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1.  Introduction 
 

 

1.1 Background 

 
Today is the safety in cars very important and they include numerous systems to protect 

the driver and passengers in case of an accident. To avoid accidents in first place it is 

important that the vehicle handling behavior is good and predictable. The vehicle 

handling behavior is unfortunately not consistent in every situation and the main reason 

for this is due to non linearity in tire characteristics.  

 

Therefore there are two kind of handling behaviors, linear and non-linear. 

The first, when driving inside the linear region the slip between tire and road is small 

and the vehicle turns proportional with the steer angle which makes the vehicle 

behavior easy to predict.  

If the slip between tire and road is too big the tire characteristics are non-linear and the 

controllability is reduced which makes the vehicle handling behavior much harder to 

predict. 

 

If there is a possibility to maintain good handling behavior and predictability in wider 

range some accidents could be avoided. 

One way to accomplish this is by a vehicle stability system based on brake control 

(ESP) that adjust the brake force on each tire individually to create a stabilizing yaw 

moment. Because this stabilization technique is based on braking the speed 

performance is reduced, instead the stabilization can be attained by adjusting the 

engine torque distribution. 

 

Haldex Traction AB has developed a torque biasing device called 

Haldex Limited Slip Coupling which can quickly adjust the torque balance to optimize 

traction and stability. 

 

To control the torque balance well, information about the vehicle states is needed. Some 

of the important states like the wheels angular velocity are possible to measure directly 

but the important vehicle slip angle is not possible to measure with a practical method.  

 

This can be solved by estimate the immeasurable states with use of a model.  

The model “simulates” the real car in real time onboard while driving, and by giving the 

model same inputs as the real car the optimal goal is that they behave exactly the same. 

The wanted information can then easily be extracted from the model. 

Such accurate model is practically impossible to obtain and will because of the required 

complexity need very much more calculation power than is available in a normal car. 

 

A more convenient approach is to use a simpler model that uses the available measured 

signals to constantly correct itself toward the state of the real car. A model of this kind 

is called an observer. There are different kinds of observers and they differ on how they 

take benefit of the measurement signals, the most known observer is the Kalman filter. 

 

One of the main objectives with this work was to design such observer to estimate the 

lateral velocity which is used to calculate vehicle slip angle. 
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1.2 Related work 

 
In the Master Thesis, ‘Design and Validation of a Vehicle State Estimator’ of 

Schoutissen S.L.G.F. at Haldex Traction 2004, an observer based on a single track 

bicycle model was proposed to estimate the lateral velocity. 

 

It proved that it is with use of an observer possible to estimate the lateral velocity. 

Also a road friction coefficient estimator was proposed. 

 

The use of a single track model has the advantage to be simple and still capture most 

important chassis dynamics.  

A main disadvantage is that it doesn’t capture the chassis roll dynamics. The chassis roll 

dynamics affects the load transfer to the different wheels which then affects the tire 

friction forces that are essential in order to estimate the lateral velocity. 

 

Since the single track model didn’t have any roll dynamics the use of the important 

lateral acceleration sensor was also limited. Because then the chassis is under roll the 

lateral acceleration sensor gets an offset and scale error because it’s no longer parallel 

with the ground and it will be affected by the gravitation force.  

To correctly compensate for this, the chassis roll angle is needed. 

 

 

1.3 Problem formulation 

 
This work is a renewal of the Master Thesis, ‘Design and Validation of a Vehicle 

State Estimator’ with the ideá that by using a two track model which in difference 

from the single track model captures the chassis roll dynamics, a more accurate 

estimation of the lateral velocity is expected. 

 

The tire forces are very important for accurate estimation of the lateral velocity, so it is 

also desirable to use as good tire model as possible. 

To get the tire model to work correctly the friction coefficient   between tire and road 

is needed. This friction coefficient changes with road surface, so it is also desirable to 

be able to change   over time. 

In this work the friction coefficient is assumed to be known. 

 

A second objective is to look into possibilities to use this two track model as a platform 

for friction coefficient estimation. 

 

The model must not be too complex, because it should be possible to implement in a 

vehicle, where computation power is much limited.
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2.  Vehicle Model 

 

 

2.1 Overview 

 
The vehicle model should capture the vehicle dynamics as good as possible but without 

be too complex. The model used in this work is a two track model which has five 

degrees of freedom, longitudinal velocity, lateral velocity, yaw-rate, roll angle and pitch 

angle.  

It’s later shown from simulations that the pitch angle can for most cases be neglected 

and be removed if calculation power is needs to be saved. 

 

The model can primarily be divided into two essential parts, tire model and chassis 

model. These are coupled in the way that the input for the tire model is the chassis 

movements and the chassis model has the tire forces as input. 

 

The coordinate systems and sign convention used in the representation of the vehicle’s 

motion are chosen to the ISO standard [2]. The x-axis corresponds to the longitudinal 

axis, positive in forward direction. The y-axis corresponds to the lateral axis with 

positive to the left and z-axis corresponds to the axis normal to ground. Rotation around 

x-axis is called roll ( ), rotation around y-axis is called pitch   and rotation around z-

axis is called yaw ( ). It’s for the yaw-rate common to simply use r  instead of  , 

this is avoided in this report to avoid misunderstanding. 

The coordinate system is shown in Figure 2.1. Notice that the lateral velocity yV is 

negative in the figure, so is also the chassis slip angle  . 

