
ISSN 0280-5316
ISRN LUTFD2/TFRT--5810--SE

Trajectory Tracking Control of an
Autonomous Ground Vehicle

Kristian Soltesz

Department of Automatic Control
Lund University
February 2008

Document name
MASTER THESIS
Date of issue
February 2008

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--5810--SE
Supervisor
Richard M. Murray at Caltech, USA
Tore Hägglund at Automatic Contron. Lund
(Examiner)

Author(s)
Kristian Soltesz

Sponsoring organization

Title and subtitle
Trajectory Tracking Control of an Autonomous Ground Vehicle (Banföljning vid körning med autonoma markfordon)

Abstract
This thesis proposes a solution to the problem of making an autonomous nonholonomic ground vehicle track a special
trajectory while following a reference velocity profile. The proposed strategies have been analyzed, simulated and
eventually implemented and verified in Alice, Team Caltech's contribution to the 2007 DARPA Urban Challenge
competition for autonomous vehicles.
The system architecture of Alice is reviewed. A kinematic vehicle model is derived. Lateral and longitudinal controllers
are proposed and analyzed, with emphasis on the nonlinear state feedback lateral controller. Relevant implementation
aspects and contingency management is discussed. Finally, results from simulation and field tests are presented and
discussed.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
57

Security classification

Recipient’s notes

http://www.control.lth.se/publications/

Contents

Nomenclature . 3
Acknowledgments . 6
1. Introduction . 7

1.1 Motivation . 7
1.2 The DARPA Grand Challenge . 8
1.3 Thesis Outline . 10

2. Team Organization . 11
2.1 Team Structure . 11
2.2 Development Utilities . 12
2.3 Development Schedule . 13

3. System Structure . 15
3.1 Hardware . 15
3.2 Sensing . 18
3.3 Navigation . 18

4. Problem Formulation . 20
5. Modelling and Controller Design . 21

5.1 Vehicle Dynamics . 21
5.2 Longitudinal Control Strategy . 24
5.3 Lateral Control Strategy . 25

6. Controller Analysis . 27
6.1 Phase Plane Analysis . 27
6.2 Linearization and Gain Scheduling 30
6.3 Global Stability . 32

7. Implementation . 33
7.1 Canonical Software Structure . 33
7.2 Coding Practice . 34
7.3 Threads . 35
7.4 The Trajectory Class . 35
7.5 Control Loop . 36
7.6 North Face communication . 38
7.7 South Face communication . 39
7.8 Contingency Management . 39
7.9 User Interface . 40

8. Field Results . 42
8.1 Controller Performance . 42
8.2 The NQE – What Went Wrong 43

9. Conclusions . 45
10. Future Work . 46

10.1 Controller Module . 46
10.2 System . 48

A. Project Time Line . 49
B. Team Members . 50
C. Sparrow Hawk Display . 51
References . 52

1

List of Figures
1.1 Photograph showing Team Caltech’s DUC vehicle Alice. 7
1.2 Time line of the 2007 DUC. 8
1.3 Photograph showing Team Caltech’s 2004 DGC vehicle Bob. Cour-

tesy of DARPA. 9
3.1 Block diagram illustrating the Applanix POS LV 420 vehicle state

estimation system. 15
3.2 Photograph of Alice, indicating the location of its sensors. 16
3.3 Photograph showing the computer rack of Alice. From top down:

core duo machines, quad core machine and cPCI box. (The lower-
most box is a battery pack.) . 17

3.4 Photograph showing the actuators of Alice. 17
3.5 Block diagram illustrating the data flow from sensors to map. . . . 18
3.6 Block diagram illustrating the navigation stack of Alice. 18
5.1 3D representation of the parametrized lookup table mapping (v,au)→

ua. 22
5.2 Figure used in the deduction of (5.1, 5.2). 23
5.3 Graphical illustration of the lateral control strategy. 25
5.4 Illustration showing the extension of the lateral control strategy to

the case of reverse driving. 26
6.1 Phase portraits showing the state evolution of error states ey,eθ for

different values of the trajectory radius rc and controller parameters l2. 28
6.2 Phase portraits illustrating tracking of a circular trajectory with ra-

dius rc = 5 m, which was smaller than the minimum turning radius
of Alice (7.4 m). The controller parameter was set to l2 = 5 m. . . . 29

6.3 Phase portrait illustrating the global behavior of the controlled sys-
tem while tracking a circular trajectory with radius rc = 20 m. The
controller parameter was set to l2 = 5 m. 29

6.4 Cutoff ’frequency’ ωc [rad m−1] as function of l2. 31
6.5 Phase margin φm as function of l2. 31
6.6 Delay distance margin τm [m] as function of l2. 31
7.1 Block diagram illustrating the structure of a CSS software module. . 33
7.2 Timing diagram showing one control loop cycle. 36
8.1 Cross track- and yaw error during 60 s of autonomous operation of

the vehicle. 42
8.2 Control signal and integral from the data set used to plot

Figures 8.1(a),8.1(b). 43
8.3 Histograms showing the distribution of cross track- and yaw error

from 10 minutes of nominal operation. 43

2

Nomenclature
Abbreviations

AGV Autonomous Ground Vehicle.

CSS Canonical Software Structure. Framework defining software module-
and interface structure.

DGC DARPA Grand Challenge. Competition for autonomous ground vehi-
cles held in a desert environment.

dGPS Differential GPS. An augmentation to GPS, consisting of a base station
which sends corrections to the GPS signal.

DMI Distance Measurement Indicator. Wheel mounted rotation sensor.

DUC DARPA Urban Challenge. A competition for autonomous ground ve-
hicles, held in an urban environment.

E-stop Emergency stop signal issued by DARPA. The E-stop was the only
means of communication with the competing vehicles during compe-
tition runs.

GPS Global Positioning System. A satellite based localization system.

IMU Inertial Measurement Unit. A system of gyroscopes and accelerome-
ters used for vehicle state estimation.

IPT Integrated Project Team. Sub-team of coordinators within Team Cal-
tech.

JPL Jet Propulsion Laboratory of the National AeroSpace Agency (NASA).

KVM Keyboard Video Mouse. A switch to which computers and I/O are
connected. The user can choose which connected computer to control,
without having to re-route keyboard-, monitor- and mouse cables.

LADAR LAser Detecton And Ranging. Sweeping sensor used for obstacle de-
tection.

MDF Mission Data File. A file defining the mission by means of an ordered
list of checkpoints located within the RNDF.

NQE National Qualifying Event of the DARPA Urban Challenge.

PCM Powertrain Control Module.

PLC Programmable Logic Controller.

RNDF Route Network Definition File. A file containing a vector map of the
route network.

SVN Subversion. A version management software.

UTM Universal Transverse Mercator. A grid based coordinate system for
specifying locations at the surface of the earth.

wiki A collaborative website. Its content can be edited by anyone who has
access to it.

YaM Yet another Make. A combined version manager and make utility.

3

Nomenclature

Symbols

δ Angle between trajectory tangent at R and steering wheel
heading (of the real vehicle). rad

φ̇max Maximal allowed steer rate being a function of vehicle
speed v. rad s−1

τ̂a Acceleration actuation delay estimate. s

ωc Cutoff ’frequency’ of the linearized system. rad m−1

φ Front wheel angle. rad

φm Phase margin of the linearized system. rad

φv Front wheel angle of virtual vehicle. rad

φmax Angle between front wheel- and vehicle heading
corresponding to uφ =−1. rad

φmin Angle between front wheel- and vehicle heading
corresponding to uφ =−1. rad

τa Acceleration actuation delay. s

τm Delay distance margin of the linearized system. m

τφ Steering actuation delay. s

θ Angle coordinate of vehicle point P. rad

θr Angle coordinate of reference trajectory tangent at R. rad

θr Trajectory point reference heading. rad

a Acceleration of the vehicle in the direction of its heading ms−2

Ac System matrix of the linearized closed loop system. -

Ao System matrix of the open loop linearized system. -

ar Acceleration reference. m s−2

au Desired acceleration of the vehicle in the direction of its
heading. ms−2

Bc Input matrix of the linearized closed loop system. -

Bo Input matrix of the open loop linearized system. -

C Output matrix of the linearized (closed loop) system. -

Cn Constant or parameter, with integer index n. Constant names
are reused throughout the text. -

d Travelled distance. m

di Distance between consecutive trajectory points. m

dFF,a Acceleration delay feed forward distance. m

dFF,a Steering delay feed forward distance. m

e Easting of trajectory point. m

4

Nomenclature

ey Perpendicular error. Distance from the center of the rear
axle to its projection R onto the reference trajectory. m

eθ Yaw error. Angle between the heading of the vehicle
and the tangent of the reference trajectory at R. rad

G Closed loop transfer function from yr to y. m→m

Go Open loop transfer function of linearized system from
ey to y. m→m

Iv Speed error integral. -

L Wheel base. m

l2 The only tunable parameter of the lateral controller. m

m Maximal time derivative order of reference trajectory
point coordinates. -

n Northing of trajectory point. m

P Rear axle center. -

R Projection of the rear axle center P onto the reference
trajectory. -

r Turning radius. m

rc Radius of circular reference trajectory. m

rmin Minimal turning radius of Alice (7.35 m). m

ua Acceleration control . ∈ [−1,1]

uφ Steering control signal. ∈ [−1,1]

v Vehicle speed. ms−1

vr Reference speed. ms−1

y Perpendicular coordinate of vehicle point P. m

yr Perpendicular coordinate of reference trajectory point R. m

5

Acknowledgments
The work resulting in this thesis was carried out at the Department of Control and
Dynamical Systems, California Institute of Technology, Pasadena, USA with addi-
tional supervision from the Department of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden. It was part of Team Caltech’s autonomous vehicle program,
aimed at the 2007 DARPA Urban Challenge.

I would like to thank my supervisor and the coordinator of Team Caltech, Profes-
sor Richard Murray, California Institute of Technology. Additionally, I would want
to thank my co-supervisor Professor Tore Hägglund and Professor Anders Rantzer at
Lund Institute of Technology, Lund, Sweden together with the Caltech Summer Un-
dergraduate Research Fellowship (SURF) program for making my stay in California
both possible and pleasant.

Last, but not least, I owe great thanks to all members of Team Caltech – for
their help, support and suggestions throughout the project – as well as all external
supporters and sponsors of the project.

6

1. Introduction
The concepts, ideas and results presented here are the outcome of Team Caltech’s
development for the 2007 DARPA Urban Challenge (DUC) [15]. The aim of the
project was to develop an autonomous ground vehicle (AGV) for safe operation in
an urban environment – in the presence of other vehicles. The final evaluation of this
effort took place at the National Qualifying Event (NQE) of the DUC, see Section 8.2.
A photograph of Team Caltech’s vehicle, Alice, is shown in Figure 1.1.

Figure 1.1 Photograph showing Team Caltech’s DUC vehicle Alice.

The focus of this paper lies on the trajectory tracking controllers which were de-
veloped, implemented, and tested by me and Magnus Linderoth from Lund Institute
of Technology. However, it is important to emphasize that the development process
was a team effort. Consequently, a summary of previous work conducted at Caltech,
as well as a review of current team- and system structure, are given before focus is
shifted to the trajectory tracking controller module.

A motivation for the DUC is given in Section 1.1, followed by a brief history
of previous races in Section 1.2. The organization of this paper is then presented in
Section 1.3.

1.1 Motivation

The aim of the DUC was to push the development of AGV systems, capable of per-
forming safely in an urban environment – in the presence of other vehicles.

The main motivation for Team Caltech, the Stanford Race Team and others was
to develop fully autonomous vehicles, which are safer than their human maneuvered
counterparts, hence increasing traffic safety. A large amount of research and devel-
opment has been made during the past few years, but there will still be some time
before the technologies are ready for the consumer market. A more realistic short
term application are systems, which prevent a human driver from making ’illegal’
maneuvers, by e.g. clearing (suddenly appearing) obstacles, stopping at stop lines,
etc. Such and similar applications are discussed in [19, 22].

Another category of teams, e.g. the Oshkosh Truck Company, aim to use their
findings in military applications. Their main objective has been to produce reliable
AGV transportation systems, which could be used in hazardous areas.

7

1.2 The DARPA Grand Challenge

Independent of application, autonomous driving is a complex applied robotics
problem, stretching over diverse fields of engineering, including controls, signal pro-
cessing, computer vision, computer science and mechanical engineering – to mention
some of the major ones. To further complicate matters, the urban environment is rich
in both detail and unexpected situations, calling for highly robust systems.

Apart from the technical aspects, participating in Team Caltech was a great op-
portunity for students to work in an environment otherwise rear in academia. The
work was project oriented, highly applied and involved hard deadlines.

1.2 The DARPA Grand Challenge

The 2007 DUC was the third in a series of autonomous road vehicle competitions
organized by DARPA. The previous two went under the name DARPA Grand Chal-
lenge (DGC) and took place in 2004 [14] and 2005 [16]. Team Caltech was formed
in March 2003 in order to compete in the 2004 DGC and has also contributed with
an entry for the 2005 competition.

