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Chapter 1

Introduction

1.1 Background

For safety reasons many chemical producing companies depend on a detailed
knowledge of their production processes. A chemical reaction absorbs or
releases energy and an uncontrolled energy release can be very dangerous.
There may be a sudden increase in temperature or pressure resulting in fire
or even an explosion.

A tool for measuring the energy exchange in a reaction can therefore be
very useful in gaining understanding of a certain chemical process. ChemiSens
(see Section 2.1) has developed such a tool, a reaction calorimeter. The
ChemiSens Reaction Calorimeter System can measure the energy exchange
in a process, as well as the temperature and pressure.

However, to gain full understanding of an actual chemical production
process more information is needed. Questions like "Can we transfer the
information from the calorimeter to a large scale process?" or questions on
security aspects of the production need to be answered. One way to answer
them would be to simulate the calorimeter and the chemical in a computer
before using the real calorimeter. This is an inexpensive and straight forward
solution. One can easily vary the conditions of the process, like the amount
of reactants and the energy supply, without wasting time and expensive
chemicals. In our thesis we have constructed such a computer model.

Specifically Chemisens wants to use the computer model to simulate the
experiments before performing them and also as a tool for improving the
calorimeter. In the future Chemisens vision is to be able to offer customers
a simulation software developed by Chemisens.

1.2 Project task

The main task of this master thesis was to develop a computer model of
the ChemiSens reaction calorimeter system see Figure 1.1. An important
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Chapter 1. Introduction

aspect of the modeling was to get familiarized with the calorimeter and the
enclosed software. We were also to investigate the possibilities of improving
the current cascade control algorithm in the calorimeter as well as testing
other control methods, such as LQG and PID. The main part of the modeling
was done in the object-oriented modeling software Dymola that uses the
programming language Modelica1. Matlab was also used for evaluating the
control aspects of the model and for plotting.

Figure 1.1: This is a picture of the real calorimeter system.

1Modelica is an object-oriented modeling language designed to modeling of complex
systems [2].
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Chapter 2

Companies involved

This section contains a brief presentation of the companies involved in this
master thesis and how they have contributed to this thesis.

2.1 Chemisens AB

This thesis was done on an assignment from Chemisens. Chemisens has
developed and sells a reaction calorimeter that very accurately measures the
heat exchange in a chemical reaction. Today there is not any computer
simulation possibility in the enclosed software, for handling the equipment,
that Chemisens sells. In the future Chemisens aims to develop their own
software. A feature in this program could be the possibility to simulate
the experiment before actually carrying it out. This is where our computer
model could be used. Another usage will most likely be development and
improvement of the calorimeter system.

Chemisens was founded by Holger Nilsson and Christer Silvegren in the
seventies and the calorimeter is based on the results from their Ph.D thesis.
The first reaction calorimeter was built in 1983. Chemisens vision is to offer
reaction calorimeters based on the best possible measuring principles.

During our work with this thesis Chemisens has contributed with their
knowledge on calorimetry as well as the opportunity to verify the computer
model on the real reaction calorimeter.

2.2 Modelon AB

As already mentioned, the main part of the modeling was carried out in Dy-
mola. Modelon is a company based in Lund that tailors Dymola libraries for
their customers. Modelon provides physical modeling, simulation of dynam-
ical systems and model based control design, of advanced complex technical
systems. Modelon offers good knowledge in these three subject areas. The
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Chapter 2. Companies involved

modeling is based on the modeling and simulation tool Dymola1 which in
turn is based on the Modelica language.

In this thesis Modelon contributed with their knowledge in advanced
modeling in Dymola.

1Dymola modeling and simulation tool, a product of Dynasim AB
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Chapter 3

Software tools

This chapter contains a brief description of the software used to create the
models. In this project a number of different simulation tools have been
used. Perhaps the most widely known is Matlab. Another simulation tool
that was used is Dymola.

3.1 Matlab & Simulink

Matlab is an advanced numerical computing program. It can be used for
heavy mathematical computations as well as for analysis and simulation of
dynamic systems. This is especially useful in control. There is even a special
control toolbox in Matlab called Simulink. Using Simulink, one can build a
model of a particular system using drag and drop blocks. The system can
then be analysed from a control point of view using the control commands
in Matlab. This was very useful in our thesis.

3.2 Dymola

This program is designed for modeling and simulation of dynamic systems.
One of the advantages with Dymola compared to Matlab is that one does not
need to write the state space equations for a system built in Dymola. Parts
describing the system are simply connected to make up a model and you can
then run your simulation. Dymola will then by itself calculate the state space
model. Interaction between Matlab and Dymola is easy and very useful. A
linearized Dymola model can be imported to Matlab and analyzed with the
control commands of Matlab. From a control point of view this gives a better
understanding of the limitations and of structure of the model. Simulation
data can also be exported from Dymola and then imported in Matlab as the
plot function in Matlab is more manageable.

The models in Dymola are built by assembling defined objects from the
Dymola libraries. This is done in a graphical interface by simple drag and
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Chapter 3. Software tools

drop. The user can also create new objects and libraries and existing objects
can also be altered. The objects are then connected by connectors. A con-
nector in Dymola can have different types, for example Heat flow, current,
temperature. Only objects with the same connectors can be put together.

3.2.1 Modelica

Dymola is programmed in a language called Modelica [2]. The main differ-
ence between Modelica and other programming languages is that Modelica
is specifically designed for modeling, rather than programming in general.
Like Java, Modelica is an object oriented programming language. For those
who is not familiar with this here is a short explanation.

In Object Oriented Programming (OOP) the program is divided into
different classes. The programmer decides how the objects are allowed to
interact with each other. A class can inherit from another class and get
the characteristics of that class. That way, a class can be used in many
instances of a program. A class can also use an interface. An interface
contains certain preset properties. The standard Dymola interfaces used in
this thesis are HeatPort, RealInput and RealOutput. The HeatPort interface
has two variables temperature [K] and heat flow rate [W]. Heat flow rate is
the amount of energy passing through the heat port per unit time. The
RealInput/Output has one real input/output signal

Modelica is built on component-based noncausal modeling. In simple
terms this means that one can implement equations in the model without
caring about the inputs and outputs.

3.2.2 Linearize

The Linearize command in Dymola creats a linearized version of the current
model. This data is stored in a .mat-file that can be imported into Matlab.
The file, apart from the A, B, C and D matrices, also contains information
about what the states (x), the inputs (u) and the outputs (y) are in the
model. With the control commands of Matlab, like bode, margin and pole,
the stability and general behaviour can be explored. For comparison, the
linearized model can then be imported back into Dymola. With a special
block, StateSpace, a Dymola simulation of the linearized system can be per-
formed. These results can then be directly compared to the behaviour of the
original system, giving a picture of the accuracy of the linearized model.

6



Chapter 4

Modeling the calorimeter

This chapter treats the modeling of the reaction calorimeter. In the two
first sections the background of the calorimeter is explained. Then a simple
model of the calorimeter is derived from the temperature balance equation
and implemented in the Matlab Simulink environment. In the following
section the model is made more complex and implemented in the software
Dymola using the programming language Modelica [4].

4.1 Calorimetry

Calorimetry is a scientific method for measuring the heat or physical changes
of a chemical reaction. These measurements are made in a calorimeter where
properties such as temperature, energy changes and pressure can be mea-
sured.

Many companies use the calorimeter in safety studying aspects of their
processes. What happens, for example, if the cooling system suddenly shut
down? This can be tested in the controlled environment of a calorimeter.
The knowledge gained from the calorimeter experiment can then be used
to better understand a particular process and it can also be used to ensure
safety margins of a process. Under what conditions might sudden increases
in temperature or pressure occur? This can be evaluated using calorimetry.

