt2

= u−F (1.3)

where u is the control force given by :

u(t) =−Kvv(t)−Kpx(t)−Ki

∫ t
(x(τ)− xr(τ))dτ (1.4)

and F the friction force as in 1.2

Illustrations1

Figure 1.3 shows the system without friction and in Figure 1.4 Friction is included.
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Figure 1.3 Position of the mass without friction

1The simulations parameters are : Fc=0.5, Fs=1, Kv=2, Kp=2, Ki=1, xr=1, and m=1. For more

details please refer to [Olsson, 1996]
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Figure 1.4 Position of the mass with friction

If the two figures are compared, clearly the friction is a significant drawback

because it leads to oscillations around the reference point. If more attention is paid

to figure 1.4, it can be noticed that the mass point just stays motionless besides the

reference value for a while before it goes back and stays below it. This phenomenon

is similar to another phenomenon called slip-stick motion.

Stick-Slip Motion
Stick-slip motion is the fact that the considered mechanical object moves by steps: a

slip-step and a stick-step. The system which is used to highlight this phenomenon is

a simple mass coupled with a spring. A velocity control is used, and the system can

be finally represented by the following equations :

m
d2x
dt2

= k(y− x)−F (1.5)

dy
dt

= vre f , (1.6)

the friction force F being described by the model 1.2

Illustrations2

Thanks to the figures 1.5 and 1.6 the meaning of stick-slip motion becomes obvious.

If there is no friction (see Figure 1.5) the mass just follows the reference and oscillates

around it. But when Friction is taken into account (Figure 1.6), the mass just stays

for a while at a given position (for instance from t = 10s to t = 15s) until it moves
again to try to reach the reference value (for instance from t = 15s to t = 17s).

2the simulations parameters are : Fc=1, Fs=1.5, k=2, vre f = 0.1, and m=1. For more details please
refer to [Olsson, 1996]
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Figure 1.5 Position of the mass without friction
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Figure 1.6 Position of the mass with friction

1.4 Friction Compensation

This section aims at giving information about Friction and its compensation.

A first part deals with the description of the most important phenomena involved

in friction and presents a recently built model of friction, which will also be used

throughout this thesis: the LuGre friction model.

In the second part, the results of the article [Robertsson et al., 2004] – in which

a method of friction compensation for general nonlinear systems is derived – are

presented. Indeed, for the authors it seemed necessary to explain this article, as the

goal of this thesis is to verify these results on a real experiment.

Typical Friction Behaviour and the LuGre Model
Friction typically occurs when two different surfaces are put into contact. As an ex-

ample one can consider (as in the previous section) a rectangular block, lying over a

flat surface:
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Chapter 1. Introduction

Figure 1.7 Rectangular bloc lying on a flat surface. FF corresponds to the tangential friction

force between the two surfaces, opposed when Fe, an external force, is tangentially applied to

the block.

Basically, friction contacts can be encountered in two different states: “sticking”

(also called presliding) and “sliding”. The transition between these two states is con-

tinuous, and the force required to pass from sticking to sliding is called the breakaway

force, or the Stiction Force.

In the state of “sticking”, there is no macroscopic relative movement between the

two surfaces. Given the above example, this state would correspond to the situation

where the friction FF exactly opposes the applied force Fe so that the block keeps

motionless.

On the contrary, when Fe reaches the breakaway force, the friction forces are no

longer able to overcome the applied force, and thus the block starts moving, leading

to the sliding mode.

A recently friction model which received a lot of attention these last years is

the so-called LuGre model, which was built thanks to a collaboration between the

Control departments of Lund (Sweden) and Grenoble (France).

This model is capable of capturing a wide range of phenomena which have been

observed while studying the friction behaviour of mechanical systems.

This section intends to give a short introduction to this model, and some of the

characteristic friction behaviours covered by this model. Further annotations and ex-

pressions concerning the description of the friction which will be used throughout

this thesis are introduced.

Moreover, this section does not intend to give a complete description and listing

of all the friction phenomena captured by the LuGre model.

Indeed for more insight the reader is strongly recommended to refer to [Åström,

1998]. Further a really good introduction to friction modelling, and to the different

friction models developed prior to the LuGre model, is given in the PhD thesis of

[Olsson, 1996].

The LuGre model is a dynamical model for the description of the friction. In this

model, friction is physically described as the result of the bending of surface asper-

ities between the two surfaces in contact. These asperities are modelled as bristles

which deflect like springs when a tangential force is applied (see [Åström, 1998] and

[Olsson, 1996]). The LuGre model collects the behaviour of all these surface asperi-

ties and describes their accumulated behaviour through one bristle, see figure 1.8:
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1.4 Friction Compensation

z

v

Figure 1.8 Left: schematic picture showing the modelization of the two contact surfaces

asperities, by bristles, which bend under load. Right: the average deflection of the bristles of

the contact surfaces is collected through one bristle

Referring to [Olsson, 1996], the LuGre model is described by the following equa-

tions:

dz
dt

= v−σ0
|v|

g(v)
z (1.7)

FF = σ0z+σ1(v)
dz
dt

+Fvv (1.8)

g(v) =
(

FC +(FS−FC)e−(v/vS)2
)

(1.9)

σ1(v) = σ1e−(v/vd)2 (1.10)

where v denotes the relative velocity of the contact surfaces and FF is the LuGre

friction force.

Referring again to [Olsson, 1996] , these equations can be interpreted as follows:

Equation (1.7) describes the behaviour of the internal state of the friction model,
i.e. the average deflection of the bristles and collected through one bristle, as men-

tioned above. The first right hand term allows the deflection to be proportional to the

integral of v , while the second term ensures that z be velocity dependant at steady
state by reaching the value

zSS =
1

σ0
g(v)sgn(v)

for nonzero velocity v.

Equation (1.8) describes the LuGre friction force’s dependence on the internal state
and its derivative. The first term accounts to the friction force due to the stiffness σ0
of the bristles, while the second one allows well-behaved transitions between sticking

and sliding for small velocities v. Finally, the third term accounts for linear viscous
friction which appears at high velocities.

Equation (1.9) details the function g(v), which specifies the velocity dependence
of the friction force FF at steady state and for relatively low velocities. Indeed, at

steady state:

F = FSS = g(v)sgn(v)+Fv v

As it will be seen below, this function accounts for the Stribeck effect, and more

specifically it can be seen as a time constant defining how quick the steady state

11



Chapter 1. Introduction

value zSS can be reached.

Equation (1.10) describes a common parametrisation of the damping coefficient
σ1(v). With this parametrisation, σ1(v) exponentially decays with the velocity. Hence
it is maximal for zero velocities and therefore allows to avoid unwanted oscillations

at the breakaway, while it becomes negligible at high velocities. However a simplified

version of the friction model above, where σ1(v) is assumed to be constant, is also
used frequently.

The main friction phenomena which are handled by the LuGre model are described

below. For more information about these phenomena, the reader is again strongly

advised to refer to [Olsson, 1996] and [Åström, 1998].

�

�
�

�
�

�
�

Figure 1.9 Typical behaviour of the friction force FF in the sliding regime and in dependence

on the velocity v. For low velocities the Stribeck effect governs the transition of the friction
force from the Stiction force FS to the Coulomb friction Force FC, while at high velocities the

Coulomb and the viscous friction forces dominate the behaviour.

• Stribeck effect
The experimentally observed decrease of the friction force at low relative ve-

locity, from the breakaway force (higher friction value at stiction) to a lower

value when sliding occurs is known as the Stribeck effect (see figure 1.9). This

effect is captured in the LuGre model by the function g(v), which also encoun-
ters for friction value at steady state.

• Static friction and Breakaway force
Experiments show that static friction and breakaway forces depend on the rate

of increase of the external force applied, and thus velocity. Hence, friction is

a dynamic process which does not only depend statically on the the force or

velocity applied.

• Presliding
Presliding or sticking occurs when the external force applied keeps below the

breakaway force. Even though there is no macroscopic movement in the pres-

liding state, it does not mean that there is no displacement between the two sur-

faces. Indeed, the friction surfaces can be imagined to be connected by springs,

allowing a relative movement between the two surfaces.
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1.4 Friction Compensation

• Frictional lag
The frictional lag corresponds to a time delay between velocity and steady

state friction force, and leads to an hysteretic behaviour of the friction force

for velocity changes. Indeed, FF is lower for decreasing velocities than for

increasing ones, the hysteretic behaviour being moreover strongly dependent

on the rate of the velocity change.

Summary of article [Robertsson et al., 2004]
In this article, the problem of friction compensation for nonlinear systems is con-

sidered. The method presented here starts from hypothesis which are made on the

system when friction is not taken into account. It is first supposed that the system

dynamics without friction can be written in the following state-space representation

form: {
ẋ = F(x)+G(x)u
u = H(x, t) ,

(1.11)

with x ∈ R
n the state vector, and u = H(x, t) ∈ R the control action which achieves

uniform asymptotic stability in a compact subset Ω⊂ R
n.

Further it is assumed that there exists a non negative function V such that :

• the zero level of V belongs to Ω, i.e:

V0 = {x ∈ R
n : V (x, t) = 0} ⊂Ω (1.12)

• V satisfies the following inequality:

0≤ |y(x, t)|= V (x, t)≤Vm|x|2 (1.13)

• the time derivative of V along the trajectories verifies the inequality:

V̇ ≤−
[

x

u

]T

Q(t)
[

x

u

]
≤ 0 (1.14)

with

Q = QT =
[

Q1 Q12

QT
12 Q2

]
, Q2 > 0

Friction is then taken under consideration by considering it as an external force,

acting directly on the control.The real control τ applied to the plant thus writes:

τ = u−F (1.15)

and may, as seen before, prevent the system from being stabilized. The solution pro-

posed by the authors is to compensate this friction by modifying the nominal con-

troller u as follows:

u = H(x, t)→ unew = H(x, t)+ F̂ , (1.16)

so that finally the new “friction-compensated” real control τ writes:

τ = unew−F = H(x, t)+ F̂−F (1.17)
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Chapter 1. Introduction

F̂ is a friction estimate, and is reconstructed by the following observer, based on the
LuGre model previously defined:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
F̂ = σ0ẑ+σ1 ˙̂z+Fvv
dẑ
dt

= v−σ0
|v|

g f r(v)
ẑ+K

= v−ϕ(v)ẑ+K, ẑ(0) = 0

(1.18)

The main result of [Robertsson et al., 2004] and given in the theorem below is the

found expression of the observer gain K of (1.18) (also called injection function) so

that the new controller defined by (1.16) and compensating the Friction also achieves

to perform uniform asymptotic stability for the system when Friction is present.

THEOREM 1.1

Under the previous hypothesis (1.12), (1.13), (1.14), and given the system (1.11),

(1.15), and the LuGre model previously seen consider the control:

u = H(x, t)+ F̂

where the friction estimate F̂ is defined by (1.18).
For:

ρ > 4Q2σ1σ0 (1.19)

the observer injection function chosen as :

K =
2(H(x, t)Q2+Q12x)(σ0+σ1ϕ)

(ρ−4Q2σ1σ0)
(1.20)

will guarantee that along any solution [x(t), z(t), ẑ(t)] of the closed loop system the
limit relation

lim
t→+∞

V (x(t)) = 0

holds, that is x(t) converges to the compact set V0 defined in (1.12).

The proof of this theorem is based on finding a value of K such that the following

candidate function :

W = V +
ρ
2

(z− ẑ)2 (1.21)

be a Lyapunov function for the system augmented by the LuGre friction model and

the observer (1.18), and with the new “Friction-compensated” control (1.17).

More precisely the time derivative ofW :

Ẇ = V̇ +ρ e ė

can be majored:

Ẇ ≤−
[

x

H

]T

Q(t)
[

x

H

]
+ f (K)

by using the property (1.14) on V̇ and the following dynamic of the internal state

error e = z− ẑ :

ė =−σ0
|v|

g f r(v)
e−K (1.22)

Finally K is chosen such that f (K) = aK2+bK + c is made minimal and negative.
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1.5 Objective of the thesis

1.5 Objective of the thesis

The main goal of this thesis is to verify the results presented in [Robertsson et al.,

2004] on a real experiment: the Furuta pendulum. Following the procedure explained

in this article, first a control stabilizing in the upright position the system without

friction has to be found, as well as the associated Lyapunov function which has to

verify properties (1.12), (1.13) and (1.14). Throughout this report, this function will

be named as the “initial Lyapunov function”, meaning that in a first time, considera-

tion have to made on the system without friction.

Once this done it will be then verified, both in Simulation and on the real process,

that, when Friction compensation is applied with the observer defined in (1.18) and

the expression of K found in Theorem 1.1, the candidate functionW defined in (1.21)

is a Lyapunov function.

This function being built by adding a term to the initial Lyapunov function V so

that it can be a Lyapunov function for the system augmented with the Lugre friction

model and the LuGre observer, it will be named as the “extended Lyapunov function”

throughout this report.

1.6 Outline of the report

The outline of the report will be organized as follows:

Chapter 2 introduces the hardware of the Furuta pendulum, and gives a state space

model of the plant.

In Chapter 3, the different control strategies which were tried to perform the sta-

bilization of the pendulum in its upright position and when Friction is not taken into

account are presented.

Chapter 4 deals with implementational considerations. First a description of the

dSPACE bench is given.Then the way friction compensation will be performed is

presented, and finally the chapter ends by giving the general framework used for

simulations without hardware in the loop and on the real process.

Chapter 5 presents the results of the Matlab-Simulink simulations which were

carried out in order to verify the result seen in [Robertsson et al., 2004].

Chapter 6 has the same purpose but here experiments are carried out on the real

process.

