
ISSN 0280-5316
ISRN LUTFD2/TFRT--5843--SE

A Distributed Kalman Filter
Algorithm for Self-localisation

of Mobile Devices

Anne-Kathrin Hess

Department of Automatic Control
Lund University

August 2009

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

August 2009
Document Number

ISRN LUTFD2/TFRT--5843--SE
Author(s)

Anne-Kathrin Hess

Supervisor

Prof. Rolf Findeisen. Inst. for Automation Eng. Lab.
For Systems Theory and Control, Magdeburg
Germany.
Prof. Anders Rantzer Automatic Control, Lund. Ass.
Prof. Anton Cervin Automatic Control, Lund
(Examiner)
Sponsoring organization

Title and subtitle

A Distributed Kalman Filter Algorithm for Self-localization of Mobile Devices.
(En distribuerad Kalmanfilteralgoritm för självlokalisering i rörliga object)

Abstract

In many applications involving mobile devices it is essential to track their position. Moreover,
it is usually desired, to perform this localization in a distributed fashion without using a
central processing unit. In this case, only distance measurements to reference nodes which are
in range can be utilized. It is proposed in this thesis to also use distance measurements to
other moving objects, to improve the position estimation.The self-localization task is addressed
in this work by introducing a distributed Kalman Filter. This state observer estimates the
position of the moving objects based on distance measurements to neighboring devices and
reference nodes. Additionally it was investigated if the performance of this filter could be
improve by adding a data fusion step to the filter.
In this case, every device additionally estimates the position of its neighbors. This generates
multiple estimates for one object, which are afterwards fused using optimized weights. This
allows the usage of more measurement information available in the network for the
localization of one device. To compare the performance of the introduced algorithms,
simulation results are given. A system with a static graph structure was investigated, as well
as a system with a dynamic graph. It was found that the accuracy of the state estimation could
be improved by introducing a data fusion step. Furthermore, it was seen that a higher average
coupling among the nodes is necessary to ensure reliable performance when the graph is
dynamic.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280-5316
ISBN

Language

English
Number of pages

70
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

ii

Contents

Abstract i

List of Figures v

List of Symbols vii

1 Introduction 1

2 Problem Statement 3

2.1 Communication Topology . 4

2.2 System Dynamics . 5

3 Kalman Filter Algorithms 9

3.1 Global Kalman Filter . 9

3.2 Distributed Kalman Filter using Local Measurements 12

3.3 Distributed Kalman Filter with Data Fusion 15

3.3.1 Data Fusion in Sensor Networks . 15

3.3.2 Data Fusion for Multi Agent Systems 17

3.3.3 Data Fusion for Dynamic Multi Agent Systems 24

4 Numerical Example: Self-localization of Mobile Devices 31

4.1 System Dynamics . 31

4.1.1 Network Properties . 31

4.1.2 Model Equations . 33

4.2 Parameter Selection . 36

4.3 Simulation Results . 38

4.3.1 Static Graph . 38

4.3.2 Dynamic Graph . 40

5 Conclusion 47

Appendix 49

iii

iv Contents

A Details on the Kalman Gain Calculation 49
A.1 Some Matrix Derivation Rules . 49
A.2 Global Kalman Filter . 50
A.3 Distributed Kalman filter using Local Measurements 50
A.4 Distributed Kalman filter with Data Fusion 51

B Additional plots 55

References 59

List of Figures

3.1 Global Kalman Filter (schematic) . 11

3.2 Distributed Kalman Filter dKF1 (schematic) 12

3.3 Data fusion in sensor networks (schematic) 16

3.4 Distributed Kalman Filter with data fusion (schematic) 19

3.5 Extended distributed KF with data fusion (schematic) 25

3.6 Extended distributed KF, rearranged (schematic) 27

4.1 Initial positions of mobile and reference nodes. 32

4.2 Randomly generated trajectories (static graph). 39

4.3 Comparison of the RMS error (static graph). 39

4.4 Randomly generated trajectories (dynamic graph). 41

4.5 Comparison of the RMS error (dynamic graph). 42

4.6 Visualization of graph changes (dynamic graph). 43

4.7 Estimation error ε plotted over time for different scenarios. 44

B.1 Estimation error ε plotted over time (unscaled). 55

B.2 Comparison of the RMS error (static graph, all nodes). 56

B.3 Visualization of graph changes (dyn. graph, all nodes). 57

B.4 Comparison of RMS error (dyn. graph, all nodes). 58

v

vi List of Figures

List of Symbols

Ai System matrix of node Ni . 5

A[i] System matrix of subsystem N[i] . 6

A System matrix of network system N .5

Ā System matrix of extended system . 17

Ci Measurement matrix of node Ni . 6

C[i] reduced measurement matrix of node Ni . 6
¯̄C[i] Measurement matrix of subsystem N[i] . 28

C Measurement matrix of network system N .6

C̄ Measurement matrix of extended system . 17

d2
Distance between two nodes . 33

d
2

Distance between the steady state positions of two nodes 33

e(k) Identity vector Gξji(k)In̄×nj . 20

Gη Graph Gη(Eη,N) (among mobile nodes) .4

Gµ Graph Gµ(Eµ,R) (mobile to reference nodes) . 4

Gxi Selection matrix x[i] = Gxi x . 6

Gx Selection matrix Gx = [Gx1 ...G
x
η]
T . 6

G
y
i Selection matrix y[i] = Gyiy . 26

G
ξ
ji Selection matrix x̂loc

[ji] = Gξjiξ̂
loc . 20

Gξ Selection matrix Gξ = [Gξ11...G
ξ
ηη]
T . 20

In×m Identity matrix of dimension n×m . 13

Ki Kalman gain of node Ni (dKF1) . 12

K Kalman gain of network system N (dKF1) .12

K̄i Kalman gain of node Ni (dKF2) . 18

K̄ Kalman gain of dKF2 diag(K̄) = [K̄1...K̄η] . 20
¯̄Ki Kalman gain of node Ni (dKF3) . 24
¯̄K[i] Reduced Kalman gain of node Ni (dKF3) . 26
¯̄K Kalman gain of network system N (dKF3) . 24

vii

viii List of Symbols

M Set of reference nodes . 3

M[i] Set of reachable reference nodes of Ni. M[i] ⊂M .4

Mi Reference node i,Mi ∈M .4

mi Number of measurements of mobile node Ni .6

m[i] Number of measurements of subsystem N[i] . 26

m Number of measurements in network system N . 6

N Set of mobile nodes . 3

N[i] Set of neighbors of Ni, including itself. 4

Ni Mobile node Ni . 4

ni Number of states of mobile node Ni . 5

n[i] Number of states of subsystem N[i] . 6

n Number of states in network system N . 5

n̄ Number of states in extended system . 17

0n×mZero matrix of dimension n×m . 13

P Covariance matrix of the estimation error x̃ .10

P[i] Covariance of the subsystem estimation error x̃[i] . 14

P̄ Covariance matrix P̄ of the estimation error ξ̃ . 21

p Position vector of mobile nodes . 32

p Steady state position vector of mobile nodes . 33

p̌ Position vector of reference node . 31

p̌ Steady state position vector of reference nodes . 33

p̂ Position estimate .38

Qi Covariance matrix of the process noise wi .5

Q Covariance matrix of the process noise w . 5

Q̄ Covariance matrix of the process noise w̄ . 17

R Set of all nodes R = N ∪M . 4

Ri Covariance matrix of the measurement noise vi . 6

R[i] Covariance matrix of the measurement noise v[i] . 6

R Covariance matrix of the measurement noise v . 6

R Set of real numbers . 5

Ui, ViDecomposition matrices for K . 12

Ūi, V̄iDecomposition matrices for K̄ . 20
¯̄Ui,

¯̄ViDecomposition matrices for ¯̄K . 24

vi Measurement noise vector of node Ni . 6

v[i] Measurement noise vector of subsystem N[i] . 6

List of Symbols ix

v Measurement noise vector of network system . 6

Wi Weighting matrix to join estimates for Ni (dKF2) . 18

W[i] Reduced weighting matrix for Ni (dKF2) . 20

W Weighting matrix for network system N (dKF2) . 20

W̄i Weighting matrix to join estimates for Ni (dKF3) . 24

W̄ Weighting matrix for network system N (dKF3) . 24

wi Process noise vector of node Ni . 5

w[i] Process noise vector of subsystem N[i] . 6

w Process noise vector of network system . 5

w̄ Process noise vector of extended system . 17

w
lj
i Weight for estimate of Nl done by Nj and used by Ni . 18

xi State vector of node Ni . 5

x[i] State vector of subsystem N[i] . 6

x State vector of network system N .5

x̂i State vector of node Ni . 10

x̂[i] State vector of subsystem N[i] . 12

x̂ State estimate of network system . 12

x̂loc
ji State estimate of Nj calculated by Ni .18

x̂loc
[ji] Vector with all state estimates of Nj , communicated to Ni 20

x̃i State estimation error of node Ni . 29

x̃[i] State estimation error of subsystem N[i] . 14

x̃ State estimation error of network system N . 10

xi Steady state vector of node Ni .5

x[i] Steady state vector of subsystem N[i] .6

x Steady state vector of network system N . 5

yi Measurement vector of node Ni .5

y[i] Measurement vector of subsystem N[i] .6

y Measurement vector of network system N . 6

ŷi Measurement prediction of node Ni . 10

ŷ[i] Measurement prediction of subsystem N[i] . 29

ŷ Measurement prediction of network system N . 10

ỹi Measurement prediction error of node Ni . 12

ỹ[i] Measurement prediction error of subsystem N[i] . 26

ỹi Measurement prediction error of network system N . 24

y[i] Measurement vector of subsystem N[i] at steady state . 29

x List of Symbols

ε RMS error of position estimate .38

γi Number of reachable nodes of Ni, |M[i]| = γi . 4

ζi Number of neighbors of Ni, including itself . 4

η Number of mobile nodes . 3

µ Number of reference nodes . 3

ξi Extended state vector of node Ni . 17

ξ State vector of extended system . 17

ξ̂
p
i State estimate of extended state vector, p ∈ {loc, reg} . 18

ξ̂
p
[i] Reduced state estimate of extended state vector . 20

ξ̂p State estimate of extended system p ∈ {loc, reg} . 18

ρ Communication Radius . 4

τ Timescale for robot movement . 35

Φ Reduced covariance matrix .22

Chapter 1

Introduction

Recent improvements in communication and calculation capabilities of mobile devices make
it possible to implement advanced distributed control and observer strategies in multi agent
systems. The usual advantages of distributed algorithms are the increase of efficiency, scal-
ability and robustness. However, the distribution of familiar centralized control algorithms
is usually not straightforward. It becomes especially challenging if strong communication
constraints are assumed and no central processing unit is allowed.
In many applications of multi agent systems, localization of the mobile devices is essential.
It is the objective of this thesis to design an algorithm, which estimates those locations in
a distributed fashion. In particular a network system of mobile devices is considered in this
work. Generally, the system dynamics are assumed to be time dependent and subject to
stochastic disturbances.
The framework mostly used to estimate states of centralized stochastic systems is the Kalman
Filter introduced by R. E. Kalman in 1960 [10]. In the literature different approaches for
distributed Kalman Filters can be found. One method is to introduce a central unit which
processes measurement information in a centralized fashion and distributes the state esti-
mates back to the devices, e.g. [17]. Other papers only investigated systems which have
significantly more states than available measurements. For these systems usually a Kalman
Filter in information form [3] is used. This form has the advantage that calculations can
be easily distributed among nodes, but a recalculation of the actual states is not trivial and
thus usually not doable in a decentralized fashion, e.g. [6, 11]. None of these methods will
be considered in this thesis, since neither a central processing unit nor a comparably small
measurement vector are considered.
When it comes to localization of moving objects, GPS based position estimation is widely
used. Nevertheless, this method is only applicable if the restrictions on the accuracy of the
position estimate are low. Applications, where this assumption does not hold include for
example the control of convoys on roads (e.g [7]). Using GPS for localization also fails in
an indoor environment. Therefore most indoor localization algorithms use a sensor network
instead which estimates the locations of the moving objects and communicates them back
to the devices, e.g [18, 22]. This method is usually referred to as “active mobile architec-
ture” because the mobile devices actively transmit signals to the sensors [18]. In [14] and
[19] a distributed consensus filter was designed to track moving objects using such a sensor

1

2 1 Introduction

network. A distributed Kalman Filter using this measurement method is presented in [1, 2].
In this work a data fusion step is added to the Kalman Filter to increase the quality of the
state estimates.
The drawback of an active mobile architecture is, that this method scales badly with an in-
creasing number of mobile devices. Furthermore privacy concerns are introduced since every
device is trackable by the infrastructure. This could be overcome by using a ”passive mobile
architecture“ where static reference nodes actively emit signals and the mobile devices pas-
sively use those signals to measure their distance to the reference nodes independently [18].
An example for this architecture is the Cricket system [16].
If the network system gets sufficiently large, not every mobile node can communicate to
every reference node. Consequently, the number of measurements available in both mobile
architectures reduces. In this case the amount of measurements available can be increased
by allowing mutual distance measurements and communication among neighboring mobile
devices. This is in particular advantageous if interactions among moving objects are already
used for other purposes, e.g. for collision avoidance. Then those measurements do not need
to be generated additionally. This concept of using measurements to mobile nodes can also
be found in algorithms for self-localization of nodes in networks, e.g. [8, 15]. These algo-
rithms usually use communication and additional distance measurements among unlocalized
nodes to improve performance. Nevertheless the positions of the nodes in the network are
usually assumed to be known and fixed, preserving a static graph [20, 23].
The measurement framework in this thesis extends the ”passive mobile architecture“ by al-
lowing additional communication and measurements to mobile devices while in general the
mobile devices are moving during operation. A theoretical framework to describe those sys-
tems will be introduced in Section 2. To clarify the notation a global Kalman Filter based
on [10] is given in Section 3.1. By applying the assumed communication restrictions to this
global filter a decentralized Kalman Filter is derived in Section 3.2. It was shown in [2] that
the performance of a distributed Kalman Filter can be improved by adding a data fusion step
when the active mobile architecture is used. Therefore it is investigated in Section 3.3.2 if the
introduction of a data fusion step is also applicable to the communication framework under
consideration. By modifying the algorithm given in [2] for the systems under consideration,
only an algorithm for static mobile systems could be found. Therefore a third distributed
Kalman Filter with weaker communication restrictions is introduced in Section 3.3.3 which
also uses a data fusion step. This algorithm is also applicable to systems which have a
dynamic graph. In Section 4 the performance of the introduced algorithms will be compared
using a numerical example and Matlab simulations.