4.2 The calorimeter

There are a number of different calorimeters specialised in different types of
chemical measurements. There are for example constant pressure calorime-
ters, differential scanning calorimeters, high energy particle calorimeters and
reaction calorimeters.

In a reaction calorimeter the heat exchange can be measured by integrat-
ing heat flow over time. The heat flow is measured in the heat flow sensor
inside the reactor bottom. In the reactor, the temperature, heat flow and

7



Chapter 4. Modeling the calorimeter

pressure can be monitored. The speed of the reaction, and thus temperature
and pressure, can also be controlled via an electrical heater at the bottom of
the vessel and a Peltier element at the bottom. Through the, lid reactants
can be added during experiments. A stirrer ensures that the reactants are
well mixed at all times. The speed of the stirring can be adjusted.

As mentioned before, Chemisens has developed and fabricates a reaction
calorimeter. A basic picture of the principle of a reaction calorimeter is
shown in Figure 4.1.

Figure 4.1: The principle of the reaction calorimeter that Chemisens has devel-
oped.

In the simple picture in Figure 4.1 the calorimeter consists of the following
parts: an insulated lid, inner and outer glass walls, the bottom made of a
metal jacket containing the heat flow sensor and the peltier element. The
air between the lid and fluid and the glass walls insulates the calorimeter so
that all heat exchange happens through the bottom. This insulation is of
course not perfect so the reactor is put in a water container that is kept at a
temperature 0.2oC above the set reference temperature. The water container
also ensures a constant temperature environment.

The calorimeter is a slow system since the heat conductance in the reactor
bottom is a rather slow process. This is due to the many layers of material
between the peltier element and the fluid in the reactor. The time delay in
the heat conductance is something that later needs to be taken into account
in the control of the calorimeter.

4.3 Theoretical background

In this section the theoretical background is discussed and presented. The
first part discusses a simple energy balance and assumptions that can be

8



4.3 Theoretical background

made in the case of heating a fluid. The second and the third parts discuss
the heat equation that describes the heat distribution in a material and how
to implement this into the computer. The last part handle the notations
used in heat calculations and about the peltier element.

4.3.1 The Energy balance

The simplest way to model the temperature change in a jar with a fluid, the
reactor in the real case, is by an energy balance. The change in "process
energy", i.e. a chemical reaction that produces heat, can be written by a
simple energy balance like

accumulated = in + produced − out

where the accumulated energy are the sum of the uncontrolled produced
energy and the added or subtracted energy that can be controlled. There
are of course some assumptions that are to be made for the fluid. They are
the following

1. Mass remains as fluid.

2. Ideal stirring.

3. Constant density.

4. Perfect insulated from the surroundings.

5. Constant heat capacivity.

The first point implies to that the fluid not will vaporize or get stiff. The
second point means that we got good stirring in the fluid and in that way
has the same temperature in the whole fluid. The third point assumes that
the fluid density will remain the same despite the temperature. The fourth
point means that no uncontrolled energy is leaking to the outside of the jar.
The last point follows from the first and third point and assumes that the
fluid not will change the capacity for stored energy in the fluid. An equation
for the temperature change can now be written based on these assumptions.
The equation is given by

mc
dT

dt
= Qin + Qprod − Qout (4.1)

where m is the mass in kg for the fluid, c is the heat capacivity in J/kgoC
for the fluid, Qin is the supplied energy in J, Qprod is the released energy in
J (as in a thermal reaction) and Qout the energy flow out in J that can be
controlled. The energy balance is essential for understanding the modeling
of the fluid in the reaction calorimeter. The description on how to model
the fluid in the jar has now been made. In the next section the temperature
distribution in the wall of the jar will be investigated.

9



Chapter 4. Modeling the calorimeter

4.3.2 The heat equation

In reality the whole jar is not insulated from the surroundings since one
wants to be able to calculate the heat transported out from the jar. There
will be a temperature gradient in the wall of the jar if there is a tempera-
tures difference between the inside and outside of the jar. The temperature
distribution in a material can be described by the heat equation. The heat
equation [1] for a one dimensional heat flow is given by

∂T (x, t)

∂t
− a

∂2T (x, t)

∂x2
= 0 (4.2)

where a = λ
ρc

is the heat diffusivity a quantity depending on the material
density , specific heat capacity and thermal conductivity.

ρ = density (kg/m3)
c = specific heat capacity (J/kg ◦C)
λ = thermal conductivity (J/m s ◦C)
T = temperature at x and time t (◦C)

By Fourier’s law the heat flow j in a isotropic material becomes as

j = −λ
∂T

∂x

The heat flow through the boundary then yield as j · n (see Figure 4.2) and
gives us the boundary condition at x = 0

−λ
∂T

∂n
= α1(T

y
1
− T1) = j · n (4.3)

where T y
1

is the temperature on the outer left side of the wall and

αi = heat transfer coefficient (J/m2s)

at boundary i.

4.3.3 Discretization of the 1D heat equation

In order to be able to implement the heat equation in Dymola discretization
of the heat equation is needed to be able to describe the temperature in
the material. A common used method is called the finite difference method
(FDM) [3] where an approximation for the partial space derivate is made.
This is made with a second order difference approximation. The approxima-
tion for the room dependent part is given by

∂2Ti

∂x2
≈

Ti−1 − 2Ti + Ti+1

∆x2
, 1 ≤ i ≤ N (4.4)

10



4.3 Theoretical background

Figure 4.2: Wall with thickness L and heat transfer coefficients α1 and α2 at the
boundaries.

where T1 ... TN are the temperatures at the nodes, if we choose to have N
number of nodal points and

∆x =
L

N − 1

is the step length if the wall material thickness is L (see Figure 4.3).
The approximation for the Neumann boundary is given by

dT

dx
≈

Ti+1 − Ti−1

2∆x
(4.5)

for the node number i = 1, N . Using 4.4 and 4.5 in 4.2 and 4.3 gives us the
approximation for the heat equation

dTi

dt
− a

Ti−1 − 2Ti + Ti+1

∆x2
= 0, 2 ≤ i ≤ N − 1 (4.6)

and the boundary conditions as

−λ
T2 − T y

1

2∆x
= α1(T

y
1
− T1) =

Q1

A

−λ
T y

N − TN−1

2∆x
= α2(TN − T y

N ) =
Q2

A

(4.7)

where Q1 and Q2 are the heat flow through the wall at x = 0 and x = L re-
spectively. A is the cross sectional area of the wall. The temperatures T y

1
and

11



Chapter 4. Modeling the calorimeter

Figure 4.3: The node distribution in a wall with thickness L and N number of
nodes. Where T y

i corresponds to the temperature outside the wall for the node i
and Ti the temperature at the inside for the same node.

T y
N are assumed to be known, but it is unlikely that they are. To solve this

a first order difference approximation for the outer boundary temperatures
is used, according to

Ti =
Ti−1 + Ti+1

2

There by the temperatures T y
1

and T y
N in the boundary equation 4.7 can be

eliminated. The temperatures for the boundaries are then given by

T1 = T2 +
∆x

Aλ
Q1

TN = TN−1 +
∆x

Aλ
Q2

(4.8)

not containing the outer temperatures T y
1

and T y
N .

4.3.4 Heat flow and heat flux rate

Heat flow and heat flux are often used when working with enthalpy changes.
They are both describing an energy flow. But the difference between them is
that heat flow has the unit [W ] while heat flux has the unit [W/m2]. They
are both used and it depends on what purpose one have. In the continuation
of this report the heat flow rate are going to be used. The heat flow in a
material is described by the heat conduction equation

12



4.3 Theoretical background

Q =
λ

d
A∆Tt (4.9)

where λ is the thermal conductivity in J/msoC for the material, d is the
thickness in m, A the cross section in m2 for the heat flow, ∆T the temper-
ature variance in oC in the material and t the time in s.

