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Chapter 1

Introduction

1.1 Background

Tetra Pak is a multinational food packaging company which was founded in
1951 in Lund, Sweden, by Ruben Rausing and Erik Wallenberg. Tetra Pak has
since been involved in the food packaging industry. Most notably it has been
one of the companies who have been pushing the food packaging technology
forward. Tetra Pak has been doing this by introducing a wide range of new
packaging methods and concepts.

When Tetra Pak in 1951 emerged on the market they �rst revolutionized
the food packaging industry with a new form of aseptic liquid food packaging
method. The method is still today one of the mainstays of the Tetra Pak
packaging concept. This way to package liquid food makes it possible to store
beverages for up to a year. The reason for the big impact of this new packaging
technology is that it made it a lot easier for the food producers to transport
their products over great distances without a cooling chain, and thus being able
to reach a large number of consumers relatively cost e�cient.

Tetra Pak have in recent years had much success with their self developed
packaging lines. One of the principal ideas has been to give the customers as
much freedom of choice as possible regarding types of packages, caps etc. Tetra
Pak is also able to give the customer (for example a diary) the opportunity of
alternating between di�erent types of package attributes, such as caps, within
the same packaging line, which means more freedom for the customer. Due to
this fact the packaging lines are growing more and more complex. The problem
of controlling the package �ow is no longer trivial. There is always a need for
better process control in order to reduce package waste, working hours and pro-
duction standstill. It is thus important for a company like Tetra Pak to always
be updated with the latest control technologies. In this thesis we will investi-
gate how agent-based technology can be used to control one of the companies
packaging lines.

1.2 Objective

Tetra Pak want to explore the concepts of agent-based technology in order to
get a better understanding of the technology, and how it can be applied to their

4



CHAPTER 1. INTRODUCTION 5

type of production. The main area in which Tetra Pak wants to improve is the
steadiness of the production �ow, also they want to know if the agent-based
technology can handle the branching of the packaging line in a satisfactory
way. We say a packaging line is branched when there are more than one path
available for the packages to �ow. Our objective is to investigate how agent-
based technology can be applied to the packaging line. Further we shall design
an agent-based control system for the line and show how it functions by applying
it to a simulation of the packaging line.

1.3 Problem Formulation

The growing demand on the actors of the food packaging market of today is
forcing the food producers to make changes in their production more often.
The changes can for example be between di�erent types of cap applicators,
or alternation between a handle applicator and a straw applicator. With the
packaging lines traditionally being used, these changes can be both expensive
and time consuming. Thus a market for packaging lines where these types of
changes can be made swiftly is emerging. It is not only changes in the packaging
line con�guration, but also of the packaging line itself that must be made easily
and cheaply. It is crucial that the food producer is able to add or remove
components of the line inexpensively. It is also of big importance that the
number of persons required to operate the production line is kept at a minimum.
Further it is also important that the waste generated by the packaging line isn't
unnecessarily high.

One stage in achieving the desired �exibility mentioned above is to move
away from the standard method of a centrally controlled line. A large centrally
controlled system often means in�exibility and a high susceptibility of failure,
and when failure is due they are often severe to the extent of paralyzing the entire
line. This is mainly due to the fact that it's virtually impossible for a central
control system to anticipate all of the possible control situations which can arise
in the system. Naturally there is a desire from Tetra Pak to make its production
line better in a way that prevents these types of problems. Therefore they are
interested in investigating the possibilities of applying agent-based technology
when they designing the line controllers to their packaging lines. For now we
can explain agent-based technology as an aspiration to distribute the control
and decision making in the plant. Rather than having a centrally controlled
system you instead strive to have the controller near the actual place where the
real component is. One way to put it is that you want the intelligence close to
the place where the decision must be taken.

The objective with the thesis is to design an agent-based system to control
the packaging line in a satisfactory way according to a number of prede�ned
case scenarios (see section 6). The performance of the control system should be
demonstrated on a simulation of the real packaging line.



Chapter 2

The Tetra Pak Packaging Line

2.1 Introduction

Tetra Pak provides a wide range of packaging line solutions. Tetra Pak are
today striving to make their line faster, more fault tolerant and more �exible in
that they should be easier to recon�gure. Tetra Pak's complete solution includes
machines creating the packages, applying caps and straws on the packets and
there are also machines able to package the packets in cardboard packages or
wrap them in elastic �lm.

There are mainly three types of machine behavior, they can create, process
or transfer a package. Most of the available machines use a combination of the
those.

2.1.1 The monitoring of the packaging line

An example of a Tetra Pak packaging line is shown in �gure 2.2, as this �gure
suggests the line provides everything from components which applies straws to
the packages to components which packages the packets in cardboard packages.
The packaging lines provides the ability to monitor the operational performance
of the production thru feedback in various forms. You have, for example pack-
aging counters throughout the whole line. Also you have online monitoring of
the machines di�erent states. Further you can also monitor the accumulation
level of the helix. Throughout the packaging line there are a number of pho-
tocells. Generally there are two placed before each machine. The task of the
photocells is to monitor the package �ow and notify the controller if there is a
queue situation on the packaging line.

The photocells are denominated the speed photocell and the over�ow pho-
tocell. The photocells are similar in that they noti�es the controller when a
queuing situation has occurred, the di�erence between them being severity of
the queue. The over�ow situation is more severe than the speed situation.

6



CHAPTER 2. THE TETRA PAK PACKAGING LINE 7

Figure 2.1: Figure showing the location of the speed- and over�ow photocells.
FM - Filler, Accum. - Helix Accumulator, DE - Distribution Equipment

Figure 2.2: Example of a Tetra Pak packaging line

2.2 Packaging Line Machines

2.2.1 Tetra Pak A3/�ex

This is always the �rst machine in the line con�guration. As the source unit of
the packaging line it creates the package while it �lls it with a liquid of some sort,
the Tetra Pak A3/�ex is often called the �ller machine. The A3/�ex can deliver
somewhere between 10000 to 25000 packages per hour, depending on package
volume. The machine is very accurate in that you can control the package �ow
very precisely. The actual out�ow do not vary from the given input signal. The
only problem with the �ller rises when you are trying to change the delivery
speed. You do not want to end up in a situation where the delivery speed of the
�ller machine must be changed. Instead problems like this should be handled
by the Helix accumulator downstream. You also always try to avoid, except
in emergencies, to stop the �ller machine completely of reasons other than a
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scheduled stop. This is because much waste is generated and it takes a long
time to restart the Filler after an unscheduled stop. The machine is shown in
Figure 5.19

Figure 2.3: the Tetra Pak A3/�ex, often called the Filler machine.

2.2.2 Accumulator Helix

The Accumulator Helix is, as the name implies, a distribution-equipment that
has the ability to accumulate packages. It consists of two parallel conveyors,
which operate at the same speed, yet are independent of one another. One
conveyor for infeed and one for outfeed, there is also a �oating gear which
regulates the accumulation level of the machine, this is shown in �gure 2.4. For
example, when a stop occurs on one of the two conveyors will slow down or
stop moving (the infeed conveyor if the stop occurs upstream or the outfeed
conveyor if the stop occurs downstream). In this situation the �oating gear
will immediately register the stoppage and start moving up/downwards in an
expanding spiral causing the una�ected conveyor to accumulate packages. The
machine is shown in Figure 2.5

Figure 2.4: The accumulation mechanism of the Helix Accumulator
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Figure 2.5: the Helix Accumulator.

2.2.3 Distribution Equipment

A wide range of machines goes under the distribution equipment epithet. Those
which are interesting in our case are equipment with attributes similar to the
Tetra Straw Applicator or the Tetra Cap applicator. The features speci�c for
the distribution machines is that they have two conveyors, one infeed and one
outfeed. In between the conveyor is a process unit, this is where the package is
being changed.

The only attributes we are concerned with is the speed of the infeed and the
outfeed conveyor and the time it takes for the machine to process the package i.e.
the delay of the machine. Other types of distribution equipments are the Film
Wrapper and the Tetra Cardboard Packer. They group a number of packages
and pack them in cardboard or wrap them in clear �lm respectively. These
machines have a behavior that could be likened to an accumulator of small
capacity since the machines each time must accumulate enough packages to �ll
the cardboard package or the �lm wrapping.

Figure 2.6: example of a Distribution Equipment, here a Cardboard Packer

2.2.4 Divider

The Divider is only present in the production line when the production �ows in
di�erent branches. It is a very simple type of equipment, its role is to divide the
package �ow from the one line upstream to two lines downstream. The Divider
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do not have any restrictions regarding infeed speed or outfeed speed, it can work
as fast as needed.

2.2.5 Merger

The Merger works in the opposite way from the Divider. It is only present in the
production line when the production �ows in di�erent branches. The Mergers
objective is to converge the package �ow of two production lines into one single
production line. The Merger doesn't have any restrictions regarding the speed
of the package �ow, it can, just like the divider, work as fast as needed.

2.3 Machine States

There are a few di�erent states available to describe the condition of the ma-
chine. The di�erent states are BLOCKED, READY_FOR_PRODUCTION,
RECIVE, RECEIVE_AND_DELIVER, DELIVER and PREPARATION. The
states are concerned with the actual machine and not the agent.

• BLOCKED - This state occurs when an internal error prevents the ma-
chine from functioning properly. This could , for example, occur due to a
packet gone sidelong inside the machine, blocking the package �ow. This
undesirable situation can only be resolved thru external action by an op-
erator.

• READY_FOR_PRODUCTION- This state announces that the machine
is ready to start production, it only needs a command telling the machine
to start producing, a so called step up command.

• RECIEVE - The machine has started to produce, though there are only
packages on the infeed. No packages are delivered by the machine in this
state.

• RECIEVE_AND_DELIVER - In this state the machine are both receiv-
ing and delivering packages, this is the normal state when the production
line is running. The machine is both recieving and delivering packages.

• DELIVER - This is the state when no more packages are arriving at the
infeed but, there are still packages in the machine to process and deliver
i.e. the machine is still delivering packages.

• PREPARATION - The machine is preparing to start production, there
could for example be a need to apply lubrication on some device.

