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Chapter 1

Introduction

Today when the use of computer systems is higher than ever, the requirements on these systems
have also increased. In particular, we have become more dependent on the Internet and the
various services it provides. The Internet is used for, among other things, managing bank accounts,
booking holidays and reading the news. According to Statistics Sweden [1] more than 80% of all
people in Sweden aged 16 to 74 had access to the Internet in their homes during 2007. It is therefore
important that we can rely on these system. This is especially true during a crisis. As example
one can mention the September 11 attack in New York 2001, the murder of the Swedish foreign
minister Anna Lindh 2003 and the tsunami crisis 2004. At the time of these events, the demand
for information was so high that some systems became overloaded and therefore not available.

What people try to achieve by using control theory in computing system is to make them
more robust and stable. The most popular areas of research have been data networks, operating
systems, middleware (e.g. web servers, database servers), multimedia and power management [2].

Because of my background as a web developer my main interest in this development has been
in web servers. In this thesis I am going to examine a web server and see what different areas of
it that would be good to have under control and what is required of the web server to make this
possible. First take a look at a very simplified model of a web server.

S1

System resources

S2 Sn
requests

serversqueue

Figure 1.1: Simple web server model.

It has a queue for incoming client requests and a number of servers ready to serve these requests.
The length of the queue is limited and there is also a timeout that defines how long a request can
stay within the queue before it is removed without being processed. The computer, on which the
web server is running, has different system resources that the web server needs to use. These include
CPU time, main memory (RAM), processes, TCP connections, TCP buffers and file system buffers
[3]. In this thesis when talking about the load on the server I refer to the load on the computer,
i.e. the usage of its system resources.
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What different types of control would be interesting to apply to such a system? To answer
that question one need to think about what kind of problems that might occur within this system.
Knowing what these issues are, one can start to think about how to avoid them by using control.
So what might these issues be?

1.1 Overload

As soon as there is a queue in a system with a fixed length there will always be a possibility
that this queue will fill up. When the queue becomes full the system will not be able to accept
any more requests from the clients, which will instead be blocked. One of the reasons for having
a fixed queue length is to avoid overloading the server. Allowing every client’s request into the
server during a busy period might lead to a very large number of requests in the queue. Because
every request will consume system resources that are also needed by the servers, this can cause
the system to become overloaded. When this happens the servers might not be able to serve a
request particularly fast or will not be able to serve the request at all which in the end might lead
to a system crash.

Overloading the system can cause major problems and is something that should be avoided in
every situation. There are a number of possibilities on how to solve this. To have a fixed queue
length is one way of doing it, but it is not enough. The load each client’s request has on the server
may vary a lot. One request might be very complex and need a lot of system resources while
another one might not need much at all. This makes it very hard to set a fixed queue length that
will guarantee that the system never becomes overloaded. Therefore it could be a good idea to let
a controller regulate the queue length depending on the server load. It could also be beneficial if
it was possible to limit the number of requests in the queue by controlling a timeout value, which
tells a request how long it can stay in the queue before being removed.

But to only control the number of requests in the queue will not be a guarantee for avoiding
a server overload. There will still be a limit on the system resources which need to be divided
between all parts of the server. As mentioned earlier there might be huge differences in system
resource usage depending on the client’s request. Therefore it would probably also be of interest
to be able to control the number of servers running depending on the load.

Web server overload control is investigated in [4] with focus on overload control techniques
such as admission control and content adaptation (see Section 3.5 on page 31).

1.2 Quality of Service

Often when talking about a server system it is important to think about the quality of service
(QoS) that a system offers to the client. There are various properties that can be observed to
measure this, but the most important ones for web servers are the following:

• Response time which is the total time it takes for the system to respond to a client’s request.

• Throughput which is the rate at which the system can handle requests.

• Availability which is the percentage of time that the system is available

Depending on what quality you have chosen to be the most critical one for your system, you can
measure these variables to get an indication on how well your system is performing.
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1.2.1 Availability

Availability is closely linked to the queue. There are three possibilities that will make the system
un-available:

1. During an overload situation

2. When the queue is full the system will not accept any more client requests and therefore not
be available.

3. If the server is very busy a request in the queue might timeout before it has been served

To control the system availability you should therefore regulate the queue length, the queue timeout
and avoid overload.

1.2.2 Throughput

To improve the throughput of the system the number of servers could be increased. This will
make it possible for the system to handle more requests simultaneously. One could also increase
the queue length and the queue timeout. This will let more requests into the system and therefore
decrease the idle time of each server and in turn improve throughput. But it is important to be
careful when changing these values, because an increase in any of these parameters will consume
more system resources. If the usage of system resources becomes too high it will lead to server
overload and a dramatical decrease in throughput.

1.2.3 Response time

It is a bit more difficult to say what would improve the response time of the system because it is
highly dependent on the server load. One setting that will give really good response times during
light load might not work that well under heavier load. It is desirable to keep the time each request
spend in the queue as low as possible.

The queue is a good thing to have for both the availability and the throughput, because it
makes it possible for the system to accept more requests even though all the servers might be busy
at a particularly point. This is not true at all for the response time. A queue is not something
that improves response time. To get really good response times a request should not have to stay
in the queue at all, it should be processed immediately. So if the response time is the most critical
parameter for our system we might reason that it is better to keep the queue length and queue
timeout as low as possible and risk that a request might be blocked. In that case it could be better
to block requests if they can not be served immediately. This should lead to a scenario where the
requests that are handled will be handled quite quickly. To have a lot of servers handling requests
simultaneously will probably increase the response time, because this will consume more of the
system resources, which are limited. Therefore the number of servers should be kept quite low.

To make the system perform well in all of these three parameters is difficult because there are
conflicts between these parameters. An improvement in response time performance might lead
to a decrease in both throughput and availability. Throughput and availability go hand in hand.
An improved throughput will probably also be good for availability but will increase the response
time.

1.3 Platform

From this discussion it is possible to identify server directives that would be good to be able to
update during runtime in order to improve the system’s performance: queue length, queue timeout
and the number of servers. Is there a web server that allow updates to these kinds of directives
during runtime?
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The four most popular web servers (at the moment this thesis was written) are the following
[5]:

• Apache HTTP Server from the Apache Software Foundation [6]

• Internet Information Services (IIS) from Microsoft

• Sun Java System Web Server from Sun Microsystems, formerly Sun ONE Web Server, iPlanet
Web Server, and Netscape Enterprise Server

• lighttpd [7]

None of these web servers have support for this, so what needs to be done is to rewrite one of
them to be able to facilitate this functionality. Both the Apache HTTP Server and lighttpd are
free open source projects, which makes it possible for me to actually alter the server code. Of
these two I chose to work with the Apache HTTP Server because it is the most popular one.

As operating system Linux was chosen because it is an open source project and because it
is the most common platform for running the Apache HTTP Server. Therefore all the system
descriptions in this thesis are related to that platform.

1.4 Thesis Outline

In Chapter 2 the background and information related to the Apache web server will first be
described. In Chapter 3, I will present details of how to make it possible to influence the server’s
performance during runtime. In Chapter 4, I will explain how to measure the server’s performance.
In Chapter 5, the implementations that were made in the previous two chapters will be tested
by running some experiments on the Apache HTTP server. In Chapter 6, I will briefly discuss
where a controller should be placed and how it could be used. In Chaper 7, the results will be
summarized and suggestions of further work presented.

1.5 Related Work

The largest inspiration for this thesis has been the book Feedback Control of Computing Systems
by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh and Dawn M. Tilbury [2]. It is a good start
if you are interested in using feedback control in a computing system. I particularly liked the
fact that many of the examples used real life computing systems like the Apache HTTP server
and the IBM Lotus Domino Server. Another resource written by the same authors that has been
important for this work can be found in [8].

In addition to this the department of Automatic Control in collaboration with the department
of Communication System at Lund Institute of Technology have done interesting work about using
admission control for web server systems, which also has also been an inspiration for my work, see
for instance [9] [10] [4].
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Chapter 2

Background

2.1 Web Server Basics

A web server is a server system on the internet which is responsible for handling HTTP requests
from HTTP clients (e.g. browsers). A more correct definition would therefore be an HTTP server.
HTTP stands for Hyper-Text-Transfer-Protocol and specifies how requests to the server and re-
sponses from the server should look like. The communication between a client and a server always
starts with a request from the client. The first line in a HTTP request contains information about
what function the client want to use (e.g. GET, HEAD, POST), a Uniform Resource Identifier
(URI) telling the server on what resource the client want to use this function and finally informa-
tion about the HTTP version. The rest of the lines contains the headers, which are used to add
information about the request or modify it. Here is an example of how a simple HTTP request
may look like:

GET /index.html HTTP/1.1
Host: www.epineer.se

From this request the server knows that it should get the index.html file for the host www.epineer.se
and return its content to the client. The response from the server looks like this:

HTTP/1.1 200 OK
Date: Fri, 19 Jan 2007 23:06:47 GMT
Server: Apache/2.0.52 (Red Hat)
Last-Modified: Wed, 15 Feb 2006 16:50:21 GMT
ETag: "1640c0-32-1b84cd40"
Accept-Ranges: bytes
Content-Length: 50
Content-Type: text/html

<html>
<body>
<h1>epineer.se</h1>
</body>
</html>

The first row of the response contains the HTTP version and the status of the request (in this
case 200 which means that the server managed to handle the request successfully). The next two
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rows contain information about the date and various data about the server. The rest of the lines
are the response headers. The content of the index.html file is located after the headers separated
by an empty line.

When a client has received a response for its request the HTTP communication between the
client and server stops until the client sends a new request. This makes HTTP a stateless proto-
col, because it does not use a wait time before closing the communication which is quite common
in other protocols.

2.2 The Apache HTTP Server

2.2.1 Introduction

To be able to control the Apache HTTP Server the first step is to get a general idea of how it
works. This is going to be described in this section. To get a more complete understanding of
the server I can recommend the excellent document ”The Apache Modeling Project” [11]. From
reading the source code the authors have described how a large number of different areas of the
server are implemented. It is a good reference to have when reading the source code. The home
page for the server [6] is also a helpful resource. All of the Apache HTTP Server’s code is written
in the programming language C, so a good C programming book [12] might come in handy. The
GNU C library is used as the standard C library on most systems running the Linux kernel, so
its reference manual, which can be reached from [13], may also be of use.

2.2.2 History

Since 1995 the Apache HTTP server, commonly referred to as Apache, has been the most popular
web server according to the netcraft survey [5]. The first version of Apache was released in 1994 and
was based on the NSCA HTTP server. It was called the NSCA server because it was developed at
the National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign
by Rob McCool. At the top of the main configuration file for Apache called httpd.conf it still reads:

Based upon the NCSA server configuration files originally by Rob McCool.

In 1994 they stopped working on the NSCA server and that is why the Apache group was first
created. Some of the webmasters that had used the NSCA server had written their own fixes (so
called patches) for that server. They got together and gathered all the patches and released a more
stable server which they called Apache. The name is said to be derived from ”a-patchy-server”.

2.2.3 Basic Architecture

The Apache HTTP Server is a multi-task server, which means that it can serve a lot of different
requests simultaneously. How the multitasking is implemented is highly dependent on what oper-
ating system the server is running on. However, all of the different multitasking models for Apache
share some basic features: All of them use a task-pool and a master server to control this pool.
When starting the Apache server what is started is the master server. It then creates a number
of tasks (that can be implemented as processes or threads or a combination of the two) which are
responsible for handling incoming requests. The main responsibilities for the master server is to
create and delete tasks in the pool. By using a command-line interface called apachectl you can
send different signals to the master server. For instance when standing in the base folder of your
Apache installation, to start and stop the server you type:

$ ./bin/apachectl start
$ ./bin/apachectl stop
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It is through the master server that server administrators interact with Apache. The master server
will run as long as no serious problem occurs or until the administrator decides to stop/restart
the server.

To be able to make the Apache server runnable on a large variety of platforms in an elegant
way, all the code for the multitasking model have been broken out and made into different load-
able modules. These are called Multi-Processing Modules (MPM:s) and defines what strategy the
master server will use to dispatch its tasks. When configuring and installing an Apache version
choices are made regarding what MPM:s to use. Here are the default ones for a number of plat-
forms:

BeOS beos
Netware mpm netware
OS/2 mpmt os2
Linux/Unix prefork
Windows mpm winnt

I was running the Apache server on a Linux platform and chose to use the default Prefork MPM,
which also was the first multitasking architecture of Apache.

2.2.4 The Prefork Multitasking Architecture

In the Prefork MPM the master server and all of the tasks are implemented as processes1. The
master server, from now on called the parent process, reads the configuration files and creates the
other processes in the pool by using the system call fork. To see the Linux manual page for this
system call type the following in the command line:

$ man 2 fork

The fork system call creates a child process by making an exact copy of the parent process. By
copying the parent process the child will get the same configuration. Like most other configuration
parameters these are entered in the main configuration file httpd.conf. A typical configuration for
Prefork might look like this:

StartServers 8
MinSpareServers 5
MaxSpareServers 20
MaxClients 256
ServerLimit 256
MaxRequestsPerChild 4000

The amount of child processes that will be started initially at server startup by the parent process
is defined by the parameter StartServers. Prefork always tries to keep a certain number of idle
child processes, to make it possible for a request to be served instantaneously without having to
wait for a child process to be created. This is the reason why this MPM is called pre-fork, because
it forks a child process before there are any requests to serve. The parameter MaxSpareServers
tells Apache the maximum number of idle processes in the system and the parameter MinSpare-
Servers the minimum number of idle processes. During operation Apache will try to keep the
amount of idle servers between those two values. The maximum number of server processes in
the system is defined by the parameter MaxClients. The ServerLimit is used to tell Apache the
maximum number of child processes it should expect and use this value to instantiate enough
entries in the scoreboard (see page 8). This means that the ServerLimit will define an upper

1A process is a program in execution and is defined by the resources it uses and by the location at which it is
executing.
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limit for the MaxClients value. The MaxClients value can be changed during runtime by using a
graceful restart (see page 9), while the ServerLimit can not. To limit the number of requests that
a child process can handle during its lifetime the MaxRequestsPerChild value is used. If this value
is set to 0 it will mean an unlimited amount of requests. The reason for wanting to limit a child
process lifetime is to be on the safe side if any child process would start consuming a lot of system
resources, e.g. memory caused by a memory leak. Apache itself should be safe against memory
leakage, but a third-party module that a child process uses may not.

The Scoreboard

The parent process needs a way of communicating and keeping track of all the child processes.
This is done through something called the scoreboard. The scoreboard is a simple data structure
(a struct as it is called in C ) stored in a shared area (usually shared memory, but a file may also
be used) that both the parent and the child process can access. It will therefore not be affected
by the context switch. The scoreboard consists of the following three areas:

global A struct containing global parameters that both the parent and child processes should
be able to access, e.g. the generation id (used for graceful restart, see page 9) and the
ServerLimit parameter.

parent A struct containing various parameters that mostly the parent will use, e.g. the process
id (PID) for each child process.

servers A table containing various information about the child processes like the status (e.g.
dead, ready, starting), the start time of a request, the stop time of a request, how many
bytes that was served for the request etc. The scoreboard has functions to update these
parameters. When a child is created it will get a unique id that is used as an index into this
table. By using this id, the parent is able to gather information about a specific child process.

In the source code, the instance of the scoreboard is called ap scoreboard image.

Idle Server Maintenance

When the parent process enters its main loop, it does nothing except waiting for a child process
to die. If this happens or if the waiting time exceeds a timeout of one second the function
perform idle server maintenance will be run. It is in this function that the parent controls its
pool of child processes, by determining how many children to spawn or to kill. The function
starts by looping through all the child processes already in the scoreboard and examines their
status. Each process with the status dead will get its slot in the scoreboard marked as free. As
soon as the number of free slots is equal to the amount of children it wants to create the loop
stops running. If there is not enough old slots with the status dead, the function will increase the
number of slots in use until there is enough, just as long as the number of slots in use is below the
MaxClients value. When the function loops through the child process it also registers how many
of the servers that were idle. If the number of idle servers exceeds the parameter MaxSpareServers
one of these child processes will be terminated. If the number of idle servers is less than the
parameter MinSpareServer the spawn rate is increased, and the next time the function runs those
extra processes will be created.

The Pipe-Of-Death

In C programming pipes may be used as a simple way for different processes to communicate with
each other [13]. In the server the parent and all the child processes share a pipe that are called
pod in the source code. The pod stands for ”Pipe-Of-Death” because it is used by the parent to
kill child processes. The pod has just enough space to contain one character, and the processes
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may read or update this character. To terminate a child process the parent may write a character
called the Character-Of-Death to the pipe by calling the function ap mpm pod signal. As soon as
a child process has finished serving its request it reads the pod to decide whether it should continue
listening for new requests or die. If it reads the Character-Of-Death it will remove the character
from the pod and terminate.

Graceful restart

In the Apache HTTP Server it is possible to reconfigure the server during runtime by doing a
graceful restart from the command line, e.g. if there is a need to change the MaxClients value
without taking down the whole server. This value is first edited in the httpd.conf file and then the
following command is issued to make the running server update its configuration:

$ ./bin/apachectl graceful

When choosing to do a graceful restart the parent process will first re-read the configuration files
and loop through all of its child processes. The idle ones will be replaced with new processes
with the updated configuration. The busy child processes will be replaced after they have finished
serving their request. Each time the server is restarted it will get a new global generation number.
This generation number is stored in the scoreboard with each child process. When the process
generation number is different from the current global one, it knows that it should be replaced by
a new child process.

Persistent Connections

In the beginning there was a problem with web servers if a web page used a lot of images or other
forms of embedded objects. Each object would require a new request to the server, and therefore a
new TCP connection to the server (see Section 2.3 on page 15). When there were a lot of different
objects on a page, this would consume a lot of server power. To get around this, a support for
persistent connections was added to the Apache server. This means that a request for a page and
the requests for the embedded objects in the page will all share the same TCP connection. The
parameters for configuring persistent connections in Apache are:

KeepAlive On
KeepAliveTimeout 15
MaxKeepAliveRequests 100

KeepAlive simple tells Apache to use persistent connections or not, the default value is On. The
KeepAliveTimeout parameter decides how many seconds a child process should wait for a new
request from the same client. If the next request comes within this period the same connection
is used to handle the new request, if not the persistent connection is dropped. When KeepAlive
is used only the first request counts toward the MaxRequestsPerChild parameter in Prefork. An-
other changeable parameter is the MaxKeepAliveRequests, which tells Apache how many requests
a single persistent connection is allowed to handle before it should close down the connection.

2.2.5 Code base

In this thesis the 2.0.54 source distribution of the Apache HTTP server is used. Figure 2.1 shows
an overview of how the code is organized for the 2.0.45 distribution which has the identical code
structure as 2.0.54.

For this project I have made code changes to the following files:

include/scoreboard.h
modules/http/http_request.c
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Figure 2.1: Directory structure of the Apache HTTP Server 2.0.45 source distribution [11]

server/mpm/prefork/prefork.c
server/Makefile.in
server/scoreboard.c

and added functionality for logging and control in:

include/logger.h
server/controller.c
server/logger.c

2.2.6 Apache Portable Runtime

To make the Apache HTTP server a truly portable project, i.e. make it possible to run it in-
dependently of the operating system, all the platform-specific implementations have been moved
into a supporting library called Apache Portable Runtime (APR) [14]. It contains functions for
doing a number of things, which means that the software developers do not have to worry so much
about the platform. When they have written their code by using the APR-functions they can be
pretty sure that it will work the same regardless of the underlying system. All the functions in
the APR library have names that starts with apr . Here are some examples of what functionality
APR provides:

• Memory allocation and memory pool functionality

• File I/O

• Thread, process and mutex functionality

• Shared memory functionality
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• Network sockets and protocols

The Apache Portable Runtime project started as a subproject to the Apache HTTP server, to add
support to run the server on different platforms. It has now grown and become its own project,
which can be used to create other platform-independent projects [15].

2.2.7 Modules

It is possible to extend the functionality of the server by using Apache modules [11]. They may be
included statically or dynamically in the server. Which ones to include statically is chosen when
configuring and installing the server. They are compiled into the server and can not be altered
without rebuilding the whole server. What other modules to use is something you specify in the
configuration file. These will then be dynamically loaded into the server during startup. The
executable code of the server consists of the core, static modules and dynamic modules. The child
processes will contain exactly the same executable code as the parent process because they are
copies of the parent. Therefore all processes will contain all modules.

There are quite a lot of different Apache modules, and which ones to include in the server can
be difficult to decide [16]. If no module with the desirable functionality exists, it is possible to
write a new Apache module [17].

All the modules interact with the server through a common interface. Each module can regis-
ter a variety of handlers in the server core:

Hooks A so called Hook is triggered when a certain event occurs e.g. server startup, server
shutdown, child process creation, child process termination, etc. When a Hook is triggered
Apache calls the handlers that the modules have registered for it.

Configuration directives It is possible for the modules to define their own set of configuration
directives, which then can be used in the standard configuration file. At startup the server
calls the corresponding handlers specified by the modules to process these directives.

Filters A multiple array of modules that work together can be used to manipulate data of a
response or a request. These modules are called filters. For each content type that the
server handles you can register multiple filters and also specify in what order these filters
should be applied to the data.

Optional functions An optional function is very similar to a Hook, but with the difference that
the server ignore any return value. So even though an error might occur, the server will call
all the optional functions.

The way an Apache module interact with the server is through the Apache Application Program-
ming Interface, a so called API. It contains functions which a module can use to perform various
tasks. All the functions have names starting with ap . Some of these functions will in turn be
based on the APR-functions. The most important service the API provides for the modules is
functions for memory management. The Apache server uses a pool based memory system (see
Section 2.2.9 on page 14) where the server core is responsible for managing all the pools. If a
module wants to allocate memory, it needs to ask the core for permission by using the API.

The API also contains functions for array manipulation, table manipulation, string manipula-
tion, identification, authentication etc.

2.2.8 Configuration Parameters Affecting Performance

The Apache server is known to handle heavy load situations quite well, but it can not optimize its
performance by itself. That is up to the administrator to do by tuning certain directives [16] in the
server. Performance tuning is usually the art of trading off one resource against another, to get a
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good balance between CPU time vs. memory space or fast response vs. large throughput. The
single most important choice an administrator needs to make is what MPM (see page 7) to use.
Depending on the operating system this can affect the server’s performance a great deal. Of all the
changeable parameters some are directly related to performance, others are not that obvious. These
directives can be divided into three different categories which specifies what area of the server the
parameter affect. The three categories are: process management, network management and HTTP
management. The changeable parameters for the Prefork MPM have already been mentioned in
Section 2.2.4 and the ones for persistent connections in Section 2.2.4. The parameters of the former
belongs to the process management category and the latter to the HTTP management category.
All of those directives affect the performance of the server.

Process Management

MaxClients An increase of the MaxClients parameter allows the parent process to create more
child processes, which will make the server able to handle more clients at the same time.
This should therefore increase the server’s throughput. Each new child process handling a
client’s request will require memory space and CPU time, so the average time Apache spends
on a client’s request (the Apache service time) might increase. This will not necessary mean
that the average response time for the clients will increase, because the end-to-end response
time is highly dependent on the amount of clients in the backlog queue (see Section 2.3.6 on
page 17). If for example the server is idle and suddenly 15 clients try to connect to it at the
same time, with the MaxClients parameter set to 5, 5 of them will start to be processed by
the server while the other 10 will be put in the backlog queue. Depending on how long time
these requests stay in the queue it might be better for the end-to-end response time to use a
MaxClients value of 15 and process all the client’s requests at the same time. Even though
this might lead to an increased average Apache service time as a result of the increased use
of system resources.
A lower value of MaxClients decreases the number of child processes allowed in the system.
This will free up memory space and CPU time, which in turn should improve the Apache
service time. but reduce the throughput.
Care has to be taken not to let the server consume all of the available memory. If this happens
the computer will need to swap some of the server’s memory pages onto the hard-drive [18].
This will increase the CPU load and degrade the server’s performance in all variables. An
idle child process still consumes memory space, so if the MaxClients value is set too high it
may cause the server to start swapping even under light server load.
The general rule is to set the value of MaxClients as high as possible without causing the
computer to start swapping memory pages onto the disk.

ServerLimit This parameter works as the upper limit for MaxClients. A change in this parameter
may in turn change the MaxClients parameter with all its implications described above. The
reason why the ServerLimit directive limits the MaxClients value is because it specifies how
many slots that should be initialized when creating the scoreboard. This parameter therefore
decides how much shared memory space that will be used by Apache. If this parameter is
assigned a too high value, a lot of unused memory will be allocated, which instead might
have been better used by the server’s child processes while serving requests.

StartServers The StartServers value only affects the performance at server startup. If the value
is much less than the number of clients trying to connect to the server, it will take a while
before the parent process will have managed to create all the child processes needed to serve
all the clients. This will lead to long response times and a small throughput at server startup.
On the other hand, if the StartServers value is too high, a lot of unnecessary child processes
will be created, which means a higher memory usage.

MinSpareServers If this value is too high an unnecessary amount of idle child process will exist,
which will consume memory space. On the other hand the server will be able to react quickly
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on a large amount of simultaneously incoming requests, if there suddenly would be a peak in
the server load. If set too low, there will not be enough idle servers ready to serve incoming
requests, which means that the parent process needs to create these child processes before
the requests can be taken care of. This will increase the CPU load, and the response time.

MaxSpareServers This value should be set higher than MinSpareServers to have any effect.
Setting this parameter too high will allow a large number of idle child processes to be created
which leads to the same implications as mentioned above. This value is used to lower the
amount of idle child processes after a peak in the server load.

MaxRequestsPerChild As mentioned previously this parameter’s main task is to guard against
memory leaks. When this parameter is assigned a lower value the lifetime of each child
process is decreased. Therefore if set too low it will mean that running child processes will
be terminated often and new ones have to be created. This will increase the CPU load.
Like MaxSpareServers this parameter might help to thin out the number of running child
processes after the server has been through a busy period.

MaxMemFree This parameter limits the amount of memory which Apache is allowed to hold
ready for use. The amount is specified in kilobytes (kB). After Apache has retained an
amount of memory from the operating system to be able to serve a request, it does not
return the memory. Instead Apache keeps it in an internal memory pool, which will continue
growing in order to satisfy future memory demands. To retrieve the required memory from
the internal pool is faster than retrieving it from the operating system. The fact that Apache
does not return the memory to the operating system might lead to problems when the server
has been through a busy period. During this period Apache might have retrieved a lot of
memory to the internal pool which is not needed anymore. This memory will therefore be
unused and unavailable to other applications on the computer.

It is beneficial for the performance of the server to have some memory ready, but if the
amount is too high it might degrade the performance of the underlying operating system.

Network Management

ListenBackLog This parameter limits the size of the backlog queue, i.e. the number of requests
that are queued up when all of the servers child processes are busy (see Figure 2.4 on page
18). It is necessary to have a queue to be able to handle a heavy server load. If the queue is
allowed to be very large the server will be able to handle a larger amount of requests during
a busy period. This should increase the throughput. The problem when the queue starts
growing is that the response time for a client’s request might become very long, because the
average time each request spends in the queue will increase.

If this queue is limited and made very small, the server will not be able to handle a load
peak without blocking some of the client requests.

SendBufferSize With this directive it is possible to change the size of the connection socket’s
output buffer. This is mainly useful when the round-trip time for a connection is long,
because it makes it possible for Apache to queue more data.

The value of this parameter affects all the socket buffers created by Apache, so if it is set
too high the memory usage might become critical during busy periods.

HTTP Management

KeepAlive If KeepAlive is used the dialog between a client and the server will run faster, because
the server will not close down its connection to the client between requests. If clients sends a
lot of requests to the server, using KeepAlive will decrease the CPU load a lot. The problem
with using KeepAlive is that the child processes can not serve any other clients until the
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current client disconnects, which in some cases will limit the throughput. The following two
directive regulates this.

KeepAliveTimeout If a larger time slot is used more requests from the same client will be
able to use the same connection. It also means that it will take longer time before a child
process is available to serve another client’s request. If the value of KeepAliveTimeout is
too high during a busy period, all the child processes will be serving clients over persistent
connections. It will take quite a long time before any of these connections times out, which
means that the number of requests in the backlog queue will start growing.

MaxKeepAliveRequests This directive can be used to force a client to release its connection
with a child process, if it has been active for too long. For example if a client issues a large
number of request with short intervals it may stay in the KeepAlive loop forever.

TimeOut This parameter actually specifies three different types of timeout values in connection
with the established HTTP connection:

• the time from connection being established until receiving GET. This timeout does not
affect the persistent connections because they use the KeepAliveTimeout value for this
instead.

• the time since last packet of data was received on a PUSH or PUT HTTP request

• the time since last acknowledgment (ACK), if the server is waiting for more data from
the client

Here is a list of other configuration directives that might have an impact on the performance:
ScoreBoardFile, RLimitNPROC, RLimitMEM, RLimitCPU, ReceiveBufferSize, LogLevel, Lim-
itRequestLine, LimitRequestFieldSize, LimitRequestFields, LimitRequestBody, mod deflate. See
[6] for more information.

