
ISSN 0280-5316
ISRN LUTFD2/TFRT--5830--SE

Vision Based Tracker for
Dart Catching Robot

Magnus Linderoth

Department of Automatic Control
Lund University
December 2008

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER THESIS
Date of issue
August 2008
Document Number
ISRN LUTFD2/TFRT--5830--SE

Author(s)
Magnus Linderoth

Supervisor
Anders Robertsson Automatic Control, Lund
Kalle Åström Mathematics, Lund
Rolf Johansson Automatic Control, Lund (Examiner)
Sponsoring organization

Title and subtitle
Vision Based Tracker for Dart Catching Robot (Datorseendebaserad banföljning för pilfångande robot)

Abstract

The objective of this thesis has been to develop the foundation for a robot system that
catches darts. A dart board is to be mounted on a robot. When a dart is thrown at the board,
it is detected by cameras, and an algorithm predicts where the dart will hit the board. The
goal is then to move the board in such a way that the dart hits at the desired coordinate,
typically the bull’s eye. This report describes the different components developed to realize
this system, including image acquisition, camera calibration, image analysis and modeling
and estimation of the dart trajectory.

Keywords

Dart catching, computer vision, camera calibration, state estimation.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
44

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

5

Acknowledgments

The work resulting in this thesis was carried out at the Department of Automatic
Control, LTH, Lund University. I would like to thank my supervisors, Anders
Robertsson at the Department of Automatic Control and Kalle Åström at the
Department of Mathematics for their guidance throughout the project. I would
also like to thank Anders Blomdell and Leif Andersson at the Department of
Automatic Control and Sven Gestegård Robertz and Mathias Haage at the
Department of Computer Science for helping me with practical issues during the
implementation. Last, but not least, I want to thank all the people at the
department for making my time there pleasant.

6

7

Contents

Acknowledgments .. 5

Contents .. 7

1. Introduction... 8

1.1 Background... 8
1.2 Problem formulation ... 8
1.3 Feasibility Analysis ... 9
1.4 Guidelines ... 9

2. Hardware and Platform.. 10

2.1 Setup..10
2.2 Cameras ...10
2.3 Robot ...11
2.4 Tools..12

3. Methods ... 14

3.1 Positioning of Cameras ..14
3.2 Camera Calibration ..15
3.3 Image acquisition ...21
3.4 Image Analysis...22
3.5 Kalman Filter ...26
3.6 Conversion from Image Measurements to 3D Space Measurements30
3.7 Socket Communication ..35
3.8 Trajectory Generation...35

4. Results.. 37

4.1 Camera Calibration ..37
4.2 Image Analysis...37
4.3 State Estimation ...37
4.4 Composite system ..38

5. Discussion .. 41

6. Conclusions.. 42

7. Future Work.. 43

References... 44

8

1. Introduction

This chapter describes the problem to be solved and analyzes its feasibility. Some
guidelines for the solution are also listed.

1.1 Background

In practical robot applications it is often desirable to have systems that respond
quickly to input from the robot environment. The most common input is position,
velocity etc. of the robot or an object to be tracked.

Using cameras as sensors has several advantages. They can make touch free
measurements of very generic types, e.g. position, shape or color. The limitation
for what can be done often lies in the algorithms that analyze the images. Some
image properties can be very difficult to extract and the execution time is often
significant. Hence the problem gets even harder when the camera is used as a
sensor in a real-time system.

1.2 Problem formulation

The objective of this thesis has been to evaluate the use of high speed computer
vision in a motion control application. The specific problem chosen was to
develop the foundation for a dart catching robot. A sketch describing the problem
can be seen in Figure 1.1. A dart board is mounted on a robot and when a dart is
thrown toward the board, the robot should move the board so the dart always hits
the bull’s eye. The detection of the dart is performed with cameras that provide

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1
1.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.2

0

0.2

0.4

Robot

Camera

z

Camera

Dart

x

Camera

y

Figure 1.1 Sketch of setup.

9

data to the algorithms that estimate the position and future trajectory of the dart.
This information should in turn be used to move the dart board to the correct
position.

1.3 Feasibility Analysis

A typical dart throw is performed 2-3 m away from the dart board and the dart
gets a forward velocity of 5-8 m/s. Consequently the duration of the throw is
approximately 0.25-0.6 s. In this time the trajectory of the dart should be
estimated with sufficient precision and the dart board should be moved to the
predicted hit point.

Assume that the robot has the maximum acceleration capacity a. The fastest
way to move the dart board between two points, having zero speed at both end
points, is to first give full acceleration towards the end point, and half way give
full acceleration in the opposite direction. If this movement has the duration T, the

distance traveled is 2
2

)2/(
2

)2/(
2 Ta

Ta
d =⋅= . Assuming a = 6g (the capacity of

the Flexpicker described in Section 2.3) and that we want to be able to move the
dart board d = 0.2 m, this movement can hence be done in s 12.0/2 ≈= adT .
Considering that the duration of the dart throw was previously estimated to 0.25-
0.6 s there seems to be a good margin. This margin will be reduced by delays
from data transmission and computations. Another limiting factor is that good
estimates of the hit point will not be available until the dart has traversed a part of
its trajectory.

1.4 Guidelines

It is desirable that the solution conforms to some guidelines to optimize the
utilization of the hardware and make maintenance easy.
• Modularity. The software should be split into modules that can be developed

independently or be replaced without having to make changes in the rest of the
system. Examples of such modules can be image acquisition, image analysis,
triangulation, dart trajectory estimation and dart board trajectory generation.

• Easy exchange of hardware components. It should be easy to e.g. switch to
other cameras or another kind of robot.

• Restrictive movement of the dart board. Every time a measurement of the
dart position is acquired during its flight, there is an update of the estimate of
where the dart is predicted to hit the dart board. If the estimate moves around a
lot and there is a long time left to the impact, it is desirable that the robot does
not shake the dart board too much. Still the robot should try to move the board
to the approximate position where the dart is expected to hit, so the board will
have a shorter way to go when the estimate improves. When the dart is close
to the board, the robot should use its full capacity to move the dart to the
estimated hit point if it is necessary to get there before the impact.

10

2. Hardware and Platform

This chapter describes the different hardware components and tools used to
develop and realize the system.

2.1 Setup

An overview of the setup can be seen in Figure 2.1. The dart board is mounted on
a robot. On each side of the dart board there is a camera (denoted FWA and FWB)
pointing toward the dart thrower. These are used to get images of the dart’s flight
and provide data to the prediction of where the dart will hit the dart board.
Another camera (denoted NW) is pointed toward the dart board and used to
evaluate where the dart actually hit the board.