2.4 Emergency Situations

-

• Speed - This is the situation when the speed photocell (see section 2.1.1)
registers a package queue at the infeed of a packaging machine. The failure
is not considered to be severe, it basically serves as a warning saying that a
more serious situation might occur if nothing is done to solve the problem.
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• Over�ow - Just like the speed situation a queue situation has occurred on
the infeed conveyor of the machine (see section 2.1.1). The di�erence from
the speed photocell is that the over�ow situation is considered to be more
severe than the speed situation and action must be taken. In all cases
when the over�ow photocell is turned on, the speed photocell will also be
turned on.

• Helix accumulation - In this situation the maximum accumulation level of
the Helix is reached. It is considered to be a very severe situation since
there are only two ways to solve this problem. Either you start to unload
the Helix, which might create problems further down the production line
or you can slow down the Filler machine which in most cases is no op-
tion. In reality when the Helix have accumulated packages, the priority of
unloading them is very high to avoid the situation described above.

• Machine Blocked - This situation occurs when a machine cannot proceed
with production due to some internal failure. The case could for exam-
ple be a packet gone sidelong inside the machine, blocking the package
�ow. This is generally a failure that must be solved by a production line
operator. This is also a machine state.

2.5 Di�erent Packaging Line Con�gurations

There are two di�erent line con�gurations that have been considered during our
work with the thesis. Both con�gurations can be seen in �gure 6.1.

Figure 2.7: the two di�erent line con�gurations used in the thesis

• FM=Filler Machine

• Helix = Helix accumulator

• DE= Distribution Equipment

The distribution equipments in these con�gurations is considered to be Straw
applicators, cap applicators or similar machines. The lines between the machines
should be considered as simple conveyors. As shown in the �gure the main
di�erence between the to con�gurations is the branching of the line.



Chapter 3

Agent-Based Technology

3.1 Introduction

What exactly is an agent? Is there even a de�nition? Which are the tradi-
tional agent research areas? Agents are everywhere. People encounter intelli-
gent agents, information agents, mobile agents, personal assistant agents. One
might wonder if this apparent anarchy makes any sense. What is it that makes
an agent? Is there something agents have in common? Is it possible to organize
the agents to carry out a task?

First and foremost, agents should be considered as entities within an envi-
ronment, with attributes useful in a certain domain and that they can sense
and act on changes in the enviroment. This means that agents are not iso-
lated entities, and that they are able to communicate and collaborate with the
environment. Agents which aren't able to communicate with their enviroment
would be quite useless, considered as agents.

Once the agents are ready to collaborate with their environment, they need
to �nd the agents with whom they want to collaborate. This would be an easy
task if the system of agents (Multi-Agent System) knew exactly which agents
to contact and where to �nd them. This is very seldom the case though. Multi-
Agent System tend to be dynamic systems with a population changing over
time. The agents need support to �nd other agents.

The dynamic nature of the Multi-Agent Systems and the complexity of the
communication between the agents leads to that much of the research in this
area is focused on the standardization of Multi-Agent System architectures. The
research on this area �rst started in the early 1970's when scientists from the
Distributed Arti�cial Intelligence �eld formulated some of the basic theories.

Expanding manufacturing companies all over the world are trying to make
their production more cost-e�cient and more pro�table. The problem that's
arising today is that many control systems are centralized and therefore have
di�culties in cooping with high complexity and change. Agent-based technology
provides a way to implement a desirable, robust and decentralized manufactur-
ing environment. This open control environment provides new dimensions to
decision making due to interaction not only between human and machine but
also between machines and their control systems.

12
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3.1.1 Background

Recently markets have changed from stock driven to costumer demand driven.
The innovation cycles are shorter, greater customized production speci�cations
and shorter delivery times. Implementing and constructing a scheduling system
to take care of this will call for high robustness to changing requirements of the
manufacturing process.

Most of the control systems used by manufacturing companies today are
centralized. In such a system, the controller is concentrated to one location.
As companies strive to be more e�cient and productive as well as tolerant to
changes in production, a centralized approach becomes more and more inade-
quate. Of course there are areas where distributed solutions do not apply at all;
where variety in production is low, disruptions are well known, or where distri-
bution isn't clear and change is slow. These environments are unlikely to bene�t
from agent-based technology. Let's focus on areas with the right pre-requisites
for distributed solutions.

Real-time production control is a good example of when a distributed solu-
tion could be bene�cial [13]. Typical environments are assembly lines with a
large number of machines, where tasks have to be assigned and then executed.
When facing this kind of control problem you handle low-level task assignment
and decision-making with critical time constraints. The complexity of the con-
trol problem is relatively low but the results will be satisfactory; an easier system
to recon�gure, better management of changes of production demands resource
failures and technology updates.

3.2 Agent architecture

It is important to have a well de�ned architecture of the agents when you are
designing a Multi-Agent System. At the moment there are a number of di�erent
theories regarding the architecture of the agent.

We have found that the architecture of an agent consisting of four di�er-
ent elements is most suitable for our situation [1]. Study �gure 3.1 to get an
understanding of the elements building the agent. As shown in �gure 3.1, the
agents consist of four main elements, a Diagnostics Element, Planner Element,
Flow Model and an Execution Control Element. A more thorough explanation
of the elements will follow in chapter 5. It should also be said that the planner
element is chosen to act according to the Case-Based reasoning paradigm, also
described in chapter 5. It is important to have that in mind when studying the
data table and the diagnostics element.

3.2.1 Data table

Depending on which agenti�cation paradigm used when the agent system is
developed the agent will be responsible for only one, or a number stand-alone
equipment. It is important to accentuate that the agents are not a part of
the actual machines, but should only be viewed as closely coupled to them.
The machines themselves are operating according to some rules decided by the
controller of that machine. The sensors and actuators associated with the actual
machine are connected to the agent using a network link for input and out put
signals. The di�erent state variables of the machine are then stored in the data
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Figure 3.1: the architecture of the agent

table, which basically is a memory space for variables and attributes associated
with the machine. In some cases variables of other machines are also stored
in the Data Table. The data tables role is to provide a way for the agent to
monitor the signal map of the machine, to help the agent in the reasoning about
the process. The data table is, even though it's not an actual part of the agent, a
crucial element for the agent, since the ability to monitor the equipments health
is all-important.

The actions and organization of the data table is taken care of by a low-level
agent, which only duty is to make sure that the information stored in the data
table is up-to-date. In some situations agents are depending on information from
neighboring agents (in the start- and stop-policy for example), this information
is stored in the data table by the neighboring agents. The Data Table is best
described as an interface between the machine and the agent.

3.2.2 Diagnostics Element

The �rst step in the decision making process of the agent is when the Diagnostics
Element diagnose the health of the machine under it's scope.

First of all it is important to consider the entire picture when you want to
understand the diagnostics element. As mentioned above the physical device
is connected to the agent via the Data Table. This is where the pertinent
information regarding the machine is stored. The information is stored in the
form of variables and states. For example, the state of the machine and the
accumulation level of the Helix are two types of information that typically can be
deduced from the Data Table. Simply put, the role of the Diagnostics Element
is to observe the information stored in the Data Table and when a change is
due it must notify the Planner Element. It is then up to the Planner Element
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to decide if action is needed. It is also up to the planner to decide what type of
action it should be. The message that is sent from the Diagnostics Element to
the Planner must include enough information to fully describe the new situation.
The reason for this is to simplify the Planners work in correcting the potential
error.

3.2.3 Planner Element

The Planner Element of the agent is best described as the reasoning engine
of the agent. The Planner does work all by it self, in a vacuum, towards a
solution to the problem de�ned by the diagnostics component. It will here
consult a library of pre-speci�ed plans and a problem solving mechanism. There
are several problem-solving paradigms that may be used at this stage in the
architecture. Among them are Case-Based Reasoning, Rule-Based Reasoning
and Model-Based Reasoning just to name a few. We have chosen to use Case-
Based Reasoning (CBR) since it holds a number of advantages over the other
paradigms. CBR is, for example, able to propose solutions to problems that are
not well de�ned without deriving these solutions from scratch, saving important
time and thus being able to more easily meet the systems real-time constraints.
A simple explanation of cased-based reasoning is as a process of solving new
problems based on the solution of old problems. It is not only a powerful
method for solving computer problems but also a very common behavior in
everyday human problem solving. The scheme for CBR is showed in �gure
5.4. The strength with CBR is that it involves elements from problem solving,
understanding and learning and integrates it all. It is possible for CBR to solve
new problems by adapting previously successful solutions to new problems but
with similar characteristics. The steps of CBR are the following [10].

• Indexing: The purpose of putting an index of the incoming diagnose is to
make it easy for the planner to compare diagnoses with eachother. The
case indices are a very important feature for characterizing an event to
get the possibility to retrieve it later. As in �gure 3.1 the new situation
is detected by the diagnostics element, which assigns the right index for
the discovered problem, and then send this information to the planner.
The indexing should work in the simple way that similar problems have
similar indexes. The rules regulating this are up to the programmer and
the implementation and they are described further in chapter 5 .

• Retrieval: The indexing of the problem received from the diagnostics ele-
ment are used to investigate if the same problem have been solved earlier.
If the same problem have been solved before all the planner have to do
is to retrieve the solution to the problem from the case memory and send
the solution to the execution-control element. This leads to a simpler and
quicker solution to the problem than if the solution would have to be im-
plemented from scratch. This will not always be the case though. The
situation when there isn't a matching solution in the case memory will
arise. What the planner does in this case is to retrieve the solution from
the case memory that matches the new problem best. The next step will
be to adapt the retrieved case according to some adaptation rules until
we have a solution ready to solve the new problem. The new solution
will then be tested on the equipment model, if the result from the testing
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Figure 3.2: description of the Case-Based reasoing paradigm

is positive, the solution is implemented on the real process and a case is
created and stored in the case memory.

• Adaptation: The adaptation step of the CBR paradigm only comes into
play when the solution retrieved from the case memory isn't a perfect
match for the new problem. In other words, a solution to the new prob-
lem doesn't exist in the case memory. The same goes for the situation
when even a similar case isn't possible to retrieve. In these situations
the retrieved case will have to be adapted to the new problem according
to some adaptation rules implemented by the programmer. It is impor-
tant that the adaption rules are strong enough to derive a solution from
scratch, The agent must work properly even if there are no cases stored
in the case base.

• Test: In this step the proposed solution will be tested. That is, the solution
developed by the adaptation step of the CBR. An important feature of this
step is the equipment model the testing will be done on. Of course it is
here imperative to have a model with characteristics likening the physical
equipment. If the test result isn't satisfactory the problem solving process
will start over again at the case retrieval step, with the new information
that the last solution proposal was inadequate.