2.2.9 Memory Pools

To avoid the problems with memory leakage Apache provides resource pools. Every resource like
memory, open files etc. will be connected to a pool. The resources will automatically be released
when the server is finished with the pool. For example, each request has its own pool to keep its
resources in. As soon as the server is finished serving the request all the resources connected to
the pool will be released.

2.2.10 Why Use Prefork?

Processes unlike threads, have separate address spaces and do not share memory or resources
directly. Therefore processes consume more system resources than threads and will load the server
more. To switch between processes, which is called a context switch, is usually a heavier task than
to switch between threads. The problem with prefork is that a child process is needed for each
request, which consumes a lot of system resources. There are other MPM:s for Linux e.g. worker
and perchild, where each child process keeps many threads to serve requests. The problem with
these multi-process multi-threaded servers is that many of the third-party modules you need to
include for a website (e.g. PHP) are not thread-safe under Linux/Unix. Stability and performance
are the most important things concerning a website and at the moment none of the other MPMs
can compete with Prefork in terms of that. If an error occur with a request when using the Prefork
MPM the problem is encapsulated to one process and will not affect the other requests, which
may not be the case when using a multi-process multi-threaded server.
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2.3 Internet Protocol Suite (TCP/IP)

The Internet Protocol suite is the most common way to establish a network connection between
two clients today. The Transmission-Control-Protocol (TCP) and the Internet-Protocol (IP) are
its two most popular protocols which explains why this suite is often called the TCP/IP suite. A
more complete description can be found in [19][20][21].

The Internet Protocol Suite is made up of five layers: physical, data link, network, transport
and application. In Figure 2.2 there are some examples of what protocols you can find in the
different layers.

Physical

Data link

Network

Transport

Application DNS, FTP, HTTP 

TCP, UDP

IP

Ethernet

Figure 2.2: The five layers in the Internet Protocol Suite and examples of some of the protocols
you might find in the different layers.

Physical layer is responsible for transmitting data as a bit stream over a physical medium [19].

Data link layer’s main task is to move data between the network interfaces of two different
computers on the same physical network. A protocol defined at this layer is called a node-
to-node protocol where, in the case of using Ethernet, each node is identified by a unique
MAC-address [20].

Network layer makes sure that the data is delivered to the right host when the host is not on
the same physical network. The Internet-Protocol (IP) is used for doing this and is therefore
called a host-to-host protocol where each host is uniquely identified by its IP-address.

Transport layer is responsible for delivering the data to the right process on the host. It uses a
unique port address (see Section 2.3.3 about TCP Ports below) on the host to identify the
process. A protocol defined at this layer is therefore called a port-to-port protocol.

Application layer contains the applications/processes that makes it possible for a human user
to get access to the network.

2.3.1 Apache and TCP/IP

The client’s browser and the Apache server uses TCP, to establish a connection and transfer data
between each other. The data is sent in small chunks called packets. TCP uses IP to send single
packets to the correct destination. IP is a best-effort protocol, which means that it tries to send
the packets the best it can but without any guarantee. Packets sent may or may not be received
at the final destination and will most likely not arrive in the same order as they were sent. When
reliability is important, the IP protocol must be paired with a reliable network protocol like TCP.
TCP assigns each packet with a specific sequence number to be able to guarantee in-order delivery.
When a packet is received the receiver will send an acknowledgment, ACK, back to the sender,
containing the next sequence number it expects to receive. The sender will then be sure that the
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packet has been delivered and at what sequence number the receiver is at. To make it possible for
the sender to not have to wait for an acknowledgment for each single packet before transmitting
the next packet, TCP defines an amount of bytes (called a transmission window [20]) that it may
send before expecting an ACK from the receiver.

2.3.2 Round-Trip Time

The TCP sender estimates the time it will take to send a TCP segment and receive a reply to that
segment, this estimate is called round-trip-time (RTT). The estimate is based on measurements
of previous sent segments. The round-trip-time is part of TCP’s congestion control [22] [20] and
is used to calculate the retransmission timeout (RTO). If the sender has not receive an acknowl-
edgment for the data it has sent before the RTO it will regard the data as lost and will retransmit
the data. Here is how the RTO value is calculated [22]:

RTTV AR =
3
4
· RTTV AR +

1
4
· | RTT − R |

RTT =
7
8
· RTT +

1
8
· R

RTO = max(RTT + 4 · RTTV AR, 1s)

where R is the last measured round-trip time, RTT is the smoothed mean round-trip time based
on the recent measurements and RTTVAR is the mean variance of the RTT value.

2.3.3 TCP Ports

TCP uses ports to identify different applications, e.g. a HTTP server usually runs on port 80. To
send a request to the server you specify the server’s IP-address and the port number of the server.
Every client application sending the request will also have a unique port number assigned to its
request. This makes it possible for the client to establish multiple connections to the same server.

2.3.4 Establish A Connection

The procedure which this protocol uses to establish a connection is called the 3-way-handshake.

Network Traffic

Sends a synchronization
packet (SYN) with sequence
number 1 to initiate the 
connection.

Connection request

Connection confirmation

Client browser HTTP server

Receives the connection
request and sends an 
acknowledgment packet
(ACK) with sequence 
number 2. 
Sends a synchronization
packet (SYN) with 
sequence number 10.

Connection request

Receives the 
acknowledgment.
Receives the connection
request and sends an 
acknowledgment packet
(ACK) with sequence 
number 11. Receives the acknowledgment.

The connection is now established.

Connection confirmation

Figure 2.3: An example of how TCP establishes a connection by doing a 3-way-handshake.

Here’s an example of how it works (see Figure 2.3).

1. The client sends a connection request, in form of a SYN packet, to the server. The SYN
packet is used to synchronize sequence numbers between the client and the server. E.g. this
first SYN might contain the number 1.
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2. The server receives the request and sends a SYN and ACK response to the client. The ACK
will contain the next sequence number that the server expects to receive, in our example
number 2. The SYN packet will contain the initial sequence number for the server, e.g. 10.

3. The client then sends an ACK response to the server. The ACK will contain the next
sequence number that the client expects to receive from the server, in our example 11.

The connection has now been established, because both the server and the client have received an
acknowledgment of it.

2.3.5 TCP Sockets

The port number and IP address of the host is used to create a unique identifier for each network
application. This identifier is called a socket and is used by the application to send and receive
data over the network. A detailed description of how this is done in Linux can be found in [23].
The socket is also connected to a specific transport protocol, which in the Apache server’s case is
TCP. The Apache HTTP server use two different types of TCP sockets:

Listen socket which is used to establish a connection with the client. It might also be referred
to as dialup socket or server socket.

Connection socket The server uses this socket type for data transfer with the client.

Figure 2.4 shows an example of how the Apache HTTP Server uses these two kinds of sockets to
communicate with the client’s browser. On the server side in this example there is just one listen
socket, which is connected to the server’s TCP port (usually port 80 for HTTP servers). Only
one child process (called the listener) is allowed to use the listen socket at a time. The client’s
browser uses a connection socket to establish the connection with the listen socket. When the
3-way-handshake is completed the client’s request is placed in the listen socket’s backlog queue
(sometimes also referred to as the accept queue because the system call used to remove the request
from the queue is called accept). The child process connected to the listen socket will be informed
about the request and remove it (accept it) from the backlog queue by using the system call accept
(see the Linux manual page: man 2 accept). The accept system call will create and return a
connection socket connected to the client, which the child process may use to communicate with
the client. The child will then release the listen socket so that one of the other idle child processes
may use it to listen for the next incoming request. When this has been done the child process
starts processing the client’s request through the connection socket. When the child process has
finished serving the request (and when the KeepAlive functionality has timed out if used) this
process will queue in for the listen socket among with the other idle child processes.

When using the Apache HTTP server there are no restrictions to using only one single TCP
port. In the configuration file httpd.conf you can actually specify multiple ports for which you
want the server to be connected to. If you want the server to listen for incoming connections on
both port 80 and port 8000 you use the configuration directive Listen like this:

Listen 80
Listen 8000

For each one of those ports a listen socket will be created and therefore multiple child processes
may act as a listener at the same time. When an idle child process becomes a listener the Prefork
MPM uses a round-robin scheme to decide what listen socket it should use.

2.3.6 The Backlog Queue

There might be times when all the child processes are busy serving requests and in that case there
will not be any listener process. When this happens the incoming requests to the server will still
end up in the backlog queue.
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Figure 2.4: A simplified model of how the Apache HTTP Server and client’s browser use sockets
to communicate with each other.

Example: Consider a system using the Apache server with MaxClients set to 50 and persistent
connections (KeepAlive). If all of the 50 child processes are busy when a request is sent to
the server, the connection is still established but can not be accepted at once by Apache.
It is therefore put into the backlog queue of the listen socket. As soon as any of the 50
persistent connections times out, it will accept the request and handle it. The backlog queue
is designed so that the first request which enters the queue, will be the first one served, a so
called FIFO-queue (First-In-First-Out).

The backlog queue makes it possible for the server to handle a sudden increase in traffic, a so called
load spike (or sometimes also referred to as ”flash crowds”). During the heavy load the backlog
queue will fill up because the working child processes will not be able to serve the requests in the
same rate as they enter the system. Later when the load decreases the server might be able to
empty the queue and therefore still be able to serve all the requests.

The size of the backlog queue is therefore very important for the performance of the server.
On the Linux platform I was running my server the size of this queue had a default maximum
value of 128. To see what your computer’s max value is you can type the following command in
a terminal window (see Section 2.3.7):

$ cat /proc/sys/net/core/somaxconn
128

2.3.7 Netstat

To get information about the different TCP connections to a server it is possible to use the
command line tool netstat. If netstat is typed in a terminal window it will show information of
every single network connection the computer has. If netstat -t is typed in the terminal window
only the TCP socket connections are shown. When a p is added to the options string like this
netstat -pt, it will also display the process id (PID) and name of the program which each socket
belongs to. Here is an example of how netstat can be used:

Example: For this example the Apache server was running on port 8000 with MaxClients set to
1, so it just could handle one request at a time. The host name of the computer the server
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was running on was: ragazzini.control.lth.se. A browser on the same computer was used to
send requests to the server. Two requests were sent at the same time to the server, and this
was the result from netstat :

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 ragazzini.control.lth.:8000 ragazzini.control.lth:40926 ESTABLISHED 14625/httpd
tcp 441 0 ragazzini.control.lth.:8000 ragazzini.control.lth:40929 ESTABLISHED -

From this data we can see that two requests have been sent to the Apache server from the same
host. The connection socket for the first request is working at port 40926 and for the second
one at port 40929. Both requests have the status ESTABLISHED but it is only the request
from port 40926 that is being served by the Apache’s httpd process. This is discernible by
looking at the PID/Program name column. The process id for the child process handling the
request is 14625. The other request have not been assigned a program, so it has been placed
in the backlog queue waiting for the child process 14625 to accept it. It is also possible to
figure out what requests are already being served or not by looking at the Recv-Q column.
It specifies how many bytes that have not yet been copied by the program connected to
the socket. For the request at port 40929 in the previous print out there is still some data
waiting to be copied which means that this request has not been taken care of.

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 ragazzini.control.lth.:8000 ragazzini.control.lth:40929 ESTABLISHED 14625/httpd
tcp 438 0 ragazzini.control.lth.:8000 ragazzini.control.lth:40939 ESTABLISHED -

When this print out from netstat is made, the server has finished handling the request from port
40926 and is now working with the other request from port 40929. Because just one child
process was used, the PID of the process serving the request is still 14625. You can also
see that I’ve made another request from the browser that has gotten the port number 40939
which is now waiting in the backlog queue to be served. There is no information displayed
about the listen socket. The Apache server was configured to listen on port 8000, so there
should be at least one listen socket. The reason why the listen sockets do not appear is
because netstat does not display them as default. To show the listen sockets you have to use
either the -l flag which makes netstat just show the listen sockets or the -a flag, which will
show all the sockets. Here is a print out of the listen socket information:

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 *:8000 *:* LISTEN 14624/httpd

The *:8000 means that the server is listening on port 8000 for all IP addresses associated
with the computer the server is running on. If you want the server to be more specific you
can specify an IP address along with the port number with the Listen directive:

Listen 130.235.83.17:8000

Tuning the Settings For TCP sockets

The settings you can change for the TCP sockets in Linux are available under the folder /proc/sys/net/.
For instance the max length of the backlog queue is specified in the file /proc/sys/net/core/so-
maxconn. Under /proc/sys/net/ipv4/ you will find more settings relevant to the TCP sockets. To
change the values in these files you need to have root privileges on the computer. If you do not
have that or just want to change the settings for one particular socket you can use the system call
setsockopt. To see what options that are available to set with this system call have a look at the
Linux manual page: man 7 tcp. There also exists a system call called getsockopt which you can
use to see how the available TCP options are set for a particular socket.
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2.4 The Linux Process File System

The Linux process file system [24], [18], also known as the proc file system and sometimes called
the process information pseudo-file system, is a file system where a lot of useful information about
processes running on the computer can be found. Each running process has its own directory under
the root directory /proc, and its process id, PID, is used as the name of the directory. In this
directory you will find files containing various information about the process. This information is
not stored anywhere but is computed on demand and presented as plain text when a user tries
to read them. Apart from the process information, the proc system also contains files with global
statistics about the computer, e.g. memory usage, performance statistics, kernel version and data
about loaded drivers. A lot of system calls in Linux, e.g. ps, parses relevant proc files to display
its data. One Section of the proc system i.e. /proc/sys is dedicated to kernel variables. An
administrator can read and write to these files. To tune a kernel parameter the administrator
writes the new values to the appropriate file. The proc system is the control and information
centre of the kernel.

2.5 Performance Issues with Web Servers

The two most important metrics when talking about web server performance are response time
and throughput. The response time is the time it takes from that a client sends a request to the
server until it receives a response, the end-to-end time. This time can be divided into network
time (transporting the data between the hosts) and web server time (the time it takes for the
server to handle the request). In this thesis I am going to neglect the performance issues related
to the network and therefore not regard the network as a possible bottleneck. The response time
is probably something that would be good for a controller to have access to and make decisions
depending on its value. In real life it would be impossible to measure the end-to-end response
time because the controller would not have access to the client’s side. If the network issues are
neglected the average time Apache spends on a request (the Apache service time will be a good
indication of what is happening with the end-to-end response time.

The throughput is usually measured in the number of requests per second which the server is
able to handle. My main focus will be on the server, so I am interested in what may cause the
performance to degrade on the server side.

The server consists of the server software (The Apache HTTP Server), the operating system
(in my case Linux), hardware platform (processes, memory, harddrives, etc.) and the contents
which the server provides. All of these different parts play important roles when it comes to the
server’s performance.

The most common performance issues with web servers are related to insufficient bandwidth
at peak times, overloaded servers, uneven server loads, delivery of dynamic content, shortage of
connections between application servers and database servers, failure of third-party services and
delivery of multimedia contents [25]. In this thesis I am going to neglect the performance issues
related to the network and instead just focus on what can be done on the server side to improve
the performance.

2.6 Workload generation

When running tests on the server system to do e.g. capacity planning or changing a directive to
see its impact on the performance, there needs to be some traffic load on the system. The system
will react quite differently depending on the load so it is important to generate a representative
workload.
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The problem with web server traffic is that it is known for being highly variable and even
have self-similiar properties2 [26] which is known to have a negative impact on the performance.
When the traffic to the server is varied it will result in high variability on the server in CPU load,
number of open connections, memory usage, hard-drive usage etc. To capture all these features in a
generated synthetic load it is possible to use either a trace based workload or an analytic workload.
Trace based workload is real recorded traffic to a server that can be replayed and be used to load
a server system. The good thing with this is that this traffic is a realistic traffic. The problem is
that we can not be certain that all features of the traffic have been captured during the recording
session. Because web traffic is self-similiar it might take a very long time, to be able to see that
feature in the recordings. This problem is not an issue when using analytic workload. An analytic
workload is based on mathematical models that describe different workloads characteristics. The
problems with this method is to identify those characteristics that are important to model to get
a reasonable web traffic load. Information about generating representative workload can be found
in [27] and [25].

2Self-similarity means that a small part of an object has the same structure as the whole object. This is a
property present in e.g. fractals. For network traffic this implies statistics with long-tails distribution.
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Chapter 3

Actuation for Control

3.1 Introduction

In order to control the Apache web server with consideration of the performance metrics mentioned
in Section 2.5 it is a must to be able to influence the server in some way. Because Apache is a
software program this means to be able to update important configuration directives while the
server is running and make it pick up the changes. Once this is possible these directives could be
used to create a controller for the server.

As shown in Section 2.2.8 (on page 11) there exist quite a lot of performance related directives,
so the question is which ones of these should be chosen? To use all of them would be unnecessary
and make the controller far too complex. Some of these parameters affect the server more than
others, so focusing on the parameters that really makes a difference is the best option.

In Section 2.2.8 the different performance directives were divided into three different categories:
Process management, Network management and HTTP management. All of these three groups
are important for the server’s performance so if the most relevant parameters from each group are
chosen it is possible to have quite good tools to change the behavior of our server during runtime.

Process management All directives in this group regulate the number of child processes in some
way. The most important ones of these are MaxClients, MinSpareServers and MaxSpare-
Servers. There is no parameter that can be used to tell Apache exactly how many child
servers it should be running,

Network management The ListenBacklog is by far the most important directive in this group,
because it sets the size of the backlog queue for the listen socket (see Section 2.3.6 on page
17).

HTTP management It is hard to find a reason for ever wanting to set the KeepAlive parameter
to Off, which means turning off persistent connections. Very seldom anything is gained by
doing so and therefore it will always be kept on without the possibility to turn it off. The
most important parameter in this group is KeepAliveTimeout and to be able to change its
value during runtime would be beneficial.

In the introduction there was a discussion about a simplified model of a web server and three
parameters were mentioned that would be beneficial to be able to update: Number of servers (i.e.
child processes), queue length and queue timeout. The ”Number of servers” are connected to the
process management group, and the ”queue length” correspond to the ListenBackLog directive.
The only parameter not represented in Apache is the ”queue timeout” parameter.

Now when the directives have been chosen, it is desirable to be able to update them during
runtime.

22



3.2 Influence the Process Management

The two directives MinSpareServers and MaxSpareServers are used by Prefork’s own heuristic
control to regulate the number of idle child processes in the server (see Section 2.2.4). To make
sure that this control does not lead to an infinite number of child processes, the MaxClients value
is used as a limit for the total number of processes. If these three values were used for a controller,
it would rely on the Apache’s underlying heuristic control. Because there are three parameters
to update it might be quite complex to figure out how to change these values to achieve better
performance. Therefore it is desirable to use a more easy and direct control of the number of child
processes as the one mentioned in the introduction. Instead of just regulating the number of idle
processes a controller should be able to regulate the total number of processes by updating just
one parameter. This would add more power and flexibility to the controller. To be able to do this,
Prefork’s own spare servers control has to be disabled. One way of doing this would be to set both
MinSpareServers and MaxSpareServers to zero. The number of child servers would then not be
regulated at all, but just continue to grow until it eventually would hit the MaxClients value (see
Figure 3.1).

MaxClients

Number of child processes

t

Figure 3.1: The situation which will occur when Apache’s spare server control has been disabled.

The MaxClients value could then be used to regulate the total number of processes in the system.
The problem with this approach is that it will lead to that the benefit of having idle child processes
ready and waiting for incoming requests will be lost. Because an increase in the MaxClients value
will not necessary mean that new child processes are created at once, just that more child process
can be created. As long as all the existing child servers are busy and as long as the number of
child servers has not reached the MaxClients value it will end up in a state where each new client’s
request will lead to a new child process being created no matter how high the MaxClients has been
set. This way of controlling the server will be problematic and not very flexible. What is gained
with this approach is that it would still be possible to use Apache’s own MaxClients limit control,
but now when the idle process control has been disabled this is not much of a benefit. If the spare
servers control in Apache is not going to be used, it is probably best to discard this parameter as
well.

As mentioned previously it is desirable to make the system as flexible as possible for the
controller. One way of doing this is by letting the controller use one single parameter to specify
the total number of child servers that should be in the system. Because no such parameter exists
it has to be created.

3.2.1 The New Parameters

For this to work two new parameters will actually be needed: one that will keep track of the
number of running child processes and another that will contain the number of running child
processes that should be running. The former will be called running, and the latter will be called
want running. It is also desirable to have a third parameter which should keep track of the number
of idle child processes. This parameter will be called idle running. Even though three parameters
are now being used it will not lead to the same complexity as before. Now the controller will just
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be using one parameter to change the total number of child processes, i.e. by updating the value of
want running. The other two parameters will be updated automatically by the system and just be
used by the controller as read-only information parameters, which it will use to base its decisions
on. Now when the new parameters have been specified, it is time to add them to the server.

To make it possible for a controller to change the number of processes during runtime, it is
desirable to be able to update these parameters in realtime. At the moment it is sort of possible
because you can update a parameter in the configuration file httpd.conf and then do a graceful
restart of the server, and the child processes will eventually update their configurations. The
problem with this is that it might be quite inefficient, if a lot of changes need to be done during
a short period of time. Especially when the server is busy, because then a lot of child processes
need to be killed and created. As new parameters are going to be added to the source code and a
new process management control will be created, the code to update these new parameters might
as well be added directly to the source code.

3.2.2 Implementation of the New Directives running, want running
and idle running

These new parameters are all global parameters which both the parent- and any child process
should to be able to read and update. Therefore it makes sense to put these values in the shared
memory space of the scoreboard (see Section 2.2.4 on page 8). For the running parameter this is
done by adding the following data structure called running info to the include/scoreboard.h file:

typedef struct runn ing in f o runn ing in f o ;
struct runn ing in f o {

int running ; // nbr o f ch i l d−p roc e s s e s s running
apr proc mutex t ∗mutex ; // must be owned to access the above f i e l d

} ;

When a process starts or dies it calls a function in the scoreboard in the file server/scoreboard.c
called ap update child status from indexes to change its status. All the different statuses that a
child process might have are defined in the the include/scoreboard.h file like this:

#define SERVER DEAD 0
#define SERVER STARTING 1 /∗ Server S t a r t i n g up ∗/
#define SERVER READY 2 /∗ Waiting f o r connect ion ( or accep t ( ) l o c k ) ∗/
#define SERVER BUSY READ 3 /∗ Reading a c l i e n t r e que s t ∗/
#define SERVER BUSY WRITE 4 /∗ Process ing a c l i e n t r e que s t ∗/
#define SERVER BUSY KEEPALIVE 5 /∗ Waiting f o r more r e qu e s t s v ia k e e p a l i v e ∗/
#define SERVER BUSY LOG 6 /∗ Logging the r e que s t ∗/
#define SERVER BUSY DNS 7 /∗ Looking up a hostname ∗/
#define SERVER CLOSING 8 /∗ Clos ing the connect ion ∗/
#define SERVER GRACEFUL 9 /∗ s e r v e r i s g r a c e f u l l y f i n i s h i n g r e que s t ∗/
#define SERVER IDLE KILL 10 /∗ Server i s c l ean ing up i d l e c h i l d r en . ∗/
#define SERVER NUM STATUS 11 /∗ number o f s t a t u s s e t t i n g s ∗/

The running parameter

When a child process starts it will have the status SERVER STARTING and when it dies it will
have the status SERVER DEAD. It is when this happens that the running parameter should be
increased or decreased. When more than one process want to update this parameter at the same
time a synchronization problem like the one in Figure 3.2 might occur.
In this example one process is starting and wants to increase the running parameter. It manages
to read the value of the parameter which is 6 and stores this value locally, but do not have time to
update it before a context-switch occur and the process is switched out. The other process that is
switched in is ending. It reads the running parameter which still has the value 6 and manages to
update the running value to 5 before it is switched out. When the starting process then continues
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Process Starting

Read running = 6

Set running = 6 +1
running = 7

Process Ending

Read running = 6
Set running = 6 - 1
running = 5

Figure 3.2: The parameter running should be 6 but end up as 7.

from where it was switched out, it had just read the value of running and stored it. It does not
know that the other process has updated the value to 5. Instead it assumes that the value of
running still is 6, and increase the value to 7, when it really should increase the value to 6.

To guarantee that this scenario will not happen mutual exclusion is needed [28], and that is
the reason for having the mutex parameter in the running info struct. Before a process is able
to read from or write to the running parameter it must first get the ownership of the control info
struct by locking the mutex to the process. When it manages to do that, no other process can
read or write to the parameter until the owning process releases the mutex. How this is done is
also available in the flowchart in Figure 3.7 on page 30.

The running idle parameter

The same synchronization problem might occur with the running idle parameter, because it is
possible that many child processes want to update its value at the same time. So to avoid this
problem a similar data structure is added for this parameter to the include/scoreboard.h file:

typedef struct r u nn i n g i d l e i n f o r u nn i n g i d l e i n f o ;
struct r u nn i n g i d l e i n f o {

int r unn ing i d l e ; // nbr o f i d l e c h i l d p roc e s s e s s
apr proc mutex t ∗mutex ; // must be owned to access the above f i e l d

} ;

The running idle parameter will also be updated from the ap update child status from indexes
function in the file server/scoreboard.c. A child process is said to be idle when it has the status
SERVER STARTING or SERVER READY. As long as a child process lives it will just get the
status SERVER STARTING once, and when this happens the value of running idle should be in-
creased. After the server startup has finished the child’s status will change to SERVER READY,
which also is an idle status. This however should not lead to an increase in the running idle
value because this will already have been done when the child process was starting as men-
tioned above. A child might get the SERVER READY status more than one time during its
lifetime. When this happens and the old status was not SERVER STARTING the value of run-
ning idle should be increased. For instance it will go back to this status when it has finished
serving a request and the KeepAliveTimeout has been reached (if KeepAlive is being used). In
the ap update child status from indexes function the child’s old status is available, so it is easy
to see what status a child leaves. Every status is also assigned an integer value (these values
are available at the beginning of this Section) which can be used to examine how to update the
running idle parameter. The value of running idle should just be increased if the child process
changing status to SERVER READY is leaving an old status that has a higher integer value than
SERVER READY. With the same reasoning the running idle value should be decreased if the
child leaving the status SERVER READY is about to get a new status that has a higher integer
value than SERVER READY. How the update of the running idle parameter should be done is
also available in the flowchart in Figure 3.7 on page 30.
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The want running parameter

Synchronization is not an issue with the want running parameter, because it will just be updated
from one place i.e. the controller. It does not need to be wrapped in another data structure,
instead a standard integer variable is used.

Adding The Parameters To The Scoreboard

To make these new parameters available to the parent and all of the child processes they are added
to the scoreboard’s global data structure (see Section 2.2.4) called global score in the
include/scoreboard.h file:

typedef struct {
int s e r v e r l im i t ;
int t h r e ad l im i t ;
ap scoreboard e sb type ;
ap generation t runn ing generat i on ; /∗ the genera t ion o f c h i l d r en which

∗ shou ld s t i l l be s e r v in g r e qu e s t s . ∗/
apr time t r e s t a r t t ime ;
runn ing in f o runn ing in f o ;
r u nn i n g i d l e i n f o r u nn i n g i d l e i n f o ;
int want running

} g l o b a l s c o r e ;

In the server/scoreboard.c file the following code is added to the ap create scoreboard function to
assign default values to the new parameters running and mutex in the running info struc:

ap scoreboard image−>g loba l−>runn ing in f o . running = 0 ;
apr proc mutex create (&( ap scoreboard image−>g loba l−>runn ing in f o ) . mutex ,

” runn ing in f o ” , APR LOCK DEFAULT, p ) ;

The variable in Apache containing the scoreboard is called ap scoreboard image. It contains
pointers to the global, parent and servers data structures (see Section 2.2.4). The function
apr proc mutex create is one of the functions in the Apache Portable Runtime library (see Sec-
tion 2.2.6) and is used to create a mutex variable. When the mutex has been created for the
running info struct, this is what a process needs to do in order to update the running parameter:

apr proc mutex lock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
ap scoreboard image−>g loba l−>runn ing in f o . running−−;
apr proc mutex unlock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;

The function apr proc mutex lock tries to lock the mutex to the current process and get ownership
over the running info data structure. As soon as it gets this, the process may update the running
parameter. The function apr proc mutex unlock then releases the process’ lock on the mutex, and
therefore its ownership of the data, so other processes may get access to the running info data
structure.

To assign a default value to the running idle parameter the same thing is done for the running
parameter. In the server/scoreboard.c file the following code is added:

ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . r unn ing i d l e = 0 ;
apr proc mutex create (&( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o ) . mutex ,

” r u nn i n g i d l e i n f o ” , APR LOCK DEFAULT, p ) ;

Now in order to update the running idle parameter a process needs to do the same thing as for
the running parameter.