 

Figure 2.1 – Coordinate system. ( yV  and   are negative in the figure) 
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2.2 Tire Model 

 
The tire is probably the very most difficult part to model correctly. Much research has 

been done in this field and trough the last decades plentiful of books and papers have 

been published. Yet there is no tire model which perfect represent a true tire even if 

there exists very complex models which are close to reality. 

In this work the tire model has to be kept simple due to the limited calculation power.  

 

Camber and caster angles are because of their small contribution [2] neglected in order 

to keep the model simple. 

 

2.2.1 Magic Formula 
The Magic Formula tire model is a widely used semi-empirical model which has proven 

to give good results and also can be made quite light on computations. 

The expression for the lateral tire force yF  in pure slip given by the Magic Formula is, 

 

))}]arctan((arctan{sin[  BBEBCDFy    (2.1) 

 

where: 
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C
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C, E are shape factors 

c1 is the maximum cornering stiffness 

c2 is the load at maximum cornering stiffness 
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Figure 2.1 – How lateral force yF  given by Magic Formula depends on slip angle   

 

Despite this simplified form of the Magic Formula it is because with all the inverse 

tangent functions too heavy to compute at real time in a cars hardware. 
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2.2.2 Exponential tire model 

One simpler model is the Exponential tire model. 

In Figure 2.2 one see that the Exponential tire model differs from Magic Formula at e.g. 

a slip angle of five degrees. If a vehicle stays in this region for some time, piling up 

errors is quickly introduced in estimation of the lateral velocity, example of this can be 

found in reference [1]. Because of this, it is desired if possible not to use the 

Exponential tire model. 

 

2.2.3 Polynomial tire model 
Another approach is the idea that the lateral force curve given by Magic Formula could 

be approximated with a polynomial. To avoid heavy calculations the polynomial should 

have as low degree as possible. There is however no low degree polynomial that fits on 

the entirely curve well, although by divide the curve in smaller pieces it is possible. 

Each piece is given its own unique polynomial approximation. 

The polynomial coefficients are pre calculated and chosen such that the root mean 

square of the error then compared to the Magic Formula is minimized, with extra 

condition to not have any discontinues (jumps) between pieces. 

 

Such polynomial gives the Lateral force yF  for a given slip angle   but the Lateral 

force yF   also depends on the Normal force zF  and the friction coefficient  which 

both affect the Lateral force non-linear, as seen in equation (2.1).  

To handle this, the tire slip angle   is before used in the polynomial modified with a 

scale factor which depends on the Normal force zF  and the friction coefficient  .  

 




)( 32

2

1 cFcFc zz
modified


  

 

1c , 2c  and 3c  are tunable parameters. If necessary, it is possible to neglect 

the term 
2

1 zFc  without losing too much accuracy. 
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As seen in Figure 2.2 and 2.3 the Polynomial tire model correspond very well to the 

Magic Formula and the highest degree of polynomial in use is of degree two.  
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Figure 2.2 – Tire model comparisons with different loads 
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Figure 2.3 – Tire model comparisons with different friction coefficients 

 

 

In Figure 2.2 and 2.3 it’s clear that between the Polynomial and Exponential tire model, 

the Polynomial tire model gives best results under different slip angles, loads and 

friction coefficients. 
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2.2.4 Combined Slip 

 

If the tire is forced by engine- or brake torque to have a circumferential speed different 

than a free rolling tire, a longitudinal slip is created. Like the lateral slip, the 

longitudinal slip determines the force created by the tire. The problem that occurs when 

modeling a tire is that the lateral tire force depends on both the lateral and longitudinal 

slip, and vice versa, the longitudinal tire force depends on both the longitudinal and 

lateral slip. 

If high accuracy is needed, the tire model that models the correlation between the 

different slips and forces has to be quite complex, se reference [2] for details. 

 

To save resources, this application is using a rather simplified approach. The idea is that 

the more the tire slip in longitudinal direction, the less ability has the tire to develop 

lateral grip. 

The procedure is that first the wheel angular speed is measured and multiplied with the 

tire radii to get the tire velocity, which together with the estimated hub velocity 

determines the estimated longitudinal slip. 

Then the lateral tire force is calculated as normal but with use of a reduced 

road friction coefficient. The amount the road friction coefficient is reduced is 

determined by the magnitude of the estimated longitudinal slip. 

 

ii

lat

i

x

t

ii
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c

v

Rv
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
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


 

 

How much the lateral friction is reduced by the longitudinal slip is not trivial. Tests has 

shown that a value of 41/c   works well. 

There is also possible to use powers of  . 
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2.3 Chassis Model 
 

The chassis model has five degrees of freedom and is a non-linear process, which in 

discrete time domain can be formulated: 

 

),( 11   ttt uxfx  

 

tx  is the vehicle state vector at time t  and tu  is the input vector. 

In f  the equation of motion are included and also the numerical integration. 

 

 

2.3.1 Vehicle states 

 
The used states are: 

 

 Longitudinal velocity - xv  

 Lateral acceleration and velocity - yy vv ,  

 Yaw rate -   

 Roll angle velocity and position -  ,  

 Pitch angle velocity and position -  ,  

 

 

Longitudinal velocity 

In this work it is assumed that there exists a measurement signal of the longitudinal 

velocity which then will be used by the observer. A common method to obtain the 

longitudinal velocity is to use the wheel angular velocity sensors. Because of eventual 

wheel spin, the signal from the wheel with highest estimated vertical load is weighted 

most, because this wheel is most likely to have the smallest amount of slip. 