• Storing: If the above mentioned testing went well, and the results were
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satisfactory the solution will be stored in the case memory. It will be
stored under the index which was assigned to it in the initial step.

As we will describe in chapter 5, we have in our application of agent-based
technology modi�ed the Case-Based reasoning paradigm to suit the need of the
packaging line better.

3.2.4 Flow Model

It is on this model the testing of the solution derived by the CBR-paradigm is
done. It will be a model of only the physical machine in the agents responsibility
and not the entire production line. This element is a decision making support
system. Models of the equipment are put here, in order to help the Planner in
its work.

3.2.5 Execution control

Once process of the Case-Based Reasoning is completed and the agent have
come up with a solution. The next step will then be for the agent to send
the right signals to the physical equipment in order to solve the problem. The
execution control translates the committed plans into signals understandable
for the machine controller. In other words, it works as an interface between the
agent and the machine.

3.3 Conclusion

The problem of controlling the packaging line, involves low-level task assignment
and execution constraints involving considerable time constraints. The range of
decisions for the control system is generally narrow, the machine at hand only
executes a few operations, and the complexity of the operations is low. On the
other hand can a missed time constraint or an inappropriate outcome lead to
lost production time or product waste. In this case, a good motivation for a
distributed solution is to simplify and enhance the production environment's
recon�gurability to better deal with changing product demand, resource fail-
ures and technology updates. In solutions for distributed real-time control, the
software agents often correspond one-to-one to the machine resources in the real
environment (i.e. one agent per machine). To generate the solution the di�erent
agents interact and act upon the available information to determine the best
possible solution. Due to the time constraints of the solutions generated by the
agents is more often based on reactive behavior than a deliberative behavior
based on complex models and proactive strategies. Their duty is, with other
words, to react on local changes in the production environment.



Chapter 4

Multi-Agent Systems

4.1 Main Purpose

A Multi-Agent System is a system consisting of more than one agent. The main
characteristics of a Multi-Agent System is that all agents in the community
should communicate asynchronously and apply deliberative proactive reasoning
to choose the most bene�cial outcome based on the agents apprehension of its
environment and the other agents states. The communication is very impor-
tant to agents in terms of improving their ability to understand the purposes,
intentions, states and capabilities of other agents. The communication between
agents is also very important in the Case-Based reasoning paradigms adaptation
phase. In addition they should also understand and respect rules and constraints
of the other entities.

4.2 Autonomy of Agents

An agent which is based solely on "built-in knowledge" would pay no attention
to other units in the process and would act completely on its own. This kind
of agent is not desirable since it's incapable of learning from its own mistakes.
Think of an alarm clock for example. For example, if the manufacturer of the
clock you just bought for some reason knew that you were going on a trip to
China at some particular date, then a mechanism could be built in to adjust
the time by six hours at just the right time. The behavior would be successful,
but the intelligence would seem to belong to the clock manufacturer and not
the clock.

Autonomy within agents is achieved through communication among agents
and agent memory. This provides a behavior based on own experience, making it
possible for agents to evaluate a certain situation and make decisions according
to what's best for them and all other units in the process [11]. Of course it's
crucial to provide agents with a little bit of built-in knowledge as well, so that
they know how to act in the beginning of the process when they lack experience.
Otherwise they would operate randomly, depending on the operator to interact
and provide assistance. Look at it as a way to provide initial knowledge in
order to keep the agents operating long enough to �nally learn by them selves.
An autonomous intelligent agent should be able to adapt to many di�erent
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environments, given su�cient time to adapt.

4.3 Holonic Manufacturing Systems

In the case where agents are used to improve real-time production control each
agent is linked to a physical manufacturing unit e.g. a robot, conveyor or pack-
aging machine. Such an entity is called a Holon, and is de�ned as a complete,
autonomous, cooperative manufacturing unit. Holons have the ability not only
to undertake tasks but also to accept, plan, control and schedule them [7].
Intelligent Scheduling is one of the main research areas connected to Holonic
Manufacturing Systems. Trying to achieve hard decision robustness is essential
to these systems. The idea of Intelligent Scheduling is to examine disruptions in
the manufacturing system, both internal and external, as well as cooping with
the computational complexity of decisions. It is often essential to decrease the
amount of machine breakdowns in a system. To do so, a sort of human-machine
interface with the ability to adapt to di�erent user pro�les is needed. By stor-
ing trouble history (i.e. reasoning in case of error) in each agent, it might be
possible to achieve optimal trouble-shooting.

4.4 Multi-Agent System for Real-Time Control

There is a quite narrow set of tasks that actually can improve from agent solu-
tions when coming to real-time control systems. It's mostly about recon�gura-
tion, updates and local changes "on the �y", that's important for the system to
handle. Researchers have thus come up with a more general solution to the struc-
ture of holons. It consists of a low-level real-time-control subsystem combined
with an advisory intelligent software agent [13]. The sub-system is implemented
with function blocks and/or ladder logics. Communication takes place between
sub-systems and agents (Intraholon Communication), among agents themselves
(Interholon Communication) and between sub-systems belonging to di�erent
holons (Direct Communication).A description of the agent communication can
be viewed in Figure 4.1.

4.5 Agent Communication

The main purpose of agents is often to help a machine communicate with the
user and other agents, in order to �nally reach the best over-all decision. A
process module and a decision module are often already present in cases with
controllable machines i.e. robot arms, packaging machines. By adding a third
module, HMI (Human-Machine-Interface), it's possible for the user to interop-
erate with the machine in a smooth way. The HMI consists of a GUI (Graphical
User Interface) and an agent. The GUI provides the platform in which interac-
tion between user and machine take place. An agent handles the communication
between user and machine and also communication within the structure. It's
convenient to divide the communication into three main [2].

At �rst the user observes the actual process of the machine by looking at the
current state of the process. The HMI provides all information concerning state
to the user, with aid from the agent. It could be all kind of di�erent relevant
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Figure 4.1: Description of intra-holon and inter-holon communication

parameters, values and updates. Secondly the user modi�es the �ow of the
process in some way, for example by changing some parameter value. Therefore
the HMI must provide an easy and straightforward process editor. Finally the
HMI, actually the agent, has to make a model check of the user intention and
send the result back. This is the case each time a user enters new data into the
process. Thus, the agent should be able to handle di�erent kinds of user pro�les
to increase usability for all kinds of users.

The problem of developing an agent system is not only concerned with the
creation of the intelligent agent itself. It is of equal importance to create a good
platform for the agents, which simpli�es the management of, and the commu-
nication between the agents. One way to create a Multi-Agent System is to
develop the system according to the speci�cations provided by the organization
named FIPA [16]. The Foundation for Intelligent Physical Agents (FIPA) is a
non-pro�t association registered in Geneva, Switzerland, founded in 1995. The
main goal for FIPA is to maximize interoperability across agent-based applica-
tions, services and equipment. This is done through the FIPA speci�cations.
They provide speci�cations of agent-based technology that can be integrated
by agent-system developers, to construct complex systems with a high degree
of interoperability. FIPA also speci�es a set of interfaces which the agent uses
for interaction with various components in the agents environment, for example
humans, other agents or non-agent software. The speci�cations presented by
FIPA is not so much concerned with the actual agents but with the infrastruc-
ture of the architecture surrounding the agents with focus on communication
and organization. The abstract architecture presented by FIPA can not be di-
rectly implemented, it should be viewed as a basis or speci�cation framework for
the development of particular architectural speci�cations. The FIPA abstract
architecture speci�cations cover three important areas, namely.
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• agent communication

• agent management

• agent message transport

We will here at an abstract level describe the architecture of a Multi-agent
System and how the communication between agents is managed. But in order
to do this a set of architectural elements and their relationships must �rst be
explained.

4.6 Architectural Overview

4.6.1 Agents and Services

An agent can in most cases be described as a computational process which im-
plements the autonomous and communicating behavior of an application. In
a concrete realization of a FIPA abstract architecture an agent may be imple-
mented in a number of ways. It can for example be realized as a Java component,
it may also execute as a native process on a physical computer under an oper-
ating system, or be supported by an interpreter like a Java Virtual Machine.
Agents communicate with each other by sending messages which represents
speech acts. The messages are encoded in an Agent Communication Language
(ACL) [14], which best is described as any language in which communicative
acts can be represented, and therefore also messages constructed. The complete
speci�cation of an ACL is prodivded by FIPA.

A service is a coherent set of mechanisms that support the operation of
agents and other services. The main objective for all services is to provide
support-services for the agents. The organization of the services depends on the
speci�c implementation, though there are a few services that must be available
for the Multi-Agent System to function. These services are the Agent-Directory-
Service, the Service-Directory-Service and the Message-Transport-Service. The
mandatory services will be described in more detail later. The way services
are implemented is up to the programmer, they may very well be implemented
as agents or as software accessed thru method invocation using some interface
provided java or C++. It must be said that if a service is implemented as an
agent this agent do not have the autonomy usually attributed to the agents.
The reason is that is not desirable to have a service which arbitrarily can refuse
to execute the service.

4.6.2 the Multi-Agent System platform

Agent Management System

The Agent Management System is a mandatory component of every concrete
instantiation of the FIPA abstract architecture. The main purpose of the man-
agement system is to provide a platform which exerts the global control of the
Multi-Agent System. There will only exist one agent management system per
agent platform. The AMS is responsible for managing the operation of an agent
platform. The agent management system is closely linked to the Agent-Service-
Directory, or another way to put it is to say that the Agent-Service-Directory
is a partial set of the Agent-Management System.
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The AMS provides all operations necessary for complete control of the agents
life cycle, which will be better understood if you consider �gure 4.2. A good way

Figure 4.2: description of the agents life cycle

to describe the agent management system is to say it provides a white-pages
service for the agents. This is so because the management system contains all
the agent-names and their transport descriptions to every agent registered on
an agent platform. A transport description is a description of how to transport
a message to a certain agent.

Directory Facilitator

The best way describe the directory facilitator is to say it provides a yellow
pages service for the agents. This is where the agents go when they need help
in �nding a suitable service for a problem. This is a rei�cation of the service-
directory-service mentioned earlier. If a directory facilitator is implemented it
is important that it is up to date, that it maintains an accurate, complete and
timely list of the agents on the platform. There must at least be one directory
facilitator present at each agent platform.