The 2007 DUC consisted of a series of qualifying steps, leading to a final event.
These steps are shown in Figure 1.2. (Although details have changed, most of the
following applied also to the 2004 and 2005 races.)

1. Program
Announcement
May 1, 2006

2. Participants
Conference
May 20, 2006

3. Site Visit
June 11 - July 20, 2007

5. National Qualifying Event
October 26-31, 2007

6. Final Event
November 3, 2007

4. Semi-Finalist
Announcement
August 9, 2007

Figure 1.2 Time line of the 2007 DUC.

Here follows a short description of each step of the time line in Figure 1.2.

1. Program Announcement May 1, 2006. DARPA announced the schedule for the
2007 DUC. New for the 2007 DUC was that 11 teams, including Team Caltech,
were to receive funding of $ 1 M each, for developing their vehicles.

2. Participants Conference May 20, 2006. The Participants Conference served as
a briefing session, informing the teams what to expect during the remainder of
the DUC.

3. Site Visits June 11 - July 20, 2007. The test sites of the competing teams were
visited by DARPA officials. During these visits the teams had to demonstrate
safe operation and basic functionality of their vehicles.

4. Semi-Finalists announcement August 9, 2007. Based mainly on the outcome of
the site visits, 34 teams were recognized as semi finalists. Team Caltech was
one of the semi-finalist teams.

5. National Qualifying Event October 26 - 31, 2007. The NQE served as a series
of ’unit tests’, where the vehicles needed to demonstrate successful handling
of advanced traffic scenarios (involving several vehicles).

6. Final Event November 3, 2007. Each team that qualified to the final event was
provided with a USB stick holding two files from DARPA. These were the
Route Network Definition File (RNDF) and the Mission Data File (MDF) [17].

8

1.2 The DARPA Grand Challenge

The RNDF was a ’map’, where lane geometry, stop lines, intersections, way-
points etc. were given in a frame fixed to absolute GPS coordinates. The MDF
was an ordered list of GPS waypoints located within the area of the RNDF. It
also defined speed limits for all road segments of the RNDF. The objective of
the competition was to traverse the checkpoints of the MDF in correct order
and minimal time, while adhering to traffic rules [18], provided by DARPA.
All finalist ran on the same RNDF – simultaneously.

Grand Challenge 2004
The 2004 DGC attracted 109 teams, from all over the USA. Out of these, 25 teams
were recognized as finalists. Team Caltech made it to the final event with the modified
Chevy Tahoe Bob, shown in Figure 1.3. Not unlike Alice, Bob utilized laser detection
and ranging (LADAR) sensors and stereo vision for sensing and a combination of
GPS and an Internal Measurement Unit (IMU) for vehicle state estimation. More
information on Bob is given in [26].

Figure 1.3 Photograph showing Team Caltech’s 2004 DGC vehicle Bob. Courtesy of
DARPA.

The final event was held on March 13, 2004, in the Nevada desert. None of the
starting teams finished the course. The Red Team [4] got furthest by completing
11.8 km, which was less than 5 % of the entire course. Team Caltech’s Bob com-
pleted 2.0 km of autonomous operation before running into a barbed wire fence and
aborting.

Grand Challenge 2005
In the 2005 DGC, 43 out of 195 teams (of which 4 were non-US) made it to the NQE.
Out of these, 23 teams, including Team Caltech, qualified to the final event.

Team Caltech’s contribution to the 2005 DGC was the modified Ford E-350 van
Alice [27] shown in Figure 1.1. From a practical point of view Alice had at least two
clear advantages over Bob:

• Space. Alice was bigger, allowing up to eight persons to sit inside and monitor
or develop the system in realtime.

• Manual mode. Bob did not have a manual drive mode and needed to be towed
to and from test sessions.

9

1.3 Thesis Outline

The final event of the 2005 DGC was held on October 9, 2005. The location
was, again, a desert area in Nevada. The outcome was, however, very different. This
time five vehicles completed the 212 km race course. Only one vehicle failed to pass
the 11.8 km mark set by the furthest going 2004 entry. The fastest time was set by
the Stanford Racing Team [5]. Their vehicle completed in 6 hours and 45 minutes
(average speed: 31 km h−1) and won the $ 2 M Grand Prize.

Team Caltech’s Alice started out with all systems functioning, but lost its mid
range LADARs approximately 4 minutes into the race. After an additional 26 min-
utes, Alice went under a set of power lines, losing GPS signal. When the signal was
regained the GPS estimates reported large signal errors. This led to slow state con-
vergence, which was mistaken for the state having converged. With incorrect state
estimates and non-functioning mid-range sensors, Alice picked up speed and ran into
a concrete barrier after 13 km, 32 minutes into the race. See link from [31] for images
of the spectacular crash.

Grand Challenge 2007 – an Urban Challenge
What really put the 2007 DUC apart from previous DARPA challenge races, was the
urban environment setting. Despite a large set of new difficulties, 63 teams qualified
for site visits. Out of these, 34 teams, including Team Caltech, made it through their
site visits. The NQE was passed by 11 teams. Unfortunately Alice failed a merging
test and was therefore disqualified from the Final Event. See Section 8.2 for a detailed
description of what went wrong.

The final Event was won by one of two favorites, the Tartan Racing Team (Carnegie
Mellon University) [7]. The other favorite, Stanford Racing Team [5], took the second
place, followed by the Virginia Tech Team [9].

1.3 Thesis Outline

The material found in this thesis is the result of a highly practical development pro-
cess. Although trajectory tracking control of nonholonomic vehicles is a theoretical
subject, most project time and effort was spent on practical matters, e.g. communicat-
ing within the team, implementing, testing and debugging. When writing this thesis, I
have tried to capture the nature of the project, rather than focusing solely on the con-
trol problem. Throughout the text, subjects appear in the same chronological order as
they were introduced in the project.

In Chapter 2 the structure and routines of Team Caltech are presented. A review
of the team structure is followed by an introduction to key development utilities. At
the end of the chapter, the development schedule for the 2007 DUC is given. Chap-
ter 3, reviews the hardware of Alice, as well as the main features of its sensing and
navigation systems. The vehicle control problem, being the topic of the remainder
of the thesis, is outlined in Chapter 4. In Chapter 5 the dynamics of the vehicle are
discussed, followed by the introduction of the utilized control strategies. The longi-
tudinal (speed) controller implements a conventional strategy and is therefore given
only brief attention. The lateral (steering) controller is, however, based on a novel
idea and further analyzed in Chapter 6. Chapter 7 deals with practical implementa-
tion issues. Field test results, showing the performance of the lateral controller, are
presented in Chapter 8. Finally, Chapters 9,10 are dedicated to conclusions and sug-
gested future work, respectively.

10

2. Team Organization
One of the main challenges in the project was that of team coordination. Having indi-
vidual developers wait for each other due to dependency issues, was avoided as far as
possible due to the given tight time frame. In the same fashion, good inter-team com-
munication was necessary to maintain coherence in the system development. This
required all developers to both comment code rigorously and stay up to date with
code changes. It was all facilitated by a clear team structure with well-established
communication channels.

An overview of the team structure is given in Section 2.1. Section 2.2 reviews the
key utilities for team coordination are reviewed. All parts of the project were more or
less influenced by its tight development schedule, reviewed in Section 2.3.

2.1 Team Structure

Team Caltech consisted mainly of students from Caltech and visiting students from
other universities. Team members also included Caltech faculty as well as NASA Jet
Propulsion Laboratory (JPL) and Northrop Grumman Corp. staff. Over the years a lot
of people have joined, worked in and left Team Caltech. Consequently, a significant
part of the challenge was to maintain knowledge and experience within the team,
although team members were frequently being exchanged.

The team actively working on preparing Alice for the 2007 DUC consisted of 77
persons, listed in Appendix B. The team was divided into several sub-teams, each
with a well-defined purpose. These sub-teams are the subject of the next few para-
graphs. The two biggest – in terms of persons, code as well as functionality – are
given extra attention.

Sensing Sub-Team
Alice made extensive use of sensors [13] including LADAR, radar and stereo cam-
eras, in order to build a map of its environment. See Section 3.1 for further details.
The task of the sensing team was to develop and maintain software which took in-
formation from the sensors, and fused it into the map. A big part of this work lay
in segmenting data points into objects and classifying these objects as cars, static
obstacles, lane lines, etc.

Navigation Sub-Team
The navigation sub-team developed the planning software of Alice. The purpose of
planning was to frequently quarry information from the RNDF, MDF and the map,
as well as vehicle state information supplied by a state estimator in order to gen-
erate feasible trajectories. The trajectories were then sent to the trajectory tracking
controller module, being the main subject of this thesis.

Other Sub-Teams
Apart from sensing and navigation, there were four sub-teams:

• Integrated Project Team (IPT). This sub-team consisted of all the sub-team
coordinators, as well as other ’key’ persons. Its responsibility was to manage
the project at an overview level.

11

2.2 Development Utilities

• Systems Sub-team. All the sub-teams wrote their own programs, executed in
separate processes. The systems sub-team maintained the interfaces used to en-
able inter-process communications. More information is given in Section 7.1.

• Vehicle Sub-team. The vehicle sub-team was responsible for all mechanical
work and wiring on the vehicle.

• Sysadmin Sub-team. The sysadmin sub-team managed the networked worksta-
tions, as well as the ’race’ computers in Alice.

2.2 Development Utilities

The following paragraphs describe six tools which were extensively used throughout
the development process. They are mentioned here, because of their contributions in
terms of defining standards and significantly increasing development efficiency.

Team Wiki
Throughout the project the team wiki [8] hosted descriptions of all software modules,
meeting notes, test schedules, etc. The wiki structure – version managed and editable
by all project members – proved to be successful, mainly because of the rapid devel-
opment process.

Doxygen
Doxygen [2] is a documentation system for a number of languages, including C,
C++ and Java. It can generate both an online documentation browser (in HTML) and
offline documentation (in LATEX). The documentation is extracted directly from the
source code on which doxygen is run. (Specific tokens are used to trigger the doxygen
parser.)

The project utilized the HTML documentation, which was maintained for all
software modules. Apart from comments, the auto-generated documentation showed
code structure, relation between objects and inter-file dependencies in an intuitive
and graphically appealing format.

Bugzilla
Bugzilla [1] is a data base with a HTML front end, used to keep track of bugs. As
identified bugs were inserted into the Bugzilla database, they could be assigned to a
sub-team, or a specific developer. Managed bugs were associated with a severity, as
well as possible dependency relations with other bugs.

Subversion
Subversion (SVN) [6] is a widely used version management software. File trees (or
parts thereof) could be added to an SVN repository, kept on a backed up server. Each
developer worked on a local copy of the code, a sandbox, and could at any given time
commit files to the repository. SVN kept track of commits and gave the developer the
option to revert files to any previously committed version. There was also a web front
end, which enabled developers to examine the version history of files without having
to check them out from the repository.

12

2.3 Development Schedule

YaM
Whenever a developer came to a point where an owned module was stable, release of
the module was made, making it officially available to other developers on the team.
Releases were handled by YaM [21, 10]; a combined version manager and make
utility developed at JPL. It’s functionality was similar to that of SVN. However, it
operated on a module level, as opposed to a file level. It also implemented a custom
make utility, used to build and link YaM-managed modules.

When a release of a software module was made, YaM checked that no changes
had been made to the particular module after it’s files were latest committed to the
SVN repository. It also automatically generated a message with change-log entries
and posted it on the ’implement’ mailing list, informing all developers that a new
module release had been made. The actual release consisted of a source part and a
link part. The source part was simply the module source code, whereas the link part
consisted of binaries, libraries, headers and configuration files. Its purpose was to
spare developers the time it took to check out and compile a module each time there
was a new release of it.

Mailing Lists
The implement mailing list served as the main communication channel between de-
velopers. Whenever a YaM release was made, the release notes were automatically
posted on this list. Notifications of meetings, schedule changes etc. were also posted
here. In addition to the implement mailing list, each sub-team had its own list, for
matters not affecting the entire team.

2.3 Development Schedule

Based on experience from the previous DGC races, Team Caltech began implement-
ing new software modules for the 2007 DUC in June 2007. A mostly stable hardware
setup was already in place. (It was, however, augmented with new computer blades
and sensors. In addition to this, various electro-mechanic parts were replaced.) The
vast majority of development time was therefore spent implementing and testing new
functionality. This section gives an overview of the project time line and development
methodology, utilized by the team in order to maximize development efficiency.

Project Time Line
The nominal project time line for the 2007 DUC preparations was divided into five
spirals. The goals for the individual spirals are reviewed in Appendix A.

Keeping up with the nominal time line turned out to be hard. There were a lot of
minor issues, which together ended up taking longer time than expected to resolve. A
nominal version of almost all modules, including the controller described herein, was
in place by the end of spiral 1. However, Spiral 2 took longer time than planned for,
making spirals 3 and 4 more stressful than originally intended. Nevertheless, by the
end of spiral 4, Alice was capable of handling all the situations postulated by DARPA
– but some of the functionality had not been thoroughly tuned and tested in the field
prior to the NQE.