Chapter 2

Problem Statement

The systems under consideration in this thesis consist of an arbitrary number η of mobile
devices N and an arbitrary number µ of reference nodes (sensors) M. All objects are lo-
cally distributed. While the reference nodes have a fixed position the mobile devices move
randomly inside a certain area. The communication network of these systems is subject to
physical constrains on the communication abilities of the nodes. The resulting communica-
tion topology will be introduced in Section 2.1. The objective of this work is to derive an
algorithm where the whole system calculates an estimate of a distributed quantity by using
only local measurements and information gathered through communication among devices.
Even though the main focus of this thesis is position estimation the derived algorithms are
also applicable to the estimation of any distributed state, e.g. temperature. Therefore only
a general dynamical model of the system will be introduced in Section 2.2 and the model
equations will be given. The derivation of the exact model equations for the application of
self-localization can be found in Section 4.

Example: (Three Agent Network) In order to give a more intuitive explanation of the
theoretical results in this paper, this running example is introduced. The system consists of
η = 3 mobile devices (squares) and µ = 2 reference nodes (circles) as shown in the picture
below. The black errors indicate communication among neighbors and the dashed gray lines
indicate which reference nodes are reachable by the mobile nodes.

N1

N3

N2

M2

M1

3

4 2 Problem Statement

2.1 Communication Topology

Graph theory is a convenient framework to study interactions of a finite set of elements. If the
topology of interactions among these elements changes over time the graph is called dynamic.
If this is not the case, a static graph is used [12, 23]. In this thesis we assume that only
devices with a distance smaller than a maximal communication radius ρ can communicate,
called “nearest neighboring scenario’ in the literature, e.g. [12]. If not stated differently
it will be assumed throughout this thesis that distance measurements can be taken to all
nodes, to which communication is possible. Furthermore a dynamic graph is used, because in
general all devices move randomly. The two graphs Gηk = (N , Eηk) and Gµk = (M∪N , Eµk)
are introduced to model the interaction among the mobile nodes and between mobile and
reference nodes respectively. The subscript k indicates the dependency of G on the discrete
time k.
In Gηk the edge (Nj,Ni) is in Eηk if and only if mobile node Ni and Nj can communicate at
time k, giving the adjacency matrix Aη = [eij] with

eij =







1 if d(Nj,Ni) ≤ ρ

0 otherwise,
(2.1)

where d(., .) represents the euclidean distance between two nodes. If Nj and Ni can com-
municate, they are called neighbors. All neighbors of node Ni at time k are contained in the
set N[i],k, including node i itself. Therefore the number of neighbors of node i, including
itself, is given by1|N[i],k| = ζi,k.
Graph Gµk describes the communication between mobile nodes N and reference nodesM.

The edge (Mi,Ni) is in Eµk if and only if mobile node Ni can communicate to reference
nodeMi. This can be summarized in matrix Ãµ = [eij], given by

eij =







1 if d(Mj,Ni) ≤ ρ

0 otherwise,
(2.2)

similar to the adjacency matrix (2.1). If mobile node Ni can communicate to reference node
Mi, node Mj is reachable by node Ni. All reachable reference nodes Mj of node Ni at
time k are contained in the set M[i],k. The number of reference nodes reachable by device
Ni at time k is given by1 |M[i],k| = γi,k.

Example: (Three Agent Network) The communication topology of the three agent net-
work is assumed to be constant over time and is therefore modeled using the static graphs
Gη = (N , Eη) and Gµ = (M∪N , Eµ) with

N = {N1,N2,N3} η = 3

M = {M1,M2} µ = 2

1To simplify notation, the dependency of ζi,k, γi,k, N[i],k andM[i],k on the discrete time k will be dropped
from now on.

2.2 System Dynamics 5

Eη = {(N1,N1), (N2,N1), (N1,N2), (N2,N2), (N3,N2), (N3,N2), (N3,N3)}

Eµ = {(M1,N1), (M1,N2), (M1,N3), (M2,N3)}

and the adjacency matrices

Aη =





1 1 0
1 1 1
0 1 1



 Ãµ =

(
1 1 1
0 0 1

)

.

The sets of neighbors and the sets of reachable nodes are defined as follows:

N[1] = {N1,N2} ζ1 = 2, M[1] = {M1} γ1 = 1,

N[2] = {N1,N2,N3} ζ2 = 3, M[2] = {M1} γ2 = 1,

N[3] = {N2,N3} ζ3 = 2 M[3] = {M1,M2} γ3 = 2.

2.2 System Dynamics

The objective of this work is to estimate the states of the mobile devices N using information
gathered through communication to other mobile nodes and to the sensor nodesM. There-
fore the system dynamics are only connected to the mobile devices N and their dynamics
are furthermore assumed to be decoupled and linear. The system equation for one agent can
therefore be described using

xi(k) = Ai(k)xi(k − 1) + wi(k) with xi(0) = x0
i , ∀i ∈ N (2.3)

where xi ∈ R
ni is the state vector and wi ∈ R

ni is the process noise of node Ni. The
noise wi is modeled as a white zero mean Gaussian process wi with the covariance matrix
Qi = E[wiwi

T]. The system equation for the overall system can be given in vector form

x(k) = A(k)x(k − 1) + w(k) with x(0) = x0 (2.4)

using x =
[

x1
T x2

T . . . xη
T
]
T

w =
[

w1
T w2

T . . . wη
T
]
T

and A being a block diagonal matrix diag{A} =
[

A1 A2 . . . Aη
]

. In (2.4) x ∈ R
n,

n =
∑η
i=1 ni is the state vector of the complete system and w ∈ R

n is the process noise with
covariance Q = E[wwT].
In the considered setup the state estimation of one agent is based on measurements and
communication with other agents and reference nodes. Therefore it must be assumed that
in general the measurement equation of one agent is dependent on other agents states
leading to a coupled measurement equation. The measurement dynamics of one agent Ni

6 2 Problem Statement

are therefore given by

yi(k) = Ci(k)x(k) + vi(k) ∀i ∈ N (2.5)

where yi ∈ R
mi,k is the measurement vector2 and vi ∈ R

mi,k is the measurement noise of
node Ni. The noise vi is modeled as a white zero mean Gaussian process vi with the
covariance matrix Ri = E[vivi

T]. The assumption that communication is only possible to
neighboring nodes was introduced in Section 2.1. This leads to zero columns c:j ∀j 6∈ N[i]

in the local measurement matrices Ci(k). By introducing the new variables

x[i](k) = Gxi (k)x(k)

A[i](k) = Gxi (k)A(k)Gxi (k)
T

w[i](k) = Gxi (k)w(k)

C[i](k) = Ci(k)G
x
i (k)

T

v[i](k) = Gxi (k)v(k)

(2.6)

with Gxi (k)
TGxi (k) = I, the measurement equation (2.5) can be rewritten in the following

equivalent form

yi(k) = C[i](k)x[i](k) + vi(k) (2.7)

where x[i] ∈ R
n[i],k, n[i],k =

∑

j∈N[i]
nj is the state vector3 of the subsystemN[i], with x[i](k) =

A[i](k)x[i](k − 1) + w[i](k). Furthermore the matrix C[i](k) = Ci(k)G
x
i (k)

T is the reduced
measurement matrix of node Ni. The selection matrix Gxi in (2.6) is given by the nonzero
lines of

GxI =







g1,i 0
. . .

0 gη,i







with gj,i =







Inj×nj if j ∈ N[i]

0nj×nj otherwise
.

Using (2.5) the measurement equation for the complete system is given in vector form by

y(k) = C(k)x(k) + v(k) (2.8)

using y =
[

y1
T y2

T . . . yη
T
]
T

C =
[

C1
T C2

T . . . Cη
T
]
T

v =
[

v1
T v2

T . . . vη
T
]
T .

In (2.8) y ∈ R
mk , mk =

∑η
i=1mi,k is the state vector4 of the complete system and v ∈ R

mk

is the measurement noise with covariance R = E[vvT]. Using (2.4), (2.8), (2.3) and (2.5)
the model equations can be given

2The dependency of mi,k on k will be dropped.
3The dependency of n[i],k on k will be dropped.
4The dependency of mk on k will be dropped.

2.2 System Dynamics 7

Model equations

local:
xi(k) = Ai(k)xi(k − 1) + wi(k) with xi(0) = x0

i

yi(k) = C[i](k)x[i](k) + vi(k)
(2.9a)

global:
x(k) = A(k)x(k − 1) + w(k) with x(0) = x0

y(k) = C(k)x(k) + v(k)
(2.9b)

Example: (Three Agent Network) All three agents in this example have a state vector
of size ni = 2 ∀i ∈ N and their system matrix is assumed to be the identity matrix
Ai = I2×2 ∀ i ∈ N . Furthermore the dimensions of the measurement are m = {2, 3, 3} and
the time independent measurement matrices Ci and their reduced analogous C[i] are given
by

C1 =

(
16 12 0 0 0 0
−16 4 16 −4 0 0

)

C[1] =

(
16 12 0 0
−16 4 16 −4

)

C2 =





−16 4 16 −4 0 0
0 0 32 −24 0 0
0 0 −12 −2 12 2



 C[2] = C2

C3 =





0 0 −12 −2 12 2
0 0 0 0 12 10
0 0 0 0 −3 8



 C[3] =





−12 −2 12 2
0 0 12 10
0 0 −3 8



 .

Analogously the reduced state vectors x[i] are defined as

x[1] =
[
x1 x2

]T
x[2] =

[
x1 x2 x3

]T
x[3] =

[
x2 x3

]T

and the global model is given by




x1(k)
x2(k)
x3(k)



 =





A1 0 0
0 A2 0
0 0 A3









x1(k − 1)
x2(k − 1)
x3(k − 1)



+





w1

w2

w3









y1(k)
y2(k)
y3(k)



 =





C1

C2

C3









x1(k)
x2(k)
x3(k)



+





v1
v2
v3



 .

8 2 Problem Statement

Chapter 3

Kalman Filter Algorithms

In this chapter different Kalman Filter algorithms will be derived. As an introduction to the
terminology of Kalman Filters, the standard Kalman Filter found by R. E. Kalman in 1960
[10] will be briefly described in Section 3.1. This algorithm calculates a global state estimate
of the multi agent system using all available information. Conversely, the aim of a distributed
filter is to parallelize the state estimation such that every node determines its state estimate
independently. Due to the communication restrictions every node can only use a limited
amount of information to calculate a state estimate. Based on those restrictions the first
distributed algorithm is introduced as a non-optimal form of the global Kalman Filter in Sec-
tion 3.2. In Section 3.3 the concept of distributed Kalman Filtering using joined estimates
is introduced. This idea is taken from a model based data fusion algorithm [2] which will be
shortly introduced in Section 3.3.1. Afterwards this method is applied to the systems under
consideration in Section 3.3.2. Since only a filter for static network systems could be derived
in Section 3.3.1 this fusion algorithm is modified in Section 3.3.3 to handle graph changes.

3.1 Global Kalman Filter

A Kalman Filter is a state observer invented by R. E. Kalman in 1960 [10] designed for
systems of the form (2.9). The resulting estimate is unbiased and statistically optimal with
respect to the covariance of the estimation error [13]. The classical Kalman Filter consist of
two steps:

1. Update
The state prediction x̂(k|k − 1) of the previous timestep is updated using the current
measurement y(k). The normal Kalman Filter uses a linear function to calculate the
updated state estimate with

x̂(k|k) = L1(k)x̂(k|k − 1) + L2(k)y(k). (3.1a)

2. Prediction
By using the system equation (2.9) and the updated state estimate x̂(k|k), the state

9

10 3 Kalman Filter Algorithms

estimate x̂(k + 1|k) of time k is predicted using

x̂(k + 1|k) = A(k)x̂(k|k). (3.1b)

The state estimate x̂(k|k) of the Kalman Filter must be unbiased and statistically optimal
[13]. Therefore L1(k) and L2(k) must generate an unbiased estimate

E [x̂(k|k)− x(k)]
!

= 0⇔ E[x̂(k|k − 1)− x(k)] = 0 (3.2a)

and minimize the covariance matrix P(k|k) of the estimation error, with

P(k|k) = E
[

(x̂(k|k)− x(k))(x̂(k|k)− x(k))T
]

.

In the case of a global Kalman Filter, the second criterion is equivalent to minimizing the
trace of P(k|k) giving

L1, L2 = argmin
L1, L2

tr(P(k|k)). (3.2b)

By using (3.1) in (3.2a) it can be determined that

L1(k) = I − L2(k)C(k).

This leads to the following observation equations of the global Kalman Filter

x̂(k|k) = x̂(k|k − 1) + K(k)(y(k)−Cx̂(k|k − 1)) (3.3a)

x̂(k + 1|k) = Ax̂(k|k) with x̂(1|0) = x̂0 (3.3b)

where ŷ(k) = Cx̂(k) is the measurement prediction and K(k) = L2(k) is the Kalman gain.
This leads to a recursive state estimation, as visualized in Fig. 3.1. Using the model equations
(2.9) and the estimation equations (3.3) the covariance matrices P of the estimation error
x̃ for the global model are given by

P(k|k) = E
[

x̃(k|k)x̃(k|k)T
]

=
[

I −K(k)C(k)
]

P(k|k − 1)
[

I −C(k)TK(k)T
]

+ K(k)R(k)K(k)T

(3.4a)

P(k + 1|k) = E
[

x̃(k + 1|k)x̃(k + 1|k)T
]

= A(k)P(k|k)A(k) + Q(k)
(3.4b)

where x̃(k + 1|k) = x(k)− x̂(k + 1|k) and x̃(k|k) = x(k)− x̂(k|k) are the prediction and
the estimation error, respectively. Since K(k) must fulfill (3.2b), it can be calculated using

3.1 Global Kalman Filter 11

Measurement y(k)

Gain calc. K(k)

Update x̂(k|k)

Prediction x̂(k + 1|k)

k=k+1

Fig. 3.1: Schematic representation of the global Kalman Filter algorithm. By using a global
Kalman Filter, all measurements y(k) in the network are available for the state estimation. The
gain calculation is performed online because a time dependent system is assumed.

the following minimization problem

K(k) = argmin
K(k)

tr(P(k|k)). (3.5)

It is shown in Appendix A.2 that the conditions for an optimal K become

K(k) = P(k|k − 1)C(k)T
[

C(k)P(k|k − 1)C(k)T + R(k)
]−1
. (3.6)

Using (3.3), (3.4) and (3.6) the global Kalman Filter algorithm can be summarized as fol-
lows:

global Kalman Filter:

K(k) = P(k|k − 1)C(k)T
[
C(k)P(k|k − 1)C(k)T + R(k)

]
−1

x̂(k|k) = x̂(k|k − 1) + K(k)(y(k)−C(k)x̂(k|k − 1))

P(k|k) =
[
I −K(k)C(k)

]
P(k|k − 1)

[
I −C(k)TK(k)T

]

+ K(k)R(k)K(k)T
(3.7)

x̂(k + 1|k) = A(k)x̂(k|k) with x̂(1|0) = x̂0

P(k + 1|k) = A(k)P(k|k)A(k) + Q(k) with P(1|0) = P0

It can be seen in (3.1) that the Kalman gain K can be calculated offline, if the matrices A

and C are time independent and assumptions about the covariances R and Q can be made
a priori to the simulation.