2.2 Cameras

The cameras used to photograph the flight of the darts (FWA and FWB) have to
be able to capture images at a high frame rate, and fine control of the image
acquisition is desirable. The cameras used in this project were two Basler A602fc

Figure 2.1 Overview of the setup. The main frame is used to measure
the position of the dart. A possible position and trajectory of the dart are
marked in green. The cameras are denoted NW, FWA and FWB. Their
coordinate axes are marked in blue. The cones in front of the cameras
illustrate their fields of view.

11

(Figure 2.2 (a)), which can supply color images at resolutions up to 656×490
pixels with a maximum frame rate of 100 fps (frames per second) at full
resolution. The communication with the cameras is done with the IEEE1394 serial
bus commercially known as Firewire or iLink. The cameras conform to the IIDC
[10] standard for digital cameras

The camera pointed toward the dartboard does not have to fulfill the same
real-time requirements, since it is used mainly to get still images of the dart on the
dart board to measure where it hit. For this an Axis 211A (Figure 2.2 (b)),
connected through Ethernet, was used. It can supply 640×480 pixel color images
at rates up to 30 fps, but with latencies up to 1 s in the current setup.

2.3 Robot

The implementation has not been specialized for any special kind of robot. The
robot that is planned to be used is a Flexpicker IRB 340 from ABB. Its truss-like
structure makes it stiff, though light-weight parts are used. This in turn allows it to
effect large accelerations, something that is essential for the dart catcher
application. The robot can be seen in Figure 2.3.

Figure 2.3 Flexpicker IRB 340

(a) Basler A602fc (b) Axis 211A

Figure 2.2 The cameras used in the project.

12

2.4 Tools

Matlab

Most algorithms have been developed and evaluated using Matlab, which
facilitates fast development through a large set of functions for calculations and
visualization. Most algorithms have then been implemented in C or Java for better
real-time performance. Some scripts that are run offline (e.g. for camera
calibration) are implemented only in Matlab.

Programming Languages

The first steps in the data flow, including image acquisition, image analysis, state
estimation and prediction, are implemented in C, running on a Linux platform.
Given an estimation of where the dart will hit the board, the Java part generates a
trajectory for the robot and actuates it. The reason for splitting the implementation
into two languages is that the Firewire cameras are interfaced through a C driver
and the interface to the robot is written in Java.

The C and Java parts of the program communicate through a socket, making
it easy to either run the two parts on the same computer or on different computers.

A schematic overview of the components and how they communicate can be
seen in Figure 2.4.

Figure 2.4 A schematic overview of the components in the system and how they
communicate.

Cameras

Image
Acquisition

Image
Analysis

Image coordinate to
3D measurement

Kalman Filter Prediction

Trajectory
Generation

Robot
Control Robot

Socket

Firewire

E
therC

A
T

C

Java

Camera
Calibration

Matlab

13

libdc1394

The communication with the Firewire cameras is done with libdc1394 [2]. It
provides a high level API in C for cameras conforming to the IIDC standard [10].

OpenCV (Open Source Computer Vision)

OpenCV [3] is a C/C++ library mainly aimed at real-time computer vision. In this
project it has mostly been used for matrix operations and to display images on the
computer screen in real time.

Robot interface

The robot is interfaced through a Java control system developed at the Department
of Computer Science at Lund University [15]. The Java controller takes position
references with velocity feed forward and communicates with the robot through
an EtherCAT interface [16].

Camera Calibration

For camera calibration the Camera Calibration Toolbox for Matlab [4] by Jean-
Yves Bouguet was used. It uses series of images of a checkerboard pattern to
extract both intrinsic camera parameters and the relative position of the cameras in
a stereo pair. It has a relatively intuitive GUI with convenient functions for
detecting and eliminating errors. The localization of grid corners is done semi-
automatically; the user has to click the approximate position of four corners in
each image. Then the remaining corners in the grid are identified and their
positions are calculated at sub pixel level.

As alternative calibration tools Multi-Camera Self-Calibration by Tomas
Svoboda [5] and EasyCal Camera Calibration Toolbox from University of
Pennsylvania [6] were considered. They both use a point light source being
moved around in front of the camera in a dark room. This strategy facilitates easy
image analysis at the cost of requiring the possibility to make the room dark.
Another important limitation of the toolbox by Svoboda, related to the fact that
only one point is detected in each image, is that it requires at least three cameras
with common field of view. EasyCal on the other hand requires that the intrinsic
parameters of at least two of the cameras are determined with a checkerboard and
the toolbox by Bouguet.

Taking all these facts into account, the toolbox by Bouguet was considered
to be the most appropriate. A desirable future extension would be to make the
detection of the checkerboards completely automatic, maybe using [13] or [14].

14

3. Methods

3.1 Positioning of Cameras

Many different ways of positioning the cameras are possible. The chosen
positions of the high speed cameras are on each side of the dart board, pointing
toward the thrower at an angle. The positioning and the stereo coverage are
illustrated in Figure 3.1.

This positioning allows the cameras to see the dart at a big distance if the
thrower is straight in front of the board. The dart catcher application has a higher
requirement on the accuracy of the estimated dart trajectory when the dart is close
to the dart board than when it is far away, since there then is little time left to the
impact and the dart board trajectory generator needs to know exactly where to
send the dart board. This requirement is fulfilled by the chosen camera
positioning, since the dart is close to the cameras when it is close to the board.
The fact that the cameras observe the dart from very different angles (optimally
90° difference) when the dart is close to the board, further increases the accuracy
of the position estimate after the triangulation.

0

0.5

1

1.5

2

2.5

3

-1.5-1-0.500.511.5

Y

X

Z

Y

Dart

Z

NW

Y

X

Z

FWA

x / m

Y

Z

Main FrameX

XFWB

z
/

m

Figure 3.1 Top view of the setup illustrating the stereo coverage. The cones show
the field of view for the respective cameras.

15

The last possible point on the trajectory, where the dart can be seen by both
cameras simultaneously, is straight in front of the board, approximately 0.45 m
away from the board.

Another consideration in the placement of the cameras is that it should be
easy to calibrate the setup. This is described in more detail in the following
section.

3.2 Camera Calibration

To be able to calculate the position in space of a dart captured in an image, it is
necessary to know the camera parameters. The extrinsic parameters tell the
position and orientation of the camera with respect to some coordinate system.
The intrinsic parameters tell how a point in space, measured in a coordinate
system fixed to the camera, is projected onto the image.

Homogeneous Coordinates

In computer vision it is often convenient to represent points with homogeneous
coordinates, since it allows projections and coordinate transformations to be
performed as matrix multiplications. For the purposes of this report they can be
described by the following paragraphs.