13

2.3 Development Schedule

Weekly Meetings
Each week the entire project group met. These meetings were coordinated by the
team leader, Prof. Richard Murray, and their structure were as follows:

• Review of what had happened since the last project meeting.

• Overview of the current project status with respect to the nominal time line.

• Determination of a plan for the coming week.

• Outline of a plan for the next few weeks.

In connection to the weekly project meeting, there was a weekly sub-team meet-
ing. The structure was similar to the project meeting, but the scope was narrower,
with focus on practical implementation and testing issues.

Code Development
Although some code development was made in the vehicle, most development and
debugging took place in a lab reserved for the project. A utility, which was extensively
used, was the system simulator. It enabled real time testing of all software (with minor
exceptions), without the need to take Alice out of the workshop.

Code Reviews
One software module was reviewed by its owner(s) each week. These reviews were
very helpful in giving developers insight into modules which they had a dependency
relation to, but were not personally developing.

Field Tests
Once new code had been verified in simulation, it was field tested in Alice. Although
the simulator revealed many bugs, it was not perfect and a lot of bugs were first
observed in the field. Consequently, a big effort was made to maximize test time.
Team Caltech had access to three test sites:

• St. Luke Hospital Parking Area. This site had streets with painted lane- and stop
lines. There were also some buildings, bushes and trees, putting the sensing
sub-system to a test. Unfortunately, the site was rather small.

• Santa Anita Race Track parking Area. Being the parking lot of a big race track,
the site was a huge paved area, with nothing on it except for some painted
lane lines. It was used mainly to test new code at higher speeds or to unit test
specific parts of the sensing sub-system.

• El Toro Former Military Base. The El Toro base was the site most extensively
used towards the end of the project. It was a large area with real roads, parking
lots and several structures.

As indicated, the choice of test site depended on the particular feature(s) to be
tested. While the parking lots were suitable for controller tuning, basic traffic scenar-
ios etc., the El Toro site provided a preview of what was expected for the NQE.

14

3. System Structure
This chapter gives an overview of the system architecture of Alice. The hardware is
reviewed in Section 3.1. The structure and functionality of the sensing and navigation
sub-systems are then explained in Sections 3.2,3.3, respectively.

3.1 Hardware

A complete set of sensing-, computation- and actuation hardware was inherited from
the 2005 DGC. However, some of it needed to be replaced since it would not meet
the new and higher demands of the urban environment. There was also a need of
augmenting the sensor array, in order to obtain both better coverage and higher reso-
lution. The following description is aimed at the final 2007 DUC configuration.

Vehicle State Estimation
The system for vehicle state estimation was the Applanix POS LV 420 by Trimble
[12], providing estimates of vehicle position, orientation, speed and acceleration. The
system consisted of a Global Positioning System (GPS) receiver for coarse position
estimation. Differential GPS (dGPS) was then used to increase both accuracy and
precision of the raw GPS estimate. The GPS and dGPS signals were filtered with the
output of an IMU and a wheel-mounted distance measurement indicator (DMI) . The
obtained state estimates had a root mean square position- and yaw errors of 0.300 m
and 0.020◦, respectively. A schematic drawing of the state estimation system is shown
in Figure 3.1.

IMU

GPS antennas

dGPS antenna

DMI

GPS unit main unit

position
orientation
velocity
acceleration

Figure 3.1 Block diagram illustrating the Applanix POS LV 420 vehicle state estimation
system.

Sensors
An extensive array of sensors was used in order to obtain both adequate coverage and
resolution. The sensors are listed below, and their locations on Alice are shown in
Figure 3.2.

• Sick LADARs. These were (plane scanning) ranging sensors. Alice was equipped
with seven units; five on the front bumper, one on the rear bumper and one on
a roof-mounted pan-tilt unit.

15

3.1 Hardware

• Riegl LADAR. The concept was the same as that utilized by the Sick LADAR.
However, the data return of the Riegl contained not only distances- but also
intensity information. This was used to detect lane lines, curbs and ground
structure, in order to determine the geometry of the travelled road segment.

• Radar. Alice was equipped with two radars; both mounted on pan-tilt units.
Their main purpose was long range detection of moving vehicles. Consequently,
they were used mainly in intersections.

• Bumblebee Stereo vision cameras. The Bumblebees were integrated stereo vi-
sion camera pairs, directed towards the ground. They were used mainly for
lane- and stop line detection.

• Scorpion Stereo vision camera pairs. Pairs of Scorpion stereo vision cameras
were used for obstacle detection, mainly at longer range (∼10 m).

Riegl

Radar

Sick Scorpions

Sicks

Sicks

Sick

Bumblebees Sick

Bumblebee

Figure 3.2 Photograph of Alice, indicating the location of its sensors.

Computing
The computers used at the NQE were 10 dual core cPCI blades with 1 Gbit Ethernet,
one quad core server and two additional dual core machines (left from the 2005 DGC
race setup) networked into a decentralized Linux cluster. Some of the machines were
connected to consoles via a Keyboard Video Mouse (KVM) switch. The computer
rack of Alice is shown in Figure 3.3.

Actuation
The working principles of the brake-, steering-, transmission- and throttle actuators
are described below. The first three are shown in Figures 3.4(a), 3.4(b), 3.4(c), re-
spectively. (The throttle actuator is not depicted, since throttle was actuated by wire
in the Ford E-350.) A Programmable Logic Controller (PLC) constituted the interface
between one of the cPCI blades and the actual actuators.

• Throttle. In the stock E-350 van, the position of the accelerator pedal was read
by a sensor, which actuated the Powertrain Control Module (PCM) of the car.
When in autonomous mode, the PCM got the actuating signal from the PLC,
rather than the above mentioned sensor, allowing the use of the factory built in
throttle actuator.

• Brake. The brake actuator consisted of a compressor connected to 4 pneumatic
pistons via PLC-actuated ’on/off’ valves. Consecutive pistons were able to ex-
ert forces at a ratio of 1:2 on the actual brake pedal, yielding 16 equally spaced

16

3.1 Hardware

Figure 3.3 Photograph showing the computer rack of Alice. From top down: core duo ma-
chines, quad core machine and cPCI box. (The lowermost box is a battery pack.)

(a) Brake actuator. (b) Steering actuator. (c) Transmission actuator.

Figure 3.4 Photograph showing the actuators of Alice.

force states. In addition to the main brake, there was a backup system, which
was actuated if an emergency stop signal was issued by DARPA.

• Steering. Steering was actuated by a DC servo motor (the yellow box in Fig-
ure 3.4(b)) connected to the steering column via a chain drive. There were two
closed loops – one over the DC servo motor and one over the factory mounted
power steering servo. The result of these is further discussed in Section 5.3.

• Transmission. The vehicle was equipped with an automatic transmission gear
box, but still needed a way to shift between ’park’, ’reverse’, ’neutral’ and
’drive’. This was solved by utilizing an electric linear servo, connected to the
PLC.

The dynamics of the brake-, steering- and throttle actuators were of special inter-
est, since they constituted parts of the system to be controlled. They are not explicitly
analyzed here. However, they are implicitly captured in the results presented in Sec-
tion 5.1.

17

3.2 Sensing

3.2 Sensing

As shown in Figure 3.2, Alice was equipped with a large number of sensors. They
were set up in a modular fashion, enabling easy reconfiguration or addition of sensors.

The goal of the sensing system was to collect, classify, fuse and finally put data
in a map database, which was used by the navigation system to make decisions. The
data flow from sensors to map is shown in Figure 3.5.

Feeder

Feeder

Feeder

...

Perception
&

Fusing
Map

Sensor

Sensor

Sensor

...

Figure 3.5 Block diagram illustrating the data flow from sensors to map.

The feeders were basically device drivers, establishing an interface between the
hardware and the perceptors. The purpose of the perceptors was to classify certain
objects from the sensor raw data streams. These objects included lane lines, stop
lines, curbs, the road, static obstacles and moving obstacles (i.e. other vehicles). The
problem of segmenting raw sensor data into objects and classifying them, using the
perceptors, was augmented with the problem of fusing data from the different sensors.
It was important not to erroneously introduce the same object several times into the
map only because it was seen by several sensors. Parts of the sensing system are
covered more in depth in [28, 13].

3.3 Navigation

The purpose of the navigation system was to generate and track trajectories given the
MDF, RNDF and information from the map. This complex problem was overcome by
decomposing it into smaller, confined problems and implementing software modules
which solved them. These software modules formed the navigation stack shown in
Figure. 3.6.

Mission
planner

Traffic
planner

Rail
planner

Zone
planners

Velocity
planner

Trajectory
tracking

controllers

Actuator
interface

Figure 3.6 Block diagram illustrating the navigation stack of Alice.

The mission planner generated an ordered sequence of waypoints, correspond-
ing to road segments to traverse in order to complete the MDF. This was done by
means of a graph search. The list of waypoints generated by the mission planner was
passed to the traffic planner. Depending on the geometry of the environment (road or
unstructured zone, e.g. parking zone) either of two traffic planners were invoked:

• Rail planner. This was the planner used for nominal road region planning. In
each cycle it conducted an A* search over a graph, which was generated offline
from the RNDF. (The A* algorithm is a heuristic extension of the classic Dijk-
stra graph search algorithm.) One of the main challenges here was to associate
costs to the individual nodes properly, with respect to the A* algorithm.

18

3.3 Navigation

• Clothoid planner. The clothoid planner was the one out of three competing
zone planners, which was chosen for the NQE. It was used in parking- and
obstacle zones, as well as road regions where the rail planner failed to plan
around obstacles. Trajectories were produced by searching over a tree of pre-
generated clothoids, in a cost landscape provided by the map.

The output of either traffic planner was a spacial path. A velocity planner (actu-
ally speed planner) populated the points along this path with reference speeds and
accelerations before it was sent down to the trajectory tracking controllers which are
the subject of the remainder of this thesis.

As opposed to the sensing system, which incorporated a one way data flow (with
minor exceptions internal to the perceptors), the navigation system required feedback
at several stages. The traffic planner had to communicate to the mission planner in
case of road blocks, or other ’failures’. The controllers were able to fail to the traffic
planner if an unfeasible trajectory was received (and for some additional reasons
mentioned in Section 7.8). Obviously, the controllers made internal use of feedback.
Finally, there were two cascaded loops in the steer actuator and power steering servos.

The loops below the traffic planner are further discussed in Chapter 5, with fo-
cus on the controller loops. The loops above the controllers were hard to analyze
(rigorously) because of their event-based nature, making it difficult to guarantee de-
terministic behavior in the navigation stack at all times.

19

4. Problem Formulation
This chapter outlines the vehicle control problem, which needed to be approached and
solved during the project. First, it was decomposed into the confined sub-problems,
listed below.

System Identification
The first part of the work was to deduce a parametrized model for the longitudinal-
and lateral dynamics of a road vehicle. The parameters needed to be matched to those
of the actual vehicle, by means of system identification experiments. The outcome of
these experiments would prove if the suggested parametrization was well suited, or
if the model needed to be altered.

Controller Design
A lateral- (steering-) and a longitudinal (speed) controller needed to be designed
and implemented. These controllers should take a trajectory defined by a sequence
of points in the ground plane and an associated speed profile, and generate control
signals issued to the steering-, gas-, brake- and transmission actuators. Simple algo-
rithms were desired, since they would facilitate the entire development chain, from
analysis and implementation to debugging and tuning.

There were no absolute performance requirements. Instead, the goal was to ob-
tain a balance between responsiveness and robustness, which was to be extensively
evaluated on the real process, prior to the NQE. Generally, well-damped behavior
was prioritized over good performance for high frequencies in the references. This
was especially true for the lateral controller.

Contingency Management
Apart from performing well during nominal conditions, the controller module re-
quired the ability to handle certain special situations, including actuator failures and
traffic planner errors, such as extensive delays between trajectories.

Implementation and Testing
When the control algorithms and the contingency management scheme were at hand,
they needed to be implemented and integrated into the fairly complex system. The
controllers needed to receive trajectories from a traffic planner and issue control sig-
nals to a software module responsible for hardware actuation. Once implemented, the
module needed to be tuned and tested extensively together with the system, to find
and correct unexpected behavior.

Time frame
The perhaps hardest problem during the project was its tight time frame. It was es-
pecially true for the low level controllers since they needed to function adequately
in order to test higher level parts of the project, such as traffic planning. This fur-
ther stressed the need of implementation- and tuning-wise uncomplicated control
schemes.

20

5. Modelling and Controller
Design

The longitudinal and lateral dynamics of the vehicle are introduced in Section 5.1.
This is followed by a description of the longitudinal and lateral controllers in Sec-
tions 5.2,5.3. The focus lies on the lateral control problem, which is further investi-
gated in Chapter 6.

5.1 Vehicle Dynamics

In order to successfully design and analyse the trajectory tracking controllers, models
of the vehicle dynamics were needed. These models are the subject of this section.