Heat flow through a cross section with the heat transfer coefficient α is
given by the equation

Q = αA∆Tt (4.10)

This is used when there is some kind of resistance when heat is passed
through two materials.

4.3.5 The peltier effect

The function of the Peltier element is built on the principles of the peltier
effect which was discovered by Jean Peliter in 1834. The peltier effect is the
phenomenon that one can create a heat difference from an electric voltage. It
is typically made from two semi conductors of n- and p-type. By connecting
the semi conductors and then applying a current, one can transfer heat from
one junction to the other thus obtaining one cold and one warm side of the
element. This is often used in thermoelectric cooling.

Figure 4.4: The principle of the peltier element.

The peltier element in the Chemisens calorimeter can be described by
the following equations. The heat pumped on the cold side Qc is given by
the equation

13



Chapter 4. Modeling the calorimeter

Qc = SmTcI −
1

2
I2Rm − Km∆T (4.11)

where Sm is the module Seebeck coefficient in V/K, Tc the temperature on
the cold side in K, I the input current in A, Rm the module resistance in
Ω, Km the module thermal conductance in W/K and ∆ T the temperature
difference Th - Tc in K. The heat pumped to the hot side is equal to

Qh = Qc + Pin (4.12)

Where an extra term Pin from the heat generated by the thermal resistivity
is added. The equation for Qc prescribes the heat flow in to the peltier
element. Simulating an ideal peltier with excellent cooling on the hot side
can be done by setting the coefficient Km = 0.

4.4 The simple model

The first model was derived by paper and pen and was based on the a energy
balance 4.1. The goal of this first model was to develop an understanding
of the calorimeter and what sort of behaviour that could be expected. Be-
fore building the Matlab models the heat equations were set up by hand.
Basically was this just a model for heating/cooling water in an insulated
container. In this case there was no added energy Qin, only produced Qprod

and subtracted Qout energy that was controlled. The temperature change
was then given by

dT

dt
= kQprod − kQout

where k = 1

ρcV
. This was implemented in Matlab Simulink and tested. The

input signal for the produced energy was changed and the aim was to come
back to the reference temperature as quickly as possible. This was done
with a PI-controller. This simple model gave some basic understanding of
the calorimeter. It was quickly discovered that Matlab was not the best
modeling tool for this task. In Matlab all the states and signals have to be
defined by the user, this would be very difficult in a large complex model
with a large amount of states.

4.5 The advanced model

A new model was developed in Dymola by using the mathematical heat
equation (4.2), since the first model based on an energy balance was too
simple.

The reactor bottom was modeled as a cylindrical plate with heat con-
duction in the axial direction and discretization was also made in the same
direction. The mathematical model is given by the equations 4.2 and 4.3 as

14



4.7 Nodes

∂T (x, t)

∂t
− a

∂2T (x, t)

∂x2
= 0

−λ
∂T

∂x
= Qprod, x = 0

−λ
∂T

∂x
= α1(Theatsink − TN ), x = L

The plate was given a connector, one on each side. A heat flow rate Qprod,
assumed to be controlled by a known signal, on the upper side and a heat
sink with constant temperature Theatsink to the other side was then attached.
These were used when testing the model. The model was the first part in
the CalorimeterSimulation library.

4.6 Nodes

The algorithms for calculating the temperature distribution throughout the
different parts of the calorimeter is naturally discrete. The temperature is
calculated at different points in, for example the reactor bottom. Such a
point is called a node. Ideally, every element should have an infinite number
of nodes. This of course is not possible in reality. An important part of the
model building was therefore to evaluate how many nodes was needed to get
an accurate but reasonably fast model. This issue is discussed in Section 4.9.

4.7 Modeling the calorimeter in Dymola

Modeling the reaction calorimeter using the Dymola program was done by
dividing the calorimeter into suitable components. The following classes
were defined:

• Reactor bottom

• Heat sink

• Reaction mass

• Peltier

• Heat flow sensor

• Thermal conductor

• Reactor wall

15



Chapter 4. Modeling the calorimeter

None of these elements existed in the standard Dymola library. However,
a good starting point could be found in the free library ThermoPower [5]
developed by Francesco Casella. These elements were not perfectly adapted
to the task, the elements were for example not discretized and the output was
heat flux not heat flow which would be more suitable for this task. Therefore
a substantial part of the modeling was to write new elements. These parts
later made up the model library.

4.7.1 The CalorimeterSimulation library

In this section the model classes will be presented and discussed.

HeatEqSolver solves one-dimensional heat equation for
a plate or a cylinder. The temperature distribution is de-
scribed by the discretized Fourier’s equation (4.6) and the
boundary temperatures (4.8). By choosing the parameter

geomOpt the user can decide to solve the equation in a plate or in a cylinder.
For the cylinder case the parameter h is also used.

Parameters: Nr is the number of discretization nodes, geomOpt is the
choice for heat flow geometry, r is the plate or inner cylinder radius, t is the
bottom or wall thickness, l is the cylinder wall height used together with
the geomOpt option, ρ is the material density, c is the material specific heat
capacity, λ is the material thermal conductivity, Tstartint is the start temper-
ature at the inner node, Tstartext is the start temperature at the last node
and initOpt is the steady state initialization option.

ReactorBottom is a thermal model for a one dimen-
sional heat transfer in a circular metal plate with a spec-
ified thickness d. The element contains the heatEqSolver
object that solves the heat equation. The model is axial-

symmetric and has one node in the radial direction and a specified number
N of nodes in the axial-direction chosen by the user and uses two heat ports
to simulate the connection of the surfaces to another material. Leaving one
heat port unconnected means thermal insulated on that side. The model
allows the user to set material parameters, dimensions, number of nodes and
initial temperatures.

Parameters: Nr is the number of discretizing nodes, r is the bottom
radius, t is the bottom thickness, ρ is the reactor material density, c is the
reactor Material specific heat capacity, λ is the reactor material thermal
conductivity, Tinit temperature start value and initOpt is the steady state
initialization option.
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4.7 Modeling the calorimeter in Dymola

HeatSink is like an electrical ground. But in this case
there is no current instead a heat flow. This means that the
element can have infinite heat flow into it without changing

its temperature, i.e. the temperature will remain the same no matter of
what. The model is simply created by using a heat port with a prescribed
temperature. The user can set this temperature parameter.

Parameters: T the heat sink temperature.

ReactionMass is describing a heat source in a fluid as a
chemical reaction. This is done by modeling the tempera-
ture for a fluid in a cylindrical tank by the equation (4.1).
The model has one realinput port to simulate the reaction

power released in the fluid and two heat ports one for the cylinder bottom
and one for the cylinder wall. The parameters for the model are fluid pa-
rameters, cylinder radius, initial temperature and thin-film resistance for the
fluid.

Parameters: m is the chemical mass, c is the chemical material specific
heatcapacity, h is the cylinder flange height, ρ is the chemical material den-
sity, αbottom is the heat conductance coefficient for the bottom, αwall is the
heat conductance coefficient for the wall, r is the cylinder bottom radius,
Tinit is the initial temperature of the chemical and steadyStateStart is the
steady state initialization option.

Peltier is describing the pumped heat and the tempera-
ture for a peltier element. This is done by the known equa-
tions for the heat flow on the cold and hot sides (4.11).

The model has one realinput port for controlling the current for the element
and one heat port on each side of the element. The parameters Sm, Rm and
Km can be changed. An additional option currentCorrection is available to
adjust or invert the input current, that can be necessary.

Parameters: Sm is the module Seebeck coefficient, Rm is the module
resistance, Km is the module thermal conductance and currentCorrection
adjusts the input current.