The want running parameter is not assigned a default value at the same place as the other two
parameters above, because the MaxClients value from the httpd.conf file is chosen to be used as the
default value. The reason for this is to get the possibility to set a default value for this parameter in
the configuration file and to use an existing configuration parameter for this purpose saves time.
In the source code, the parameter that holds the MaxClients value is called ap daemons limit.
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Therefore the following code is added to Prefork’s run function ap mpm run which is located in
the file server/mpm/prefork/prefork.c:

ap scoreboard image−>g loba l−>want running = ap daemons l imit ;

3.2.3 The New Server Maintenance Function

Now with the use of the two new parameters running and want running it will be easy to implement
a new server maintenance function. The purpose of Prefork’s idle server maintenance was to keep
the number of idle child processes within a certain limit. The purpose with the new version of the
server maintenance will be to keep the number of child processes equal to the want running param-
eter. The idle server maintenance was performed in the function perform idle server maintenance
in the file server/mpm/prefork/prefork.c. This function will be overridden with the new server
maintenance code. Here is a description of how this function is now supposed to work:

• If the value of the parameter running is smaller than the value of want running the parent
process should create as many child processes as necessary to make these two values equal.

• If the value of the parameter running is larger than the value of want running the parent
process should kill enough of child processes to make these values equal.

To create a new child process the parent needs to specify a slot in the scoreboard that is free to
use. Instead of doing like Prefork, which loops through the scoreboard slots until it has found
enough free ones, it is possible to improve performance by letting the scoreboard keep track of all
the free slots itself. To make this possible two more parameters are added to the scoreboard. The
first parameter will be called first free and be a global parameter that will contain the index to
the first free slot in the scoreboard. The other parameter called next free will be added to each
slot in the scoreboard, and will contain the index to the next free scoreboard slot that comes after
the slot you are on. After the initialization of the scoreboard the slot setup with these two new
variables will look like the one in Figure 3.3. This is a so called single-linked list which is linked
together by the slots’ next free parameter.

210

first_free

index server limit - 1

next_free next_freenext_free

Figure 3.3: The default setup for the scoreboard slots with the new parameters first free and
next free.

The first free directive is added to the running info struct, because it will be used in connection
with the running parameter defined there which is shown below. This is the updated running info
struct:

typedef struct runn ing in f o runn ing in f o ;
struct runn ing in f o {

int running ; // nbr o f ch i l d−p roc e s s e s s running
int f i r s t f r e e ; // index o f the f i r s t f r e e scoreboard s l o t
apr proc mutex t ∗mutex ; // must be owned to access the above f i e l d s

} ;

With the use of the variables first free and next free the flowchart for the new server mainte-
nance will look like the one in Figure 3.4. The implementation of this function is available in C
code in Appendix B.1.
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Figure 3.4: A flowchart over the new server maintenance function.

To shutdown child processes Prefork’s spare server control uses the pod as described in Section
2.2.4 (on page 8). The problem with this approach is that it is just possible to terminate one child
process per iteration. With the new child process control it is desirable to be able to kill as many
child processes as necessary in one iteration. In Apache there already exists a function that makes
this possible with some additions.

The function ap mpm pod killpg in server/mpm common.c does not kill a child process on its
own, instead it wakes up idle child processes by creating a number of ”dummy connections”. The
amount of child processes to terminate is specified by the parameter children to kill. The ”dummy
connection” will simulate a client’s connection to the server, where the client immediately closes
down its connection. When a listening child process tries to handle a dummy connection, it
will discover that the client has disconnected and will therefore not serve the request. The child
process will then leave the request-response-loop and enter an area in the code where it examines
if it should terminate or keep listening for new requests on the server port. Busy child processes
will not be interrupted by the ”dummy-connections”, they will finish serving their requests before
leaving the request-response-loop.

As mentioned earlier the way a child process currently decides if it should terminate or not is
to examine the pod. With the new approach the parameters running and want running should be
used for this instead. When running is larger than want running the child process should shut
down. Because both these parameters are global parameters there will be no problem to use them

28



from the child processes.
When a child process terminates the running parameter needs to be updated, and as mentioned

earlier this will be done by the scoreboard function ap update child status from indexes in the
server/scoreboard.c file. What has not yet been described is how this should be done with regard
to the new parameters first free and next free, because they need to be updated as well. There is
no need for keeping the numeric order of the scoreboard slots, so as soon as a slot gets the status
SERVER DEAD it can be marked as the first free one and make its next free parameter point to
the old first free slot. In Figure 3.5 there is an example of this which shows how the scoreboard
setup will change when a child process with slot index 8 has terminated.

1372

first_free

index

next_freenext_free

138 72

first_free

index

next_freenext_free next_free

Figure 3.5: The scoreboard setup before and after a child with the slot 8 has terminated.

The slot with index 8 will be inserted as the first free slot in the list of all free scoreboard slots.
To link the slot with index 8 to the rest of the list its next free parameter will be made to point
to the old first free slot, which was the slot with index 2.

Because of the way the new server maintenance works the child calling
ap update child status from indexes with the status SERVER STARTING will always be the child
in the first free slot (you can see this in the flowchart in Figure 3.4). This makes it really easy to
update the parameters. In Figure 3.6 there’s an example of this which shows how the scoreboard
slot setup will change when a child process with slot index 8 starts.
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next_freenext_free

138 72
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index

next_freenext_free next_free

Figure 3.6: The scoreboard setup before and after a new child has been created.

The slot with index 8 will be removed from the list, and its next free slot will be marked as the
new first slot. In this case the slot with index 2 will be the new first free slot.

The way the first free and next free parameters will be updated by the
ap update child status from indexes in the server/scoreboard.c file is described in the flowchart
in Figure 3.7. The flowchart also contains information of how the running and idle running
parameters will be updated. The actual C code for doing this is located in Appendix B.3.

29



Start

new status = 
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scoreboard slot = 

current_slot

Lock mutex for 
running_info to process

SET running = 
(running - 1)

old status = 
SERVER_READY 
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Lock mutex for 
running_idle_info to process

SET running_idle  = 
(running_idle + 1)

RELEASE mutex for 
running_idle_info

End

Lock mutex for 
running_idle_info to process

SET running_idle  = 
(running_idle - 1)

RELEASE mutex for 
running_idle_info

Yes

No

No

No

No

Figure 3.7: A flowchart showing how the four parameters running, idle running, first free and
next free will be updated from the ap update child status from indexes function in the scoreboard.

3.3 Influence the HTTP Management

3.3.1 Runtime Update of the KeepAliveTimeout Parameter

In the source code the value of the KeepAliveTimeout parameter is stored in a data structure type
called server rec which is defined in the file include/httpd.h. It contains various information about
the server, e.g. the process the server is running on, the name of the server, log file information,
module specific information and persistent connection information. In the prefork MPM this
data structure is called ap server conf. To make it possible to change the value of the parameter
KeepAliveTimeout during runtime, this variable will be put in the global score data structure in
the include/scoreboard.h file:

typedef struct {
int s e r v e r l im i t ;
int t h r e ad l im i t ;
ap scoreboard e sb type ;
ap generation t runn ing generat i on ; /∗ the genera t ion o f c h i l d r en which

∗ shou ld s t i l l be s e r v in g r e qu e s t s . ∗/
apr time t r e s t a r t t ime ;
runn ing in f o runn ing in f o ;
r u nn i n g i d l e i n f o r u nn i n g i d l e i n f o ;
int want running

+ apr interval time t keep a l i v e t imeout ;
} g l o b a l s c o r e ;
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As with the want running parameter the default value of this new global parameter is assigned in
Prefork’s ap mpm run function:

ap scoreboard image−>g loba l−>keep a l i v e t imeout = ap se rve r con f−>keep a l i v e t imeout ;

The default value is taken from the value of KeepAliveTimeout specified in the configuration
file httpd.conf which in the code is then stored in the data structure ap server conf. This data
structure is created by the parent process and is made available to all its children because they
are all copies of the parent. The reason for not using this data structure is because it is just a
copy of the parent one. If the value for the parent structure is changed this change would not
go through to the already existing child processes. For child processes created after the change,
they will get the updated value. If the value is put in the scoreboard, this will make sure that all
processes, no matter if they are already running or not, will eventually get the same value. The
ap server conf is used by the child processes when creating a connection with the client. This is
done by calling the function ap run create connection. The information in the ap server conf is
among other things used for setting up the persistent connection with the client, so before the child
call this function, the value of the KeepAliveTimeout needs to be updated from the scoreboard
like this:

ap se rve r con f−>keep a l i v e t imeout = ap scoreboard image−>g loba l−>keep a l i v e t imeout ;

3.4 Influence the Network Management

3.4.1 Runtime Update of the ListenBackLog Parameter

To make it possible to update the ListenBackLog parameter the same can be done as for the
KeepAliveTimeout parameter above: putting a new variable in the global data structure of the
scoreboard. The problem with this parameter is to make the server pick up a change in it, or more
correctly to make the listen socket pick up the change.

The value of the ListenBackLog directive from the httpd.conf file is stored in a variable called
ap listenbacklog. This variable is set in the file server/listen.c. The value of the parameter
ap listenbacklog is just used once when creating the listen socket by calling the function apr listen
from server/listen.c. As described earlier its value is used to define how long the backlog queue
of pending connections to the listen socket may grow. The apr listen function mentioned above
in turn calls the underlying function that the current operating system provides to create a listen
socket. Under Linux this system function is simply called listen. Here is a brief description of how
it is possible to work with sockets in Linux.

A socket is first created with the system function socket. This function returns a socket de-
scriptor, which is an integer value that uniquely identifies a socket. By then calling the listen
function with this socket descriptor as parameter and the backlog length, the system is notified
that this socket should be able to accept incoming connections. It will become a listen socket.
If the same socket descriptor but different backlog value is used once more as parameters to the
listen function, the max queue length of the backlog queue will be updated. If the queue length
is decreased to a value that is less than the current number of pending connections in the queue,
these connections will not be removed, but newly incoming connection requests will be blocked.
It would be better if the pending connections were removed in case their amount exceed the max
length of the backlog queue. Because it is the operating system which specifies how sockets are
implemented this functionality needs to be added to the operating system. It is outside the scope
of this thesis to actually do this kind of implementation, but a description of how this could be
done can be found in Appendix A.1.

3.5 Content Adaptation

There is another way to influence the performance of the Apache HTTP server that have not
yet been mentioned, and that is through content adaptation. It is exactly what it sounds like,
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a way of adapting the amount of content on a web page depending on the server load. This is
often something which is discussed in connection with e.g. news sites; if a critical news story is
published on the web and a lot of people try to connect to it at the same time. Instead of not
letting people access the page to avoid server overload, a solution is to lessen the quality of the
content by e.g. removing all images and remove all dynamic content. This could be done by using
several levels of quality. For more information on content adaptation, see [4] [29].
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Chapter 4

Measurements

4.1 Introduction

The previous chapter described how to implement certain important server directives in order to
be able to update them during runtime. The reason for doing this was to make it possible to
influence the performance of the server while it still was running. If these parameters are to be
used to create a controller, knowledge about what other impact changes in these parameters have
on the server will need to be gathered. In addition there has to be some information about how
the amount of traffic to the server affects its performance. Considering this it is important to take
measurements of how well the server is performing during execution. But for this to be of any use
it must be good measurements and measurements of relevant server data.

The server data of interest can be divided into two levels: Apache Level and Computer Level.

Apache Level There are several variables in the Apache server itself that would be interesting
to measure in order to get some knowledge of how the server reacts to changes. As there
is no access to the client’s side and will not be possible to measure the end-to-end response
time, the Apache’s service time will be of interest. The Apache’s service time is the time
it takes for the server to handle a single request and is a part of the end-to-end response
time. It might give an indication of what is happening with the end-to-end response time.
If the request is taken from the listen socket ’s backlog queue, the time for which this request
has spent in the queue will not be a part of its service time. The service time begins when
a child process has gotten a request and is about to start processing it. To analyze every
single service time value would be far too complex and unnecessary, so instead the average
Apache service time for a certain time interval is the variable that will be measured.
Other variables that would be of interest are throughput (number of served requests per
second), the number of child processes running, the number of idle child processes and the
number of requests.

Computer Level The two most important resources for the server are the CPU and memory of
the computer on which the server is running. To measure the CPU and memory load are
therefore of interest.
Another resource that is important for the server performance is the backlog queue for the
listen socket (see Section 2.3.6). Interesting data would be: the size of the queue, how many
requests that are in the queue, how long time a request spends in the queue. These kind of
measurements will be shown to be quite complicated to accomplish.

Before going into details of how to actually perform the measurements, a description of how
to store this data to a file will be made. It is desirable to store this data in a file as Matlab arrays.
Matlab [30] will be used to analyze the data so this will make the measurements easy and flexible
to read after they have been performed. The data should be written to the file at a given time
interval.

33



4.2 Logging the Measurements

4.2.1 Module

Would it be possible to create an Apache module (see Section 2.2.7) which is responsible for logging
the data? It will have access to the scoreboard functions and it is possible to make it fork a new
process that would be responsible for logging the data to file at a given time interval. The problem
is that just one instance of the module is desirable, a kind of global module. When this approach
was tested it seemed very hard to make this kind of module. Because every child process will have
its own instance of the module and therefore its own values of the module parameters (and in this
case its own forked process). A lot of child processes would end up logging data to the same file.
The main purpose with modules is to handle requests, so to create a module that is just supposed
to log data at a given time interval, data which is not really connected to a single request but
rather the server as a whole, feels a bit wrong.

4.2.2 Server Process

What really is desirable is a single process dedicated to do the logging and that has access to the
scoreboard. In the same way as with the parent process the system call fork can be used for doing
this. To make sure that the log process has access to the scoreboard the parent process is forked
right after it has created the scoreboard. This is done by calling the function logger init at the
end of the ap create scoreboard function in the server/scoreboard.c file. It is inside the logger init
function that the fork occur. The parent will return to the scoreboard and continue to start the
server while the created child process will start doing the logging by calling the function log data.
The functions logger init, log data and all other code needed by the logging process is located in
the file server/logger.c. From now on this process will be called the logger. A schematic view of
the new server structure is available in Figure 4.1.

The Apache 
HTTP Server

Parent 
process

Scoreboard
process status ... shared

memory

Listener

Idle 
process

Idle 
process

Idle 
process

Working 
process

Working 
process

Working 
process

serve
the request

queue in

Child process
main loop

logger

Figure 4.1: A simplified model of the server structure when the logger process has been added.

This new process will not be counted as a regular server child process because it has not been
created by calling the make child function in the server/mpm/prefork/prefork.c file, which means
that it has not been assigned a slot in the scoreboard. The server maintenance function will
therefore not be affected by the logger process.

Periodic logging

It is desirable to be able to specify a time interval at which the log data function should write the
data to a file. A first solution to implement a periodic process like this in C would be something
like this:
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time_interval = 1 s
LOOP

Log data
Wait for time_interval s

END

The problem with this approach is that it ignores the time it takes to log the data, which means
that the logging will not be performed within the specified time interval but will instead eventually
be more and more displaced like the example in Figure 4.2. To take the logging time into account,

interval

Log data

Wait

Figure 4.2: Problem with periodic logging.

a start time could be set in the beginning of the loop and a stop time after the logging has been
performed. From these two values it is possible calculate how long time the logging took, and
subtract that time from the period time. The process will then wait for the remaining time until
restarting the loop. Something like this:

time_interval = 1 s
LOOP

SET start_time to current time
Log data
SET stop_time to current_time
SET log_time to stop_time - start_time
SET wait_time to time_interval - log_time
Wait for wait_time s

END

This is not perfect either, because if the process is switched out just before the WAIT, this time
will not be taken into account, which means that this solution also might lead to displacement
of the specified time interval. But this solution is good enough for my purpose and was the one
implemented. To make sure that the time interval is not displaced the current time could be saved
in a variable before the loop starts. Then to specify the next time for which the loop should start
again the time interval value is added to the loop start time. A process dedicated to store the
measurements to a file at a given time interval is now available.

4.3 Measurements on Apache Level

This subsection presents how the measurements for the Apache HTTP Server should be performed.
The variables I want to measure in the server are the following:

• throughput (number of requests handled per second),

• Apache average service time (in seconds)

• number of child processes
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• number of idle child processes

It is already possible to read information about the number of child processes from the running info
struct in the scoreboard (see Section 3.2.3). The next step is to find a way to read information
about the throughput and Apache service time.

4.3.1 Measure Apache Service Time And Throughput

Like the other variables of interest, these are global server data, so it is probably a good idea
to store this data in the global section of the scoreboard as well. Instead of storing the actual
throughput the number of all finished requests during one sample period (the rate at which the
logger writes data to file) will be stored. The reason for doing this is that the number of all
finished requests might also be an interesting variable to measure. The throughput can then be
calculated from the measurements. The same thing will be done for the average service time, i.e.
the total service time for all finished requests during one sample period will be stored, which later
can be used to calculate the average service time. To get a place to store these two new values
the following data structure called request info is added to the include/scoreboard.h file:

struct r e q u e s t i n f o {
int nb r o f r e qu e s t s ; // t o t a l nbr o f r e qu e s t s during one sample per iod
apr time t r eque s t s t ime ; // t o t a l time i t took to process a l l t h e s e r e qu e s t s
apr proc mutex t ∗mutex ; // must be owned to access the above f i e l d s

} ;

Functionality to update these two parameters in the struct needs to be added to the score-
board. A first thought might be to use the ap update child status from indexes function in the
server/scoreboard.c file which was used to update the new directives introduced in the previ-
ous chapter (see Section 3.2.2). It would be possible to update the nbr of requests when a
child goes from the status SERVER BUSY WRITE (processing a client request) to the status
SERVER BUSY KEEPALIVE (waiting for more requests from the same client). To obtain the
time it took to process a request it is possible to set a start time when a child gets the sta-
tus SERVER BUSY READ (reading a client request), set an end time when it gets the status
SERVER BUSY KEEPALIVE and then calculate the process time from those two values. This
would certainly work fine, but it is a bit unnecessary when a lot of this functionality already exist.
As mentioned in Section 2.2.4 on page 8 the server data structure in the scoreboard already con-
tains information about the start- and stop time of a request, so it would be more advantageous
to use those times instead.

In the server/scoreboard.c file there is a function called: ap time process request which is used
to measure the time it takes Apache to process a request. It is from this function that the start
and stop time information is set. This function is only used if the server has been configured to
generate extended status information for a child process. To enable this feature the following line
is added to the httpd.conf file:

ExtendedStatus On

When this directive is added a global variable in Apache called ap extended status is set to
1. This variable is then used in the ap process request function in the modules/http/http request.c
file to decide whether it should call the ap time process request function in the scoreboard or not.
The ap process request function, which is part of the http-module is used by the server to process
a HTTP request. If the ap extended status variable is set, it will call the ap time process request
function in the scoreboard with the status START PREQUEST just before it starts to process
the request. When it has finished serving the request it calls the same function but now with the
status STOP PREQUEST before leaving the ap process request function.

When a child process calls the ap time process request function with the status START PREQUEST
the start time field of the child is set to the current timestamp, and if it has the status STOP PREQUEST
the stop time field of the child is set to the current timestamp. Figure 4.3 shows a flowchart of
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how to use the the ap time process request function to update the parameters in the request info
struct. The real code can be found in Appendix B.3.

Enter  function 
ap_time_process_request

request status = 
STOP_PREQUEST? LOCK mutex

SET nbr_of_requests = 
(nbr_of_requests + 1)

SET requests_time = 
(requests_time + 

(stop_time - start_time))
RELEASE mutex

Leave  function 
ap_time_process_request

Yes

No

Figure 4.3: A flowchart describing how the two parameters nbr of requests and requests time in
the data structure control logdata should be updated.

4.3.2 Measure Round-Trip Time

The main focus with these measurements is to get a picture of how the server is behaving, but
it might also be interesting to get some idea of how busy the network is. This could be done by
measuring the round-trip time which is mentioned in Section 2.3.2. A high RTT value should give
an indication of a heavy loaded network and a low value a lightly loaded network. From the same
place as the requests service time was measured it is possible to add code to measure the RTT
value.

Every child process that is processing a request is connected to a connection socket and it
is from this socket that the RTT value should be obtained. It is possible to do this by using
the getsockopt system call mentioned in Section 2.3.7. In order to use this function the socket
descriptor of the child process’ connection socket needs to be known. In the server section of the
scoreboard there already exists a variable called sb socket which is probably supposed to keep the
value of this descriptor, but its value is never assigned from anywhere in the code. So the first
thing to do is to add the value of the descriptor to this place in the scoreboard. It is possible to
do this by adding the following code to child main function in the server/mpm/prefork/prefork.c
file, right after the child has accepted a new connection

ap scoreboard image−>s e r v e r s [ my child num ] [ 0 ] . sb socke t = ( ap r s o ck e t t ∗) csd ;

The servers variable is a pointer to the server section in the scoreboard, my child num is the
current child process’ scoreboard slot, 0 is the tread number (because Prefork does not use threads,
a thread number of zero will always be used), csd is a pointer to the connection socket created
when the child accepted the request.

4.3.3 Fetch the Measurements

It is now possible to access all the data of interest. To make it easier for the logger process and
later the controller to get all this data in one go, a function called ap get control logdata is added
to the server/scoreboard.c file. The logger will call this function at the interval given by the sample
time to fetch the relevant log data.

Before writing this new function the following data structure called control logdata is created.
It will hold all of the variables that should be logged:
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struct c on t r o l l o gda t a {
int nb r o f r e qu e s t s ; // t o t a l nbr o f r e qu e s t s during one sample per iod
apr time t r eque s t s t ime ; // t o t a l time i t took to process a l l the r e qu e s t s
int running ; // nbr o f ch i l d−p roc e s s e s s running
int i d l e r unn ing // nbr o f running ch i l d−p roc e s s e s s t ha t are i d l e

} ;

It is the ap get control logdata function’s task to fill this struct with the right data. It will do
so by using the two data structures running info and request info. This function will also reset
the two parameters nbr of requests and requests time in the request info struct to zero after their
values have been read, because their values are just valid for one sample period.

4.4 Measurements on Computer Level

4.4.1 Introduction

The variables of interest on the computer level are:

• CPU load

• memory load

• number of requests in the backlog queue

There already exists quite a lot of different utility programs in Linux to get information about both
the CPU- and memory load. The most common ones are top and vmstat. To just get information
about the memory usage on the computer it is possible to use the program free. There also exists
a package to Linux called sysstat [31] which contains most of the utilities you need to monitor
your system. The main program in this package is called sar and it collects, reports and saves
system activity information of CPU, memory, disks, interrupts, network interfaces, TTY, kernel
tables, etc.

The problem with using these utilities is that they are all command line programs which either
display their data in standard output or write their data to a file. This complicates the possibility
of using them for my purpose. To implement these measurements myself will make it easier to
pass the data to the controller and will also affect the server much less, because to run a command
line program from a C program at a specified interval is a much heavier task.

4.4.2 How To Measure CPU Load

A common way to measure the CPU load is to use an idle process. An idle process is a process
that just runs forever but does not do anything. When the idle process has been created it is
assigned the lowest scheduling priority of the operating system. In Linux the command nice can
be used for this. The priority can be specified in the range of -20 (the highest priority) to 20 (the
lowest). When the idle processes has been created it is run for the entire sample period. The CPU
load is then calculated by examining for how long time this process was processed by the CPU.
This time will be regarded as idle time. For instance if the sample period was 1 s and the idle
process was processed for 0.6 s by the CPU it means that 60% of the time the CPU spent doing
nothing, which means that the load was 40%. This is the only way to measure the CPU load on
a Windows machine, but in Linux there is the proc system (see Section 2.4) which will be used
instead.

As mentioned in Section 2.4 the proc system can be used to gather different information about
the computer. In order to calculate the CPU usage you can use the proc file /proc/stat (see the
following Linux manual page for more info: man 5 proc). The first two rows of the file are the
important ones for this calculation:

cpu 98506 46196 95118 172431403 78531 5007 0 0
cpu0 98506 46196 95118 172431403 78531 5007 0 0
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If there exists more than one cpu in the computer another line will be displayed after the ones
shown above. This new line will start with cpu1. The first row contains the total values of all
the cpu’s, so it is this row that will be used. The different values contain information about the
number of jiffies (1/100s of a second) which the cpu has spent performing different actions. From
left to right these are as follows [32]:

user normal processes executing in user mode

nice low priority (niced) processes executing in user mode

system processes executing in kernel mode

idle doing nothing

io wait waiting for input/output to a disk device

hard irq

soft irq

steal has to do with running virtual machines

To calculate the CPU load from these values is the same as doing it for the idle process method,
but the differences is that the value of the idle time is already known. To get a total time add all
these values together. Keep track of how much the total time changes during a sample period and
how much the idle time changes during the same period. Calculate the CPU load by comparing
how large part of the total change that the idle time change corresponded to.

4.4.3 How To Measure Memory Load

From the /proc/meminfo (see the following Linux manual page for more info: man 5 proc) it is
possible to get the following information about the memory usage in kB:

MemTotal: 515032 kB
MemFree: 68124 kB
Buffers: 72132 kB
Cached: 282528 kB

At first (MemTotal - MemFree) was used as the value for the total memory usage in kB and I
thought that would be fine. But later when the value of the free memory parameter was examined
using the command top, I noticed that even though no heavy application was running on the
computer, the amount of free memory kept shrinking quite a lot. After reading a faq [33] about
how Linux uses its memory I realized that if the memory is not needed for anything else the system
uses as much as it can of it to cache files. If an application needs memory and the amount of free
memory is not enough some of the cached memory will be released at once. This means that if I
wanted measurements of the memory usage that made any sense I needed to treat the cache and
the buffers as free memory as well. By trying the command free in a console window an extra line
with this information is printed:

free
total used free shared buffers cached

Mem: 515032 446908 68124 0 72132 282528
-/+ buffers/cache: 92248 422784
Swap: 987956 120 987836

Where used: 92248 = total: 515032 - (free: 68124 + buffers: 72132 + cached: 282528)
To the logger a function called calc mem load is added that will use the /proc/meminfo file to

calculate the used memory in kB. The C code for this function is available in Appendix B.6.
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4.4.4 How To Measure the Length of the Backlog Queue

It has already been mentioned how the command line tool netstat can be used to see which TCP
connections that are in the backlog queue or not (see Section 2.3.7 on page 18). If the server is
running on port 8000 the following could be written in the command line to get the number of
established connections to the server that are currently in the backlog queue:

netstat -tp | grep -c ’:8000.*\\ ESTABLISHED\\ *-’

This line first finds all TCP connections by calling netstat. This data is then sent (by using a pipe)
to the grep command which finds out how many of these connections that are connected to port
8000, have the status ESTABLISHED and are not yet connected to any process. The problem
with using this command to log data e.g. each second is that it is quite a heavy command to run,
and it will affect the server’s performance negatively. One more downside with this method is that
the more connections there are to the server, the longer time the command will take to execute.
A good measurement should not affect the server differently depending on the load. A test to run
this command from the logger was made by using the function system which makes it possible in
a C-program to call command line programs. But unfortunately this test was never successful.

It is the same problem as with the CPU and memory load when using command line tools. It
will be a bit difficult to pass the data to the controller.

After studying the behavior of the /proc/net/sockstat file I came up with a possible solution.
The output from this file looks like this:

sockets: used 307
TCP: inuse 10 orphan 0 tw 4 alloc 12 mem 1
UDP: inuse 16
RAW: inuse 0
FRAG: inuse 0 memory 0

The interesting line is the one starting with TCP. I have figured out how the following three field
work:

orphan shows how many of the TCP sockets that are in the state FIN WAIT2

tw shows how many of the TCP sockets that are in the state TIME WAIT

alloc shows how many sockets that are either in state LISTEN or ESTABLISHED. It does not
matter if a socket with the state ESTABLISHED is connected to a process or is in the
backlog queue, it will still count towards this field.

From this description it is quite clear that it is the alloc field that is of interest when trying to
measure the backlog queue length.

If the value of the alloc field is stored at the beginning of our measurements, it is possible to
see how much it grows. This value will be stored in a variable named alloc at start. For each
new connection to the server its value will increase with 1. The amount it grows to will be equal
to the sum of all active child processes (child processes which are processing a request) plus the
connections waiting to be processed in the backlog queue. It is possible to calculate the amount
of active child processes from the parameters running and running idle by taking the difference
between those values. So to get the number of connection in the backlog queue the following
calculation may be performed:

connections in backlog queue = (alloc - alloc_at_start) - (running - running_idle)

It is not possible to guarantee that this will correspond to the true amount of connections in the
backlog queue for the server, but it is a quite good estimate. The reason why it is not perfect is
that the values in the /proc/net/sockstat file are not connected to the Apache server alone, but to
the whole computer, so e.g. if someone logs in to the computer by using ssh the value of the alloc
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field will also grow. But assuming that the main purpose of the computer is to run a web server
this estimate is good enough. It gives an idea of what is happening with the queue.

To be able to get the true amount of connections in the backlog queue, functionality needs to
be added to Linux’s implementation of sockets. How this could be done is explained in Appendix
A.1.1.

To the logger process a function called get sockstat is added which will get the values for the
fields orphan, tw and alloc. These values will then be logged to separate files every sample period.
The C code for the get sockstat function is available in Appendix B.6. From the logged alloc field
the number of connections in the backlog queue is then calculated in matlab.