Longitudinal Dynamics
The brake and throttle actuators both acted on the acceleration of the vehicle. In Alice
an acceleration control signal ua ∈ [−1,1] was utilized. Signals in [−1,0[actuated
the brake, whereas ua ∈]0,1] corresponded to the throttle. Because of dynamics in
the power train, ground friction and air resistance, the acceleration of the vehicle was
not a strictly linear function of ua. Series of open loop experiments were conducted
in order to analyze the non-linearity. During all these experiments the vehicle was
driving forward along a straight line on a flat asphalt surface while time stamped
speed measurements were written to file. The experimental procedure was as follows:

1. A logger which recorded vehicle speed v , acceleration a and applied longitu-
dinal control signal ua was started.

2. Subsequently, a constant control signal ua was issued until the vehicle reached
a steady state speed. (Note that the nature of the automatic transmission re-
quired slight brake pressure to be applied in order to keep the vehicle station-
ary.)

3. A step of parametrized height and duration was introduced in ua.

4. When the vehicle speed converged after the step, the experiment was termi-
nated by stopping the logger and the vehicle.

A large number (∼100) of open loop experiments were conducted with different
step heights and durations. The results were compiled into a parametrized lookup
table, mapping vehicle speed v and desired acceleration au to required control signal
ua. A 3D representation of the resulting lookup table is shown in Figure 5.1.

To confirm the tacit time-invariance assumption, which was necessary for the
validity of the non-linearity model, a subset of the open loop experiment was repeated
after a few days.

No explicit attention was given to the non-linearity while the vehicle was revers-
ing. Since the above deduced model constituted a good approximation – at least when
reversing at low speeds. This was adequate, since there were no plans to reverse au-
tonomously at high speeds.

21

5.1 Vehicle Dynamics

Figure 5.1 3D representation of the parametrized lookup table mapping (v,au)→ ua.

Lateral Dynamics
The vehicle was assumed to have Ackermann steer dynamics, which enabled the use
of a bicycle model approximation. Turning radius r and front wheel angle φ were
related through tan φ = L

r , where L = 3.55 m was the vehicle wheel base. Since
the vehicle was supposed to drive mainly on paved roads at relatively low speeds,
no effort was made to model wheel forces in order to detect and prevent slippage.
consequently, L was the only parameter in the model of the lateral dynamics.

As opposed to the longitudinal control problem, where the error metric was cho-
sen to be the trajectory reference speed subtracted by measured speed, there was no
obvious error metric associated with the lateral control problem. It was, however,
natural to decompose the error into two components:

• Distance error. A distance ey between a point P on the vehicle and a reference
point R on the trajectory.

• Angle error. An angle eθ between the heading of the vehicle and the tangent of
a reference point on the trajectory.

The point P on the vehicle was chosen to be the center of the rear axle. It will
be shown later in this section that the particular choice enabled the proposed lateral
control strategy to be applied also for reverse operation of the vehicle (with a slight
modification). The reference trajectory point R was chosen as the orthogonal projec-
tion of P onto the trajectory (i.e. the trajectory point closest to the rear axle center).

Assuming that the reference trajectory was a circle of radius rc, as shown in Fig-
ure 5.2, the lateral dynamics were given by (5.1, 5.2). The circular trajectory assump-
tion was fair, since an arbitrary feasible trajectory is locally well approximated by a
circle arc.

22

5.1 Vehicle Dynamics

r
e⊥

eθ

O East

N
or

th

Reference trajectory

φ

c

Figure 5.2 Figure used in the deduction of (5.1, 5.2).

dey

dd
= sineθ (5.1)

deθ

dd
=

coseθ

ey + rc
+

tanφ

L
. (5.2)

Note that the propagation of the error state (ey,eθ) in (5.1,5.2) is given over trav-
elled distance d , rather than time. This simplification is equivalent to assuming con-
stant vehicle speed,v, and hence decreasing the degree of the system by one. It will
be used throughout the analysis of the lateral controller and its usefulness becomes
evident in Section 6.1, when the lateral controller is analysed by means of phase
portraits.

In Alice, the output of the lateral controller was the set point for a PID loop within
the steer servo motor. The steer servo applied torque to the steer column, as would
a driver using the steering wheel. It was further aided by the factory built-in power
steering of the Ford E-350, which constituted another closed loop servo system. In
order to protect the servo motor gear box, a rate limiter on φ̇ was implemented, ac-
cording to (5.3). The maximal steer rate φ̇max was gain scheduled with vehicle speed,
through a constant C0 .

φ̇max = C0|v| (5.3)

The dependency on v in (5.3) was debatable. The ultimate purpose of the rate
limiter was not to limit φ̇ , but rather the torque on the steering column. Since there
was no hardware in the loop which could communicate the steer column torque to the
rate limiter software, this would involve predicting the torque from other measure-
ments. The steer column torque depended critically on at least vehicle speed, steer
angle and brake pressure, turning its prediction into a fairly hard modelling problem
and explaining the simplistic approach of (5.3).

Rather than explicitly dealing with the rate limiter dynamics when designing the
lateral controller, the speed planner was made responsible of generating speed pro-
files which were feasible with respect to the spatial part of the reference trajectories
and the steer dynamics.

Apart from the rate limiter dynamics 5.3 there was a pure delay τφ between issued
control signal uφ ∈ [−1,1] and response in φ . By means of step response experiments,
the delay was determined to be τφ = 400 ms and could therefore not be neglected.

23

5.2 Longitudinal Control Strategy

5.2 Longitudinal Control Strategy

After the introduction of the linearizing lookup table in Figure 5.1, it was straight
forward to design a speed profile tracking controller, using any standard linear design
method.

A PI controller was chosen, as opposed to the PID controller used for the 2005
DGC. In fact, the D-part would have added functionality, since speed was controlled
by actuating acceleration directly.

The PID controller used for the 2005 DGC did not utilize a linearizing lookup
table. This resulted in either a bunny-hopping or overshooting behavior when the
vehicle stopped at stop lines etc. The mechanism behind the bunny-hopping was:

1. The vehicle braked too hard and stopped some distance before the stop line.

2. The integral built up and eventually put the vehicle back in motion.

3. The above was repeated until the stop line was reached (or passed by at most
one ’hop length’).

Using the lookup table, the bunny-hopping was suppressed, but not entirely elim-
inated. There was a discussion whether to implement a position (as opposed to speed)
controller and switch to it when the vehicle was to stop at a certain point. However,
this would have required the implementation of a bumpless transfer mechanism and
an augmentation of the trajectory structure. In order to generate a position error, the
trajectory points would need to be associated with a reference passing time. It would
hence be necessary to calculate and update these times from the speed profile of
the trajectory during run time. Eventually it was decided that the potentially gained
functionality (smoother stops) did not justify the increased complexity – and the de-
velopment time it would take to obtain it.

Apart from the longitudinal dynamics captured by the lookup table in Figure 5.1
there was a constant delay τa in actuation of the throttle and brake. It corresponded to
a travelled distance dFF,a through (5.4), where τ̂a was an estimate of the acceleration
actuation delay.

dFF,a = vτ̂a (5.4)

The speed planner populated the trajectory points with both reference speeds vr
and corresponding reference accelerations ar . A prediction term consisting of a con-
stant times the reference acceleration aFF corresponding the point a distance dFF,a
in front of R along the trajectory was augmented to the PI control law in order to
suppress the effects of the actuation delay. The augmented control law, with speed
error integral Iv and parameters C1,C2,C3 was given by (5.5).

au = C0(vr− v)+C1aFF +C2Iv (5.5)

Integral anti-windup was implemented on C2Iv. The idea was to limit the integral,
so that it would not result in control signals ua outside [−1,1]. An analytic solution
to this problem was prevented by the form of the linearizing function shown in Fig-
ure 5.1. Instead, the nominally updated integral was stepwise increased/decreased
until (5.5) yielded ua ∈ [−1,1]. Later on the feed forward term C1a f f was removed
from (5.5) when checking for ua ∈ [−1,1], preventing the integral from changing
rapidly when there was a large change in feed forward acceleration. This was a jus-
tified change, since the role of the integral (capturing unmodelled low frequency dy-
namics) was not affected.

24

5.3 Lateral Control Strategy

PI control of a first order process is perhaps one of the most explored areas of
automatic control. Consequently, no further analysis of the longitudinal controller
will be given, in favor of the lateral control strategy to be presented in Section 5.3.

5.3 Lateral Control Strategy

The lateral control problem was more difficult than the longitudinal one, treated in
Section 5.2. The main reason being the error dynamics (5.1,5.2). Rather than im-
plementing a linear controller, geometric reasoning was used to obtain an intuitively
appealing strategy, described below.

The Existing Solution
In the 2005 DGC, the lateral control of Alice was governed by a PID controller. The
control error was a linear combination of the cross track- and yaw errors. As shown
in (5.1,5.2), the system with control signal φ and output ey was nonlinear. Experience
from the 2005 DGC showed that the PID controller had difficulties in handling the
particular nonlinearity. Consequently, a new lateral control approach was sought.

Before continuing it is, however, worthwhile mentioning that the lateral control
problem in nonholonomic road vehicles has been subject to numerous approaches,
including [29, 24, 30, 11, 23, 20, 32]. Studying these and conclusions from their
implementers constituted a useful background and helped in avoiding some pitfalls.

The New Lateral Controller
The design to be presented below was based on geometric reasoning and yielded an
inherently stable nonlinear state feedback controller with l2 as its only tunable param-
eter. Further, its geometric nature facilitated realtime visualization and debugging, as
mentioned in Section 7.9.

The control strategy is easily explained, using Figure 5.3. The rear axle center
of the real vehicle was projected onto the reference trajectory, as described in Sec-
tion 5.1. The heading of the arising virtual vehicle was aligned with the tangent of
the trajectory at R. Subsequently, the front wheels of the virtual vehicle were turned
so that its turning radius coincided with the curvature of the reference trajectory at R.
The real vehicle was given a front wheel angle φ , steering it towards the end of an
imaginary handle of length l2, pulling the virtual vehicle along its path.

θ

S

O East

N
or

th F

Reference trajectoryVirtu
al

Refe
ren

ce

Veh
icle

Orth
og

on
al

pro
jec

tio
n

Rea
l V

eh
icl

e

R

e⊥
L

P

Q

l2

−φ

Figure 5.3 Graphical illustration of the lateral control strategy.

25

5.3 Lateral Control Strategy

Since the system was subject to an actuation delay τφ , as discussed in Section 5.1,
the steering angle of the virtual reference vehicle was not computed from the curva-
ture of the reference trajectory at R, but rather its curvature a distance dFF,φ ahead of
R.

An Extension for Reversing
Exploiting symmetry and the error metric introduced in Section 5.1, the controller
was easily modified for reverse trajectory tracking. This was done by mirroring the
(real) vehicle through its rear axle and applying the control strategy to the mirrored
vehicle, as shown in Figure 5.4.

F

East

N
or

th

Virtual reference

Vehicle
Orthogonal

projection

S
Real Vehicle R
eference trajectory

Vehicle mirrored

through rear axle

φ

O
−θ

−φ

Q

e⊥

2l

R

P’

Figure 5.4 Illustration showing the extension of the lateral control strategy to the case of
reverse driving.

Integral Action and Anti-windup
The lateral controller was augmented with an integral part which was added to the
nominal control signal, to form the final steering angle φ . The integral update law
was given by (5.6).

dI
dt

=
[ey(t)+C0 · sin(eθ (t))]v(t)C1

C2
(5.6)

The error metric in (5.6) was equivalent to measuring the perpendicular error of
the vehicle’s center line, a distance C0 in front of P. In order to integrate the error
over travelled distance, C1 = 1 was chosen. However, this introduced oscillations for
high speeds. It was empirically found that reducing the scaling power to C1 = 0.5
removed the oscillations.

The power steering PID loop successfully depressed load disturbances. Hence,
the only role of the integral action was to account for miscalibrations in steer angle
measurement. It was possible to make the integral slow enough not cause noticeable
overshoots, because of the low frequency nature of the miscalibration.

Given the slow update time and small operational values, the only anti-windup
action taken, was to confine the lateral integral to the interval [Imin, Imax], with empir-
ically adjusted bounds.

26

6. Controller Analysis
The nonlinear state feedback lateral controller is analyzed in this chapter. In Sec-
tion 6.1 the global behavior of the controlled system is investigated by means of phase
portraits. Section 6.2 introduces a linearization of the controlled system around the
zero error equilibrium, which is the region of nominal operation. The model is used to
investigate stability margins and suggest a gain schedule of the controller parameter
l2. Finally, global stability is discussed in Section 6.3.

6.1 Phase Plane Analysis

In order to analyze the performance of the lateral controller, the evolution of its er-
ror state (ey,eθ) was investigated by means of phase portraits. As suggested in Sec-
tion 5.1, velocity dependence was dropped by plotting the error state evolution over
travelled distance d, rather than time.