Chapter 7 finally gives a summarize, and a conclusion to the work and analysis

done throughout this thesis. Additionally, the authors also give their personal feelings

about the thesis at the end of the chapter.
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2. The Furuta Pendulum :
Description and Modelization

2.1 Hardware Description

Figure 2.1 The Furuta pendulum

The Furuta pendulum is an inverted pendulum created by the Professor Katsuhisa Fu-

ruta. The device is very simple, it consists in a simple arm which moves thanks to a

conventional DC motor. A rod with a small mass is attached at the arm and is the real

pendulum of the process. The main goal which can be achieved with the Furuta pen-

dulum is to stabilize the pendulum in its upright position. One of the particularities of

the system is that the process is under-actuated, there are two degree of freedom (the

angle of the arm and the angle of the pendulum) and only one actuator : the moment

applied to the arm. Other inverted pendulums exist, for instance the cart-pendulum

system. But a main advantage of the Furuta pendulum is that the motion of the arm

is not bounded as the motion of the cart is. The limitation comes from the limited

length of the rail of the cart pendulum whereas for the Furuta pendulum the arm can

rotate indefinitely around its axis.

In this system the variable which is controlled is the angle of the pendulum θ .
The measure of θ is given by a potentiometer whereas the measure of ϕ is given by

17



Chapter 2. The Furuta Pendulum : Description and Modelization

an encoder. The two velocities of these angles are reconstructed by a built-in analog

filter.

2.2 Modelization and State-Space Representation

Equation of Motion
In this section, equations for the modelization and the state-space form of the Furuta

pendulum are described. It is really easy to find such a modelization for instance

in [Izutsu and Furuta, 2007]. But here the modelization as well as the values of the

parameters of the Furuta pendulum are derived from a previous master thesis [Dietz,

2006]. Here the main result is summarized.

The main result is the matrix equation 2.1:

M(q)

(
ϕ̈
θ̈

)
+h(q̇,q)+G(q) = f (2.1)

with:

M(q) =

[
(mL2+m2L22+ JP)sin2(θ)+(m+m2)R2+ J −(mL+m2L2)Rcos(θ)

−(mL+m2L2)Rcos(θ) (mL2+m2L22+ JP)

]

(2.2)

h(q̇,q) =

(
2(mL2+m2L22+ JP)ϕ̇θ̇ sin(θ)cos(θ)+(mL+m2L2)Rθ̇ 2 sin(θ)

−(mL2+m2L22+ JP)ϕ̇2 sin(θ)cos(θ)

)
(2.3)

G(q) =

(
0

−g(mL+m2L2)sin(θ)

)
(2.4)

f =

(
MM−MF

−MF P

)
(2.5)

MM : Moment of the motor

MF : Friction Moment applied on the joint of the arm

MFP : Friction moment of the joint of the pendulum

State-Space Form
Now using the equation 2.1 and applying basic arithmetic operations the following

18



2.2 Modelization and State-Space Representation

equations can be obtained :

ϕ̈ =
1

C1(C1 sin2(θ)+C3+ J)−C22R2 cos2(θ)
· (2.6)

[
C1
(−2C1ϕ̇θ̇ sin(θ)cos(θ)−C2Rθ̇ 2 sin(θ)+MM−MF

)
. . .

+C2Rcos(θ)
(
C1ϕ̇2 sin(θ)cos(θ)+gC2 sin(θ)−MF P

)]

θ̈ =
1

C1(C1 sin2(θ)+C3+ J)−C22R2 cos2(θ)
· (2.7)

[(
C1 sin2(θ)+C3+ J

)(
C1ϕ̇2 sin(θ)cos(θ)+gC2 sin(θ)−MF P

)
. . .

+C2Rcos(θ)
(−2C1ϕ̇θ̇ sin(θ)cos(θ)−C2Rθ̇ 2 sin(θ)+MM−MF

)]

where the constants C1 = mL2+ m2L22+ JP, C2 = mL + m2L2 and C3 = (m + m2)R2

were introduced1.

Now considering the following state vector :

X =

⎛
⎜⎜⎜⎜⎝

ϕ
ϕ̇
θ
θ̇

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

x1
x2
x3
x4

⎞
⎟⎟⎟⎟⎠

And considering equations (2.6) and (2.7) the following state-space representa-

tion can be written.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 =
1

C1(C1 sin2(x3)+C3+ J)−C22R2 cos2(x3)
[C1(−2C1 sin(x3)cos(x3)x2·

x4−C2Rx24 sin(x3)+MM)+C2Rcos(x3)(C1x22 sin(x3)cos(x3) . . .
+gC2 sin(x3))]

ẋ3 = x4

ẋ4 =
1

C1(C1 sin2(x3)+C3+ J)−C22R2 cos2(x3)
[(C1 sin2(x3)+C3+ J)(C1x22·

sin(x3)cos(x3)+gC2 sin(x3))+C2Rcos(x3)(−2C1 sin(x3)cos(x3)x2·
x4−C2Rx24 sin(x3)+MM)]

It can be written as follows :

1By introducing these constants a simpler parametrization for the parameters of the pendulum was

introduced, since the constants collect the parameters of the rod and the mass of the pendulum, thus

combining them in the equations to one rigid body.C1 is the moment of inertia of this body with respect
to the joint between pendulum and arm, while C2 is a constant that is related to the impulse of the
pendulum. C3 is the moment of inertia of the pendulum in the upright or hanging position with respect
to the axis of rotation of the motor.
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 =
1

A(X)
[C1B(X)+D(X)E(X)]

ẋ3 = x4

ẋ4 =
1

A(X)
[F(X)E(X)+D(X)B(X)]

(2.8)

With :

A(X) = C1(C1 sin2(x3)+C3+ J)−C22R2 cos2(x3) (2.9)

Bn(X) =−2C1 sin(x3)cos(x3)x2x4−C2Rx24 sin(x3) (2.10)

B(X) = Bn(X)+MM (2.11)

D(X) = C2Rcos(x3) (2.12)

E(X) = C1x22 sin(x3)cos(x3)+gC2 sin(x3) (2.13)

F(X) = C1 sin2(x3)+C3+ J (2.14)
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3. Control Strategy
As said previously, one will experimentally verify the results of [Robertsson et al.,

2004], and summarized in Theorem 1.1, by trying to stabilize the Furuta pendulum

for [
θ = 0, θ̇ = 0,ϕ = ϕre f , ϕ̇ = 0

]
i.e. in its upright position and for a given arm angle ϕre f . This chapter details the

different approaches tried so that the results of [Robertsson et al., 2004] can be appli-

cable. The goal was therefore to find, first, a control

u = H(X , t)

achieving uniform asymptotic stability for the system without friction, and then a non

negative function V verifying properties (1.12), (1.13) and (1.14).

3.1 Lyapunov candidate functions

The methods presented in this section are nonlinear Lyapunov based control strate-

gies. A positive definite candidate function has to be found, as well as the control

which renders its derivative at least negative semi-definite.

The first Lyapunov function tried is a basic quadratic form, while the second one

is built by making consideration on the energy.

Quadratic Form
Here the candidate function takes the following form:

V (X) =
1

2
XT X =

1

2
(x21+ x22+ x23+ x24) (3.1)

The time derivative of V(x) – derived using the state space representation form of the

system given in the section 2.2 page 18 – can be written as:

V̇ (X) = G(X)+H(X)MM , with (3.2)

G(X) = x1x2+ x3x4+
D(X)E(X)+C1Bn(X)

A(X)
x2+

D(X)Bn(X)+F(X)E(X)
A(X)

x4

(3.3)

H(X) =
[

C1x2+D(X)x4
A(X)

]
, (3.4)

and has to be negative definite. As a choice of V̇ one chooses a quadratic form:

V̇ (X) =−XT QX =−q(X) , with q(X)≤ 0 (3.5)

The control MM allowing to obtain such a form is then found by equaling (3.2) with

(3.5):

MM =
−q(X)−G(X)

H(X)
(3.6)
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Unfortunately it appears thatH(X) is not invertible as it cancels forC1x2 =−D(X)x4.
Moreover, expanding the expression (3.6) of MM:

MM =
1

C1x2+D(X)x4
[−A(X)q(X)−A(X)x1x2−A(X)x3x4− (D(X)E(X) . . .

+C1Bn(X))x2− (D(X)Bn(X)+F(X)E(X))x4] ,

one sees that there is no possible simplification, and that MM is indefinite when

H(X) = 0. To avoid an infinite command at the singularity, one could set MM to

some arbitrary value, but then V̇ would become:

V̇ = G(X) = x4

[
−C2

C1
Rcos(x3)x1+ x3+

C22
C21

R2 cos2(x3)sin(x3)cos(x3)x24 . . . (3.7)

+g
C2
C1
sin(x3)

]
(3.8)

and would therefore not be negative definite. An other approach had therefore to be

investigated.

Energy Based Function
Here the proposed candidate function is energy based. In a first time, the mechanical

energy:

V (X) = K +P

was tried, with K and P the kinetic and potential energies respectively. But the func-
tion was cancelling in the downright position (θ = π), but not in the upright one (as
the potential energy becomes maximal). So the idea was to “invert” the potential en-

ergy, so that the upright position becomes the minimum of the function. The chosen

function was then:

V (X) =
1

2
(L(X)−L0)

2 ,

with L the Lagrangian of the system such that :

L(X) = K−P

L(X) =
1

2
C1x22 sin

2(x3)+
1

2
(C3+ J)x22−C2Rx2x4 cos(x3)+

1

2
C1x24−gC2 cos(x3) . . .

−Vpendulum−Varm0 ,

and L0 a constant such that V (X) is positive definite and cancels at the upright posi-
tion:

L0 =−gC2−Vpendulum−Varm0

The time derivative of V writes:

V̇ (X) = (L(X)−L0) L̇(X), (3.9)

and after some calculations, one finds the expression of L̇(X):

L̇(X) = G(X)+H(X)Bn(X)+H(X)MM , (3.10)
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with:

G(X) = C1x22x4 sin(2x3)+2gC2 sin(x3)x4+C2Rx2x24 sin(x3)
H(X) = x2

As before, one wants to find a control which makes V̇ negative semi-definite. Ac-

cording to (3.9), a solution is therefore to set L̇(X) to:

L̇(X) =−q(x)(L(X)−L0), q(x)≥ 0 (3.11)

such that V̇ becomes:

V̇ (X) =−q(X)(L(X)−L0)2 (3.12)

The control allowing this is found by equaling (3.10) with (3.11):

MM =
−q(X)(L−L0)−G(X)−H(X)Bn(X)

H(X)

=−q(X)
[
1

2
C1x2 sin2(x3)+

1

2
(C3+ J)x2−C2Rx4 cos(x3)

]
. . .

+
1

x2

[
−q(X)

(
1

2
C1x24+gC2(1− cos(x3))

)
−2gC2 sin(x3)x4

]

The problem happening here is the same as before : MM is not defined for

H(X) = x2 = 0

Moreover, setting MM to an arbitrary value for x2 = 0 (so that it doesn’t become

infinite at the singularity) would not solve the problem, as V̇ is equal to:

V̇ = 2gC2

[
1

2
C1x24+gC2(1− cos(x3))

]
sin(x3)x4

at the singularity, and is obviously of variable sign (depending on x3 and x4). Fi-
nally, one can’t find a control such that V̇ is always negative semi-definite. An other

approach has therefore to be investigated.

3.2 A Simpler Approach: LQ Control

Linearization and LQR
Here, the simpler approach, consisting in linearizing our model around the upright

position and applying a Linear Quadratic control on the linearization was used. Lin-

earizing our model around the point[
ϕ = ϕre f , ϕ̇ = 0,θ = 0, θ̇ = 0

]
gives:

ẋ = Alin x+Blin u (3.13)
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with:

Alin =
1

C1(C3+ J)−C22 R2

⎡
⎢⎢⎢⎣
0 1 0 0

0 0 C22 Rg 0

0 0 0 1

0 0 gC2 (C3+ J) 0

⎤
⎥⎥⎥⎦ , (3.14)

Blin =
1

C1(C3+ J)−C22 R2

⎡
⎢⎢⎢⎣
0 0

C1 C2R

0 0

C2R C3+ J

⎤
⎥⎥⎥⎦ (3.15)

u =
[

MM +MF

−MFP

]
(3.16)

When MF (friction moment applied to the motor) and MFP (friction moment of the

pendulum joint) are not taken into account, the system becomes:

ẋ =
1

C1(C3+ J)−C22 R2

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝
0 1 0 0

0 0 C22 Rg 0

0 0 0 1

0 0 gC2 (C3+ J) 0

⎞
⎟⎟⎟⎠x+

⎛
⎜⎜⎜⎝

0

C1
0

C2R

⎞
⎟⎟⎟⎠MM

⎤
⎥⎥⎥⎦ (3.17)

Verifying the Properties of Article [Robertsson et al., 2004]
From LQ control theory (see [Alazard, 2002]) one knows that a gain Kc can be easily

found such that the cost criterion is minimized and the state feedback control

u =−Kc x

achieves uniform asymptotic stability in a certain region Ω. Hence, the first hypoth-
esis of Theorem 1.1 is fulfilled, with Ω being the region where the linearization

“holds”. The only remaining hypothesis is the existence of a non negative function V

verifying properties (1.12),(1.13) and (1.14).

Let V derived from the computation of the LQR.1 V is such that:

V (X) = XT Pc X , (3.18)

and the first two conditions (1.12) and (1.13) hold. Indeed, the zero level ofV consists
in only the origin point, which belongs to Ω and, as V is not time-varying, inequality

(1.13) is fulfilled by choosing for example :

Vm = V

So the only remaining condition to prove is the inequality on V̇ (1.14).

V being the closed loop Lyapunov function of the stabilized system, it verifies

(see again [Alazard, 2002]:

(A−BKc)T Pc +Pc(A−BKc)+(QX +KT
c RKc) = 0 (3.19)

1For computing the LQ control, a solution of a Riccati equation has to be found and this solution

leads to a Lyapunov function

24



3.2 A Simpler Approach: LQ Control

and therefore its time derivative writes:

V̇ (X) =−XT (QX +KT
c RKc)X ,

and can be rewritten as:

V̇ (X) =−
[

X

−KcX

]T [QX 0

0 R

][
X

−KcX

]
=−

[
X

u

]T

Q
[

X

u

]

with R being positive. Condition (1.14) is therefore fulfilled.