Listen Backlog Queue Overflow

One variable that is available from the proc system that would be interesting to measure in
connection with the backlog queue length is ListenOverflows. It shows the number of times that
a listen socket’s backlog queue has overflown. It is available in the file /proc/net/netstat. To the
logger a function called get netstat is added to get information from this file.
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Chapter 5

Load testing

5.1 Introduction

In the previous chapter it was shown how some of the most important performance metrics con-
nected to the Apache HTTP server can be measured. With this knowledge it is now time to test
the server to find out how the changeable configuration directives implemented in Chapter 3 affect
the server’s performance. As mentioned earlier to do this there has to be some traffic load on the
system and the web server also needs to provide some content which the generated traffic may
request. How the server will react to changes in the configuration parameter is highly dependent
on the traffic load and the content, so the results presented in this chapter are specific to the
chosen setup. The measurements performed in this chapter are mainly done to make sure that
the logger and the test automation (see Section 5.2.1) work as expected.

5.2 Traffic Generator

There exists quite a lot of traffic generator softwares e.g. ab, httperf, JMeter, SURGE, s-client. A
short description of the most common ones are available in [34].

The JMeter traffic generator [35] was chosen because it is an open source project and is well
suited for simulating heavy concurrent loads. It is created by the Apache Software Foundation and
is written in Java. The code structure of JMeter makes it quite easy to extend when additional
functionality is needed.

Note however that JMeter is not suitable for generating web traffic that should follow a certain
statistical distribution. When generating representative workloads this is an important aspect,
because such a workload is usually built up by using different distributions. The reason why this
is hard to do in JMeter is because there is no way of synchronizing the threads to make them send
requests at previously specified times. Each thread in JMeter runs independently of one another.
The generation of representative workload is a complex task which I will not try to achieve for
my experiments, because this is not the main goal with this thesis. If you are interested in this
subject you can have a look at the references available in Section 2.6 on page 20.

Even if the traffic generated is representative the experiment will not be so if the server settings
are unrealistic. For examples most servers today process requests by using persistent connections,
which is the default behavior for the Apache server. This is one more reason why the JMeter
traffic generator was chosen, because it has good support for creating KeepAlive HTTP request.

In the experiments it is desirable to test what impact the KeepAliveTimeout parameter together
with the want running parameter have on the backlog queue length, the Apache service time, the
end-to-end response time and the round-trip time. To make the experiments more interesting
plain deterministic traffic will not be used. Instead each JMeter thread will send requests to the
server where the intervals between requests will follow the exponential distribution. I do not think
it is realistic to put a heavy load on the server by letting each client thread send requests to the
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server using very short intervals unless the server is not under a Denial of Service attack (DoS),
because then the intervals between request will very likely be short. From my own experience as a
web developer what usually puts a high load on a server are among other things if a large amount
of clients connect to the server at the same time or if the number of hits for a heavy dynamic
page suddenly increases. To use very short intervals between a client’s requests will not make the
KeepAliveTimeout parameter very interesting, because the persistent connection will never time
out. Therefore the mean value of the request intervals will be kept quite high and instead load
the server more by increasing the number of client threads. Three values of the KeepAliveTimeout
parameter will be tested: 5, 10 and 15 seconds. To make it possible for a client thread to time out
for any of these values the mean interval time will be kept at 5 seconds. The request intervals are
created by using Matlab. Figure 5.1 shows an example of how the generated interval times look
like for one client thread.
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Figure 5.1: The generated interval times for one client thread.

To make it possible for JMeter to read these values from file and assign each thread with the
right values functionality needs to be added. This is done by creating a new HTTP sampler called
HTTP Interval Sampler.

5.2.1 The HTTP Interval Sampler

The HTTP Inter Sampler is based on the HTTP Request HTTPClient sampler in JMeter. The
reason for extending this sampler was because it was the only one which handled persistent connec-
tions as expected (i.e. when using KeepAlive). The HTTP Interval Sampler extends it by reading
generated request interval times, want running values and rounds values from files. Each client
JMeter thread is assigned its corresponding request interval times and rounds values (see Section
5.3 on the next page). These threads will use the HTTP Interval Sampler to send their requests
to the server and the sampler will make sure that the threads wait for the specified interval times
before sending a new request.

It is possible to specify how many times each value of the want running parameter should be
tested and how many JMeter threads which should be used in each one of these tests. When
the sampler has reached the end of the last test for a specific want running value it will stop the
server’s logger process from logging more test data to file. As soon as the sampler has loaded a new
want running value and setup the threads for its first test for this new value, it will make the server
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change its number of running child processes to make it agree with the updated want running value
and let the logger start writing data to file again. To make it possible for the sampler to send this
information to the server and therefore automate the tests, the following three actions have been
added to the server:

dummy.php?wr=60&test=1 This will let the server know that a new test is starting, and the
logger makes sure that 60 child processes will be running before it starts logging data to file.
test=1 means it is the first test and is used by the logger to split the log data for each test
into separate folders. The dummy.php file is an empty PHP script just used for sending these
arguments to the server. The reason why using a PHP script for this and not an HTML
page, is that an HTML page might be cached by the client. When this happens and new
request to the same HTML page arrives, this request will not be processed by Apache, but
instead just returned from the cache. The arguments sent with the request will therefore
not be processed. This will not happen with a PHP script.

dummy.php?stoptest This will make the logger stop writing data to file.

dummy.php?stopwholetest This will make the logger stop writing data to file and also termi-
nate the logger process.

The functionality for these three actions was added to the ap update child status from indexes
function in the server/scoreboard.c file. When a child gets the status SERVER BUSY WRITE
the server will examine the arguments which was sent together with the request the child is about
to handle. If it finds any of the three actions above, these will be performed. To synchronize the
logger i.e. to make it start and stop depending on these actions a mutex is used. When the server
receives the stoptest action, it will lock this mutex which will make the logger stop running. The
logger will wait until this mutex is released and this happens when a request for a new test is sent
to the server. The C code for this is available in Appendix B.3.

5.3 Requested Content

Many sites today use scripting languages like e.g. PHP, ASP, JSP and Ruby on Rails to generate
dynamic content instead of using static html files. It is also very common that a database is
used in connection with generating these dynamic pages. Here is one of the most popular server
setups: Linux + Apache HTTP server + MySQL + PHP (where MySQL is a database server
using SQL). This setup is usually referred to as LAMP [36] and is the setup which will be used
for the experiments.

The generated traffic will request a PHP-script called index.php. This script will query a table
in the MySQL database for product names and return these names to the client. To the script it
is possible to send a GET parameter called rounds. This parameter limits the number of results
which should be read from the database query. For example to just make the script return a single
product name the following request may be sent to the server:

index.php?rounds=1

The rounds parameter is valid in the range 1-3000 and as a result the requested content may vary
in size from 0.02 kB to 63.25 kB. The content size is linearly dependent on the rounds parameter.

Figure 5.2 shows the time it took for the script to finish depending on the rounds parameter.
This time was measured on the server side. The graphs shows that the execution time of the
index.php file increases linearly depending on the rounds parameter. A first order model was
found for the execution time by using the matlab command polyfit. This model will match the
measured data in a least squares sense.

execution time = 0.000043 · rounds + 0.0059

In relation with the generation of representative workload not much has been written about dy-
namic generated server content. This is a bit odd because today the use of dynamic content is
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Figure 5.2: Time to execute the index.php script depending on the rounds value.

very common and its impact on the server is far greater than static content. The type of content
which is requested by the generated traffic is very important in order to get a realistic server load.

Each JMeter thread will be made to send rounds values to the server which will make the
execution times for the index.php script follow the Pareto distribution. This means that most of
the requests to the server will be served quickly but a small amount of them might take quite a
long time to process. As the content size generated by the script is also linearly dependent on the
rounds parameter, the same can be said about content size. Most of the requested content will
be very small, but a small amount of them will be much larger. This assumption might not be so
unrealistic when considering the most relevant workload results presented in [25] stating that 10%
of the documents account for 90-100% of all requests and bytes transferred, file sizes follow the
Pareto distribution and file-interval times are independent and exponentially distributed. These
results are based on a survey that was made in 1996, and much has change since then. But these
results might still have some validity today, and could be applied to dynamic content.

The Pareto distributed execution time values were generated in Matlab and to get the rounds
values corresponding to these execution times, the inverse of this model for the execution time was
used:

rounds =
execution time − 0.0059

0.000043

Figure 5.3 on page 46 shows the rounds values generated for one JMeter thread.

5.4 Experimental Setup

One computer was used to represent the clients by running the HTTP Interval Sampler in JMeter
version 2.2. Five different values of the want running parameter were tested : 60, 120, 180, 240
and 300. For each one of these values seven different traffic loads were generated by running differ-
ent amounts of JMeter threads: 50, 100, 150, 200, 250, 300 and 350. This computer had 512 Mb
of RAM and an Intel Pentium 4 CPU 2.4 GHz and used the Feodora Linux Core 5 operating system.

The computer representing the server was running the Apache HTTP server version 2.0.54 with
the modifications discussed in the previous chapters. This computer had 512 Mb of RAM and an
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Figure 5.3: The generated rounds values for one client thread.

Intel Pentiun 4 CPU 2 GHz and used the Feodora Linux Core 4 operating system.

These two computers were connected through a 100Mbps Ethernet network. A schematic view of
the experimental setup is available in Figure 5.4.

Feodora Linux Core 5

JMeter

ServerClient

Feodora Linux Core 4

Apache HTTP 
Server

Network

Traffic

Figure 5.4: The experimental setup.

5.5 Test Results

5.5.1 Introduction

As mentioned previously the HTTP Interval Sampler is based on another sampler called HTTP
Request HTTPClient. The HTTP Request HTTPClient sampler waits for a response to its request
before it is possible to send a new one. If a lot of requests end up in the backlog queue and still
have not been served when it is supposed to send the next request, this will lead to a decrease in
the amount of generated traffic to the server. This will be visible in the test results. When this
does not happen the average generated traffic for each 50 clients is about 10 requests/second.
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5.5.2 Number of Pending Connections In the Backlog Queue

KeepAliveTimeout 5 seconds
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Figure 5.5: Average number of pending connections in the listen socket’s backlog queue for different
values of the want running parameter and traffic load using a KeepAliveTimeout value of 5 seconds.

Figure 5.5 shows that for a short KeepAliveTimeout value the time a request spends in the
backlog queue will be less and it will require a higher amount of traffic to fill the queue to its
maximum. As mentioned before the default maximum queue length for the computer was 128,
and Figure 5.5 shows that it is only when 60 or 120 number of child processes are used that
this limit is reached. When running the server with 300 child processes the average number of
connections in the queue is always zero. The highest traffic, about 70 requests / second, was
generated with 350 JMeter client threads and even though the number of clients are 50 more
than the number of child processes for this traffic the queue does not start to grow. With this
short KeepAliveTimeout value each client will not keep a single child process busy for that long,
so during the sample period (which was 1 second) the probability is quite high that some child
process will time out and be ready to accept a new request from the queue.The turn-around time
will be less, so each child process will handle requests from more different clients. This should
load the server more, which is visible in the Apache service time results.

The observant reader will notice that there is only 6 marked points in the graph when using 60
child processes (i.e. wr = 60 ). The reason for this is, as mentioned in the introduction, because
it is not possible to generate a higher amount of traffic to the server when it is running with 60
child processes, because many of the requests will get stuck in the backlog queue.

KeepAliveTimeout 10 seconds

Figure 5.6 shows that when the KeepAliveTimeout value is increased the queue fills up faster and
for a lesser amount of traffic. Now the max limit of 128 connections in the queue is also reached
when running 180 child processes in the server. Even when running with 300 child processes some
requests will now end up in the queue. The amount of traffic which is possible to generate for
the lower want running values is less, because more of the connections will get stuck in the queue
faster.
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Figure 5.6: Average number of pending connections in the listen socket’s backlog queue for different
values of the want running parameter and traffic load using a KeepAliveTimeout value of 10
seconds.

KeepAliveTimeout 15 seconds
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Figure 5.7: Average number of pending connections in the listen socket’s backlog queue for different
values of the want running parameter and traffic load using a KeepAliveTimeout value of 15
seconds.

Figure 5.7 shows the number of requests in the backlog queue for the highest value of KeepAlive-
Timeout which was tested. For this value the queue fills up faster than before. The amount in the
queue is now closer to the difference between the number of clients and child processes. E.g. when
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running the server with 300 child processes and a generated traffic with 350 client threads the
number of pending connections in the queue is now closer to 50. If the value of KeepAliveTimeout
was increased even further this value would probably be even closer to 50. The amount of traffic
possible to generate is now less even for 180 child processes.

5.5.3 Apache Service Time

KeepAliveTimeout 5 seconds
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Figure 5.8: Average Apache service time for a request in milliseconds for different values of the
want running parameter and traffic load using a KeepAliveTimeout value of 5 seconds.

For all of the different number of child processes used the average Apache service time is about
20-30 ms for traffic under 40 requests/second. This is visible in Figure 5.8. At 50 requests/second
the service time when running 60 or 120 child processes goes up quite much. This seems to happen
at the same time as the number of requests in the backlog queue reaches a value around 100 (have
a look at the backlog queue graph in Figure 5.5 for KeepAliveTimeout 5 seconds). A large number
of pending connections in the backlog queue does not seem to be very good for the service time
and especially not when the backlog queue overflows. This is most visible when running the server
with 120 child processes, because the service time almost reaches 450 ms when the queue overflows,
which is about 10 times longer than for lighter traffic.

The result also indicates that running with 300 child processes gives the lowest service time for
all the tested traffic loads. When comparing this graph with the backlog queue graph the reason
for this seems to be because running with 300 child processes gives the least number of connections
in the backlog queue for all the tested traffic loads.

KeepAliveTimeout 10 seconds

For this value of KeepAliveTimeout it is also visible in Figure 5.9 that an increase in the service
time happens at the same time as the number of connections in the backlog queue increases. The
service time increases a small bit for every increase in traffic. This is probably because an increase
in traffic means that more requests enter the system which will utilize the CPU and memory more.
The most visible change still happens when the queue starts to grow. Because the backlog queue
grows faster for the KeepAliveTimeout value the differences in service times depending on the
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Figure 5.9: Average Apache service time for a request in milliseconds for different values of the
want running parameter and traffic load using a KeepAliveTimeout value of 10 seconds.

number of child processes are more evident. The service times have also decreased a bit with this
value of KeepAliveTimeout. The reason for this is probably because more of the served requests
have been processed over the same connection because of the increased KeepAliveTimeout.

KeepAliveTimeout 15 seconds
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Figure 5.10: Average Apache service time for a request in milliseconds for different values of the
want running parameter and traffic load using a KeepAliveTimeout value of 15 seconds.

For the highest test value of KeepAliveTimeout the same pattern as describe previously occur.
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This is visible in Figure 5.10. The service times for all the different numbers of child processes
increase a bit when the traffic increases and when the backlog queue starts to grow the service
time increases a lot more than before. Before this happens the service times are lower than for
the two other values of KeepAliveTimeout. The reason for this is the same as mentioned before.
There was one thing that I noticed in this graph that I did not see in the other two. As mentioned
above when using a higher value of KeepAliveTimeout seems to give a lower service time if not the
backlog queue starts to grow, but when it starts to grow the graph indicates that the service time
will reach a higher value than for a lower KeepAliveTimeout value. E.g. look at the end value
when running with 240 child processes. In the previous graph it reached a value of just above 40,
and in this graph it is more closer to 50. The reason why this is not visible for the lower values
of child processes e.g. 60, is probably because it is not possible to generate a higher amount of
traffic than 30 request / second. If it was possible to do that it would probably lead to a service
time value that was higher than the highest values in the previous graphs.

5.5.4 Round-trip Time

In the Figures 5.11, 5.12 and 5.13 the average estimated round-trip times are displayed for the three
different KeepAliveTimeout values. It is obvious in all graphs that the round-trip time increases a
lot when the backlog queue overflows. For a higher value of the KeepAliveTimeout parameter the
average round-trip time will be lower even in those cases when the backlog queue overflows. The
reason for this is probably the same as with the decrease in the Apache service time. If a higher
KeepAliveTimeout is used, more requests served by the server have been processed over persistent
connections, which should lead to a faster response time.
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Figure 5.11: Average estimated round-trip time for different values of the want running parameter
and traffic load using a KeepAliveTimeout value of 5 seconds.

5.5.5 The End-To-End Response Time

To the HTTP Interval Sampler code was added to save the true end-to-end response time for each
request sent by the client threads. This data will not be available for use in the controller, but I
thought it would be interesting to see how this data is related to the other available parameters.
The end-to-end response times for the different values of the KeepAliveTimeout parameter are
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Figure 5.12: Average estimated round-trip time for different values of the want running parameter
and traffic load using a KeepAliveTimeout value of 10 seconds.
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Figure 5.13: Average estimated round-trip time for different values of the want running parameter
and traffic load using a KeepAliveTimeout value of 15 seconds.

available in the Figures 5.14, 5.15 and 5.16. In the graphs it is very clear that the response
time increases linearly when the backlog queue starts to grow. The backlog queue graphs look
very similar to the graphs displaying the response times. This confirms the fact that a queue is
problematic when it comes to fast response times.
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Figure 5.14: Average end-to-end response time for the clients for different values of the
want running parameter and traffic load using a KeepAliveTimeout value of 5 seconds.
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Figure 5.15: Average end-to-end response time for the clients for different values of the
want running parameter and traffic load using a KeepAliveTimeout value of 10 seconds.
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Figure 5.16: Average end-to-end response time for the clients for different values of the
want running parameter and traffic load using a KeepAliveTimeout value of 15 seconds.
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Chapter 6

Controller

The tools needed for affecting and measuring the server’s performance are now available to use,
and it is time to create a controller. First it has to be decided were it should be placed. It
ought to work quite similar to the logger process in the sense that it should be a process running
periodically and have access to all the functions which the logger has. An alternative would be to
make it event-based instead of periodical, but for this thesis the periodical way was chosen. When
testing the controller it is desirable to have the logger running as well, so it will be possible to
monitor what the controller actually does.

For the same reasons as for creating the logger as a stand-alone process in Apache, the controller
will be created in the same way and started right after the scoreboard has been initiated. The
same technique as for the logger will be used to make the controller run periodically with a specific
time interval. The updated server structure is available in Figure 6.1.

The Apache 
HTTP Server

Parent 
process

Scoreboard
process status ... shared

memory

Listener

Idle 
process

Idle 
process

Idle 
process

Working 
process

Working 
process

Working 
process

serve
the request

queue in

Child process
main loop

logger controller

Figure 6.1: A simplified model of the server structure when the controller process has been added.

In the previous chapter just one kind of traffic and content were tested and for this setup it was
always best to use as high value of the want running parameter as possible. This will probably
not be the case for other kinds of workloads. To be able to create a controller that would really
improve a real working server’s performance, better knowledge needs to be gathered about that
particular server’s workload. Guidelines of how to do that are available in [25].

To make use of the tools created in the previous chapters a controller will be implemented
that will work like Apache’s own spare servers control. This means that the number of idle child
processes will be regulated so it falls in between a specified minimum and maximum value.

The controller will be tested by using the heaviest generated traffic from the previous chapter
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(i.e. by using 350 JMeter client threads) and the clients will requests the same content as before.
Figure 6.2 shows how well the controller managed to keep the number of idle child processes

in the specified range 32-64. At one point the number of child processes reaches 30 and the reason
for this is probably because the logger and controller are not yet synchronized. This means that it
might be possible for the logger to write data to file before the controller has been able to perform
its control loop using the same data.
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Figure 6.2: Testing the controller which should keep the number of idle child processes in the
range 32-64.
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Chapter 7

Conclusions and Further Work

To be able to control any type of system one needs to be able to affect the system in some way and
measure how it is reacting to the change. In this thesis I have described how to make this possible
for the Apache HTTP server by implementing functionality to update important configuration
directives and to read information about different areas of the server during run time.

The following API functions have been added successfully to supply the functionality:

ap set want running which is used for specifying the total amount of child processes that should
be in the system

ap set keep alive timeout which is used for specifying the amount of seconds that a persistent
connection may be idle before it should be terminated

ap set backlog which is used for specifying the maximum amount of pending connections allowed
in the listen socket’s backlog queue

ap fetch control data which is used for collecting all the measured data in Apache

ap calc cpu load which is used to collect various information about the computer’s CPU load.

ap calc mem usage which is used for collecting various information about the computer’s mem-
ory usage

ap get netstat which is used for collecting various data from the /proc/net/netstat file

ap get sockstat which is used for collecting various data from the /proc/net/sockstat file

Support has also been added for doing multiple tests on the server automatically. This functionality
was used when JMeter’s HTTP Request HTTPClient sampler was extended by the HTTP Interval
Sampler. This sampler was used in Chapter 5 to perform 35 test runs for each of the three different
values of the KeepAliveTimeout parameter.

In Chapter 6 a shell was created for the controller and a simple control algorithm was im-
plemented and tested. The tests performed in Chapters 5 and 6 have shown that the added
functionality works as expected.

7.1 Further research

At the moment if something is changed in the logger or controller the whole Apache server needs to
be recompiled, which is not time efficient. To move away from this way of working, support could
be added for changing some default settings for these two processes by using the configuration
file. For instance for the logger it should be possible to specify what parameters that should be
written to file and at what time interval. Both the logger and controller should be possible to turn
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off. To make it easy to test different control strategies the control algorithms should be possible
to load dynamically. As mentioned in Chapter 6, the logger and controller are not synchronized,
which needs to be supported in order to get good measurements when these processes are running
concurrently. The Linux’s system calls which I have used in my code should be replaced with their
corresponding APR-functions (see Section 2.2.6 on page 10).
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Appendix A

Modifications in the Linux Kernel

A.1 Realtime update of the backlog queue

As mentioned in Section 2.3.7 it is possible in Linux to use the system call setsockopt to set
various options for the socket. An option could be added to this function to change the length
of the backlog queue. The functionality for the TCP socket is implemented in the files starting
with tcp under the folder net/ipv4 in the Linux source code distribution. In the net/ipv4/tcp.c
file the setsockopt function is implemented for this socket type, and is called tcp setsockopt. To
this function the option TCP CHANGEBACKLOG could be added. A way of how this could be
implemented is described by the flowchart in Figure A.1 and is also available in C code on the
next page. Bare in mind that this code has not been tested yet.

LOCK socket

option = 
TCP_CHANGE

BACKLOG?
value not 
empty?

value < 
ack_backlog?

SET acc_rec = 
first request in 
backlog queue

Disconnect and 
remove rec from 

the backlog queue
SET ack_backlog = 

ack_backlog - 1

Possible to set req = 
acc_rec and value < 

ack_backlog

SET ack_req = next 
request in backlog 

after req

SET 
max_backlog  

= value

RELEASE 
socket

option = 
TCP_---?

Yes Yes Yes

Yes

No
No

No

No

new max length of the backlog queue
number of requests currently in the backlog queue
max length of the backlog queue

value = 
ack_backlog =

max_backlog = 

Figure A.1: A flowchart over how the option TCP CHANGEBACKLOG could be implemented.

When this change has been made to the source code, Linux has to be re-compiled.
When everything is up and running, this is what you would have to do in order to update

the length of the listen socket ’s backlog queue. For example if the variable listener contains the
descriptor to the listen socket, in order to change the length of the backlog queue it would be
possible to do the following:
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int option_value = 400;
socklen_t socklen = sizeof(option_value);
setsockopt(listener, SOL_TCP, TCP_CHANGEBACKLOG, &option_value, socklen);

The first input parameter to the function is our descriptor. The second is the protocol number
for TCP, which is defined by the constant SOL TCP. The protocol number is also available in the
file /etc/protocols. The third parameter is the socket option, which in this case is the option just
created. The fourth parameter contains the new value of the queue length, and the last parameter
the size of the option value parameter.

A.1.1 Code for the TCP CHANGEBACKLOG Option

1 case TCP CHANGEBACKLOG:
2 i f ( va l ) {
3 i f ( sk−>sk ack back log > va l ) {
4 struct open request ∗ acc r eq = tp−>accept queue ;
5 while ( ( req = acc r eq ) != NULL && sk ack back log > va l ) {
6 struct sock ∗ ch i l d = req−>sk ;
7

8 acc r eq = req−>d l next ;
9

10 l o c a l b h d i s a b l e ( ) ;
11 bh lock sock ( ch i l d ) ;
12 BUG TRAP( ! sock owned by user ( c h i l d ) ) ;
13 sock ho ld ( ch i l d ) ;
14

15 t cp d i s connec t ( ch i ld , O NONBLOCK) ;
16

17 sock orphan ( ch i l d ) ;
18

19 atomic inc (&tcp orphan count ) ;
20

21 t cp de s t r oy so ck ( ch i l d ) ;
22

23 bh unlock sock ( ch i l d ) ;
24 l o c a l bh enab l e ( ) ;
25 sock put ( ch i l d ) ;
26

27 sk acceptq removed ( sk ) ;
28 t c p op en r e q f a s t f r e e ( req ) ;
29 }
30 }
31 sk−>sk max backlog = va l ;
32 break ;

A.2 Getting the Length of the Backlog Queue

There also exists a system call called getsockopt which can be used with a socket to get information
about certain parameters. Unfortunately there exists no option to get the number of pending
connections in the backlog queue, so if this functionality is desirable it has to be implemented.

The source code for the getsockopt function is located in the net/ipv4/tcp.c file in the Linux
source code. For the TCP socket this function is called tcp getsockopt. To get the desired data
from this function an option called e.g. TCP GETBACKLOG could be added with the following
code:

case TCP GETBACKLOG:
va l = sk−>sk ack back log ;
break ;
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Appendix B

Code

The code which have been added are available in the code blocks starting with
#ifdef EL CONTROL.