To describe a point ()Tzyx in 3D space with homogeneous coordinates,
a “1” is augmented:

 () ()TT zyxzyx 1→ (3.1)

To find out which point in space is represented by an arbitrary homogeneous
coordinate vector, it is rescaled so that the last element is equal to one:

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

→

��
�
�
�

�

�

��
�
�
�

�

�

=

��
�
�
�

�

�

��
�
�
�

�

�

dc

db

da

z

y

x

dc

db

da

d

d

c

b

a

/
/
/

1
/
/
/

 (3.2)

Camera Parameter Representation

A point ()TZYX 1=X in some reference frame can be transformed to a
coordinate ()1ccc ZYX=cX in the camera reference frame with some
translation, 13t × , and some rotation, 33×R .

 X
0

t
X

31

13
c ��

�

�
��
�

�
=

×

××

1
33R

 (3.3)

Let nx be the normalized projection of cX defined by

16

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

=

c

c

c

cc

cc

n

n

Z

Y

X

ZY

ZX

y

x

~
1
/
/

1
nx (3.4)

It corresponds to the coordinate where a line between cX and the camera’s focal
point intersects the plane 1=cZ (cf. Figure 3.2). This projection can be obtained
by removing the last row from (3.3):

 () XXtx 13n PR == ××33 (3.5)

The matrix P is the output from the extrinsic parameter estimation process.
Since the camera lenses are not ideal, they exhibit nonlinear behavior.

Consequently the normalized coordinates are distorted: dn xx  →distortion . Three
coefficients (k1, k2 and k5) represent the radial distortion (along lines through the
principal point). Two coefficients (k3, and k4) represent the tangential distortion
(along circles with their centers at the principal point). For more details, consult
[4].

Finally dx is converted to pixel coordinates, px , through

 ddp xxx
�
�
�

�

�

�
�
�

�

�

==
100

0 yy

xxx

cf

cff

K

α
 (3.6)

where xf and yf are the focal lengths, ()yx cc , is the principal point and α is the
skew coefficient.

For more details on camera parameterization, read [4, 9].

focal point

Yc

Xc
Zc

X

xn

yn

image plane

Figure 3.2 Illustration of projection of 3D-points onto an image plane.
The projection of X, some point in space, is determined by finding the
point where the line between X and the focal point intersects the image
plane.

17

Calibration of Intrinsic Parameters

In order to measure the intrinsic parameters, a checkerboard pattern with known
square sizes is used. A set of images of the checkerboard in different position is
captured. An example can be seen in Figure 3.3. The camera calibration toolbox
by Bouguet has a function to extract the intrinsic parameters from these images,
including lens distortion.

The result of a calibration of the intrinsic parameters is shown in Table 3.1.
The presented uncertainties are approximately three times the standard deviations.
The parameters � and k5 are assumed to be negligible and thus set to zero to make
the estimation process more robust.

Parameter NW FWA FWB
fx / mm 1394 ± 8.52 874.9 ± 4.48 877.8 ± 4.37
fy / mm 1396 ± 8.53 875.8 ± 4.81 879.0 ± 4.46
cx / mm 318.9 ± 19.0 317.9 ± 8.36 314.1 ± 8.59
cy / mm 260.8 ± 14.8 294.3 ± 7.26 271.7 ± 7.08
� 0 ± 0 0 ± 0 0 ± 0
k1 / mm-2 -0.3245 ± 0.0804 -0.03927 ± 0.0383 -0.1608 ± 0.0359
k2 / mm-4 0.5830 ± 1.53 -0.2954 ± 0.371 0.1121 ± 0.279
k3 / mm-1 0.004018 ± 0.00179 0.007887 ± 0.00255 0.004027 ± 0.00205
k4 / mm-1 0.002602 ± 0.00170 -0.002283 ± 0.00287 -0.001657 ± 0.00219
k5 / mm-6 0 ± 0 0 ± 0 0 ± 0

Table 3.1 Results from a calibration of the intrinsic parameters. The errors are
approximately three times the standard deviations.

Calibration of Extrinsic Parameters

To measure the relative position of two cameras, a set of synchronized images are
captured, showing the checkerboard in the same positions from the different
viewpoints of the cameras.

Figure 3.3 Set of images of a checkerboard used to calibrate the
intrinsic parameters of a camera.

18

The calibration toolbox comes with a function that extracts the relative
position of two cameras from this kind of data, and at the same time enhances the
estimate of the intrinsic parameters. An inconvenient limitation is that the exact
same part of the grid has to be selected in both image sets when clicking corners,
though different portions of the grid may be visible in the different images. More
importantly, the intrinsic parameters used in the calculation of the extrinsic
parameters are extracted from the images where the grid is visible in both
cameras, with no option to use predetermined measurements of the intrinsic
parameters. Since the cameras may have a limited common field of view, it may
then be impossible to get images where the grid covers a large part of the image,
resulting in poor estimates of the nonlinearities.

Considering the arguments in the above paragraph, a new script for
calibration of the extrinsic parameters was written. It uses the same set of images
as input data, where the grids are identified by manually clicking at the
approximate position of the grid corners in the images. The largest grid portion
visible in two corresponding images is detected automatically. The 3D position of
each grid, with respect to the camera used to capture the image, is then calculated
using the extrinsic_computation function in the calibration toolbox.

Figure 3.4 Illustration of calibration of the extrinsic camera parameters.
The red lines are the forward direction of the cameras. The rectangles are
the perimeters of the used checkerboard grids. Small displacements can be
seen between the corresponding boards.

19

We now have two sets of corresponding 3D points, each belonging to one
camera. The relative position of the cameras can be obtained by matching these
points. To do this a weight function is defined as the root-mean-square value of
the distances between the corresponding points. Its minimum is then found
numerically using the Nelder-Mead simplex method [7]. Occasionally the
minimization gets stuck in local minima. Therefore it is checked whether the
weight function is below some threshold (a few mm is sufficient), otherwise a
random value is added to the result and the minimization process is resumed.

To perform the minimization, a parameterization of the transform between
the camera frames is needed. The translation has three DOFs (degrees of freedom)
and is naturally represented as the position of one of the cameras in the coordinate
system of the other camera. The representation of the 3-DOF orientation serves a
few alternatives. One alternative would be to use a 3-by-3 rotation matrix, but it
uses nine elements to describe a 3-DOF quantity. Since the nine elements are not
independent the minimization algorithm can not simply vary all elements in the
search for a minimum of the weight function. The yaw-pitch-roll representation
uses three parameters, but has the drawback of singularities at pitches equal to

2/π± . Instead a representation related to Rodrigues’ rotation formula [8] was
chosen, avoiding both problems of the other parameterizations. The direction of
the rotation vector ()Trrr 321=r defines the axis around which to make the
rotation. The 2-norm of r defines the angle to rotate in radians.