So friction can now be considered and then compensated by applying the results

of [Robertsson et al., 2004], i.e. our LQ control can be modified as follows:

uLQ =−Kc X → unew = uLQ + F̂

where the friction estimate F̂ is reconstructed with the LuGre observer (1.18),

and K chosen as in (1.20) such that :

K =
2(H(X , t)Q2+Q12X)(σ0+σ1φ(ϕ̇))

ρ−4Q2σ1σ0

with: H(X , t) = uLQ =−Kc X , Q2 = R, and Q12 = O4
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4. Methods for Implementation
and Evaluation

4.1 Hardware Description

In order to be efficient and not to spend a lot of time in programming, a dSPACE1

is used. This device is a complete real-time development kit. It consists in a board

equipped with a Power PC PPC 750GX CPU with 1Ghz CPU clock and is mounted

in an extension box in order to render its manipulation safe. Moreover this device

is really easy to interface with any processes thanks to the Connection Panel which

provides an easy connection to all the input/output of the dSPACE board.

One of the advantages of using a dSPACE is that the real-time task is implemented in

the processor and after that the CPU is totally independent from the host computer.

This allows to have the full control of the sample time without any disturbance from

the OS of the host computer. It is well known that real time programming is not easy

as it requires high skills in programming. Using the dSPACE device allows not to

worry about all these practical aspects (interrupts, background task, concurrent pro-

gramming, etc...). Indeed, the user just needs to draw a Simulink diagram, which is

then automatically compiled into C-code and transferred to the CPU of the board.

Nevertheless the use of the ControlDesk2 software is not so straightforward as

the version of the dSPACE device is a little bit old3. The software has lots of bugs4

and is a little bit hard to use especially the first time5 but it is really a small trouble, it

would be harder to do the same thing without using the dSPACE.

4.2 Controller Used

This section describes how the controller and the friction compensation are imple-

mented. As seen in section 3.2 page 23 the controller is an LQR and is based on

a linearized model of the pendulum at the upright position (one of the equilibrium

points of the system). The friction compensation is implemented as in the article

[Robertsson et al., 2004], the friction estimate being just added to the control signal

delivered by the LQR :

u = uLQ + F̂ (4.1)

with :

1dSPACE is a trademark of dSPACE GmbH
2Copyright 2005, dSPACE GmbH. All right reserved
3The dSPACE in use is the version 5.0
4Never installed windows XP SP3, in that case it will be impossible to modify a previous saved

version of a layout
5A small tutorial has been realised in order to get started easily with the software, the tutorial is

available in the appendix A
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Figure 4.1 dSPACE extension box and connection panel.

u : Final control signal

uLQ : Control signal given by the LQ controller

F̂ : Friction compensation term

As the model of the pendulum is linearized around the upright position, the LQR

controller can only be applied in a neighbourhood Ω of this particular point. In order

to have an estimation of the largest neighbourhood where the LQR applies, a simula-

tion has been done. This simulation just tried lots of initial values around the upright

position and saved the position for which the control lead to a stable position. This

method allows to find the region of attraction of the system. But the fact is that when

an initial condition did not lead to an equilibrium point Matlab just crashed. So it

was hard to know if it was because the initial condition was bad or because Matlab

encountered a numerical problem due for example to an inappropriate solver. Due to

this problem, the solution chosen for finding the neighbourhood was to try a simple

neighbourhood with simulations and with the real process. So the setΩ which is used

is the following :

Ω =−0.3≤ θ ≤ 0.3 (4.2)

It occurs that with this set the pendulum has a good behaviour. One can argue that

the velocity could be taken into account, but it was hard to find a criterion to include

it in the set. And as the current set works fine none other set was tried.

Now the question is how to get the pendulum around the upright position in order to

be able to switch to the LQR. A straightforward idea could be to put by hand the pen-

28



4.3 Implementation of the LuGre Model

dulum in Ω and just start the experiment. It occurs that this method did not yield to

the stabilization of the system. A simple explanation could be that the initial velocity

of the pendulum and the arm are equal to zero in this case. Consequently it could be

too hard for the controller to maintain the pendulum near the upright position and for

zero velocities by itself. So another way of doing it is to use the swinging-up method.

As a lot of literature about swinging up control is already available, it seemed not

necessary to describe the used swinging up strategy, which is the same as the one

applied in [Åström and Furuta, 1996].

Now, thanks to this non-linear control, it is possible to reach the neighbourhood

of the upright position and to switch to LQ control.

In the figure 4.2 the implementation is summarized throughout a Simulink file.

Figure 4.2 Simulink implementation of the controller

4.3 Implementation of the LuGre Model

As previously seen in section 1.4 page 9, the friction estimate F̂ (which will be added
to the initial control in order to overcome friction) is computed using the following

Lugre observer (1.18):

⎧⎨
⎩

F̂ = σ0ẑ+σ1 ˙̂z+Fϕ̇ ϕ̇
dẑ
dt

= ϕ̇−σ0
|ϕ̇|

g f r(ϕ̇)
ẑ+K

(4.3)

In order to be implemented on the real experiment, this observer has to be dis-

cretized. As seen in [Freidovich et al., 2006], a discretization of the internal state

estimate ẑ using a Forward Euler method can lead to numerical instability for high
angular velocities ϕ̇ . Here a better alternative, also presented in [Freidovich et al.,

2006], is adopted.

First the internal state equation can be written:

dẑ
dt

= b(ϕ̇)−a(ϕ̇) ẑ, (4.4)

with:

- a(ϕ̇) = σ0
|ϕ̇|

g f r(ϕ̇)
.
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- b(ϕ̇) = ϕ̇ +K.

Then, assuming as in [Freidovich et al., 2006] that the coefficients a(ϕ̇) and b(ϕ̇) are
constant during one sample time, an analytic solution can be found for the internal

friction state, and the LuGre discretized observer writes:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

For a �= 0:

ẑk+1 = e−akT ẑk + bk
ak

(1− e−akT )

and for a = 0:

ẑk+1 = bkT + ẑk

(4.5)

with:

- ak = σ0 |ϕ̇k|
g(ϕ̇k)

.

- bk = ϕ̇k +K.

- T : Sampling time.

Throughout this report, the observer implementing this recursion will be called the

“discretized Lugre observer”.

Moreover, this observer was also implemented in a slightly different form, by

using as advised in the article a new state variable znew = σ0 z:

d
dt

ẑnew = σ0ϕ̇−σ0
|ϕ̇|

g f r(ϕ̇)
ẑnew +σ0K (4.6)

F̂ = ẑnew +
σ1
σ0
ˆ̇znew +Fvϕ̇ (4.7)

(4.8)

g(ϕ̇) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fc+ +(Fs+−Fc+)e−(ϕ̇/vS)2 for ϕ̇ > 0

Fc−+(Fs−−Fc−)e−(ϕ̇/vS)2 for ϕ̇ < 0

1
2

(
lim

ϕ̇→0+
g(ϕ̇)+ lim

ϕ̇→0−
g(ϕ̇)

)
for ϕ̇ = 0

(4.9)

σ1(ϕ̇) = σ1e−(ϕ̇/vd)2 (4.10)

The discretization is done in the same way as previously, and leads to the same re-

cursion (4.5). But now ak and bk are equal to:

- ak = σ0 |ϕ̇k|
g(ϕ̇k)

.

- bk = σ0 (ϕ̇k +K).

Moreover, equation (4.9) shows the implementation of the Stribeck function g(ϕ̇),
which, contrary to the original LuGre model, uses distinct parameters for positive

and negative relative velocities.

An advantage with this new representation is that it is less sensitive to numerical

errors, since znew is of higher order of magnitude.

For this reason the friction observer will be computed following this recursion,

and will be, throughout the report, named as the “discretized Lugre observer with the

Freidovich parametrization”.
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4.4 Framework Used for the Simulations and for
Experiments on the Real Process

General Remarks
For the implementation of the friction compensation, a Simulink diagram was built.

This model contains input (and output) blocks to read (and write) data from (and to)

the Furuta pendulum for the real experiment, whereas for the simulations without

hardware in the loop these blocks are replaced with a model of the Furuta pendulum

with friction included.

A special attention was paid so that this Simulink model be the same for the sim-

ulations and for experiments on the real process. Moreover both of the simulations

and the experiments were done using as set point the zero reference.

For the real experiments, the control scheme and the friction compensation are

designed in discrete time (with a sample time of 0.001 s) so that no solving by the

dSPACE process be involved. Further the implementation of the friction compen-

sation schemes is done using the LuGre discretized form (4.5) with the Freidovich

parametrization .

For the simulations without hardware in the loop, two different approaches are

considered. The “real model” of the Furuta pendulum being highly nonlinear, there

is no choice for both approaches but to use a stiff solver with a variable step size

(“ode23s Stiff. Mod. Rosenbrock”) .

In the first approach, the compensation of the friction is implemented again fol-

lowing the LuGre discretized form (4.5) with the Freidovich parametrization.

The computation scheme is thus hybrid, with the model of the plant and the in-

ternal model of the friction being solved with a variable step size solver, while the

friction compensation and the control scheme are solved in discrete time with a fixed

sample time.

In the second approach the friction compensation is now implemented in contin-

uous time by using directly the equations of the LuGre model. Hence everything is

solved using the ode23s solver. This method may give a better friction estimate than

the one computed with the first approach, because it uses the continuous LuGre form,

and not a discretization.

One could argue that for these reasons this approach should be preferred. Never-

theless, designing the friction compensation and the control scheme in discrete time

– as it is done in the hybrid approach – has the advantage that no continuous time

solving is required by the dSPACE, so that finally one does not have to worry when

the Simulink model will be used for experiments on the real process.

Simulations without hardware in the loop will thus be done using this hybrid

approach, while the second approach may be used in case numerical problems would

arise with the discretized LuGre observer.

Framework for the Computation of the Lyapunov Functions
The initial Lyapunov function of the system without friction,V , is computed the same
way for experiments in Simulation and on the real process. As soon as the pendulum

is swung up and caught by the LQ control, V is calculated according to (3.18).
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The framework for the computation of

W = V +
ρ
2

(z− ẑ)2

the extended Lyapunov function, is much harder to obtain. Indeed, it is not hard to

compute V nor to obtain ẑ, but it is impossible to have access to z, the internal state
of the LuGre model.

For the simulations without hardware in the loop, it is logical to choose z as the
state computed by the internal friction model used in the plant.

For the experiments on the real process, two different approaches are considered.

The first one is done off line, and is based on the idea of computing z using a more
accurate solver than the one used to compute ẑ. z is therefore computed afterwards by
integrating the continuous LuGre equations with the same stiff solver as the one used

for the friction model in the plant. This computation thus requires that the states,

the Lyapunov function V and the internal friction estimate ẑ be stored during the
experiment.

The second approach allows an on line computation ofW by finding a recursion

for e, the internal friction state error. Recall the expression of ė given in (1.22):

ė =−σ0
|ϕ̇|

g f r(ϕ̇)
e−K (4.11)

The method of discretization used here relies on the same idea which was proposed

in [Freidovich et al., 2006] in order to discretize the dynamic of the internal friction

state z.
Indeed, in a same way equation (4.11) can be rewritten in the new variable

enew = σ0 e

so that numerical errors are limited:

d
dt

enew = b(X)−a(ϕ̇) enew,

with:

- a(ϕ̇) = σ0
|ϕ̇|

g(ϕ̇)
.

- b(ϕ̇) =−σ0K.

Then, one assumes that the coefficients a(ϕ̇) and b(ϕ̇) are constant during one sam-
ple time, so that an analytic solution can be found. Finally, the discretization of the

internal friction state error writes:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

For a �= 0:

ê(k+1)
new = e−akT e(k)

new + bk
ak

(1− e−akT )

and for a = 0:

e(k+1)
new = bkT + e(k)

new

(4.12)

with:

- ak = σ0 |ϕ̇k|
g(ϕ̇k)

.
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- bk =−σ0K.

- T : Sampling time.

With this recursion, W can therefore be computed while real experiments are

being run. For this reason, this approach will be preferred to the off line one, and will

be used to computeW for the experiments on the real process.

33



Chapter 4. Methods for Implementation and Evaluation

34



5. Simulation in Matlab Simulink
This chapter intends to document observations concerning the simulations which

were run in Matlab Simulink in order to verify the results of [Robertsson et al., 2004]

5.1 General Setup

For the simulations, the model of the friction in the plant is implemented using the

continuous LuGre model equations (1.7) , (1.8), (1.9) and (1.10), and is solved with

a variable step size solver. The choice of the solver has critical influence on the exe-

cution time, and the quality of the solutions because numerical problems arise with

some of the built-in Simulink solvers.

Name ode 3/4/5 ode45 ode23s ode23s

Sample time (ms) fixed: 1, 0.1, 0.01 variable variablea variableb

End of simulation [s] crash 304.8 204.3 124.1

Table 5.1: details of solvers and related execution time for a simulation of 25s,
performed with the first approach (see text below) and for the initial conditions

[3533]

awithout minimum step size bound
bwith minimum step-size bound of 0.1 ms

Indeed, as shown in the above table, it was impossible to simulate the system

with any fixed step size solver, even with a small sample time of 0.01 ms, while the

commonly used variable step size solvers were extremely slow.

This is mostly due to the fact that friction dynamics are really fast, so that the

friction model in the plant and the model of the plant form a stiff problem. Therefore

the stiff solver ode23s with variable step size was chosen. Additionally, an inferior

step size bound, with a relative tolerance for the numerical errors were also given, as

it was observed that simulations were stuck when the arm velocity approached the

zero (velocity reversal).

For friction compensation the discretization (4.5), with the parametrization made

in [Freidovich et al., 2006] and with a constant damping term σ1, is used on the
assumptions of perfect knowledge of the friction parameters (see Appendix C for the

parameters values).

Thus, the simulation setup forms a hybrid system, with the model of the plant

and the friction model in the plant being computed continuously (using the ode23s

solver), while the friction compensation and the control schemes are computed in

discrete time with a sample time of 1 ms.

Nevertheless, because of the fast friction dynamics, there may be some risks that

the assumptions made to build the discretization be violated, so that finally the Lugre

model would not be properly described by this discretization. This could thus result

in an impossibility to verify, even in simulation, the results presented in [Robertsson

et al., 2004].