4.7 Areas of Application

Real-time control: As mentioned before the most common usage of agents is
in real-time control where high variety and volume, in a discrete environment,
describes the world in which an agent operates. Line production is a good ex-
ample of such an area where the goal is to mass produce individually customized
products. Negotiation between agents aren't that complex here as the actual
scheduling and planning.



CHAPTER 4. MULTI-AGENT SYSTEMS 23

Control of physically highly distributed systems: Utilities as water and elec-
tricity need to be distributed in a city in an e�cient way. In order to get a
working system a lot of information must be shared within the system. Quick
and local decisions are to be made continuously. Information sharing and joint
decisions between autonomous agents are made when timing allows it.

Transportation control and material-handling: This area is often represented
by conveyor lines in a production system or other transportation systems. Here
the frequent need of con�guration changes and disruption-handling is taken care
of. To avoid congestion among the units in a production line it is important
to the agent to have some prede�ned information as well as reasoning history.
Which path is most cost e�cient and what sensors and switches are connected
to it are other important questions.

Reintegration of equipment and frequent upgrading: A system that constantly
needs to be upgraded and integrated with di�erent equipment has to have an
e�cient way of cooping with management change. By structuring the software
(or hardware) in an agent-like manner, we will support system integration in an
e�ective and desirable way.

4.8 Bene�ts and Drawbacks

4.8.1 Advantages

Agent-based solutions to di�erent manufacturing systems may result in a variety
of bene�ts to the company.

Practicability If the only possible way of reaching an automated solution is
by distributed decision making, agents is the perfect solution.

Robustness and �exibility This is often called the "key justi�cation" for
agent-based solutions because of the extensive pro�ts it brings to the system
performance. Robustness against breakdowns is generated because of the ab-
sence of central elements and centralized decision making. The ability to reor-
ganize production on the �y without having to reprogram the whole software
system is another. External disruptions such as scheduling and change in pro-
duction are handled e�ectively without stopping the process. At the same time
the system can perform tasks related to equipment failure and plan changing.

Recon�gurability The ability to change, add or remove both hardware and
software modules on the �y. This clearly stimulates upgrading from old to new
technology and it makes system maintenance considerable cheaper.

Reorganizability Applying the agent-based philosophy to more than one level
e.g. hard real-time control, soft real-time control, decision making for control
tasks and supply chain management, to name a few, will make the production
more e�cient. By using the same communication language on all di�erent
levels, automatic communication and negotiation can take place between units
on di�erent levels and subsystems.

4.8.2 Disadvantages

Actual industrial applications of agent-based solutions are today still very rare.
Not only are they few, they are often not working in the way implied due to
restrictions in functionality.
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• Cost There are huge investments needed in implementing an agent-based
solution if you compare with the more common centralized solution. If
the process intended to gain from agent-based technology in fact is not in
need of all the dimensions of �exibility that the solution provides, the cost
will be unnecessary large.

• Control Systems A majority of the control systems used by companies
today support centralized control but no distributed alternative. Agent-
based solutions, including possibility to communicate asynchronously, must
be o�ered by the vendors of the systems in order to make the vision of
agent-based solutions possible for most companies.

• Education Most control- and system engineers have studied how to design
centralized control systems, not so many know anything about distributed
agent-based solutions. When the lack of knowledge is that widely spread it
causes a big barriers. The companies will have to educate their employees
and recruit educated people before they can be prepared to deal with the
new technology.



Chapter 5

Application of Agent-Based

Technology

When the decision has been taken, that agent based technology should be used
to control the production line, then the �rst step in designing the architecture
is to consider where in the system the agents will be needed, and how big their
scope of responsibility should be. This is often referred to as the agenti�caiton-
process. Here you decide what the responsibility of each agent should be. There
are a few di�erent guidelines you can follow at this stage. We have here used
one-to-one mapping, which as the name implies, means that each equipment
component is the responsibility of one agent. The architecture of the Multi-
Agent System will look like shown in �gure 5.17.

Figure 5.1: the architecture of the Multi-Agent System.
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5.1 The Agent

5.1.1 Data table

Depending on which agenti�cation paradigm used when the agent system is
developed, the agent will be responsible for only one, or a number stand-alone
equipments. It is important to accentuate that the agents are not a part of
the actual machines, but should only be viewed as closely coupled to them.
The machines movements are controlled according to control rules regulating
the machines movements. The machines themselves are operating according to
some rules decided by the controller of that machine. The sensors and actuators
associated with the machine are connected to the agent using a network link for
input- and output-signals. The di�erent state variables of the machine are then
stored in the data table, which basically is a memory space for the variables.
The data table's role is to provide a way for the agent to monitor the signal map
of the machine, in order to help the agent in the reasoning about the process.
The data table is, even though it's not an actual part of the agent, a crucial
element for the agent, since the ability to monitor the equipments health is all-
important. In the Multi-Agent System designed for the Tetra Pak packaging
line the data table will look like follows.

Figure 5.2: the information stored in the data table.

This means that there must be a connection between the data-tables of the
neighboring agents. The reason is that there exist information of an agents
neighbors in the data table.

5.1.2 Diagnostics Element

The �rst step in the decision making process of the agent is when the diagnostics
element diagnose the health of the machine.

First of all it is important to consider the entire picture when studying the
diagnostics element. As mentioned above the physical machine is connected to
the agent via the data table. This is where the pertinent information regarding
the machine is stored. The information is stored in the form of variables and
states. For example, the state of the machine and the accumulation level of
the helix are two types of information that typically can be deduced from the
data table. Simply put, the role of the diagnostics element is to observe the
information stored in the data table (i.e. the condition of the machine) and
notify the planner when a change is due. The message that will be sent from
the diagnostics element to the planer must include information regarding the
type of change that have taken place. The reason for this is to simplify the
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planner's work in correcting the error. The diagnostics element will provide the
information shown in �gure 5.10.

Figure 5.3: the information stored in the diagnose.

This will help the planner to identify the problem, even if the planner hasn't
come upon it before. The diagnostics element will continuously monitor the
health of the machine with the help of the information stored in the data table.
It is entirely up to the diagnostics element to recognize the situations which
need to be attended. The di�erent attributes which will be monitored are the
following.

The diagnose element should make a diagnose and send a diagnose message
to the planner whenever it notices a change in the data table. It will then
use the information stored in the data table and add the information necessary
a message according to the above. In other words, a diagnose should be set
whenever an attribute of the data table changes, then it is up to the planner to
analyze the situation in order to �nd out if the situation need action or not. The
way this will be done is by simply sample the data table continuously and always
storing the last sampled version of the data table. Whenever the diagnostics
element notices a di�erence between the stored version of the data table and the
current version it will set a diagnose and send it to the planner element. When
setting the diagnose the element must of course include the newest value of the
parameters that should be included in the message. The parameters which can
be deduced from the data table is simply copied from the data table to the
diagnose message.

5.1.3 Planner Element

The planner is the reasoning enginge of the agent. This is where the decision
making takes place. First the paradigm which is used when deriving the solu-
tions will be described.
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Case-Based Reasoning

The scheme for the case-based reasoning paradigm is shown in �gure 5.4 [10].
The �rst event will be to receive a diagnose message from the diagnostics ele-
ment. The message will be of the type shown in �gure 5.10. The �rst action
in the paradigm is to put an index on the incoming diagnose messages. This is
done according to a set of indexing rules.

Figure 5.4: description of the Case-Based Reasoning paradigm

Indexing Rules The indexing rules must be valid both for new problems
which needs to be solved and to the cases stored in the case memory. This is
due to the fact that the case-retrieval process must be able to match the new
problem with the old cases stored in the memory.

Case indexing involves assigning indices to facilitate their retrieval. The
indexes should:

• Be predictive.

• Address the purpose the case will be used for.

• Be abstract enough to allow for widening the future use of the case base.

• Be concrete enough to be recognized in the future.

In the history of Case-Based reasoning both manual and automated methods
have been used to select indexes. Naturally, in the current application, it is not
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an option to assign the indexes manually. Among the most commonly used
automated indexing methods are:

• Indexing cases by features and dimensions, that tend to be predictive
across the entire domain i.e. descriptors of the case which are respon-
sible for solving it or which in�uence it's outcome. In this method the
domain is analysed and the dimensions that tend to be important are
computed. These are put in a checklist and all cases are indexed by their
values along these dimensions.

• Di�erence based indexing, selects indices that di�erentiate a case from
other cases. During this process the system discovers which features of
a case di�erentiate it form other similar cases, choosing as indices those
features that di�erentiate cases best.

• Similarity and explanation-based generalization methods, which produce
an appropriate set of indices for abstract cases created from cases that
share some common set of features, whilst the unshared features are used
as indices to the original cases.

• Inductive learning methods, which identify predictive features that are
then used as indices.

We have used a variation of di�erence based indexing. We have focused on
how to best di�erentiate the cases from each other. The best way to do this is to
de�ne the cases by the problem situation, which is speci�ed in the diagnose sent
from the Diagnostics element. The di�erent kinds of situations that can occur
in the production line is fully covered by the diagnose message and its di�erent
possible parameter values. So we have used the parameters of the diagnose as
indexes. This way the indexes cover every possible situation in the packaging
line.

Case Memory Implementation The case-solutions will be stored in the
case memory as key-value pairs according to �gure 5.11. Case storage is an
important aspect in designing e�cient CBR-systems in that it should re�ect
the conceptual view of what is represented in the case and take into account
the indices that characterize the case. The case-base should be organized into
a manageable structure that supports e�cient search and retrieval methods. A
balance must be found between storing methods that preserve the richness of
information of the cases and their indices and methods that simplify the retrieval
of relevant cases without compromising the amount of information stored in the
solutions.

The case memory will in this implementation be represented by a key-value
tulpe, as in �gure 5.7. The pairs in the tuple will consist of the key, i.e. the case-
index, and a value which will be represented by the case solution. An example
of a case solution is shown in �gure 5.5. This organization makes it is easy to
search the directory for cases.
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Figure 5.5: example of a solution stored in the Case-Memory

Figure 5.6: example of a case-memory entry

Case Retrieval Given a description of a problem, a retrieval algorithm,
using the indices, should retrieve the most similar case to the current problem
or situation. The retrieval algorithm relies on the indices and the organization
of the memory to direct the search to potentially useful cases. Case-based
reasoning will be ready for large scale problems only when retrieval algorithms
are e�cient enough at handling thousands of cases. The issue of choosing the
best matching case have been addressed by many researchers. Among the well-
known methods for case-retrieval are the nearest-neighbor method.