12 3 Kalman Filter Algorithms

Communication

x̂j(k) ∀j ∈ N[i]

Get x̂[i]

Measurement yi(k)

Gain calc. Ki(k)

Update x̂i(k|k)

Prediction x̂i(k + 1|k)

k=k+1

Fig. 3.2: Schematic representation of a distributed Kalman Filter using only local measurements
yi(k). The communication of the state predictions x̂i(k|k + 1) is needed, since the local update
equation (3.8) of the system is dependent on the subsystem state prediction x̂[i](k|k − 1) of the
former timestep. The local Kalman gain Ki(k) must be calculated online, if the system dynamics
are time dependent.

3.2 Distributed Kalman Filter using Local

Measurements

This distributed Kalman Filter is based on the global filter given in Section 3.1. To guarantee
that the algorithm is separable among nodes, the calculation of a local state estimate x̂i must
depend only on locally available information. In other words, every node has only access to
its measurement vector yi. The resulting algorithm is schematically shown in Fig. 3.2. It can
be seen, that communication of the state prediction x̂i(k + 1|k) is allowed among neighbors.
This is necessary since the local measurement equation (2.9) is dependent on the subsystem
state estimate x[i]. When using this algorithm, the observation equations for every single
node i ∈ N become

x̂i(k|k) = x̂i(k|k − 1)

+Ki(k)
(

yi(k)− C[i](k)x̂[i](k|k − 1)
)

x̂i(k + 1|k) = Ai(k)x̂i(k|k) with x̂i(1|0) = x̂0
i .

(3.8)

When (3.8) is written in matrix form

x̂(k|k) = x̂(k|k − 1) + K(k) (y(k)−C(k)x̂(k|k − 1)) (3.9)

x̂(k + |k) = A(k)x̂(k|k) with x̂(1|0) = x̂0

3.2 Distributed Kalman Filter using Local Measurements 13

the Kalman Matrix K(k), diag{K} =
[

K1 . . . Kη
]

becomes block diagonal. To isolate

the free parameters of K(k) for the optimization problem a matrix decomposition was used.
This idea was inspired by [2]. Following this paper, the decoupling Kalman gain can be
expressed by a sum

K(k) =
η
∑

i=1

Ui
TKi(k)Vi(k) (3.10)

with Ui =
[

0ni×ni(i−1) Ini×ni 0ni×ni(η−i)
]

Vi(k) =
[

0
mi×

∑i−1

j=1
mj

Imi×mi 0mi×
∑η

j=i+1
mj

]

where the matrices 0 and I are the zero and the identity matrix respectively.

Example: (Three Agent Network) For the three agent network introduced in Section 2
the Kalman Matrix K for the distributed algorithm is given by

K =





[K1] 0 0
0 [K2] 0
0 0 [K3]



 with

dim(K1) = 2× 2
dim(K2) = 2× 3
dim(K3) = 2× 3.

The decomposition matrices Ui and Vi become

U1 =

[
1 0 0 . . . 0
0 1 0 . . . 0

]

V1 =

[
1 0 0 . . . 0
0 1 0 . . . 0

]

U2 =

[
0 0 1 0 0 0
0 0 0 1 0 0

]

V2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0





U3 =

[
0 . . . 0 1 0
0 . . . 0 0 1

]

V3 =





0 . . . 0 1 0 0
0 . . . 0 0 1 0
0 . . . 0 0 0 1





The problem of calculating an optimal diagonal matrix is known in many applications, e.g.
[2, 4]. Following [2], in this thesis the optimization criterion (3.2b) for the global Kalman
Filter is used to calculate the Kalman gain (3.10), even though this does not lead to an
optimal result. Therefore the following optimization problem

K(k) = argmin
K(k)

tr(P(k|k)) (3.11)

s.t. K(k) =
η
∑

i=1

Ui
TKi(k)Vi(k)

is given for the gain matrix. It is shown in Appendix A.3 that the following Kalman gains

14 3 Kalman Filter Algorithms

Ki ∀i ∈ N solve this optimization problem

Ki(k) = −Υi(k)
(

Ψi(k)
)−1

with Υi(k) = UiP(k|k − 1)Ci(k)
T

Ψi(k) = Ci(k)P(k|k − 1)Ci(k)
T +Ri(k).

(3.12)

Offline Gain Calculation

It is possible, that in a special application the graph of the network is static and the matrices
A and C are time independent. If assumptions about the covariances R and Q can be
made a priori to the experiment the Kalman gains Ki can then be calculated offline. In this
case, the estimation error covariance P(k|k − 1) in (3.12) can be calculated using (3.4b).
Then the distributed Kalman filter (dKF) with offline gain calculation can be summarized as
follows:

dKF using local measurements (offline gain calculation)

offline: Ki(k) = UiP(k|k − 1)Ci
T
[
CiP(k|k − 1)Ci

T +Ri
]
−1

P(k|k) =
[
I −K(k)C

]
P(k|k − 1)

[
I −CTK(k)T

]

+ K(k)RK(k)T
(3.13)

P(k + 1|k) = AP(k|k)A + Q with P(1|0) = P0

online: x̂i(k|k) = x̂i(k|k − 1) +Ki(k)
(
yi(k)− C[i]x̂[i](k|k − 1)

)

x̂i(k + 1|k) = Aix̂i(k|k) with x̂i(1|0) = x̂0
i

Communication : x̂j(k) ∀j ∈ N[i]

Online Calculation

Usually assumptions about a time independent graph do not hold. In this case Υi and Ψi
need to be calculated online. This has to be done independently in every node without
involving further communication. Using the same argumentation as in (2.7) we can rewrite
(3.12) in

Υi(k) = p[i](k|k − 1)C[i](k)
T (3.14)

Ψi(k) = C[i](k)P[i](k|k − 1)C[i](k)
T +Ri(k)

with P[i](k|k − 1) = GxiP(k|k − 1)(Gxi)
T being the covariance of the subsystem estimation

error x̃[i](k|k − 1) and p[i](k|k − 1) being the columns of P[i](k|k − 1) corresponding to x̃i.
Even though C[i] and Ri in (3.14) are known by node i, the calculation of P[i](k|k − 1)
in (3.14) requires the Kalman gains Kj∀j ∈ N[i] and measurement matrices Cj ∀j ∈ N[i].

3.3 Distributed Kalman Filter with Data Fusion 15

Therefore P[i](k|k−1) cannot be calculated analytically and is therefore approximated using

P[i](k|k − 1) = E
[

x̃(k|k − 1)x̃(k|k − 1)T
]

(3.15)

≈
1

k

k∑

l=1

(

(x[i] − x̂[i](l|l − 1))(x[i] − x̂[i](l|l − 1))T
)

where x[i] is the mean value of x̂[i](k|k− 1). This leads to a completely distributed recursive
algorithm given by:

dKF using local measurements (offline gain calculation)

P[i](k|k − 1) =
1

k

k∑

l=1

(
(x[i] − x̂[i](l|l − 1))(x[i] − x̂[i](l|l− 1))T

)

Ki(k) = p[i](k|k − 1)C[i](k)
T

[
C[i](k)P[i](k|k − 1)C[i](k)

T +Ri(k)
]
−1 (3.16)

x̂i(k|k) = x̂i(k|k − 1) +Ki(k)
(
yi(k)− C[i](k)x̂[i](k|k − 1)

)

x̂i(k + 1|k) = Ai(k)x̂i(k|k) with x̂i(1|0) = x̂0
i

Communication : x̂j(k) ∀j ∈ N[i]

3.3 Distributed Kalman Filter with Data Fusion

Using only local information for the state estimation result in a strongly restricted optimiza-
tion problem as given in Section 3.2. Therefore state estimates can be improved by using
more information about the global system. Consequently, extending the available information
for the state estimation in every node is the objective for the Kalman Filter derived in this
section. The idea for its realization is taken from the model based fusion algorithm given
in [2] leading to an extension of the state vector. To clarify this concept it will be briefly
introduced in Section 3.3.1. Afterwards this method is applied to networked systems with
static graphs in Section 3.3.2. Finally, this fusion algorithm is modified in Section 3.3.3 for
systems with a dynamic graph.

3.3.1 Data Fusion in Sensor Networks

In the model based data fusion algorithm derived in [2] the position of one mobile device is
estimated by a network of σ locally distributed sensor nodes S. The communication abilities
of the sensors among each other are modeled using a static graph Gσ = (S, Eσ) where the
edge (p, q) is in Eσ if and only if sensor p and q can exchange messages. Sensors to which
sensor p can communicate are called neighbors and are contained in the set S[p], including
sensor Sp itself. It is assumed that the dynamics of the observed device are time invariant

16 3 Kalman Filter Algorithms

offline:

Communication

x̂q(k) ∀q ∈ S[p]

Measurement yp(k)

Gain calc. Kp(k)

Weight calc. W[p](k)

Update x̂loc,p(k|k)

Data fusion x̂reg,p(k|k)

Prediction x̂loc,p(k + 1|k)

k = k + 1

Fig. 3.3: Schematic representation of the data fusion algorithm for sensor networks introduced
in [2]. The considered system consists of multiple sensors monitoring one target. Every sensor p
estimates the position of the target x̂loc,p using local measurements yp. All local position estimates
are joined into a regional estimate x̂loc,p in the data fusion step using weights (see (3.18) for
details). The gains Kp and weights Wp are calculated offline.

and the measurements are taken using an active mobile architecture. Similar to (2.3) and
(2.5), the dynamics of the mobile device and the measurement equation of the sensor nodes
S are given by the time invariant stochastic linear model

x(k + 1) = Ax(k) + w(k)

yp(k) = Cpx(k) + v(k) ∀p ∈ S.
(3.17)

When state estimation is done in a system like this, usually every sensor has its individual
Kalman filter using only local measurements yp. This leads to a decoupled estimation, where
every node uses an algorithm similar to Fig. 3.1. In [2] a communication step is introduced
to couple the state estimation in such a system. This algorithm is schematically shown in
Fig. 3.3. It can be seen in Fig. 3.3 that all local estimates x̂loc,p(k|k) of the state x(k)
are communicated among neighboring sensors and merged based on a weighted graph. This
leads to the following observation equations for every node p ∈ S:

x̂loc,p(k|k) = x̂loc,p(k|k − 1) +Kp
(

yp − Cpx̂
loc,p

)

x̂reg,p(k|k) =
∑

q∈S[p]

wpqx̂
loc,q

x̂loc,p(k + 1|k) = Ax̂reg,p(k|k)

(3.18)

3.3 Distributed Kalman Filter with Data Fusion 17

where x̂loc,p is the local estimate of the state x(k) of the mobile device calculated by sensor
node p. The Kalman gains Kp ∀p ∈ S and the weights wpq ∀p, q ∈ S are optimized offline
in [2]. Please refer to [1] or [2] for details on this optimization procedure.

3.3.2 Data Fusion for Multi Agent Systems

In this section a distributed Kalman Filter is derived, which uses the concept of joined
estimates for the system under consideration. The idea is, to let every node estimate the
state of itself and its neighbors. If this is done, more estimates of one state variable are
available and can be joined using the algorithm introduced in Section 3.3.1. In order to use
this idea for the introduced systems, the given model needs to be extended. The new local
state ξi ∈ R

n[i] of every node is now given by the former subsystem state x[i] leading to the
extended local system equation

ξi(k) = A[i](k)ξi(k − 1) + w[i] with ξi(0) = ξ0i . (3.19a)

Since the measurements available in the network are fixed, the new measurement equation
is given by (2.7) using ξi = x[i]:

yi(k) = C[i](k)ξi(k) + vi(k). (3.19b)

Using (3.19) the extended global model can be given in matrix form with

ξ(k) = Ā(k)ξ(k − 1) + w̄ with ξ(0) = ξ0

y = C̄(k)ξ(k) + v(k)
(3.20)

using

w̄ =
[

w[1]
T w[2]

T . . . w[η]
T
]
T

Ā(k) =







A[1] 0
. . .

0 A[ζi]







C̄(k) =







C[1] 0
. . .

0 C[ζi]






.

In (3.20) ξ ∈ R
n̄, n̄k =

∑η
i=1 n[i] is the state vector1 of the extended system and w̄ ∈ R

n̄ is

the process noise with covariance Q̄ = E[w̄w̄T].

Example: (Three Agent Network) For the three agent network introduced in Section 2
the extended model equations become














[
x1(k)
x2(k)

]





x1(k)
x2(k)
x3(k)





[
x2(k)
x3(k)

]














=





A[1] 0 0
0 A[2] 0
0 0 A[3]


















[
x1(k − 1)
x2(k − 1)

]





x1(k − 1)
x2(k − 1)
x3(k − 1)





[
x2(k − 1)
x3(k − 1)

]



























[
w1

w2

]





w1

w2

w3





[
w2

w3

]














1To simplify notation, the dependency of n̄k on the discrete time k will be dropped from now on.