This algorithm could quite easily be extended to calibration of several
cameras simultaneously if they partly share a field of view.

Figure 3.4 visualizes the result of the calibration of the extrinsic parameters.
Figure 3.5 shows the distribution of the errors. The errors are mainly along the
forward directions of the cameras.

Figure 3.5 Distribution of distances between corresponding points in the calibration
of the extrinsic parameters illustrated in Figure 3.4.

20

Calibration of the Whole Setup

When calibrating the whole setup, the first step is to measure the intrinsic
parameters of each camera. The origin of the main reference frame (cf. Figure 2.1)
is defined by the center of the dart board. To align the reference frame with the
gravity field, the orientation of the dart board should be measured. This can be
done e.g. with a plummet and a ruler. The pose of camera NW can then be
determined by taking pictures of the dart board and identifying the markers, see
Figure 3.6. Since cameras NW and FWA share a common field of view, their
relative positions can be determined with the method described in the previous
section. Similarly the relative positions of FWA and FWB can be determined. A
potential problem with this procedure is accumulation of errors in the absolute
pose of FWB, since it is determined through a series of relative poses. In practice,
however, the errors do not seem to cause any problems.

Alternative calibration procedures were considered, where markers with
known positions would be put in front of the dartboard on the floor or on tripods.
If the markers are put on the floor, that puts constraints on the direction of the
cameras. If the markers are put on a tripod in front of the board, it has to be
removed before any darts can be thrown. In either case it would be hard to
measure the position of the markers accurately.

The chosen calibration procedure could be improved by adding more
cameras, so more cameras share a field of view. With a proper setup this could
reduce the accumulation of errors described above.

Figure 3.6 Dart board with markers

21

3.3 Image acquisition

Triggering and synchronization

Two strategies for triggering of the cameras FWA and FWB were considered:
1. Let the cameras stream images continuously.
2. Trig every image individually.

A potential problem with strategy 1 is that the cameras eventually get out of
synch, since they do not use the same clock. If strategy 2 is used, the program has
to wait for the camera to be ready with the previous frame before sending a new
trigger. This can be achieved either by reading back the status from the camera or
sending the triggers with a period that is slightly longer than the time it takes for
the camera to process one frame, in either case achieving a frame rate slightly
lower than the bandwidth of the data transmission allows. Strategy 2 would also
give a more irregular frame rate, since there would be jitter on the trigger due to
the scheduling of processes on the host computer.

Considering the discussion above, strategy 1 was believed to be the best.
Due to problems getting the single trig functionality of the cameras to work, the
choice of strategy 1 was even more obvious.

To handle the problem of the cameras drifting out of synch, they are
restarted periodically. If the cameras are restarted while there is a dart flying
towards the dart board, the resulting interruption of the image flow disturbs the
filter that estimates the position and velocity of the dart. Thus the restart gets
postponed until there is no dart detected.

To find an appropriate period for the restart, the drift was measured. It is
hard to measure the actual time the frames are received on the computer, due to
the jitter induced by the scheduler. Thus the strategy used was to let the cameras
stream data and count the received images, to see when one camera has sent more
images than the other. When streaming images at 50 fps, the number of sent
images would still be the same after one hour. This means that the drift is less
than 1/50 s in 3600 s. Under the simple assumption that the cameras have
different constant frame rates, a restart period of 20 s would give frames that are
captured with a time difference less than ms 11.0 s)360050/(20 ≈⋅ . This time
difference is well within the limits of what is acceptable, since the used exposure
time typically is 1-4 ms. A quite hard dart throw has a speed of approximately
8 m/s, resulting in that the dart moves less than 0.9 mm during the possible time
difference of 0.11 ms between the time instants for exposure start.

Bayer Decoding

On most digital color cameras, including Basler A602fc, each pixel of the image
sensor is covered by a red, green or blue color filter. Consequently each pixel only
registers the amount of light in one part of the color spectrum. The filters are
arranged in a so called Bayer pattern, depicted in Figure 3.7. There are a large
number of algorithms available that use some kind of interpolation to convert a
Bayer coded image to an image with red, green and blue intensities for every
pixel.

The Basler A602fc has a few options for the format of the images it
transfers to the computer. When using the Raw 8 format, Bayer coded images are
transferred using 8 bits per pixel. If this format is used the Bayer decoding has do

22

be performed on the computer. When using the YUV 4:2:2 format, the Bayer
decoding is performed on the camera and an average of 16 bits per pixel are used
in the transmission. See [11] for more information on the formats.

Using the YUV 4:2:2 format it takes 20 ms to transfer one frame. Using the
Raw 8 format it only takes 10 ms to transfer one frame, but the computer gets
some extra work decoding the Bayer pattern. The Bayer decoding takes
approximately 2 ms for one frame and the rate limiting factor is the transfer of
frames from the cameras, not computer load. Thus the Raw 8 format was chosen.

3.4 Image Analysis

This section describes the process of analyzing images and extracting the image
coordinates, at which there are darts. In the development of the algorithm an
important consideration has been to make it simple and computationally efficient
due to the high real-time requirements on the implementation

Pixel Classification

As a first step the color of each pixel is examined in order to determine whether it
is likely to be part of a dart in the image. To do this the RGB (red, green, blue)
image is converted to the HSV (hue, saturation, value) color space defined by
(3.7) [1]. Assuming]1 ,0[,, ∈bgr this yields [360 ,0[°°∈h and]1 0,[, ∈vs .

),,max(
),,min(

where

0 if,1

0 if,0

 if,24060

 if,12060

 if,360mod060

 if,0

bgrM

bgrm

Mv

M
M
m

M
mM

M
s

bM
mM
bg

gM
mM
bg

rM
mM
bg

mM

h

=
=

=
��

�
	

≠−=−
=

=

�
�
�

�

�
�
�

	

=°+
−
−⋅°

=°+
−
−⋅°

=°�
�

�
�
�

� °+
−
−⋅°

=

=

 (3.7)

Figure 3.7 Bayer pattern.

23

Intuitively h can be interpreted as the tone of the color. Large values of s give
intense colors, while small values of s give shades close to gray. The value of v
indicates the brightness.