For this reason, a second approach, where the friction compensation is computed

by solving the continuous LuGre equations with the same ode23s solver, was also

implemented.
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Of course it won’t be possible to implement this approach on real experiments,

because it would require that there exists an embedded stiff solver in the dSPACE,

which is not the case. For this reason all the simulations will be implemented using

the first approach, and if some problems arise with the aforementioned discretization,

the second approach will be tested.

For the computation of the initial Lyapunov function V , the expression :

V = XT PcX

seen in (3.18), was used. Pc, solution of the closed loop Ricatti equation (3.19), is

automatically obtained thanks to the discrete LQ design done in Matlab.

Moreover, the decrease of V can only be verified once the LQ control manages to

grab the pendulum and stabilize it so that no swinging up control is involved anymore.

The initial condition was therefore set to:[
ϕ0, ϕ̇0, θ0, θ̇0

]
= Xup = [0, 0, 0.1, 0]

so that the LQ control be active from the beginning and never switch to the swing-

ing up control.

For the computation ofW , the ρ parameter value was set to 1e8 so that condition
(1.19) of Theorem 1.1 be fulfilled.

Moreover, the following setup was used:

Figure 5.1 Setup used for the computation of W

Indeed, as the model of the plant and the internal friction model of the plant are

solved with a variable step size solver while the friction compensation is computed

according to the discretized LuGre form (4.5), the “exact” internal state z is computed
by the internal friction model of the plant. Moreover, for the same reasons mentioned

before,W was also computed setting to the same value Xup the initial condition.

Finally, the reference applied for all the simulations is the zero reference:

Xre f = [0, 0, 0, 0]

5.2 Simulations of the Plant Without Friction, and
Computation of the Function V

This section presents the simulations which were carried out to check if the control

described in section 3.2 page 23 achieves, in a regionΩ, uniform asymptotic stability
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for the system without friction, and if the candidate function V resulting from this

control is a Lyapunov function.
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Figure 5.2 theta response for an ini-

tial condition of [3, 5, 3, 3]
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Figure 5.3 theta response for an ini-

tial condition of [0, 0, 0.1, 0]

Figure 5.2 shows the pendulum angle time response when initially the pendu-

lum starts with nonzero velocities in the downright position, while in figure 5.3 the

pendulum is close to the upright position.

When initially the pendulum is in the downright position, it is first brought to-

wards the upright position thanks to the swinging-up control, and then caught by the

stabilizing control, which manages to grab it and stabilize it if the velocities are not

too high.

When now the pendulum is initially close to the upright position, the LQ con-

troller manages to stabilize it from the beginning so that swinging up control never

occurs.
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Figure 5.4 ϕ ,ϕ̇ , θ̇ , and the control time responses for
[
ϕ0, ϕ̇0, θ0, θ̇0

]
= Xup = [0, 0, 0.1, 0]

Figure 5.4 shows the time response of the other state variables, and of the con-

trol when the pendulum starts from this same initial condition Xup. The transients of

course depend on the initial condition chosen, but globally if the initial velocities are

taken to a reasonable value, the system is always stabilized in the upright position.

Finally, figure 5.5 shows as expected the decrease of the Lyapunov functionV for
the same initial condition.
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Figure 5.5 The Lyapunov function V, resulting from the applied LQ control, is decreasing.

Simulations were carried for the initial condition:
[
ϕ0, ϕ̇0, θ0, θ̇0

]
= Xup = [0, 0, 0.1, 0]

5.3 Simulations of the Plant With Friction, and
Computation of W

In this section the model of the Furuta pendulum now includes the friction model

(See Figure 5.1)
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Direct Effects of Friction Compensation

0 10 20 30 40 50
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time [s]

ϕ
[R

a
d
]

0 10 20 30 40 50
−2

−1.5

−1

−0.5

0

0.5

1

time [s]

ϕ̇
[R

a
d
/
s]

0 10 20 30 40 50
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

θ
[R

a
d
]

0 10 20 30 40 50
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time [s]

θ̇
[R

a
d
/
s]

Figure 5.6 the four state variable response for
[
ϕ0, ϕ̇0, θ0, θ̇0

]
= Xup = [0, 0, 0.1, 0] . Fric-

tion compensation starts at t = 30s
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Figure 5.7 Friction error ek = F̂ − F .
The simulation setup is the same as in fig-

ure 5.6
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Figure 5.8 Zoom of friction error ek =
F̂−F , from t = 30s to t = 50s. The sim-
ulation setup is the same as in figure 5.6

Figure 5.6 shows the four state variables time response for the initial condition Xup.

From t = 0s to t = 30s no friction compensation is done, and the typical limit cy-
cle behaviour for friction uncompensated mechanical systems occurs. At t = 30s the
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compensation is triggered out, and limit cycles are immediately annihilated, while

the system quickly stabilizes to the given zero reference. The friction compensation

scheme is therefore very efficient, as the system behaves as if no friction were acting

on it once the compensation scheme has been turned on. This comes from the fact

that the friction error

eF = F̂−F

keeps in a small order of magnitude as soon as friction compensation is applied,

see Figures 5.7 and 5.8 . Indeed, F̂ is really close from the “real” friction force F ,
because it is computed using the discretized version of the continuous LuGre model,

actually used to simulate F .

Computation of W
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Figure 5.9 extended Lyapunov Function W
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Figure 5.11 Zoom on the second peak

of figure 5.9
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Figure 5.12 Peaking behaviour occurs for velocity reversal and is propagated through the

state velocities

Figure 5.9 shows the extended Lyapunov functionW when Friction compensation is

applied. The obtained function is decreasing all the time, except for velocity reversals

(change of the arm direction) where it presents a strange peaking behaviour, also

propagated through the state velocities. See figure 5.10, 5.11 and 5.12.

This behaviour does not seem to be due to the fact that ρ was set to a wrong value.
Indeed, recall condition (1.19) of Theorem 1.1:

ρ > 4Q2σ0σ1 ,

which gives in our case a lower bound

ρmin = 6.8e6

This condition has to be fulfilled, as it ensures that the obtained candidate function

W will be decreasing.

Indeed, if ρ is chosen below this bound (see figure 5.13), oscillations appear,

and W is no more decreasing, while a value above this limit roughly leads to the

same results as in figure 1.21. However, a too high value of ρ would also lead to

an amplification of the two previously mentioned peaks, see figure 5.14. For these

reasons, ρ was therefore kept to the same value 1e8.
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Figure 5.13 Extended Lyapunov function W for different values of ρ all below the lower

bound ρmin. Left: ρ = 10. Center: ρ = 1000. Right: ρ = 1e5
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Figure 5.14 Extended Lyapunov function for a ρ value of 1e10

Moreover, figure 5.15 suggests that the origin of this strange phenomenon relies

on the computed friction estimate F̂ , which, contrary to the real friction F , takes a
peak value at velocity reversals:
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Figure 5.15 real friction F and its esti-

mate F̂
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Figure 5.16 Zoom of figure 5.15 from

t = 0.22s to t = 0.36s

Therefore a problem apparently arises in the computation of F̂ at velocity rever-

sals, and then the discretized Lugre version (4.5) seems to be involved. This fact can

be verified if now F̂ is computed using the Lugre model equations (1.7) , (1.8), (1.9)
and (1.10):
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Figure 5.17 computation ofW , F̂ being computed using the “exact” continuous time LuGre
model
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Indeed, with the continuous LuGre observer the peaks totally disappear, see fig-

ures 5.18 and 5.19, and W is, as expected, perfectly decreasing. Of course as said

before it won’t be possible to implement this setup, as no performant solver such as

the one used here is available on the dSPACE. But at least this simulation is a good

way to verify the results exposed in [Robertsson et al., 2004], and it points out that

the discretization of the LuGre model is responsible for this peaking behaviour.

A lot of time was passed on trying to identify what could possibly cause these

peaks.

First, recall the continuous LuGre friction observer, with the Freidovich parametriza-

tion: ⎧⎪⎨
⎪⎩

F̂ = ẑ+
σ1
σ0
˙̂z+Fϕ̇ ϕ̇

dẑ
dt

= −σ0
|ϕ̇|

g f r(ϕ̇)
ẑ+σ0(ϕ̇ +K)

(5.1)

and its discretization, done as in [Freidovich et al., 2006]:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

For a �= 0:

ẑk+1 = e−akT ẑk + bk
ak

(1− e−akT )

and for a = 0:

ẑk+1 = bkT + ẑk

(5.2)
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with:

- ak = σ0 |ϕ̇k|
g(ϕ̇k)

.

- bk = σ0 (ϕ̇k +K).

Basically, two different problems arise with this discretization.

• First, the discretization can only be “perfect” if, during the chosen sample time,
the coefficients ak and bk remain constant. As mentioned before, friction is a

phenomena in which fast dynamics are involved, especially for the breakaway,

and for velocity reversals. Hence, it is likely that ak and bk will change during

the chosen sample time of 1ms. Simulation were thus run, in which the sam-

ple time was reduced up to 1μs. No significant improvement was observed.
Instead, oscillations around the second peak appeared:
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Figure 5.20 Extended Lyapunov functionW computed with a sample time of 1e-6

• The fact that there are two different recursions, depending on the value of ak.

The switch between these two recursions theoretically happens for ak = 0, i.e.

at velocity reversals (ak = 0⇒ ϕ̇ = 0). Of course for implementational rea-

sons a threshold should replace this “zero switching value”, otherwise with

the first recursion and for a small ak the internal state would “explode”. The

peaking behaviour happening for the previous simulations could thus be due

to the chosen threshold of 1e− 6, which might be too low. But no significant
improvements were seen with a threshold reduced to 1e−4, while with 1e−2
abnormal oscillations appear:
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Figure 5.21 Extended Lyapunov functionW computed with a sample time of 1e-3, and with

a threshold of 1e-2

Hence, in spite of all the numerous simulations performed, no real way that could

lead to obtain a perfectly decreasing function W with the Lugre discretization (4.5)

was found. Nevertheless, the reason why these peaks appear is definitely due to the

approximations which are made in this discretization.

It will thus be hard to verify the decrease of W for the real experiments, first

because the friction compensation is implemented with this discretization, and then

because other phenomena, such as noisy measurements are likely to happen.
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6. Experiments

6.1 Introduction

In this section, the friction compensation strategy [Robertsson et al., 2004] is applied

to the real process. For being sure that the friction parameters are in steady state, the

experiments are done after a run of at least five minutes which means that during each

one the pendulum will be already in the upright position.

6.2 Reduction of the Limit Cycles

For this experiment the system is first controlled only by the LQR controller (fig-

ure 6.1 and 6.2), and in a second time the friction compensation is added to the

control signal (figure 6.3 and 6.4).

Figure 6.1 Measure of θ without friction compensation
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Figure 6.2 Measure of ϕ without friction compensation

Considering θ one can say that the system is well controlled because the deviation
from the upright position is very small, but for the angle ϕ there is a static error and
a limit cycle. The static error could be handled by an integrator and is not really the

study point in this thesis. One can say that the amplitude of limit cycle is not so high,

but depending on the application, it could be a problem. In order to try to reduce it,

friction compensation is applied.

Figure 6.3 Measure of θ with friction compensation
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Figure 6.4 Measure of ϕ with friction compensation

Considering the angle ϕ , the result is better because the amplitude of the limit
cycle is reduced but considering the angle θ the result seems to be less accurate. It is
hard to compare noisy signals only by looking at it. So the covariance matrix of the

error is used. The evaluation of such a matrix is done with Matlab, as it is a statistical

criterion and the survey is focused on the limit cycles, the mean value is removed

from the signals before performing the computation. The results are summarized in

the following table.

Table 6.1 Performance of the friction compensation

var(ϕ−ϕre f ) var(θ −θre f )

Without compensation 6.95.10−3 3.38.10−5

With compensation 3.47.10−4 2.92.10−5

As it has been assumed by looking at the figures, the result is better for ϕ and is
almost the same for θ . The gain for ϕ is very good because it is a gain of a factor ten.
So from this point one can state that the friction compensation is useful.

6.3 Test of the Value of ρ

In the equation (1.19 page 14) it has been seen that ρ is a parameter of the observer
and its value is bounded.

ρmin = 6.8.106 (6.1)

Therefore the goal of this section is to verify or rather to test the value of this bound.

Lots of experiments have been done with different values of ρ . The value of the first
cross-term of the covariance matrix (the ϕ term) is used to compare the performance.

49



Chapter 6. Experiments

Table 6.2 Influence of the value of ρ

Value of ρ var(ϕ−ϕre f )

Without Compensation 4.71.10−3

10 1.22.10−3

1000 9.35.10−4

1.105 2.40.10−2

1.106 4.13.10−4

1.107 4.31.10−4

1.108 5.03.10−4

Obviously the compensation works for any value of ρ but the performances are
not identical. The worst case is for

ρ = 1.105

in this case the limit cycles are bigger than the original ones. But clearly for any value

higher than the bound for ρ (or in the same order of magnitude) the performances
are constant. Therefore the bound could be interpreted in experiments as a lower

limit which guarantees a good behaviour of the compensation. This result is not so

surprising because ρ is here to be sure that the Lyapunov function is decreasing, but
as it will be seen in the next section, in experiments it is almost impossible. Then for

the authors it is not so strange to not totally follow the theory.

6.4 Lyapunov Function

In this part, W , the extented Lyapunov function of the system, is plotted. There are
two representations of the Lyapunov function: one during the transient and the stabi-

lization of the pendulum and the other in steady state, when the pendulum is already

stabilized. The goal of these two experiments is quite different,the first one is to

check if the function is decreasing and the second one if the function is equal to zero

in steady-state.
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First Experiment

Figure 6.5 Lyapunov function W(X) during the transient

Considering figure 6.5,W is “globally” decreasing, as at the time t = 0.35 the function
is slightly increasing. Anyway as it will be seen in what follows, one cannot expect to

obtain a perfectly decreasing function, so, all in all, the obtained result is quite nice.

Second Experiment

Figure 6.6 Lyapunov function W(X) in steady-state

Considering figure 6.6, one sees that W is not equal to zero in steady-state, but has

some oscillations which corresponds to the limit cycles of the system.
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Discussion
Referring to the first experiment, the results seem quite good becauseW is decreas-

ing. However it is not strictly decreasing as it is with simulations without hardware

in the loop. One can argue that the model of the process does not fit exactly the real

process so it seems unrealistic to expect a perfectly decreasing function.