HeatFlowSensor is a sensor that measures the heat flow
out from the reactor base. The heat flow can be calculated
from the arising temperature gradient in the sensor. The
element consists of three HeatEqSolver elements giving the
heat distribution in the element. The model has two heat

ports and two realoutput ports delivering the temperatures on each side of
the element. The number of nodes in the element and the initial temperature
can be defined by the user.

Parameters: Nr is the number of axial nodes in each layer. The total
number of nodes will be 3*Nr-2, r is the sensor cross-section radius, Tinit
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Chapter 4. Modeling the calorimeter

is the start temperature value in the sensor and initOpt is the steady state
initialization option.

ThermalConductor is a model for transferring heat with-
out storing it and uses the ThermalConductor element from
the standard Dymola library. The element is used to model

the fact that there is not perfect thermal conductivity between the surfaces
when mounting them. The heat flow is given by the equation (4.9). The
element has two heat ports.

Parameters: k is the thermal conductivity of the material, r is the cylin-
der radius, t is the thickness of the conductor.

ReactorWall is like the reactor bottom model except
that this model describes the heat flow through a cylin-
der so the discretization is made in the radial direction. It
contains a HeatEqSolver object.

Parameters: Nr is the number of nodes, r is the in-
ner wall radius, t is the wall thickness, h is the cylinder wall height, ρ is
the material density, c is the material specific heat capacity, λ is the ma-
terial thermal conductivity, Tinit is the start temperature at the inner wall,
Tstartext is the start temperature t the last node and initOpt is the steady
state initialization option.

4.8 The complete calorimeter model

The complete calorimeter model is shown in Figure 4.5 and can be compared
to the calorimeter sketch in Figure 4.1. The mass of a fluid in the reactor is
modeled with the ReactionMass element. The inner and outer reactor bot-
tom and the reactor wall are modeled with the elements ReactorBottom and
ReactorWall. The reference thermostat is modeled as a heat sink that can
absorb all the produced heat and is therefore done by the element HeatSink.
The space between the inner and outer bottom consists of a heat flow sensor
and a peltier element. At last are there some thermal conductors added be-
tween some elements modeling heat paste used when assembling the reactor.
The two thermal conductors between the heat sink and the wall and the
outer reactor bottom are modeling the film resistance between the reactor
surface and the fluid in the reference thermostat.
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4.9 The complete calorimeter model

Figure 4.5: The calorimeter model created in Dymola using the CalorimeterSim-
ulation library. A description is made in section 4.8.
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Chapter 4. Modeling the calorimeter

4.9 Verification of model library

To verify the model library the elements were tested one by one on simple
cases were the results can be calculated.

4.9.1 ReactorBottom

It is of course important that the heat equation is implemented correctly in
the reactor bottom. To verify this one can add a known amount of energy
to the reactor bottom. The resulting increase in temperature can then be
calculated as

T1 =
Q

ρcV
+ T0 = 301.44K

where T1 is the resulting temperature, T0 the temperature from the begin-
ning and Q is the total amount of energy added.

In Dymola this is done by connecting a prescribedHeatFlow element form
the standard Dymola library to a ReactorBottom element. The setup is
shown in the Figure 4.6. The prescribedHeatFlow element generates a heat
flow from a given input signal. In this case two step signals were added
to a pulse, generating a total power. The reactor bottom was given the
dimensions, initial temperature and the material parameters for stainless
steel according to Table 4.1. Then the steady-state temperature is calculated
to 301.44 K. In the experiment the importance of the number of nodes in the
element was also evaluated. Higher numbers of nodes give a more accurate
solution. The test was performed with N = 5, 20, 100, 200 number of nodes.
The result of the experiment is shown in Figure 4.7.

Figure 4.6: The Dymola setup for the test of adding a known amount of energy.

In steady state any number of nodes should give the same result. This
was tested by doing a step response on a reactor bottom connected to a
heat sink, see Figure 4.8. The result shown in Figure 4.9 shows the mean
temperature in the reactor bottom element, as expected all the curves tend
towards the same steady state value.
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Figure 4.7: Simulation of different number of nodes in the reactor bottom. Higher
number of nodes gives a more accurate solution. The steady-state temperature is
301.44 K which is described best by 100 nodes or more.

21



Chapter 4. Modeling the calorimeter

Parameter Value Unit
Q 50 W
r 275 mm
t 4 mm
T0 300 K
ρ 8010 (kg/m3)
c 460 (J/kg · K)
λ 13.8 (W/m · K)
Theatsink 300 K
steadyStateStart false

Table 4.1: Simulation parameters for the reactor bottom test.

Figure 4.8: The Dymola setup of the steady state step response.
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Figure 4.9: Simulation of a step response for different number of nodes in the
reactor bottom. The upper curve shows the mean temperature in the object.
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Chapter 4. Modeling the calorimeter

4.9.2 ReactionMass

In the reaction mass element, it is important that the heat balance equation
is correctly implemented. This was done by setting the input signal to a
constant for a certain time thus giving an certain amount of power, see Figure
4.10. The temperature change can be calculated, using the parameters in
Table 4.2 in the equation

T1 =
Q

mc
+ Tinit = 300.48K

. If the heat flow out is zero the result should be a constant temperature
offset when equilibrium has been reached. The simulation parameters are
shown in Table 4.2. The result is shown in Figure 4.12 and as expected it
can be seen that there is a temperature offset.

Figure 4.10: The Dymola setup for the reaction mass test of adding a known
amount of energy.

Parameter Value Unit
m 0.1 Kg
c 4190 J/KgK
h 0.01 m
r 0.0275 m
αbottom 500 W/m2K
αwall 500 W/m2K
Tinit 300 K
steadyStateStart false
Theatsink 300 K

Table 4.2: Simulation parameters for the reaction mass test.

In the next case the model was tested with heat flow different from zero.
This was done by connecting the model to a heat sink with constant tem-
perature. The setup is shown in Figure 4.11. First a temperature change
occurs, then the same temperature as the heat sink is reached, see Figure
4.12.
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4.9 Verification of model library

Figure 4.11: The Dymola setup for the reaction mass test of adding a known
amount of energy with a heat sink attached.

4.9.3 Peltier

Testing the peltier element model was done by using constant current I
to the model and connecting two heat sinks to each side of the element
creating a temperature difference ∆T, the setup is shown in Figure 4.13.
The setup parameters are shown in Table 4.3. The results are shown in
Table 4.4 are compared to plots from the manufacturer [10] see Appendix
B.1. Simulation was done at the temperature Th 50oC on the hot side, the
cold side temperature Tc was then varied. The current I was set to 6 A. The
simulated values are close to the manufacturer values except for ∆T = 70.
It is unclear why.

Parameter Value Unit
Th 323.15 K
I 6 A
Sm 0.05343 V/K
Rm 2.4796 Ω
Km 0.5204 W/K
currentCorrection 1

Table 4.3: Simulation parameters for the peltier element test. Sm is the mod-
ule Seebeck coefficient, Rm is the module resistance, Km is the module thermal
conductance and currentCorrection adjusts the current signal.

4.9.4 HeatFlowSensor

The sensor gives the heat flow rate through the material. To test if the
element behaves as a sensor, a test was setup in Dymola according to Figure
4.14. This was done by connecting two heat sinks at different temperatures
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Figure 4.12: Simulation of the fluid temperature in the reaction mass for the
cases without and with a heat sink.
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Figure 4.13: The Dymola setup of the peltier test.

∆T Qcref [W] Qcsim [W]
0 57 59
10 49 50.6
20 41 42.1
30 33 33.5
40 25 25.3
50 17 16.9
60 9 8.5
70 1 0.1

Table 4.4: Simulation of the pumped heat Qcsim compared with the Qcref from
the manufacturer.
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Chapter 4. Modeling the calorimeter

to each side of the element. Thus creating a temperature gradient in the
sensor element. This was simulated with values shown in Table 4.5 and the
result can be seen Figure 4.15 as expected there is a temperature gradient
over the element. The element can therefore be used to measure the heat
flow.