Ultimately, it was desired to investigate the evolution of the error states with the
reference trajectory taken to be an arbitrary parametrized curve in the ground plane.
However, this was not possible, since (dey

dd , deθ

dd) at a point (ey,eθ ,0) would not be
uniquely defined, but depend on the location along the reference trajectory. The prob-
lem was resolved by using circular trajectories and corresponding error dynamics
(5.1,5.2) derived from Figure 5.2 in Section 5.1. Circular reference trajectories were
chosen, since they were the most general curves, not leading to uniqueness problems
in (dey

dd , deθ

dd). They were also good local approximations to any feasible trajectory.
Further, model- and measurement errors were neglected and integral action was

omitted. The front wheel angle φ was confined to [φmin,φmax] = [−0.45 rad,0.45 rad],
with numerical values obtained from measurements on Alice. Since curvature was

constant along the circular trajectory, the effect of the steering actuation delay τφ ,
introduced in Section 5.1 could be neglected.

Under the above circumstances, the control law was given by (6.1,6.2,6.3) where
φv was the front wheel angle of the virtual vehicle and rc was the radius of the circular
reference trajectory. Here, δ was the angle between the trajectory tangent at R (see
Figure 5.2) and steering wheel heading of the real vehicle. (The function atan2(x,y)
in (6.2) is equivalent to arctan(x

y) with domain R\(0,0) and extended range [−π,π].)

φv = −arctan
L
rc

(6.1)

δ = atan2(l2 sinφv−Lsineθ − ey,L+ l2 cosφv−Lcoseθ) (6.2)
φ = satφmin,φmax (δ − eθ) (6.3)

Figure 6.1 shows a family of phase portraits drawn under the conditions described
above with rc ∈ {7.4,20,200} [m], l2 ∈ {5,10,20,30} [m]. As seen in the phase
portraits, the origin was a stable equilibrium.

When tracking straight trajectories, steer authority was symmetric with respect to
ey = 0 m. Tracking a circular trajectory of constant turning radius rc < ∞ m required
a nominal steer angle φ 6= 0 rad, yielding an asymmetric division of steer authority
between the cases ey < 0 m and ey > 0 m. Accordingly, phase portraits in Figure 6.1
show that ey > 0 m were handled more efficiently as rc decreases, whereas ey < 0 m
required longer distances to eliminate for small rc.

27

6.1 Phase Plane Analysis

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 7.4 m, l2 = 5 m

(a) rc = 7.4 m, l2 = 5 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 20, l2 = 5

(b) rc = 20 m, l2 = 5 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 200 m, l2 = 5 m

(c) rc = 200 m, l2 = 5 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 7.4 m, l2 = 10 m

(d) rc = 7.4 m, l2 = 10 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 20 m, l2 = 10 m

(e) rc = 20 m, l2 = 10 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 200 m, l2 = 10 m

(f) rc = 200 m, l2 = 10 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 7.4 m, l2 = 20 m

(g) rc = 7.4 m, l2 = 20 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 20 m, l2 = 20 m

(h) rc = 20 m, l2 = 20 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 200 m, l2 = 20 m

(i) rc = 200 m, l2 = 20 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 7.4 m, l2 = 30 m

(j) rc = 7.4 m, l2 = 30 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 20 m, l2 = 30 m

(k) rc = 20 m, l2 = 30 m

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 200 m, l2 = 30 m

(l) rc = 200 m, l2 = 30 m

Figure 6.1 Phase portraits showing the state evolution of error states ey,eθ for different
values of the trajectory radius rc and controller parameters l2.

Another observation was that controllers with larger l2 were more efficient in
aligning the vehicle with the reference trajectory, but less efficient in eliminating the
cross track error. This was obvious from the waggon-pulling analogy presented in
Section 5.3.

Figure 6.2 illustrates what happened if the radius of the reference trajectory was
smaller than the minimum turning radius of the vehicle. The phase portrait was gen-
erated with rc = 5 m, while the minimum turning radius of Alice was 7.4 m. Conse-
quently, the state (ey,eθ) = (0,0) was no longer an equilibrium point and there was
instead a limit cycle around it.

28

6.1 Phase Plane Analysis

-1.5 -1 -0.5 0 0.5 1 1.5

-5

0

5

10

e
θ

e ⊥

rc = 5 m, l2 = 5 m

Figure 6.2 Phase portraits illustrating tracking of a circular trajectory with radius rc = 5 m,
which was smaller than the minimum turning radius of Alice (7.4 m). The controller parameter
was set to l2 = 5 m.

Although eθ ≤±π rad was true during all nominal operation, the global behavior,
with initial eθ ∈ [−π,π], was investigated through further phase portraits. A repre-
sentative example is shown in Figure 6.3.

-3 -2 -1 0 1 2 3

-5

0

5

10

e
θ

e ⊥

rc = 20 m, l2 = 5 m

Figure 6.3 Phase portrait illustrating the global behavior of the controlled system while
tracking a circular trajectory with radius rc = 20 m. The controller parameter was set to
l2 = 5 m.

When the heading of the vehicle made an angle eθ = ±π rad with the tangent
of the reference trajectory, while the cross track error was ey = 0 m, the control law
could not decide whether to issue control signal uφ = −1 or uφ = 1 in order to turn
the vehicle around. For cross track errors ey 6= 0 m, the same thing occurred for small
eθ 6= 0 rad. These equilibrium points formed the near vertical lines at eθ ≈ ±π rad
in Figure 6.3. In practice, these unstable equilibria could be ignored since they were
unstable and not reached in practise.

29

6.2 Linearization and Gain Scheduling

6.2 Linearization and Gain Scheduling

Since the nominal operation of the controller was in a region of small (ey,eθ) and
large rc, extra attention was given to this region. The closed loop system was lin-
earized around (ey,eθ) = (0,0) as rc→ ∞ m.

The perpendicular error ey was decomposed into a perpendicular reference yr and
position y . Correspondingly, eθ was replaced by θr and θ . However, θr was omitted
since rc→∞ m⇒ θr = 0 rad. The hereby resulting state update equation and control
law were given by (6.4,6.5), respectively.

[
dy
dd
dθ

dd

]
=

[
0 1
0 0

]
︸ ︷︷ ︸

Ao

[
y

θ

]
+

[
0
1
L

]
︸ ︷︷ ︸

Bo

φ (6.4)

φ = − 1
l2

(y− yr +θL)−θ (6.5)

Combination of (6.4,6.5) resulted in the closed loop system (6.6).

[
dy
dd
dθ

dd

]
=

[
0 1
− 1

l2L − l2+L
l2L

]
︸ ︷︷ ︸

Ac

[
y

θ

]
+

[
0
1

l2L

]
︸ ︷︷ ︸

Bc

yr (6.6)

y =
[

1 0
]

︸ ︷︷ ︸
C

[
y

θ

]

The closed loop transfer function G from yr to y was now given by (6.7). In (6.8),
the transfer function Go of the open loop system is obtained.

G(s) = C(sI−AC)−1BC =
1

l2Ls2 +(L+ l2)s+1
(6.7)

G(s) =
Go(s)

1+Go(s)
⇒ Go(s) =

G
1−G

=
1

Ls2 +(L+ l2)s
(6.8)

The cutoff ’frequency’ ωc [rad m−1] was now easily obtained from (6.8) through
|Go(iωc)|= 1 and plotted as a function of l2 in Figure 6.4. Figure 6.5 shows the phase
margin φm = π + argGo(iωc) [rad] as a function of the controller parameter l2.

It should be kept in mind that the cutoff ’frequency’ ωc varied with l2, making
direct interpretation of the phase margin plot in Figure 6.5 difficult. It was more
interesting to evaluate the delay distance margin τm = φm

ωc
[m] as a function of l2. This

was done, with result shown in Figure 6.6.
Motivated by Figure 6.6, the gain schedule l2(v) = C0v was introduced. Different

values of C0 were evaluated both in simulation and the field, upon which C0 = 2.0
was chosen.

The increase of l2 with v was also intuitively appealing, considering steer gain
interpretation of l2, introduced in section 5.3. With increased vehicle speed, the sys-
tem would require a smaller steering gain in order to maintain its error decrease rate
(dey

dd , deθ

dd).

30

6.2 Linearization and Gain Scheduling

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Cutoff frequency plotted agains controller parameter

Controller parameter [m]

C
ut

of
f f

re
qu

en
cy

 [r
ad

/m
]

Figure 6.4 Cutoff ’frequency’ ωc [rad m−1] as function of l2.

0 5 10 15 20 25 30
1.3

1.35

1.4

1.45

1.5

1.55
Phase margin plotted agains agains parameter l2

Controller parameter [m]

Ph
as

e
m

ar
gi

n
[ra

d]

Figure 6.5 Phase margin φm as function of l2.

0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

50
Delay distance margin

Controller parameter [m]

D
el

ay
 d

is
ta

nc
e

[m
]

Figure 6.6 Delay distance margin τm [m] as function of l2.

31

6.3 Global Stability

6.3 Global Stability

The analysis in Section 6.2 indicated stability with adequate margins around the zero
error equilibrium. Further, geometric reasoning in Section 5.3 and the phase portraits
in Section 6.1 suggested global asymptotic stability (with the exception for the un-
stable equilibrium points mentioned in Section 6.1). This was also validated, both
in simulation and the real process. However, devising a proof of asymptotic stability
was not an obvious problem to solve. A few Lyapunov-like approaches were made,
but unfortunately this research was prevented by the tight time frame of the project
before a proof was obtained.

32

7. Implementation
This chapter deals with the implementation of the trajectory tracking controller mod-
ule. In Section 7.1 the structure, inherited by all software modules in the navigation
stack, is explained. Section 7.2 reviews additional coding practise. This is followed
by a discussion about the usage of threads in Section 7.3. The trajectory class is ex-
plained in Section 7.4. The actual implementation of the closed loop controllers is
then handled in Section 7.5, with special attention to inter-module communications
given in Sections 7.6 and 7.7. Finally, contingency management and the user interface
are discussed in Sections 7.8 and 7.9, respectively.

7.1 Canonical Software Structure

All software modules in the navigation stack (including the trajectory tracking con-
troller) adhered to the Canonical Software Structure (CSS) framework. The original
purpose of this framework was threefold:

• Modularity. Providing flexibility and ease of re-use.

• Consistent structure. Making code more readable.

• Standardization. Providing predictability and increasing robustness.

The CSS structure standardized the interface between modules as well as their
internal structure and was implemented by inheriting from an abstract class. It also
provided generic utilities for logging to files. The components of a CSS module are
shown in Figure 7.1 and described below.

Controlling
module

Controlled
module

Directive

Status Merged directive

Response

DirectiveResponse

Arbitration

North face

Control

South face

Figure 7.1 Block diagram illustrating the structure of a CSS software module.

North Face
The module implementing CSS, here referred to as the control module, received di-
rectives through a queue-buffered north face towards a controlling module. (The CSS
allowed a module to have several north faces, if needed). In the case of the trajectory
tracking controller module, the directives were the trajectories to be tracked. The con-
trol module replied with responses to the received directives over the north face. For
the trajectory tracking controller, these were status messages used for contingency
management, which is discussed in Section 7.8.

33

7.2 Coding Practice

Arbitration
Receiving directives and sending responses was handled by the arbitration block. It’s
main purpose was to accept or reject incoming directives and send proper responses,
depending on the state of the control module.

Control
The arbitration block communicated with the control block by sending merged di-
rectives and receiving status messages. (The term merged was explained by the case
when the control module had more than one north face.) The control block was where
the actual functionality of the control module lived. (In the CSS context control had
nothing to do with controller.) Apart from merged directives, the control block could
also have ports towards estimators and device drivers and a south face towards the
controlled module (or several south faces towards controlled modules). The control
block made use of data arriving from arbitration and hardware ports, and generated
directives which were sent to the controlled module over the south face(s).

South Face
The south face was the interface between the control module and the controlled mod-
ule. Structurally, the north and south faces were very similar.

7.2 Coding Practice

The CSS constituted a framework, defining code structure on a module level. In this
section additional implementation objectives, held in mind while implementing the
trajectory tracking controller module, will be reviewed.

Dynamic Memory Allocation
Dynamic memory allocation ’in the loop’ is slow and also dangerous, since it easily
leads to segmentation faults caused by memory leaks or dangling pointers. Whenever
possible, memory was allocated at program initialization, and deallocated when the
program terminated.

Inheritance
Inheritance, especially multiple inheritance, easily leads to pitfalls caused by incom-
patibilities. Because of this, ’has-a’ relations were preferred to ’is-a’ ditto.

Threads
Multi-threaded programs are generally harder to debug than single threaded ones.
Also, code that is not thread safe easily leads to data corruption, when used in threaded
environments. It was therefore desirable to minimize the number of simultaneously
running threads. A short discussion is given in Section 7.3.

Magic Numbers
The occurrence of unexplained numerical values in the code was minimized. Where
suitable, constants were defined in parameter files, which could be loaded during
runtime. For non-tunable constants, the #define and enum constructs were used.

Variable Scope
Limiting the scope of variables and functions was stressed. This increased the modu-
larity of the code, and facilitated debugging.

34

7.3 Threads

7.3 Threads

As mentioned in Section 7.2 the number of threads was kept at a minimum. However,
it was not practical to completely eliminate multi-threading. This was partly because
trajectories were sent asynchronously and partly because the Sparrow Hawk user
interface (see Section 7.9) started a separate thread. Hence, the threads started by the
trajectory tracking controller module were:

• Trajectory receiving thread. This thread listened for trajectories on the north
face. A mutex was implemented in order not to change reference trajectory
during an ongoing control cycle. See Section 7.6 for details.