In our Multi-Agent design we have not used a particularly complex retrieval
method. We simply search the case memory in order to investigate if a solution
with a matching index is available. If there is a matching index in the memory
the solution will directly be sent to the execution control element. If there is
no matching case in the memory, then the Case-Based Reasoning process will
continue with the next step, which is the adaptation rules.
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Figure 5.7: description of the case-memory

Adaptation Rules Once it is known that a matching case doesn't exist
in the case base, the CBR system must construct a new case in order to solve
the problem situation. An ideal set of adaptation rules must be strong enough
to be able to generate complete solution from scratch. Because of the simple
nature of our solutions, we have chosen to use the method of weighted votings.

The �rst thing that happens in the situation where no previous solution is
available is that the planner sends a message to the directory facilitator with
the information shown in �gure 5.13. This message is called a vote request.
The directory facilitator will then stand as the organizer of the vote. The main
idea with the whole voting procedure is that every agent in the packaging line
will cast a vote based on what action they want the agent with the problem
to take. The agent with the problem will not cast a vote itself. This way the
result of the vote will be the best possible action for the whole of the line. An
additional feature in the voting procedure is that the votes of the agents have
di�erent weights depending on where they are located relatively the agent with
the problem. The voting rules of the di�erent agents are designed according to
which decision by the problem-agent that would be best for them.

After receiving the vote request, the directory facilitator will send out the
vote message with the information shown in �gure 5.14. When this message is
received by the other agents in the packaging line. The information is processed
by the individual agents voting rules and a vote is sent to the directory facilitator
with the information shown in �gure �gure 5.9. The distance is an integer telling
how many machines away the machine, the vote is about, is located. The utility
is the weight associated with the vote. The directory facilitator register all
votes, makes sure that all agents (except the problem agent) have voted, then
returns the result of the vote to the agent with the problem, who applies the
solution according to the execution control element.

Case Testing The main objective with the case testing procedure in the
case-based reasoning paradigm is to verify that it is safe to apply the proposed
solution. In our Multi-Agent System the testing will be done against the �ow
model element.

Case Storing The most important thing to remember in this part of the
case-based reasoning process is to remember to not store solutions unless they
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Figure 5.8: the information in the message sent by the Directory Facilitator

Figure 5.9: Description of how Filler machines will vote in a given situation.

are proven to be successful. In order to achive this the cases aren't stored
until the problem situation of the agent is resolved. If it isn't resolved then
a new diagnose will be made by the diagnostics element and a new voting
process. Another situation that could cause problems is that the problem is
never resolved, but it isn't getting any worse. Then, of course, new action
needs to be taken in order to resolve the problem. This problem is solved by
simply using a timer, which will cause a new voting when the data table is
unchanged after a speci�ed time period (now without the previous solution as
an alternative), and a new solution proposal. An additional feature is to de�ne
which situations in the data table that are undesirable and which situaitions
that are desirable. Whenever you are in an undesirable state new votes should
be conducted continually.

5.1.4 work �ow

There are only two ways to trigger the planner element to take action. The
�rst way is a message from the diagnostics element, telling the planner that a
change in the data table is due, and also information about what has changed.
The second way is a message from another agent. It could for example be a
noti�cation message saying that the machine upstream has raised it's speed or
a message starting a voting process. In order to get a good understanding for
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the behavior of the planner the di�erent possible scenarios will be explained.

Diagnose message In the situation with a diagnose message from the
diagnose element, the �rst event that occurs in the planner is that a diagnose
message is sent from the diagnostics element to the planner element. This
message will be sent whenever there is a change in the parameters of the data
table, the planner must then decide whether the new situation is desirable or
not and if action is needed. Always when this situation arises, the planner will
use the theory of case-based reasoning when solving the problem. The message
from the Diagnostics element will be of the type shown in �gure 5.10

Figure 5.10: the type of message sent by the Diagnostics element.

First a description of the way a message from the diagnostics is handled
will be provided. The planner will receive a message from the diagnostics, the
message will be of the type presented in �gure 5.10. When the planner �rst
gets a message with a diagnose from the diagnostics element, two scenarios are
possible. In the �rst case the situation has occurred before and there is already
a solution to the problem stored in the case base. In the second situation there
is no stored solution to the occurred situation/problem, a new solution must be
derived. We will start by considering the �rst case. We have a diagnose of the
type shown in �gure 5.10.

In this situation the planner will use the diagnose in order to create a match-
ing index for the current problem situation. This is a relatively simple process.
We have used a type of di�erence based indexing. In the case indexing we have
focused on how to best di�erentiate the cases from each other. We found that
the best way was to de�ne the cases by the problem situation. The indexing
rules of the Multi-Agent System will simply be based on the parameters of the
diagnose. The indexes will in this way cover all di�erent problem situations.
The step following the indexing will be to search the Case Base. This is where
the solutions to the previous problems are stored in the form of a key-value tu-
ple according to �gure �gure 5.11. The index is the key and the solution is the
value. In the case where there is a case stored in the case-base with a matching
index, then the solution belonging to that entry is retrieved. Where the solu-
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Figure 5.11: the Case-Memory entry.

tion will include the successful values of the parameters needed to be changed
in order to solve the problem situation. The solution would for example look
something like shown in �gure 5.12, for a common distribution equipment in a
speed-situation. In this case the problem is over�ow in the situation where the

Figure 5.12: example of a solution stored in the Case-Memory

machine where the over�ow has occurred runs at nominal capacity, and there-
fore has the ability to raise its capacity. The solution to this problem is to raise
the capacity to maxAllowedCapacity and send messages to the machine down-
stream and inform it that a production raise is due, and also send a message
to the (nearest) accumulator upstream and request a slowdown of the package
�ow. The retrieved case will then be sent to the execution control element which
will transform the information in the case to the language understandable for
the machine interface.

The most critical situation arises when the planner doesn't �nd a stored case
matching the case diagnose from the diagnostics element. In this situation the
agent will take help from the other agents in the process of deciding the best
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solution to the problem. This will done with a weighted voting protocol. The
main advantage with this protocol is that the agents will have a way to tell
if they are in urgent need for a certain solution. If that is the case then the
agents vote will be weighted heavier than the other agents votes. A thorough
explanation is given in 5.2.2.

The �rst step the planner will take when it gets the negative answer from
the case base search is to send a message to the Director Facillitator agent
notifying it that a vote is necessary. This message will include the information
shown in �gure 5.13.Every agent in the production line will receive a message of
the type shown in �gure 5.14. As the �gure indicates it is important for every
agent to know whether the decision to be taken is for a machine upstream or
downstream. Also it is important to know what type of machine it is and what
type of emergency situation it is. The distance is an integer indicating how
many machines away the situation is. It is important to have this information
in order to calculate the weights associated with each vote. The voting rules for
all the agents are de�ned in the voting rules map.

Figure 5.13: the information stored in a voting request.

Figure 5.14: the information stored in the vote message from the Director Facil-
litator.

When the other agents receive the vote message from the DF they decide
which action they want the agent to take, and then send this information in a
message to the directory facilitator, the information in the message is shown in
�gure 5.15.

The voting process The most important thing in the voting process is
the rules controlling the way agents vote in a given situation. The agent are
supposed to have certain rules deciding how the agent should vote in a given
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Figure 5.15: Example of an agents vote.

situation. This is where the real intelligence of the agent is situated. It is the
voting process which make the agents adaptable to changing environments.

First and foremost it is important that the agent will function even if there
are no cases stored in the case-base. This means that there must be a new
voting-process each new diagnose. The goal with the agents voting rules is that
the result of the planners work in this case is the same, though probably a
bit slower. Naturally it is imperative that the voting rules for the agents is
implemented with care. The voting rules for the agents is shown in the voting
rules �les.

Message from another agent This is the only other way to make the
planner take action. In this case the planner receives a message from another
agent directly. The information in this message will control the behavior of the
planner. The di�erent messages possible for the planner to receive is shown in
the agent messages �le.

The other reason for starting the decision making process in the planner
element is by a message from another agent. The message can typically be of
the type shown in �gure 5.16. The di�erent message types can be deduced from
the message protocol excel �le.

Figure 5.16: Example of a noti�cation message.

When a speed noti�cation message is recieved from another agent, the pro-
duction speed is automatically modi�ed so that machine A has a production
speed 2% than machine B if A is directly downstream from B. The produc-
tion speed is with other words raised with 2% per machine in the downstream
direction.
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5.1.5 Flow Model

Always when a solution has been derived with the help of case-based reasoning,
the new solution will be tested on the Flow Model in order to verify that the
solution is safe to apply on the real machine. Or more important, that it will
give the desired result in terms of the infeed- and outfeed-�ow of the machine.
The testing rule of the Flow Model will be to simply check if the machine next
down stream is able to handle the package �ow delivered by the machine. The
information about how much packages the machine downstream can handle is
stored in the Data Table. The Flow Model of the Divider agent will be di�erent
from the other agents. The objective of the Divider agent is to always divide
the �ow from one infeed conveyor to two outfeed conveyors in a desirable way.
The way this is done is decided in the Flow Model. The Case-Based Reasoner
of the Divider agent will take the decisions regarding the total infeed and total
outfeed �ow. The decision about how much of the outfeed �ow that should go
to each agent is taken in the Flow Model.

5.2 Design of the Multi-Agent System

5.2.1 Multi-Agent System Platform

If we start to consider the agent platform it should be said that the platform
consists of everything regarding the Multi-agent system including the physical
machines and the physical communication network. A schematic picture of the
Multi-Agent System is shown in �gure 5.17. The architecture and design of the
agents are thoroughly discussed in section 3.2, here we will discuss the remaining
parts of the Multi-Agent System such as the directory facilitator, the voting-
and the intreraction-rules. We also describe the policies behind the voting rules
and the interaction rules of the Multi-Agent System.

Figure 5.17: the multi-agent system architecture
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5.2.2 Directory Facilitator

The director facilitator is a very important element in the MAS. It can be
viewed as an organizational part of the Multi-Agent System [16]. Several im-
portant services are provided by the Director Facilitator agent, among them
are, accumulation service, Voting Organizing Service, here is also a map of the
packaging line, where the states of the machines is stored. This makes it pos-
sible for the other machines to easily get valuable information about the other
machines in the packaging line. This operation provides the opportunity for the
agents to make decisions based on more information.