Nevertheless, what could be a little bit disappointing is the result for the second exper-

iment: in steady-stateW is far from being equal to zero. But the order of magnitude

ofW (X) and of the oscillations are quite different. The first one is about 105 whereas
the second one is 103 so there is a factor 100 between both of them. Therefore even if

the amplitude of the oscillations seems significant it is nothing compare to the ampli-

tude of the functionW (X). Then the function can be considered as positive definite
and its derivative as almost negative definite.

Something could be investigated : it is the origin of such oscillations. The form

of the functionW (X) is such that :

W (X) = V (X)+ρe2

So the equation has two terms, one depending on X and the other on ρe2 which is the
error of estimation of the friction force.

Figure 6.7 The ρe2term in steady-state

The figure 6.7 clearly show that the error is equal to zero in steady-state. This

result was predictable as the estimation of the friction is done with an observer it is

logical that the error tends to zero.

Moreover that means that the oscillations come from V (X). The form of V (X) is
given in equation (3.18 page 24). Clearly the function depends on X , then steady
state as X should tend to zero, V (X) should tend to zero too. But as it is noticed in
the section 6.2 even if friction compensation is applied there are still limit cycles so

V (X) can not be equal to zero in steady-state. And so does the functionW (X). An as-
sumption could be made about the limit cycles, in simulation there are no limit-cycles

using the ode23s solver, but here this kind of solver is not available for the dSPACE
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device so it is not really possible to have an accurate estimation of the friction and

this leads to remaining limit-cycles.

So it is clear that the link between simulation and experiment is hard to make, there

are so many disturbances on reality that a mathematical tools such as Lyapunov func-

tions is really hard to use. In this case the hypothesis for a such a function are not

completely fulfilled but the authors think that the result obtained in figure 6.5 is quite

sufficient to validate the theoretical part.
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7. Conclusions

7.1 Conclusions About the Work

• The theory in the article has been verified in simulation and is correct, the
friction compensation works well, the limit cycles are cancelled. And thanks to

the specific gain for the friction observer a true Lyapunov function is obtained.

• In the same way, in experiments the effects of friction compensation have been
verified. But the result is not as good as in Simulation. The limit cycles are only

reduced and not cancelled. Moreover the condition on ρ is hardly verified and
only one thing can be stated : the minimum value for ρ just guarantees that the
compensation will work fine. But that does not mean that a lower value for ρ
will not work.

• The previous conclusion about the performance in experiment leads to this
other statement. A high precision compensation requires high precision esti-

mation but this means accurate measures for the parameters which time and

cost consuming. So for now this method seems to be very hard to implement

in a serial product as it is unrealistic to estimate accurately the parameters for

each part.

• One of the topic of the article is Lyapunov function, this theory is really power-
ful on the paper. Nevertheless the experiments show that it is quasi-impossible

to survey a Lyapunov function in real-time because in a real process the per-

fect stabilization does not exist and there are always oscillations which lead to

a non strictly decreasing function. So visualizing Lyapunov function on a real

process is not really appropriate.

• Using simulink for simulation is not hard, but what is hard is to choose the right
solver for the right model. Depending on the solver the results could be quite

different or strange, so a particular attention has to be given for this choice.

Otherwise it could be really easy to choose the wrong solver and to just notice

it too late or at least to have lost a lot of time.

• The method used in this thesis would require an advanced solver for having
good results. But for now the implementation of such algorithms is not straight-

forward on a traditional DSP or micro controller which is traditionally used for

controlling a process.

• The files used in this thesis are well commented and clear, the authors hope
that their work could be used easily by someone else.
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A. General Tutorial for
ControlDesk

Introduction : This tutorial is aimed at new users of the dSPACE and ControlDesk
modules. The first part describes, first, the procedure to create a very simple exper-

iment, and then how to open an existing experiment. The configuration of Simulink

and ControlDesk is not explained in this part. But this will follow with the second

part of the tutorial, which gives some information about the building in Simulink,

and also some clues to different problems you may encounter. Please note that the

purpose of this tutorial is not to replace the official ControlDesk guides. If you need

further information, please thus refer to these manuals. However the authors found

that these manuals were pretty dense to read, and were not able to find good tutorials.

For all these reasons, they decided to write this tutorial, and hope it will be helpful

for the readers.

Before doing anything you have to start the devices in a specific order :

1. Connect the process to the dSPACE I/O board.

2. Switch on the extension box.

3. Switch on the process.

4. Switch on the computer.
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A.1 Creating / Opening an experiment

Creating a new experiment
The considered experiment is very simple: it consists of sending a signal command

and reading the output of the process.

1. Open ControlDesk

2. You have to click on : File⇒ New Experiment. A Dialog box appears, at least

you have to give a name and a location for your experiment.

3. Launch Matlab inside ControlDesk, by clicking on the tab platform and right-

clicking on the Matlab icon. The icon light ups.
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4. After you have to create a new Simulink model. This is achieved by right-

clicking on the Matlab icon and clicking on new model . The Matlab icon is

now changed with the Simulink icon.

Now you have to draw your model. In our case we need an ADC and an DAC.

The toolbox where the devices for the dSPACE are located can be reached by

typing rti in the Matlab prompt. The configuration of such devices is simple:

you just have to double-click on the device and choose the channel. Moreover

for the DAC you can choose its termination value. This is useful because if you

set 0 for example when you will click on stop the process will stop, If you don’t

do that the permanent value on the DAC will be the last value before clicking

on stop. Which means that even if the experiment stops, on the computer the

device will keep running.

The ADC and DAC are in the category MASTER PPC. You have to insert the

two gains as shown above because you have a factor ten between the dSPACE

and Matlab.(See Documentation)
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5. The next step is the GUI. First you have to create a new layout. You just have

to click on the layout icon as below:

6. After you have to add elements to your layout. To do so click on the desired

element and after draw on the layout the area for your element.

In our GUI we have three radio buttons, a plotter array (Category Data Acqui-

sition), and a numerical input. The Start/Stop block allows us to start and stop

the real time task. The plotter element plots the output and finally the last one

changes the set-point.

For now each element has a red border, which means that the elements are not

associated with a variable of the Simulink model.
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7. The next step is to bind Simulink and the GUI. In order to do it, you have to

generate the Variable description file. This is achieved by right clicking on the

Simulink icon and after by clicking on Build Variable Description file . After

that, a new tab appears on the bottom of control desk.

After it is very easy you just have to drag and drop the variables which are

useful for your GUI. Here we bind simState to the buttons, the constant to the

numerical input and the scope to the plotter. The variable simState is very im-

portant because it monitors the behaviour of the real-time task of the dSPACE.

It is required to put this variable to STOP when the experiment end (see page

432 on the Experiment Guide).You can highlight the variables which are as-

sociated to the GUI by right clicking on the GUI and clicking on highlight

variables.

8. Now when the GUI is ready it is a good idea to test it with Simulink. First

you have to add your file to the experiment, switch for the animation mode and

press play or start in your GUI. But before doing anything, be sure that the
Simulink icon is highlight on the tab platform.

Now you should be able to start and stop the simulation from your Gui, change

the value of the set-point and view the plot, here as there is no model the plotter
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should be zero all the time. If your GUI seems to work you can now download

the program to the CPU of the dSPACE.

9. Here you have to be very cautious ! Indeed when Simulink builds the
model and downloads it to the CPU the program starts immediately and
you won’t be able to control it with the GUI right now. So you have to be
sure that the set-point is set to zero in order to avoid uncontrolled motion.
So when the set-point is set to zero press Ctrl-B in Simulink to build the model.

10. When the model is built you have to enable the GUI for the real experiments,

in order to do it, you have to change the sdf file. This is achieved by right

clicking on the sdf file which is offline and click on replace SDF file. But this

is possible only if you switch to the edition mode.

When the dialog box appears you have to choose the file which does not contain

the keyword offline, in our example we choose the file simple experiment.sdf.

Now the bottom of control desk should have changed.

11. The last step is to switch to the animation mode. Now you can control the

process with your GUI.

12. If you want to stop your experimentation you have to click on stop on your

interface, switch to the edition mode and click on stop on control desk.
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The green arrow disappears and a red square appears on the ds1103 platform

tab.

13. Now before closing ControlDesk you have to shut down Matlab, this has to be

done inside ControlDesk. You just have to right click on the Matlab icon and

click on Close Matlab. Now you can close ControlDesk and shutdown in this
order: the computer, the process and the extension box.

Opening an existing experiment
1. Switch on and launch control desk as describe above. Click on : File⇒ Open

experiment.

2. Now the Simulink model has to be loaded, click on Platform ⇒ Application

⇒ Load Model. Be Careful you have to change the type of the file because the

default type is .sdl

3. After loading the Simulink file you have to build it by clicking on Incremen-

tal Build or Ctrl-B. Then have to change first the SDL file and switch to the

animation mode. Now you should have the control of the process using your

GUI.

A.2 Information you should know and troubleshooting

This section is organized around different questions, which are either a need of in-

formation or a problem encountered. Of course, this part is extremely light in com-

parison of the dSPACE Experiment guide, and you should therefore refer to it if you

need deeper explanations.
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1. How does the link between Simulink and the ControlDesk is made ? How does

the Build procedure works ?

In a case of a single processor, Control desk has two distinct platforms:

(a) The Simulation platform : this is an Offline platform , in the sense that if

you use this platform, no code will run on the CPU.

(b) The local system : this is the real time platform, i.e. the CPU or more

generally the dSPACE board on which code will be transferred. As seen

above, we have in our case a ds1103.

As explained in the tutorial, when you start an experiment, you will first create

(or open) a model. Then, once the model is achieved you can run it on the two

different platforms :

• Either you want to run your Simulink model on the real process⇒REAL
TIME PLATFORM

• Or you want to simulate it offline ⇒ OFFLINE PLATFORM.

In any situation (either in Simulation or on your real process), you will want

to control the simulation, so you must have access to the parameters of your

Simulink file (stop time, simState variable, parameters of the controller you

implemented...). This is done in Control desk by creating a layout in which

you will be able to link your Simulink variables with the layout. To do that,

ControlDesk uses an .sdf file (variable description file). One, <your_model>-

_off_line.sdf contains all the variables associated with the Offline platform,

while an other one, <your_model>.sdf contains all the ones associated with

the Real Time platform. Each sdf file will be associated to one (or multiple)

defined layout(s), on which links between instrument panels and the sdf vari-

ables will be performed so that one will be able to tune the variables of the

considered platform.

To summarize:
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• Access to the variables of the Offline platform is done through the sdf

file <your_model>off_line.sdf and modifications of these are made by

linking them to a defined layout (see Part 1 of the tutorial).

• Access to the variables of the Real Time platform is done through the sdf
file <your_model>.sdf , and modifications of these are made by link-

ing them to a defined layout . But if you have already linked the variable

for the offline platform, you should not have to link again the variable for

the Real Time platform, this is done automatically.

For more description on how to create a layout, and how to add instruments on

the layout, please refer to the ControlDesk experiment guide.

2. But, How can these .sdf files be generated ?

When opening an existing project, the files <your_model>_off_line.sdf and

<your_model>.sdf are already created. Then, as this section deals with how to

generate sdf files, we will suppose that one Simulink file <your_model.mdl>

had just been created (has been modified), so that finally, one need to (re)gene-

rate these files ( <your_model>.sdf is generated when the .mdl is built).

(a) In this case, as control algorithms are implemented in C-code on the CPU,

you will have to translate Simulink code into C-code. Hopefully this is

automatically done thanks to the RTW compiler, which, from the .mdl file

(containing all the Simulink variables and parameters value pairs describ-

ing the Simulink model) will generate the C-code and directly transfer it

into the CPU.

By clicking on the Build button in the tab: Simulation-> Configure Pa-

rameters :

The building procedure will run (see the bottom figure). First the c-file

<your_model>-rti.c which will be transferred to the CPU is generated.

Then a trc file <your_model>.trc is created : this is the variable de-

scription file providing for the ControlDesk information on the available

Simulink variables and how they are linked. Then the building applica-

tion starts with the usual compiling and linking steps. Finally, the file

<your_model> .sdf is also created, just before the initialisation of the

real time platform, and the C-code execution.
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Finally, if everything works fine, the message MAKE PROCESS SUC-

CEEDED will appear, implying that building was successful Now the

C-code has been transferred, and if the controller is in RUN mode, then

the code will be executed immediately.

This description of the Build procedure was crucial for us. Using Simu-

link, one can think that the algorithm will be simulated on the off line

platform, but in fact, by clicking on the build button, C-code will be gen-

erated and will automatically run on the CPU. Hence, as soon as the build-

ing procedure ends, the dSPACE platform is launched. This is shown with

the play button, taking the place of the pause button, on the dSPACE

platform tab :

(b) Running <your_model>.mdl on the Offline platform : Running your

mdl file on the Offline platform is pretty simple. Now again, let us sup-

pose that your Simulink file <your_model>.mdl is new , (or has been

modified). Therefore, you will need to (re)generate the sdf file for the Of-

fline Simulation : <your_model>_Off_line.sdf. As seen in part 1, this is
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simply done by right clicking on the Offline platform (the one with the

Simulink icon) and by selecting Build variable files.(see part 1). This will

rebuild the <your_model>_off_line.sdf file.

3. What if everything is built, but I want to pass from one platform to an other ?

A platform is launched / stopped by first, selecting it into the platform tab of

the platform selector. and then by clicking on the Start / Stop Platform but-

ton(figure 3c).Then, passing from one platform to an other is simply done (see

figure below) by first, selecting the platform you want to stop (if there is one).

Then stop it using the Start/ Stop Platform button. After, do the same with the

platform you want to start : select it, and after click on the start button of the

Start stop button. Note Also that it is not because you have changed the .sdf
file that the associated platform is selected. To put in a nutshell, if for exam-
ple you want that your simulation be run in real time, this is not because you

selected the <your_model>.sdf file and then clicked on the start button that

it will work ! If unfortunately the selected platform is the offline one, then by

clicking to the start platform button you will start the simulation on the offline

platform.