• Main program thread. This thread ran the actual controllers.

• User interface thread. The Sparrow Hawk user interface described in Sec-
tion 7.9 was implemented using a separate thread.

• Canonical Software Structure. The inherited CSS structure ran several threads.
It was, however, designed to be transparent to modules which inherited it.

7.4 The Trajectory Class

This section describes the class which implemented the trajectories to be tracked by
the trajectory tracking controller module. After reviewing the original implementa-
tion, some augmentations and structural changes are suggested.

Original Implementation
A class, defining trajectories, was already in place at the beginning of the project.
The trajectory object was defined by a trajectory header:

struct STrajHeader {

int m_numPoints; // number of points in this trajectory

int m_order; // max derivs of each point+1 (x,xdot -> 2)

int m_dir; // direction of the trajectory (-1 = rev)

} __attribute__((packed)) m_trajHeader;

The header defined the number of points in the trajectory, m_numPoints. Each
trajectory point was assigned Cartesian coordinates (n,e), , defining northing and
easting, as well as time derivatives {(ṅ, ė),(n̈, ë)...(n(m),e(m))} of these. The maximal
order m was defined through m_order. Further, the trajectory object was associated
with a direction m_dir being either forward or reverse. It determined the driving
direction of the tracking vehicle.

The actual trajectory was stored in two fixed sized arrays, allocated at construc-
tion:

double *m_pN;

double *m_pE;

The size of these arrays was given by #define TRAJ_MAX_LEN 5000 and con-
stituted an upper bound on m_numPoints in the trajectory header. The first
TRAJ_MAX_LEN elements of the northing array *m_pN were northing coordinates, n.
The next TRAJ_MAX_LEN elements, were first order derivatives, ṅ, and so on. (The
same applied for the easting array *m_pE.) The derivative of order p associated with
point i was hence easily accessible using
#define INDEX(i,p) ((i) + (p)*TRAJ_MAX_LEN).

35

7.5 Control Loop

Interpolation
Linear interpolation of {(ṅ, ė),(n̈, ë)...(n(m),e(m))}was used between consecutive tra-
jectory points, since the lateral controller assumed spatially continuous trajectories.

For bandwidth (and log file size) reasons, it was desirable to maximize the dis-
tance between consecutive trajectory points, without significantly losing precision.
Given the minimal turning radius rmin = 7.35 m for Alice and assuming spatially
feasible (i.e. trackable) trajectories, the worst case deviation from a truly continu-
ous trajectory would occur for trajectories with curvature corresponding to rmin. This
would give trajectories consisting of linear interpolated segments of maximal length

di < 2rmin a maximal perpendicular deviation rmin−
√

r2− di
2

2
[m] from their con-

tinuous counterparts. A trajectory point separation di = 0.5 m was chosen, yielding a
maximal interpolation error of 4.3 mm.

Suggested Improvements
The ability to specify derivatives of order m > 2 in the trajectory points, was super-
fluous, since acceleration (m = 2) was directly actuated by the throttle and brake.

Further, representing the trajectory points as Cartesian tuples {(n,e),(ṅ, ė),(n̈, ë)}
may seem appealing. However, the representation (n,e),θr,vr,ar, where the reference
angle θr specifies the reference direction of movement in the n,e-plane, vr is speed
reference, and ar is scalar acceleration reference would be superior for two reasons:

1. The finite (fixed) length of the double was limiting when extracting direction
information for small values of (ṅ, ė). Particularly, no direction information
could be obtained for {(ṅ, ė) = (0,0)}.

2. Both the lateral controller and traffic planners used the latter representation
internally. Consequently, Cartesian trajectory point representation involved two
unnecessary conversions, in which precision was potentially lost.

Because of this, a new trajectory class with the suggested improvements was
implemented. However, incorporating it into the system would have required changes
in several modules and was not prioritized, since there were more urgent issues at
other places in the planning stack.

7.5 Control Loop

This section reviews the implementation of the CSS module, hosting the controllers.
It is done by following the execution of one control cycle. A timing diagram showing
the different execution steps of the control loop is shown in Figure 7.2 and explained
below. The control- and state update periods were chosen to be 100 ms, which was
adequate to capture the significant dynamics of the system (with some margins).

Not to scale

2. Update state

3. Control

1. Arbitrate

4. Log

5. Sleep

Figure 7.2 Timing diagram showing one control loop cycle.

36

7.5 Control Loop

Arbitration
The arbitrate function was invoked at the beginning of each control cycle. Its pur-
pose was to populate and send response messages to the traffic planner through the
north face. These responses were populated from a control status object, hosting two
categories of information. One was the actuator status information, which was pop-
ulated in the arbitrate function by reading actuator status responses queued at the
south face. The other part was populated during the previous control cycle and used
for contingency management. See Section 7.8 for a description of the control status
object.

State Updates
After return of the arbitration function, the state variables used by the controllers
were updated. They were:

• Vehicle State. The vehicle state was read from a separate module, which com-
municated with the Applanix state estimator described in Section 3.1. It es-
timated the position (northing, easting, altitude) and orientation (roll, pitch,
yaw) of the vehicle as well as the first time derivative of the listed entities. For
convenience, the state was given in both (global) Universal Transverse Mer-
cator (UTM) and (local) vehicle frame coordinates. The vehicle state struct

also held a time stamp used for detecting delays and when logging to file.

• Actuator State. The actuator state held information from the steer, throttle,
brake and transmission actuators. A status (on/off), commanded position, mea-
sured position and time stamp were populated by each mentioned actuator. The
actuator state also told whether the vehicle was stopped (used system wide) as
well as the E-stop state, explained below. (It also had some deprecated mem-
bers, not mentioned here.)

• E-stop State. Implementation-wise, the E-stop state was part of the actuator
state, despite the separate attention given here. It was defined by the following
enumeration:

enum EstopStatus {

EstopDisable = 0,

EstopPause = 1,

EstopRun = 2

};

During nominal autonomous operation the E-stop state was EstopRun. The
EstopPause state was used when the vehicle needed to be momentarily stopped
(either by a safety driver or remotely). Transition from EstopPause to EstopRun

was straight forward, whereas transition from EstopDisable to EstopRun required
manual re-initialization of the system. EstopDisable was used when the vehicle
was manually driven (on e.g. public streets) or at other occasions when spurious
transitions into EstopRun were unwanted, or even dangerous.

Control
Once all states were updated, The controllers were invoked in the following order:

• Longitudinal Controller.

• Lateral Controller.

37

7.6 North Face communication

• Transmission Controller.

The controllers were passed pointers to the current trajectory, vehicle state, con-
trol status object and actuator directives to be populated. Once all three controllers
had returned, the corresponding actuator directives were passed down through the
south face to the hardware actuating software module.

Logging
During each cycle, the trajectory tracking controller module logged its current state
to file. The log files could be considered an augmentation to the user interface and
are therefore briefly treated in Section 7.9.

Sleep
In order to maintain a constant control period, the process in which the controllers
were running was issued to sleep for a variable amount of time at the end of each
control cycle. As shown in Figure 7.2 the majority of the execution time (97 %) was
spent sleeping.

7.6 North Face communication

The trajectory tracking controller CSS module had a north face towards the traffic
planner. It was used to receive trajectories and send status responses. The latter was
tightly associates with contingency management and is treated in Section 7.8. The
code of the trajectory receiving thread is shown below.

void Follower::CommThread ()

{ int trajSocket;

trajSocket = m_skynet.listen(SNtraj, SNplanner);

CTraj* newTraj = new CTraj(3);

CTraj* tmpTraj;

while (!ExitHandler::quit) {

bool trajReceived = RecvTraj (trajSocket, newTraj);

while (m_skynet.is_msg(trajSocket)) {

trajReceived = RecvTraj(trajSocket, newTraj);

}

if (trajReceived) {

m_trajectoryCounter++;

DGClockMutex(&m_recvdTrajMutex);

tmpTraj = newTraj;

newTraj = m_recvdTraj;

m_recvdTraj = tmpTraj;

DGCunlockMutex(&m_recvdTrajMutex);

}

}

delete newTraj;

}

The purpose of the thread was to copy incoming trajectories to a memory location
pointed at by m_recvdTraj (which was accessible from the controllers), while lock-
ing the m_recvdTrajMutex and hence rendering the copy operation atomic, from the
controllers’ point of view.

38

7.7 South Face communication

At the beginning of the thread two trajectory pointers were declared of which
newTraj pointed at an actual trajectory object. The thread then ran while
ExitHandler::quit was false. (The role of the ExitHandler was to ensure that
threads terminated in correct order when the module was shut down.) In order to
avoid dynamic memory allocation in the loop, a scheme with three statically allo-
cated trajectory pointers was used. Incoming trajectories were written to the memory
location pointed at by newTraj. At this point a trajectory counter (used for debugging
purposes) was incremented, followed by the locking of the m_trajRecvdMutex. The
next three lines were ’pointer juggling’, making m_recvdTraj point at the newly re-
ceived trajectory and newTraj at the previously received trajectory object (which was
a safe location to overwrite, once a new trajectory arrived from the traffic planner).

7.7 South Face communication

The individual controllers wrote their output directly into actuator directives. These
were given ID numbers before being queued at the south face and sent to the hard-
ware actuating software module. The ID numbers were later used to match responses
from the hardware actuating software module to their corresponding directives. (The
directive-response pair was handled upon which the directive was dequeued.) To be
time-wise robust against lost or late responses, the queue was implemented as a linked
list (rather than vector).

7.8 Contingency Management

To be successful, the trajectory tracking controller module needed to handle various
special situations and errors. A control status object was passed by reference to the
different controllers and maintained a centralized notion of execution state. It was
populated by members of the following enumeration:

enum followerStates {

Running = 0,

TrajectoryTimeout = 1 << 0,

TrajectoryError = 1 << 1,

EstopPause = 1 << 2,

EstopDisable = 1 << 3,

TransmissionPending = 1 << 4,

TransmissionRejected = 1 << 5,

SteeringRejected = 1 << 6,

ThrottleRejected = 1 << 7,

BrakeRejected = 1 << 8,

TrajectoryEnd = 1 << 9,

LateralMaxError = 1 << 10,

LongitudinalMaxError = 1 << 11,

SteeringFailure = 1 << 12,

ThrottleFailure = 1 << 13,

BrakeFailure = 1 << 14,

TransmissionFailure = 1 << 15,

ReactiveObstacleAvoidance = 1 << 16

};

39

7.9 User Interface

These were all defined as powers of two, facilitating straight forward hosting of
the control status in a single integer. Each member was represented by the bit of
corresponding value and bit-wise masking was used to set and clear bits. This also
explains why the nominal Running state was represented by 0.

The LateralMaxError and LongitudinalMaxError bits were deprecated. (They
were originally used to request a spatial re-plan from the traffic planner, if either the
lateral or speed error exceeded thresholds given in a parameter file.) The
ReactiveObstacleAvoidance bit is not treated here, since it falls outside the con-
text. Remaining enumeration members can be divided into trajectory- and actuator
errors, given separate attention below.

Trajectory Errors
The TrajectoryTimeout bit was set when a trajectory was not received for some
parametrized time (nominally 2 s). The controller responded to these timeouts by
bringing the vehicle to a stop. Once a new trajectory was received, the timeout bit
was cleared.

The TrajectoryError bit was set if a received trajectory did not adhere to the
specified format. When set, a request for a new trajectory was sent to the traffic plan-
ner.

Actuator Errors
Actuator failures were detected by the software module receiving directives from
the trajectory tracking controller. This module sent responses to all directives re-
ceived from the controllers. There were two possible error responses – rejected or
failed, each associated with a specific actuator. A directive was failed if the corre-
sponding actuator suffered from a hardware failure, whereas the rejection mecha-
nism was part of a low level contingency management scheme. For instance, throt-
tle directives were rejected while the vehicle was changing gears (indicated by the
TransmissionPending bit) or if there was a steering failure.

Apart from the above mentioned errors, the actuating software module was also
responsible for updating the E-stop state, which was quarried and handled by the
trajectory tracking controller module.

7.9 User Interface

To facilitate debugging, both during simulation and field tests, the trajectory tracking
controller module was equipped with a partly interactive user interface consisting of
several parts, handled below.

Sparrow Hawk
Sparrow Hawk [25] is a collection of programs and a library of C functions intended
to aid in the implementation of real time controllers on PC-based data acquisition
and control systems. The part of it used in Alice was a framework for implement-
ing interactive text-based console displays. They were interactive, since keys could
be bound to trigger call-back functions. It was also possible to alter the values of
program variables directly from the console display.

A ’screen shot’ of the Sparrow Hawk display of the trajectory tracking controller
module is shown and explained in Appendix C.

40

7.9 User Interface

Map Viewer Visualization
The geometric nature of the lateral control algorithm, was very convenient when it
came to debugging. The ’handle’ described in Section 5.3 was drawn in the map
viewer software, providing visual information which was easier to interpret (during
run time) than the corresponding numbers in the Sparrow Hawk display.