The wheels angular velocity is multiplied with the tire radii to get an estimation of the 

longitudinal velocity. The tire radii can either be a fixed value that is predefined or if a 

more accurate estimation of the longitudinal velocity is needed the tire is modeled to 

change radii at different loads. 
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Lateral acceleration and velocity 

Since there is no sensor to measure the lateral velocity, this state is estimated by 

integrating the estimated lateral velocity change.  

Therefore the velocity change rate is required to be estimated accurate in order to avoid 

piling up errors when integrating.  

 

 

The lateral acceleration sensor has potential to give fast and accurate measurement of 

this state value but can be difficult to read off correctly.  

In addition to the vehicle lateral velocity change ( yv ) the sensor is also affected  

by the centripetal force, and if the chassis is under roll the sensor is also affected by the 

gravity force, Figure 2.4, 2.5. 
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Figure 2.4 – The centripetal force at a turn 

 

The contribution from the centripetal force is often a very large part of the 

resultant force and is therefore critical to estimate well, this need accurate estimation of 

yaw-rate and longitudinal velocity. 

 
Figure 2.5 – Due to chassis roll the lateral acceleration sensor  

is affected by the gravity force 
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Yaw rate 

The yaw rate is the time derivative of the yaw angle , Figure 2.6. 

 

A yaw rate sensor, also called gyro-meter, measures the angular velocity of the chassis 

along its vertical axis. 

Accurate information about the yaw rate is for many reasons very important and 

modern cars have therefore often a yaw-rate sensor. 

 

Yaw-rate can also be estimated by use of measured wheel angular velocities.  

This estimation is often less accurate than the yaw-rate sensor signal but by combining 

them both in a Kalman filter or a recursive least square algorithm it is possible to 

achieve higher accuracy than by only using the yaw-rate sensor. 

However, this method has a drawback because if engine or break torque is applied the 

wheel angular velocities may lose information about the yaw-rate. 

  

 
Figure 2.6 – Yaw angle 

 

 

Roll angle acceleration, velocity and position 
When the vehicle enters a turn the chassis will roll. This is important to estimate 

because the roll angle position tells how much the springs are compressed and the roll 

angle velocity (roll rate) tells how much the dampers are affected. This gives the 

load transfer and tire normal forces which are used by the tire model. 

 

As written before, the roll angle also needed to compensate the lateral acceleration 

sensor. 

 

The roll is not possible to measure, and very few vehicles are equipped with a roll rate 

sensor, so the estimation has to entirely be based on the model. 

 

 
Figure 2.7 – Chassis roll angle 
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Pitch angle velocity and position  

If the vehicle changes its longitudinal velocity the chassis will pitch. By the same 

reasons as for the roll angle, the pitch angle will affect the load transfer which is used 

by the tire model. 

 

Nor the pitch angle is possible to measure so the estimation has to entirely rely on the 

model. 

 

 
Figure 2.8 – Chassis pitch angle 

 

 

 

 

 
2.3.2 Equations of motion 

 
The equations of motion follow Newton’s second law and can be written: 

FXM   

 

F is the force and momentum vector.  
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T and R are the external force and momentum vectors, RRI  is the inertia matrix and 

 is the angular velocity vector. Despite the name is the angular velocity vector ( ) 

not simply the vector with the angular velocities, because when rotating along several 

axles, the rotation of one axle affects the rotation direction of another axle. Therefore 

does   in the three dimensional case grow in complexity. 
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The external forces and momentums are functions of the tire forces. 
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The mass matrix M contains four 3x3 matrices. TTM is the translation mass matrix 

and RRM is the rotation inertia matrix. 
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The RTM  mass matrix is zero if the rotation centre takes place around the centre of 

gravity. 

The offset of the rotation centre affect the structure of the U matrix, in this case the 

offset is only in z-direction because it is the most common displacement of the chassis 

roll centre. 
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For a full explanation about these equations it is suggested to read reference [4]. 
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This formulation of the equation of motion is by far too complex for usage in this 

application, and has somehow to be approximated.  

The mass matrix M is in this formulation not constant in time and contain off diagonal 

elements. This makes it necessary to do a costly matrix inversion at each time step.  

In this application the angles are expected to be small and it is therefore possible to let 

both of the matrices G and A be set to the identity matrix, which makes RTM  and 

RRM  constant. 

The entire mass matrix M is now assumed to be constant and can be pre-inverted 

offline. 

If G is assumed to be the identity matrix even then calculating the angular velocity 

vector the equations shortens dramatically. 

 

 
Comparison between the original model and the approximation 
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At the comparison in Figure 2.9 it is hard to distinguish the approximated model from 

the original model. The approximation can therefore in this application be used without 

losing any significant accuracy. 

Figure 2.9 
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2.4 Damper model 

 
Damper characteristics are in general not linear. In Figure 2.9 an example of a typical 

damper characteristic is shown. To model this one can use a lookup table and do linear 

interpolation. 

To get a smooth curve this needs a relatively large lookup table and at every time step 

an interpolation has to take place. 

Instead a polynomial approach is used, much like the one used in the tire model. 

 

By using the origin large lookup table, the curve is divided in several parts which are 

approximated by either a first or second degree polynomial. The break points and 

polynomial coefficients are chosen to minimize the error. The polynomial coefficients 

now serve as the look up table. 

 

This method decreases computation time because there is no need at every time step to 

do an interpolation because the interpolation coefficients are already pre calculated.  

Memory usage is also decreased because the new lookup table is smaller. 
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Figure 2.10 – Damper characteristics 
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2.5 Two track model, step by step 

 
1. Velocity at the corners 

The velocity at each wheel hub is determined, based on chassis  

longitudinal- lateral velocity, yaw-rate and steer angle. 
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Figure 2.11 – Geometric explanation how the 

wheel hub velocities are affected by the yaw-rate. 