Accumulation Request Service The Accumulation Request Service is
activated thru a message from an agent with an over�ow situation (for example).
The directory facilitator receives a message of the type shown in �gure 5.18.
After this message is received the DF will check on the map of the packaging line
which accumulator is closest upstream from the agent who sent the message. It
will then redirect the message received from the agent to the closest accumulator
upstream who most probably will start to accumulate packages.

Figure 5.18: The information in the over�ow request from an agent.

Voting Service The Voting Service is a service located in the Director
Facilitator and it is used by agents who wants to conduct votings. The procedure
and mechanism of the votings is further discussed in section 5.1.4

Figure 5.19: the Tetra Pak A3/�ex, often called the Filler machine
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5.2.3 Interaction Rules

There are two situations where prede�ned messages will be sent by the agents.
The situations are when an agents changes its outfeed speed or when an agent
has the over�ow condition.

Speed changes The information these type of messages will be as shown
in �gure 5.20. The idea with there messages is that a machine downstream
from a production change always should get the information about production
speed changes upstream, so they can take these changes into consideration when
deciding its own production speed. This message should also be sent when a
machine lowers its outfeed speed. The rule is to always when the packaging
speed when the outfeed speed is changed.

Figure 5.20: The information in the speed noti�cation messages.

Over�ow Messages The other type of prede�ned message is sent when a
machine is in an over�ow situation. The message contains the information shown
in �gure 5.18. The agent with the over�ow situation wants the accumulator
closest upstream to start accumulating packages. The message is sent to the
directory facilitator, which redirects the message to the accumulator closest
upstream.

5.2.4 Voting Rules

The voting rules are what essentially decide will take in di�erent situations, this
is where the intelligence is located. A example of some voting rules are shown
in �gure 5.9.



Chapter 6

Production Case Studies

6.1 Production Line Cases

The di�erent cases will be de�ned on one of the two line con�gurations shown
in �gure 6.1.

Figure 6.1: The di�erent packaging line con�gurations

6.1.1 Case 1

A simple Start- & Stop policy for the �rst line, (should also be veri�ed for the
second line con�guration) in order to verify that the machines start and stop
policies work satisfactory. This is done by introducing a blocked condition for
the last DE, this should start a chain-reaction making every machine upstream
stop, including the Helix (after full accumulation level).

6.1.2 Case 2

Similar to the �rst case. The only di�erence is that when the Helix have a
50% accumulation level the blocked DE will be ready for production and the
package �ow will start again. This case will verify that the package line is able
to recover from a blocked situation and also that the line is able to handle a
situation where the Helix must unload a large number of packages.

40
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6.1.3 Case 3

In the second line. One of the branched DE's becomes blocked. The Divider
must now direct the �ow to the other DE in order to maximize throughput. This
case will show that the Divider is able to direct the �ow, in order to maximize
throughput, when one of the branched DE is blocked.

6.1.4 Case 4

The second line. There is an increase of package �ow, due to the Helix unloading
or a production increase from the Filler. This will verify that the production
line is able to handle an increase of package �ow.

6.1.5 Case 5

The second line. In this case there should be a redistribution of the �ow thru
the branch, due to a capacity change in one of the branched DE's. This case
will show that the Divider is able to dynamically distribute the �ow thru the
branching, and also that it is able to react to unforeseen events.

6.1.6 Case 6

There is a situation in the �rst line where one DE becomes blocked which
causes the Helix to accumulate. The next event is a blocked situation in the
Filler machine. The next event in the case is that the DE resolves the blocked
situation but the �ller remains in blocked, the Helix will now have packages
accumulated. This will make the Helix unload its packages and then make a
normal stop. The normal stop will propagate downstream until all machines
have made a normal stop.

6.1.7 Case 7

The second line. The �rst thing that happens is that a stop immediate makes
the last machine in the line stop. This will make the stop propagate upstream.
Then the DE before the divider will be in a situation that makes it do a stop
immediate. After that the last DE will resolve its stop situation and be able
to produce again. This will open the possibility for the machines in between to
empty their packages and make a normal stop.

6.2 Case Veri�cation

6.2.1 Case 1

After the startProduction message is sent to the packaging line. The Pack-
agesToDeliver parameter in the DF is turned on (to yes). This means that the
Filler will start to produce packages as soon as the downstreamReady param-
eter is true, the parameter is stored in the data table element of every agent.
It is also stored in the DF, in case an agent wants to know the status of this
parameter for another agent.
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All the machines in the production line will start in preparation. When
the machines preparation procedure is done they will automatically enter the
Ready for Production state. After this the DE2 will by de�nition have down-
streamReady true since it is the last machine in the line, this is true provided
the end of the line is ready to handle the outgoing packages. This will change
the downstreamReady parameter in the next machine upstream, this behavior
will continue until all machines in the line have downstreamReady true. It is
every data tables responsibility to make sure that the next machine upstream
has the right value on the downstreamReady parameter. The Data Table of
DE2 will have to make sure that the data table of DE1 has the right value on
the downstreamReady parameter. Practically this is done telling the DE1 that
downstream is ready only when DE2 is in ready for production and its endline is
ready, in all other situations the value should be false. The Diagnostics element
in the FM will then notice a change in its Data Table according to �gure 6.2.
As seen in the �gure there is a change from no to yes on the downstreamReady

Figure 6.2: the information stored in the data table

parameter. This change has actually taken place in every agent along the line.
The result has been that every agent, when this change has happend, has started
a vote, asking the other agents in the production line what to do in this new
situation. First it should be noted that every time a change is due in the Data
Table of an agent, the diagnostics element of that agent will notice this and
set a diagnose of the new state, in order to investigate if action is needed for
this new situation. The voting rules of the di�erent machines are presented in
the voting rules documents. Due to the voting rules the result of the votings
leading up to the current situation, have all reached the solution that nothing
should be changed in the machines state. In the current voting, where the Filler
has downstreamReady and is Read for Production with packages-to-deliver the
other machines will vote for the Filler to start producing.

Every time a voting process is completed and a solution is reached, the
solution may very well be to do nothing, the solution is stored in the Case-Base.
More precisely, the case will be stored after it is noted that the solution solved
the problem i.e. when the undesirable situation in the data table is gone. This is
done according to the indexing rules of the Case-Based reasoner paradigm. The
point with this is to make the problem solving process more e�ective. Instead
of having a vote when this problem is encountered next time, the solution can
be found in the Case-Base directly.

The next event that will happen in the production line is that the Helix will



CHAPTER 6. PRODUCTION CASE STUDIES 43

change state from Ready for Procduction to Receive and eventually to receive
and deliver. These changes will be noted by the neighboring machines who will,
the �rst time this change is due, engage the other agents in a vote deciding
which action the agent should take. In this situation the solution will be to not
change its current state, i.e. the Filler should keep producing packages and the
distribution equipment should remain in Ready for Production. The same thing
will happen for every machine down the line, all the machines downstream will
then be in Receive and Deliver.

The next event in the packaging line is that the last machine becomes
blocked, this is a situation which can only be resolved by external actions i.e.
an operator �xing the problem. Once DE2 becomes blocked two things will
happen. The Data Table of both DE1 and DE2 will change its state due to the
blocked situation. Both machines will start a voting process in order to reach a
decision about which action to take. The voting process will then decide that
DE2 should send the message startProduction to its machine, it should start
producing as soon as the blocked situation is resolved. The vote result for DE1
will be to stopImmediate in order to avoid a large package queue at DE2. This
decision will soon cause DE1 to change state from recieve and deliver to re-
cieve, and when full change to ready-for-production. DownstreamReady gets
false when the machine is full, and this will propagate upstream in the same
way until eventually all machines are full including the Filler.

6.2.2 Case 2

This case is closely based on the previous case. The analysis will therefore start
where the last case ended.

The situation is the following. The DE2 will be blocked. Due to this, the ma-
chines upstream have all made stopImmediate, including the Helix which have
started to accumulate packages. According to the case description the blocked
situation by DE2 will be resolved when the accumulation level is 50%. Before
this though, a number of votes have taken place. Once the Helix recognizes that
it has packages accumulated it will start a vote in order to �nd out what to do.
Since a machine is blocked downstream the other machines will vote for the He-
lix to keep accumulating. This situation will change when the blocked situation
is resolved, then downstreamReady will be true for the Helix and when a new
vote takes place the other machines will vote for the Helix to not only start-
Production but also to unload its accumulated packages. In reality this means
that the Helix will unload packages at maximum capacity, it will of course also
notify the machines downstream that its outfeed speed is raised so the machines
can act accordingly. This is done by simply sending a message to the machine
downstream in order to notify them that the production speed is raised. How
the recipient treats this information is up to that agent, though it will in most
cases also raise its production speed. Naturally the speed changes due to the
raised output from the Helix will not be a problem. The Helix will then keep
unloading packages until its condition changes from packages accumulated to
normal, i.e. no more packages are accumulated. Then the Helix will call the
DF for a vote. The result of the vote will be the �ve votes suggesting that the
Helix should be in production at nominal capacity. With no other emergency
situations the package �ow will continue until packagesToDeliver is false for the
Filler, a vote will the take place. The result of the vote will be six votes sug-
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gesting the Filler should make a normal stop. When the Filler after the stop is
in Ready for production, both the Filler and the Helix will notice this change
and ask for votings. The result for the Filler will be the same as before the
state change, this goes for the Helix as well. The Helix will after a while have
no packagesToDeliver, naturally a vote will then take place. The result of the
vote will be the same as for the Filler, a normal stop. The normal stops will
continue downstream all machines are stopped and there are no more packages
in the line.