Parameter Files and Command Line Arguments
Gengetopt [3] is a tool for writing command line option parsing code for C programs.
It was used for command line parsing at module startup as well as parsing of the
controller parameter file, which could be updated from the sparrow hawk display
during run time. This was very convenient, since it allowed new parameter sets to be
loaded without having to restart the entire navigation stack.

Log Files
The perhaps most important part of the user interface was the logger mentioned in
Section 7.5. The following information was logged once per control cycle:

• Timing information.

• Vehicle state.

• Actuator state.

• Reference trajectory information.

• Control errors.

• Timing information.

• Vehicle state.

• Actuator state.

• Reference trajectory information.

• Control errors.

• Controller state.

Since file access was slow, with undeterministic duration, all log file writing was
handled after the invocation of the actual controllers.

Log files were used extensively to debug and tune the controllers. They were also
the basis for all material presented in Chapter 8.

41

8. Field Results
This chapter is divided into two sections. The first, Section 8.1, shows the perfor-
mance of the controllers in the field. The second, Section 8.2, explains what failed
during the NQE – preventing Team Caltech from participating in the final event of
the 2007 DUC.

8.1 Controller Performance

At the beginning of the project, the controllers were unit tested by means of static
trajectories and speed profiles. Results in this section are, however, from tests where
the trajectory tracking controller module was run together with the sensing and navi-
gation software explained in Sections 3.2,3.3.

Figures 8.1(a),8.1(b) show the cross track- and yaw error, respectively, plotted
during 60 s of autonomous driving. The vertical jumps seen at 13 s, 43 s and 46 s
in Figure 8.1(a) were due to lateral shifts of the reference trajectories, introduced by
the traffic planner. (Because of their lateral nature, these shifts affected the yaw error
only marginally and are therefore not explicitly seen in Figure 8.1(b)).

0 10 20 30 40 50 60
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Cross track error over time

time [s]

cr
os

s
tra

ck
 e

rro
r [

m
]

(a) Cross track error ey over time.

0 10 20 30 40 50 60
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Yaw error over time

time [s]

ya
w

 e
rro

r [
ra

d]

(b) Yaw error eθ over time

Figure 8.1 Cross track- and yaw error during 60 s of autonomous operation of the vehicle.

The control signal during the 60 s during which the data for Figures 8.1(b),8.1(a)
were collected is shown in Figure 8.2(a). As seen in the figure, the signal lay within
[−0.25,0.25] which is to be compared with the available range [−1,1]. The integral
started at 0 and converged to −0.043. The small value indicated that the used model
was adequate, i.e. that unaccounted tyre forces etc. were negligible.

Due to degrading steering calibration, the stationary value reached by the integral
changed between runs. The steering had been recalibrated shortly before the partic-
ular run, explaining why the integral converged to such a small value. Notice also
the relative long time (∼ 30 s) it took for the integral to converge, as discussed in
Section 5.3.

Finally, Figures 8.3(a),8.3(b) show distribution histograms of the cross track- and
yaw errors respectively from 10 min of continuous autonomous operation. It was dif-
ficult to draw any quantitative conclusions due to the lack of reference data obtained
e.g. from the same system, with different controllers.

42

8.2 The NQE – What Went Wrong

0 10 20 30 40 50 60
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
control signal over time

time [s]

co
nt

ro
l s

ig
na

l [
in

te
rv

al
 -1

,1
]

(a) Control signal ua

0 10 20 30 40 50 60
-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0
Integral

time [s]

in
te

gr
al

 [c
on

tro
l s

ig
na

l]

(b) Integral part

Figure 8.2 Control signal and integral from the data set used to plot Figures 8.1(a),8.1(b).

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60
Cross track error histogram

cross track error [m]

(a) Cross track error eθ histogram

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

60

70

80
Yaw error histogram

yaw error [rad]

(b) Yaw error ey histogram

Figure 8.3 Histograms showing the distribution of cross track- and yaw error from 10 min-
utes of nominal operation.

8.2 The NQE – What Went Wrong

Team Caltech made it to the NQE and successfully completed one of the qualifying
runs. Alice did, however, fail a merging test, which marked the end of the race for
Team Caltech. The objective was to demonstrate safe mering via a left turn into traf-
fic. (The traffic was made up by stunt driver driven vehicles). Alice was to drive up to
a stop line at an intersection and come to a complete stop. The stunt cars were driving
through the intersection, from right to left, with a spacing of ∼ 10 s. Alice was then
supposed to make a left turn and merge with the stunt cars in a safe manner. This is
what happened:

Stop lines were defined in the RNDF. They were also sensed by stereo vision and
placed in the map database of Alice. Normally, Alice stopped nicely at sensed stop
lines. However, when getting close enough to a stop line, the line would eventually
fall out of view of the stereo cameras. At this point it was removed from the map
and replaced with the RNDF stop line. This sometimes caused a ’bunny hop’ if the
RNDF stop line was further ahead than the sensed one. The night before the particular
NQE run, a change was made in the software, so that sensed stop lines were not
removed from the map, as they disappeared out of view. The new code was tested
in simulation, with play-back log data from previous tests and nothing out of the
ordinary was found. However, there was a bug in the map which was previously
hidden by the deletion of sensed stop lines from the map as they were approached. If
the stop line perceptor returned false positives, the map would not always return the

43

8.2 The NQE – What Went Wrong

position of the closest sensed stop line to the RNDF position, as it was supposed to.
At the NQE run the stop line perceptor returned a false stop line some meters

before the real one, which was also returned. At first the map software did the right
thing, but after passing the false stop line by 3.2 m, it erroneously associated the false
stop line with the RNDF. (This would not have happened with the deletion of stop
lines mentioned above.) Now, however, the planner logic interpreted the situation as
if Alice had overshot the real stop line by 3.2 m and made it into the middle of the
intersection without checking for clearance. Since this was most likely a bad place
to be, the planner tried to get Alice out of intersection, but in fact drove straight into
it due to the shifted map. There was a threshold, preventing this evasive behavior in
situations where the stop line was only slightly overshot. However, the threshold was
set to 3.0 m.

The competition coordinators saw Alice launching into the intersection and com-
manded an E-stop pause, preventing it from running into the oncoming traffic.

Alice was given a second try in which something similar happened. Somehow
(the exact reason was never found) a point 62 m from the RNDF stop line was er-
roneously associated with the real stop line. This time Alice was disqualified from
further competition for safety reasons.

44

9. Conclusions
A trajectory tracking software module was designed, analyzed, implemented and
tested. A lot of time and effort was spent integrating it with the other modules of
the system. In parallel with this, the other modules of the system were developed,
integrated and tested. By the NQE all desired functionality was in place. However,
there was not enough time for proper bug fixing and tuning. This became apparent at
the NQE, as indicated in Section 8.2. Here follows a list of conclusions, which were
realized throughout the project. Some conclusions are also found in Chapter 10.

• Test time. About one month prior to the NQE, there was a major code restruc-
turing in which the main traffic planner was basically re-written. At this point
a lot of time was spent testing, and it got quite hectic as new bugs were found
and fixed, just to discover that they hid others. The lesson learned here, was that
it took more time than one would initially imagine, to properly test and tune
a complex system like Alice and that late code changes should be avoided, if
possible.

• Special cases. The design of Alice was complicated by the handling of various
special cases, which were introduced since it was hard to know what to expect
at the finals. It is my belief that a more simplistic approach to the problem might
well have taken Team Caltech to the finals. But once again, it was impossible
to know what situations were to be encountered. For example a lot of time was
spent developing code which would take Alice past road block, just to discover
that there were none at neither the NQE nor the final event.

• Team work. Working in a big group was a challenge. Good communications
were paramount to avoid misunderstandings, leading to bugs. Using the utili-
ties, mentioned in Section 2.2, truly facilitated this work. It was also facilitated
by the friendliness and motivation found in all team members.

• CSS. The CSS, introduced in Section 7.1, was based on a good idea. However,
the implementation was rather complicated. As a result it was fully inherited by
only one or two software modules. Hence, its role as a standardizing interface
was somewhat lost.

• Personal reflections. Prior to the project, it was difficult to know what to expect.
Initially, the mere amount of project code was chocking. I had never worked on
a software project involving more than two persons and never written anything
in C++. Fortunately, it did not take more than one or two weeks to get started.
Then the entire project was one long learning experience – partly because of
my limited background in software engineering. It was very stressful at times,
but at the same time I cannot think of a better way to learn practical problem
solving through programming. Last but not least, participating in Team Caltech
has given me new friends, from around the world.

45

10. Future Work
Although the controllers did their job in tracking reference trajectories, there re-
mained things which could potentially improve the trajectory tracking controller
module and the understanding of its behavior. The areas of these possible improve-
ments are the subjects of Section 10.1, whereas Section 10.2 deals with possible
improvements of the entire system. Generally, this chapter reviews known problems,
rather than suggesting their solutions.

10.1 Controller Module

This section is divided into three sub-sections, addressing the longitudinal control,
lateral control and control related hardware, respectively.

Longitudinal Control
• Position controller. At low speeds, the non-linearity in the longitudinal actua-

tion was not perfectly captured by the lookup table introduced in Section 5.1.
(E.g. stick-slip friction, which occurred when accelerating from zero speed,
was not modelled at all.) To increase smoothness of operation, especially in
parking situations, a position- (rather than speed-) tracking controller, as sug-
gested in Section 5.2 would be valuable.

• Adaptive identification. No explicit attention was made to changes in road com-
position (asphalt, dirt, etc.), winds, vehicle load or other factors affecting the
validity of the lookup table shown in Figure 5.1. In general, the controlled sys-
tem was robust to such changes. However, utilizing e.g. an adaptive update
of the lookup table would probably have increased performance, given slow
enough update times not to jeopardize corruption of the lookup table due to
high frequency phenomena.

Lateral Control
• Error convergence. Apart from the numerical analysis of the lateral controller

given in Chapter 6, it would be interesting to obtain a lower bound of its error
convergence rate.

• Stability margins. The delay margin was obtained for the linearization of the
system around its zero error equilibrium in Section 6.2 and verified through
field experiments (not presented here). In addition to this it would be of interest
to obtain measures or sensitivity to disturbances introduced at different points
of the loop. (The non-static components of such disturbances were shown to be
negligible in Alice, through field tests.) In addition to this, further analysis of
the nonlinear region of operation would provide deeper understanding of the
controller.

• Gain schedule. It could be worthwhile to experiment with the gain schedule of
l2, which was introduced in Section 6.2. A possible candidate would be e.g. a
schedule resulting in a speed independent upper limit of centripetal accelera-
tion vehicle acceleration.

46

10.1 Controller Module

• Steer dynamics. It was assumed that the velocity planner generated speed pro-
files which were feasible with respect to the slowest time constant of the steer-
ing dynamics. Further, a feed forward reference trajectory point was introduced
in Section 5.3, to balance the effects of steering actuation latencies. It would be
interesting, though more complicated, to analyze a more general case, where
the steering dynamics are explicitly recognized as part of the controlled system.

• Delay estimation. The actuation delay estimate used to obtain the feed for-
ward trajectory point was obtained offline. Introducing an estimator in the loop
would make the system less sensitive to low frequency changes in the actu-
ation delay. (High frequency changes were never a problem, since they were
efficiently cancelled by the mechanical parts of the system.)

Hardware
• Steering. There was a measured delay τφ = 400 ms in the steering actuation. At

low speeds the long delay did not pose a serious problem. However, at higher
speeds (v > 10 ms−1) it sometimes triggered an oscillative behavior in the lat-
eral controller when the reference trajectory was suddenly shifted laterally by
the traffic planner. This was a difficult problem to approach. Simply reducing
controller gain was not a feasible solution, since it would degrade tracking per-
formance to an unacceptable level before eliminating the swerving. Instead,
attempts were made to identify the trajectory shifts and temporarily switch to a
less aggressive control strategy. The problem was eventually eliminated by im-
provements in the traffic planner, which prevented it from generating suddenly
shifting reference trajectories.

• Braking. The maximal deceleration when applying longitudinal control signal
ua =−1.0 was −2.7 ms−2 in Alice. From the point of view of the longitudinal
controller, there was nothing to do about this low value. However, the resulting
long stop distance posed a serious problem in traffic planning. With speeds of
v > 10 ms−1, larger decelerations would be required in order to safely stop the
vehicle in case of suddenly appearing obstacles.

47

10.2 System

10.2 System

The trajectory tracking controller module was only a small part of a complex system.

• Vehicle state estimation. Throughout the development process, problems were
experienced with the Applanix vehicle state estimator described in Section 3.1.
Occasionally it introduced large (> 1 m) state drifts as the vehicle resumed
driving after long (> 30 s) stops. Unfortunately, the problem was never re-
solved, since the team did not have access to the software of the Applanix –
it was merely a black box, providing state data. Instead a workaround solution
utilizing drifting coordinate frames was introduced.

• Unit testing. A large amount of system test time was inefficiently spent, since
it was difficult to unit test some of the individual modules before integrating
them into the system. A proper framework for unit testing would therefore have
facilitated the development process significantly.