 

2. Tire normal forces 

Because of the eventual load transfer, each tire has a different normal force. 

With knowledge of the chassis roll/pitch angles and roll/pitch angle velocities the forces 

caused by the springs, dampers and anti-roll bar can be determined. To this the force of 

gravity is also added. 
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The damper function )( hubdamper zf   is explained above at 2.4. 

 

3. Tire longitudinal and lateral forces 

With values on the wheel velocity vectors and wheel angular velocities the longitudinal 

and lateral tire slip values can be determined. Combined with the tire normal forces the 

lateral and longitudinal tire forces can be determined with use of the tire model. 
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How these forces relate is explained in the section about the tire model at chapter 2.2 

 

 

4. Summation of forces and momentums 

The longitudinal- lateral- and normal tire forces are summed up to resulting lateral and 

longitudinal forces at the chassis. The tire forces also create momentums around the 

three rotation axles, pitch, roll and yaw. 
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5. Acceleration equations 

Newton’s second law says that acceleration is the applied force divided with the mass, 

the angular acceleration work analogous with momentum and inertia instead of force 

and mass. 

As explained before in chapter 2.3.2, the equations are expanded because of the 

chassis roll axis are not intersecting the center of gravity. Also it is showed that most of 

these extra terms can be neglected due to their minor influence. 

 



   

  17 

It is important to make clear that xx av   and yy av  . 
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6. Numerical integration 

The final step is to with an appropriate numerical scheme integrate the acceleration 

equations to obtain the longitudinal- lateral velocity, yaw rate, roll and pitch angles. 

Common methods are the explicit/implicit Euler method and Tustin, the later also 

known as the trapezoidal method. 

 

Explicit Euler method:  Implicit Euler method:  Tustin: 

iii xdtxx 1  11   iii xdtxx   )(
2

11 iiii xx
dt

xx     

 

It is important to consider the stability of the numerical integration. The figure below 

show how a stable continuous-time system maps into a discrete-time system with the 

three different methods. The unit circle corresponds to the stability region of the 

discrete system. 

 

 
 
The implicit Euler is somewhat too stable. A discretization of an unstable  

continuous-time system can with this method transform into a stable  

discrete-time system. 

In opposite is the explicit Euler too unstable and there is a chance that a stable  

continuous-time system transform into an unstable discrete-time system. 

The Tustin method preserves the stability region and is therefore commonly used. 

Support for these theories and more in deep information can be read in reference [3]. 

 

Both the implicit Euler and Tustin are implicit methods and requires a non-linear 

equation system to be solved, this is too computational costly for this application and 

the explicit Euler method has to be used. 

For improved stability is a symplectic Euler method used in case of the roll and 

pitch angles. The method can somewhat be described as a semi-implicit method and can 

with advantage be used then integrating from acceleration to position. It requires no 

extra work compared to the ordinary explicit Euler method. 
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3. Observer Design 
 

 

3.1 Overview 
 

Because the model is just a model it will not entirely represent the real car. This causes 

unavoidable errors in predicted states. Drift offs is expected. 

To deal with this problem it is possible to use sensors to measure different states of the 

vehicle and use that information to make corrections on the model. This is what the 

observer does.  

The question is how to use the measurements to correct the model.  

Basically one use the simulated states to predict what the sensors will measure, then 

correct the states so the difference between measurements and predicted measurements 

are minimized. 

 

 

Figure 3.1 – Model and observer interaction 

 

 

One way to do this is to use a Kalman Filter, which is the most known observer. 

Because the vehicle model is a non-linear process it is not possible to use the ordinary 

linear Kalman Filter but there exists an Extended Kalman Filter (EKF) which works at 

non-linear systems. However the EKF have some major drawbacks. It needs relatively 

much calculation power and high memory usage and can also be difficult to tune [3].  

At each time step, the EKF makes a linearization around the current working point, if 

this linearization is a poor approximation, the EKF will converge poorly or worse even 

diverge [3]. 

 

Because of this, alternative observers were also considered. 

The choice of observer to compare against the EKF observer was an 

Averaging Observer and can roughly be described as it takes the mean between the 

measurement and the prediction. This observer method is very simple, but as proven 

later, it delivers results good enough for this application, which raises the question 

about the trade off between the observer’s complexity and its performance. 
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3.2 Extended Kalman Filter 
 

The EKF is a stochastic observer and takes the sensor noise into account. It estimates 

the states such that the root mean square of the error is minimized. 

The EKF process can be divided into two phases. 
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Where kF  and kH  are the Jacobians of ),( 1|1 kkk uxf   and )( 1| kkxh  with respect 

of x , and kW  and kV  are the Jacobians of ),( 1|1 kkk uxf   and )( 1| kkxh  with respect 

of process noise and measurement noise. 

 

),( 1|1 kkk uxf    is the nonlinear vehicle model which predicts the states 1| kkx  at time 

k based on the states 1|1  kkx  from time  k-1 and external inputs ku , example 

wheel steer angle. 

 

1| kkP  is the predicted error covariance matrix at time k, based on the Jacobian of the 

vehicle model kF , the predicted error covariance matrix 1|1  kkP  from time  k-1 and the 

process noise covariance matrix Q . 

 

ky  is the measurement residual at time k based on measurements kz  and predicted 

measurements )( 1| kkxh . 