18 3 Kalman Filter Algorithms





y1(k)
y2(k)
y3(k)



 =





C[1] 0 0
0 C[2] 0
0 0 C[3]


















[
x1(k)
x2(k)

]





x1(k)
x2(k)
x3(k)





[
x2(k)
x3(k)

]














+





v1
v2
v3





When the system given in (3.20) is used for state estimation, a distributed Kalman Filter
could be derived analogously to Section 3.2, giving the following local estimation equations:

ξ̂i(k|k) = ξ̂loc
i (k|k − 1) + K̄i(k)

(

yi(k)− C[i](k)ξ̂
loc
i (k|k − 1)

)

ξ̂loc
i (k + 1|k) = A[i](k)ξ̂

loc
i (k|k) with ξ̂loc

i (1|0) = x̂0
[i] (3.21)

where the local state estimate ξ̂loc
i (k|k) of node Ni is a column vector containing the state

estimates x̂loc
ji ∀j ∈ N[i] of its neighbors Nj. When looking at (3.21) one can see, that

this Kalman Filter would be completely decoupled among different nodes. Therefore a data
fusion step, analogously to the Kalman Filter introduced in [2], is added to increase the
performance. The resulting algorithm has the same structure as the one shown in Fig. 3.3
but uses a generally time dependent system model. The new algorithm is visualized in
Fig. 3.4. It can be seen in Fig. 3.4 that the local state estimates ξ̂loc

i (k|k) are communicated

among neighbors and joined to a regional state estimate ξ̂reg
i (k|k) using weights, similar to

the fusion algorithm in Section 3.3.1. When a data fusion step is introduced in (3.21) the
following local estimation equations can be derived

ξ̂loc
i (k|k) = ξ̂loc

i (k|k − 1) + K̄i(k)
(

yi(k)− C[i](k)ξ̂
loc
i (k|k − 1)

)

ξ̂
reg
i (k|k) = Wi(k)ξ̂

loc(k|k)

ξ̂loc
i (k + 1|k) = A[i](k)ξ̂

reg
i (k|k) with ξ̂loc

i (1|0) = x̂0
[i]

(3.22)

where ξ̂loc(k|k) =
[

ξ̂loc
1
T ξ̂loc

2
T . . . ξ̂loc

η
T
]T

is a column vector containing all local state

estimates. The weighting matrixWi in (3.22) contains the the sub matrices Wji ⊂Wi if j ∈
N[i], one under the other. The single weights Wji are given by

Wji =
[

Ω1
i . . . Ωηi

]

(3.23)

using Ωji =
[

Ω1j
i . . . Ω

ζjj

i

]

with Ωlji =







w
lj
i if N[i](j) = N[j](l)

0np×np otherwise

where p = N[j](l) describes the lth element of the set N[j]. In (3.23) wlji is the weight for the
state estimate of Nl calculated by Nj and used by Ni. In order to get an unbiased estimate,

3.3 Distributed Kalman Filter with Data Fusion 19

Communication

ξ̂j(k) ∀j ∈ N[i]

Get ξ̂loc
[i]

Measurement yi(k)

Gain calc.K̄i(k)

Weight calc. Wi(k)

Update ξ̂loc
i (k|k)

Data fusion ξ̂reg
i (k|k)

Prediction ξ̂loc
i (k + 1|k)

k=k+1

Fig. 3.4: Schematic representation of the distributed Kalman Filter using data fusion for the
systems under consideration. To generate multiple estimates of one position, every node estimates
its own position and the position of its neighbors. This is modeled using the extended state
variables ξ̂loc

i (3.19). All position estimates are communicated and joined using weights. This
generates regional estimates ξ̂reg

i which are used for prediction (see (3.22) for details).

the estimation equation has to fulfill (3.2a), which leads to the following constrain for Wji

Wji(k)In̄×nj = Inj×nj . (3.24)

Example: (Three Agent Network) In the three agent network the vector ξ̂loc of local
estimates and the weighting matrix W have the following form

ξ̂loc =
([
x̂loc

11 x̂loc
21

] [
x̂loc

12 x̂loc
22 x̂loc

32

] [
x̂loc

23 x̂loc
33

])T

W =

















[
W11

W21

]





W12

W22

W32





[
W23

W33

]

















=

















w11
1 0 w12

1 0 0 0 0

0 w21
1 0 w22

1 0 0 0

w11
2 0 w12

2 0 0 0 0

0 w21
2 0 w22

2 0 w23
2 0

0 0 0 0 w32
2 0 w33

2

0 0 0 w22
3 0 w23

3 0

0 0 0 0 w32
3 0 w33

3

















20 3 Kalman Filter Algorithms

It can be seen in (3.23) that the weighting matrices Wji includes many zero columns. There-

fore (3.22) can be rewritten for every estimate x̂loc
ji ⊂ ξ̂

reg
i ∀j ∈ N[i] in

x̂loc
ji (k|k) = Wji(k)G

ξ
ji(k)

TG
ξ
ji(k)ξ̂

loc(k|k)

= W[ji](k)x̂
loc
[ji](k|k)

(3.25)

where x̂loc
[ji] contains all state estimates of node Nj which where communicated to node Ni

by its neighbors Nj ∀j ∈ N[i]. The selection matrix Gξji is given by

G
ξ
ji =

[

H
1j
i H

ηj
i

]

(3.26)

using H lji =







h1,1 h1,qm
. . .

hpm,1 hpm,qm







with hp,q =







InJ×nJ if (N[L](p)=L)∩(N[L](q)=J)

L=N[i](l), J=N[i](j)

0nJ×nJ otherwise

with pm and qm being the number of common neighbors N[i] ∩N[J] and N[i] ∩N[L], respec-

tively. Using Gξji(k) the constrain (3.24) can be rewritten in

W[ji](k)e(k) = Inj×nj with e(k) = Gξji(k)In̄×nj (3.27)

Using (3.25) and introducing the column vector ξ̂loc
[i] with x̂loc

[ji] ∈ ξ̂
loc
[i] if j ∈ N[i], the local

estimation equations can be written, equivalent to (3.22), as

ξ̂loc
i (k|k) = ξ̂loc

i (k|k − 1) + K̄i(k)
(

yi(k)− C[i](k)ξ̂
loc
i (k|k − 1)

)

ξ̂
reg
i (k|k) =W[i](k)ξ̂

loc
[i] (k|k) (3.28)

ξ̂loc
i (k + 1|k) = A[i](k)ξ̂

reg
i (k|k) with ξ̂loc

i (1|0) = x̂0
[i]

where W[i] is a block diagonal matrix containing W[ji] ∈ W[i] if j ∈ N[i]. The schematic
representation of (3.28) is shown in Fig. 3.4. When (3.28) is written in matrix form

ξ̂loc(k|k) = ξ̂reg(k|k − 1) + K̄(k)(y− C̄(k)ξ̂reg(k|k − 1))

ξ̂reg(k|k) = W(k)ξ̂loc(k|k) (3.29)

ξ̂reg(k + 1|k) = Ā(k)ξ̂reg(k|k) with ξ̂loc(1|0) = x̂0

with W =
[

W1
T . . . Wη

T
]
T . The Kalman Matrix K̄(k) becomes block diagonal in

(3.29) with diag{K̄} =
[

K̄1 . . . K̄η
]

.

3.3 Distributed Kalman Filter with Data Fusion 21

Example: (Three Agent Network) Using the selection matrices Gξji the zeros in W can
be eliminated giving the following reduced state vectors and weighting matrices for the single
systems:

x̂loc
[11] =

(
x̂loc

11 x̂loc
12

)
T W[11] =

(
w11

1 w12
1

)

x̂loc
[21] =

(
x̂loc

21 x̂loc
22

)
T W[21] =

(
w21

1 w22
1

)

x̂loc
[12] =

(
x̂loc

11 x̂loc
12

)
T W[11] =

(
w11

2 w12
2

)

ξ̂loc
[22] =

(
x̂loc

21 x̂loc
22 x̂loc

23

)
T W[22] =

(
w21

2 w22
2 w23

2

)

ξ̂loc
[32] =

(
x̂loc

22 x̂loc
23

)
T W[32] =

(
w22

2 w23
2

)

ξ̂loc
[23] =

(
x̂loc

22 x̂loc
23

)
T W[23] =

(
w22

3 w23
3

)

ξ̂loc
[33] =

(
x̂loc

32 x̂loc
33

)
T W[33] =

(
w32

3 w33
3

)
.

Using the extended model equations (3.20) and the estimation equations (3.22) the covari-
ance matrices P̄ of the estimation error ξ̃ are given by

P̄(k|k) = W(k)
[

I − K̄(k)C̄(k)
]

P̄(k|k − 1)
[

I − C̄(k)T K̄(k)T
]

W(k)T

+ W(k)K̄(k)R(k)K̄(k)TW(k)T (3.30)

P̄(k + |k) = Ā(k)P̄(k|k)Ā(k) + Q̄(k).

To isolate the free parameters of K̄(k) for the optimization problem (3.2b) again a matrix
decomposition was used.

K̄(k) =
η
∑

i=1

Ūi(k)
T K̄i(k)V̄i(k) (3.31)

with Ūi(k) =
[

0n[i]×n[i](i−1) In[i]×n[i]
0n[i]×n[i](η−i)

]

V̄i(k) =
[

0
mi×

∑i−1

j=1
mj

Imi×mi 0mi×
∑η

j=i+1
mj

]

where the matrices 0 and I are the zero and the identity matrix respectively. Using the the
optimality constrain (3.24) on the weights and matrix decomposition (3.31) in (3.2b) one
gets the following optimization problem

[K̄(k), W(k)] = argmin
K̄(k)

tr(P̄(k|k)) (3.32)

s.t. K̄(k) =
η
∑

i=1

Ūi(k)
T K̄i(k)V̄i(k)

W(k)In̄×ni = In×ni.

22 3 Kalman Filter Algorithms

Example: (Three Agent Network) For the three agent network the Kalman Matrix K̄
becomes

K̄ =













[
K̄11

K̄21

]

0 0

0





K̄12

K̄22

K̄32



 0

0 0

[
K̄23

K̄33

]













with

K̄1 =

[
K̄11

K̄21

]

, dim(K̄1) = 5× 2

K̄2 =





K̄12

K̄22

K̄32



 , dim(K̄2) = 7 × 3

K̄3 =

[
K̄23

K̄33

]

, dim(K̄3) = 5× 3.

It is shown in [2] that an integrated solution of this problem with respect to both constrains
is not possible. Furthermore the optimality constrain on W in (3.32) can be divided in one
constrain for every sub matrix as given in (3.27). Therefore (3.32) can be separated in

K̄(k) = argmin
K̄(k)

tr(P̄(k|k))

s.t. K̄(k) =
η
∑

i=1

Ūi(k)
T K̄i(k)V̄i(k)

W(k) = W(k − 1)

(3.33)

and ∀i ∈ N[i]

W[ji](k) = argmin
W[ji](k)

tr
(

W[ji](k)Φji(k)W[ji](k)
T
)

s.t. W[ji](k)e(k) = Inj×nj

(3.34)

with

e(k) = Gξji(k)In̄×nj

Φji(k) = Gξji(k)
[

I − K̄(k)C̄(k)
]

P̄(k|k − 1)
[

I − C̄(k)T K̄(k)T
]

G
ξ
ji(k)

T

+ Gξji(k)K̄(k)R(k)K̄(k)TGξji(k)
T .

It is shown in Appendix A.4 that the optimal solution to the optimization problem (3.33) is
given by2







vec[K̄1]
...

vec[K̄η]







= −







Ῡ11
T ⊗ Ξ̄11 . . . Ῡ1η

T ⊗ Ξ̄1η
...

. . .
...

Ῡη1
T ⊗ Ξ̄η1 . . . Ῡηη

T ⊗ Ξ̄ηη







−1 





Ψ̄1
...

Ψ̄η







(3.35)

2All variables K̄, Ῡ, Ξ̄, Ψ̄ are dependent on the discrete time k in (3.35)

3.3 Distributed Kalman Filter with Data Fusion 23

with

Ψ̄ij(k) = −vec[ŪiW
TWP̄(k|k − 1)C̄iT V̄i

T]

Ξ̄ij(k) = Ūi(k)W(k − 1)TW(k − 1)Ūj(k)
T

Ῡij(k) = V̄jC̄P̄(k|k − 1)C̄T V̄i
T + V̄jRV̄i

T .

The solution to the optimization problem (3.34), also derived in Appendix A.4, becomes

W[ji](k) = δ(k)T
(

I − Γ0
1(k)(Γ

0
1(k))T

)

(3.36)

with δ(k) = (Φji(k))
−1e(k)

(

e(k)T (Φji(k))
−1e(k)

)−1

Γ0(k) = Null

([

Φji(k) e(k)
e(k)T 0ni×ni

])

Γ0
1(k) = Γ0[1 : n[i], :](k)

where Null(.) denotes a matrix containing the vectors spanning its null space and .[1 : n, :]
denotes the first n lines of a matrix.

Offline Gain Calculation

It can be seen in (3.35) and (3.36) that the calculation of K̄i and W[i] is highly coupled
between nodes and that even information from outside the subsystem N[i] are needed to

calculate ξ̂loc
i . Therefore this approach can only be used for special applications where the

graph of the network is static, the matrices Ā and C̄ are time independent and assumptions
about the covariances R and Q̄ can be made a priori. Then K̄i and W[i] can be calculated
offline and provided to the mobile devices before they start operating. This leads to the
following algorithm:

dKF with data fusion (offline gain calculation)

offline: K̄(k) = −






Ῡ11
T ⊗ Ξ̄11 . . . Ῡ1η

T ⊗ Ξ̄1η

...
. . .

...
Ῡη1

T ⊗ Ξ̄η1 . . . Ῡηη
T ⊗ Ξ̄ηη






−1 




Ψ̄1

...
Ψ̄η






W[ji](k) = δ(k)T
(
I − Γ0

1(k)(Γ0
1(k))T

)

P̄(k|k) = W(k)
[
I − K̄(k)C̄

]
P(k|k − 1)

[
I − C̄T K̄(k)T

]
W(k)T

+ W(k)K̄(k)RK(k)TW(k)T

(3.37)

P̄(k + 1|k) = ĀP̄(k|k)Ā + Q̄ with P̄(1|0) = P̄0

online: ξ̂loc
i (k|k) = ξ̂reg

i (k|k − 1) + K̄i(k)
(

yi(k)− C[i]ξ̂
reg
i (k|k − 1)

)

24 3 Kalman Filter Algorithms

Communication : ξ̂j(k) ∀j ∈ N[i]

ξ̂
reg
i (k|k) =Wi(k)ξ̂

loc(k|k)

ξ̂
reg
i (k + 1|k) = A[i]ξ̂

reg
i (k|k) with ξ̂reg

i (1|0) = x̂0
[i]

Online Gain Calculation

To calculate K̄i and Wi online, (3.35) and (3.36) need to be separable but the attempt to
show this property failed. It will be shown in the next section how the whole problem can be
rewritten to get an algorithm that can be calculated online.