So the right way to do is:

(a) open the sdf file of the platform you want to launch.

(b) select the desired platform on the tab

(c)
click on the start /

stop platform but-

ton

4. When I click on the stop button, the process is still running, Why ? Again, this

problem is due to the fact that the Start / Stop button is associated with the

platform which is currently selected.

5. When the simulation runs on the Real time platform, and I change some values

of my variables using the layout, it doesn’t happen anything.

This is because you did not load the right .sdf file. A layout is linked with a

certain sdf file, so if the wrong sdf file is loaded, then changing the param-

eters in the layout won’t have any impact ! For the real time platform, you

need to load the <your_model>.sdf while for the offline platform the file

<your_model>_off_line.sdf .

6. In the layout associated with the <your_simu>.sdf file, I put a radio button,

linked with the SimState variable. Why when I press the Stop mode button on

my radio button the stop button is not enabled in the ControlDesk toolbar ?
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This is because the simState is a variable which sets the RUN mode for the

CPU. The CPU can either be in the RUN, PAUSE or STOP mode. But these

modes represent the states of the real time task which is running on the CPU.

So you can be on the Stop mode for the real time task whereas the CPU is still

ON, but in this case the CPU do nothing at all.

7. Plotters and capture settings, how to use them? When you use a plotter on a

layout, you have first the default plotter:

(a) The X scale is too small, how should I change it? Change the setting of

the X-axis by right clicking on the plotter and click on axis properties.

You will obtain the same dialogue box as below :

(b) It does not help! I still have a problem:
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In fact even if the scale in X is bigger, the signal still has the same range

as before. So you have to change the capture settings. this can be done by

right clicking on the plotter and click on edit capture settings.

Nothing seems to happen after clicking but if we look at the right side of

the software a new toolbar has appeared.

Now you can change the length of the capture, here by default the length

is set to 0.2. With this dialogue box you can also save the data. Please

refer to the manual for more information.
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A. Starting the Experiment
In this appendix is described the procedure for starting the experiment for the Furuta

pendulum. But before it is highly recommended to read the “General Tutorial for

ControlDesk”.

A.1 Setting-Up the Experiment

1. Before doing anything, just be sure that each device is switched off and
disconnected from the power supply (the dSPACE, the host computer and
the Furuta pendulum

2. Connect the pendulum with the extension box of the dSPACE, the connections

are summarized in the table A.1. Just do not forget to plug the ground between

the devices.

Table A.1 Connection between the Furuta pendulum and the dSPACE

From the Furuta to the dSPACE

Arm angle ADCH1

Arm velocity ADCH2

Pendulum angle 360 ADCH5

Pendulum angle top ADCH7

Pendulum velocity 360 ADCH6

Pendulum velocity top ADCH8

In 1 (Motor voltage) DACH1

3. Connect the devices to their power supply.

4. Switch on the dSPACE board (switch at the back of extension box).

5. Switch on the Furuta pendulum.

6. Make sure that the green dongle for ControlDesk is plugged at the back of the

host computer and switch on the computer (login: dspace password: dspace).

A.2 Open the Experiment

1. Open ControlDesk
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2. Now just open the existing experiment for the Furuta, the file is located in

at the following path : root_directory\dSPACE \LQR_friction_compensation-

_lyapunov \Friction_compensation_lyapunov.cdx
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You should obtain the following :
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3. Click on the menu Platform⇒ Application⇒ Load Model ...

And open the model : friction_compensation_lyapunov.mdl, after that Matlab,

Simulink and the Editor of Matlab should start.

A.3 Start the Experiment

Description of the GUI
Here is a description of the GUI which is used for controlling the Furuta pendulum.

There are three tabs, one for the main control, one for the reference generator and

finally one for the friction compensation.

Main tab Here is a list of each component of the main tab :

1. SimState Buttons (number 1 in figure A.1)

These radio buttons allow to change the state of the real-time task in the CPU. It

is possible to start, stop or pause the task. Which is good to do is to always stop

the task before closing the experiment in order to avoid uncontrolled behaviour

from the Furuta.

2. On/Off Controller (number 2 in figure A.1)

These two radio buttons allow to enable or disable the controller, if Off is

checked, the DC motor receives a zero signal as control signal. In the other

case the regular control signal is applied. Moreover the led changes its colour :

Red for Off and Green for On.

3. Choice of scaling gain (number 3 in figure A.1)

There are two gains for the control signal which can be chosen. These gains

74



A.3 Start the Experiment

Figure A.1 The Main Tab

are just before the DAC block in Simulink: the gain -1 corresponds to just an

inversion to obtain a logical behaviour (positive control implies positive angle)

and the gain−ku corresponds to the gain of the DC motor to convert Torque in
Voltage.

4. Change controller (number 4 in figure A.1)

These radio buttons allow to choose the LQ-controller three controllers are

available (see table A.2).

Table A.2 Description of the LQR

LQ1 An LQR which allows to do easily the swinging up

LQ2 An LQR without any constraints on the angle φ
The LQR which was used by Thomas Dietz, but be sure that the

LQR Thomas scaling gain is put on −ku. Moreover it is easier to switch the

controller when the pendulum is already in upright position

5. Measurements (number 5 in figure A.1)

This is an extra feature which allow the user to create a signal to do a trigger

for the acquisition of the data.

6. Display (number 6 in figure A.1)

There are simple displays for reading the value of U, ϕ , θ and the Friction

term.

7. Plotter settings (number 7 in figure A.1)

This window controls the parameters of the plotters, it can be reach by other

ways, but even with reading the Experiment Guide it’s hard to figure out how

to make the window appears, so the window is directly integrated into the GUI.

8. Plotter (number 8 in figure A.1)

This is the plotter where normally ϕ is plotted. But the user can add plotters as
many as he wants in order to plot other variables.
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Figure A.2 The Reference Generator

The Reference Generator

1. Type of reference (number 1 in figure A.2)

These radio buttons allow to choose the type of reference that the user wants,

there are three different signals, a constant one, a square one and a chirp signal.

2. Phi ref (number 2 in figure A.2)

This numerical input allows to change reference value for ϕ

3. Square settings (number 3 in figure A.2)

These two numerical inputs change the amplitude and the period of the square

signal.

4. Chirp settings (number 4 in figure A.2)

Here it is possible to change the amplitude of the chirp signal.

5. Plotter (number 5 in figure A.2)

With this plotter it is possible to visualize the reference signal.

Figure A.3 The Friction Parameters Tab

Friction Parameters

1. Friction compensation (number 1 in figure A.3) These radio buttons control if

the friction compensation is enabled or not.

2. Type of observer for the friction (number 2 in figure A.3)

here it is possible for the user to choose between different type of observer,

there is no big difference between observers so during the experiment for in-

stance the authors have chosen the LuGre discret Freidovich.
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3. Choice of the gain for the observer (number 3 in figure A.3)

As observers are used, they have a gain of adaptation of the error, here it is

possible for the user to choose the gain for the observer. The gain called :”Gain

for non linear systems” is the gain of the article.

4. rho friction (number 4 in figure A.3)

Here it is possible to change the value of the parameter rho which steps in the

computation of the gain of the observer.

Launching the experiment
1. Make sure the emergency button is disabled

2. Now the Simulink file has to be compiled and transferred into the dSPACE

board. To do so, the user just have to click on “incremental build” in Simulink.

3. After that, as it was mentioned in the General tutorial, a green arrow should ap-

pear in ControlDesk in the navigator and a red square appears to in the toolbar.
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4. The last thing to do is to run the GUI. The SDF file has to be replaced by the file

: “friction_compensation_lyapunov.sdf” instead of “friction_compensation_-

lyapunov.sdf_offline”.

5. Finally the next step is to click on Animation Mode :
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Now you should be in control of the Furuta pendulum throughout the GUI.

A.4 Stopping the Experiment

1. Put the Controller Off using the GUI.

2. Put the variable SimState on the state : “Stop” using the GUI.

3. Put the GUI in the edition mode.

4. Stop the real-time task (RTT) by clicking on the red square, but be sure that

“ds1103” is highlight before doing it.

5. Close Matlab, but inside ControlDesk with the dedicated menu, this menu can

be reached using the platform navigator.
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A.5 Remarks and Troubleshootings

1. The Plotter

It may happen that the plotter does not work at all, in this case the authors

recommend to start the experiment but with Matlab instead of the ds1103 as

platform. After that, the plotter should work fine for the Matlab experiment but

also for the ds1103 experiment.

2. The GUI

It may happen that the GUI is not linked with the variables of the experiment, in

that case the user should bind the variables manually according to the table A.3.
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Table A.3 Recap for binding the variables and the GUI

Marks Associate variable

The Main tab (see figure A.1 for the marks)

1 simState

2 Output2furuta→ choice control (for the button and the light)

3 Output2furuta→ choice scaling

4 Model Root→ change controller

5 Start acquisition→ Start stop data capture

6 Model Root→ control signal : for U

Input_from_furuta→ phi : for ϕ
Input_from_furuta→ theta : for θ
Model Root→ Friction compensation : for Friction term

7 No variable

8 Input_from_furuta→ phi

The Reference Generator (see figure A.2 for the marks)

1 Model Root→ choice ref

2 Ref_Gen→ Phi_ref_value

3 Ref_Gen→ SQUARE REF→ period_square

Ref_Gen→ SQUARE REF→ amplitude_square

4 Ref_Gen→ CHIRP_REF→ Amplitude_chirp

5 Ref_Gen→ phi_ref

Friction Parameters (see figure A.3 for the marks)

1 Model Root→ Friction_switch

2 friction compensation→ switch_friction_estimator

3 friction compensation→ switch_gain_friction_est

4 friction compensation→ Observer Gain Shiriaev Mat

→ Observer Gain Shiriaev Mat parameters→ rho_NL

3. Starting Simulink

In the experiment there is no need for the user to launch any scripts to initialize

the variables. But this is done anyway, each time Simulink is started, the script

startup.m is executed and the editor is launched. This is done thanks to the

Callback function “PreloadFcn” (See page 392 in the Experiment Guide). The

script startup.m just executes each script which is required for the experiment.

4. Swinging-up

It may happen that the swinging-up does not work the first time, in that case

just restart the pendulum using the little black button and try it again.
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B. Setup of the Matlab-Simulink
simulations

B.1 Introduction

This Appendix aims at giving information about the final Simulink file which was

built in Matlab-Simulink in order to verify in simulations the results seen in [Roberts-

son et al., 2004].

Of course plenty of Simulink files were carried out before this final Simulation.

These simulations can be found at the following path:

Simulink/, each

one consisting in one directory, containing a readMe text which fully describes
the purpose of the test considered, the m-files and the Simulink model used. Therefore

for the authors it did not seem necessary to comment further these test simulations.

The Simulink experiment used for the final simulations is located at :

Simulink/main-Simulation

As said before, it was built in such a way that few modifications have to be

done when this file will be used for real experiments. Therefore, no S-functions nor

Matlab-functions were used (except for the model of the process, which of course

will be replaced by inputs / outputs of the Furuta pendulum for real experiments).

This explains why sometimes the operations done in Simulink, and especially

for the friction compensation subsystem, look complicated and ugly. Indeed, this

is specially the case for the friction compensation subsystem, while the other ones

remain quite understandable. For this reason, the explanation will be organized as

follows:

• In a first part, a list and description of the different Simulink subsystems will
be given, while a table will summarize the nomenclature of the m-files used for

this Simulation.

• The last part will be entirely dedicated to the description of the Friction com-
pensation block, and to the different Friction models implemented.

B.2 General description

The list below briefly describes the different subsystems, found in the Simulink file:

• Ref_Gen : block which generates the Reference signal. Three different refer-
ence signals, acting on ϕ , are available : constant, step, or chirp signal. For
more details, see the readMe file.

• Swing_Up : block which computes the control, seen in [Åström and Furuta,

1996], for the swinging up:

u =−kswing · sign
[

θ̇cosθ(cosθ −1+
θ̇ 2

2ω2
0

]
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• Calc_V : computation of the initial Lyapunov function V :

V = XT PCX

• Furuta_With_Friction: Model of the process, including a S-function imple-
menting the state representation given in, and an internal model of the friction

to compute the “real” friction force FF . The friction model used here is imple-

mented using equations ( 1.7)( 1.8),( 1.9), and ( 1.10) of the continuous LuGre

model.

• Friction_Compensation: Block implementing different friction observers for
the computation of the friction force and internal friction state estimates F̂ and
ẑ. These observers will be described in the next section.

• Calc_W: Simple Computation of the Extended Lyapunov functionW :

W = V +
ρ
2

(z− ẑ)2

• Compute_ek: Computation of the internal state error :

ek = zk− ẑk ,

using equation ( 4.12) (page 31)

In the following table the m-files used for the Simulation are given:

init_Friction_Params defines all the friction observers parameters

init_Model_Params defines the Furuta model parameters

init_RefGenerator sets the ref_Gen parameters

sets the Simulation variables, such as the simulation

init_Simulation time, or the inferior bound for the ode23s solver

for example

LQR_Swinging_Params sets the LQ and Swinging parameters

FurutaModel S-function implementing the model of the process

runMe Run file for the Simulation

B.3 description of the Friction_Compensation block

This section intends to document the different friction observers which were im-

plemented for Friction compensation purpose. These observers are all based on the

LuGre model, the only differences between them being :

• If the LuGre model is discretized or not, and how the discretization is per-

formed.

• If the model is or isn’t written in the new variable (Freidovich parametrization):

znew = σ0z
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Of course from all these observers only one – the one leading to the best results –

was used for the simulations both in Simulink and on the real process. Nevertheless,

for the authors it seemed important to give a description of each one.

• LuGre_friction_Observer_Continuous (Observer 1) : only observer which is
implemented in Continuous time, using the continuous LuGre observer, seen

in ( 1.18), section 1.4. For this observer, ż is therefore integrated using the
ode23 s stiff solver. Moreover, this observer is the one used in the Simulation

part, when it was noticed that W had a strange peaking behaviour for a friction

compensation implemented using a discrete observer.

• LuGre_friction_Observer_discrete (Observer 2) : “discretized Lugre observer”
i.e. observer implemented using the discretized version ( 4.5). z is the “normal”
state variable (therefore no Freidovich parametrization is done). Moreover,in

the expression of F , ż is integrated using the explicit forward Euler method.