6.2.3 Case 3

At the start of this case the Filler is producing at nominal capacity and there
are not any speed or over�ow situations in the line. The �rst event is that DE2
becomes blocked. This will cause a vote on what action DE2 should take. The
result will be a suggestion for the DE2 to be in startProduction at nominal
capacity, though this cannot be done until the blocked situation is resolved.
There are two more votes that will take place, the Divider and the Merger will
notice a change in the state of DE2. The result of their votes will be to keep
producing at nominal capacity. Due to the Flow Model of the Divider agent
it will send the entire �ow to the DE3, this means that DE3 will get a �ow
larger than its maximum allowed capacity. This fact is detected by the divider
which automatically sends a message to the DF with a question for the nearest
(upstream) accumulator to start accumulating. This is done in order to prevent
a queue at DE3. When this happens the Helix will start to accumulate in order
to lower the package �ow at the divider. After a while the Helix will start a vote
asking what it should do with its accumulated packages. Every machine except
the Divider will tell the Helix to unload, but since there is an emergency situation
at the branching the utility for the dividers vote will be higher than usual, high
enough for its proposition to win. The result is that the Helix will not unload
until the blocked situation at DE2 is resolved. When DE2 is in production again,
a new vote will take place, this time the result will be to still be in production
with nominal capacity. The Helix will in a while request a new vote, this time
will the Dividers vote be normal, which means that the Helix will start to
unload. And the following machines will automatically adjust their speed to the
preceding machine. This will continue until the packagesToDeliver is negative
and the state of the machines subsequently becomes ready for production.

6.2.4 Case 4

In this case the dynamics of a �ow increase due to a production increase from
the �ller or unloading from the helix will be showed. It doesn't matter which
of the two situations it is that occurs, the impact on the rest of the line will
be the same. Therefore it is assumed that the �ow increase is due to the Helix
unloading, since this is a more complex and more often occurring situation.

The �rst event in this scenario will be the Helix noticing that is has packages
accumulated. A voting will then take place, in order to investigate what action
the Helix should take. In this situation the result of the vote will be as shown
in �gure 6.3;

Every machine votes for the helix to unload, since there are no other emer-
gency situations. The result of the unloading decision will be that the Helix
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Figure 6.3: the voting result

outfeed speed is increased. By de�nition, when a machines raises its outfeed
speed it sends a message to the machine following downstream notifying it that
more packages will arrive. When a message of this type is received by a machine,
it is basically up to that machine to do what it wants with the information. In
almost every case the machine will increase its own speed. If this is not the case,
there will most de�nitely be a speed or over�ow situation which will be taken
care of by a new voting considering that situation. In this situation there are no
other emergency situations though, so whenever a machine receives a message
with information saying that the machine upstream has raised its capacity it
will also raise its capacity. This is essentially the way any type of production
�ow will be handled.

6.2.5 Case 5

At the start of this case the machines are in Receive and Deliver and the �ow
is divided evenly thru the branching. Then an event occurs which means that
the �ow must be divided di�erently thru the branch. This can happen due to
external events such as an operator sending this information thru the DF or
an internal event like a failure in the machine causing a processing slowdown,
but not a blocked situation. The information regarding what package �ow the
DE can accept is stored in the machine and can be updated by the DF or the
DE itself. It is up to the two Distribution Equipments following the Divider to
update their production �ow weights in the data table of the divider. When no
external or internal events have occurred causing a change in the capacity of
the DE, the production �ow weights will be the same as their maximum allowed
capacity. The Divider will divide the �ow according to the formula shown in
�gure 6.4. Where C is the �ow coming into the divider, N is the production
�ow weight for the right machine and M is the production �ow weight for the
left machine. As long as the production �ow weights are updated continually in
the divider, the �ow will always be divided in the right way.

6.2.6 Case 6

The �rst event in this case is that DE1 becomes blocked. A voting will then
take place for the Helix, DE1 and DE2. The vote result for DE1 will be to keep
producing, since that is the best scenario for all the machines. The vote result
is shown in �gure 6.1�gure 6.5. The result for the Helix and DE2 is shown in
�gures 6.6 and 6.7;

The vote result for the helix is to stopImmediate since downstreamReady is



CHAPTER 6. PRODUCTION CASE STUDIES 46

Figure 6.4: the Formulas deciding dividing of the �ow

Figure 6.5: the result of the voting

false, it will then start to accumulate packages. D2 will continue to receive and
deliver packages as long as there are packages to deliver. When the parameter
packagesToDeliver is false, the agents planner will set a new diagnose and a
new vote which will cause the DE2 to make a normalStop. The situation in
the packaging line is the following, the �ller is producing just like before, the
Helix is receiving packages but not delivering any, the DE1 is blocked and the
DE2 has made a normalStop. Now the blocked situation in DE1 is resolved,
which is noticed by DE1, DE2 and the Helix, three votings will therefore take
place. Also the �ller now becomes blocked. The result of the Helix voting is the
following.

The Helix will unload its packages since downstreamReady is positive. DE
1 will also start to produce (Receive & Deliver) as well as DE2. When the
Helix is empty it doesn't have any more packages to deliver and it will therefore
make a normalStop due to a voting. The same behavior is true for the machines
following downstream.

6.2.7 Case 7

The �rst event in this case is that DE4 becomes blocked and stops production
immediately. When this happens two votings will immediately take place, one
for DE4 and one for the Merger. The result for the �rst vote is shown in �gure
6.8.

The second vote result will be the following shown in �gure 6.9, due to the
fact that downstreamReady is false for the merger.

Since downstreamReady is false for all machines upstream from DE4, these
machines will have votings with the same result as above, they will stopImme-
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Figure 6.6: the result of the voting

Figure 6.7: the result of the voting

diate, including DE1. The Helix will start accumulating. The next event in
the case is that the blocked situation in DE4 is resolved. This will make down-
streamReady positive for the machines following downstream. Because of this,
a number of votings will take place. The result for the DE2 and DE3 will look
like the following shown in �gure 6.10.

The result for the merger will be the same. The e�ect will be that all the
packages downstream from the DE1 will be emptied from the production line.
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Figure 6.8: the result of the voting

Figure 6.9: the result of the voting

Figure 6.10: the result of the voting



Chapter 7

Simulation

7.1 Introduction

The aim of creating this simulator was to have a possibility to try out the
agent intelligence in a not to complex line con�guration. The simulator is a
reconstruction of an already existing simulator, provided by Tetra Pak [?]. In
general the simulator works in the same way but the control structure is changed.
A separate control script has been introduced as representation of a software
agent. There is one agent and an agent database linked to each machine, and
possibility to extract information from a data table.

Line Simulator is programmed in Matlab and is modeled with a single thread
running at step time 0.01s. The agent interface executes in conjunction with
the update of respective machine.

7.2 Design Description

The new version of the simulator has several changes making it di�er from the
old version, but the generic construction is still intact. It is therefore possible for
the user to construct a customized line con�guration simply by adding machines
to a cell-matrix, l, representing the line (�gure 7.1). Machines are represented as
data structures i.e. collections of variables. These collections are representations
of so called holons, i.e. machine and intelligent agent as one entity.

The line con�guration script is the part where machines and agents are
registered into the agent platform. It is in the line con�guration script that the
user is able to set parameters individual to each agent. For example an agent
receives its identi�cation number or maximum allowed capacity is de�ned. To
extract information during runtime, agents access information from the agent
data structure within the cell-matrix l (�gure 7.2).

7.2.1 Improvements from older version

To be able to simulate branching in the line it is necessary to make a di�erent
representation of the line in the simulator than the old cell array. By introducing
a cell matrix as representation it is possible to create parallel lines. Separate
machines can be reached by simple indexing i.e. l{i}{j}.

49
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Figure 7.1: Line con�guration is done manually simply by modifying parameters
in the data structures representing machines and databases.

Three machines, not represented in the earlier version, have been imple-
mented and added to the simulator.

• Divider - handles branching of line and separation of package �ow

• Distribution Equipment - non accumulating equipment

• Merger - handles line assembling

A possibility to de�ne the physical machine's capacity constraints has been
introduced. The parameters are nominal capacity and maximum capacity, and
are given in units of packages per hour. The old version only de�ned the �ow
of the �ller machine and assumed that no complications would arise that made
such constraints necessary. We know for a fact that a machine must have a limit
to how much it may produce, and that this limit could create problems due to
accumulators unloading or queues emptying.

7.2.2 Agent software structure

The software agents are designed as matlab-scripts, each divided into three main
parts (�gure 7.3). Each part is constructed as a matlab function, individually
designed for each type of agent.
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Figure 7.2: A holon is represented by a data structure containing all relevant
information, including the database used by its agent.

• Diagnostics

• Case-Based Reasoning

• Flow-Model & Execution

Each agent has its own Agent Database where control variables are stored.
Agents communicate by updating parameters in other agent databases. In other
words there is no modeling of the actual communication in this simulator since
the environment doesn't support modeling of networks.

Diagnostics

In the beginning of each sequence an agent runs a diagnostic procedure where
parameters are read from the data table and relevant information is gathered
from other agents.

There is certain information, collected from other agents, that doesn't need
direct actions by the speci�c agent. For example it could be information about
a machine's maximum allowed capacity that has changed. This update will
not need direct actions by most agents but in the case of the Divider it will
automatically a�ect the dividing of packages.

In the end of the diagnosis there is a complete reading of the speci�c agent
database. Any information here placed by other agents will both be forwarded
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Figure 7.3: The three main sections in the agent.

to other agents that need the information and also stored for later use. This
makes the agent take into account the needs of surrounding agents. If there is
a parameter change the discovered information is stored in an array, requests,
and passed on to be taken care of by the reasoning section. Typical diagnoses
may be; isOver�owed, startAccumulating and maxOutput.

Case Based Reasoning

The next section of the agent decides upon what is best for the local machine
that it represents. The decision-making in the simulator software agents is based
on a prede�ned priority list within each agent, which de�nes what information
to handle �rst.

Initially the requests array is read. Depending on the name of the request,
and the type of the agent receiving it, a decision is carried out for the request.
Case-solutions provide complete schemes for what the agent should do in case of
an emergency. For example, if the request from the diagnosis in the helix agent
is maxOutput, a message is sent to the agent downstream in order to inform of
the increase of speed. There will also be an action, maxOutput stored in the
array decisions, sent to the Execution in the Helix agent.
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Flow Model and Execution

To ensure that the decision taken by agent so far is allowed, regarding machine
limitations, the decision is run through the �ow-model. This model is a set of
algorithms that guarantees that no unde�ned and unwanted decisions for the
speci�c agent are executed. In most cases this is to ensure that a machines
infeed runs at the same speed as its outfeed.

Finally the decision is carried out inside the execution function of the agent.