3.3.3 Data Fusion for Dynamic Multi Agent Systems

In this section the algorithm introduced in Section 3.3.2 will be modified to make online
gain calculation possible. The idea is to introduce a second communication step, similar
to the distributed Kalman filter introduced in Section 3.2. This leads to a new algorithm,
schematically shown in Fig. 3.5. It can be seen in Fig. 3.5 that the joined state estimates
x̂i(k + 1|k) are now communicated to neighboring nodes. Therefore every node only needs
to calculate a joined estimate of its own state x̂i(k|k) and not of the complete subsystem

ξ̂
reg
i (k|k) as in Fig. 3.4. Using this framework the observation equations (3.22) for every

single node Ni ∈ N change to

ξ̂loc
i (k|k) = ξ̂loc

i (k|k − 1) + K̄i(k)
(

yi(k)− C[i](k)ξ̂
loc
i (k|k − 1)

)

= x̂[i](k|k − 1) + K̄i(k)ỹi(k)

x̂i(k|k) = W̄i(k)ξ̂
loc(k|k) (3.38)

x̂i(k + 1|k) = Ai(k)x̂i(k|k) with x̂i(1|0) = x̂0
i

where W̄i is given by the lines of Wi that correspond to x̂loc
ii in ξ̂loc

i (k|k). When (3.38) is
written in matrix, the following estimation equations are obtained

ξ̂loc(k|k) = Gx(k)x̂(k|k − 1) + K̄(k)ỹ(k)

x̂(k|k) = W̄(k)ξ̂loc(k|k)

x̂(k + 1|k) = A(k)x(k|k) with x̂(1|0) = x̂0

(3.39)

with W̄ =
[

W̄1
T . . . W̄η

T
]
T . By substituting the first subequation of (3.39) into the

second subequation, the estimation equation (3.39) can be rewritten in

x̂(k|k) = W̄(k)Gx(k)x̂(k|k − 1) + W̄(k)K̄(k)ỹ(k)

= x̂(k|k − 1) + ¯̄K(k)ỹ(k)
(3.40)

x̂(k + 1|k) = A(k)x̂(k|k) with x̂(1|0) = x̂0

3.3 Distributed Kalman Filter with Data Fusion 25

Communication

Communication

ξ̂j(k|k) ∀j ∈ N[i]

Get ξ̂loc
[i] (k|k)

x̂j(k|k − 1) ∀j ∈ N[i]

Get ξ̂loc
[i] (k|k − 1)

Measurement yi(k)

Gain calc.K̄i(k)

Weight calc. Wi(k)

Update ξ̂loc
i (k|k)

Data fusion x̂i(k|k)

Prediction x̂i(k + 1|k)

k=k+1

Fig. 3.5: Schematic representation of the extended distributed Kalman Filter using data fusion. To
simplify the filter given in Fig. 3.4, it is extended by an additional communication step. Consequently
only the local state xi(k) has to be predicted by every node (3.38). To incorporate data fusion,
still the extended state ξ̂loc

i (k|k) needs to be estimated.

with ¯̄K(k) = W̄(k)K̄(k) =
[

¯̄K1(k)
T . . . ¯̄Kη(k)

T
]
T

and W̄(k)Gx(k) = I, due to (3.24).

Example: (Three Agent Network) Using the weighting matrix W for this example, in-
troduced in Section 3.3.2, the new weighting matrix W̄ becomes

W̄ =





w11 0 w12 0 0 0 0

0 w21 0 w22 0 w23 0

0 0 0 0 w32 0 w33





Given the constrain that communication is only allowed between neighbors the local estima-

26 3 Kalman Filter Algorithms

tion equations (3.38) change to

ỹi(k) = yi(k)− C[i]x̂[i](k|k − 1)

x̂i(k|k) = x̂i(k|k − 1) + ¯̄K[i](k)ỹ[i](k)

x̂i(k − 1|k) = Ai(k)x̂i(k|k) with x̂i(1|0) = x̂0
i

(3.41)

using ¯̄K[i](k) = ¯̄Ki(k)G
y
i (k)

T

ỹ[i](k) = Gyi (k)ỹ(k) with ỹj(k) ⊂ ỹ[i](k) if j ∈ N[i].

The selection matrix Gyi in (3.41) is given by the nonzero lines of

G
y
I =







g1,i 0
. . .

0 gη,i







with gj,i =







Im[j]×m[j]
if j ∈ N[i]

0m[j]×m[j]
otherwise

.

The new algorithm given in (3.40) and (3.41) is visualized in Fig. 3.6. It can be seen in
Fig. 3.6, that by introducing an additional communication step the observation algorithm
reduces to a form that is similar to the first distributed Kalman Filter introduced in Sec-
tion 3.2. Nevertheless (3.22) uses the measurement information of the whole subsystem N[i]

whereas (3.9) only uses local measurements. This is because in Fig. 3.6 the measurement
prediction error ỹi is communicated among neighbors to calculate ỹ[i] a priori to the update
step.
Similar to (3.4) the covariance matrices P of the estimation error x̃ are given by

P(k|k) =
[

I − ¯̄K(k)C(k)
]

P(k|k − 1)
[

I −C(k)T ¯̄K(k)T
]

+ ¯̄K(k)R(k) ¯̄K(k)T

P(k + 1|k) = A(k)P(k|k)A(k) + Q(k). (3.42a)

Example: (Three Agent Network) The Kalman matrix ¯̄K of the three agent network has
the following form

¯̄K =








[¯̄K11
¯̄K21] 0

[¯̄K12
¯̄K22

¯̄K32]

0 [¯̄K23
¯̄K33]








with

¯̄K1 =
[

¯̄K11
¯̄K21

]

dim = 2× 5

¯̄K2 =
[

¯̄K12
¯̄K22

¯̄K32

]

dim = 2× 8

¯̄K3 =
[

¯̄K23
¯̄K33

]

dim = 2× 6.

To isolate the free parameters of ¯̄K(k) for the optimization problem (3.2b) again a matrix
decomposition can be used

¯̄K(k) =
η
∑

i=1

¯̄Ui
T ¯̄K[i](k)

¯̄Vi(k) (3.43)

3.3 Distributed Kalman Filter with Data Fusion 27

Communication

Communication

x̂j(k) ∀j ∈ N[i]

ŷj(k) ∀j ∈ N[i]

Get x̂[i]

Get ŷ[i]

Data fusion ŷi

Measurement yi(k)

Gain calc. ¯̄Ki

Update x̂i(k|k)

Prediction x̂i(k + 1|k)

k=k+1

Fig. 3.6: Schematic representation of the rearranged distributed Kalman Filter using data fusion
and an additional communication step. It was derived in (3.40) that the Kalman Filter given
in Fig. 3.5 can be rearranged as given in this figure. By using this filter, only the local state
estimates x̂i need to be calculated by every node (3.41). The data fusion is realized by additionally
communicating the measurement error ỹi among neighbors.

with ¯̄Ui =
[

0ni×ni(i−1) Ini×ni 0ni×ni(η−i)
]

¯̄Vi(k) = Gyi (k).

The minimization problem (3.2b) is then given by

¯̄K(k) = argmin
¯̄
K(k)

tr(P(k|k)) (3.44)

s.t. ¯̄K(k) =
η
∑

i=1

¯̄Ui
T ¯̄Ki(k)

¯̄Vi(k)

28 3 Kalman Filter Algorithms

and can be solved similar to Section 3.2 leading to the optimal Kalman gains ¯̄Ki

¯̄Ki(k) = − ¯̄Υi(k)
(¯̄Ψi(k)

)−1
(3.45)

with ¯̄Υi(k) = ¯̄UiP(k|k − 1) ¯̄C[i](k)
T

¯̄Ψi(k) = ¯̄C[i](k)P(k|k − 1) ¯̄C[i](k)
T +R[i](k)

where ¯̄C[i] = GyiC is the measurement matrix of the subsystem N[i].

Offline Gain Calculation

If the graph of the network is static, the matrices Ā and C̄ are time independent and
assumptions about the covariances R and Q̄ can be made a priori, the Kalman gain can
calculated offline using (3.45) with (3.42) directly. The algorithm is then given by

Extended dKF with data fusion (offline gain calculation)

offline: ¯̄Ki(k) = ¯̄UiP(k|k − 1) ¯̄C[i]
T
[

¯̄C[i]P(k|k − 1) ¯̄C[i]
T +R[i]

]
−1

P(k|k) =
[

I − ¯̄
K(k)C

]

P(k|k − 1)
[

I −CT
¯̄
K(k)T

]

+ ¯̄K(k)R ¯̄K(k)T
(3.46)

P(k + |k) = AP(k|k)A + Q with P(1|0) = P0

online: ỹi(k|k − 1) = yi(k)− C[i]x̂[i](k|k − 1)

Communication : ŷj(k) ∀j ∈ N[i]

x̂i(k|k) = x̂i(k|k − 1) + ¯̄K[i](k)ỹ[i](k)

x̂i(k|k − 1) = Aix̂i(k − 1|k − 1) with x̂i(1|0) = x̂0
i

Communication : x̂j(k) ∀j ∈ N[i]

Online Gain Calculation

The structure of (3.45) is already decoupled and very similar to (3.12). Nevertheless the

optimal Kalman gain (3.45) cannot be simplified similarly since ¯̄C[i] 6= C[i] and Cj ⊂
¯̄C[i] ∀j ∈

N[i]. Therefore information even beyond those available in N[i] are necessary to calculate
¯̄Υi(k) and ¯̄Ψi(k) independently. That is why ¯̄Υi(k) and ¯̄Ψi(k) need to be approximated
using measurements. It can be found in the literature, e.g. [13], that the following equalities

3.3 Distributed Kalman Filter with Data Fusion 29

hold for a global Kalman Filter

E
[

x̃i(k|k − 1)ỹ(k)T
]

= P(k|k − 1)C(k)

E
[

ỹ(k)ỹ(k)T
]

= C(k)P(k|k − 1)C(k)T + R(k).
(3.47)

Therefore ¯̄Υi(k) and ¯̄Ψi(k) can be approximated using

¯̄Υi(k) = E
[

x̃i(k|k − 1)ỹ[i](k)
T
]

≈
1

k

k∑

l=1

(

(xi − x̂i(l|l − 1))(y[i] − ŷ[i](l|l − 1))T
)

¯̄Ψi(k) = E
[

ỹ[i](k)ỹ[i](k)
T
]

(3.48a)

≈
1

k

k∑

l=1

(

(y[i] − ŷ[i](l|l − 1))(y[i] − ŷ[i](l|l − 1))T
)

(3.48b)

with the initial conditions

¯̄Υi(0) = ¯̄UiP
0 ¯̄C[i](0)

¯̄Ψi(0) = ¯̄C[i](0)P0 ¯̄C[i](0)T +R[i](0).

In (3.48) xi and y[i] are the mean values of x̂i(k|k − 1) and ŷ[i](k), respectively. This leads
to the fully distributed algorithm

Extended dKF with data fusion (online gain calculation)

ỹi(k) = yi(k)− C[i]x̂[i](k|k − 1)

Communication : ŷj(k) ∀j ∈ N[i]

¯̄Υi(k) =
1

k

k∑

l=1

(

(xi − x̂i(l|l − 1))(y[i] − ŷ[i](l|l− 1))T
)

¯̄Ψi(k) =
1

k

k∑

l=1

(

(y[i] − ŷ[i](l|l− 1))(y[i] − ŷ[i](l|l − 1))T
)

(3.49)

¯̄Ki(k) = − ¯̄Υi(k)
(¯̄Ψi(k)

)
−1

x̂i(k|k) = x̂i(k|k − 1) + ¯̄K[i](k)ỹ[i](k)

x̂i(k + 1|k) = Aix̂i(k|k) with x̂i(1|0) = x̂0
i

Communication : x̂j(k) ∀j ∈ N[i]

30 3 Kalman Filter Algorithms

Chapter 4

Numerical Example
Self-localization of Mobile Devices

To compare the performance of the distributed Kalman Filters, simulations were done in
Matlab. The investigated system of mobile agents estimates the position of every agent
in a decentralized fashion. Communication and distance measurements are possible among
neighboring mobile nodes and to reachable reference nodes. The set up for this numerical
example and its system dynamics are given in detail in Section 4.1. Afterwards the spec-
ifications used in Matlab are given and the obtained simulation results are described in
Section 4.3.

4.1 System Dynamics

The derivation of the Kalman Filter algorithms in Section 3 was based on the communication
topology and the general linear model of an arbitrary multi-agent system, both introduced
in Section 2. These general system properties will be specified in this section for a system of
robots who estimate their position using a distributed Kalman Filter algorithm. All assump-
tions made in Section 3 also hold for this system. To argue the validity of the generated
results, the chosen parameter will be furthermore discussed in Section 4.2.

4.1.1 Network Properties

The investigated system consists of µ = 6 reference nodesM and η = 8 mobile devices N .
Those are spread on a 2D surface as shown in Fig. 4.1. The positions p = [px py]T of the
reference nodes are chosen as given below

p̌1 =

[

0
0

]

p̌2 =

[

0
4

]

p̌3 =

[

0
8

]

p̌4 =

[

4
0

]

p̌5 =

[

4
4

]

p̌6 =

[

4
8

] (4.1)

31

32 4 Numerical Example: Self-localization of Mobile Devices

0

1

2

3

4

0 1 2 3 4 5 6 7 8

M4

M2 M3

M6M5

N2

N3

N4

N6

N5

N8

N7

M1

N1

y

x

Fig. 4.1: Initial positions of mobile (circles) and reference (squares) nodes. This setup was used
for all simulations given in this section.

and the initial positions of the mobile devices are given by

p0
1 =

[

2.0
1.5

]

p0
2 =

[

4.0
1.0

]

p0
3 =

[

5.5
1.8

]

p0
4 =

[

3.0
3.8

]

p0
5 =

[

1.5
2.8

]

p0
6 =

[

3.5
2.0

]

p0
7 =

[

3.5
3.2

]

p0
8 =

[

6.0
3.7

]

.