 

kS  is the residual covariance at time k based on the Jacobian of the predicted 

measurements function kH , predicted error covariance matrix 1| kkP  and measurement 

noise covariance matrix R . 
 

kK  is the optimal Kalman gain at time k based on the Jacobian of the predicted 

measurements function kH , predicted error covariance matrix 1| kkP  and the residual 

covariance. 
 

The states kkx |  and predicted error covariance matrix kkP | at time k can then be 

calculated based on optimal Kalman gain kK , measurement residual ky  , Jacobian of 

the predicted measurements function kH  and the predicted error covariance 

matrix 1| kkP . 
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3.3 Averaging Observer 
 

The main idea behind this observer is that the true state value most probably is 

somewhere between the predicted state value and the measured state value.  

With possibility to weight the predicted and measured state differently, the estimated 

state value is calculated as an average of the two weighted states.  

This method has several analogies with a P-controller with the weights corresponding to 

the P-controllers gain K. 

Because of this, some theory used for the P-controller apply to this observer. Example if 

the weights which correspond to the gain K are chosen incorrect the observer might not 

converge.  

The P-controller is known to under some conditions give steady state errors and never 

reach its target value. This is normally handled by use of a PI-controller which 

introduces an integration part. 

In this observer there is no problem with steady state errors except sometimes on the 

longitudinal velocity estimation. Therefore the longitudinal velocity estimation is 

compensated with the sum of the past differences between predicted velocities and 

measured velocities, which corresponds to the integration part of a PI-controller. 

Like the PI-controller the integral gain has to be chosen carefully to avoid instability. 
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21 , ww  and 3w  is the observers tunable parameters. 

 

1w  is how much one rely on the model and 2w  is the measurement reliability which 

should be small if much measurement noise is expected. 

 

3w  is the gain of the integration part which serves to reduce steady state errors. On the 

analogy of the integration part of a PI-controller, this gain can also introduce instability. 

3w  is preferably in this work kept to zero with exception for the longitudinal velocity. 

 

It should be clarified that when this method is implemented the summation of ts ...0  

in the later equation does not have to be entirely recalculated each time step, it is only 

necessary to add the latest difference to the previous summation. 
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This observer biggest advantage is that it’s compared to EKF is very light on 

computations and are also easier to tune correctly. 
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3.4 Road friction coefficient estimator 
 

Knowledge about the road friction coefficient   is very important to give good 

estimation on the lateral velocity because it affect the tire forces and thereby the vehicle 

handling dynamics. It can vary from about 0.1 on ice and about 1.0 on dry asphalt. Like 

the lateral velocity is there in commercial passenger cars by economical reasons not 

possible to measure the friction coefficient. Instead it has to be estimated. 

 

While driving straight ahead with no longitudinal or lateral wheel slip it is impossible to 

estimate the road friction coefficient, because in this region the tire forces are not 

dependent of the road friction  , se Figure 3.2. 

 

If driving straight ahead with wrong estimated  and quickly turning the steering wheel, 

the model may fail to predict the vehicle behavior, because the friction estimator have 

too little time to adjust the value of  . 
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Figure 3.2 – Tire lateral force at different  . (Magic Formula) 

 

 
Estimation based on lateral acceleration  
One possibility is to compare the estimated lateral acceleration with the measured 

acceleration. If the estimated acceleration is lesser than the measured one can conclude 

that the used friction coefficient is probably to low. 

This method relies on a good lateral acceleration measurement, but as shown later in 

this report, a good lateral acceleration measurement can be hard to get. 
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The choice of the gain K is a trade off between stability and speed of convergence. 
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Estimation based on longitudinal slip 

There is also possible to estimate the friction by use information about the driveline 

torque, the wheel angular velocities and the vehicle velocity. 

The wheel angular velocities and the vehicle velocity gives a measurement of the tires 

longitudinal slip and by comparing the slip with the applied torque the friction 

coefficient can be estimated. 

If example wheel spin is detected at use of a relatively low driveline torque the friction 

can be estimated to be low. 

This method tends to give a noisy and unstable estimation of the friction coefficient and 

need quite large longitudinal slip to give a good estimation. 

 

 

Estimation based on yaw-rate 
By comparing the estimated yaw-rate change with the measured yaw-rate change, 

information about the road friction coefficient can be estimated. 

The yaw-rate change is a function of the tire forces because it is primarily the 

momentum created by the tire forces which produces the yaw-rate change. 
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Whether this approach is possible to use is not covered in this work. Brief tests have 

shown that this method sometimes estimates the friction coefficient accurate but it is 

most likely to have quite narrow convergence region and should only work as a 

complement to an already existing friction estimator. 
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4. Evaluation 
 

 

4.1 Overview 
 

In this section the different observers are tested and evaluated. This by comparing from 

the observers estimated states with reality. To represent reality a simulation from a 

more accurate and advance vehicle model can be used or if available, use 

experimental data from real world measurements. 

 

In this work both simulation and experimental data have been used for observer 

evaluation. 

The simulation model is a two track model, made in MATLAB Simulink and the 

experimental data is from Haldex AB proving ground in Arjeplog. 

 

The in the plot presented “Rear axle slip angle” is simply the angle between the 

longitudinal velocity vector and the lateral velocity vector at the rear axle. 

 

 
Figure 4.1 – Rear axle slip angle 
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It is preferred to plot the slip angle instead of the lateral velocity because the slip angle 

takes the longitudinal velocity into account. Moreover, the slip angle plotted in the 

graphs below has been transposed to the rear axle, this is to get a measure emphasized 

on over steer situations, doing so we also don’t have to deal with negative attitude 

angles at low vehicle speed. 
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4.2 MATLAB-Simulink 
 

In this section the observer is evaluated against a six degrees of freedom 

Simulink model. 