B.1 prefork.c

427 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
428 ∗ Chi ld proces s main loop .
429 ∗ The f o l l ow i n g vars are s t a t i c to avoid g e t t i n g c l o b b e r ed by longjmp () ;
430 ∗ they are r e a l l y p r i v a t e to ch i ld main .
431 ∗/
432

433 stat ic int r e q u e s t s t h i s c h i l d ;
434 stat ic int num l i s t ensocks = 0 ;
435 stat ic a p l i s t e n r e c ∗ l i s t e n s o c k s ;
436

437 int a p g r a c e f u l s t o p s i g n a l l e d (void )
438 {
439 /∗ not ever c a l l e d anymore . . . ∗/
440 return 0 ;
441 }
442

443

444 stat ic void ch i ld main ( int chi ld num arg )
445 {
446 ap r poo l t ∗ptrans ;
447 a p r a l l o c a t o r t ∗ a l l o c a t o r ;
448 conn rec ∗ current conn ;
449 ap r s t a t u s t s t a tu s = APR EINIT ;
450 int i ;
451 a p l i s t e n r e c ∗ l r ;
452 int cu r r p o l l f d , l a s t p o l l f d = 0 ;
453 a p r p o l l f d t ∗ p o l l s e t ;
454 int o f f s e t ;
455 void ∗ csd ;
456 ap sb hand le t ∗ sbh ;
457 ap r s t a t u s t rv ;
458 ap r bu ck e t a l l o c t ∗ buck e t a l l o c ;
459

460 mpm state = AP MPMQ STARTING; /∗ f o r b e n e f i t o f any hooks t ha t run as
t h i s

461 ∗ c h i l d i n i t i a l i z e s
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462 ∗/
463

464 my child num = chi ld num arg ;
465 ap my pid = getp id ( ) ;
466 csd = NULL;
467 r e q u e s t s t h i s c h i l d = 0 ;
468

469 a p f a t a l s i g n a l c h i l d s e t u p ( ap s e r v e r c on f ) ;
470

471 /∗ Get a sub con t ex t f o r g l o b a l a l l o c a t i o n s in t h i s ch i l d , so t ha t
472 ∗ we can have c leanups occur when the c h i l d e x i t s .
473 ∗/
474 a p r a l l o c a t o r c r e a t e (& a l l o c a t o r ) ;
475 ap r a l l o c a t o r max f r e e s e t ( a l l o c a t o r , ap max mem free ) ;
476 ap r poo l c r e a t e e x (&pchi ld , pconf , NULL, a l l o c a t o r ) ;
477 ap r a l l o c a t o r owne r s e t ( a l l o c a t o r , pch i ld ) ;
478

479 ap r poo l c r e a t e (&ptrans , pch i ld ) ;
480 apr poo l t ag ( ptrans , ” t r an sa c t i on ”) ;
481

482 /∗ needs to be done b e f o r e we sw i t ch UIDs so we have permiss ions ∗/
483 ap reopen scoreboard ( pchi ld , NULL, 0) ;
484 rv = ap r p r o c mut ex ch i l d i n i t (&accept mutex , ap lock fname , pch i ld ) ;
485 i f ( rv != APR SUCCESS) {
486 ap l o g e r r o r (APLOG MARK, APLOG EMERG, rv , ap s e rve r con f ,
487 ”Couldn ’ t i n i t i a l i z e c ros s−proce s s l ock in ch i l d ”) ;
488 c l e a n c h i l d e x i t (APEXIT CHILDFATAL) ;
489 }
490

491 i f ( un ixd s e tup ch i l d ( ) ) {
492 c l e a n c h i l d e x i t (APEXIT CHILDFATAL) ;
493 }
494

495 a p r un c h i l d i n i t ( pchi ld , ap s e r v e r c on f ) ;
496

497 ap c r ea t e sb hand l e (&sbh , pchi ld , my child num , 0) ;
498

499 (void ) ap upda t e ch i l d s t a tu s ( sbh , SERVER READY, ( r e qu e s t r e c ∗) NULL) ;
500

501 /∗ Set up the p o l l f d array ∗/
502 l i s t e n s o c k s = ap r p ca l l o c ( pchi ld ,
503 s izeof (∗ l i s t e n s o c k s ) ∗ ( num l i s t ensocks ) ) ;
504 for ( l r = ap l i s t e n e r s , i = 0 ; i < num l i s t ensocks ; l r = l r−>next , i++)

{
505 l i s t e n s o c k s [ i ] . a ccept func = l r−>accept func ;
506 l i s t e n s o c k s [ i ] . sd = l r−>sd ;
507 #ifdef ELCONTROL
508 // trim some socke t s e t t i n g s
509 int opt i on va lue ;
510 s o c k l e n t sock l en = s izeof ( opt i on va lue ) ;
511 opt i on va lue = 1 ;
512 int r sock = se t sockopt ( l r−>sd−>socketdes , SOL TCP, TCP KEEPIDLE,

&opt ion va lue , s ock l en ) ;
513 i f ( r sock < 0) {
514 ap l o g e r r o r (APLOG MARK, APLOG ERR, 0 , ap s e rve r con f , ”Error

s e t t i n g TCP KEEPIDLE to %i : %s ” , opt ion va lue ,
s t r e r r o r ( errno ) ) ;

515 }
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516 opt i on va lue = 1 ;
517 r sock = se t sockopt ( l r−>sd−>socketdes , SOL TCP, TCP KEEPINTVL,

&opt ion va lue , s ock l en ) ;
518 i f ( r sock < 0) {
519 ap l o g e r r o r (APLOG MARK, APLOG ERR, 0 , ap s e rve r con f , ”Error

s e t t i n g TCP KEEPINTVL to %i : %s ” , opt ion va lue ,
s t r e r r o r ( errno ) ) ;

520 }
521 opt i on va lue = 1 ;
522 r sock = se t sockopt ( l r−>sd−>socketdes , SOL TCP, TCP KEEPCNT,

&opt ion va lue , s ock l en ) ;
523 i f ( r sock < 0) {
524 ap l o g e r r o r (APLOG MARK, APLOG ERR, 0 , ap s e rve r con f , ”Error

s e t t i n g TCP KEEPCNT to %i : %s ” , opt ion va lue ,
s t r e r r o r ( errno ) ) ;

525 }
526 opt i on va lue = 1 ;
527 r sock = se t sockopt ( l r−>sd−>socketdes , SOL TCP, TCP SYNCNT,

&opt ion va lue , s ock l en ) ;
528 i f ( r sock < 0) {
529 ap l o g e r r o r (APLOG MARK, APLOG ERR, 0 , ap s e rve r con f , ”Error

s e t t i n g syncnt to %i : %s ” , opt ion va lue , s t r e r r o r ( errno ) ) ;
530 }
531 #endif
532 }
533

534 p o l l s e t = ap r pa l l o c ( pchi ld , s izeof (∗ p o l l s e t ) ∗ num l i s t ensocks ) ;
535 p o l l s e t [ 0 ] . p = pch i ld ;
536 for ( i = 0 ; i < num l i s t ensocks ; i++) {
537 p o l l s e t [ i ] . desc . s = l i s t e n s o c k s [ i ] . sd ;
538 p o l l s e t [ i ] . de sc type = APR POLL SOCKET;
539 p o l l s e t [ i ] . r eqevents = APR POLLIN;
540 }
541

542 mpm state = AP MPMQ RUNNING;
543

544 buck e t a l l o c = ap r bu ck e t a l l o c c r e a t e ( pch i ld ) ;
545

546 while ( ! die now ) {
547 /∗
548 ∗ (Re) i n i t i a l i z e t h i s c h i l d to a pre−connect ion s t a t e .
549 ∗/
550

551 current conn = NULL;
552

553 ap r p o o l c l e a r ( ptrans ) ;
554

555 i f ( ( ap max reque s t s pe r ch i l d > 0
556 && r e q u e s t s t h i s c h i l d++ >= ap max reque s t s pe r ch i l d ) ) {
557 c l e a n c h i l d e x i t (0 ) ;
558 }
559

560 (void ) ap upda t e ch i l d s t a tu s ( sbh , SERVER READY, ( r e qu e s t r e c ∗) NULL) ;
561

562 /∗
563 ∗ Wait f o r an ac c ep t a b l e connect ion to a r r i v e .
564 ∗/
565
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566 /∗ Lock around ”accept ” , i f necessary ∗/
567 SAFE ACCEPT( accept mutex on ( ) ) ;
568

569 i f ( num l i s t ensocks == 1) {
570 o f f s e t = 0 ;
571 }
572 else {
573 /∗ mu l t i p l e l i s t e n i n g s o c k e t s − need to p o l l ∗/
574 for ( ; ; ) {
575 ap r s t a t u s t r e t ;
576 ap r i n t 3 2 t n ;
577

578 r e t = ap r po l l ( p o l l s e t , num l i s tensocks , &n , −1) ;
579 i f ( r e t != APR SUCCESS) {
580 i f (APR STATUS IS EINTR( r e t ) ) {
581 continue ;
582 }
583 /∗ S ing l e Unix documents s e l e c t as r e tu rn ing errnos
584 ∗ EBADF, EINTR, and EINVAL . . . and in none o f those
585 ∗ cases does i t make sense to cont inue . In f a c t
586 ∗ on Linux 2 . 0 . x we seem to end up with EFAULT
587 ∗ occa s i ona l l y , and we ’ d loop f o r e v e r due to i t .
588 ∗/
589 ap l o g e r r o r (APLOG MARK, APLOG ERR, ret , ap s e rve r con f ,
590 ”ap r po l l : ( l i s t e n ) ”) ;
591 c l e a n c h i l d e x i t (1 ) ;
592 }
593 /∗ f i n d a l i s t e n e r ∗/
594 c u r r p o l l f d = l a s t p o l l f d ;
595 do {
596 c u r r p o l l f d++;
597 i f ( c u r r p o l l f d >= num l i s t ensocks ) {
598 c u r r p o l l f d = 0 ;
599 }
600 /∗ XXX: Should we check f o r POLLERR? ∗/
601 i f ( p o l l s e t [ c u r r p o l l f d ] . r tnevent s & APR POLLIN) {
602 l a s t p o l l f d = c u r r p o l l f d ;
603 o f f s e t = c u r r p o l l f d ;
604 goto go t fd ;
605 }
606 } while ( c u r r p o l l f d != l a s t p o l l f d ) ;
607

608 continue ;
609 }
610 }
611 go t fd :
612 /∗ i f we accep t ( ) something we don ’ t want to die , so we have to
613 ∗ de f e r the e x i t
614 ∗/
615 #ifdef ELCONTROL
616 ap se rve r con f−>keep a l i v e t imeout =

ap scoreboard image−>g loba l−>keep a l i v e t imeout ;
617 #endif
618 s t a tu s = l i s t e n s o c k s [ o f f s e t ] . a c cept func (&csd ,
619 &l i s t e n s o c k s [ o f f s e t ] ,

ptrans ) ;
620 SAFE ACCEPT( accept mutex o f f ( ) ) ; /∗ unlock a f t e r ”accept ” ∗/
621
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622 i f ( s t a tu s == APR EGENERAL) {
623 /∗ resource shor tage or should−not−occur occured ∗/
624 c l e a n c h i l d e x i t (1 ) ;
625 }
626 else i f ( s t a tu s != APR SUCCESS) {
627 continue ;
628 }
629

630 /∗
631 ∗ We now have a connection , so s e t i t up wi th the appropr ia t e
632 ∗ so c k e t opt ions , f i l e d e s c r i p t o r s , and read/ wr i t e b u f f e r s .
633 ∗/
634

635 current conn = ap run c r ea t e connec t i on ( ptrans , ap s e rve r con f , csd ,
my child num , sbh , bu ck e t a l l o c ) ;

636

637 i f ( current conn ) {
638 #ifdef ELCONTROL
639 ap scoreboard image−>s e r v e r s [ my child num ] [ 0 ] . sb socke t =

( ap r s o ck e t t ∗) csd ;
640 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Keep Al ive

Timeout ( ch i l d %i ) : %i ” ,
ap my pid , apr t ime se c ( ap s e rve r con f−>keep a l i v e t imeout ) ) ;

641 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Scoreboard
image Keep a l i v e timeout : %i ” ,
ap r t ime se c ( ap scoreboard image−>g loba l−>keep a l i v e t imeout ) ) ;

642 #endif
643 ap proce s s connec t i on ( current conn , csd ) ;
644 a p l i n g e r i n g c l o s e ( current conn ) ;
645 }
646

647 #ifdef ELCONTROL
648 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Child f i n i s h e d

reques t keep a l i v e timeout exceeded −− running : %i want running :
%i ” ,
ap scoreboard image−>g loba l−>runn ing in f o . running , ap scoreboard image−>g loba l−>want running ) ;

649 ap update ch i ld rounds ( sbh ) ;
650 apr proc mutex lock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
651 i f ( ap scoreboard image−>g loba l−>runn ing in f o . running >

ap scoreboard image−>g loba l−>want running ) {
652 die now = 1 ;
653 } else i f ( ap my generat ion !=
654 ap scoreboard image−>g loba l−>runn ing generat i on ) { /∗

r e s t a r t ? ∗/
655 /∗ yeah , t h i s cou ld be non−g r a c e f u l r e s t a r t , in which case the
656 ∗ parent w i l l k i l l us soon enough , but why bo ther check ing ?
657 ∗/
658 die now = 1 ;
659 }
660 apr proc mutex unlock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
661 #else
662

663 /∗ Check the pod and the genera t ion number a f t e r p roce s s ing a
664 ∗ connect ion so t ha t we ’ l l go away i f a g r a c e f u l r e s t a r t occurred
665 ∗ whi l e we were proce s s ing the connect ion or we are the l ucky
666 ∗ i d l e s e r v e r process t ha t g e t s to d i e .
667 ∗/
668 i f ( ap mpm pod check ( pod ) == APR SUCCESS) { /∗ s e l e c t e d as i d l e ? ∗/
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669 die now = 1 ;
670 }
671 else i f ( ap my generat ion !=
672 ap scoreboard image−>g loba l−>runn ing generat i on ) { /∗

r e s t a r t ? ∗/
673 /∗ yeah , t h i s cou ld be non−g r a c e f u l r e s t a r t , in which case the
674 ∗ parent w i l l k i l l us soon enough , but why bo ther check ing ?
675 ∗/
676 die now = 1 ;
677 }
678 #endif
679 }
680 c l e a n c h i l d e x i t (0 ) ;
681 }

792 #ifdef ELCONTROL
793 stat ic void pe r f o rm id l e s e rve r ma in t enance ( ap r poo l t ∗p)
794 {
795 int i ;
796 int c h i l d r e n t o k i l l ;
797 int c h i l d r e n t o s t a r t ;
798 int c u r r e n t s l o t ;
799

800 apr proc mutex lock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
801 i f ( ap scoreboard image−>g loba l−>runn ing in f o . running >

ap scoreboard image−>g loba l−>want running ) {
802 c h i l d r e n t o k i l l = ap scoreboard image−>g loba l−>runn ing in f o . running −

ap scoreboard image−>g loba l−>want running ;
803 apr proc mutex unlock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
804 ap mpm pod kil lpg (pod , c h i l d r e n t o k i l l ) ;
805 } else i f ( ap scoreboard image−>g loba l−>runn ing in f o . running <

ap scoreboard image−>g loba l−>want running ) {
806 c h i l d r e n t o s t a r t = ap scoreboard image−>g loba l−>want running −

ap scoreboard image−>g loba l−>runn ing in f o . running ;
807 c u r r e n t s l o t = ap scoreboard image−>g loba l−>runn ing in f o . f i r s t f r e e ;
808

809 apr proc mutex unlock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
810 for ( i = 0 ; i < c h i l d r e n t o s t a r t ; ++i ) {
811 make chi ld ( ap s e rve r con f , c u r r e n t s l o t ) ;
812 c u r r e n t s l o t =

ap scoreboard image−>s e r v e r s [ c u r r e n t s l o t ] [ 0 ] . n e x t f r e e ;
813 }
814 } else {
815 apr proc mutex unlock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
816 }
817 }
818 #else
819 stat ic void pe r f o rm id l e s e rve r ma in t enance ( ap r poo l t ∗p)
820 {
821 int i ;
822 int t o k i l l ;
823 int i d l e c oun t ;
824 worker score ∗ws ;
825 int f r e e l e n g t h ;
826 int f r e e s l o t s [MAX SPAWN RATE] ;
827 int l a s t non dead ;
828 int to ta l non dead ;
829

830 /∗ i n i t i a l i z e the f r e e l i s t ∗/
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831 f r e e l e n g t h = 0 ;
832

833 t o k i l l = −1;
834 i d l e c oun t = 0 ;
835 l a s t non dead = −1;
836 to ta l non dead = 0 ;
837

838 for ( i = 0 ; i < ap daemons l imit ; ++i ) {
839

840 int s t a tu s ;
841

842 i f ( i >= ap max daemons limit && f r e e l e n g t h == id l e spawn ra t e )
843 break ;
844 ws = &ap scoreboard image−>s e r v e r s [ i ] [ 0 ] ;
845 s t a tu s = ws−>s t a tu s ;
846 i f ( s t a tu s == SERVER DEAD) {
847 /∗ t r y to keep ch i l d r en numbers as low as p o s s i b l e ∗/
848 i f ( f r e e l e n g t h < i d l e spawn ra t e ) {
849 f r e e s l o t s [ f r e e l e n g t h ] = i ;
850 ++f r e e l e n g t h ;
851 }
852 }
853 else {
854 /∗ We cons ider a s t a r t i n g s e r v e r as i d l e because we s t a r t e d i t
855 ∗ at l e a s t a c y c l e ago , and i f i t s t i l l hasn ’ t f i n i s h e d s t a r t i n g
856 ∗ then we ’ re j u s t go ing to swamp t h i n g s worse by f o r k i n g more .
857 ∗ So we h o p e f u l l y won ’ t need to f o r k more i f we count i t .
858 ∗ This depends on the order ing o f SERVER READY and SERVER STARTING.
859 ∗/
860 i f ( s t a tu s <= SERVER READY) {
861 ++ id l e c oun t ;
862 /∗ always k i l l t he h i g h e s t numbered c h i l d i f we have to . . .
863 ∗ no r e a l l y w e l l t hough t out reason . . . o ther than ob se rv ing
864 ∗ the s e r v e r behav iour under l i nu x where lower numbered ch i l d r en
865 ∗ tend to s e r v i c e more h i t s ( and hence are more l i k e l y to have
866 ∗ t h e i r data in cpu caches ) .
867 ∗/
868 t o k i l l = i ;
869 }
870

871 ++tota l non dead ;
872 l a s t non dead = i ;
873 }
874 }
875 ap max daemons limit = las t non dead + 1 ;
876

877 i f ( i d l e c oun t > ap daemons max free ) {
878 /∗ k i l l o f f one c h i l d . . . we use the pod because t ha t ’ l l cause i t to
879 ∗ shut down g r a c e f u l l y , in case i t happened to p i ck up a r e que s t
880 ∗ whi l e we were count ing
881 ∗/
882 ap mpm pod signal ( pod ) ;
883 i d l e spawn ra t e = 1 ;
884 }
885 else i f ( i d l e c oun t < ap daemons min free ) {
886 /∗ t erminate the f r e e l i s t ∗/
887 i f ( f r e e l e n g t h == 0) {
888 /∗ only r epor t t h i s cond i t i on once ∗/
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889 stat ic int r epor ted = 0 ;
890

891 i f ( ! r epor ted ) {
892 ap l o g e r r o r (APLOG MARK, APLOG ERR, 0 , ap s e rve r con f ,
893 ”s e r v e r reached MaxClients s e t t i ng , c on s id e r ”
894 ” r a i s i n g the MaxClients s e t t i n g ”) ;
895 r epor ted = 1 ;
896 }
897 i d l e spawn ra t e = 1 ;
898 }
899 else {
900 i f ( i d l e spawn ra t e >= 8) {
901 ap l o g e r r o r (APLOG MARK, APLOG INFO, 0 , ap s e rve r con f ,
902 ”s e r v e r seems busy , ( you may need ”
903 ”to i n c r e a s e Sta r tSe rve r s , or Min/MaxSpareServers ) , ”
904 ”spawning %d ch i ld ren , the re are %d id l e , and ”
905 ”%d t o t a l ch i l d r en ” , id l e spawn rate ,
906 i d l e count , to ta l non dead ) ;
907 }
908

909 for ( i = 0 ; i < f r e e l e n g t h ; ++i ) {
910 #ifdef TPF
911 i f ( make chi ld ( ap s e rve r con f , f r e e s l o t s [ i ] ) == −1) {
912 i f ( f r e e l e n g t h == 1) {
913 shutdown pending = 1 ;
914 ap l o g e r r o r (APLOG MARK, APLOG EMERG, 0 , ap s e rve r con f ,
915 ”No ac t i v e ch i l d p r o c e s s e s : shut t ing down”) ;
916 }
917 }
918 #else
919 make chi ld ( ap s e rve r con f , f r e e s l o t s [ i ] ) ;
920 #endif /∗ TPF ∗/
921 }
922 /∗ the next time around we want to spawn tw ice as many i f t h i s
923 ∗ wasn ’ t good enough , but not i f we ’ ve j u s t done a g r a c e f u l
924 ∗/
925

926 i f ( ho ld o f f on exponent i a l spawn ing ) {
927 −−ho ld o f f on exponent i a l spawn ing ;
928 }
929 else i f ( i d l e spawn ra t e < MAX SPAWN RATE) {
930 i d l e spawn ra t e ∗= 2 ;
931 }
932 }
933 }
934 else {
935 i d l e spawn ra t e = 1 ;
936 }
937 }
938 #endif

940 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
941 ∗ Execut i ve rou t i n e s .
942 ∗/
943

944 int ap mpm run ( ap r poo l t ∗ pconf , ap r poo l t ∗plog , s e r v e r r e c ∗ s )
945 {
946 int index ;
947 int r ema i n i n g ch i l d r e n t o s t a r t ;
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948 ap r s t a t u s t rv ;
949

950 ap log p id ( pconf , ap pid fname ) ;
951

952 // s e t the max c l i e n t s va lue
953 f i r s t s e r v e r l i m i t = s e r v e r l im i t ;
954 i f ( c h ang ed l im i t a t r e s t a r t ) {
955 ap l o g e r r o r (APLOG MARK, APLOG WARNING, 0 , s ,
956 ”WARNING: Attempt to change ServerL imit ”
957 ”ignored during r e s t a r t ”) ;
958 c h ang ed l im i t a t r e s t a r t = 0 ;
959 }
960

961 /∗ I n i t i a l i z e cross−proces s accep t l o c k ∗/
962 ap lock fname = ap r p sp r i n t f ( pconf , ”%s .%” APR PID T FMT,
963 a p s e r v e r r o o t r e l a t i v e ( pconf ,

ap lock fname ) ,
964 ap my pid ) ;
965

966 rv = apr proc mutex create(&accept mutex , ap lock fname ,
967 ap accept lock mech , pconf ) ;
968 i f ( rv != APR SUCCESS) {
969 ap l o g e r r o r (APLOG MARK, APLOG EMERG, rv , s ,
970 ”Couldn ’ t c r e a t e accept l ock ”) ;
971 mpm state = AP MPMQ STOPPING;
972 return 1 ;
973 }
974

975 #i f APR USE SYSVSEM SERIALIZE
976 i f ( ap accept lock mech == APR LOCK DEFAULT | |
977 ap accept lock mech == APR LOCK SYSVSEM) {
978 #else
979 i f ( ap accept lock mech == APR LOCK SYSVSEM) {
980 #endif
981 rv = unixd set proc mutex perms ( accept mutex ) ;
982 i f ( rv != APR SUCCESS) {
983 ap l o g e r r o r (APLOG MARK, APLOG EMERG, rv , s ,
984 ”Couldn ’ t s e t pe rmi s s i ons on cros s−proce s s l ock ; ”
985 ”check User and Group d i r e c t i v e s ”) ;
986 mpm state = AP MPMQ STOPPING;
987 return 1 ;
988 }
989 }
990

991 i f ( ! i s g r a c e f u l ) {
992 i f ( ap run pre mpm ( s−>process−>pool , SB SHARED) != OK) {
993 mpm state = AP MPMQ STOPPING;
994 return 1 ;
995 }
996 /∗ f i x the genera t ion number in the g l o b a l score ; we j u s t go t a new ,
997 ∗ c l e a r ed scoreboard
998 ∗/
999 ap scoreboard image−>g loba l−>runn ing generat i on = ap my generat ion ;

1000 }
1001

1002 s e t s i g n a l s ( ) ;
1003

1004 i f ( one proce s s ) {
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1005 APMONCONTROL(1) ;
1006 }
1007

1008 #ifdef ELCONTROL
1009 ap scoreboard image−>g loba l−>want running = ap daemons l imit ;
1010 ap scoreboard image−>g loba l−>keep a l i v e t imeout =

ap se rve r con f−>keep a l i v e t imeout ;
1011

1012 r ema i n i n g ch i l d r e n t o s t a r t = ap daemons l imit ;
1013 ap daemons max free = ap daemons min free = ap daemons l imit ;
1014

1015 #else
1016 i f ( ap daemons max free < ap daemons min free + 1) /∗ Don ’ t thrash . . .

∗/
1017 ap daemons max free = ap daemons min free + 1 ;
1018

1019 /∗ I f we ’ re doing a g r a c e f u l r e s t a r t then we ’ re going to see a l o t
1020 ∗ o f c h i l d r en e x i t i n g immediate ly when we ge t in t o the main loop
1021 ∗ be low ( because we j u s t sen t them AP SIG GRACEFUL) . This happens p r e t t y
1022 ∗ r a p i d l y . . . and f o r each one t ha t e x i t s we ’ l l s t a r t a new one u n t i l
1023 ∗ we reach at l e a s t daemons min free . But we may be permi t t ed to
1024 ∗ s t a r t more than that , so we ’ l l j u s t keep t rack o f how many we ’ re
1025 ∗ supposed to s t a r t up wi thout the 1 second pena l t y between each f o r k .
1026 ∗/
1027 r ema i n i n g ch i l d r e n t o s t a r t = ap daemons to start ;
1028 i f ( r ema i n i n g ch i l d r e n t o s t a r t > ap daemons l imit ) {
1029 r ema i n i n g ch i l d r e n t o s t a r t = ap daemons l imit ;
1030 }
1031 #endif
1032 i f ( ! i s g r a c e f u l ) {
1033 s t a r t up ch i l d r e n ( r ema i n i n g ch i l d r e n t o s t a r t ) ;
1034 r ema i n i n g ch i l d r e n t o s t a r t = 0 ;
1035 }
1036 else {
1037 /∗ g i v e the system some time to recover b e f o r e k i c k i n g in t o
1038 ∗ e xponen t i a l mode ∗/
1039 ho ld o f f on exponent i a l spawn ing = 10 ;
1040 }
1041

1042 ap l o g e r r o r (APLOG MARK, APLOG NOTICE, 0 , ap s e rve r con f ,
1043 ”%s con f i gu r ed −− resuming normal ope ra t i on s ” ,
1044 ap g e t s e r v e r v e r s i o n ( ) ) ;
1045 ap l o g e r r o r (APLOG MARK, APLOG INFO, 0 , ap s e rve r con f ,
1046 ”Server bu i l t : %s ” , a p g e t s e r v e r b u i l t ( ) ) ;
1047 #ifdef AP MPM WANT SET ACCEPT LOCK MECH
1048 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f ,
1049 ”AcceptMutex : %s ( d e f au l t : %s ) ” ,
1050 apr proc mutex name ( accept mutex ) ,
1051 apr proc mutex defname ( ) ) ;
1052 #endif
1053 r e s t a r t p end ing = shutdown pending = 0 ;
1054

1055 mpm state = AP MPMQ RUNNING;
1056

1057 while ( ! r e s t a r t p end ing && ! shutdown pending ) {
1058 int c h i l d s l o t ;
1059 apr ex i t why e exitwhy ;
1060 int s tatus , p r o c e s s ed s t a tu s ;
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1061 /∗ t h i s i s a memory leak , but I ’ l l f i x i t l a t e r . ∗/
1062 apr p roc t pid ;
1063

1064 ap wa i t or t imeout (&exitwhy , &status , &pid , pconf ) ;
1065

1066 /∗ XXX: i f i t t a k e s l onger than 1 second f o r a l l our c h i l d r en
1067 ∗ to s t a r t up and ge t in t o IDLE s t a t e then we may spawn an
1068 ∗ ex t ra c h i l d
1069 ∗/
1070 i f ( pid . pid != −1) {
1071 p ro c e s s ed s t a tu s = ap p r o c e s s c h i l d s t a t u s (&pid , exitwhy ,

s t a tu s ) ;
1072 i f ( p r o c e s s ed s t a tu s == APEXIT CHILDFATAL) {
1073 mpm state = AP MPMQ STOPPING;
1074 return 1 ;
1075 }
1076

1077 /∗ non− f a t a l death . . . note t ha t i t ’ s gone in the scoreboard . ∗/
1078 c h i l d s l o t = f i n d ch i l d by p i d (&pid ) ;
1079 i f ( c h i l d s l o t >= 0) {
1080 (void ) ap upda t e ch i l d s t a tu s f r om indexe s ( c h i l d s l o t , 0 , SERVER DEAD,
1081 ( r e qu e s t r e c ∗)

NULL) ;
1082 i f ( p r o c e s s ed s t a tu s == APEXIT CHILDSICK) {
1083 /∗ c h i l d d e t e c t e d a resource shor tage (E[NM]FILE ,

ENOBUFS, e t c )
1084 ∗ cut the f o r k ra t e to the minimum
1085 ∗/
1086 i d l e spawn ra t e = 1 ;
1087 }
1088 else i f ( r ema i n i n g ch i l d r e n t o s t a r t
1089 && c h i l d s l o t < ap daemons l imit ) {
1090 /∗ we ’ re s t i l l doing a 1−for−1 rep lacement o f dead
1091 ∗ c h i l d r en wi th new ch i l d r en
1092 ∗/
1093 make chi ld ( ap s e rve r con f , c h i l d s l o t ) ;
1094 −−r ema i n i n g ch i l d r e n t o s t a r t ;
1095 }
1096 #i f APR HAS OTHER CHILD
1097 }
1098 else i f ( ap r p r o c o th e r ch i l d r e ad (&pid , s t a tu s ) == 0) {
1099 /∗ handled ∗/
1100 #endif
1101 }
1102 else i f ( i s g r a c e f u l ) {
1103 /∗ Great , we ’ ve probab l y j u s t l o s t a s l o t in the
1104 ∗ scoreboard . Somehow we don ’ t know about t h i s
1105 ∗ c h i l d .
1106 ∗/
1107 ap l o g e r r o r (APLOG MARK, APLOG WARNING,
1108 0 , ap s e rve r con f ,
1109 ”long l o s t ch i l d came home ! ( pid %ld ) ” , ( long ) pid . pid ) ;
1110 }
1111 /∗ Don ’ t perform i d l e maintenance when a c h i l d d ies ,
1112 ∗ only do i t when the re ’ s a t imeout . Remember on ly a
1113 ∗ f i n i t e number o f c h i l d r en can die , and i t ’ s p r e t t y
1114 ∗ p a t h o l o g i c a l f o r a l o t to d i e sudden ly .
1115 ∗/
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1116 continue ;
1117 }
1118 else i f ( r ema i n i n g ch i l d r e n t o s t a r t ) {
1119 /∗ we h i t a 1 second t imeout in which none o f the prev ious
1120 ∗ genera t ion o f c h i l d r en needed to be reaped . . . so assume
1121 ∗ they ’ re a l l done , and p i ck up the s l a c k i f any i s l e f t .
1122 ∗/
1123 s t a r t up ch i l d r e n ( r ema i n i n g ch i l d r e n t o s t a r t ) ;
1124 r ema i n i n g ch i l d r e n t o s t a r t = 0 ;
1125 /∗ In any event we r e a l l y shouldn ’ t do the code be low because
1126 ∗ few o f the s e r v e r s we j u s t s t a r t e d are in the IDLE s t a t e
1127 ∗ yet , so we ’ d mis taken ly c r ea t e an ex t ra s e r v e r .
1128 ∗/
1129 continue ;
1130 }
1131

1132 pe r f o rm id l e s e rve r ma in t enance ( pconf ) ;
1133 #ifdef TPF
1134 shutdown pending = os che ck s e r v e r ( tp f s e rve r name ) ;
1135 ap che ck s i gna l s ( ) ;
1136 s l e e p (1 ) ;
1137 #endif /∗TPF ∗/
1138 }
1139