To determine if a pixel is part of a dart, the criterion

 7.02.065.0360/55.0 <<∧<°< vh (3.8)

was found to work well empirically for the dart depicted in Figure 3.10. The basic
idea was to use mostly the hue, since it does not vary much with different lighting
conditions. Initially a minimum value of the saturation was also used, since the
darts have an intense green color. This criterion was however removed later,
allowing detection of darts in darker conditions without introducing much false
positives. The lower limit of the brightness is needed because the calculation of
the hue is very sensitive to noise at low intensities and then generates hue values
in the entire range, including the hue range used to discriminate dart pixels.
Similarly incorrect hue values are generated at high brightness, when some pixel
intensities saturate. Consequently a maximum value of the brightness was
introduced.

Using (3.8), a new image, D, can be generated, where the value of each
pixel is 1 if it is likely to be part of a dart, 0 otherwise. This is expressed more
formally in (3.9). An example of D can be seen in Figure 3.9 (c).

 widthimage
height image

where
10 ,10 , ,

for

otherwise0
satisfied is (3.8) if1

),(

=
=

−≤≤−≤≤∈

�
	

=

W

H

WcHrcr

crD

Z (3.9)

Calculating the Number of Dart Pixels in a Rectangle

In the process of finding darts in an image, the number of dart pixels in a
rectangle is calculated a large number of times. A naïve way to do this would be
to use D from (3.9) each time and simply sum all the pixel values in the rectangle.
If the rectangle is h-by-w pixels this would require 1−⋅ wh additions. As an

example, p in Figure 3.8 would be computed with the formula � �
−+

=

−+

=

=
1 1

),(
ht

ti

wl

lj

jiDp .

When the number of dart pixels in a rectangle is to be computed for a large
number of rectangles in the same image, a computationally more efficient method
is to use the integral image, I, defined by (3.10).

24

 widthimage
height image

where
10 ,10 , ,

for

),(),(
0 0

=
=

−≤≤−≤≤∈

=��
= =

W

H

WcHrcr

jiDcrI
r

i

c

j

Z (3.10)

This is quite a heavy computation, but once it is done the number of dart pixels in
any rectangle can be computed by only summing 4 values. This can be understood
by looking at Figure 3.8. The sum of the pixel values in D over the different
rectangles are denoted by m, n, o and p. A formula for calculating p and a
derivation of the formula are given in (3.11).

p

omnmmponm

lhtIwltIltIwlhtI

=
=+−+−++++=

=+−+−+++
)()()()(

) ,() ,() ,() ,(
 (3.11)

Finding Blobs

The criterion (3.8) for detecting dart pixels generates quite a large number of false
positives, as can be seen in Figure 3.9 (c). A large number of these are caused by
the Bayer pattern, which can be seen in Figure 3.9 (b). Because of the
displacement of the color filters a large number of colors are generated at sharp
edges in the images. These artifacts occur in lines that are one, or possibly two,
pixels wide. Thus they can be filtered out by keeping only the pixels that are the
centers of 3-by-3 pixel boxes where at least 7 out of the 9 pixels satisfy (3.8). This
results in Figure 3.9 (d).

Figure 3.8 Illustration of how to compute the pixel values in a
rectangle by means of the integral image, defined in (3.10). The
variables m, n, o and p denote the sum of the pixel values in the
respective rectangles of D.

n

o p

t

h

l w

m

W

H

D

25

Still there may be some outliers. To filter these out, the pixel that is the
center of the 5-by-5 pixel box with the largest number of pixels satisfying (3.8) is
used as the estimate of the position of the dart. If several pixels share the same
number of neighbors satisfying (3.8), their center of gravity is used. If the dart is
close to the camera there are generally many pixels having 25 neighboring dart
pixels in the 5-by-5 box. By using the maximum number of measured neighbors

Figure 3.9 Illustration of image analysis process.

(a) Original image. There is a dart at
(row, column) = (303, 290)

(b) Close-up showing artifacts of Bayer
pattern.

(c) Pixels with colors similar to a dart. (d) Pixels left after blob detection.

(e) Close-up of dart with estimated
position marked with a white circle.

26

in the image instead of always using 25, it is possible to detect darts that are far
away and do not cover many pixels of the image.

By means of (3.11) and the integral image (3.10) the blobs can be found
efficiently with a binary search over the image. The basic idea is to discard a
rectangular part of the image if it does not contain enough dart pixels to contain a
dart. Otherwise the rectangle is split in half and each half is examined for the
possibility of containing a dart. In this way the position of the dart is narrowed
down through recursion.

Depending on the background there may still be a significant number of
false positives. These can however be filtered out at a later stage by analyzing if
they correspond to the expected behavior of a flying dart.

3.5 Kalman Filter

A Kalman filter is used to estimate the state of the dart and to predict its future
trajectory. The general form of the filter is derived in Chapter 11 of [12] and the
results are repeated here.

The process is described by the discrete time state-space model

)()()()(

)()()()(
khekhxkhCkhy

khvkhukhxhkhx

+=
+Γ+Φ=+

 (3.12)

where h is the time step and v and e are discrete time Gaussian white noise
processes with zero mean value and

[]
[]
[] 2

12

1

)()(E

)()(E

)()(E

Rkhekhe

Rkhekhv

Rkhvkhv

T

T

T

=

=

=

 (3.13)

Throughout this report all elements of 12R are assumed to be zero, i.e. the load
disturbance, v, and the measurement noise, e, are assumed to be uncorrelated. The
initial state is assumed to be Gaussian distributed with

 [] 0)0(E mx = and [] 0)0()0(E Rxx T = (3.14)

Assuming that h is used as time unit, the update laws for the Kalman filter
are then described by (3.15) – (3.17). Here)|1(ˆ kkx + denotes the estimate of x at
sample k+1 based on measurements up to sample k.

 ())1|(ˆ)()()()()1|(ˆ)|1(ˆ −−+Γ+−Φ=+ kkxkCkykKkukkxkkx (3.15)

 ()() 1

212)()()()()()()()(
−++Φ= kCkPkCkRkRkCkPkK TT (3.16)

27

 ()
0

121

)0(

)()()()()()1(

RP

kRkCkPkKRkPkP
TTT

=
+Φ−+ΦΦ=+ (3.17)

Process Model

The model used for the free-flying dart dynamics is very simple. It is assumed to
fly through the air with negligible air friction. Since the image analysis does not
yet have the functionality to extract the dart’s orientation, it does not make much
sense including the orientation in the model. Thus the dart is modeled as a
particle.

A problem with this simple model is that the point that conforms well to the
model is the center of mass, but only the position of the tail is measured, and the
point of interest is at the tip, since this determines where the dart hits the board.
For the model to be valid it is thus required that the throws are “friendly” with
small rotation rates, so that the three points traverse approximately the same
trajectory in space. The different parts of the dart are shown in Figure 3.10.