The Simulink model uses a more complex version of Magic Formula tire that models 

e.g. combined slip, lateral stiffness, cornering stiffness and relaxation length. 

 

 

The measurement given to the observer is: 

 Longitudinal velocity 

 Lateral acceleration 

 Yaw-rate 

 

These measurement signals are plotted separately at the top of every test page. The 

estimated values of these states are not plotted in this report, because in all tests are the 

measurement and estimation in the plot almost inseparable and therefore not providing 

any extra information. 

The data in the plot labeled “measurements” are the states of the Simulink model with 

added noise. 

 

In the case of the measured change of lateral velocity ( dotvy  ) is: 
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It is also possible to instead use: 
measuredmeasured
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The first method is used because tests have shown that it gives better results. 

 

Even if the sensor signal
measured

ya  does not look overwhelming noisy, it appears that 

measured

yv  have very more noise, this because the subtracted term 
estimatedestimated

xv   is 

such a large part of the
measured

ya . 

 

 

 
Figure 4.2 – A Simulink model 

 

 
In all tests with a sinus sweep maneuver the initial steer angle direction is to left and in 

case of steer ramp maneuver the steer angle direction is also left. 
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Test 1.1: Sinus sweep, 1  

In this test the Simulink model is released at 20 m/s and turns the steering wheel like a 

sinus wave. The road friction constant   is 1. There is no torque applied. 

 

Both observers have at this test more difficulty to estimate the slip angle accurate at the 

end, but both observers deliver almost identical results. 

 

It is possibly that this estimation offset is a result of that the maneuver hit an area where 

the tire model is less accurate. 

 

Test 1.2: Sinus sweep, 3.0  

The road friction constant   is 0.3. No torque applied. 

 

The Averaging Observer and EKF estimates the slip angle very much the same. 

In this maneuver the vehicle balances between the linear and non-linear tire 

characteristics. At time 12s the observer incorrect tips over into the non-linear area 

which immediately results in a less accurate estimation. 

 

Test 1.3: Sinus sweep at high speed, 7.0  

This test is performed with an initial longitudinal velocity of 50 m/s. 

 

In this test the EKF performs slightly better. One reason is because the EKF more 

strictly follow the lateral acceleration sensor and therefore are able to reduce errors 

faster, provided that the signal from the sensor is correct. 

 

 

Test 1.4: Sinus sweep, 1 , slide 

Also in this test it is hard to distinguish the both observers which perform much the 

same. The estimation is very accurate until time 8s, despite the big slip angle. After 

time 8s is the longitudinal velocity very low. 

 

 

Test 1.5: Steer ramp, 1  

In this test the steering wheel gets a ramp signal beginning at 0 at time 2s. 

 

The estimation error in this test is relatively small for both observers. In the later part of 

the test the EKF estimation gets a bit nervous, maybe it is tuned to rely a bit too much 

on the noisy acceleration sensor. 

 

 

Test 1.6: Steer ramp, 7.0 , torque applied 

 

In this test the performance of the modeled combined slip is tested. 

At time 7s the engine torque is increased rapidly to provoke wheel spin, the torque 

distribution is 70% at the rear axle. 

The front and rear inside wheel spin most because of the load transfer to the outside 

wheels. 

 

The combined slip model seems to reduce the available lateral grip quite well. 
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Test 1.1: Sinus sweep, 1  
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Test 1.2: Sinus sweep, 3.0  
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Test 1.3: Sinus sweep at high speed, 7.0   

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

45

50

55

Longitudinal Velocity [m/s]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-5

0

5

Lateral acceleration sensor [m/s2]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-10

0

10

Yaw  Rate [deg/s] -black,  Steer angle (amplif ied by 15) [deg] -red

 
 

Extended Kalman Filter 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-4

-2

0

2

4

V
y
 dot [m/s2],  measure -red,  observer -black,  Simulink -blue

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-6

-4

-2

0

2

4

Rear axle slip angle [deg],  Simulink -blue,  observer -black

 
 

Averaging Observer 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-4

-2

0

2

4

V
y
 dot [m/s2],  measure -red,  observer -black,  Simulink -blue

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-6

-4

-2

0

2

4

Rear axle slip angle [deg],  Simulink -blue,  observer -black

 



   

  29 

Test 1.4: Sinus sweep, 1 , slide 
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Test 1.5: Steer ramp, 1  
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 Test 1.6: Steer ramp, 7.0 , torque applied (70% on rear axle) 
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4.3 Experimental 

 
The test vehicle used is a Volkswagen Bora V6 equipped with ESP and the Haldex 

Limited Slip Coupling. In addition this test vehicle is equipped with an optical sensor, 

which measures the longitudinal and lateral velocity over ground.  

 

 
Figure 4.3 – Test vehicle equipped with an optical sensor 

 

Because the optical sensor not is mounted in the center of the car but in front, the 

measured velocity has to be compensated for this to give the velocity at the center of the 

car. 

 

In difference from the simulation environment the sensors have some amount of 

unknown offsets and scaling. The amount of disturbance of the lateral acceleration 

sensor is sometimes that big causing the observer to perform better without it. 

Therefore the tests have been done with both the lateral acceleration sensor active and 

inactive. 

 

In these tests, same tire model was used as in the Simulink tests.  