(4.2)

The communication topology is modeled using graph theory as introduced in Section 2.1.
Since all properties of the graphs Gη and Gµ are extractable from the adjacency matrixAη and
its equivalent Ãµ for Gµ, only those will be given for the investigated system. Nevertheless
the mobile devices are moving in the 2D plane. That is why both matrices are subject to
changes and are therefore only given for the initial state. Using a communication radius of
ρ = 2.5m the initial matrices Aη and Ãµ become

Aη0 =















1 1 0 0 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 0 0 1 1 1
0 0 0 1 1 1 1 0
1 0 0 1 1 1 0 0
1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 1















Ãµ0 =















1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 1















. (4.3)

4.1 System Dynamics 33

4.1.2 Model Equations

In this example the positions of the moving devices N are estimated. Every node i ∈ R
has a position pi = [pxi p

y
i]
T in the 2D plane. The reference nodesM are static thus their

position does not change over time. Conversely the mobile nodes N are moving in the 2D
plane. The dynamics connected to the node positions can be described by

pi(k + 1) = pi(k) + ∆pi(k) with pi(0) = p0
i ∀i ∈ N (4.4a)

p̌i(k + 1) = p̌i(k) with p̌i() = p̌i ∀i ∈M (4.4b)

where ∆pi is the position shift of node i. To estimate the positions of the mobile agents,
distance measurements are used. The distances d between the mobile nodes N can be
calculated using

d2
ij =

(

pi − pj
)T (

pi − pj
)

with i, j ∈ N . (4.5)

To get a linear measurement equation, (4.5) is linearized around the steady state positions
pi and pj using a first order Taylor approximation, leading to

d2
ji = d

2

ji + 2
(

pi − pj
)T

(pi − pi)− 2
(

pi − pj
)T (

pj − pj
)

(4.6)

with d
2

ji = d2
ji(pi,pj) being the distance between the steady state positions of both nodes.

The distances between the reference nodes and the mobile nodes can be calculated analo-
gously. By introducing the system variables for the mobile nodes Ni ∈ N

xi(k) = pi(k)− pi, ∀i ∈ N

yji(k) = d2
ji(k)− d

2

ji, ∀i, j ∈ N

Cji = 2
(

pi − pj
)T
, ∀i, j ∈ N

(4.7a)

and the variables for the measurements from mobile to reference nodesMi ∈M

y̌ji(k) = d2
ji(k)− d

2

ji, ∀i ∈ N , j ∈M

Čji = 2
(

pi − pj
)T
, ∀i ∈ N , j ∈M.

(4.7b)

the following measurement equations for one measurement yji can be derived

yji(k) = Cji (xi(k)− xj(k)) if i, j ∈ N

y̌ji(k) = Čjixi(k) if i ∈ N , j ∈M.
(4.8)

By assuming white noise vi on the distance measurements, the measurement equation for
one mobile node Ni can be given in vector form analogously to (2.5) by

yi(k) = Cix(k) + vi(k). (4.9)

34 4 Numerical Example: Self-localization of Mobile Devices

with x = [xT1 . . . x
T
η]T . The measurement matrix yi in (4.9) is given by the nonzero lines of

yI =
[

y1,i . . . yi−1,i

[

y̌1,i . . . y̌µ,i
]

yi+1,i . . . yη,i
]T

with yj,i = if (j, i) 6∈ Eη i, j ∈ N

and y̌j,i = if (j, i) 6∈ Eµ i ∈ N , j ∈M (4.10)

The measurement matrix Ci in (4.9) is given by the nonzero lines of CI , where CI is defined
as

CI =
























−C1,i 0 . . . 0 C1,i 0 . . . 0

0
. . .

...
−Ci−1,i Ci−1,i

...

0

...







Č1,i
...

Čµ,i







...

0

...

Ci+1,i −Ci+1,i
...

. . . 0
0 . . . 0 Cη,i 0 . . . 0 −Cη,i
























with Cj,i = 0 if (j, i) 6∈ Eη, i, j ∈ N

and Čj,i = 0 if (j, i) 6∈ Eµ, i ∈ N , j ∈M (4.11)

Example: (Measurement equation for mobile node N1) Using the definitions in (4.11)
and (4.10) the measurement equation for node N1 is given by









y̌1,1
y̌2,1
y2,1
y5,1
y6,1









=









Č1,1 0 0 0 0 0 0 0

Č2,1 0 0 0 0 0 0 0
C2,1 −C2,1 0 0 0 0 0 0
C5,1 0 0 0 −C5,1 0 0 0
C6,1 0 0 0 0 −C6,1 0 0









x(k) + v(k). (4.12)

By removing the nonzero columns of C1 one gets the reduced measurement matrix C[1].
Using C[1] leads to the following, equivalent measurement equation:









y̌1,1
y̌2,1
y2,1
y5,1
y6,1









=









Č1,1 0 0 0

Č2,1 0 0 0
C2,1 −C2,1 0 0
C5,1 0 −C5,1 0
C6,1 0 0 −C6,1















x1

x2

x5

x6







+







v1
v2
v5
v6






. (4.13)

4.1 System Dynamics 35

Static Graph

As mentioned in Section 3 there are applications where the graph of the system does not
change. This is also true for the position estimation of mobile agents, as discussed in this
chapter. One possibility to obtain a static graph is to use a strategy to preserve the graph
while moving the agents, as given for example in [9]. In this thesis a simpler set up is
investigated, where the movement of the robots is restricted to a small area around their
steady state position. It is furthermore assumed that the robots move significantly slower
than the sampling frequency. Therefore the position shift ∆pi in (4.4) is very small and can
be approximated by white process noise w. Using these assumptions (4.4) and (4.9) can be
used to derive the following system equations for one node

xi(k) = Aixi(k − 1) + wi(k) with xi(0) = I2×1 ∀i ∈ N

yi(k) = C[i]x[i](k) + vi(k)
(4.14)

where Ai is the identity matrix I2×2. The measurement matrix C[i] contains the nonzero
columns of Ci and x[i] is the corresponding state vector, both defined in (2.7). Following
(2.5), the matrix form of (4.14) is given by

x(k) = Ax(k − 1) + w(k) with x(0) = 016×1

y(k) = Cx(k) + v(k).
(4.15)

Dynamic Graph

If the movement of the robots is not restricted, the graph of the system becomes dynamic.
Furthermore, if the mobile nodes are moving in the 2D plane, the linearization of the model
around a fixed steady state is not applicable. But since it is assumed that the dynamics of
the positions are significantly slower than the sampling time, e.g. the mobile devices have
a fairly low velocity, the time scale τ of the robot movement and the time scale k of the
position estimation can be separated. To model the global behavior of the system a switching
scheme is introduced, where the steady state position p is updated after a certain time Tτ ,

p(τ) =
1

κ

kτ−1∑

k=kτ−1

(x̂(τ − 1, k) + p(τ − 1)) ∀k ∈ [kτ−1, kτ). (4.16)

By introducing those additional dynamics, the linearization (4.6) has to be redone in every
time step τ . Therefore the system variables (4.17) become time dependent

xi(τ, k) = pi(k)− pi(τ), k ∈ [kτ , kτ+1), ∀i ∈ N ,

yji(τ, k) = d2
ji(k)− d

2

ji(τ), k ∈ [kτ , kτ+1), ∀i, j ∈ N ,

Cji(τ) = 2
(

pi(τ)− pj(τ)
)T
, k ∈ [kτ , kτ+1), ∀i, j ∈ N .

(4.17a)

36 4 Numerical Example: Self-localization of Mobile Devices

The variables including reference nodes become

y̌ji(τ, k) = d2
ji(k)− d

2

ji(τ), k ∈ [kτ , kτ+1),

∀i ∈ N , j ∈M,

Čji(τ) = 2
(

pi(τ)− pj(τ)
)T
, k ∈ [kτ , kτ+1),

∀i ∈ N , j ∈M.

(4.17b)

Using these new variables and the general system dynamics given in (4.4) and (4.9) a switch-
ing model for the system of moving robots can be given:

x(τ, k) = Ax(τ, k − 1) + w(k), k ∈ [kτ , kτ+1)

y(τ, k) = C(τ)x(τ, k) + v(k), k ∈ [kτ , kτ+1)
(4.18)

with x(τ, kτ − 1) = x(τ − 1, kτ − 1) + ∆p(τ),

∆p(0) = p(τ − 1)− p(τ) = 016×1,

x(0) = 016×1,

where ∆p(τ) is the position shift at time τ . The local system equations for every single
robot can be derived analogously.

4.2 Parameter Selection

While selecting the parameters the main focus was to make reasonable assumptions which
would lead to meaningful simulation results. The parameter choices will be argued in this
section and are summarized in Table 4.1. It was already mentioned in Section 4.1.1 that
the investigated system consists of η = 8 mobile nodes and µ = 6 reference nodes. Their
positions are given in (4.2) and (4.1), respectively. The communication topology of the
system is given in (4.3).
The fusion algorithm introduced in Section 3.3.1 was implemented in real robots and exper-
imental results where published in [1]. Since the experiments in [1] use ultrasound for the
distance measurements, this setup was also assumed in this thesis. Following the parameters
used in [21], the communication radius was set to ρ = 2.5m and the measurement noise on
those distance measurements was set to σd = 0.002m2. It is furthermore assumed that the
robots move with an average velocity of v = 0.1m/s and that a collision avoidance strategy
is implemented to preserve a minimum distance dmin = 0.2m among robots.
Using those specifications random trajectories of the robots where generated and mutual
measurements where simulated. The sampling rate was set to fk = 100Hz to compromise
between measurement accuracy and computational costs. The switching frequency for the
model was set to fτ = 10Hz. To preserve sensitivity of the online gain calculation on
changing conditions, the number of measurements used for this purpose was restricted to
nsave = 300.
It is crucial for the Kalman Filter algorithm to perform well, to make reasonable assumptions

4.2 Parameter Selection 37

Table 4.1: Parameters used for the simulation of both scenarios.

Parameter Value Description

Network properties
µ 6 number of reference nodes
η 8 number of mobile nodes
ρ 2.5 m2 communication radius

Robot behavior
dmin 0.2 m minimum distance between nodes
σd 0.002 m2 noise for distance measurements
v 0.1 m

s
average velocity of the robots

Simulation parameters
fk 100 Hz sampling rate
fτ 10 Hz switching frequency
nsave 300 Number of stored measurements for online calculation

Kalman Filter parameters
Q diag(0.001 m2) covariance matrix of process noise
R diag(0.05 m2) covariance matrix of meas. noise
x̂(0) 016×1 initial conditions for state vector
P(0) diag(0.001m2) initial conditions for covariance matrix

about the initial conditions. In the simulations, the initial positions of the mobile nodes (see
(4.2)) where used as initial steady state positions p(τ = 0, k = 0). Therefore the initial
conditions for the state estimate are zero. Giving a sampling rate of fk = 100Hz and a
velocity of v = 0.1m/s the covariance of the process noise becomes Qi = diag(0.001m2).
Analogously the initial covariance of the estimation error P is set to P(0) = diag(0.001m2).
Since the model equations are linearized around a steady state position, the output variable
y does not relate directly to the distance measurement. By simulating measurements ymeas
and yreal with and without measurement noise, respectively, the covariance matrix R was
calculated. By using the approximation

R = E
[

vvT
]

≈
1

kend

kend∑

k=1

(

v(k)v(k)T
)

with v(k) = ymeas(k)− yreal(k)

a covariance matrix of R = diag(0.05 m2) was obtained. Following the usual convention, a
diagonal matrix was used. To simplify the algorithm it was assumed, that R is not a function
of the distance nor the time.

38 4 Numerical Example: Self-localization of Mobile Devices

4.3 Simulation Results

In this section the performance of the introduced Kalman Filter algorithms is investigated
using Matlab simulations of two different scenarios. Firstly the mobile nodes are only
allowed to move in a small area around their steady state position. This leads to a system
with a static graph. In this set up, the algorithms using offline gain calculation can be used
and compared. Secondly, the restrictions on the movement of the robots where dropped,
allowing the agents to move in the 2D plane. This leads to a dynamic graph. Therefore
online gain calculation is used for the second scenario. To refer to the different algorithms
in an easy fashion, abbreviations are introduced in Table 4.2.

Table 4.2: Abbreviations for the simulated Kalman Filter Algorithms. The equation specifying
each algorithm is given in the last column.

Abbrev. Algorithm name Defining equation

gKF global Kalman Filter p. 11, (3.1)

dKF1 distributed Kalman Filter using offline: p. 14, (3.2)
global measurements online: p. 15, (3.2)

dKF2 distributed Kalman Filter with data fusion offline: p. 23, (3.3.2)

dKF3 extended distributed Kalman Filter offline: p. 28, (3.46)
with data fusion for systems with dynamic graph online: p. 29, (3.3.3)

4.3.1 Static Graph

To generate a scenario where a static graph is preserved throughout the simulation, the
movement of the robots was restricted to an area of radius r = 0.4m around their steady
state positions (see (4.2)). The randomly generated trajectories for the mobile nodes, using
the robot parameters specified in Table 4.1, are shown in Fig. 4.2. Using those trajectories
simulations where done with all three distributed algorithms, given in Table 4.2. The results
for the global Kalman Filter (gKF) are also given for comparison. At first the algorithms
where tested using offline gain calculation. Afterwards also online gain calculation was used
for the static graph to see the impact of the approximations made on the performance of
dKF1 and dKF3. Finally also the switched model (4.18) was used to verify its applicability to
the given problem. The simulation results are shown in Fig. 4.3. In this graphic the average
RMS error ε

ε =
1

kend

kend∑

k=1

√

(pk − p̂(k))(p(k)− p̂(k))T

with ε =
√

(pk − p̂(k))(p(k)− p̂(k))T

(4.19)

4.3 Simulation Results 39

p
y

in
[m

]

px in [m]

N1

N2

N3

N4

N5

N6

N7

N8

0
0

1

1

2

2

3

3

4

4

5

5 6 7 8

Fig. 4.2: Randomly generated trajectories of mobile robots N in the 2D-plane. The movement
was restricted to an area of radius r = 0.4m around the steady state positions of the agents. This
leads to a static graph and linear dynamics of the system.

0

0.01

0.02

0.03

0.04

0.05

0.06

ε
in

m

gKF
dKF1
dKF2
dKF3

offline calc. online calc. switched model

Fig. 4.3: Comparison of the average RMS error ε of the position estimation for the static graph
scenario, visualized in Fig. 4.2. Simulations where done using online gain calculation (online calc.)
and offline gain calculation (offline calc.). In the last column the performance of the algorithms
is shown when the gains are calculated online and the switched model (4.18) is used (switched
model).