1140 mpm state = AP MPMQ STOPPING;
1141

1142 i f ( shutdown pending ) {
1143

1144 /∗ Time to g r a c e f u l l y shut down :
1145 ∗ K i l l c h i l d processes , t e l l them to c a l l c h i l d e x i t , e t c . . .
1146 ∗/
1147 i f ( un i xd k i l l p g ( getpgrp ( ) , SIGTERM) < 0) {
1148 ap l o g e r r o r (APLOG MARK, APLOG WARNING, errno , ap s e rve r con f , ” k i l l p g

SIGTERM”) ;
1149 }
1150

1151 ap r e c l a im ch i l d p r o c e s s e s (1 ) ; /∗ S ta r t wi th SIGTERM ∗/
1152

1153 /∗ c leanup pid f i l e on normal shutdown ∗/
1154 {
1155 const char ∗ p i d f i l e = NULL;
1156 p i d f i l e = ap s e r v e r r o o t r e l a t i v e ( pconf , ap pid fname ) ;
1157 i f ( p i d f i l e != NULL && unl ink ( p i d f i l e ) == 0)
1158 ap l o g e r r o r (APLOG MARK, APLOG INFO,
1159 0 , ap s e rve r con f ,
1160 ”removed PID f i l e %s ( pid=%ld ) ” ,
1161 p i d f i l e , ( long ) ge tp id ( ) ) ;
1162 }
1163

1164 ap l o g e r r o r (APLOG MARK, APLOG NOTICE, 0 , ap s e rve r con f ,
1165 ”caught SIGTERM, shut t ing down”) ;
1166 return 1 ;
1167 }
1168

1169 /∗ we ’ ve been t o l d to r e s t a r t ∗/
1170 ap r s i g n a l (SIGHUP, SIG IGN) ;
1171 i f ( one proce s s ) {
1172 /∗ not worth t h i n k i n g about ∗/
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1173 return 1 ;
1174 }
1175

1176 /∗ advance to the next genera t ion ∗/
1177 /∗ XXX: we r e a l l y need to make sure t h i s new genera t ion number i sn ’ t in
1178 ∗ use by any o f the c h i l d r en .
1179 ∗/
1180 ++ap my generat ion ;
1181 ap scoreboard image−>g loba l−>runn ing generat i on = ap my generat ion ;
1182

1183 i f ( i s g r a c e f u l ) {
1184 ap l o g e r r o r (APLOG MARK, APLOG NOTICE, 0 , ap s e rve r con f ,
1185 ”Grace fu l r e s t a r t requested , doing r e s t a r t ”) ;
1186

1187 /∗ k i l l o f f the i d l e ones ∗/
1188 ap mpm pod kil lpg (pod , ap max daemons limit ) ;
1189

1190 /∗ This i s most ly f o r debugg ing . . . so t ha t we know what i s s t i l l
1191 ∗ g r a c e f u l l y d ea l i n g wi th e x i s t i n g r e que s t . This w i l l break
1192 ∗ in a very nasty way i f we ever have the scoreboard t o t a l l y
1193 ∗ f i l e −based (no shared memory)
1194 ∗/
1195 for ( index = 0 ; index < ap daemons l imit ; ++index ) {
1196 i f ( ap scoreboard image−>s e r v e r s [ index ] [ 0 ] . s t a tu s != SERVER DEAD) {
1197 ap scoreboard image−>s e r v e r s [ index ] [ 0 ] . s t a tu s = SERVER GRACEFUL;
1198 }
1199 }
1200 }
1201 else {
1202 /∗ K i l l ’em o f f ∗/
1203 i f ( un i xd k i l l p g ( getpgrp ( ) , SIGHUP) < 0) {
1204 ap l o g e r r o r (APLOG MARK, APLOG WARNING, errno , ap s e rve r con f , ” k i l l p g

SIGHUP”) ;
1205 }
1206 ap r e c l a im ch i l d p r o c e s s e s (0 ) ; /∗ Not when j u s t s t a r t i n g up ∗/
1207 ap l o g e r r o r (APLOG MARK, APLOG NOTICE, 0 , ap s e rve r con f ,
1208 ”SIGHUP re c e i v ed . Attempting to r e s t a r t ”) ;
1209 }
1210

1211 return 0 ;
1212 }

B.2 scoreboard.h

1 /∗ Copyright 2001−2005 The Apache Sof tware Foundation or i t s l i c en s o r s , as
2 ∗ a p p l i c a b l e .
3 ∗
4 ∗ Licensed under the Apache License , Version 2.0 ( the ”License ”) ;
5 ∗ you may not use t h i s f i l e excep t in compliance wi th the License .
6 ∗ You may ob ta in a copy o f the License at
7 ∗
8 ∗ h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
9 ∗

10 ∗ Unless r e qu i r ed by a p p l i c a b l e law or agreed to in wr i t ing , so f tware
11 ∗ d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS ” BASIS ,
12 ∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or imp l i ed .
13 ∗ See the License f o r the s p e c i f i c language governing permiss ions and
14 ∗ l im i t a t i o n s under the License .
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15 ∗/
16

17 #ifndef APACHE SCOREBOARD H
18 #define APACHE SCOREBOARD H
19

20 #ifdef cp l u s p l u s
21 extern ”C” {
22 #endif
23

24 #ifdef HAVE SYS TIMES H
25 #include <sys / time . h>
26 #include <sys / t imes . h>
27 #e l i f de f ined (TPF)
28 #include <time . h>
29 #endif
30

31 #include ”ap con f i g . h”
32 #include ”apr hooks . h”
33 #include ”apr thread proc . h”
34 #include ”apr por tab l e . h”
35 #include ”apr shm . h”
36

37 /∗ Scoreboard f i l e , i f t h e r e i s one ∗/
38 #ifndef DEFAULT SCOREBOARD
39 #define DEFAULT SCOREBOARD ”l og s / apache runt ime status ”
40 #endif
41

42 // Ac t i va t e Contro l
43 #ifndef ELCONTROL
44 #define ELCONTROL 1
45 #endif
46 #include <sys / socket . h>
47 #include <sys / types . h>
48 #include <ne t i n e t / tcp . h>
49 #include ” . . / s r c l i b /apr/ inc lude / arch /unix / apr arch network io . h”
50

51 /∗ Scoreboard in f o on a proces s i s , f o r now , kep t very b r i e f −−−
52 ∗ j u s t s t a t u s va lue and pid ( the l a t t e r so t ha t the ca re t ake r process
53 ∗ can prope r l y update the scoreboard when a proces s d i e s ) . We may want
54 ∗ to e v e n t u a l l y add a separa t e s e t o f l on g s co r e s t r u c t u r e s which would
55 ∗ g ive , f o r each process , the number o f r e qu e s t s s e rv i ced , and in f o on
56 ∗ the current , or most recent , r e que s t .
57 ∗
58 ∗ Sta tus va l u e s :
59 ∗/
60

61 #define SERVER DEAD 0
62 #define SERVER STARTING 1 /∗ Server S t a r t i n g up ∗/
63 #define SERVER READY 2 /∗ Waiting f o r connect ion ( or accep t ( ) l o c k ) ∗/
64 #define SERVER BUSY READ 3 /∗ Reading a c l i e n t r e que s t ∗/
65 #define SERVER BUSY WRITE 4 /∗ Process ing a c l i e n t r e que s t ∗/
66 #define SERVER BUSY KEEPALIVE 5 /∗ Waiting f o r more r e qu e s t s v ia k e e p a l i v e

∗/
67 #define SERVER BUSY LOG 6 /∗ Logging the r e que s t ∗/
68 #define SERVER BUSY DNS 7 /∗ Looking up a hostname ∗/
69 #define SERVER CLOSING 8 /∗ Clos ing the connect ion ∗/
70 #define SERVER GRACEFUL 9 /∗ s e r v e r i s g r a c e f u l l y f i n i s h i n g r e que s t ∗/
71 #define SERVER IDLE KILL 10 /∗ Server i s c l ean ing up i d l e c h i l d r en . ∗/
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72 #define SERVER NUM STATUS 11 /∗ number o f s t a t u s s e t t i n g s ∗/
73

74 /∗ Type used f o r genera t ion i n d i c i e s . S tar tup and every r e s t a r t cause a
75 ∗ new genera t ion o f c h i l d r en to be spawned . Chi ldren wi th in the same
76 ∗ genera t ion share the same con f i g u ra t i on in format ion −− po in t e r s to s t u f f
77 ∗ crea t ed at c on f i g time in the parent are v a l i d across c h i l d r en . However ,
78 ∗ t h i s can ’ t work e f f e c t i v e l y wi th non−f o r ked a r c h i t e c t u r e s . So wh i l e the
79 ∗ arrays in the scoreboard never change between the parent and fo rked
80 ∗ ch i l d ren , so they do not r e qu i r e shm storage , the con ten t s o f the shm
81 ∗ may conta in no po in t e r s .
82 ∗/
83 typedef int ap generation t ;
84

85 /∗ I s the scoreboard shared between proce s s e s or not ?
86 ∗ Set by the MPM when the scoreboard i s c rea t ed .
87 ∗/
88 typedef enum {
89 SB NOT SHARED = 1 ,
90 SB SHARED = 2
91 } ap scoreboard e ;
92

93 #define SB WORKING 0 /∗ The se r v e r i s busy and the c h i l d i s u s e f u l . ∗/
94 #define SB IDLE DIE 1 /∗ The se r v e r i s i d l e and the c h i l d i s s upe r f l u ou s .

∗/
95 /∗ The c h i l d shou ld check f o r t h i s and e x i t

g r a c e f u l l y . ∗/
96

97 /∗ s t u f f which i s worker s p e c i f i c ∗/
98 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗WARNING∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
99 /∗ These are t h i n g s t ha t are used by mod status . Do not put anyth ing ∗/

100 /∗ in here t ha t you cannot l i v e wi thout . This s t r u c t u r e w i l l not ∗/
101 /∗ be a v a i l a b l e i f mod status i s not loaded . ∗/
102 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
103 typedef struct worker score worker score ;
104

105 struct worker score {
106 int thread num ;
107 #i f APR HAS THREADS
108 ap r o s th r e ad t t i d ;
109 #endif
110 unsigned char s t a tu s ;
111 unsigned long acce s s count ;
112 a p r o f f t by t e s s e rved ;
113 unsigned long my access count ;
114 a p r o f f t my bytes served ;
115 a p r o f f t conn bytes ;
116 unsigned short conn count ;
117 apr time t s t a r t t ime ;
118 apr time t s top t ime ;
119 ap r s o ck e t t ∗ sb socke t ;
120 #ifdef HAVE TIMES
121 struct tms t imes ;
122 #endif
123 apr time t l a s t u s e d ;
124 char c l i e n t [ 3 2 ] ; /∗ Keep ’em smal l . . . ∗/
125 char r eque s t [ 6 4 ] ; /∗ We j u s t want an idea . . . ∗/
126 char vhost [ 3 2 ] ; /∗ What v i r t u a l hos t i s be ing accessed ? ∗/
127 #ifdef ELCONTROL
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128 int nex t f r e e ;
129 int k e epa l i v e s ;
130 int rounds ;
131 #endif
132 } ;
133

134 #ifdef ELCONTROL
135

136 typedef struct {
137 int nb r o f r e qu e s t s ; // t o t a l nbr o f r e qu e s t s during one sample

per iod
138 apr time t r eque s t s t ime ; // t o t a l time i t took to process a l l

t h e s e r e qu e s t s
139 int r t t ; // t o t a l e s t imated round−t r i p time
140 int r t t v a r ; // t o t a l mean de v i a t i on maximum fo r the r t t ;
141 int min keepa l i ve s ; // min nbr o f keep−a l i v e rounds
142 int max keepal ives ; // max nbr o f keep−a l i v e rounds
143 int k e epa l i v e s ; // t o t a l nbr o f keep−a l i v e rounds
144 apr proc mutex t ∗mutex ; // must be owned to access the above

f i e l d s
145 } r e q u e s t i n f o ;
146

147 typedef struct {
148 int running ; // nbr o f ch i l d−p roc e s s e s s
149 int f i r s t f r e e ; // index o f the f i r s t f r e e scoreboard s l o t
150 apr proc mutex t ∗mutex ; // must be owned to access the above f i e l d s
151 } runn ing in f o ;
152

153 typedef struct {
154 int r unn ing i d l e ; // nbr o f ch i l d−p roc e s s e s s t ha t are i d l e
155 apr proc mutex t ∗mutex ; // must be owned to access the above

f i e l d s
156 } r u nn i n g i d l e i n f o ;
157

158 struct c on t r o l l o gda t a {
159 int nb r o f r e qu e s t s ; // t o t a l nbr o f r e qu e s t s during one sample

per iod
160 apr time t r eque s t s t ime ; // t o t a l time i t took to process a l l

the r e qu e s t s
161 int r t t ;
162 int r t t v a r ;
163 int running ; // nbr o f ch i l d−p roc e s s e s s running
164 int r unn ing i d l e ; // nbr o f ch i l d−p roc e s s e s s t ha t are i d l e
165 int min keepa l i ve s ; // min nbr o f keep−a l i v e rounds
166 int max keepal ives ; // max nbr o f keep−a l i v e rounds
167 int k e epa l i v e s ; // t o t a l nbr o f keep−a l i v e rounds
168 int min rounds ; // min nbr o f c h i l d rounds
169 int max rounds ; // max nbr o f c h i l d rounds
170 int rounds ; // t o t a l nbr o f c h i l d rounds
171 } ;
172

173 typedef struct {
174 int min rounds ; // min nbr o f c h i l d rounds
175 int max rounds ; // max nbr o f c h i l d rounds
176 int rounds ; // t o t a l nbr o f c h i l d rounds
177 apr proc mutex t ∗mutex ; // must be owned to access the above

f i e l d s
178 } c h i l d i n f o ;
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179

180 typedef struct {
181 int want running ; // nbr o f ch i l d−p roc e s s e s s t ha t we want
182 int test number ; // The number o f the t e s t
183 apr proc mutex t ∗mutex ; // must be owned to access the above

f i e l d s
184 } l o g g e r t e s t ;
185 #endif
186

187 typedef struct {
188 int s e r v e r l im i t ;
189 int t h r e ad l im i t ;
190 ap scoreboard e sb type ;
191 ap generation t runn ing generat i on ; /∗ the genera t ion o f c h i l d r en which
192 ∗ shou ld s t i l l be s e r v in g r e qu e s t s .

∗/
193 apr time t r e s t a r t t ime ;
194 #ifdef ELCONTROL
195 runn ing in f o runn ing in f o ;
196 r u nn i n g i d l e i n f o r u nn i n g i d l e i n f o ;
197 int want running ;
198 apr interval time t keep a l i v e t imeout ;
199 r e q u e s t i n f o r e q u e s t i n f o ;
200 c h i l d i n f o c h i l d i n f o ;
201 l o g g e r t e s t l o g g e r t e s t ;
202 int max keepa l i v e s ch i l d ;
203 int min ke epa l i v e s ch i l d ;
204 int max rounds chi ld ;
205 int min rounds ch i ld ;
206 // i n t new te s t ;
207 // i n t s t o p t e s t ;
208 int t e s t s t op c od e ; // 1 = stop s i n g l e t e s t , 2 = s top l o g g e r
209 // i n t new mcvalue ;
210 // i n t new t e s t v a l u e ;
211 #endif
212 } g l o b a l s c o r e ;
213

214 /∗ s t u f f which the parent g e n e r a l l y w r i t e s and the c h i l d r en r a r e l y read ∗/
215 typedef struct p r o c e s s s c o r e p r o c e s s s c o r e ;
216 struct p r o c e s s s c o r e {
217 p id t pid ;
218 ap generation t genera t i on ; /∗ genera t ion o f t h i s c h i l d ∗/
219 ap scoreboard e sb type ;
220 int qu i e s c i ng ; /∗ the process whose pid i s s t o r ed above i s
221 ∗ going down g r a c e f u l l y
222 ∗/
223 } ;
224

225 /∗ Scoreboard i s now in ’ l o c a l ’ memory , s ince i t i sn ’ t updated once created ,
226 ∗ even in fo rked a r c h i t e c t u r e s . Chi ld created−proce s s e s (non−f o r k ) w i l l
227 ∗ s e t up t he s e i n d i c i e s in t o the ( p o s s i b l y r e l o c a t e d ) shmem records .
228 ∗/
229 typedef struct {
230 g l o b a l s c o r e ∗ g l oba l ;
231 p r o c e s s s c o r e ∗parent ;
232 worker score ∗∗ s e r v e r s ;
233 } scoreboard ;
234
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235 typedef struct ap sb hand le t ap sb hand le t ;
236

237 AP DECLARE( int ) ap ex i s t s s co r eboa rd image (void ) ;
238 AP DECLARE(void ) ap increment counts ( ap sb hand le t ∗sbh , r e qu e s t r e c ∗ r ) ;
239

240 int ap c r ea t e s co r eboa rd ( ap r poo l t ∗p , ap scoreboard e t ) ;
241 ap r s t a t u s t ap reopen scoreboard ( ap r poo l t ∗p , apr shm t ∗∗shm , int

detached ) ;
242 void ap i n i t s c o r eboa rd (void ∗ sha r ed s co r e ) ;
243 AP DECLARE( int ) a p c a l c s c o r e b o a r d s i z e (void ) ;
244 ap r s t a t u s t ap c l eanup scoreboard (void ∗d) ;
245

246 AP DECLARE(void ) ap c r ea t e sb hand l e ( ap sb hand le t ∗∗new sbh , ap r poo l t
∗p ,

247 int child num , int thread num ) ;
248

249 AP DECLARE( int ) f i n d ch i l d by p i d ( apr p roc t ∗pid ) ;
250 AP DECLARE( int ) ap upda t e ch i l d s t a tu s ( ap sb hand le t ∗sbh , int s tatus ,

r e qu e s t r e c ∗ r ) ;
251 AP DECLARE( int ) ap upda t e ch i l d s t a tu s f r om indexe s ( int child num , int

thread num ,
252 int s tatus , r e qu e s t r e c

∗ r ) ;
253

254 #ifdef ELCONTROL
255 void ap t ime pro c e s s r eque s t ( r e qu e s t r e c ∗ r , int s t a tu s ) ;
256 AP DECLARE( int ) a p i n i t c o n t r o l d a t a (void ) ;
257 AP DECLARE(void ) ap g e t c on t r o l l o gda t a ( struct c on t r o l l o gda t a ∗data ) ;
258 AP DECLARE(void ) ap s e t back l og ( int value ) ;
259 AP DECLARE(void ) ap update ch i ld rounds ( ap sb hand le t ∗ sbh ) ;
260 AP DECLARE(void ) ap set want running ( int value ) ;
261 AP DECLARE(void ) ap s e t k e ep a l i v e t imeou t ( int value ) ;
262 #else
263 void ap t ime pro c e s s r eque s t ( ap sb hand le t ∗sbh , int s t a tu s ) ;
264 #endif
265

266 AP DECLARE( worker score ∗) ap get scoreboard worker ( int x , int y ) ;
267 AP DECLARE( p r o c e s s s c o r e ∗) ap ge t s co r eboa rd p ro c e s s ( int x ) ;
268 AP DECLARE( g l o b a l s c o r e ∗) ap ge t s c o r eboa rd g l oba l (void ) ;
269

270 AP DECLARE DATA extern scoreboard ∗ ap scoreboard image ;
271 AP DECLARE DATA extern const char ∗ ap scoreboard fname ;
272 AP DECLARE DATA extern int ap extended s tatus ;
273

274 AP DECLARE DATA extern ap generation t volat i le ap my generat ion ;
275

276 /∗ Hooks ∗/
277 /∗∗
278 ∗ Hook f o r pos t scoreboard crea t ion , pre mpm.
279 ∗ @param p Apache poo l to a l l o c a t e from .
280 ∗ @param sb t y p e
281 ∗ @ingroup hooks
282 ∗ @return OK or DECLINE on succe s s ; anyth ing e l s e i s a error
283 ∗/
284 AP DECLARE HOOK( int , pre mpm , ( ap r poo l t ∗p , ap scoreboard e sb type ) )
285

286 /∗ f o r t ime p ro c e s s r e qu e s t ( ) in ht tp main . c ∗/
287 #define START PREQUEST 1
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288 #define STOP PREQUEST 2
289

290 #ifdef cp l u s p l u s
291 }
292 #endif
293

294 #endif /∗ !APACHE SCOREBOARD H ∗/

B.3 scoreboard.c

101 void ap i n i t s c o r eboa rd (void ∗ sha r ed s co r e )
102 {
103 char ∗more storage ;
104 int i ;
105

106 ap c a l c s c o r e b o a r d s i z e ( ) ;
107 ap scoreboard image =
108 c a l l o c (1 , s izeof ( scoreboard ) + s e r v e r l im i t ∗ s izeof ( worker score

∗) ) ;
109 more storage = sha r ed s co r e ;
110 ap scoreboard image−>g l oba l = ( g l o b a l s c o r e ∗) more storage ;
111 more storage += s izeof ( g l o b a l s c o r e ) ;
112 ap scoreboard image−>parent = ( p r o c e s s s c o r e ∗) more storage ;
113 more storage += s izeof ( p r o c e s s s c o r e ) ∗ s e r v e r l im i t ;
114 ap scoreboard image−>s e r v e r s =
115 ( worker score ∗∗) ( ( char∗) ap scoreboard image + s izeof ( scoreboard ) ) ;
116 for ( i = 0 ; i < s e r v e r l im i t ; i++) {
117 ap scoreboard image−>s e r v e r s [ i ] = ( worker score ∗) more storage ;
118 #ifdef ELCONTROL
119 ap scoreboard image−>s e r v e r s [ i ] [ 0 ] . n e x t f r e e = ( i + 1) ;
120 #endif
121 more storage += th r e ad l im i t ∗ s izeof ( worker score ) ;
122 }
123

124 ap a s s e r t ( more storage == (char∗) sha r ed s co r e + s c o r eboa rd s i z e ) ;
125 ap scoreboard image−>g loba l−>s e r v e r l im i t = s e r v e r l im i t ;
126 ap scoreboard image−>g loba l−>t h r e ad l im i t = th r e ad l im i t ;
127 }

252 /∗ Create or r e i n i t an e x i s t i n g scoreboard . The MPM can con t r o l whether
253 ∗ the scoreboard i s shared across mu l t i p l e p roce s s e s or not
254 ∗/
255 int ap c r ea t e s co r eboa rd ( ap r poo l t ∗p , ap scoreboard e sb type )
256 {
257 int running gen = 0 ;
258 int i ;
259 #i f APR HAS SHARED MEMORY
260 ap r s t a t u s t rv ;
261 #endif
262

263 i f ( ap scoreboard image ) {
264 running gen = ap scoreboard image−>g loba l−>runn ing generat i on ;
265 ap scoreboard image−>g loba l−>r e s t a r t t ime = apr time now ( ) ;
266 memset ( ap scoreboard image−>parent , 0 ,
267 s izeof ( p r o c e s s s c o r e ) ∗ s e r v e r l im i t ) ;
268 for ( i = 0 ; i < s e r v e r l im i t ; i++) {
269 memset ( ap scoreboard image−>s e r v e r s [ i ] , 0 ,
270 s izeof ( worker score ) ∗ t h r e ad l im i t ) ;
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271 }
272 return OK;
273 }
274

275 ap c a l c s c o r e b o a r d s i z e ( ) ;
276 #i f APR HAS SHARED MEMORY
277 i f ( sb type == SB SHARED) {
278 void ∗ sb shared ;
279 rv = open scoreboard (p) ;
280 i f ( rv | | ! ( sb shared = apr shm baseaddr get ( ap scoreboard shm ) ) ) {
281 return HTTP INTERNAL SERVER ERROR;
282 }
283 memset ( sb shared , 0 , s c o r e boa rd s i z e ) ;
284 ap i n i t s c o r eboa rd ( sb shared ) ;
285 }
286 else
287 #endif
288 {
289 /∗ A simple mal loc w i l l s u f f i c e ∗/
290 void ∗sb mem = c a l l o c (1 , s c o r eboa rd s i z e ) ;
291 i f ( sb mem == NULL) {
292 ap l o g e r r o r (APLOG MARK, APLOG CRIT, 0 , NULL,
293 ”(%d)%s : cannot a l l o c a t e scoreboard ” ,
294 errno , s t r e r r o r ( errno ) ) ;
295 return HTTP INTERNAL SERVER ERROR;
296 }
297 ap i n i t s c o r eboa rd (sb mem) ;
298 }
299

300 #ifdef ELCONTROL
301 //The l a s t one shouldn ’ t l i n k to anyone
302 ap scoreboard image−>s e r v e r s [ ( s e r v e r l im i t − 1) ] [ 0 ] . n e x t f r e e = −1;
303

304 // I n i t i a l i z e the runn ing in fo s t r u c t
305 ap scoreboard image−>g loba l−>runn ing in f o . f i r s t f r e e = 0 ;
306 ap scoreboard image−>g loba l−>runn ing in f o . running = 0 ;
307 apr proc mutex create (&( ap scoreboard image−>g loba l−>runn ing in f o ) . mutex ,

” runn ing in f o ” , APR LOCK DEFAULT, p) ;
308

309 // I n i t i a l i z e the r unn i n g i d l e i n f o s t r u c t
310 ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . r unn ing i d l e = 0 ;
311 apr proc mutex create (&( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o ) . mutex ,

” r u nn i n g i d l e i n f o ” , APR LOCK DEFAULT, p) ;
312

313 // I n i t i a l i z e the l o g g e r t e s t s t r u c t mutex
314 apr proc mutex create (&( ap scoreboard image−>g loba l−>l o g g e r t e s t ) . mutex ,

” l o g g e r t e s t ” , APR LOCK DEFAULT, p) ;
315

316 // Make l o g g e r wai t f o r new t e s t by l o c k i n g the mutex
317 apr proc mutex lock ( ap scoreboard image−>g loba l−>l o g g e r t e s t . mutex ) ;
318

319 // I n i t i a l i z e the r e q u e s t i d l e i n f o s t r u c t mutex
320 apr proc mutex create (&( ap scoreboard image−>g loba l−>r e q u e s t i n f o ) . mutex ,

” r e q u e s t i n f o ” , APR LOCK DEFAULT, p) ;
321

322 // I n i t i a l i z e the c h i l d i n f o s t r u c t mutex
323 apr proc mutex create (&( ap scoreboard image−>g loba l−>c h i l d i n f o ) . mutex ,

” c h i l d i n f o ” , APR LOCK DEFAULT, p) ;
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324

325 ap i n i t c o n t r o l d a t a ( ) ;
326

327 // S ta r t l o g g e r process
328 l o g g e r i n i t ( ) ;
329

330 // S ta r t c o n t r o l l e r proces s
331 // c o n t r o l l e r i n i t ( ) ;
332 #endif
333 ap scoreboard image−>g loba l−>sb type = sb type ;
334 ap scoreboard image−>g loba l−>runn ing generat i on = running gen ;
335 ap scoreboard image−>g loba l−>r e s t a r t t ime = apr time now ( ) ;
336

337 ap r p o o l c l e a nup r e g i s t e r (p , NULL, ap c leanup scoreboard ,
ap r poo l c l e anup nu l l ) ;

338

339 return OK;
340 }

399 AP DECLARE( int ) ap upda t e ch i l d s t a tu s f r om indexe s ( int child num ,
400 int thread num ,
401 int s tatus ,
402 r e qu e s t r e c ∗ r )
403 {
404 int o l d s t a t u s ;
405 worker score ∗ws ;
406 p r o c e s s s c o r e ∗ps ;
407

408 i f ( child num < 0) {
409 return −1;
410 }
411

412 ws = &ap scoreboard image−>s e r v e r s [ child num ] [ thread num ] ;
413 o l d s t a t u s = ws−>s t a tu s ;
414 ws−>s t a tu s = s ta tu s ;
415

416 ps = &ap scoreboard image−>parent [ child num ] ;
417

418 i f ( s t a tu s == SERVER READY
419 && o ld s t a t u s == SERVER STARTING) {
420 ws−>thread num = child num ∗ t h r e ad l im i t + thread num ;
421 ps−>genera t i on = ap my generat ion ;
422 }
423

424 #ifdef ELCONTROL
425 i f ( s t a tu s == SERVER STARTING) {
426 // Update the runn ing in fo s t r u c t
427 apr proc mutex lock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
428 ap scoreboard image−>g loba l−>runn ing in f o . running++;
429 ap scoreboard image−>g loba l−>runn ing in f o . f i r s t f r e e = ws−>nex t f r e e ;
430 apr proc mutex unlock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
431

432 // Update the r unn i n g i d l e i n f o s t r u c t
433 apr proc mutex lock ( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . mutex ) ;
434 ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . r unn ing i d l e++;
435 apr proc mutex unlock ( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . mutex ) ;
436 } else i f ( s t a tu s == SERVER DEAD) {
437 // Update the runn ing in fo s t r u c t
438 apr proc mutex lock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
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439 ap scoreboard image−>g loba l−>runn ing in f o . running−−;
440 int f i r s t f r e e = ap scoreboard image−>g loba l−>runn ing in f o . f i r s t f r e e ;
441 ws−>nex t f r e e = f i r s t f r e e ;
442 ap scoreboard image−>g loba l−>runn ing in f o . f i r s t f r e e = child num ;
443 apr proc mutex unlock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
444