Each test was done at two cases:  

1. Only the friction coefficient was allowed to be changed (black)  

2. Friction coefficient and tire stiffness factor was allowed to be changed (blue) 

 

At case 2 was the tire stiffness modified the same amount on all tests. 

 

The tests are chosen to be hard for the observer to estimate accurate and take place into 

the tires non linear area most of the time.  

 

The measurement given to the observer is: 

 Longitudinal velocity 

 Lateral acceleration (tests are done both with and without this sensor) 

 Yaw-rate 
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Test 2.1: Steer step maneuver, 35.0 . 

In this test the results was more accurate when the observer didn’t use the 

lateral acceleration signal. From time 9-11s the estimated value of yv is too high 

because the lateral velocity isn’t dropping as fast as it should. At the same time the 

lateral acceleration sensor delivers even higher values which are in the complete wrong 

direction. 

In the case when the tire stiffness factor was changed the observer responded more 

correct on the steer input. 

Both observers performed very much the same. 

 

Test 2.2: Sinus sweep maneuver, 35.0 . 

At this test the estimated and the measured lateral velocity seems to have much the 

same amplitude but an increasing offset. 

In Test 2.2a is the difference between the measured and the estimated yv  very different. 

Still are the measured and estimated lateral velocities relatively accurate. Therefore it is 

no surprise that in Test 2.2b when the observer tries to follow the measured yv , 

accuracy is lost. 

At these tests the change of the tire stiffness factor didn’t improve the result significant. 

 

Test 2.3: Steer step maneuver, 35.0 . 

The large slip angle in this test indicates that vehicle is almost at the limit to a full spin 

out. The adjustment of the tire stiffness factor made it easier for the observer to stay on 

the correct solution. 
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 Test 2.1a: Steer step maneuver, 35.0 , lat.acc. sensor not used. 
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Test 2.1b: Steer step maneuver, 35.0 , lat.acc. sensor used. 
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Test 2.2a: Sinus sweep maneuver, 35.0 , lat.acc. sensor not used. 
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Test 2.2b: Sinus sweep maneuver, 35.0 , lat.acc. sensor used. 
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Test 2.3a: Steer step maneuver, 35.0 , lat.acc. sensor not used. 
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Test 2.3b: Steer step maneuver, 35.0 , lat.acc. sensor used. 
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4.4 Road friction estimation 

 
Test 3.1 - Simulink 
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This is the same maneuver as in Test 1.6. 

The road friction coefficient is on forehand set to 1 and are then estimated and adjusted 

by the observer. The estimation technique is explained in chapter 3.4 and the method in 

this test uses the lateral acceleration sensor. 

The accurate and fast estimation is possible because the noise characteristics from the 

Simulink measurements are known well. 

 

Test 3.2 - Simulink 
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This is the same maneuver as in Test 1.2. 

At the beginning the friction constant is set to 1, the observer realize at time 3s that   

has to be lowered but the estimation error of the slip angle caused by the high initial 

value of the friction coefficient mislead the friction estimator such that it at time 7s 

believes that the friction is set too low. Later the estimation find right track and start to 

converge.
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Test 3.3 - Experimental 
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In this test the friction estimation works quite well. It converges but at a slightly too 

high value of the friction constant. The slope from time 4s and forward is overall 

downhill which is correct, but at several points the acceleration sensor incorrect tells the 

observer to momentarily increase the friction constant. 

 

Test 3.4 - Experimental 
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The friction estimation is less accurate in this test. It successfully reduces the friction 

coefficient in the beginning, but non modeled disturbance prevents it from converging 

completely. 

 

The friction estimation tends to introduce numerical instabilities, mainly because the 

noise in the lateral acceleration sensor but also because the risk of self amplification 

then the friction coefficient is used as feedback. 

 

The problem with noise is possible to be reduced with a low pass filter if one takes the 

possible phase lag into account. 
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4.5 Comparison between the Two track model  

      and the Single track model 
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The Single track model captures the slip characteristics quite well, but appears to have a 

more tire grip. This because the two track model captures load transfer such that the 

outer wheel pair gets an increasing vertical load and the inner wheel pair gets a 

decreasing load. If the tire lateral force would have depended linear with respect to the 

vertical load, there should have been no difference between the two models.  

At big lateral accelerations the lateral force doesn’t increase at the same rate at the outer 

wheels as it decrease at the inner wheels.  

This non-linearity usually makes difference in the results when the lateral acceleration 

is bigger than 4-5
2m/s [1]. 
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5. Conclusions 
 

 

5.1 Overview 
 

In the tests against the Simulink model, the results were good. A recurring result was 

that the observer slide a little more than the Simulink model, probably because the 

tire model used by the observer was slightly off scaled with the Simulink tire model. 

In other words, if 1simulink  then the observer has to use e.g. 1.1observer  for best 

result. 

In Test 1.6 with applied torque, the simplified combined slip model delivered good 

results. 

 

With the experimental data, the results were also good and the observer proved to 

maintain relatively high accuracy at large slip angles. 

In both cases with the experimental data (especially case.1) the tire model used by the 

observer didn’t entirely match the tire used in the experimental tests. This put effort on 

the observer to try estimating the states using a slightly incorrect tire model.  

From the tests it is shown that better results can be achieved if correct tire stiffness 

factor is used and one could therefore try to find methods to estimate this value as well, 

Test 2.1a illustrates this best. This value normally only changes at tire wear, tire change 

and similar, therefore is the rate of convergence in the estimated value allowed to be 

slow. 