7.3 Simulation Cases

To verify the start- and stop policy and the adaptation rules that we have
worked out, it is convenient to run simulations in order to get a hint whether
the policies are strong enough. The cases that are presented below are the ones
that are more sensitive and thereby most important for the agents to handle.
Due to the simple structure of most production lines, the most interesting part
to study becomes the dividing of packages in order to create branching in the
line. The simulation cases are run on two speci�c line con�gurations (�gure
7.4); the simple line of four machines, and the little more complex line with a
branching structure.

Figure 7.4: Simple line and line con�guration with branching.

1) A simple Start- and Stop policy for the �rst line in order to verify that the
machines start and stop policies work satisfactory. This is done by introducing a
blocked condition for the last distribution equipment; this should start a chain-
reaction making every machine upstream stop, including the Helix (after full
accumulation level).

2) Similar to the �rst case. The only di�erence is that when the Helix has
a 50% accumulation level the blocked distribution equipment will be ready for
production and the package �ow will start again. This case will verify that the
package line is able to recover from a blocked situation and also that the line
is able to handle a situation where the Helix must unload a large number of
packages.

3) One of the branched distribution equipments becomes blocked. The di-
vider must now direct the �ow to the other distribution equipment in order to
maximize throughput. This case will show that the divider is able to direct the
�ow, in order to maximize throughput, when one of the branching distribution
equipments is blocked.
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4) There is an increase of package �ow, due to Helix unloading or production
increase by the �ller. This will verify that the production line is able to handle
an increase of package �ow.

5) A redistribution of the �ow through the branch is generated, due to
capacity change in one of the branched distribution equipments. This case will
show that the divider is able to dynamically distribute the �ow through the
branching, and also that it is able to react to unforeseen events.

6) There is a situation in the �rst line where one distribution equipment
becomes blocked which causes the Helix to accumulate. The next event is a
blocked situation in the Filler machine. When the Helix has an accumulation
level of 60% the distribution equipment resolves the blocked situation but the
�ller remains in blocked. This will make the Helix to unload its packages and
after make a normal stop. The normal stop will propagate downstream until all
machines have made a normal stop.

7) The �rst thing that happens is that a command stopImmediate makes the
last machine in the line stop. This will make the stop propagate upstream. Then
the distribution equipment, before the divider, will be in a situation that makes
it do a stopImmediate. After that, the last distribution equipment will resolve
its stop situation and be able to produce again. This will open the possibility
for the machines in between to empty their packages and make a normal stop.

In the beginning of a simulation the user enters simulation duration and case
number.

7.4 Simulation Results

The simulation results are plotted in a variety of windows with categories
like; machine �ow, package content, infeed speed, outfeed speed, state, and
agent communication. All plots are based on di�erent data stored, in a three-
dimensional data matrix, each time step of the simulation. In order to be able
to understand the results some de�nitions has to be posted.

Possible machine states

1. Preparation

2. Blocked

3. Ready for Production

4. Recieve and Deliver

5. Deliver

6. Recieve

7.4.1 Case Veri�cation - Case 1

The �rst case listed above tests the start- and stop in the �rst line. At start up,
as the machines are done preparing, each agent noti�es upstream that down-
stream is ready and it is okay to start producing packages (�gure 7.5). After
60 seconds the last machine in the line gets in a blocked state (�gure 7.6). The
TCBP agent immediately noti�es the distribution equipment (DE) that down-
stream is not ready. The DE agent commands its machine to stopImmediate,
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Figure 7.5: Downstream ready is noti�ed, in a chain reaction, upstream as soon
as a machine is done preparing. If downstream ready is false the machine will
not start running.

why the machine goes into state Receive. At approximately 70 seconds the DE
is full (�gure 7.10) and therefore goes into Ready for Production. Now the Helix
starts receiving until it is full and then stops. Finally the Filler produces pack-
ages until there is no more space in the machine and thereafter goes into Ready
for Production, i.e. stops. The simulation sequence lasts for 300 seconds. About
200 seconds after the occurrence of the blocked situation in the last machine,
the Filler gets full and stops, which make the entire line stand by doing nothing
until the last machine resolves the situation(�gures 7.7, 7.8, 7.9 7.11 and 7.12).

7.4.2 Case Veri�cation - Case 7

The last case of the ones listed above is a test of our start and stop policy
in the second line con�guration. At time 150s the last machine, the Tetra
Pak Cardboard Packer (TCBP), gets blocked (�gure 7.13). The TCBP-agent
sends a message to the Merger-agent upstream that downstream is not ready.
This cause the Merger to make a Stop Immediate which makes it go into state
Receive. When the Merger is full it goes into state Ready for Production and
sends a message to the closest machine (machines) upstream that downstream
is not ready. This procedure continues until all machines are full or have no
more packages to deliver. The reason why it takes longer time for the right
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Figure 7.6: At 60 seconds the last machine in the line gets blocked. Upstream
the distribution equipment starts �lling up. When full they stop.

distribution equipment than the left, to get full, is that the divider is set to
direct more packages to the left than to the right. It is important that this kind
of situation does not create a problem.

Before the Helix reaches its full level the distribution equipment downstream
of it becomes blocked. This occurs at 200s. For the moment this doesn't change
the state of any machine downstream since they are all already in Ready for
Production.

After 250s the TCBP resolves its blocked situation. The merger starts deliver
packages until it's not full anymore and then goes into Receive and Deliver.
Then, in a chain-reaction, upstream machines start the same procedure. After
some time, starting with the divider, the machines get empty and stops.

When the machines start emptying their packages the agent in each separate
machine will come to the conclusion that it is in a "full" situation and therefore
start running at maximum capacity (�gure 7.147.15).

7.4.3 Case Veri�cation - Case 3

Case 3 is a test of our �ow policy. It is run on the second line con�guration like
the previous case.

The Filler machine produces packages and delivers at 20 000 [p/h]. Initially
the �ow from the divider is divided equal; 10 000 [p/h] to the left and right



CHAPTER 7. SIMULATION 57

Figure 7.7: the TPCB becomes blocked one minute after start up

branch respectively (�gure 7.16). As constraint on the branching distribution
equipments a maximum allowed capacity of 15 000 [p/h] is introduced. After 80
seconds the right distribution equipment in the branch becomes blocked. The
Divider agent redirects the �ow so that the whole �ow of 20 000 [p/h] goes left.

A request to the nearest accumulator upstream to decrease �ow is now sent
by the Divider agent since it detects that its in�ow is greater than the sum
of the branching machines maximum allowed capacities. Package content will
start increasing on the left outfeed conveyor, in front of the left distribution
equipment, until the decreased �ow reaches the divider (�gure 7.17). This is
the explanation to the high �ow on the left outfeed conveyor output during 50
seconds. The goal is to make the Helix accumulate just as much that the out�ow
of the helix becomes exactly 15 000 [p/h]. This information is included in the
accumulation request by the Divider but is not that exact at this moment.

7.5 conclusion

Without implementing our theories it would have been hard to think about all
possible situations that might happen when a line is running. This obviously
helped us designing the voting rules for our policies.

Simulation results are satisfactory in all cases tested so far and it proves that
the voting rules are strong enough to handle both line �ow and start- and stop.
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Figure 7.8: The distribution equipment receives packages until it gets full.

The dividing of packages and handling of capacity change when a production
line branches out, has become one of the main parts of this project. It has
therefore been very helpful to have a simulator to try out all theories on. The
divider agent acts in a proactive manner when it informs nearest accumulator
upstream of a problem that will happen in a while but has not yet occurred.
This type of intelligent behavior is used in the implementation and works very
well in the simulation.

Even though the results in the prede�ned cases came out positive there are
still things to work on.

• All cases stored in the agents, as the simulator is implemented today, are
solutions as result of our voting rules with no possibility of active voting.

• No concurrent execution of the agents is possible in our environment.
During each time step the agents execute in a prede�ned order.

• The database reading sequence is cost expensive and makes the simulator
run a bit slow.

All of the new machines implemented are designed based on assumptions and
logical thinking, since as of today there are no machines of that exact kind. The
implementation of these machines turned out to take more time than planned.
This is one of the reasons why there wasn't time to try all ideas we had for the



CHAPTER 7. SIMULATION 59

Figure 7.9: At time 70 seconds the infeed conveyor of the distribution equipment
get full and the machine is declared full as well.

simulator. As it turned out it is still of much help when it comes to get an idea
of whether our rules behind the control policies are strong or not.

It would be interesting to apply the agent solution and policies that we
use in a simulator environment more compatible with the distributed agent
technology. The ideal way to implement the simulator would be to use an
environment that handles modeling of real-time kernels and networks for wireless
radio communication, since that is what the real application would look like. In
a not to distant future this could be the case. Today Tetra Pak uses software
from Rockwell Automation in order to program their PLC's. In the lab at
Rockwell Automation in Cleveland a way to simulate Multi-Agent Systems has
been developed [13]. The ambition in the future is, if possible, to use the
Rockwell tools in order to take the next step towards an agent based solution.

We think it is pro�table for Tetra Pak to apply this technology in their
packaging lines in the future, mainly because of three reasons;

The robustness of the system will improve with the ability to act swift and
correct to unforseen events.

There will be less waste on the �oor due to the proactive behavior of the
agents.

Due to the abstract architecture of the system it will be possible to integrate
new machine types without recon�guration.

The question is how distant in the future this lies and how much the company
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Figure 7.10: When the infeed conveyor of the distribution equipment is full, the
machine is declared full. This happens at approximately 70 seconds.

is willing to pay to apply the agent based solution. The technology is still young
so it is di�cult to look at real applications because there are very few. There
will probably have to be a lot more research done in this �eld before a complete
solution feels realistic. Still, as far as we are concerned we see no reason why
Tetra Pak shouldn't continue on this track.
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Figure 7.11: The helix start accumulating packages when downstream ready is
false.
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Figure 7.12: The �ller machine start producing packages at 20 000 [p/h].
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Figure 7.13: a plot showing the state changes in case 7
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Figure 7.14: the outfeed speed of all machines that only have one outfeed con-
veyor, i.e. the divider is not included.
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Figure 7.15: the outfeed speed of the dividers two outfeed conveyors
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Figure 7.16: A redistribution of the �ow through the divider is done after 80
seconds. The entire package �ow is now directed to the left outfeed conveyor.
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Figure 7.17: Immediately after that no more packages are sent to the right
outfeed conveyor, packages starts stock on the left outfeed conveyor.
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