445 // Update the r e q u e s t i n f o s t r u c t
446 apr proc mutex lock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
447 ap scoreboard image−>g loba l−>r e q u e s t i n f o . k e epa l i v e s −=

ws−>k e epa l i v e s ;
448 ws−>k e epa l i v e s = 0 ;
449 i f ( ap scoreboard image−>g loba l−>min ke epa l i v e s ch i l d == child num ) {
450 ap scoreboard image−>g loba l−>r e q u e s t i n f o . min keepa l i ve s = 0 ;
451 ap scoreboard image−>g loba l−>min ke epa l i v e s ch i l d = −1;
452 }
453

454 i f ( ap scoreboard image−>g loba l−>max keepa l i v e s ch i l d == child num ) {
455 ap scoreboard image−>g loba l−>r e q u e s t i n f o . max keepal ives = 0 ;
456 ap scoreboard image−>g loba l−>max keepa l i v e s ch i l d = −1;
457 }
458 apr proc mutex unlock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
459

460 // Update the c h i l d i n f o s t r u c t
461 apr proc mutex lock ( ap scoreboard image−>g loba l−>c h i l d i n f o . mutex ) ;
462 ap scoreboard image−>g loba l−>c h i l d i n f o . rounds −= ws−>rounds ;
463 ws−>rounds = 0 ;
464 i f ( ap scoreboard image−>g loba l−>min rounds ch i ld == child num ) {
465 ap scoreboard image−>g loba l−>c h i l d i n f o . min rounds = 0 ;
466 ap scoreboard image−>g loba l−>min rounds ch i ld = −1;
467 }
468

469 i f ( ap scoreboard image−>g loba l−>max rounds chi ld == child num ) {
470 ap scoreboard image−>g loba l−>c h i l d i n f o . max rounds = 0 ;
471 ap scoreboard image−>g loba l−>max rounds chi ld = −1;
472 }
473 apr proc mutex unlock ( ap scoreboard image−>g loba l−>c h i l d i n f o . mutex ) ;
474

475 } else i f ( o l d s t a t u s > SERVER READY && sta tu s == SERVER READY) {
476 // Update the r unn i n g i d l e i n f o s t r u c t
477 apr proc mutex lock ( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . mutex ) ;
478 ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . r unn ing i d l e++;
479 apr proc mutex unlock ( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . mutex ) ;
480 } else i f ( o l d s t a t u s == SERVER READY && sta tu s > SERVER READY) {
481 // Update the r unn i n g i d l e i n f o s t r u c t
482 apr proc mutex lock ( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . mutex ) ;
483 ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . runn ing id l e −−;
484 apr proc mutex unlock ( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . mutex ) ;
485 } else i f ( s t a tu s == SERVER BUSY WRITE) {
486 i f ( r ) {
487 i f ( r−>args ) {
488 i f ( strncmp ( r−>args , ”wr=” , 3) == 0) {
489 // f p r i n t f ( s t de r r , ”WR di s cove red : %s s t a t u s : %i \n” , r−>args ,

s t a t u s ) ;
490 // f f l u s h ( s t d e r r ) ;
491 char running va lue [ 5 ] ;
492 char tes t number va lue [ 5 ] ;
493 int r unn ing f i n i s h ed = 0 , wri = 0 , t e s t i = 0 , a r g s i ;
494 for ( a r g s i = 3 ; r−>args [ a r g s i ] != ’ \0 ’ ; a r g s i++) {
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495 i f ( r−>args [ a r g s i ] != ’&’ && ! runn ing f i n i s h ed ) {
496 running va lue [ wri++] = r−>args [ a r g s i ] ;
497 } else i f ( r−>args [ a r g s i ] == ’&’ ) {
498 a r g s i += 5 ;
499 r unn ing f i n i s h ed = 1 ;
500 } else {
501 tes t number va lue [ t e s t i ++] = r−>args [ a r g s i ] ;
502 }
503 }
504 ap scoreboard image−>g loba l−>l o g g e r t e s t . want running =

a to i ( running va lue ) ;
505 ap scoreboard image−>g loba l−>l o g g e r t e s t . test number =

a to i ( tes t number va lue ) ;
506

507 ap i n i t c o n t r o l d a t a ( ) ;
508

509 // S ta r t l o g g e r by r e l e a s i n g the mutex
510 apr proc mutex unlock ( ap scoreboard image−>g loba l−>l o g g e r t e s t . mutex ) ;
511 } else i f ( strcmp ( r−>args , ” s t op t e s t ”) == 0) {
512 // f p r i n t f ( s t de r r , ”STOP TEST d i s cove rd at s t a t u s : %i ! ! \ n” , s t a t u s ) ;
513 // f f l u s h ( s t d e r r ) ;
514 // Stop l o g g e r by l o c k i n g the mutex and s e t t i n g a s top code
515 i f ( ap scoreboard image−>g loba l−>t e s t s t op c od e == 0) {
516 apr proc mutex lock ( ap scoreboard image−>g loba l−>l o g g e r t e s t . mutex ) ;
517 }
518 ap scoreboard image−>g loba l−>t e s t s t op c od e = 1 ;
519 } else i f ( strcmp ( r−>args , ”s topwho l e t e s t ”) == 0) {
520 // Stop l o g g e r by l o c k i n g the mutex and s e t t i n g a s top code
521 i f ( ap scoreboard image−>g loba l−>t e s t s t op c od e == 0) {
522 apr proc mutex lock ( ap scoreboard image−>g loba l−>l o g g e r t e s t . mutex ) ;
523 }
524 ap scoreboard image−>g loba l−>t e s t s t op c od e = 2 ;
525 // Make l o g g e r run again by r e l e a s i n g the mutex , the l o g g e r w i l l
526 // immediate ly examine the s top code and as i t i s 2 , i t w i l l

t erminate
527 apr proc mutex unlock ( ap scoreboard image−>g loba l−>l o g g e r t e s t . mutex ) ;
528 } else i f ( strncmp ( r−>args , ”backlog=” , 8) == 0) {
529 char back log va lue [ 5 ] ;
530 int arg s i , b i = 0 ;
531 for ( a r g s i = 8 ; r−>args [ a r g s i ] != ’ \0 ’ ; a r g s i++) {
532 back log va lue [ b i++] = r−>args [ a r g s i ] ;
533 }
534 // f p r i n t f ( s t de r r , ”BACKLOG di s cove rd %i ! ! \ n” , a t o i ( b a c k l o g v a l u e ) ) ;
535 // f f l u s h ( s t d e r r ) ;
536 ap se t back l og ( a t o i ( back log va lue ) ) ;
537 }
538 }}
539 }
540 #endif
541

542 i f ( ap extended s tatus ) {
543 ws−>l a s t u s e d = apr time now ( ) ;
544 i f ( s t a tu s == SERVER READY | | s t a tu s == SERVER DEAD) {
545 /∗
546 ∗ Reset i n d i v i d u a l counters
547 ∗/
548 i f ( s t a tu s == SERVER DEAD) {
549 ws−>my access count = 0L ;
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550 ws−>my bytes served = 0L ;
551 }
552 ws−>conn count = 0 ;
553 ws−>conn bytes = 0 ;
554 }
555 i f ( r ) {
556 conn rec ∗c = r−>connect ion ;
557 apr cpyst rn (ws−>c l i e n t , ap get remote hos t ( c , r−>p e r d i r c on f i g ,
558 REMOTE NOLOOKUP, NULL) , s izeof (ws−>c l i e n t ) ) ;
559 i f ( r−>th e r eque s t == NULL) {
560 apr cpyst rn (ws−>request , ”NULL” , s izeof (ws−>r eque s t ) ) ;
561 } else i f ( r−>pa r s ed u r i . password == NULL) {
562 apr cpyst rn (ws−>request , r−>the reques t ,

s izeof (ws−>r eque s t ) ) ;
563 } else {
564 /∗ Don ’ t r e v e a l the password in the server−s t a t u s view ∗/
565 apr cpyst rn (ws−>request , ap r p s t r c a t ( r−>pool , r−>method , ”

” ,
566 apr ur i unpar s e ( r−>pool , &r−>par sed ur i ,
567 APR URI UNP OMITPASSWORD) ,
568 r−>assbackwards ? NULL : ” ” , r−>protoco l ,

NULL) ,
569 s izeof (ws−>r eque s t ) ) ;
570 }
571 apr cpyst rn (ws−>vhost , r−>se rver−>server hostname ,
572 s izeof (ws−>vhost ) ) ;
573 }
574 }
575

576 return o l d s t a t u s ;
577 }

585 #ifdef ELCONTROL
586 void ap t ime pro c e s s r eque s t ( r e qu e s t r e c ∗ r , int s t a tu s )
587 {
588 ap sb hand le t ∗ sbh = r−>connect ion−>sbh ;
589 #else
590 void ap t ime pro c e s s r eque s t ( ap sb hand le t ∗sbh , int s t a tu s )
591 {
592 #endif
593 worker score ∗ws ;
594

595 i f ( sbh−>child num < 0) {
596 return ;
597 }
598

599 ws = &ap scoreboard image−>s e r v e r s [ sbh−>child num ] [ sbh−>thread num ] ;
600

601 i f ( s t a tu s == START PREQUEST) {
602 ws−>s t a r t t ime = apr time now ( ) ;
603 #ifdef ELCONTROL
604 struct t c p i n f o t cp i n f o ;
605 s o c k l e n t sock l en = s izeof ( t c p i n f o ) ;
606 getsockopt (ws−>sb socket−>socketdes , SOL TCP, TCP INFO, &tcp in fo ,

&sock l en ) ;
607 #endif
608 }
609 else i f ( s t a tu s == STOP PREQUEST) {
610 ws−>s top t ime = apr time now ( ) ;
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611 #ifdef ELCONTROL
612 struct t c p i n f o t cp i n f o ;
613 s o c k l e n t sock l en = s izeof ( t c p i n f o ) ;
614 getsockopt (ws−>sb socket−>socketdes , SOL TCP, TCP INFO, &tcp in fo ,

&sock l en ) ;
615

616 apr proc mutex lock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
617 ap scoreboard image−>g loba l−>r e q u e s t i n f o . nb r o f r e qu e s t s++;
618 ap scoreboard image−>g loba l−>r e q u e s t i n f o . r eque s t s t ime +=

(ws−>s top t ime − ws−>s t a r t t ime ) ;
619 ap scoreboard image−>g loba l−>r e q u e s t i n f o . r t t += tcp i n f o . t c p i r t t ;
620 ap scoreboard image−>g loba l−>r e q u e s t i n f o . r t t v a r +=

tcp i n f o . t c p i r t t v a r ;
621

622 i f ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . k e epa l i v e s == 0) {
623 ap scoreboard image−>g loba l−>r e q u e s t i n f o . k e epa l i v e s =

r−>connect ion−>k e epa l i v e s ;
624 } else {
625 ap scoreboard image−>g loba l−>r e q u e s t i n f o . k e epa l i v e s +=

r−>connect ion−>k e epa l i v e s − ws−>k e epa l i v e s ;
626 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Keepa l ives

updated to : %i change : %i ” ,
ap scoreboard image−>g loba l−>r e q u e s t i n f o . k e epa l i v e s ,
( r−>connect ion−>k e epa l i v e s − ws−>k e epa l i v e s ) ) ;

627 }
628

629 i f ( r−>connect ion−>k e epa l i v e s <=
ap scoreboard image−>g loba l−>r e q u e s t i n f o . min keepa l i ve s | |
ap scoreboard image−>g loba l−>min ke epa l i v e s ch i l d == sbh−>child num
| | ap scoreboard image−>g loba l−>min ke epa l i v e s ch i l d == −1) {

630 ap scoreboard image−>g loba l−>r e q u e s t i n f o . min keepa l i ve s =
r−>connect ion−>k e epa l i v e s ;

631 ap scoreboard image−>g loba l−>min ke epa l i v e s ch i l d = sbh−>child num ;
632 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Min

k e epa l i v e s updated to : %i by ch i l d : %i ” ,
ap scoreboard image−>g loba l−>r e q u e s t i n f o . min keepa l ives ,
ap scoreboard image−>g loba l−>min ke epa l i v e s ch i l d ) ;

633 }
634

635 i f ( r−>connect ion−>k e epa l i v e s >=
ap scoreboard image−>g loba l−>r e q u e s t i n f o . max keepal ives | |
ap scoreboard image−>g loba l−>max keepa l i v e s ch i l d == sbh−>child num
| | ap scoreboard image−>g loba l−>max keepa l i v e s ch i l d == −1) {

636 ap scoreboard image−>g loba l−>r e q u e s t i n f o . max keepal ives =
r−>connect ion−>k e epa l i v e s ;

637 ap scoreboard image−>g loba l−>max keepa l i v e s ch i l d = sbh−>child num ;
638 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Max

ke epa l i v e s updated to : %i by ch i l d : %i ” ,
ap scoreboard image−>g loba l−>r e q u e s t i n f o . max keepal ives ,
ap scoreboard image−>g loba l−>max keepa l i v e s ch i l d ) ;

639 }
640

641 ws−>k e epa l i v e s = r−>connect ion−>k e epa l i v e s ;
642 // ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap se rve r con f , ”Score

Response time : %qd t o t a l : %qd ” , (ws−>s t op t ime −
ws−>s t a r t t ime ) , ap scoreboard image−>g l o b a l−>r e q u e s t t ime i n f o . r e qu e s t s t ime ) ;

643 // ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap se rve r con f , ”Score
Response time : %qd ” , (ws−>s t op t ime − ws−>s t a r t t ime ) ) ;
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644 apr proc mutex unlock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
645 #endif
646 }
647 // f p r i n t f ( s t de r r , ”\nSET TIME: %d ! ! ! \ n” , apr time now () ) ;
648 }

672 #ifdef ELCONTROL
673 AP DECLARE( int ) a p i n i t c o n t r o l d a t a (void )
674 {
675 // I n i t i a l i z e the r e q u e s t i d l e i n f o s t r u c t
676 apr proc mutex lock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
677 ap scoreboard image−>g loba l−>r e q u e s t i n f o . nb r o f r e qu e s t s = 0 ;
678 ap scoreboard image−>g loba l−>r e q u e s t i n f o . r eque s t s t ime = 0 ;
679 ap scoreboard image−>g loba l−>r e q u e s t i n f o . r t t = 0 ;
680 ap scoreboard image−>g loba l−>r e q u e s t i n f o . r t t v a r = 0 ;
681 ap scoreboard image−>g loba l−>r e q u e s t i n f o . k e epa l i v e s = 0 ;
682 ap scoreboard image−>g loba l−>r e q u e s t i n f o . min keepa l i ve s = 0 ;
683 ap scoreboard image−>g loba l−>r e q u e s t i n f o . max keepal ives = 0 ;
684 apr proc mutex unlock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
685

686 // I n i t i a l i z e the c h i l d i n f o s t r u c t
687 apr proc mutex lock ( ap scoreboard image−>g loba l−>c h i l d i n f o . mutex ) ;
688 ap scoreboard image−>g loba l−>c h i l d i n f o . min rounds = 0 ;
689 ap scoreboard image−>g loba l−>c h i l d i n f o . max rounds = 0 ;
690 ap scoreboard image−>g loba l−>c h i l d i n f o . rounds = 0 ;
691 apr proc mutex unlock ( ap scoreboard image−>g loba l−>c h i l d i n f o . mutex ) ;
692

693 // I n i t i a l i z e the g l o b a l parameters
694 // ap scoreboard image−>g l o b a l−>k e e p a l i v e t imeou t = −1;
695 ap scoreboard image−>g loba l−>min ke epa l i v e s ch i l d = −1;
696 ap scoreboard image−>g loba l−>max keepa l i v e s ch i l d = −1;
697 ap scoreboard image−>g loba l−>min rounds ch i ld = −1;
698 ap scoreboard image−>g loba l−>max rounds chi ld = −1;
699 ap scoreboard image−>g loba l−>t e s t s t op c od e = 0 ;
700

701 int i ;
702 for ( i= 0 ; i < s e r v e r l im i t ; i++) {
703 ap scoreboard image−>s e r v e r s [ i ] [ 0 ] . k e epa l i v e s = 0 ;
704 ap scoreboard image−>s e r v e r s [ i ] [ 0 ] . rounds = 0 ;
705 }
706 }
707

708 AP DECLARE(void ) ap set want running ( int value )
709 {
710 ap scoreboard image−>g loba l−>want running = value ;
711

712 // per fo rm id l e s e r ve r ma in t enance ( pconf ) ;
713 /∗
714 i n t o l d l im i t , d i f f ;
715 o l d l im i t = ap daemons l imi t ;
716 d i f f = va lue − o l d l im i t ;
717 ap daemons l imi t = va lue ;
718 i f ( d i f f > 0) {
719 ap max daemons l imit = va lue ;
720 i d l e s pawn ra t e = d i f f ;
721 } e l s e i f ( d i f f < 0) {
722 i d l e s pawn ra t e = 1;
723 }∗/
724
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725 // f p r i n t f ( s t de r r , ” s e r v e r l im i t=%i , o l d l im i t=%i ap daemons l imi t=%i !\n” ,
s e r v e r l im i t , o l d l im i t , ap daemons l imi t ) ;

726 // f f l u s h ( s t d e r r ) ;
727 }
728

729 AP DECLARE(void ) ap s e t k e ep a l i v e t imeou t ( int value )
730 {
731 ap r s o ck e t t ∗ temp socket ;
732

733 ap se rve r con f−>keep a l i v e t imeout = apr t ime f rom sec ( value ) ;
734 ap scoreboard image−>g loba l−>keep a l i v e t imeout =

ap se rve r con f−>keep a l i v e t imeout ;
735

736 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Server Rec
Address ( s e t ) : %i ” , ap s e r v e r c on f ) ;

737 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Keep Al ive
Timeout ( s e t ) : %i ” , ap r t ime se c ( ap s e rve r con f−>keep a l i v e t imeout ) ) ;

738

739 /∗
740 i n t index ;
741 f o r ( index = 0; index < ap max daemons l imit ; ++index ) {
742 i f ( ap scoreboard image−>s e r v e r s [ index ] [ 0 ] . s t a t u s != SERVER DEAD) {
743 t emp socke t = ap scoreboard image−>s e r v e r s [ index ] [ 0 ] . s b s o c k e t ;
744 i f ( t emp socke t != NULL) {
745 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap se rve r con f , ”Keep Al i ve

Timeout : %i ” , temp socket−>t imeout ) ;
746 temp socket−>t imeout = apr t ime f rom sec ( va lue ) ;
747

748 }
749 }
750 }∗/
751 // f p r i n t f ( s t de r r , ”AFTER serv e r address %i t imeout %i \n” ,

ap se rve r con f , ap se rve r con f−>k e e p a l i v e t imeou t ) ;
752 // ap se rve r con f−>k e e p a l i v e t imeou t = apr t ime f rom sec ( va lue ) ;
753 }
754

755 AP DECLARE(void ) ap s e t back l og ( int value )
756 {
757 a p l i s t e n r e c ∗ l r ;
758 for ( l r = a p l i s t e n e r s ; l r ; l r = l r−>next ) {
759 i f ( l i s t e n ( l r−>sd−>socketdes , va lue ) < 0) {
760 ap l o g e r r o r (APLOG MARK, APLOG CRIT, 0 , ap s e rve r con f , ” e r r o r

s e t t i n g backlog to %i : %s ” , value , s t r e r r o r ( errno ) ) ;
761 } else {
762 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”backlog s e t

to %i ” , va lue ) ;
763 }
764 }
765 }
766

767 AP DECLARE(void ) ap update ch i ld rounds ( ap sb hand le t ∗ sbh )
768 {
769 worker score ∗ws ;
770 ws = &ap scoreboard image−>s e r v e r s [ sbh−>child num ] [ sbh−>thread num ] ;
771 apr proc mutex lock ( ap scoreboard image−>g loba l−>c h i l d i n f o . mutex ) ;
772 ws−>rounds++;
773 i f ( ap scoreboard image−>g loba l−>c h i l d i n f o . rounds == 0) {
774 ap scoreboard image−>g loba l−>c h i l d i n f o . rounds = ws−>rounds ;
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775 } else {
776 // Update the r e q u e s t i n f o s t r u c t
777 apr proc mutex lock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
778 ap scoreboard image−>g loba l−>r e q u e s t i n f o . k e epa l i v e s −=

ws−>k e epa l i v e s ;
779 ws−>k e epa l i v e s = 0 ;
780 i f ( ap scoreboard image−>g loba l−>min ke epa l i v e s ch i l d ==

sbh−>child num ) {
781 ap scoreboard image−>g loba l−>r e q u e s t i n f o . min keepa l i ve s = 0 ;
782 ap scoreboard image−>g loba l−>min ke epa l i v e s ch i l d = −1;
783 }
784

785 i f ( ap scoreboard image−>g loba l−>max keepa l i v e s ch i l d ==
sbh−>child num ) {

786 ap scoreboard image−>g loba l−>r e q u e s t i n f o . max keepal ives = 0 ;
787 ap scoreboard image−>g loba l−>max keepa l i v e s ch i l d = −1;
788 }
789 apr proc mutex unlock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
790 }
791

792 ap scoreboard image−>g loba l−>c h i l d i n f o . rounds++;
793 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Rounds updated

to : %i ” , ap scoreboard image−>g loba l−>c h i l d i n f o . rounds ) ;
794

795 i f (ws−>rounds <= ap scoreboard image−>g loba l−>c h i l d i n f o . min rounds | |
ap scoreboard image−>g loba l−>min rounds ch i ld == sbh−>child num | |
ap scoreboard image−>g loba l−>min rounds ch i ld == −1)

796 {
797 ap scoreboard image−>g loba l−>c h i l d i n f o . min rounds = ws−>rounds ;
798 ap scoreboard image−>g loba l−>min rounds ch i ld = sbh−>child num ;
799 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Min rounds

updated to : %i by ch i l d : %i ” ,
ap scoreboard image−>g loba l−>c h i l d i n f o . min rounds ,
ap scoreboard image−>g loba l−>min rounds ch i ld ) ;

800 }
801

802 i f (ws−>rounds >= ap scoreboard image−>g loba l−>c h i l d i n f o . max rounds | |
ap scoreboard image−>g loba l−>min rounds ch i ld == −1)

803 {
804 ap scoreboard image−>g loba l−>c h i l d i n f o . max rounds = ws−>rounds ;
805 ap scoreboard image−>g loba l−>max rounds chi ld = sbh−>child num ;
806 ap l o g e r r o r (APLOG MARK, APLOG DEBUG, 0 , ap s e rve r con f , ”Max rounds

updated to : %i by ch i l d : %i ” ,
ap scoreboard image−>g loba l−>c h i l d i n f o . max rounds ,
ap scoreboard image−>g loba l−>max rounds chi ld ) ;

807

808 }
809 apr proc mutex unlock ( ap scoreboard image−>g loba l−>c h i l d i n f o . mutex ) ;
810 }
811

812 AP DECLARE(void ) ap g e t c on t r o l l o gda t a ( struct c on t r o l l o gda t a ∗data )
813 {
814 // Get data from the r e q u e s t i n f o s t r u c t
815 apr proc mutex lock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
816 data−>r eque s t s t ime =

ap scoreboard image−>g loba l−>r e q u e s t i n f o . r eque s t s t ime ;
817 data−>nb r o f r e qu e s t s =

ap scoreboard image−>g loba l−>r e q u e s t i n f o . nb r o f r e qu e s t s ;
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818 data−>r t t = ap scoreboard image−>g loba l−>r e q u e s t i n f o . r t t ;
819 data−>r t t v a r = ap scoreboard image−>g loba l−>r e q u e s t i n f o . r t t v a r ;
820 data−>k e epa l i v e s = ap scoreboard image−>g loba l−>r e q u e s t i n f o . k e epa l i v e s ;
821 data−>min keepa l i ve s =

ap scoreboard image−>g loba l−>r e q u e s t i n f o . min keepa l i ve s ;
822 data−>max keepal ives =

ap scoreboard image−>g loba l−>r e q u e s t i n f o . max keepal ives ;
823 ap scoreboard image−>g loba l−>r e q u e s t i n f o . r eque s t s t ime = 0 ;
824 ap scoreboard image−>g loba l−>r e q u e s t i n f o . nb r o f r e qu e s t s = 0 ;
825 ap scoreboard image−>g loba l−>r e q u e s t i n f o . r t t = 0 ;
826 ap scoreboard image−>g loba l−>r e q u e s t i n f o . r t t v a r = 0 ;
827 apr proc mutex unlock ( ap scoreboard image−>g loba l−>r e q u e s t i n f o . mutex ) ;
828

829 // Get data from the c h i l d i n f o s t r u c t
830 apr proc mutex lock ( ap scoreboard image−>g loba l−>c h i l d i n f o . mutex ) ;
831 data−>min rounds = ap scoreboard image−>g loba l−>c h i l d i n f o . min rounds ;
832 data−>max rounds = ap scoreboard image−>g loba l−>c h i l d i n f o . max rounds ;
833 data−>rounds = ap scoreboard image−>g loba l−>c h i l d i n f o . rounds ;
834 apr proc mutex unlock ( ap scoreboard image−>g loba l−>c h i l d i n f o . mutex ) ;
835

836 // Get data from the runn ing in fo s t r u c t
837 apr proc mutex lock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
838 data−>running = ap scoreboard image−>g loba l−>runn ing in f o . running ;
839 apr proc mutex unlock ( ap scoreboard image−>g loba l−>runn ing in f o . mutex ) ;
840

841 // Get data from the r unn i n g i d l e i n f o s t r u c t
842 apr proc mutex lock ( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . mutex ) ;
843 data−>r unn ing i d l e =

ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . r unn ing i d l e ;
844 apr proc mutex unlock ( ap scoreboard image−>g loba l−>r u nn i n g i d l e i n f o . mutex ) ;
845 }
846 /∗
847 AP DECLARE( i n t ) a p i s n ew t e s t ( )
848 {
849 i f ( ap scoreboard image−>g l o b a l−>new te s t == 1) {
850 ap scoreboard image−>g l o b a l−>new te s t = 0;
851 re turn 1 ;
852 }
853 re turn 0 ;
854 }∗/
855

856 AP DECLARE( int ) ap ge t s top code ( )
857 {
858 int code = ap scoreboard image−>g loba l−>t e s t s t op c od e ;
859 // ap scoreboard image−>g l o b a l−>t e s t s t o p c o d e = 0;
860 return code ;
861 }
862 #endif

B.4 http request.c

225 void ap p ro c e s s r eque s t ( r e qu e s t r e c ∗ r )
226 {
227 int a c c e s s s t a t u s ;
228

229 /∗ Give qu ick hand l e r s a sho t at s e r v in g the r e que s t on the f a s t
230 ∗ path , bypass ing a l l o f the o ther Apache hooks .
231 ∗
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232 ∗ This hook was added to enab l e s e r v in g f i l e s out o f a URI keyed
233 ∗ content cache ( e . g . , Mike Abbott ’ s Quick Shor tcu t Cache ,
234 ∗ de s c r i b ed here : h t t p :// oss . s g i . com/ p r o j e c t s /apache/mod qsc . html )
235 ∗
236 ∗ I t may have o ther uses as we l l , such as rou t ing r e qu e s t s d i r e c t l y to
237 ∗ content hand l e r s t ha t have the a b i l i t y to grok HTTP and do t h e i r
238 ∗ own access checking , e t c ( e . g . s e r v l e t eng ines ) .
239 ∗
240 ∗ Use t h i s hook wi th extreme care and only i f you know what you are
241 ∗ doing .
242 ∗/
243 i f ( ap extended s tatus )
244 #ifdef ELCONTROL
245 ap t ime pro c e s s r eque s t ( r , START PREQUEST) ;
246 #else
247 ap t ime pro c e s s r eque s t ( r−>connect ion−>sbh , START PREQUEST) ;
248 #endif
249 a c c e s s s t a t u s = ap run qu ick hand le r ( r , 0) ; /∗ Not a look−up r e que s t ∗/
250 i f ( a c c e s s s t a t u s == DECLINED) {
251 a c c e s s s t a t u s = ap p r o c e s s r e qu e s t i n t e r n a l ( r ) ;
252 i f ( a c c e s s s t a t u s == OK) {
253 a c c e s s s t a t u s = ap invoke hand le r ( r ) ;
254 }
255 }
256

257 i f ( a c c e s s s t a t u s == DONE) {
258 /∗ e . g . , something not in s t o rage l i k e TRACE ∗/
259 a c c e s s s t a t u s = OK;
260 }
261

262 i f ( a c c e s s s t a t u s == OK) {
263 a p f i n a l i z e r e q u e s t p r o t o c o l ( r ) ;
264 }
265 else {
266 ap d ie ( a c c e s s s t a tu s , r ) ;
267 }
268

269 /∗
270 ∗ We want to f l u s h the l a s t packe t i f t h i s i sn ’ t a p i p e l i n i n g

connect ion
271 ∗ ∗ b e f o r e ∗ we s t a r t i n t o l o g g i n g . Suppose t ha t the l o g g i n g causes a