40 4 Numerical Example: Self-localization of Mobile Devices

of the position estimation error is plotted for the different algorithms using the respective
scenario as specified underneath the bars. The position estimate in (4.19) is calculated using
(4.7a) with p̂(k) = x̂(k) + p(k).
When comparing only the offline and online gain calculation scenarios in Figure 4.3, it can
be seen that the most precise position estimates were obtained when offline gain calculation
was used. This result was expected since in this case more available information can be used
and less approximations have to be utilized to calculate the Kalman matrix. When looking at
the results of the first scenario it can also be seen, that the performance of dKF2 gets very
close to the performance of the gKF. This proves again, that the data fusion concept does
improve the accuracy of the estimation. The extended data fusion algorithm dKF3, which
can also be calculated online, performs similar than the dKF2 algorithm. Nevertheless it is
also obvious that the improvement gained, in comparison to the simpler algorithm dKF1 is
not significant.
When comparing the performance of the single algorithms in different scenarios a different
behavior of dKF1 and dKF3 can be seen. The error of dKF1 nearly doubles when the gain
is calculated online and can be reduced even far below the error of the offline scenario, when
the switched model was used. This is due to the fact, that using a more realistic model by
redoing the linearization, the predicted state estimates gets more accurate. Since the state
prediction is used to calculate the covariance matrix online (see (3.15)) the impact of these
adjustments is quite large. A comparable behavior regarding the first and the last scenario
can be seen in the results obtained by using the gKF.
By looking at the estimation error of algorithm dKF3 a different behavior can be seen. The
error is also increased when using online gain calculation due to the necessary approximations.
But due to more available measurements, the impact of those approximations is lower than
in the dKF1 case. Furthermore, it can be seen, that introducing the switched model does
not improve the performance of dKF3 as much as seen with the gKF and dKF1 algorithm.

4.3.2 Dynamic Graph

In this second scenario the movement of the robots is not restricted to a certain area. It is
assumed that the robots have an implemented collision avoidance strategy to have a mini-
mum distance of dmin = 0.2m between each other at all times. Fig. 4.4 shows the randomly
generated trajectories using those assumptions and the simulation parameters specified in
Table 4.1. Due to the movement of the robots the graph changes during the simulations.
New measurements are available if one robot gets closer to another one, and others are lost
due to an increased distance. This introduces switches in the behavior of the state estima-
tion, since the number of available measurements changes over time. Those switches cause
difficulties in the calculation of the covariance matrices of the prediction error.
The covariance matrices are calculated from measurements using (3.15) and (3.48) for al-
gorithm dKF1 and dKF3 , respectively. This approximation uses stored measurements from
previous timesteps as well as current ones. Since the graph is dynamic, the number of stored
values for every available distance measurement differes. If a new node is entering the com-
munication horizon, no stored values are available for this measurement. This can lead to
undesired effects since the covariance calculation needs some time to converge (compare

4.3 Simulation Results 41

p
y

in
[m

]

px in [m]

N1

N2

N3

N4

N5

N6

N7

N8

0
0

1

1

2

2

3

3

4

4

5

5 6 7 8

Fig. 4.4: Randomly generated trajectories of mobile robots N in the 2D-plane. By loosening the
restrictions on the movement of the mobile devices, the graph of the system becomes dynamic,
and the switched model (4.18) must be used. The movement was restricted to always ensure a
minimum distance of dmin = 0.2m between nodes. The robots move with an average velocity of
v = 0.1m

s .

Fig. B.2 in Appendix B). Therefore a hysteresis was introduced, where a certain number
of measurements is gathered before the measurement is used for gain calculation. The size
of the hysteresis was set to nwait = 100 and nwait = 300 for the dKF1 and dKF3 algo-
rithm, respectively. This method ensures that the covariance converges before it is actually
used for gain calculation. It additionally reduces the number of graph changes by not using
measurements to neighbors which are in communication distance only for a very short time.

To compare the investigated algorithms, the RMS error of the position estimates

ε =
1

kend

τend∑

τ=0

kτ+1−1
∑

k=kτ

√

(p(τ, k)− p̂(τ, k))(p(τ, k)− p̂(τ, k))T

with ε =
√

(p(τ, k)− p̂(τ, k))(p(τ, k)− p̂(τ, k))T

(4.20)

was calculated, similar to (4.19). The resulting errors for the different algorithms are shown
in Fig. 4.5. Since the performance of the algorithms was not satisfying for a communication
horizon of ρ = 2.5m it was investigated if an increased communication horizon of ρ = 3.5m
decreases the error. This expectation proved to be true, leading to a significantly reduced
error for both algorithms when a larger horizon is used.

42 4 Numerical Example: Self-localization of Mobile Devices

ε
in

m

↑ε=2.3562 103 gKF

dKF1

dKF3

hys off hys on hys off hys on
︸ ︷︷ ︸

ρ=2.5m
︸ ︷︷ ︸

ρ=3.5m

0

0.1

0.2

0.3

0.4

0.5

Fig. 4.5: Comparison of the average RMS error ε for the dynamic graph scenario, visualized in
Fig. 4.4. For both communication radiuses ρ = 2.5m and ρ = 3.5m simulations were done with the
hysteresis for the graph changes turned on (hys on) and off (hys off). The size of the hysteresis
was set to nwait = 100 and nwait = 300 for the dKF1 and dKF3 algorithm, respectively.

The devolution of the error for one single node is shown in Fig. 4.7 where the error is plotted
over time for node N8. The corresponding graph switches for Fig. 4.5 are visualized in
Fig. 4.6. By comparing the graph switches for the different scenarios in Fig. 4.6, one can
see, that by introducing a hysteresis on the used measurements, the number of graph changes
could be reduced. But on the other hand this also reduces the average number of neighbors
and reachable nodes significantly, as it can be seen in Table 4.3. This can also have negative
effects on the performance of the filter.

Looking at Fig. 4.5 again, it can be seen that the introduction of the hysteresis has quite
large effects when only a small communication horizon is used. Therefore it can be concluded
that graph switches are more crucial if the system is not well coupled. In this case situations

Table 4.3: Comparison of the average coupling ζ between mobile nodes and the average number
γ of reachable reference nodes for different simulated scenarios. For completeness also the average
coupling in the static graph is given.

graph scenario ζ γ

static ρ = 2.5 3.8 1.3

dynamic ρ = 2.5, hys off 3.3 1.1

ρ = 2.5, hys on 2.8 1.0

ρ = 3.5, hys off 5.4 2.5

ρ = 3.5, hys on 4.8 2.3

4
.3

S
im

u
la

tio
n

R
e
su

lts
4
3

ρ
=

3
.5

︷
︸
︸

︷
ρ
=

2
.5

︷
︸
︸

︷

N
N

N
N

time in [s]

hys off

hys on

hys off

hys on

0

0

0

0

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

4

4

4

4

4

4

4

4

5

5

5

5

6

6

6

6

6

6

6

6

7

7

7

7

8

8

8

8

8

8

8

8

9

9

9

9

10

10

10

10

Neighboring nodes N[8] of node N8

N
N

N
N

time in [s]
0

0

0

0

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

4

4

4

4

4

4

4

4

5

5

5

5

6

6

6

6

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

10

10

10

10

Reachable reference nodesM[8] of node N8

Fig. 4.6: Visualization of the graph changes in Gη and Gµ concerning N8 for all four simulated online scenarios. Node N8 can communicate
to note Ni at time k if there is a black dot at (k, i). Results are similar for other nodes.

44 4 Numerical Example: Self-localization of Mobile Devices

ρ=3.5
︷ ︸︸ ︷

ρ=2.5
︷ ︸︸ ︷

0.5

0.5

0.5

0.5

ε in [m] ε in [m] ε in [m] ε in [m]

tim
e

in
[s]

h
ys

o
ff

h
ys

o
n

h
ys

o
ff

h
ys

o
n

00 00 00 001

1

1

1

1

1

1

1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

9 9 9 9

1
0

1
0

1
0

1
0

d
K
F
1

ε in [m] ε in [m] ε in [m] ε in [m]

tim
e

in
[s]

00 00 00 001

1

1

1

1

1

1

1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

9 9 9 9

1
0

1
0

1
0

1
0

d
K
F
3

F
ig

.
4
.7

:
C

om
p
arison

of
th

e
R

M
S

error
ε

of
n
o
d
e
N

8
over

tim
e.

A
ll

fou
r

scen
arios

visu
alized

in
F

ig.
4.5

are
given

from
top

to
b
ottom

.
F
rom

left
to

righ
t,

th
e

p
erform

an
ce

of
d
K
F
1

an
d

d
K
F
3

can
b
e

com
p
ared

.
T

o
m

ake
ch

an
ges

m
ore

ob
viou

s
th

e
y-axis

w
as

scaled
.

F
or

th
e

u
n
scaled

version
p
lease

refer
to

F
ig.

B
.1

in
A

p
p
en

d
ix

B
.

4.3 Simulation Results 45

can occur where the coupling for some nodes gets too low to obtain good estimation re-
sults. Furthermore, by using a switched model, this can result in a fast blowup of the error.
Fortunately it was observed that the error reduces again when new measurements become
available. This behavior can be seen in the unscaled version of Fig. 4.7 which can be found in
Appendix B, Fig. B.1. It was furthermore observed that the dKF1 algorithm is more robust
to graph changes than the dKF3 algorithm. This might be due to the fact that the online
gain calculation for dKF3 depends fully on available measurement whereas in dKF1 only the
covariance of the state prediction is approximated.
By comparing the estimation errors obtained by using ρ = 3.5m with the errors shown for
the third scenario in Fig. 4.3 one can see that they are in the same range. Therefore it seems
necessary to have a higher coupling when graph changes occur in the network to ensure
reliable performance. The second interesting observation is that the overall performance of
the simple algorithm dKF1 is better then the performance of the dKF3 algorithm when using
a dynamic graph. But on the other hand it can be seen in Fig. 4.3 that the estimation error
for dKF1 is also decreased below the error for dKF3 when only the switched model is used
even if no graph changes occur. Therefore it is assumed, that the accuracy of the state
prediction gained by using the switched model is more advantageous for the simple Kalman
Filter, than the use of additional measurements is for the data fusion filter. It should be
object of further work to investigate the performance of dKF1 and dKF3 when a fully linear
model is used.

46 4 Numerical Example: Self-localization of Mobile Devices

Chapter 5

Conclusion

In this thesis different distributed Kalman Filter algorithms where derived for both static
and dynamic network systems. The objective for all algorithms was to estimate the position
of mobile nodes in a distributed fashion. Distance measurements and communication were
restricted to only take place among neighbors.
Firstly, a distributed filter was designed, which is based on a normal global Kalman Filter
algorithm. It was obtained by restricting the optimization problem for the Kalman gain what
leads to a distributed filter that only uses local measurements. Afterwards, the concept of a
data fusion Kalman Filter was applied to the network system. A straight forward derivation
of this filter could only be found for systems with a static graph structure. Therefore an
additional communication step was introduced to derive a distributed data fusion Kalman
Filter that is usable for both static and dynamic network systems.
For all investigated algorithms, the analytical calculation of the gain matrix is strongly coupled
among different nodes. If the graph of the investigated system is static and the model is time
independent, the gain calculation can be done offline. But usually this is not the case. In
this work it was therefore proposed to approximate covariance matrices needed for the gain
calculation, using recent measurements. This leads to a fully decentralized online algorithm
for both distributed filters.
To investigate the performance of the introduced algorithms, simulations where done in
Matlab. Since the position estimation is based on distance measurements in the considered
systems, the measurement equation becomes nonlinear. To obtain linear dynamics, the model
was linearized around a steady state position.
By simulating the linearized system using a setup where the graph is static, it was found, that
introducing a data fusion step increases the accuracy of the state estimation. This is true for
both online and offline gain calculation. As expected, it was also shown that approximating
the covariance matrices leads to a small performance reduction but is still applicable.
When free movement of the mobile devices was considered in the investigated example, the
linearizion of the model around one steady state position was not applicable anymore. In
this case it was assumed that the devices move with a velocity significantly smaller than the
sampling rate. Therefore a switched system could be introduced where the dynamics of the
position estimation and the robot movement were separated.
Using this model, simulations were done for a scenario involving graph changes. It was

47

48 5 Conclusion

found, that a higher average coupling among the nodes is necessary if the graph changes,
to ensure reliable performance. Furthermore, it was seen that the simple distributed filter
performs better in this scenario than the one using a data fusion step. This pattern was
also found when combining a static graph scenario with the switched model. Therefore it is
assumed, that the accuracy of the state prediction, gained by using the switched model is
more advantageous for the simple Kalman Filter, than the use of additional measurements
is for the data fusion filter.
It was shown in this work, that by using distance measurements and communication among
mobile devices for localization purposes, distributed position estimation could be improved
and performed online. Therefore, this method has a high potential to be used in future
applications involving challenging distributed localization problems, such as the control of
autonomous vehicles or trucks moving in a convoy.

Appendix A

Details on the Kalman Gain
Calculation

In this section the solutions to the optimization problems for the calculation of the Kalman
gains used in Section 3 are derived in detail. First some useful matrix derivation rules will be
given and then the Kalman gains for the different algorithms will be derived. The dependency
of the matrices on the discrete time k will be dropped in this chapter to simplify notation.

A.1 Some Matrix Derivation Rules

The matrix derivation rules given below are taken from [5]. The use of vec[.] indicates the
vectorization of a matrix and ⊗ is the Kronecker Product.

d tr(AXT)

dX
= (vec[A]) T (A.1a)

d tr(BXTA)

dX
= (vec[AB]) T (A.1b)

d tr(XAXT)

dX
=
(

vec[X(A+ AT)]
)
T (A.1c)

d tr(AXBXTC)

dX
=
(

vec[ATCTXBT + CAXB]
)
T (A.1d)

d vec[ATXB]

d vec[X]
= (B ⊗ A) T (A.1e)

vec[ABC] = (CT ⊗A)vec[B] (A.1f)

49

50 A Details on the Kalman Gain Calculation

A.2 Global Kalman Filter

This section derives the Kalman Matrix for the global Kalman Filter algorithm discussed in
Section 3.1. To simplify notation the covariance matrix P(k|k) is rewritten to

P(k|k) =
[

I K
]

F
[

I K
]
T (A.2)

with F =

[

I

−C

]

P(k|k − 1)

[

I

−C

]

T +

[

0 0

0 R

]

to separate the part F of P(k|k) which is not a function of K. Using a partition for F

F =

[

F11 F12

F21 F22

]

=

[

P(k|k − 1) −P(k|k − 1)CT

−CP(k|k − 1) CP(k|k − 1)CT + R

]

(A.3)

the covariance matrix (A.2) can be rewritten as

P(k|k) = F11 + KF12 + F21KT + KF22K
T . (A.4)

Using (A.4) the matrix equality tr(A) = tr(AT) and the symmetry of P = PT the cost
function J = tr(P(k|k)) in (3.5) becomes

J = tr(P(k|k)) = tr(F11) + 2tr(F12K
T) + tr(KF22KT).