One problem with a wobbling dart is the displacement, that the tip and tail
do not follow the same trajectory. Moreover, if the rotation of the dart gives the
tale a supplementary downward velocity, the Kalman filter will think that the
center of mass is moving downwards faster than it is. This error gets amplified
more the longer time there is left to the impact, possibly giving hit point estimates
that are far too low.

Computation of Process Model Matrices

The state vector used to describe the model contains first the positions and then
the velocities as described in (3.18). The positions are measured with respect to
the main reference frame in Figure 2.1.

 ()T
dddddd zyxzyxx ���= (3.18)

The continuous time description of the model is then given by (3.19).

center of mass

measured point point of interest

Figure 3.10 Image of dart.

28

 1

0

0
0
0
0

000000
000000
000000
100000
010000
001000

1 ⋅

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=⋅+=

g

xBAxx� (3.19)

One way to compute the discrete time system is described in (3.20) [12].
Note that 02 =A in our example.

B

AI
i

hAhAAh
Ihdse

iih As

Ψ=Γ
Ψ+=Φ

+
+

++++==Ψ
+

� ...
)!1(

...
!3!2

1322

0

 (3.20)

Consequently (3.12) can be used with system matrices described by

kkhu

gh

gh

h

h

h

 allfor 1)(

0

0
0

2/
0

100000
010000
001000

00100
00010
00001

2

=

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−

−

=Γ

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=Φ

 (3.21)

Prediction

In each filtering iteration the dart trajectory is extrapolated to predict where the
dart will hit the board. This is done by simply running more iterations of the
Kalman filter assuming that no measurements are available. The filtering is
continued until dẑ is equal to the z-coordinate of the dart board. The values of dx̂
and dŷ at that instant are used as the hit point estimate.

As the dart approaches the board, the uncertainty of the estimate gets
smaller and smaller. One reason for this is that the uncertainty of the dart state
estimate gets smaller with every successful measurement. Another reason is that
the uncertainty in the velocity estimate contributes less to the uncertainty of the
hit point, the less time there is left to the impact.

29

Outlier Detection

Before a measurement of the dart position is used in the Kalman filter, it is
checked that it is close to what is expected based on the state estimate. Otherwise
the measurement is discarded.

Each measurement is associated with a measurement vector, y, a
measurement covariance, 2R , and a matrix, C, relating the measurement to the
state according to)()()()(kekxkCky += , cf. (3.12). Based on the state estimate
the expected measurement and its variance become

[] [] []
[] []

[] TTT
xx

T
xx

T
yy

xy

CPCCmxmxC

CmxCCmxCmymyR

CmxCxCym
xCy

=−−=

=−−=−−≡

===≡
≡

)ˆ)(ˆ(E

)ˆ)(ˆ(E)ˆ)(ˆ(Eˆ

ˆEˆEˆE

ˆˆ

2

 (3.22)

Now let

 yyd ˆ−= (3.23)

be the difference between the actual measurement and the expected measurement.
Since the errors in y and x̂ are assumed to be uncorrelated the covariance of d is

 22
ˆ)cov(RRdR +=≡ (3.24)

The variance in the direction of d is

dd

Rdd
d
d

R
d

d
T

TT

==2σ (3.25)

where d is the 2-norm of d. The measurement is considered to be an outlier if

 σad > (3.26)

i.e. if the distance between y and ŷ is larger than a standard deviations, where a is
a tuning parameter. (3.26) can be transformed to a computationally more efficient
form:

Rdd
a

dd

dd
Rdd

addadad

T
T

T

T
T

>��
�

�
��
�

�

⇔>⇔>⇔>

2

2222 σσ
 (3.27)

Managing of Multiple Trajectories Simultaneously

On top of the Kalman filter is a layer that can keep track of several state vectors,
each representing the trajectory of one dart. The obvious advantage of this is that

30

the trajectories of several darts can be tracked simultaneously. A more important
advantage has to do with outlier detection.

In each iteration of the Kalman filter, the measurements are discarded if
they are not close to where they are expected to be based on the current state
estimate (cf. Outlier Detection). If the measurement initiating the trajectory is a
false positive, successive correct measurements will be discarded, since they are
not close to what would be expected after the incorrect measurement. This means
that one incorrect measurement would block the system. The algorithm used to
handle this situation is described by the following pseudo code:

for all trajectories
 if the measurement is not an outlier to this trajectory
 perform iteration of Kalman filter
 if the trajectory has not received a measurement for a while
 discard it
if the measurement did not match any existing trajectory
 create a new trajectory

3.6 Conversion from Image Measurements to 3D Space
Measurements

Approach 1

In the first approach a pair of stereo images acquired simultaneously can only be
used if the dart is detected properly in both images. The x, y and z coordinates of
the dart at that instant are then calculated and used as input to the Kalman filter
that estimates the state of the dart. The C matrix is then always ()3333 0 ××I .

From the position of the dart in a single image it is possible to determine a
line in 3D-space along which the dart must be. In this report this line will be
referred to as the viewline (cf. Figure 3.11). If a viewline is known for the same
dart from two different cameras, the position of the dart can be calculated as the
point where the viewlines intersect. In practice measurement noise will cause the
lines not to intersect. Instead the midpoint of the shortest possible line connecting
the two viewlines can be used.

focal point

Y

X
Z

ly

lx
image plane

viewline

image point

Figure 3.11 Illustration of viewline. An object projected onto some
image point, can be located anywhere along the corresponding viewline.

31

Extracting Viewlines
To determine the viewline for a point in an image, first two lines through the point
in the image are chosen. The easiest way to do this is to take one horizontal and
one vertical line. Each of these lines corresponds to a plane through the focal
point and the projection of this line. Finally the viewline can be determined as the
intersection of these planes.