Parameter Value Unit
Nr 100
r 0.0275 m
Tinit 300 K
initOpt false
Tcold 310 K
Thot 300 K

Table 4.5: Simulation parameters for the heat flow sensor test.

Figure 4.14: The Dymola setup for test of heat flow sensor.

4.9.5 ThermalConductor

The thermal conductor reduces the heat flow rate through two surfaces
placed together. This was tested by placing a reaction mass element and
a heat sink element on either side of the thermal conductor, see Figure 4.16.
The result is shown in the Figure 4.17. Large k is good thermal conductance.
The overshoot for the curve with k=1000 probably depends on errors in the
numerical integration. The simulation parameters are the same as in Table
4.2, except for k, r and d which can be seen in Table 4.6.

4.9.6 ReactorWall

This test is made the same way as the first test for the reactor bottom.
The importance of the number of nodes in the element is evaluated. The
setup and the result are shown in Figures 4.18 and 4.19. The simulation
parameters are shown in Table 4.7. The accuracy for 20 nodes or more is
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Figure 4.15: Simulation of the heat flow sensor.

Figure 4.16: The Dymola setup of the thermal conductor test.
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Parameter Value Unit
k 0.18 W/m2K
r 0.0275 m
d 0.00001 m

Table 4.6: Simulation parameters for the thermal conductor element in the ther-
mal conductor test.
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Figure 4.17: Simulation of the thermal conductor with different values of the
thermal conductivity coefficient k.
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about the same. There is a know error in this model regarding the heat flow.
This is caused by the discretization in the radial direction. The heat flow on
the outer surface is about 7 % higher than the input flow. The explanation
is likely that the energy equation not is energy preserving. This should not
cause any problem while the important part is on the inner side and the
reference bath is assumed to be able to take care of superfluous heat.

Figure 4.18: The Dymola setup for the reactor wall test.

Parameter Value Unit
r 0.0275 m
t 0.002 m
h 0.01 m
ρ 8010 kg/m3

c 460 J/kgK
λ 13.8 W/mK
Tinit 300 K
Tstartext 300 K
initOpt false

Table 4.7: Simulation parameters for the reactor wall test.

4.9.7 Conclusions

The tests made on the model elements all seem to show that the elements
behave correctly. As seen in the test on the reactor bottom, the heat flow
sensor and the reactor wall, the number of nodes in the elements are of
importance. 100 nodes or more give a good result. Naturally a large num-
ber of nodes give a better result, however too large a model may have too
long execution time. Therefore 20 nodes per element seem like a reasonable
choice. As more simulations were run even 20 nodes per element was too
time demanding, especially in the model calibration part, it was therefore
adjusted to 15 nodes per element. The difference between 15 and 20 nodes
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Figure 4.19: Simulation of the temperature in the reactor wall with different
number of nodes.
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4.10 Calibration of the model

should give an error in temperature of less than 0.5oC, this can be reasoned
from Figure 4.7.

4.10 Calibration of the model

To get an idea of how accurate the Dymola model is, experiments were
performed on the real calorimeter. These tests showed that the Dymola
model was more ideal than the real model. For example, the peltier element
in the model was much more efficient than the real peltier element. The
heat conductance in the model did not seem to be correct compared to the
real setup. Also, the exact heat conductance coefficients were not known.
These parameters depend on several factors. For example between the fluid
and the reactor wall or bottom the heat conductance depends on the fluid
velocity at the contact surface. Model calibration was therefore made to get
a more accurate model.

This was done by the additional Dymola option Calibration in the pack-
age Design. The model calibration option Calibrate was used on the calorime-
ter model. Calibrations are necessary for each fluid or chemicals that are to
be used in the reactor, due to the differences in material properties for dif-
ferent materials.

4.10.1 Experimental data

In order to calibrate the Dymola model, data from the real calorimeter was
needed. A schematic picture of the experimental setup is shown in Figure
4.20.

In the experiment the reactor was filled with 100 g of the fluid. The
controller in the control unit was disabled and the current I to the peltier
element was manually controlled. The current was set to a constant value to
avoid condensation on the inside surface of the lid. The condensation may
otherwise cause heat losses through the lid. After activating the current
but before the actual experiments begun the reactor was allowed to reach
equilibrium. To simulate a chemical reaction with heat production an elec-
trical heater in the reaction calorimeter was used. The heater was changed
sequentially. The changes were made as a pulse and a step. The pulse is
interesting to see how fast the system responds, it is also useful for the cali-
bration. The step response is interesting to see how the system responds to
a sudden increase of heat production.

The experiments were performed with water and with ethylene glycol.
Ethylene glycol is an oil with higher viscosity than water. The oil was tested
because it is interesting to see how well the model work on another substance
than water. A comparison between the material parameters for water and
ethylene glycol is made in Table 4.8.
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Figure 4.20: Simple picture of the real experimental setup.

Parameter Water Ethylene glycol
ρ [kg/m3] 998 1118
λ [W/mK] 0.6 0.2
c [J/kgK] 4190 2303
ν [Ns/m2] 0.0010 0.0036

Table 4.8: Material parameters for water and ethylene glycol. ρ is the density, λ
is the heat conductivity, c is the specific heat capacity and ν is the viscosity.
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By mistake the experiments were made at different currents, I = 0.5 A
for water and I = 1 A for ethylene glycol.

Several experiments were made but only two were successful. The other
ones failed because of mistakes made during the experiments. For example
different reactors were used at different experiments making it impossible to
compare the results. The reactors are unique in their performance. It would
have been desirable with at least two sets of data to be able to verify the
Dymola calibration. This was discovered late in the work and there was no
time to make new experiments. Every experiment took more than half a
day.

4.10.2 The calibration setup

The calibration was started with the model using water in the reactor. Ex-
perimental data for the reactor temperature Tr, the input power Pin to the
reaction mass and the current I to the peltier element were used as reference
data and input signals. The model setup was made to the given specifications
(see Table A.1).

A hard task was to find out which parameters to calibrate. At first,
parameters that were considered unknown or uncertain were adjusted and
tested. "trial and error" calibrations were also made, just to see how much
effect the parameter had. The first guess of parameters that were considered
as unknown or uncertain were the heat transfer coefficients for the bottom
αbottom and the wall αwall. Trying to calibrate these parameters was un-
successful. The parameter αwall got different values between 1000 to 10000
in every calibration under the same conditions. The only difference was the
max value that was set for the heat conductance in the calibration. This was
not realistic. The influence on the reactor temperature was small, only a few
degrees. The problem seemed to be the thermal conductivity in the wall
(λ = 13.8) that was the limit for how much power that could pass through
the wall. Adjusting the wall specifications would solve the problem and the
parameters that were considered as uncertain were the wall height h and the
wall thickness t due to a very complex geometry. The wall geometry was
assumed from the beginning very simple and as solid but would in this case
show to be wrong.

The results for the calibrated parameters, heat transfer coefficients for
the reactor bottom αbottom and rector wall αwall and the wall thickness t
and height h, is presented in Table 4.9. The careful reader may notice that
there is a rather large difference between the calibrated values of water and
ethylene glycol for αbottom. This can be explained by the fact that different
reactors were used for the calibration experiments. The error between the
experimental result and the calibrated result was less than 0.3 oC, this is
shown in Figure 4.21 and 4.22. As seen in the figures the calibration results
are very good. The curves are practically on top of each other.
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4.10.3 Calibration results

The figures presented in this section are the result of the model calibration
of the models using water and ethylene glycol.