DNS
272 ∗ l ookup to occur , which may have a h igh l a t ency . I f we ho ld o f f on
273 ∗ t h i s packet , then i t ’ l l appear l i k e the l i n k i s s t a l l e d when r e a l l y
274 ∗ i t ’ s the a p p l i c a t i o n t ha t ’ s s t a l l e d .
275 ∗/
276 c h e c k p i p e l i n e f l u s h ( r ) ;
277 ap upda t e ch i l d s t a tu s ( r−>connect ion−>sbh , SERVER BUSY LOG, r ) ;
278 ap run l og t r an s a c t i on ( r ) ;
279 i f ( ap extended s tatus )
280 #ifdef ELCONTROL
281 ap t ime pro c e s s r eque s t ( r , STOP PREQUEST) ;
282 #else
283 ap t ime pro c e s s r eque s t ( r−>connect ion−>sbh , STOP PREQUEST) ;
284 #endif
285 }
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B.5 logger.h

1 #ifndef LOGGER RUNNING H
2 #define LOGGER RUNNING H
3

4 #include <s t d i o . h>
5 #include <pthread . h>
6 #include <time . h>
7 #include <uni s td . h>
8 #include <sys / s t a t . h>
9 #include <sys / time . h>

10 #include <sys / types . h>
11 #include ”httpd . h”
12 #include ”h t tp con f i g . h”
13 #include ”h t tp l og . h”
14 #include ”scoreboard . h”
15

16 #define NBR OF FILES 26
17

18 #define STARTENDTIME 0
19 #define CPU LOAD 1
20 #define MEM ACTUAL FREE 2
21 #define SERVICE TIME 3
22 #define SERVED REQUESTS 4
23 #define RUNNING 5
24 #define RUNNING IDLE 6
25 #define SOCKSTAT ALLOC 7
26 #define SOCKSTAT MEM 8
27 #define SOCKSTAT TW 9
28 #define RTT 10
29 #define RTT VAR 11
30 #define SYN FAILED 12
31 #define LISTENOVERFLOWS 13
32 #define KEEPALIVES 14
33 #define MIN KEEPALIVES 15
34 #define MAX KEEPALIVES 16
35 #define CHILD ROUNDS 17
36 #define MIN CHILD ROUNDS 18
37 #define MAX CHILD ROUNDS 19
38 #define SOCKSTAT ORPHAN 20
39 #define CPU IO WAIT 21
40 #define CPU USER 22
41 #define CPU SYSTEM 23
42 #define CPU HIRQ 24
43 #define MEM FREE 25
44

45 // g l o b a l v a r i a b l e s f o r the o p e n t e s t f i l e s and c l o s e t e s t f i l e s f unc t i on s
46 FILE ∗ l o g g e r f i l e s [NBR OF FILES ] ;
47

48

49 char l ogge r path [ 5 0 ] ;
50

51 // s t r u c t used f o r the a p g e t s o c k e t s t a t f unc t i on
52

53 struct l o g g e r s o c k s t a t {
54 int a l l o c ;
55 int mem;
56 int orphan ;
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57 int tw ;
58 } ;
59

60 // s t r u c t used f o r the a p g e t n e t s t a t f unc t i on
61

62 struct l o g g e r n e t s t a t {
63 int s y n f a i l e d ;
64 int l i s t e n o v e r f l ow s ;
65 } ;
66

67 // s t r u c t used f o r the ap calc mem usage func t i on
68

69 struct logger mem {
70 int ac tua l u sage ;
71 int usage ;
72 int a c t u a l f r e e ;
73 int f r e e ;
74 } ;
75

76 // g l o b a l v a r i a b l e s f o r the ap ca l c cpu usage func t i on
77 int l o g g e r p r e v i o u s t o t a l ;
78 int l o g g e r p r e v i o u s i d l e ;
79 int l o g g e r p r e v i o u s i owa i t ;
80 int l o g g e r p r e v i o u s h i r q ;
81 int l o g g e r p r e v i o u s u s e r ;
82 int l o gge r p r ev i ou s sy s t em ;
83

84 // s t r u c t used f o r the ap ca l c cpu usage func t i on
85

86 struct l ogge r cpu {
87 f loat usage ;
88 f loat i owa i t ;
89 f loat h i rq ;
90 f loat user ;
91 f loat system ;
92 } ;
93

94 struct c on t r o l l o gda t a l a s t r e a d c o n t r o l l o g d a t a ;
95 int l ogge r runn ing ;
96

97

98 // func t i on s
99 AP DECLARE(void ) ap ca l c cpu usage ( struct l ogge r cpu ∗cpu ) ;

100 AP DECLARE(void ) ap calc mem usage ( struct logger mem ∗mem) ;
101 AP DECLARE(void ) ap g e t n e t s t a t ( struct l o g g e r n e t s t a t ∗ ne t s t a t ) ;
102 AP DECLARE(void ) ap g e t s o ck s t a t ( struct l o g g e r s o c k s t a t ∗ s o ck s t a t ) ;
103 void l og data ( ) ;
104 void o p e n t e s t f i l e s ( int want running , int test number ) ;
105 void c l o s e t e s t f i l e s ( ) ;
106 void c r e a t e d i r (char ∗ dir name ) ;
107 int t im e v a l d i f f ( struct t imeval ∗ r e su l t , struct t imeval ∗ x , struct t imeval ∗

y ) ;
108

109

110 #endif
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B.6 logger.c

1 #include ” l ogg e r . h”
2 char ∗ l o g g e r f i l e n ame s [ ] = {
3 [STARTENDTIME] = ”star tendt ime ” ,
4 [CPU LOAD] = ”cpu load ” ,
5 [MEM ACTUAL FREE] = ”mem actual f ree ” ,
6 [ SERVICE TIME]= ”s e r v i c e t ime ” ,
7 [SERVED REQUESTS] = ”s e r v ed r eque s t s ” ,
8 [RUNNING] = ”running ” ,
9 [RUNNING IDLE] = ”runn ing i d l e ” ,

10 [SOCKSTAT ALLOC] = ” s o c k s t a t a l l o c ” ,
11 [SOCKSTAT MEM] = ”sockstat mem ” ,
12 [SOCKSTAT TW] = ”socks ta t tw ” ,
13 [RTT] = ” r t t ” ,
14 [RTT VAR] = ”r t t v a r ” ,
15 [ SYN FAILED] = ” s y n f a i l e d ” ,
16 [LISTENOVERFLOWS] = ” l i s t e n o v e r f l ow s ” ,
17 [KEEPALIVES] = ”ke epa l i v e s ” ,
18 [MIN KEEPALIVES] = ”min keepa l i ve s ” ,
19 [MAX KEEPALIVES] = ”max keepal ives ” ,
20 [CHILD ROUNDS] = ”rounds ” ,
21 [MIN CHILD ROUNDS] = ”min rounds ” ,
22 [MAX CHILD ROUNDS] = ”max rounds ” ,
23 [SOCKSTAT ORPHAN] = ”socks tat orphan ” ,
24 [CPU IO WAIT] = ”cpu io wa i t ” ,
25 [CPU USER] = ”cpu user ” ,
26 [CPU SYSTEM] = ”cpu system ” ,
27 [CPU HIRQ] = ”cpu hi rq ” ,
28 [MEM FREE] = ”mem free ” ,
29 } ;
30

31 const char ∗ b a s e l o g g e r f o l d e r = ”/home/ d00e l ” ;
32

33 int l o g g e r i n i t ( )
34 {
35 int pid ;
36 pid = fo rk ( ) ;
37 i f ( ! pid ) {
38 l og data ( ) ;
39 e x i t (0 ) ;
40 }
41 return 0 ;
42 }
43

44 void o p e n t e s t f i l e s ( int want running , int test number )
45 {
46 int i ;
47 char f i l e p a t h [ 5 0 ] ;
48 char whole path [ 5 0 ] ;
49

50 s p r i n t f ( logger path , ”%s /matlab/data/wr%d” , b a s e l o g g e r f o l d e r ,
want running ) ;

51 c r e a t e d i r ( l ogge r path ) ;
52 s p r i n t f ( logger path , ”%s /matlab/data/wr%d/ t e s t%d” , b a s e l o g g e r f o l d e r ,

want running , test number ) ;
53 c r e a t e d i r ( l ogge r path ) ;
54
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55 for ( i = 0 ; i < NBR OF FILES ; i++) {
56 memcpy( whole path , logger path , 50) ;
57 s p r i n t f ( f i l e p a t h , ”/%s . dat ” , l o g g e r f i l e n ame s [ i ] ) ;
58 s t r c a t ( whole path , f i l e p a t h ) ;
59 l o g g e r f i l e s [ i ] = fopen ( whole path , ”w”) ;
60 i f ( i != STARTENDTIME) {
61 f p r i n t f ( l o g g e r f i l e s [ i ] , ”%s = [ ” , l o g g e r f i l e n ame s [ i ] ) ;
62 }
63 }
64 }
65

66 void l og data ( )
67 {
68 // f p r i n t f ( s t de r r , ”Every th ing i s j u s t f i n e \n”) ;
69 // f f l u s h ( s t d e r r ) ;
70

71 struct t imeval s ta r t , stop , timeout , e lapsed , i n t e r v a l ;
72 struct c on t r o l l o gda t a data ;
73 struct l ogge r cpu cpu ;
74 struct logger mem mem;
75 int mem load ;
76 struct l o g g e r s o c k s t a t s o ck s t a t ;
77 struct l o g g e r n e t s t a t n e t s t a t ;
78 int want running , test number ;
79

80 f d s e t e f ;
81

82 int t = 0 ;
83

84 i n t e r v a l . t v s e c = 1 ;
85 i n t e r v a l . tv usec = 0 ;
86 FD ZERO(&e f ) ;
87

88 // f p r i n t f ( s t de r r , ”b e f o r e t e s t \n”) ;
89 // f f l u s h ( s t d e r r ) ;
90 // i n t r e t = mkdir (”matlab ” , 0777) ;
91

92 chd i r ( b a s e l o g g e r f o l d e r ) ;
93 c r e a t e d i r ( ”matlab ”) ;
94 c r e a t e d i r ( ”matlab/data ”) ;
95

96 apr proc mutex lock ( ap scoreboard image−>g loba l−>l o g g e r t e s t . mutex ) ;
97 want running = ap scoreboard image−>g loba l−>l o g g e r t e s t . want running ;
98 test number = ap scoreboard image−>g loba l−>l o g g e r t e s t . test number ;
99 apr proc mutex unlock ( ap scoreboard image−>g loba l−>l o g g e r t e s t . mutex ) ;

100

101 // f p r i n t f ( s t de r r , ” a f t e r f i r s t new t e s t a r r i v ed wr = %i , t e s t = %i ! ! \ n” ,
want running , tes t number ) ;

102 // f f l u s h ( s t d e r r ) ;
103

104 ap set want running ( want running ) ;
105 // f p r i n t f ( s t de r r , ”Af ter f e t c h new va l ue s : mcvalue = %d , tes t number =

%d\n” , want running , tes t number ) ;
106 // f f l u s h ( s t d e r r ) ;
107

108 o p e n t e s t f i l e s ( want running , test number ) ;
109

110 int r un t e s t s = 1 ;
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111 int s top code = 0 ;
112 int i t e r a t i o n = 0 ;
113 l ogge r runn ing = 1 ;
114

115 while ( r un t e s t s ) {
116 i f ( s top code = ap ge t s top code ( ) ) {
117 l ogge r runn ing = 0 ;
118 // f p r i n t f ( s t de r r , ”End t e s t !\n”) ;
119 // f f l u s h ( s t d e r r ) ;
120 c l o s e t e s t f i l e s ( ) ;
121 // tes t number++;
122

123 apr proc mutex lock ( ap scoreboard image−>g loba l−>l o g g e r t e s t . mutex ) ;
124 i f ( want running !=

ap scoreboard image−>g loba l−>l o g g e r t e s t . want running ) {
125 want running =

ap scoreboard image−>g loba l−>l o g g e r t e s t . want running ;
126 ap set want running ( want running ) ;
127 }
128 test number = ap scoreboard image−>g loba l−>l o g g e r t e s t . test number ;
129 apr proc mutex unlock ( ap scoreboard image−>g loba l−>l o g g e r t e s t . mutex ) ;
130

131 i f ( ap ge t s top code ( ) == 2) {
132 r un t e s t s = 0 ;
133 break ;
134 }
135

136 // f p r i n t f ( s t de r r , ” a f t e r new t e s t a r r i v ed wr = %i , t e s t = %i ! ! \ n” ,
want running , tes t number ) ;

137 // f f l u s h ( s t d e r r ) ;
138

139 o p e n t e s t f i l e s ( want running , test number ) ;
140 i t e r a t i o n = 0 ;
141 l ogge r runn ing = 1 ;
142 }
143

144 // Set s t a r t time f o r l o g g i n g
145 gett imeofday(&s ta r t , 0) ;
146

147 i f ( i t e r a t i o n == 0) {
148 // f p r i n t f ( s t de r r , ”Set new s t a r t t ime %d + %d\n” , s t a r t . t v s e c ,

s t a r t . t v u s e c ) ;
149 // f f l u s h ( s t d e r r ) ;
150 f p r i n t f ( l o g g e r f i l e s [STARTENDTIME] , ” s t a r t t ime = %d + %d/1000000; ” ,

s t a r t . tv sec , s t a r t . tv usec ) ;
151 }
152

153 // Fetch data to l o g
154 ap ca l c cpu usage (&cpu ) ;
155 ap calc mem usage(&mem) ;
156 ap g e t n e t s t a t (&ne t s t a t ) ;
157 ap ge t s o ck s t a t (& sock s t a t ) ;
158 ap g e t c on t r o l l o gda t a (&data ) ;
159 l a s t r e a d c o n t r o l l o g d a t a = data ;
160

161 // Log data to f i l e
162 f p r i n t f ( l o g g e r f i l e s [CPU LOAD] , ”%.3 f ” , cpu . usage ) ;
163 f p r i n t f ( l o g g e r f i l e s [MEM ACTUAL FREE] , ”%i ” , mem. a c t u a l f r e e ) ;
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164 f p r i n t f ( l o g g e r f i l e s [ SYN FAILED] , ”%i ” , n e t s t a t . s y n f a i l e d ) ;
165 f p r i n t f ( l o g g e r f i l e s [LISTENOVERFLOWS] , ”%i ” , n e t s t a t . l i s t e n o v e r f l ow s ) ;
166 f p r i n t f ( l o g g e r f i l e s [ SERVICE TIME] , ”%qd ” , data . r eque s t s t ime ) ;
167 f p r i n t f ( l o g g e r f i l e s [SERVED REQUESTS] , ”%i ” , data . nb r o f r e qu e s t s ) ;
168 f p r i n t f ( l o g g e r f i l e s [RTT] , ”%i ” , data . r t t ) ;
169 f p r i n t f ( l o g g e r f i l e s [RTT VAR] , ”%i ” , data . r t t v a r ) ;
170 f p r i n t f ( l o g g e r f i l e s [RUNNING] , ”%i ” , data . running ) ;
171 f p r i n t f ( l o g g e r f i l e s [RUNNING IDLE] , ”%i ” , data . r unn ing i d l e ) ;
172 f p r i n t f ( l o g g e r f i l e s [KEEPALIVES] , ”%i ” , data . k e epa l i v e s ) ;
173 f p r i n t f ( l o g g e r f i l e s [MIN KEEPALIVES] , ”%i ” , data . min keepa l i ve s ) ;
174 f p r i n t f ( l o g g e r f i l e s [MAX KEEPALIVES] , ”%i ” , data . max keepal ives ) ;
175 f p r i n t f ( l o g g e r f i l e s [CHILD ROUNDS] , ”%i ” , data . rounds ) ;
176 f p r i n t f ( l o g g e r f i l e s [MIN CHILD ROUNDS] , ”%i ” , data . min rounds ) ;
177 f p r i n t f ( l o g g e r f i l e s [MAX CHILD ROUNDS] , ”%i ” , data . max rounds ) ;
178 f p r i n t f ( l o g g e r f i l e s [SOCKSTAT ALLOC] , ”%i ” , s o ck s t a t . a l l o c ) ;
179 f p r i n t f ( l o g g e r f i l e s [SOCKSTAT MEM] , ”%i ” , s o ck s t a t .mem) ;
180 f p r i n t f ( l o g g e r f i l e s [SOCKSTAT TW] , ”%i ” , s o ck s t a t . tw) ;
181 f p r i n t f ( l o g g e r f i l e s [SOCKSTAT ORPHAN] , ”%i ” , s o ck s t a t . orphan ) ;
182 f p r i n t f ( l o g g e r f i l e s [SOCKSTAT ORPHAN] , ”%i ” , s o ck s t a t . orphan ) ;
183 f p r i n t f ( l o g g e r f i l e s [CPU IO WAIT] , ”%.3 f ” , cpu . i owa i t ) ;
184 f p r i n t f ( l o g g e r f i l e s [CPU USER] , ”%.3 f ” , cpu . user ) ;
185 f p r i n t f ( l o g g e r f i l e s [CPU SYSTEM] , ”%.3 f ” , cpu . system ) ;
186 f p r i n t f ( l o g g e r f i l e s [CPU HIRQ] , ”%.3 f ” , cpu . h i rq ) ;
187 f p r i n t f ( l o g g e r f i l e s [MEM FREE] , ”%i ” , mem. f r e e ) ;
188

189

190 // Set end time f o r l o g g i n g
191 gett imeofday(&stop , 0) ;
192 t im e v a l d i f f (&elapsed , &stop , &s t a r t ) ;
193 t im e v a l d i f f (&timeout , &in t e r va l , &e lapsed ) ;
194 // f p r i n t f ( s t de r r , ” l o g data took %d sec %d usec \n” , e l ap s ed . t v s e c ,

e l ap s ed . t v u s e c ) ;
195 // f f l u s h ( s t d e r r ) ;
196 s e l e c t (1 ,& ef ,NULL,NULL,&timeout ) ;
197 i t e r a t i o n++;
198 /∗ i f ( i t e r a t i o n == 30) {
199 ap s e t b a c k l o g (0) ;
200 }∗/
201 }
202 }
203

204 void c l o s e t e s t f i l e s ( )
205 {
206 int i ;
207 struct t imeval endtime ;
208

209 gett imeofday(&endtime , 0) ;
210

211 for ( i = 0 ; i < NBR OF FILES ; i++) {
212 i f ( i == STARTENDTIME) {
213 f p r i n t f ( l o g g e r f i l e s [STARTENDTIME] , ”endtime = %d + %d/1000000; ” ,

endtime . tv sec , endtime . tv usec ) ;
214 } else {
215 f p r i n t f ( l o g g e r f i l e s [ i ] , ” ] ; ” , l o g g e r f i l e n ame s [ i ] ) ;
216 }
217 f c l o s e ( l o g g e r f i l e s [ i ] ) ;
218 }
219 }
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220

221 void c r e a t e d i r (char ∗ dir name )
222 {
223 i f ( mkdir ( dir name , 0777) == −1 && errno != EEXIST) {
224 f p r i n t f ( s tde r r , ”Error c r e a t i ng d i r e c t o r y ’%s ’ ERROR: %i \n” , dir name ,

errno ) ;
225 f f l u s h ( s t d e r r ) ;
226 e x i t (0 ) ;
227 }
228 }
229

230 AP DECLARE(void ) ap ca l c cpu usage ( struct l ogge r cpu ∗cpu )
231 {
232 f loat usage=0, i owa i t u sage =0, system usage=0, use r usage =0, h i rq usage =0;
233 char cpuid [ 6 ] ;
234 int user , n ice , system , i d l e , iowait , hirq , s i r q , s t e a l , t o t a l ;
235 FILE ∗ fp ;
236

237 fp = fopen ( ”/proc / s t a t ” , ”r ”) ;
238

239 f s c a n f ( fp , ”%s %d %d %d %d %d %d %d
%d” , cpuid ,&user ,&nice ,&system ,& id l e ,& iowait ,&hirq ,& s i rq ,& s t e a l ) ;

240

241 f c l o s e ( fp ) ;
242

243 t o t a l = user + n i c e + system + i d l e + iowa i t + h i rq + s i r q + s t e a l ;
244

245 usage = 1 − ( f loat ) ( i d l e − l o g g e r p r e v i o u s i d l e ) /
( to ta l−l o g g e r p r e v i o u s t o t a l ) ;

246 i owa i t u sage = ( f loat ) ( i owa i t − l o g g e r p r e v i o u s i owa i t ) /
( to ta l−l o g g e r p r e v i o u s t o t a l ) ;

247 system usage = ( f loat ) ( system − l o gge r p r ev i ou s sy s t em ) /
( to ta l−l o g g e r p r e v i o u s t o t a l ) ;

248 use r usage = ( f loat ) ( user − l o g g e r p r e v i o u s u s e r ) /
( to ta l−l o g g e r p r e v i o u s t o t a l ) ;

249 h i rq usage = ( f loat ) ( h i rq − l o g g e r p r e v i o u s h i r q ) /
( to ta l−l o g g e r p r e v i o u s t o t a l ) ;

250

251 l o g g e r p r e v i o u s t o t a l = t o t a l ;
252 l o g g e r p r e v i o u s i d l e = i d l e ;
253 l o g g e r p r e v i o u s i owa i t = iowa i t ;
254 l o gge r p r ev i ou s sy s t em = system ;
255 l o g g e r p r e v i o u s u s e r = user ;
256 l o g g e r p r e v i o u s h i r q = hi rq ;
257

258 cpu−>usage = usage ;
259 cpu−>i owa i t = iowa i t u sage ;
260 cpu−>system = system usage ;
261 cpu−>user = use r usage ;
262 cpu−>h i rq = h i rq usage ;
263 }
264

265 AP DECLARE(void ) ap calc mem usage ( struct logger mem ∗mem)
266 {
267 int freemem , totalmem , usage , bu f f e r s , cached , a c t u a l f r e e ;
268 FILE ∗ fp ;
269 fp = fopen ( ”/proc /meminfo ” , ”r ”) ;
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270 f s c a n f ( fp , ”%∗s %d %∗s %∗s %d %∗s %∗s %d %∗s %∗s
%d”,&totalmem ,&freemem ,& bu f f e r s ,&cached ) ;

271 f c l o s e ( fp ) ;
272 // p r i n t f (”TOTAL MEM: %i , FREE MEM: %i \n” , totalmem , freemem) ;
273 a c t u a l f r e e = freemem + bu f f e r s + cached ;
274 usage = totalmem − a c t u a l f r e e ;
275 mem−>ac tua l u sage = usage ;
276 mem−>usage = totalmem − freemem ;
277 mem−>a c t u a l f r e e = a c t u a l f r e e ;
278 mem−>f r e e = freemem ;
279 }
280

281 AP DECLARE(void ) ap g e t s o ck s t a t ( struct l o g g e r s o c k s t a t ∗ s o ck s t a t )
282 {
283 int a l l o c , mem, tw , orphan ;
284 FILE ∗ fp ;
285 fp = fopen ( ”/proc /net / s o ck s t a t ” , ”r ”) ;
286 f s c a n f ( fp , ”%∗s %∗s %∗s %∗s %∗s %∗s %∗s %d %∗s %d %∗s %d %∗s

%d”,&orphan , &tw , &a l l o c ,&mem) ;
287 f c l o s e ( fp ) ;
288 socks tat−>a l l o c = a l l o c ;
289 socks tat−>mem = mem;
290 socks tat−>tw = tw ;
291 socks tat−>orphan = orphan ;
292 }
293

294 AP DECLARE(void ) ap g e t n e t s t a t ( struct l o g g e r n e t s t a t ∗ ne t s t a t )
295 {
296 int i , s yn f a i l e d , l i s t e n o v e r f l ow s ;
297 FILE ∗ fp ;
298 fp = fopen ( ”/proc /net / ne t s t a t ” , ”r ”) ;
299 for ( i = 0 ; i < 69 ; i++) {
300 f s c a n f ( fp , ”%∗s ”) ;
301 }
302 f s c a n f ( fp , ”%d”,& s y n f a i l e d ) ;
303 for ( i = 0 ; i < 16 ; i++) {
304 f s c a n f ( fp , ”%∗s ”) ;
305 }
306 f s c a n f ( fp , ”%d”,& l i s t e n o v e r f l ow s ) ;
307 f c l o s e ( fp ) ;
308 net s tat−>s y n f a i l e d = s y n f a i l e d ;
309 net s tat−>l i s t e n o v e r f l ow s = l i s t e n o v e r f l ow s ;
310 }
311

312 // carry out x − y where x and y are o f the type t imeva l
313 int t im e v a l d i f f ( struct t imeval ∗ r e su l t , struct t imeval ∗x , struct t imeval

∗y )
314 {
315 // p r i n t f (”Ysec : %i , Yusec : %i \n” , y−>t v s e c , y−>t v u s e c ) ;
316 /∗ Perform the carry f o r the l a t e r s u b t r a c t i on by updat ing y . ∗/
317 i f (x−>tv usec < y−>tv usec ) {
318 int nsec = (y−>tv usec − x−>tv usec ) / 1000000 + 1 ;
319 y−>tv usec −= 1000000 ∗ nsec ;
320 y−>t v s e c += nsec ;
321 }
322 i f (x−>tv usec − y−>tv usec > 1000000) {
323 int nsec = (x−>tv usec − y−>tv usec ) / 1000000;
324 y−>tv usec += 1000000 ∗ nsec ;
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325 y−>t v s e c −= nsec ;
326 }
327

328 /∗ Compute the time remaining to wai t .
329 t v u s e c i s c e r t a i n l y p o s i t i v e . ∗/
330 r e su l t−>t v s e c = x−>t v s e c − y−>t v s e c ;
331 r e su l t−>tv usec = x−>tv usec − y−>tv usec ;
332 // p r i n t f (”Ysec : %i , Yusec : %i \n” , y−>t v s e c , y−>t v u s e c ) ;
333 /∗ Return 1 i f r e s u l t i s n e ga t i v e . ∗/
334 return x−>t v s e c < y−>t v s e c ;
335 }

B.7 controller.c

1 #include ” l ogg e r . h”
2

3 int c o n t r o l l e r i n i t ( )
4 {
5 int pid ;
6 pid = fo rk ( ) ;
7 i f ( ! pid ) {
8 c on t r o l l o op ( ) ;
9 e x i t (0 ) ;

10 }
11 return 0 ;
12 }
13

14 void c on t r o l l o op ( )
15 {
16 struct t imeval s ta r t , stop , timeout , e lapsed , i n t e r v a l ;
17 struct c on t r o l l o gda t a data ;
18 // s t r u c t l o g g e r cpu cpu ;
19 // s t r u c t logger mem mem;
20 // i n t mem load ;
21 // s t r u c t l o g g e r s o c k s t a t s o c k s t a t ;
22 // s t r u c t l o g g e r n e t s t a t n e t s t a t ;
23 int new running ;
24

25 f d s e t e f ;
26

27 i n t e r v a l . t v s e c = 1 ;
28 i n t e r v a l . tv usec = 0 ;
29 FD ZERO(&e f ) ;
30

31 int i t e r a t i o n = 0 ;
32 int r u n c on t r o l l e r = 1 ;
33 int min i d l e p r o c e s s e s = 32 ;
34 int max id l e p ro c e s s e s = 64 ;
35

36 while ( r u n c on t r o l l e r ) {
37 // Set s t a r t time f o r con t r o l
38 gett imeofday(&s ta r t , 0) ;
39

40 // Fetch data to l o g
41 // ap ca l c cpu usage (&cpu ) ;
42 // ap calc mem usage(&mem) ;
43 // a p g e t n e t s t a t (&n e t s t a t ) ;
44 // a p g e t s o c k s t a t (& s o c k s t a t ) ;
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45 i f ( l ogge r runn ing )
46 data = l a s t r e a d c o n t r o l l o g d a t a ;
47 else
48 ap g e t c on t r o l l o gda t a (&data ) ;
49 i f ( data . r unn ing i d l e > max id l e p ro c e s s e s ) {
50 new running = data . running − ( data . r unn ing i d l e − max id l e p ro c e s s e s ) ;
51 ap set want running ( new running ) ;
52 } else i f ( data . r unn ing i d l e < min i d l e p r o c e s s e s ) {
53 new running = data . running + ( m in i d l e p r o c e s s e s − data . r unn ing i d l e ) ;
54 ap set want running ( new running ) ;
55 }
56

57 // Set end time f o r con t r o l
58 gett imeofday(&stop , 0) ;
59 t im e v a l d i f f (&elapsed , &stop , &s t a r t ) ;
60 t im e v a l d i f f (&timeout , &in t e r va l , &e lapsed ) ;
61

62 s e l e c t (1 ,& ef ,NULL,NULL,&timeout ) ;
63 i t e r a t i o n++;
64 /∗ i f ( i t e r a t i o n == 30) {
65 ap s e t b a c k l o g (0) ;
66 }∗/
67 }
68 }
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[28] Karl-Erik Årzén. Real-Time Control Systems. Department of Automatic Control Lund Insti-
tute of Technology, 2003.
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