A line l in the images can be represented as the points fulfilling the equation

 TT yxlll)1(and)(where, 0 321 === xlxlT (3.28)

A plane � in space can similarly be represented by the points fulfilling

 TT zyx)1(and)(where, 0 4321 === X�X�
T ππππ (3.29)

Moreover if the plane � is projected onto the line l, then

 Xx P~ (3.30)

where P is the projection matrix of the camera, cf. (3.5). Inserting (3.30) into
(3.28) we get

 XlXlxl TT TTPP)(~0 == (3.31)

Hence it can be can concluded that the points that project onto the line l reside in
the plane

 l�
TP= (3.32)

If the coordinate of the dart in an image is (x, y), a convenient choice of
lines through this point are Tx)01(−=xl and Ty)10(−=yl (cf. Figure
3.11) corresponding to the planes

yy

xx

l�

l�

T

T

P

P

=

=
 (3.33)

The direction v of the viewline can then be calculated as the cross product of the
normal directions of the planes:

)()(321321 yyyxxx ππππππ ×=v (3.34)

To get a complete description of the line, some point on the line is also
needed. Since all viewlines go through the focal point, c, it is convenient to
calculate this point once for every camera and then use it for all viewlines. The
focal point fulfills the relationship

 0c =P (3.35)

Setting ()TTTR 1)(tX −= in (3.5) and recalling that R is orthonormal we get

32

 () 0tt
t

tX =+−=��
�

�
�
�
�

�−
= T

T

RR
R

RP
1

 (3.36)

Consequently the focal point of P in (3.5) can be calculated as

 tc TR−= (3.37)

To sum up, points on the viewline satisfy (3.38) for some scalar s.

 vcX s+= (3.38)

Finding Line Intersection
Having two viewlines for the same dart from different cameras, indexed a and b,
the position of the dart should be at the point satisfying

 bbaa vcvc ba ss +=+ (3.39)

This equation is however not likely to have a solution due to measurement error.
Instead we can find the solution that minimizes the sum of the squared errors of
the three components. This value is also the square of the minimum distance
between the viewlines. The process of estimating the dart position is illustrated in
Figure 3.12. Using the definitions

ca

p

pa

pb

cb

va

vb

sava

sbvb
viewline a

viewline b

Figure 3.12 Illustration of triangulation process.

33

()ba

ba

vv

s

ccc

−=

��
�

�
��
�

�
=

+−=

V

s

s

b

a (3.40)

we can rewrite (3.39) as

 ecs +=V (3.41)

where e are the residuals. The parameters minimizing the error
2

e can then be
solved as

 cs TT VVV 1)(−= (3.42)

The point on each line closest to the other line can now be calculated as

 bbbaaa vcpvcp ba ss +=+= and (3.43)

It is reasonable to use the average of these points as the estimate of the dart
position:

 2/)(ba ppp += (3.44)

Outlier detection
A simple way to detect outliers during triangulation is to examine the shortest
distance ba pp −=d between the viewlines. If d is above some threshold it is
considered that in at least one of the images something else than the dart was
found, and the triangulation returns a failure. The distribution of d can be seen in
Figure 3.13. A threshold of 25 mm was found to be appropriate to discriminate
outliers.

Figure 3.13 Distribution of the triangulation error, d. The histogram is the outcome
of an experiment with 175 measurements.

34

Initialization
When two position measurements with known time difference are available it is
possible to make a unique initial estimate of all states in the Kalman filter
(3 position states and 3 velocity states), including covariances. These are used as

)0(x and)0(P in (3.15) – (3.17).

Approach 2

The second approach for converting measurements in the images into input to the
Kalman filter is a bit more flexible and does not perform any explicit
triangulation. This approach has not yet been implemented on the real system.

The planes in (3.33) are calculated just like in the first approach. Using the
more general form in (3.32) this puts the constraint

 0=X�
T (3.45)

on the dart position X. This can be rewritten to a constraint on the state vector of
the Kalman filter:

 () () ⇔−=
�
�
�

�

�

�
�
�

�

�

⇔

��
�
�
�

�

�

��
�
�
�

�

�

== 43214321

1

0 ππππππππ

d

d

d

d

d

d

z

y

x

z

y

x

X�
T

 ()

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

==−=

d

d

d

d

d

d

z

y

x

z

y

x

xccx

�

�

�
 and 000 where 3214 ππππ (3.46)

If � is normalized so 12
3

2
2

2
1 =++ πππ , 4π− can be interpreted as the signed

length of the orthogonal projection of the dart position onto the direction
()321 πππ .

Each image with a measurement of the dart position gives two constraints
specified by the row vector c in (3.46), one in the x direction and one in the y
direction of the image. If more than one image is available this can be handled
simply by adding rows in the C matrix of (3.12):

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

�

y

x

y

x

c

c

c

c

C

2

2

1

1

 (3.47)

35

No explicit triangulation is done. However, if the rows in C correspond to
measurements in many different directions, an estimate with low variance in all
directions can be obtained. The Kalman filter simply makes sure to minimize the
estimate variance based on the covariance matrix, P, of the previous estimate and
the covariance matrix 2R of the measurement.

One advantage of this second approach is that it easily extends to any
number of cameras. Two more rows are simply added to C for every camera.
Another advantage is that a measurement can be used even if there are no valid
measurements from any other cameras. The extreme case is where camera FWA
only gives measurements at samples with odd time indices and camera FWB only
gives measurements at samples with even time indices. In this case the second
approach would give a good estimate, while the first approach would give no
estimate at all.

Initialization
The state vector is initialized to the approximate state that the dart is expected to
have when it is first detected, e.g.
() ()800200 −=dddddd zyxzyx ��� , corresponding to the dart
being 2 m away from the dart board straight in front of bull’s eye with a velocity
of 8 m/s straight towards the board. The initial estimate covariance, 0P , is set to a
very large value so that the initial estimate is almost completely discarded when
there are sufficient measurements. Care must be taken not to make 0P too big,
though. In (3.17), if)(kP is much larger than)(2 kR , the first and third term are
very large and approximately equal. Since these terms are subtracted from each
other the calculations get sensitive to numerical errors. It is however not hard to
find a good compromise for the value of 0P .

3.7 Socket Communication

A simple interface has been implemented to allow communication between the C
and the Java parts of the system. The communication channel is a socket, making
it easy to either run both parts on the same computer or on two different
computers. The protocol includes hand shaking, clock synchronization and the
sending of estimated hit points from the C part to the Java part. Together with the
estimate of the hit point the expected impact time and variances are sent.

3.8 Trajectory Generation

The framework for generation of dart board trajectories has been implemented in
Java. Its structure will be described briefly here.

One thread does a blocking read on the socket described in the previous
section and waits for an estimate of the hit point. When a new estimate is received
the thread generates a new trajectory and puts it in a buffer. Then it does another
blocking read on the socket.

A second thread periodically sends position and velocity references to the
robot controller. The references are taken from whatever trajectory was last put in
the buffer by the other thread. This makes the system fairly robust to unreliable

36

transmission of hit points or long execution times for generation of trajectories,
though the performance is degraded by long delays.

The socket input buffer only has space for one hit point. If a new hit point
arrives before the one in the buffer is used, the old one is discarded. Consequently
the trajectory generator always uses the newest available data even if the hit
points arrive at a higher rate than the trajectories can be generated.