Parameter Calibrated Nominal Unit
value value

Water
αbottom 709.367 250 W/m2K
αwall 504.677 500 W/m2K
t 0.0417267 0.02 m
h 0.0466921 0.016 m
Ethylene glycol
αbottom 250 250 W/m2K
αwall 500 500 W/m2K
t 0.0268912 0.02 m
h 0.0226459 0.016 m

Table 4.9: This table shows the calibrated and nominal parameters for the models
with water and ethylene glycol.
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Figure 4.21: Simulation of the calibrated model with water for the constant
current I = 0.5 A. The second plot is the error between the reference plot and the
calibrated model plot. The y-axis is temperature [oC] and the x-axis is time [s].
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Figure 4.22: Simulation of the calibrated model with ethylene glycol for the
constant current I = 1 A. The second plot is the error between the reference plot
and the calibrated model plot. The y-axis is temperature [oC] and the x-axis is
time [s].
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Chapter 5

Control of the calorimeter

This chapter deals with the control of the calorimeter. First the cascade
control implemented by Chemisens is discussed. Then two alternative control
algorithms are evaluated, PID control and LQG. These methods were only
tested on the computer model, not on the real calorimeter. The controllers
are described one at a time and in the final section they are discussed and
compared.

5.1 Cascade control

The idea behind cascade control [6] is to use two controllers and let the
first controller give the reference value for the second controller, the general
structure is shown in Figure 5.1. This gives faster control for systems with
build in time delays, like the calorimeter. However, one more controller
requires one more measurement and this is not always possible.

The general method for tuning a cascade controller is by first discon-
necting the outer loop (PID1) and tuning the inner loop (PID2). When a
satisfactory behaviour of the inner loop is achieved, the outer loop is con-
nected and both of the controllers are tuned together.

Figure 5.1: Basic structure of a cascade controller. r is the reference value and
y is the output signal. PID1 is the outer loop controller, PID2 is the inner loop
controller and G1, G2 presents the process.
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5.1.1 The Chemisens cascade controller

Now that the theory behind the cascade control has been established the
cascade control of the calorimeter will be described. In the calorimeter setup
the inner controller is a P-controller and the outer is a PI-controller, this is
shown in Figure 5.2. The outer controller minimizes error e1 = Tref −Treactor

and gives a set value for the inner controller. The inner loop minimizes the
error e2 = u1 − (Tref − Tsensor). The control signal u2 is then the current
to the peltier element. The inner loop is faster because the measurement
Tsensor is closer to the peltier element. The inner controller compensates for
the fact that the control signal u1 could be too large. This is because the
response from the temperature measurement Treactor is delayed. Cascade
control is therefore a very appropriate control method for the calorimeter.

Figure 5.2: The control structure of the cascade control. Tref is the reference
temperature , Tsensor is the temperature for the heat flow sensor and Treactor is
the temperature in the fluid.

To find out if the control algorithm for the calorimeter could be improved
a couple of other controllers were also implemented in the model. Next a
PID-control scheme was tested.

5.2 PID-control

Since PID control is such a well known and widely used control method it was
natural to try to implement it on the calorimeter. The controller is easy to
tune since there are few parameters. The basic PID structure with negative
feedback is shown in Figure 5.3. There are many tuning methods for PID
control. Two tuning methods are used in this project, Ziegler Nichols and
Approximate MIGO design.
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5.2.1 Ziegler Nichols step response method

One of the most used tuning methods for PID control is the Ziegler Nichols
[7] step response method. In this method two parameters are obtained from
the step response of the open system, see Figure 5.4. From these parameters
the control parameters K, Ti and Td can then be calculated according to
Table 5.1.

Figure 5.3: Basic structure for PID control of a process.

Figure 5.4: Characterisation of a step response for calculation of PID parameters
in Ziegler Nichols step response method and AMIGO design method. a and L are
used for Ziegler Nichols and L, T and Kp are used for AMIGO.

Ziegler Nichols step response method is a very simple method that only
gives a rough idea of the controller parameters. A second more advanced
method was therefore also tested.
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Controller aK Ti/L Td/L
P 1
PI 0.9 3

PID 1.2 2 L/2

Table 5.1: Controller parameters for Ziegler Nichols step response method. K, Ti

and Td are the controller parameters.

5.2.2 Approximate MIGO design

AMIGO is a more elaborate method for tuning a PID controller. The tuning
method is presented in Advanced PID control [8]. Approximate MIGO design
is a simplification of the more advanced MIGO method, MIGO stands for
M Constrained Integral Gain Optimization. Simply put, the MIGO method
calculates PID parameters for a batch of different processes based on the
information from them. All these sets of PID parameters are then used to
obtain a set of simple tuning rules. These rules are called the Approximate
MIGO method. These equations are given by

K =
1

Kp

(

0.2 + 0.45
T

L

)

Ti =
0.4L + 0.8T

L + 0.1T
L

Td =
0.5LT

0.3L + T

where the parameters T, L and Kp are obtained from the Figure 5.4. The
advantage of this method to the Zeigler-Nichols method presented before is
that AMGIO design uses more process information and thus requires less
tuning once the parameters are calculated.

5.2.3 Comparison of Ziegler Nichols and AMIGO

The Ziegler Nichols method is very simple a widely used and the underly-
ing theory is less complex in comparison to AMIGO. AMIGO is recently
developed and therefore not as well known. Both methods are based on a
step response and the process of obtaining the parameters is similar. Since
AMIGO uses more process information the control parameters should be
more reliable than those obtained from Ziegler Nichols.
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5.3 LQG

The last control method presented is Linear Quadratic Gaussian control.
LQG is a combination of a Kalman filter (Linear Quadratic Estimator) and
a state feedback controller (Linear Quadratic Regulator). The Kalman filter
predicts the states recursively and the state feedback controller calculates the
optimal feedback control law that minimizes the cost function for the system.
To deal with step disturbances one can introduce an integrator state.

An optimal Kalman filter estimates the states according to

˙̂x = Ax̂ + Bu + K(y − ŷ)
ŷ = Cx̂

(5.1)

where
K = (PCT + R12)R

−1

2

minimizes the error covariance for the system. P > 0 is the solution to

R1 + AP + PAT
− (PCT + R12)R

−1

2
(PCT + R12)

T = 0 (5.2)

and R1, R12, R2 are weights chosen to minimize the error covariance.
The next step is to calculate a controller based on the Kalman filter.

Consider the linear continuous time system described by

ẋ = Ax + Bu
y = Cx

(5.3)

with the start value x(0) = x0 and a cost function defined as

J =

∫

∞

0

[

x(t)
u(t)

]T

Q

[

x(t)
u(t)

]

dt (5.4)

The Linear Quadratic Regulator is then given by the feedback control law

u = −Lx (5.5)

where
L = Q−1

2
(SB + Q12)

T

minimizes the cost function J 5.4 and S is given by the algebraic Riccati
equation

Q1 + AT S + SA − (SB + Q12)Q
−1

2
(SB + Q12)

T = 0 (5.6)

The optimal controller u will then give a stable closed-loop system if the
weights Q1, Q12, Q2 are chosen in such a way that

Q =

(

Q1 Q12

QT
12 Q2

)

(5.7)

is positive semi definite. The rules of thumb for choosing the weights are to
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• set Q12 = 0 and make Q1 and Q2 diagonal

• set Q1 = CT C and Q2 to be small

R has the same structure as Q and should also be positive definite. In the
case of choosing the weights for R set R12 = 0 and make R1 and R2 diagonal.
The simplest way is to let R be the identity matrix.