• LuGre_friction_Observer_discrete_parametrization_Freidovich (Observer 3):
“discretized Lugre observer with the Freidovich parametrization”. Now the dis-

cretized form with the Freidovich parametrization is used. Again, F̂ is calcu-

lated using the Forward Euler method.

• LuGre_friction_Observer_Derivative_direct (Observer 4): Same observer as
Observer 3 but this time, in the expression of F̂ , ẑ is not discretized anymore.
Instead, the expression, seen in ( 4.4) is directly used.

• LuGre_friction_Observer_discrete_parametrization_Freidovich(Observer 5) :
Same observer as observer 3 but now the damping term σ1 is not constant, but
is velocity depending. See equation ( 4.10)

• LuGre_friction_Observer_discrete_Euler_Parametrization_ Freidovich (Obs-
erver 6): now ẑ is not discretized as it is done in [Freidovich et al., 2006], but

instead, using the simple Forward Euler method. Again, the discretization is

expressed in the Freidovich variable znew
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C. Parameter Values
This section documents the parameters used for the different simulations performed.

The bold police style indicates that the considered parameters were used for the ex-

periments described throughout the thesis, while a normal police style refers to pa-

rameters of other Friction models (the Coulomb and Dahl models), which were not

described in the report.

C.1 Explanation of Parameters

Table C.1: Explanation of parameters

Parameter Explanation

Simulation

parameters

T_sample_discrete Fundamental sampling time that is used dur-

ing the execution of the system.

t_step_min inferior bound for the variable step size used

by the ode23s solver.

t_step_max superior bound for the variable step size used

by the ode23s solver.

k_u Output factor for the conversion of the mo-

ment computed by the controller into control

voltage that is applied to the system.

System m_a_est Mass of the arm of the pendulum.

parameters l_a_est Length of the arm of the Furuta pendulum.

l_a_inert_est Distance of the cog of the arm from its axis of

rotation.

J_m_est Moment of inertia of the motor shaft around

its axis of rotation.

m_2_est Mass of the pendulum rod.

m_p_est Mass of the weight attached to the top of the

pendulum.

l_2_est Distance of the cog of the pendulum rod from

the joint connecting pendulum and arm.

l_p_est Distance of the weight attached to the top of

the pendulum and the joint connecting pendu-

lum and arm.

Friction Com

pensation

Parameters

F_c_p_est_p_f Coulomb friction of the arm for positive ve-

locities (see Fc in equation (1.9)).

F_c_p_est_n_f Coulomb friction of the arm for negative ve-

locities (see Fc in equation (1.9)).

F_s_p_est_p_f Stiction force of the arm for transfer from stic-

tion to friction in positive turning direction

(see Fs in equation (1.9)).
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F_s_p_est_n_f Stiction force of the arm for transfer from stic-

tion to friction in negative turning direction

(see Fs in equation (1.9)).

v_s_est_f Stribeck velocity (see vs in equation (1.9)).

sig_0_est_f Stiffness of the LuGre model (see σ0 equa-
tions (1.7) to (1.10)).

sig_1_est_f “Damping” of the LuGre model (see σ1 in
equations (1.7) to (1.10)).

v_d_est_f Parameter that controls the speed of decrease

of the damping rate with increasing velocity

for the LuGre model with velocity dependent

damping (see vd in equation (1.10)).

F_v_est_p_f Viscous friction parameter for positive veloc-

ities (see Fv in equation (1.8)).

F_v_est_n_f Viscous friction parameter for negative veloc-

ities (see Fv in equation (1.8)).

F_c_est_dahl Coulomb friction for the Dahl model.

sig_0_est_dahl Stiffness of the Dahl model.

exp_dahl Exponent used in the Dahl model.

thres_coul_vel Half width of the dead-zone for velocities in

the static coulomb map, to prevent excessive

switching of the friction estimate (Velocities

that have a smaller absolute value than this

threshold are assumed to be zero).

thres_coul_cont Half width of the dead-zone for the control

signal in the static coulomb map, to prevent

excessive switching of the friction estimate

(Control signals that have a smaller absolute

value than this threshold are assumed to be

zero).

thres_rem_sing Half width of the dead-zone where the the co-

efficient ak, involved in the discretized Lugre

form ( 4.5), is considered “small” enough so

that the recursion for the case ak = 0 can be

applied.

rho_fricobs_shir ρ parameter of the Shiriaev Observer gain K.
see [Shiriaev et al., 2003].

rho_fricobs_frei ρ parameter of the Freidovich Observer gain
K. For more details, see [Freidovich et al.,

2006].

rho_NL ρ parameter of the injection function K seen

in [Robertsson et al., 2004], and in Theorem

1.1 of section 1.4.

Q12 Non diagonal term of the matrix Q encoun-

tered in inequality ( 1.14), section 1.4.
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Q22 Diagonal term of the matrix Q encountered in
inequality ( 1.14), section 1.4

Controller

parameters

R_l Punishment for control effort for discrete time

LQ-controller design.

Q_l Punishment for control error for discrete time

LQ-controller design.

Ref_ Gen

parameters

chosen_ref_signal constant defining the type Reference given. 1:

Constant ϕ-ref; 2: Step ϕ-ref; 3 = chirp ϕ-ref
(sinus with time-varying frequency).

Const. ϕ-ref phi_ref Value of the ϕ reference
Step ϕ-ref period_square Half period of the Square reference

amplitude_square High level of the Square reference

Chirp ϕ-ref A_chirp Amplitude of chirp signal

c_1_chirp First chirp constant

c_2_chirp Second chirp constant

C.2 Basic Parameter Setup

Table C.2: Parameters values

Parameter Value Unit

Simulation T_sample_discrete 1 [ms]
parameters t_step_min 0.1 [ms]

t_step_max 2 [ms]
k_u 10.96 [V/Nm]

System m_a_est 0.165 [kg]
parameters l_a_est 0.254 [m]

l_a_inert_est 0.044 [kg]
J_m_est 0.381 ·10−4 [kg m2]
m_2_est 0.02 [kg]
l_p_est 0.421 [m]
l_2_est =l_p_est/2= 0.2105 [m]
m_p_est 0.015 [kg]

Friction Com

pensation

Parameters

F_c_p_est_p_f 0.014 [Nm]

F_c_p_est_n_f 0.012 [Nm]
F_s_p_est_p_f 0.019 [Nm]
F_s_p_est_n_f 0.017 [Nm]
v_s_est_f 0.04 [m/s]
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sig_0_est_f 3.4 ·102 [Nm/m]
sig_1_est_f 1 [Nm s/m]
v_d_est_f 0.006 [m/s]
F_v_est_p_f 0.00023 [Nm s/m]
F_v_est_n_f 0.00022 [Nm s/m]
F_c_est_dahl =F_c_p_est_p_f [Nm]
sig_0_est_dahl =sig_0_est_f [Nm/m]
exp_dahl 1 [−]
thres_coul_vel 1 ·10−4 [m/s]
thres_coul_cont 1 ·10−4 [Nm]
thres_rem_sing 1 · 10−6 [−]
rho_fricobs_shir 1 · 108 [−]
rho_fricobs_frei 1 · 105 [1/s]
rho_NL 1 · 108 [1/s]

Controller

parameters

R_l 5000 [−]

Q_l

⎛
⎜⎜⎜⎜⎝
1/0.12 0 0 0

0 1/12 0 0

0 0 1/0.32 0

0 0 0 1/22

⎞
⎟⎟⎟⎟⎠ [−]

Ref_ Gen

parameters

chosen_ref_signal 1 [−]

Const. ϕ-ref phi_ref 0 [Rad]

Step ϕ-ref period_square 25 [s]
amplitude_square 2 [Rad]

Chirp ϕ-ref A_chirp 12 [Rad]
c_1_chirp 2 · 10−3 [−]
c_2_chirp 0 [−]
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Abstract: Friction may be a major obstacle for stability and control performance.
Based on a nominal control law, which stabilizes a nonlinear dynamical system

to an equilibrium or to a desired limit cycle motion and which is derived without

taking the friction disturbance into account, a method for compensating the impact

of the friction is presented and stability analysis for the closed loop system is

presented. The result can be interpreted as a nonlinear observer-based solution

for the LuGre friction model with new design for the nonlinear injection function.
An illustrative example is given for the Furuta pendulum.

1. INTRODUCTION

This paper is devoted to the problem of friction

compensation in nonlinear control systems. It

is assumed that the system dynamics without

friction is described by the equations

d

dt
x = F(x) + G(x)u
u = H(x, t)

(1)

where a state vector x ∈ Rn, a control action

u ∈ R1, and F, G, H are smooth vector fields of

appropriate dimensions.

While, in addition, it is assumed that the con-

troller u = H(x, t) for the closed loop system

(1) is designed to achieve uniform asymptotic

stability of a compact subset Ω ⊂ Rn and does

so successfully. Furthermore, it is assumed that

there exists a nonnegative function V (x, t) such
that:

• the zero-level set of V belongs to Ω, i. e.,

V0 = {x ∈ Rn : V (x, t) = 0} ⊂ Ω (2)
• the function V satisfies the inequalities

0 ≤ �y(x, t)�2 = V (x, t) ≤ Vm�x�2, ∀t (3)
where y(x, t)may be viewed as a regulated

output

• the time derivative of V evaluated along

any solution x(t) of the closed loop system

(1) satisfies the following relations

dV

dt
= d

dt
V (x(t), t) = κ0(x, u, t) (4)

=κ0(x, H(x, t), t) ≤ −ε V (x(t), t)
for some ε > 0

• the function κ0 in (4) is such that for any

matched disturbance d, we have

κ0 =κ0(x, H(x, t) + d, t) =
=κ0(x, H(x, t), t) + κ1(x, t)d+ κ2(x, t)d2

As a special case of this form we consider

d

dt
V �u=H

≤−
[

x

H

]T

Q(t)
[

x

H

]
≤ 0, (5)

Q= QT =
[

Q1 Q12

QT
12 Q2

]
, Q2 > 0 (6)

for the particular case of u = H(x, t).



In (Shiriaev et al., 2003) the case for passive

systems was considered.

As one can expect, a presence of friction in the
actuator, that is when the ‘true’ control action

applied to the system (1) has the form

τ = u− F, (7)
may prevent from the stabilization of the set

(2) and disregard the expected behavior of the

closed loop system.

The problem of modeling the friction F is a vast

area of research, and many different models
for this phenomenon are available in the liter-

ature. In this paper it will be assumed that the

friction is modeled based on the LuGre model

(Canudas de Wit et al., 1995). The LuGre fric-

tion model is a first-order dynamical system of

the form

F = σ 0z+ σ 1 ż+α 2v

d

dt
z = v− σ 0

�v�
g f r(v)z

(8)

Here z is the internal state of the model; v

corresponds to the relative velocity between two

surfaces in contact, and it is assumed that it is
measurable. The function g f r(v) has usually the

form

g f r(v) = α 0 +α 1e−v2/v2
0, α 0 > 0, α 1 > 0.

In the further development, we will not take

into consideration the exact form of g f r, while

only the property that g f r(v) is positive and

strictly separated from 0, will be used.

The main contribution of the paper is the modi-
fication of the nominal controller u = H(x, t) to

a new one that enables to guarantee asymptotic

stability of the set (2). In the course of doing

this, none of the properties of the model (8)
have been used except the fact that its state is

bounded, and the dynamical system (8) itself is
time-invariant and has a very particular struc-

ture. It is worth mentioning another approach

to deal with the closely related problem of po-

sition tracking developed for the mechanical

systems in (Canudas de Wit and Kelly, 1997).

2. MAIN RESULT

To compensate for the friction it is suggested to

modify the nominal controller of (1) as follows

unom = H(x, t) → u = H(x, t) + F̂

where the friction estimate F̂ is reconstructed

by an observer

F̂ = σ 0 ẑ+σ 1
˙̂z+α 2v

dẑ

dt
= v− σ 0

�v�
g f r(v) ẑ+ K

=̂ v− ϕ(v)ẑ+ K , ẑ(0) = 0

(9)

Here the observer gain K (i. e., the injection

function) could be seen as a variable to be

defined. In the proof of Theorem 1 an expression

for the function K is derived and presented.

Theorem 1. Given the system (1), (7), (8), con-

sider the controller

u = H(x, t) + F̂ (10)
where the friction estimate F̂ is defined by (9).
For ρ > 4 Q2 σ 1 σ 0 the observer injection func-
tion chosen as

K = 2(H(x, t)Q2 + Q12x)(σ 0 +σ 1ϕ)
(ρ − 4Q2σ 1σ 0) (11)

will guarantee that along any solution[
x(t), z(t), ẑ(t)

]
of the closed loop system the limit relation

lim
t→+∞V (x(t)) = 0 (12)

holds, that is, x(t) converges to the compact set

V0 defined in (2).

Proof. The dynamics of the error e between the

‘true’ internal friction state z and its estimate

ẑ, that is

e = z− ẑ

satisfies the equation

ė = −σ 0

�v�
g f r(v) e− K (13)

Let us consider a Lyapunov function candidate

for the system augmented by the friction model
(8) and the observer (9) as

W = V + ρ
2

e2 (14)
Then, the time derivative is

d

dt
W = V̇+ρ e ė = V̇+ρ e(−σ 0

�v�
g f r(v) e−K )

≤−
[

x

(H + F̂) − F

]T

Q(t)
[

x

(H + F̂) − F

]

+ ρ e( −σ 0
�v�

g f r(v) e− K ) (15)

=−
[

x

H

]T

Q(t)
[

x

H

]
− 1 ⋅ α e2 + β e+ γ

where

α = ρϕ + Q2(σ 0 −σ 1ϕ)2
β = 2xQ12σ 0 − 2xQ12σ 1ϕ − ρK + 2HQ2σ 0

− 2HQ2σ 1ϕ + 2Q2σ 1 Kσ 0 − 2Q2σ 2
1 Kϕ

γ = −2Q12xσ 1 K − 2HQ2σ 1K − Q2σ 2
1 K 2

ϕ = σ 0
�v�

g f r(v) > 0

(16)



By completion of squares, it holds that

−α e2 + β e = −
(√

α e− β
2
√

α

)2

+ β 2

4α
Thus

d

dt
W ≤−

[
x

H

]T

Q(t)
[

x

H

]
−

(√
α e− β

2
√

α

)2

+ β 2

4α
+ γ (17)

As the first two terms of Eq.(17) are negative
(semi-)definite, it suffices to check the sign of

β 2

4α + γ (18)
These two terms can be written as a quadratic

polynomial in the undetermined function K .