 

The estimation error of the slip angle wasn’t able to be reduced with use of the more 

complex EKF observer, compared to the simpler Averaging Observer. 

This indicates that in this setup the estimation accuracy is not limited by the 

observer complexity. 

In reference [1] comparison is made between an EKF observer and a simpler 

nonlinear observer, the conclusion was also in that work that the change of observer 

does no particular improvement of the estimation accuracy. 

 

Problems experience then using measurement signals is the influence of unknown 

offsets and time dependent non linear scaling. The most troublesome 

measurement signal is from the lateral acceleration sensor which in several cases did 

more harm to the observer than help.  

In general to reduce problems with inaccurate measurements, one should if possible do 

cross measurements. 

 

The road friction estimation technique based on information of the lateral acceleration 

sensor proved to work well when evaluated against the Simulink model. 

At the case with real world measurements, the road friction estimation did not always 

converge entirely, mainly because of problems to model the disturbance of the lateral 

acceleration sensor. 

 

The good results when the road friction coefficient   were known indicates that if it is 

possible to estimate the friction coefficient   well, the observer will have the ability to 

deliver good estimation of the lateral velocity. 

 

The Two track model was also compared against the simpler Single track model, which 

confirmed that the Single track model performs well if the lateral acceleration is low, 

but tends to lose accuracy when the lateral acceleration exceeds 5
2m/s . 

Another advantage of the Two track model is that it should be a better platform to do 

online estimations of the road friction constant, because the vertical load on each of the 

four tires is modeled. 
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5.1 Further work 
 

Because the more complex EKF observer did not improve the results it is suggested to 

use the simpler Averaging Observer and instead enhance the complexity of the 

vehicle model. Also there are others observers which may be interesting to look into 

like Lünenburger and Zeitz. 

 

In all tests were the tunable parameters in both observers kept constant. If there is 

possible to find good control strategies to adjust these parameters online, better 

convergent speed and robustness can be achieved. 

 

Tire model 

An accurate tire model is the main key to make a good estimation of the lateral velocity.  

 

Most probably are the majority of estimation errors in the tests in this report caused by 

the fact that the tire model does not completely represent a real world tire. 

Optimal it should be able to model combined slip, different downloads and shifting road 

conditions very well.  

The application of this observer, to be able to run real time in a vehicle, puts limitations 

of the complexity of the tire model. Therefore one may try to develop a tire model that 

without using too much resource captures most of the tire characteristics as possible. 

 

Road friction estimation 
The tire model can not work properly without a correct value of the current road friction 

coefficient. Because this value changes over time it is necessary to estimate and update 

it over time.  

By use of lateral acceleration sensor, wheel angular velocities, yaw-rate, 

driveline torque and maybe other signals it should be possible to make cross estimations 

of the friction coefficient. 

 

 

Lateral acceleration sensor 
Since the lateral acceleration sensor is exposed to disturbances from the chassis, the 

lateral acceleration signal usually contain quite a bit of noise. The sensor is also subject 

to offset and scale –errors. If not taken noise and errors into account, the use of the 

sensor can do more harm than help for the observer. 

 

In the evaluation of the observer against the Simulink source model, much disturbance 

of the lateral acceleration sensor was on forehand known. When the observer took 

advantage of this signal it greatly enhanced the speed of convergence and robustness of 

the estimation of the lateral velocity.  

 

An accurate measurement of the lateral acceleration is also important for good 

road friction estimation. 

 

In reference [1] the use of the lateral acceleration sensor was limited because the chassis 

roll motion was not modeled. In this work the chassis roll motion is modeled but still 

the use of the lateral acceleration sensor is limited due to unknown disturbance. 

 

To make a further step to reduce the disturbance of the lateral acceleration sensor 

should increase the performance of the observer and also greatly increase the ability to 

estimate the road friction. 
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7. List of Symbols 
 

  Tire lateral slip angle  - [rad] 

xa  Longitudinal acceleration  - [
2/ sm ] 

ya  Lateral acceleration  - [
2/ sm ] 

  Chassis slip angle  - [rad] 

rear  Chassis rear axle slip angle  - [rad] 

  Wheel steer angle  - [rad] 

Ld  Length from center of gravity to left wheels  - [ m ]  

Rd  Length from center of gravity to right wheels  - [ m ] 

cF  Centripetal force  - [N] 

xF  Tire longitudinal force  - [N] 

yF  Tire lateral force  - [N] 

zF  Tire normal force  - [N] 

g  Gravity acceleration constant 

xxI  Moment of inertia with respect of x-axis  - [
2mkg ] 

yyI  Moment of inertia with respect of y-axis  - [
2mkg ] 

zzI  Moment of inertia with respect of z-axis  - [
2mkg ] 

  Tire longitudinal slip angle 

FL  Length from center of gravity to front wheels  - [ m ] 

RL  Length from center of gravity to rear wheels  - [ m ] 

xM  Resulting tire momentum around x-axis  - [ Nm ] 

yM  Resulting tire momentum around y-axis  - [ Nm ] 

zM  Resulting tire momentum around z-axis  - [ Nm ] 

m  Vehicle mass  - [ kg ] 

CoGv  Velocity vector of chassis center of gravity  - [ sm / ] 

xv  Chassis longitudinal velocity  - [ sm / ] 

yv  Chassis lateral velocity  - [ sm / ] 

  Chassis roll angle  - [rad] 

  Chassis pitch angle  - [rad] 

  Chassis yaw angle  - [rad] 

  Tire road friction coefficient 

  Wheel angular velocity  - [ srad / ] 