A drawback with this LQG controller is that it does not handle step
disturbances and changes in the reference signal. A step input will give a
constant error that the regulator cannot handle. The solution is to introduce
integral action. This is done by treating the error e = r - y as a load
disturbance d. To create a controller that handles load disturbances one
need an observer that takes the disturbance into account. This is done by
introducing the augmented system [9]

ẋe =

[

A B
0 0

]

xe +

[

B
0

]

u = Aexe + Beu (5.8)

y =
[

C 0
]

xe = Cexe

where xe =
[

xT dT
]T . By using the augmented system in the equations for a

Kalman filter one will get the optimal gain Ke =
[

KT
x KT

d

]T . The state-space
system for the controller is then described by

[

˙̂x
˙̂
d

]

=

[

A − BLx − KxC 0
−KdC 0

] [

x̂

d̂

]

+

[

Kx BLr

Kd 0

] [

y
r

]

u = −
[

Lx 1
]

[

x̂

d̂

]

+
[

0 Lr

]

[

y
r

]

= −Lex̂e + Lrr

(5.9)

where u is the control signal with integral action and r is the reference value
that the controller will try to establish. The controller will have the equilib-
rium for y = r if the gain Lr is chosen to be

Lr = (C(−A + BLx)−1B)−1 (5.10)

The structure is shown in Figure 5.5.
The advantage of LQG control is that since the process is modelled in

the controller it should in theory be possible to get very good control for
almost any system. However in reality it can be difficult to implement since
LQG often requires a high order model to get good control. In reality there
is a compromise between the order of the model and limitations in the hard-
ware. For example if the process model has too many states it would be too
demanding to estimate the states in the Kalman filter.
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5.5 Comparison of the control methods

Figure 5.5: Basic structure for LQG control with a disturbance observer. The
controller has the equilibrium r if Lr is chosen according to Equation 5.10.

5.4 Comparison of the control methods

The different control methods all have advantages and disadvantages. The
cascade control method has the advantage of two measurements. This is
good when one measured signal is less reliable or if there is a time delay in
the system. The response of the system will then be faster. The need for
two signals can also be a disadvantage since a second measurement is not
always available.

The PID controller is easy to implement and understand. This method
works well for a large number of processes. A disadvantage is that the
derivative part can cause large variations in the output signal for a noisy
measurement.

LQG has the advantage that if it can be implemented, it results in a good
controller for that system. However LQG cannot be used on any system. For
example if the system is too large the estimations may be too much for the
hardware.

The conclusion is the most important is to choose a control method
suitable for the process at hand.

5.5 Results and discussion of control methods

In this section the results from the implementation of the control methods
are presented and discussed.

5.5.1 Cascade control

The controller parameters can be seen in Table 5.2 below. The result is a fast
controller that efficiently handles load disturbances and reference changes.
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Chapter 5. Control of the calorimeter

The simulated controller is slightly faster than the real process. This can be
expected, as the model is an ideal version of the real process.

Kinnerloop Kouterloop Tiouterloop

2 9 50

Table 5.2: Controller parameters for the cascade controller.

5.5.2 PID control

The results from the two tuning methods Ziegler Nichols and Approximate
MIGO design are presented in this section.

Ziegler-Nichols step response method

The Ziegler Nichols method uses information from the open-loop step re-
sponse. The response is described by the two parameters a and L, see Figure
5.4 and Table 5.3. A tangent is drawn along the point of the step response
with the steepest slope. The intersection of the tangent with the coordinate
axes then determines a and L. This is not an exact method as it is difficult
to determine the point with the steepest slope. The calculated parameters
are therefore not definite but give a good starting point for further manual
tuning of the controller.

The PID parameters were calculated from a step response on the water
model and then tested on the water model and the ethylene glycol model.
During the tuning the aim was to find one set of parameters that would work
for both of the models. This was done by testing parameters alternately on
the two models.

The original parameters, shown in Table 5.4, did not give satisfactory
results. The controller did not manage to compensate for the disturbances
in either model and saturated repeatedly. The final tuned parameters also
found in Table 5.4 gave better results.

a L
0.1 30

Table 5.3: The parameters a and L for the Ziegler Nichols step response method

AMIGO

The results from the AMIGO method are presented in Table 5.5 and Table
5.6. The untuned parameters worked, although not very well. The controller
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5.5 Results and discussion of control methods

P I D
Untuned parameters 12 60 450
Tuned parameters 2 60 60

Table 5.4: The controller parameters for Ziegler Nichols step response method.

was too slow.

a L Kp T
0.1 30 1.66 90

Table 5.5: The AMIGO parameters a, L, Kp and T for the system step response.

K Ti Td

Untuned parameters 0.93 64.6 13.6
Tuned parameters 2 20 60

Table 5.6: Controller parameters for the AMIGO method. Tuned and untuned
parameters.

In Figure 5.6 the bode diagram of the untuned and tuned Ziegler Nichols
and AMIGO controllers are shown. To the left the open loop systems for the
untuned parameters are shown. It can be seen that the AMIGO controller
behaves better for frequencies up to 1 radians per second. To the right the
tuned controllers are shown. The difference between the controllers are now
of course very small. It may seem that the AMIG controller is not as good
as before but this is due to the fact that the tuned controller should work
for water and ethylene glycol.

Because the difference between the Ziegler Nichols and AMIGO con-
trollers are so small from now on only the AMIGO controller will be discussed
in mentioning the PID-controller.

5.5.3 LQG

As mentioned before the number of states in the model was a big factor in
the design of the LQG controller. The original model contained 79 states
corresponding to 15 nodes per discretized element. The model was then
reduced in Matlab, with the command Minreal, giving 21 states. Figure 5.7
shows that the reduced system behaves as the unreduced.

Another important part of the LQG design was the choice of the weight
matrices. Since the system is so large it is impossible to weights in the Q
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Figure 5.6: The bode diagrams for the PID controllers. To the left the untuned
controller and to the right the tuned.
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matrix individually. The rule of thumb Q1 = CT C was therefore used and
Q2 was set to a very small value. In the case of choosing R this was done
according to the rule of thumb R = I. This worked very well.

5.5.4 Comparison

In this section the control methods are compared to each other. In Figures
5.8 and 5.9 the open loop bode diagrams of models with water and ethylene
glycol are shown. The cascade and LQG controllers both work well. The
PID controller has larger gain and is therefore fast. It also has a dip around
0.6 radians per second, this can be explained by zeros close to the imaginary
axis. There is no apparent difference between the behaviour of the water
and ethylene glycol models.
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Figure 5.8: The bode diagram of the controlled open loop for water.

By plotting the Gang of Four one can gain a better understanding of
the process. The gang of four is a set of transfer functions defined from
measurement noise n and load disturbance d to output signal y and control
signal u. See Figure 5.10.
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Figure 5.9: The bode diagram of the controlled open loop for ethylene glycol.

Figure 5.10: Simple block diagram of a basic feedback loop.
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1

1+PC
, n → y, the sensitivity function.

PC
1+PC

, d → u, the complementary sensitivity function.

P
1+PC

, d → y, the load disturbance sensitivity function.

C
1+PC

, n → u, the noise sensitivity function.

The gang of four shows how well the process handles different types of dis-
turbances. Perhaps the most important is the sensitivity function S and
the complimentary sensitivity function T. The sensitivity function tells how
well the system deals with load disturbances and should be small for low
frequencies. The complementary sensitivity function indicates how sensitive
the process is to noise and should be small for high frequencies.

In Figures 5.11 and 5.12 the gang of four are plotted for water and ethy-
lene glycol models. The sensitivity function can be seen in the upper left
plot and all controllers handles load disturbances well, as they are small for
low frequencies. The complementary sensitivity function can be seen in the
upper right corner and is decreasing for high frequencies for all controllers.
The lower left plot shows how well load disturbances are suppressed on the
measurement signal and the PID controller seems to handle this best. As can
be seen in the lower right plot the control signals in the PID and LQG con-
trollers are quite sensitive to measurement noise. Only the cascade control
seems to handle this type of disturbance well. Again there is no apparent
difference between the behaviour of the water and ethylene glycol models.
In total the cascade controller handles disturbance and measurement noise
the best.