For simplicity we show the calculations for the

particular case of Q12 = 0 and further down

show the result for Q12 
= 0.

β 2

4α + γ = aK 2 + bK + c

f
(19)

where

a = −ρ(−ρ + 4Q2σ 1σ 0)
b = −4ρHQ2(σ 0 +σ 1ϕ) < 0

c = (
2HQ2(σ 2

0 −σ 1ϕ))2 > 0

f = 4((σ 0 −σ 1ϕ)2 Q2 + ρ ϕ) > 0

(20)

For a large enough value of ρ , a will be positive.

As known, the minimum of the polynomial

aK 2 + bK + c

with a > 0 is achieved at

Kmin = − b

2a
= −2 Q2 (σ 0 +σ 1 ϕ)
(−ρ + 4 Q2 σ 1 σ 0)H (21)

and equals to

min
K

{
aK 2 + bK + c

}
= − 4 Q2

2 H2 σ 1 σ 0

(ρ − 4 Q2 σ 1 σ 0)
(22)

The minimum is negative provided that

ρ − 4 Q2 σ 1 σ 0 > 0

which is the same condition for a being positive
in (20), and will be satisfied for a large enough

value ρ.

For the case of Q12 
= 0, we get

KQ12 
=0 = 2(Q2 H + Q12x)(σ 0 +σ 1ϕ)
(ρ − 4Q2σ 1σ 0) (23)

and the minimum is

−4σ 0σ 1
(Q2 H + Q12x)2
(ρ − 4Q2σ 1σ 0) < 0 for ρ > 4Q2σ 1σ 0

Therefore, if the observer gain K is chosen as

in (23), or the same as in (11), then the time

derivative of the function W along the solution

of the closed loop system looks as

d

dt
W ≤−

[
x

H

]T

Q(t)
[

x

H

]
− (√α e− β

2
√

α
)2

− 4 (Q2 H + Q12x)2 σ 1 σ 0

(ρ − 4 Q2 σ 1 σ 0) ≤ 0 (24)

To analyze the behavior of the closed loop sys-
tem solutions based on the differential relation

(24), it is worth to mention one property of the

LuGre friction model (8)

Lemma 1. For any initial condition z0, the so-

lution z(t) of the system (8) is bounded.

Equipped with this fact one can readily prove

the feedback controller (10) asymptotically sta-

bilize the set

V0 =
{

x : V (x) = 0
}

Indeed, choose any initial condition x0, z0, ẑ0

and consider the corresponding solution

[ x(t), z(t), ẑ(t)] = [ x(t, x0), z(t, z0), ẑ(t, ẑ0)]
of the closed loop system (1), (8), (10), (9) with

the observer gain (11). Along this solution the
nonnegative function W satisfies relation (24),
and is non-increasing.

Integrating the differential relation (24) from 0

to T , one gets

0≥W(x(T), e(T), T)− W(x(0), e(0), 0)
= V (x(T), T)− V (x(0), 0)
+ ρ

2
(z(T)− ẑ(T))2 − ρ

2
(z(0) − ẑ(0))2

≤−ε
T∫

0

V (x(t), t)dt−
T∫

0

(√α e(t) − β
2
√

α
)2dt

−
T∫

0

4 (Q2 H + Q12 x)2 σ 1 σ 0

(ρ − 4 Q2 σ 1 σ 0) dt (25)

This inequality together with (3) and a radially
unbounded V implies

• x(t) is bounded;

• (z(t) − ẑ(t)) is bounded, therefore ẑ(t) is

bounded due to boundedness of z(t) coming

from Lemma 1;
•

+∞∫
0

V (x(t), t)dt=
+∞∫
0

�y(x(t), t)�2dt < +∞

The right-hand side of the closed loop sys-

tem is bounded in some neighborhood of
the compact set Ω, then Barbalat’s lemma

helps us to conclude that y(x(t), t) con-

verges to zero as time t tends to infinity.



3. EXAMPLE: STABILIZATION OF

PERIODIC ORBITS IN FURUTA

PENDULUM

3.1 Generation and Exponential Stabilization

of Periodic Regimes for the Furuta Pendulum

when Friction is absent

In this section we consider a rotational pendu-
lum (Fig. 1), named after Professor K. Furuta,

rendering it to oscillate around its downward

equilibrium. The equation of motion for the Fu-

ruta pendulum is

M (θ )
[

φ̈
θ̈

]
+C(θ , θ̇ , φ̇ )

[
φ̇
θ̇

]
+G(θ ) =

[
τφ
0

]
(26)

where φ is the angle of the arm; θ is the angle of

the pendulum; τφ is a control torque that could

be applied to the arm. The matrices M , C, G are

M =M (θ ) =
[

α + β sin2 θ γ cosθ
γ cosθ β

]
C = C(θ , θ̇ , φ̇)
=

[
βθ̇ sinθ cosθ (βφ̇ cosθ − γ θ̇) sinθ
−βφ̇ sinθ cosθ 0

]

G = G(θ ) =
[

0

−δ sinθ

]
(27)

For the system in Fig. 1, the physical parame-

ters are

α = 0.00354, β = 0.00384,
γ = 0.00258, δ = 0.103 (28)

For details on the modeling and other contribu-

tions to the friction compensation for the Furuta

pendulum, see (Gäfvert et al., 1999), (Shiriaev
and de Wit, 2004) and references therein.

The following five-step procedure describes de-

tails of constructing the feedback controller:

1) Choice of Virtual Holonomic Constraint and

Properties of Virtual Limit System. To gener-

ate oscillations of the Furuta pendulum, we

have chosen a particular virtual holonomic con-

straint

φ = a (29)
where a is a given constant angle of the arm.

If a feedback controller successfully stabilizes

the constraint (29), then remaining dynamics

of (26) is covered by the equation

β θ̈ − δ sinθ = 0. (30)
The system (30) describes the motions of a one-

degree of freedom pendulum, its phase portrait

around its downward equilibrium and the cor-
responding solutions versus time are shown in

Figure 2. It is well known that the system (30)

Fig. 1. Furuta pendulum, Dept. of Automatic

Control, Lund University.
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Fig. 2. (Left) The phase portrait of the virtual

limit system (30). (Right) The solutions of

the virtual limit system (30) versus time.

has the first integral (the total energy E of the

mathematical pendulum)

E(θ , θ̇) = β
2

θ̇ 2 + δ cosθ , (31)

while its time derivative satisfies the passivity

relation, i. e., along any solution of (30)
d

dt
E = θ̇ ⋅ f , (32)

where f is an external (control) torque.

2) Choice of Orbit. Figure 2 shows in red the
orbit we have chosen to stabilize and the cor-

responding solution θγ (t) of the system (30)
versus time. It can be is seen that the chosen

solution has the period T � 1.21 sec.

3) Partial Feedback Linearization of (26). Intro-

duce the regulated output y as

y = φ − a,

then straightforward calculations show that an

equivalent (partly linear) form of (26) looks as

β θ̈ − δ sinθ = β ẏ2 sinθ cosθ − γ cosθv (33)
ÿ= v (34)

where the new control input v relates to the true

control input τφ as follows

τφ = v− A(θ , θ̇ , ẏ)
B(θ ) (35)

with



B = β
α β − γ 2 + [β 2 + γ 2] sin2 θ

(36)

A= B

β
{
β
(−2β ẏθ̇ sinθ cosθ + γ θ̇ 2 sinθ

)
− γ cosθ

(
β ẏ2 cosθ sinθ + δ sinθ

)} (37)
Based on the passivity relation (32), one can

rewrite the equations (33)–(34) into a new (but

not equivalent) form

Ė= θ̇
(
β ⋅ ẏ2 ⋅ sinθ ⋅ cosθ − γ ⋅ cosθ ⋅ v

) (38)
ÿ= v (39)

4) Linear Auxiliary System and Its Control-

lability Consider the equations (38)–(39) and

formally substitute on the right-hand sides the

periodic solution

θ = θγ (t), θ̇ = θ̇γ (t), y = 0, ẏ = 0 (40)
which we have chosen to stabilize. Then we

have got a linear periodic system

Ė=−θ̇γ (t) ⋅ γ ⋅ cosθγ (t)︸ ︷︷ ︸
ρ(t)

⋅v, ÿ = v (41)

One could rewrite Eq. (41) in state-space form

d

dt

⎡
⎣ E

y

ẏ

⎤
⎦ =

⎡
⎣ 0 0 0

0 0 1

0 0 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ E

y

ẏ

⎤
⎦+

⎡
⎣ ρ(t)

0

1

⎤
⎦

︸ ︷︷ ︸
b(t)

v (42)

It has been checked that the system (42) is

completely controllable over the period T �
1.21 sec. The controllability opens the way for
constructing stabilizing controller for the linear

system (42). Given a 3
 3 matrix G = GT > 0

and a scalar Γ > 0, consider the LQR problem

with the following minimization criterion

arg min
v
J = arg min

v

+∞∫
0

{
ξ (t)T Gξ + Γv(t)

}
dt

with ξ = [E, y, ẏ]T . As known, to solve the LQR-

problem, one needs to find a stabilizing solution

R(t) of the Lur’e-Riccati equation

Ṙ(t) =−A(t)T R(t) − R(t)A(t) − G (43)
+ R(t) b(t)Γ−1b(t)T R(t)

Then, the stabilizing feedback controller for
(42) is

v =−b(t)T R(t)ξ
Γ

=−
[

ρ(t)
Γ

, 0,
1

Γ

]
R(t)

⎡
⎣E

y

ẏ

⎤
⎦ (44)

Following this way for the system (42), one

might get a controller with unacceptable slow

rate of convergence. To improve convergence,

one could try to shift the eigenvalues of the

closed loop system monodromy matrix within a

disc of the complex plane with radius smaller

than 1. This could be done, for example, by

solving a linear quadratic optimization problem
for the modified system

d

dt

⎡
⎣ E

y

ẏ

⎤
⎦={A+ ε I3}

⎡
⎣ E

y

ẏ

⎤
⎦+

⎡
⎣ ρ(t)

0
1

⎤
⎦ v (45)

In contrast to Eq. (42), we have added to the

linear part of the system a destabilizing term
ε I3 with ε > 0. In the simulations the numer-

ical solution R(t) of the Riccati equation (43)
has been found when

G = I3, Γ = 0.1, ε = 0.2.

5) Final Form of Controller and Simulation

of Closed Loop System. The final form of the
stabilizing controller for the pendulum system

(33)–(34) looks as (35) with

v=−Γ−1
[
− θ̇γ cosθ , 0, 1

]
T

R(t)
⎡
⎣ Ẽ

y

ẏ

⎤
⎦ , (46)

Ẽ= (β
2

θ̇ 2 + δ cosθ )︸ ︷︷ ︸
E(θ , θ̇)

− (β
2

θ̇ 2
γ (0) + δ cosθγ (0))︸ ︷︷ ︸
E(θγ (0), θ̇γ (0))

y= φ − a, ẏ = φ̇

3.2 Orbital stabilization in Presence of Friction

In case when the friction is present in the loop

we can utilize the main result of the paper
to recover the desired performance. To apply

Theorem 1, one needs to transform the Furuta

pendulum (26) and the feedback controller (35),
(46) into the form of the closed loop system (1).
It could be readily done, if one assumes that the
function F(x) representing the right-hand side

of (1) for the Furuta pendulum is composed of

its dynamics together with the feedback trans-

formation (35), that is, the control variable u in

(1) is now the variable v in (35). Such a feed-
back transformed system has the cycle, shown

in red on Figure 2, as a solution. In this case,

the controller u = H(x, t) in (1) is defined by

(46), while the Lyapunov function V in (2)–(3)
is

V (θ , θ̇,φ , φ̇ , t) = X T R(t)X (47)

where X =
⎡
⎣E(θ , θ̇) − E(θ0, θ̇0)

φ
φ̇

⎤
⎦ (48)

with [θ0, θ̇0] belonging to the cycle and R(t) =
R(t + T), T = 1.21 sec. being a stabilizing
solution of the Lur’e-Riccati equation (43). One

could check that it satisfies (4).
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Fig. 3. The behavior of [θ (t), θ̇(t)] in the closed

loop system with the feedback controller

(35) when both friction and friction com-

pensation are present. Here the orbit cho-
sen to be stabilized is shown in red.
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Fig. 4. The behavior of the arm [φ(t), φ̇ (t)] in the

closed loop system with the feedback con-
troller (35) when both friction and friction

compensation are present.

Figures 3–6 show the behavior of the closed loop
system when both friction, friction compensa-

tion and white noise in all the measurements

are added. Here the LuGre model parameters

are chosen as

α 0 = 0.21, α 1 = 0.022, α 2 = 0

σ 0 = 80, σ 1 = 1.5, v0 = 0.1

while the value of control parameter ρ is 12000.

As we can seen in Figure 6, the friction observer
will produce a very good friction estimate after

the initial transient.
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estimate (blue) in the closed loop system.

4. CONCLUSIONS

This paper deals with the problem of friction
compensation in nonlinear control systems. It

is assumed that the friction has a particular

structure, the so called LuGre model, and it

is also assumed that a nominal controller has

been derived for stabilizing the system to a
certain equilibrium or to a desired limit cycle

motion, specified—e. g., via virtual holonomic

constraints, without taking the friction distur-

bance into account. The main result of the paper

suggests a friction observer and modification of

the control in such a way that the overall closed
loop system preserves the asymptotic stability

of the desired attractive set that was originally

obtain by the controller for the frictionless case.

Finally, the design of a stabilizing (nominal)
control law used together with the proposed fric-
tion compensation method has been evaluated

in a simulation study for the Furuta pendulum.
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