With the matrix derivation rules (A.1a) and (A.1c) and the symmetry of P = PT its derivative
is given by

dJ

dK
= (vec[F12 + KF22])

T . (A.5)

Since (A.5) has to be zero to obtain a minimum, the optimal Kalman gain K is given by

K = −F12(F22)
−1.

= P(k|k − 1)CT
[

CP(k|k − 1)CT + R
]−1 (A.6)

A.3 Distributed Kalman filter using Local Measurements

This section derives the Kalman Matrix for the distributed Kalman Filter algorithm discussed
in Section 3.2. To obtain an equation for K̄i the minimum point of the cost function J with
respect to K̄i has to be calculated using

0 =
dJ

dK̄i
=

dJ

dK̄

dK̄

dK̄i
. (A.7)

A.4 Distributed Kalman filter with Data Fusion 51

The outer derivative in (A.7) is given in (A.5) where K̄ is vectorized. Using the matrix
derivation rule (A.1e) the inner derivative of (A.7) becomes

d vec[K̄]

d vec[K̄i]
=
(

Vi ⊗ Ūi
)
T . (A.8)

Using (A.5) and (A.8) in (A.7) and applying (A.1f) the condition for optimality becomes

0 = Ūi
(

F12 + K̄F22

)

Vi
T . (A.9)

Separating both parts and using (3.10) leads to

0 = Ūi (F12)Vi
T +

η
∑

j=1






Ūi Ūj

T

︸ ︷︷ ︸

=0 if i6=j

K̄jVjF22Vi
T







= Ūi (F12)Vi
T + K̄iViF22Vi

T . (A.10)

Since (A.10) has to be zero to obtain a minimum, the optimal Kalman gain K̄i is given by

K̄i = −Υi(Ψ̄ij)
−1 (A.11)

with

Υi = ŪiF12Vi
T = ŪiP(k|k − 1)(Ci)

T (A.12)

Ψ̄ij = ViF22Vi
T = CiP(k|k − 1)Ci

T +Ri. (A.13)

A.4 Distributed Kalman filter with Data Fusion

This section derives the Kalman matrix and the weighting matrix for the distributed Kalman
Filter algorithm discussed in Section 3.3.2. Both derivations are partially based on ideas
given in [2].

Kalman Matrix

Since the covariance matrix given in (3.30) differs from (3.4) the decomposition of P̄(k|k)
changes to

P̄(k|k) = W
[

I K̄
]

F
[

I K̄
]
TWT (A.14)

with F =

[

I

−C̄

]

P̄(k|k − 1)

[

I

−C̄

]

T +

[

0 0

0 R

]

.

52 A Details on the Kalman Gain Calculation

Using again a partition for F

F =

[

F11 F12

F21 F22

]

=

[

P̄(k|k − 1) −P̄(k|k − 1)C̄T

−C̄P̄(k|k − 1) C̄P̄(k|k − 1)C̄T + R

] (A.15)

the covariance matrix (3.30) can be rewritten as

P(k|k) = W
(

F11 + K̄F12 + F21K̄T + K̄F22K̄T
)

WT . (A.16)

Using (A.16), the matrix equality tr(A) = tr(AT) and the symmetry of P = PT the cost
function J = tr(P(k|k)) becomes

J = tr(P(k|k)) = tr(WF11WT) + 2tr(WF12K̄TWT)

+ tr(WK̄F22K̄TWT).
(A.17)

To obtain an equation for K̄i the minimum point of the cost function J with respect to K̄i
has to be calculated using

0 =
dJ

dK̄i
=

dJ

dK̄

dK̄

dK̄i
. (A.18)

With the matrix derivation rules (A.1b) and (A.1d) the outer derivative of (A.18) is given by

dJ

dK̄
=
(

vec[WTW(F12 + K̄F22)]
)
T . (A.19)

while the inner derivative is equivalent to (A.8). This leads to the following condition for
optimality:

0 = vec[ŪiW
TW

(

F12 + K̄F22

)

V̄i
T]. (A.20)

By separating both parts of (A.20) and using (3.31) one gets

0 = vec[ŪiW
TW (F12) V̄i

T]

+
η
∑

j=1

(

vec[ŪiW
TWŪj

T K̄jV̄jF22V̄i
T]
) (A.21)

A.4 Distributed Kalman filter with Data Fusion 53

By introducing

Ψ̄ij = vec[ŪiW
TWF12V̄i

T]

= −vec[ŪiW
TWP̄(k|k − 1)C̄iT V̄i

T]

Ξ̄ij = ŪiW
TWŪj

T

Ῡij = V̄jF22V̄i
T = V̄jC̄P̄(k|k − 1)C̄T V̄i

T + V̄jRV̄i
T

and using the matrix rule for vectorization, (A.21) becomes

−Ψ̄ij =
η
∑

j=1

(

(Ῡij
T ⊗ Ξ̄ij)vec[K̄j]

)

. (A.22)

This leads to a system of linear equations for K and can be represented in matrix form as







vec[K̄1]
...

vec[K̄η]







= −







Ῡ11
T ⊗ Ξ̄11 . . . Ῡ1η

T ⊗ Ξ̄1η
...

. . .
...

Ῡη1
T ⊗ Ξ̄η1 . . . Ῡηη

T ⊗ Ξ̄ηη







−1 





Ψ̄1
...

Ψ̄η







(A.23)

Weighting Matrix

It was shown in [2] that (3.34) can be solved using Lagrange multipliers1, what leads to the
conditions for optimality given by

Γ

[

W T

Λ

]

=

[

0n×ni
Ini×ni

]

with Γ =

[

Φ e

eT 0ni×ni

]

. (A.24)

The general solution of (A.24) in terms of ν can be obtained by using the Moore-Penrose
pseudo inverse, leading to

[

W T

Λ

]

=






Φ−1e
(

eTΦ−1e
)−1

−
(

eTΦ−1e
)−1




+ Γ0ν (A.25)

where Γ0 is a matrix containing the vectors spanning the null space of Γ. Since (A.25) is
usually under determined, the additional minimization problem

W = argmin
W

tr
(

WW T
)

(A.26)

s.t. (A.24)

1To simplify notation the subscripts of W[ji] and Φji will be droped.

54 A Details on the Kalman Gain Calculation

is introduced to calculate ν in (A.25). By using (A.25) the cost function J = tr
(

WW T
)

of

(A.26) becomes

J = (δ + Γ0
1ν)
T (δ + Γ0

1ν)

with δ = Φ−1e
(

eTΦ−1e
)−1 (A.27)

where Γ0
1 is the part of Γ0 corresponding to W T in (A.25). Since the derivative of (A.27)

with respect to ν is given by

dJ

dν
= 2(Γ0

1ν + δ)TΓ0
1

ν becomes

ν = −(Γ0
1)T δ.

Using (A.28) in (A.25) the optimal W can be written as

W = δT
(

I − Γ0
1(Γ0

1)
T
)

. (A.28)

Appendix B

Additional plots

In this appendix additional plots are included to show some details on the performance of the
investigated algorithms. Explanations age given below the figures. For details please refer to
Section 4.3.1 and Section 4.3.2.

ρ
=

3
.5

︷
︸
︸

︷
ρ
=

2
.5

︷
︸
︸

︷

0 2 4 6 8 10
0

20

40

60

0 2 4 6 8 10
0

0.5

1

1.5

2

0 2 4 6 8 10
0

1

2

3

0 2 4 6 8 10
0

0.5

1

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

time in [s]

hys off

hys on

hys off

hys on

dKF1

0 2 4 6 8 10
0

1

2

3
x 10

4

0 2 4 6 8 10
0

2

4

6

0 2 4 6 8 10
0

0.5

1

0 2 4 6 8 10
0

0.5

1

1.5

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

time in [s]

dKF3

Fig. B.1: Comparison of estimation error ε of node N8 over time. All four scenarios visualized in
Fig. 4.5 are given from top to bottom. From left to right, the performance of dKF1 and dKF3 can
be compared. This is the unscaled version of Fig. 4.5.

55

56 B Additional plots

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

time in [s]

N1:

N2:

N3:

N4:

N5:

N6:

N7:

N8:

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

dKF1, switched model

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

time in [s]

N1:

N2:

N3:

N4:

N5:

N6:

N7:

N8:

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

dKF3, switched model

Fig. B.2: Comparison of the position estimation error ε (see (4.19)) for algorithm dKF1 and
dKF3 when the Kalman gain is calculated online and the switched model is used (third scenario in
Fig. 4.3) with the static graph scenario. The error is plotted for every node Ni from top to bottom
of the figure.

57

N
N

N
N

N
N

N
N

time in [s]

N1:

N2:

N3:

N4:

N5:

N6:

N7:

N8:

0

0

0

0

0

0

0

0

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

Neighboring nodes N[i].

N
N

N
N

N
N

N
N

time in [s]

N1:

N2:

N3:

N4:

N5:

N6:

N7:

N8:

0

0

0

0

0

0

0

0

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

Reachable reference nodesM[i].

Fig. B.3: Visualization of the graph changes in Gη and Gµ when using a communication radius
of ρ = 3.5m and a hysteresis to reduce switches (forth scenario in Fig. 4.5) in the dynamic graph
scenario. The communication topology is given for every mobile node from top to bottom of the
figure.

58 B Additional plots

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

time in [s]

N1:

N2:

N3:

N4:

N5:

N6:

N7:

N8:

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

dKF1

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

ε
in

[m
]

time in [s]

N1:

N2:

N3:

N4:

N5:

N6:

N7:

N8:

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

dKF3

Fig. B.4: Comparison of estimation error ε (see (4.19)) for algorithm dKF1 and dKF3 when using
a communication radius of ρ = 3.5m and a hysteresis to reduce switches (forth scenario in Fig. 4.5)
in the dynamic graph scenario. The error is plotted for every node Ni from top to bottom of the
figure.

Bibliography

[1] Peter Alriksson. State Estimation for Distributed and Hybrid Systems. PhD thesis,
Department of Automatic Control, Lund University, Sweden, September 2008.

[2] Peter Alriksson and Anders Rantzer. Model based information fusion in sensor networks.
Proceedings of the 17th IFAC World Congress, 2008.

[3] Brian D. O. Anderson, I. Moore, and John Barratt. Optimal Filtering. Prentice-Hall,
1979.

[4] Dennis S. Bernstein. Some open problems in matrix theory arising in linear systems and
control. Linear Algebra and its Applications, pages 162–164:409–432, 1992.

[5] Mike Brookes. The matrix reference manual, Imperial College, London, UK. [online
28.06.2009] http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html, 2005.

[6] Toshio M. Chin, William C. Karl, and Alan S. Willsky. Sequential filtering for multi-frame
visual reconstruction. Signal Processing, 28(3):311 – 333, 1992.

[7] P.A. Cook. Stable control of vehicle convoys for safety and comfort. Automatic Control,
IEEE Transactions on, 52(3):526–531, March 2007.

[8] Craig Gotsman and Yehuda Koren. Distributed graph layout for sensor networks. In In
Proc. Internat. Symposium on Grpah Drawing, pages 273–284, 2004.

[9] Meng Ji and M. Egerstedt. Distributed formation control while preserving connected-
ness. Decision and Control, 2006 45th IEEE Conference on, pages 5962–5967, Dec.
2006.

[10] R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME-Jurnal of Basic Engineering, 82: Series D:35–45, 1960.

[11] U.A. Khan and J.M.F. Moura. Distributing the kalman filter for large-scale systems.
Signal Processing, IEEE Transactions on, 56(10):4919–4935, Oct. 2008.

[12] M. Mesbahi. On a dynamic extension of the theory of graphs. volume 2, pages 1234–
1239 vol.2, 2002.

[13] Angus P. Andrews Mohinder S. Grewal. Kalman Filtering: Theory and Practice Using
MATLAB. John Wiley & Sons, Inc., second edition edition, 2001.

59

60 Bibliography

[14] R. Olfati-Saber and J.S. Shamma. Consensus filters for sensor networks and distributed
sensor fusion. In Decision and Control, 2005 and 2005 European Control Conference.
CDC-ECC ’05. 44th IEEE Conference on, pages 6698–6703, Dec. 2005.

[15] Nissanka B. Priyantha, Hari Balakrishnan, Erik Demaine, and Seth Teller. Anchor-free
distributed localization in sensor networks, 2003.

[16] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket location-
support system. In MobiCom ’00: Proceedings of the 6th annual international confer-
ence on Mobile computing and networking, pages 32–43, New York, NY, USA, 2000.
ACM.

[17] S.I. Roumeliotis and G.A. Bekey. Distributed multirobot localization. Robotics and
Automation, IEEE Transactions on, 18(5):781–795, Oct 2002.

[18] Adam Smith, Hari Balakrishnan, Michel Goraczko, and Nissanka Priyantha. Tracking
moving devices with the cricket location system. In MobiSys ’04: Proceedings of the 2nd
international conference on Mobile systems, applications, and services, pages 190–202,
New York, NY, USA, 2004. ACM.

[19] A. Speranzon, C. Fischione, and K.H. Johansson. Distributed and collaborative estima-
tion over wireless sensor networks. In Decision and Control, 2006 45th IEEE Conference
on, pages 1025–1030, Dec. 2006.

[20] Roger Wattenhofer Thomas Locher, Pascal von Rickenbach. Distributed Computing
and Networking, chapter Sensor Networks Continue to Puzzle: Selected Open Problems,
pages 25–38. 2008.

[21] Soo-Yeong Yi and Byoung-Wook Choi. Autonomous navigation of indoor mobile robots
using a global ultrasonic system. Robotica, 22(04):369–374, 2004.

[22] Jaegeol Yim, Chansik Park, Jaehun Joo, and Seunghwan Jeong. Extended kalman filter
for wireless lan based indoor positioning. Decision Support Systems, 45(4):960 – 971,
2008. Information Technology and Systems in the Internet-Era.

[23] M.M. Zavlanos and G.J. Pappas. Distributed connectivity control of mobile networks.
Robotics, IEEE Transactions on, 24(6):1416–1428, Dec. 2008.