It is also interesting to study the process in the time domain. All previous
plots have been made on the linearized model. The following plots however
have been made on the nonlinearized model, in Dymola. The time domain
studies were done by performing disturbance step responses and reference
changes on the process. As can be seen Figures 5.13 and 5.14 the controllers
all handle a disturbance step change well with a reasonable control signal.
The LQG controller does not work as well for the water model as for the
ethylene glycol model. The same is true for the cascade controller imple-
mented in the water model. The work in this thesis has not been able to
explain why. It would be interesting to further investigate this. The con-
trollers handle the reference changes well, as is shown in the Figures 5.15
and 5.16. The careful reader may notice that the control signal saturates at
3.6 A. A limiter was connected before the input signal to the peltier element.
This is because the real peltier element has a limit in performance after 3.6
A, in theory the peltier element can handle currents up to 6 A. However
the limitation does not seem to affect the performance of the controllers and
cause any integrator windup. This because the PID and cascade controllers
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Figure 5.11: The plot of Gang of Four. For water.
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Figure 5.12: The plot of Gang of Four. For ethylene glycol.

54



5.6 Conclusions

were implemented with antiwindup.

5.6 Conclusions

In comparison the existing cascade controller implemented in the calorimeter
is very good. One can therefore understand why this control structure was
chosen. The process is well suited for cascade control. Because the process
is slow it is favourable to have an inner faster loop.

The first control method tested was PID control. As mentioned before
two tuning methods were used, Ziegler Nichols step response method and
AMIGO tuning. Both methods require substantial tuning. But at least the
original AMIGO parameters manage to control the process. For the tuned
systems the AMIGO process is slightly better. It is possible to find a set of
PID parameters that works well for both water and ethylene glycol. From
the tuning process the experience was that if the parameters worked for
ethylene glycol, they would also work for water. One might therefore argue
that it would have been better to calculate the original parameters from the
ethylene glycol, rather than water as was done here. The reason this was
not done is that it was decided until quite late that ethylene glycol should
be included in the thesis.

The LQG controller is also good, but could be hard to implement in
reality as it requires a model of quite high order, at least 21, to function.
Attempts at further reducing the model order were made, but they were
unsuccessful. There are methods for reducing the model further, but these
are not treated here as they are well beyoned this thesis.

55



Chapter 5. Control of the calorimeter

400 500 600 700 800 900 1000
25.18

25.2

25.22

25.24

25.26

25.28

25.3

25.32

R
ea

ct
or

 te
m

pe
ra

tu
re

, T
r 

[ o C
]

 

 
LQG
Cascade
PID

400 500 600 700 800 900 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [s]

C
on

tr
ol

 s
ig

na
l, 

u 
[A

]

 

 
LQG
Cascade
PID

Figure 5.13: The step responses, with water in the reactor, for Tr with the
controllers, LQG, cascade and PID. The second plot is the control signal u.
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Figure 5.14: The step responses, with ethylene glycole in the reactor, for Tr with
the controllers, LQG, cascade and PID. The second plot is the control signal u.
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Figure 5.15: Reference change, with water in the reactor, for the set temperature
in the reactor for Tr with the controllers, LQG, cascade and PID. The second plot
is the control signal u.
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Figure 5.16: Reference change, with ethylene glycole in the reactor, for the set
temperature in the reactor for Tr with the controllers, LQG, cascade and PID. The
second plot is the control signal u.
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Chapter 6

Conclusions and discussion

The modeling of the calorimeter has not been an easy task. Many things had
to be considered and reflected about. It is difficult to know which parts of
the calorimeter that are the most important. For example, there was some
discussion between our supervisors whether it was necessary to model the
heat flow in two dimensions or not. In the end the one dimensional model
turned out to be very good. The model calibration improved the accuracy
of the model a lot.

The choice of discretization in the elements was in the end chosen to be
about 15 nodes in each element. This was because of not wanting a too
large system to simulate in Dymola. The testing of the model element for
example the reactor bottom also showed that about 20 nodes gave a pretty
good result for a pulse heating. It also showed that the number of nodes
not had so much affect for a step response. It might be possible to further
reduce the total number of states if the heat flow sensor element simplified.
Because the sensor consists of three layers the total number of nodes is almost
multiplied by three, despite that the thickness is about the same as for the
reactor bottom and the reactor wall.

The model calibration was also a hard task since the decision for which
parameters to calibrate were to be made. The first decision trying to cal-
ibrate the heat conducting coefficients αbottom and αwall did not turn out
that good. These parameters were calibrated to be very large approximately
1000-10000 depending on the calibration setup. Trying to calibrate these
parameters gave no result. And the reason was that the limitation was the
heat conducting coefficient in the bottom and the wall. The calibration of
the wall dimensions was much more successfully since the assumption of a
simple solid wall geometry was not completely correct. Calibration of both
the heat conducting coefficients and the dimension of the wall gave good
results.

One mistake that was made was that only one useful experimental data
set for each fluid was obtained. This was discovered in the end. More
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experiments were made but they were not performed on the same reactors
and some small mistakes were made. Every reactor is an individual and an
experiment performed on one reactor can therefore not be directly compared
to an experiment made on another reactor. A second set of data would have
been used to verify the model calibrations.

Some time was spent on investigating the control of the calorimeter. The
conclusion is that the existing cascade control works very well. The other
control methods, PID and LQG, were only implemented on the Dymola
model. It would have been interesting to see how well they would work on
the real calorimeter. It is interesting to see that the simple PID controller
once again performs very well.

To get better control, the substance in the reactor needs to be considered.
Especially the LQG controller, which is model based, needs to be retuned for
every new substance. The cascade control however does not seem to be that
sensitive to different substances. Thus being the most suitable controller for
the calorimeter.
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Chapter 7

Future work

In the future Chemisens, will hopefully be able to use the calorimeter model
to develop a simulation software.

Some attempts at building a two dimensional model were made when
the calibrations of the one dimensional model failed. However calibration
problems were solved before the two dimensional model was completely fin-
ished. It would be interesting to know if two dimensions could substantially
improve the model.

It might also be necessary to further look at the model reduction. The
existing model is still quite large.

Another possibility for future work is to implement the PID and LQG
controllers on the real process. It would be interesting to see if they work as
well in reality as in the model.
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Chapter 8

Experiences

In the thesis we learned that getting familiar to a new problem can take a
lot of time. For example just learning Dymola took quite some time. Also
studying all the background theory took time. It is also important to think
through the experiments before carrying them out. This way a lot of time
can be saved.

A serious time plan for this thesis was made in the beginning but as
always it had to be revised again and again. What we have learned is that
it is worth while to spend some time on really planning out the work.
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Appendix A

Model parameters

Parameter Value Unit

Common parameters

r 0.0275 m
Nr 20
initOpt SteadyState
Tinit 298.33 oC
G 400 W/K
Tref 298.33 oC
m 0.1 Kg
specificHeatCapacity for water 4190 J/Kg.K
specificHeatCapacity for ethyleneglycol 2303 J/Kg.K

ReactorBottomInner

density 8010 Kg/m3

specificHeatCapacity 460 J/Kg.K
thermalConductivity 13.8 W/m.K
t 0.004 m

ThermalConductor
k 0.18 W/m2.K
t 0.00001 m

Peltier

Sm 0.05253 V/K
Rm 2.3553 Ω
Km 0.5074 W/K
currentCorrection 1/3.39

ReactorBottomOuther
specificHeatCapacity 380 Kg/m3

density 8400 Kg/m3

thermalConductivity 115 W/m.K

ReactorWall
specificHeatCapacity 460 Kg/m3

density 8010 Kg/m3

thermalConductivity 13.8 W/m.K

Table A.1: Parameters used in the model for the calibration setup.
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Appendix B

Peltier element performance

Figure B.1: The performance of Peltier Cooler Model 9500/127/060 B [10].
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