• Sensor coverage. Although Alice was equipped with a seemingly large number
of sensors, sensor coverage proved to be inadequate in e.g. intersections. This
was worsened by the fact that the perception software sometimes confused
static- and moving obstacles.

48

A. Project Time Line
The nominal time line of Team Caltech’s development process for the 2007 DUC was
divided into 5 spirals, each defined by a list of goals. The spirals and corresponding
goals are given below. A brief discussion of the time line was given in Section 2.3.

Spiral 0 – Planning and Preparation (13 Jun - 8 Jul)

1. Finalize plan for the summer (goals, time line, sub-teams).

2. Update architecture (navigation system, coding standards).

3. Update software infrastructure (unit test structure, common startup scripts,
YaM improvements).

4. Update hardware infrastructure (remount sensors, cabin reorganization, final-
ize power design, install new computers).

Spiral 1 – Navigation and Traffic (9 Jul - 5 Aug)

1. Safe and robust driving in all navigation- and basic traffic scenarios .

2. Working versions of all modules.

3. Hardware system finalized.

Spiral 2 – Advances Traffic (6 Aug - 2 Sep)

1. Safe, robust and persistent driving in all navigation- and traffic scenarios.

2. System functionality finalized.

Spiral 3 – Optimization (4 Sep - 30 Sep)

1. Race-ready operations and capability of autonomously driving 60 miles in less
than 6 hours.

2. Code finalized.

Spiral 4 – NQE and Race Preparations (1 Oct - 21 Oct)

1. Mistake-free NQE and race procedures.

49

B. Team Members
The chart below lists the members of Team Caltech, who were involved in the prepa-
rations for the 2007 DUC. (Persons listed below the horizontal lines participated
during the 2006-07 academic year, but were not involved in the development covered
in Appendix A.)

Team leader: Richard Murray, Team co-leader Joel Burdick

Vehicle Team Navigation Team Sensing Team Systems Team

Dominic Rizzo (coord) Noel duToit (coord) Sam Pfister (coord) Nok Wongpiromsarn (coord)

Tony & Sandie Fender Vanessa Carson Mohamed Aly Josh Doubleday

Rob Grogan Stefano di Cairano Andrew Howard Jessica Gonzalez

Noele Norris Sven Gowal Laura Lindzey Phillip Ho

Josh Oreman Magnus Linderoth Jeremy Ma Robbie Paolini

Jimmy Paulos Christian Looman Humberto Pereira Rich Petras

Glenn Wagner Mark Milam Christopher Rasmussen Chris Schantz

Daniel Alvarez Kenny Oslund Henrik Sandberg Luke Durrant

William David Carrillo Jeremy Schwartz Tamas Szalay Julia Braman

Arthur Chang Kristian Soltesz Daniele Tamino Edward Chen

Iain Cranston Francisco Zabala Pete Trautman Steve Chien

Matthew Feldman Lars Cremean Joe McDonnell Jay Conrod

Nicholas Fette Tom Duong Brandt Belson Scott Goodfriend

Ken Fisher Luke Durant Philipp Boettcher Mitch Ingham

Nikhil Jain Melvin Flores Justin McAllister Michael Kaye

Michael Kaye Steven Gray Miles Robinson aditya Khosla

Daniel Talancon Russell Newman David Trotz Bob Rasmussen

Albert Wu Brent Goldman Yi Wang Chess Steton

Ghyrn Loveness Johnny Zhang Sashko Stubailo

Jerry He

50

C. Sparrow Hawk Display
The sparrow Hawk display was divided into three columns – one per controller. A
forth column (the rightmost) was used to display status messages (not shown here)
and trajectory information. Further, the display was vertically divided into state-,
timing- and error sections. The bottom part was dedicated to reactive obstacle avoid-
ance (not treated here). A ’screen shot’ of the Sparrow Hawk display during nominal
operation is shown below.

SNKEY: 0 Hit 'l' to toggle visualization in mapviewer

--------------------+---------------------+------------------+-------------------------

Lateral (steering) |Longitudinal (speed) |Transmission |Status

--------------------+---------------------+------------------+-------------------------

error: 0.174 |error: %0.375 |trajDir: 1 | Traj ID: 784

I-part: %la_I |I-part: %lo_I |Cur gear: 1 | Traj age: 0.27

phi: %la_phi |vRef: %lo_vR |Pending: 0 | astate age: 0.12

phi FF: %la_pFF |vel: %lo_vel | |

l1 GS: %la_l1G |a : %lo_a | |

l2 GS: %la_l2G |aFF: %lo_aFF | |

|aPitch: %lo_aP | |

u: %la_u |u: %lo_u | |

%la_replan |%lo_replan | |<-Replan

--------------------+---------------------+------------------+

1007 |1004 |%dir_trans |<-Directives

1005 |1002 |%resp_trans |<-Responses

True |True |False |<-Sending

0.274 |0.283 | |<-Loop age

0.182 |0.194 | |<-State age

--------------------+---------------------+------------------+

|Gas: |Brake: | |

| | | |<-Rejected

| | | |<-Failed

--------------------+---------------------+------------------+

Trig: %roa_ot Dist: %roa_cd Dec: %roa_dt Del: %roa_dd |<- ROA [m]

-----------------------+-------------------------------------+

%roa_m %roa_z %roa_or |MASTER DELY OBSTACLE %roa_ben|<- ROA state

-----------------------+-------------------------------------+

| |

2 updatess of parameters from file: +-----------+

/home/users/team/alice-hardware-01/etc/follower/paramfile

QUIT update

The display also showed from which file the current controller parameters were
loaded. It enabled updates of these as well as the ability to toggle visualization of the
lateral control algorithm in the graphical map viewer software.

51

References

[1] The Bugzilla web page. Visited October 2007.
http://www.bugzilla.org. 2.2

[2] The Doxygen web page. Visited November 2007.
http://www.stack.nl/~dimitri/doxygen. 2.2

[3] The Gengetopt web page. Visited November 2007.
http://www.gnu.org/software/gengetopt/gengetopt.html. 7.9

[4] The Red Racing Team web page. Visited October 2007.
http://www.redteamracing.org. 1.2

[5] The Stanford Racing Team web page. Visited October 2007.
http://cs.stanford.edu/group/roadrunner. 1.2

[6] The Subversion web page. Vistied October 2007.
http://www.subversion.tigris.org. 2.2

[7] The Tartan Racing Team web page. Visited November 2007.
http://www.tartanracing.org. 1.2

[8] The Team Caltech Wiki web page. Visited October 2007.
http://gc.caltech.edu/wiki07. 2.2

[9] The Virginia Tech Team web page. Visited November 2007.
http://www.me.vt.edu/urbanchallenge. 1.2

[10] The YaM Wiki web page. Visited October 2007.
http://dartslab.jpl.nasa.gov/yam.
The site requires user name and password authentication. 2.2

[11] R. H. Byrne, C. T. Abdallah, and P. Dorato. Experimental Results in Robust
Lateral Control of Highway Vehicles. IEEE Control Systems Magazine, pages
70–76, April 1998. 5.3

[12] A. corp. POS LV V4 Installation and Operation Guide, 2006. 3.1

[13] L. B. Cremean, T. B. Foote, J. H. G. illula, G. H. Hines, D. Kogan, K. L.
Kriechbaum, J. C. Lamb, J. Leibs, L. Lindzey, C. E. Rasmussen, A. D. Stewart,
J. W. Burdick, and R. M. Murray. Alice: An Information-Rich Autonomous
Vehicle for High-Speed Desert Navigation. Journal of Field Robotics, Issue 9,
Part 2, September 2006. 2.1, 3.2

[14] DARPA. 2004 Grand Challenge web page. Visited October 2007.
http://www.darpa.mil/grandchallenge04. 1.2

[15] DARPA. 2007 Urban Challenge web page. Visited August 2007.
http://www.darpa.mil/grandchallenge/index.asp. 1

[16] DARPA. DARPA 2005 Urban Challenge web page. Visited October 2007.
http://www.darpa.mil/grandchallenge05. 1.2

[17] DARPA. Urban Challenge Route Network Definition File (RNDF) and Mission
Data File (MDF) Formats, March 2007.
Available at: http://www.darpa.mil/grandchallenge. 6

52

http://www.bugzilla.org
http://www.stack.nl/~dimitri/doxygen
http://www.gnu.org/software/gengetopt/gengetopt.html
http://www.redteamracing.org
http://cs.stanford.edu/group/roadrunner
http://www.subversion.tigris.org
http://www.tartanracing.org
http://gc.caltech.edu/wiki07
http://www.me.vt.edu/urbanchallenge
http://dartslab.jpl.nasa.gov/yam
http://www.darpa.mil/grandchallenge04
http://www.darpa.mil/grandchallenge/index.asp
http://www.darpa.mil/grandchallenge05
http://www.darpa.mil/grandchallenge

References

[18] DARPA. Urban Challenge Rules, July 2007.
Available at: http://www.darpa.mil/grandchallenge. 6

[19] H. Fritz. Longitudinal and lateral control of heavy duty trucks for automated
vehicle following in mixed traffic: experimental results from the CHAUFFEUR
project. In Proceedings of the 1999 IEEE International Conference on Control
Applications, pages 1348 – 1352. IEEE, August 1999. 1.1

[20] G. Indiveri. Kinematic Time-invariant Control of a 2D Nonholonomic Vehicle.
In Proceedigs of the 1999 IEEE Conference on Decision and Control, pages
2112–2117. IEEE, December 1999. 5.3

[21] A. Jain and J. Biesiadecki. YAM- A Framework for Rapid Software Develop-
ment. In Proceedings of the second IEEE International Conference on Space
Mission Challenges for Information Technology. IEEE, July 2006. 2.2

[22] A. Kampfer and E. Pucher. Principles of systems that enable autonomous
driving of vehicles. In Proceedings of the 2005 IEEE Conference on Intelligent
Transportation Systems, pages 930–935. IEEE, September 2005. 1.1

[23] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi. A Stable Tracking
Control Method for an Autonomous Mobile Robot. In Proceedings of the 1990
IEEE International Conference on Robotics and Automation, pages 384–389.
IEEE, May 1990. 5.3

[24] A. Kelly. A Feedforward Control Approach to the Local Navigation Problem
for Autonomous Vehicles. Technical report, The Robotics Institute, Carnegie
Mellon University, Pittsburgh, USA, May 1994. 5.3

[25] R. M. Murray. Sparrow Primer, July 1995. 7.9

[26] R. M. Murray et al. Team Caltech Technical Paper – DARPA Grand Challenge.
Technical report, Department of Control and Dynamic Systems, California
Institute of Technology, Pasadena, USA, February 2004. 1.2

[27] R. M. Murray et al. DARPA Technical Paper: Team Caltech. Technical report,
Department of Control and Dynamic Systems, California Institute of Technol-
ogy, Pasadena, USA, August 2005. 1.2

[28] R. M. Murray et al. Sensing, Navigation and Reasoning Technologies for
the DARPA Urban Challenge. Technical report, Department of Control and
Dynamic Systems, California Institute of Technology, Pasadena, USA, April
2007. 3.2

[29] M. Netto, J.-M. Blosseville, B. Lusetti, and S. Mammar. A new robust con-
trol system with optimized use of the lane detection data for vehicle full lateral
control under strong curvatures. In Proceedings of the IEEE Intelligent Trans-
portation Systems Conference, pages 1382–1387. IEEE, September 2006. 5.3

[30] S. L. Tan and J. Gu. Investigation of Trajectory Tracking Control Algorithms
for Autonomous Mobile Platforms: Theory and Simulation. In Proceedings of
the IEEE International Conference on Mechatronics & Automation, pages 934–
939. IEEE, July 2005. 5.3

[31] Team Caltech. Team Caltech web page. Visited August 2007.
http://gc.caltech.edu/public/Main_Page. 1.2

[32] W. Weiguo and W. Yuejuan. A Novel Global Tracking Control Method for
Mobile Robots. In Proceedings of the 1999 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 623–628. IEEE, October 1999. 5.3

53

http://www.darpa.mil/grandchallenge
http://gc.caltech.edu/public/Main_Page

	Nomenclature
	Acknowledgments
	Introduction
	Motivation
	The DARPA Grand Challenge
	Thesis Outline

	Team Organization
	Team Structure
	Development Utilities
	Development Schedule

	System Structure
	Hardware
	Sensing
	Navigation

	Problem Formulation
	Modelling and Controller Design
	Vehicle Dynamics
	Longitudinal Control Strategy
	Lateral Control Strategy

	Controller Analysis
	Phase Plane Analysis
	Linearization and Gain Scheduling
	Global Stability

	Implementation
	Canonical Software Structure
	Coding Practice
	Threads
	The Trajectory Class
	Control Loop
	North Face communication
	South Face communication
	Contingency Management
	User Interface

	Field Results
	Controller Performance
	The NQE -- What Went Wrong

	Conclusions
	Future Work
	Controller Module
	System

	Project Time Line
	Team Members
	Sparrow Hawk Display
	References