The code has not been specialized for any special kind of robot geometry.
The only place where there is robot specific code is in an object describing the
robot’s kinematics. Hence the only action needed to use the program with another
robot is to switch the kinematics object and possibly the interface to the robot.

37

4. Results

This chapter presents some data showing the performance of the dart tracking
system as a whole and of its different components.

4.1 Camera Calibration

It takes quite long to perform camera calibration, up to 2 hours. The result of a
calibration of the intrinsic parameters with error estimates is presented in Table
3.1. No explicit error estimate of the extrinsic parameters has been derived. A
good indicator of the accuracy, though, is the consistency of the position estimates
made by the different cameras. Figure 3.5 shows a histogram of the distances
between two cameras’ 3D-coordinate estimates of the same point during
calibration. Based on a single image of a dart, a viewline, along which the dart
must be, can be determined. Figure 3.13 shows a histogram of the minimum
distance between the viewlines from two different cameras used to estimate the
position of a dart at one time instance.

4.2 Image Analysis

The image analysis works well with few false positives and undetected darts. It is
hard to give a useful quantitative measure of the error rate, since it varies much
with the background and lighting conditions. An example of how the image
analysis performs can be seen in Figure 3.9. False positives occur mostly when
there are bluish gray objects in the background. It may appear strange that bluish
gray objects are detected as green darts, but without white balancing the green
color of the darts actually has a higher intensity on the blue channel than on the
green channel with the cameras used, cf. (3.8).

The computation time for the image analysis of a stereo image pair is
approximately 10 ms and may increase a few ms when there are very many pixels
with colors similar to the color of a dart. Recalling that the system runs with a
sampling period of 20 ms it becomes apparent that the image analysis is the step
that consumes the most computing power, and a faster computer (or more
efficient algorithms) would allow additional image analysis steps to increase
robustness.

The main limitation imposed by the image analysis algorithm is that the
background must not contain large objects with the same color as the darts that the
system is tuned for. Another limitation is that it cannot handle the situation with
more than one dart in the image. The current implementation would then report a
dart at the center of gravity of the dart pixels. Further, only the position of the
dart’s tale is detected. Detection of the dart’s orientation would improve the
ability of the system to predict the future movements of the dart.

4.3 State Estimation

The entire process of extracting 3D-coordinates from the image coordinates,
running an iteration of the Kalman filter and predicting where the dart will hit the

38

dart board plane takes a fraction of one millisecond and its computation time is
hence negligible in comparison to that of the image analysis.

Approximately 1 % of the position measurements are erroneously classified
as outliers by the condition (3.26). If one, instead of throwing the dart, keeps it in
the hand and tries to move it as if it was thrown, it is not trivial to fool the state
estimator into believing that it was an actual dart throw. It took the writer of this
report several minutes of training to learn how to move the dart in such a way that
the fourth position measurement was not discarded as an outlier. Hence it can be
concluded that the modeling works well and most measurements are classified
correctly with respect to being the position of a real dart or not.

4.4 Composite system

Figure 4.1 and Figure 4.2 show how the hit point estimate evolves as a dart
approaches the dart board. Each plot corresponds to one throw. The perimeter and
center of the dart board are marked in red. The estimates of where the dart will hit
the board are marked with blue stars and connected with blue lines to show how
the estimate evolves. The last estimate is marked with a green star. Each estimate
is surrounded by an ellipse at the distance of one standard deviation of the
estimate. The coordinate where the dart actually hit the board is marked with a
magenta star.

When the experiments presented in Figure 4.1 were performed, the thrower
tried to make the dart wobble as little as possible. The last estimate of the hit point
was then generally within 1 or 2 cm of the actual hit point. When the experiments
presented in Figure 4.2 were performed, the dart wobbled more since the thrower
did not pay any attention to reducing the wobbling. A crude estimate, made by
letting the dart thrower look at the dart, is that the dart orientation deviated up to
20-30° from the direction of movement. The error of the last estimate was then up
to 5 cm.

When the exposure of an image is done it takes 20 ms for it to be transferred
to the computer. In all it takes 40-50 ms from the time when the image is captured
until the estimation of the hit point is received and can start being processed in the
Java part of the system.

The first successful measurements are usually done when m 2≈dz (when
the dart is approximately 2 m away from the dart board) and the last when

m 5.0≈dz . The resolution of the cameras should allow darts do be detected
further away than 2 m. The reason that this rarely happens should be investigated
further. One reason could be that the image analysis algorithms need to be tuned
better to detect smaller objects.

When the first hit point estimate is received in the Java program there is
usually 150-200 ms left to impact and when the last estimate is received there is
usually 40-60 ms left. During one throw 5-10 position measurements are usually
acquired.

39

(a) (b)

(c) (d)

Figure 4.1 Development of estimated hit points for darts as more measurements are
acquired along the trajectory of the dart. When these darts were thrown, the thrower
tried to make the darts wobble as little as possible.

40

 (a) (b)

 (c) (d)

Figure 4.2 Development of estimated hit points for darts as more measurements are
acquired along the trajectory of the dart. When these darts were thrown, the thrower
threw the way that felt natural, without paying attention to how much this would make
the dart wobble.

41

5. Discussion

The camera calibration procedure can be improved in several ways. One issue is
how errors are accumulated. One way around this problem is to use 3D-points
with known positions, which are then identified in images from the cameras. The
problem that then arises is how to measure the position of the points accurately.
Possibly a combination of the two methods could be used, with the drawback of a
longer calibration time. Another alternative is to use more cameras, so the
checkerboard can be seen by more than two cameras simultaneously. The
additional cameras could then either be used to improve the position estimate of
the dart in real-time (at the cost of computation time) or be removed after the
calibration.

The time it takes to perform a calibration is also an issue. Currently it takes
two hours to calibrate the cameras, which makes one hesitate to perform a
calibration. Much time is spent on manually clicking on the corners in every
image. With fully automatic corner identification the calibration time could
probably come down to 30-45 minutes.

The image analysis is fairly robust to different lighting conditions and
backgrounds. Still with some work it could be improved in several ways. For
instance, currently different colors with the same hue in an image are perceived as
different hues across different intensities and saturations on the real objects, which
limits the range of lighting intensities that the system can handle with fixed
parameter values. One solution to this could be performing white balancing, e.g.
by capturing an image of a white reference object. The improvement of the image
analysis that would have the most obvious impact on the overall system
performance is detection of the dart orientation, which would allow more accurate
modeling of the dart dynamics.

The implementation of the Kalman filter is straight forward, but the choice
of covariance matrices (3.13) is not thoroughly investigated. Currently the
variances are set to crude estimates of what seems reasonable. Possibly better
tuning could e.g. filter out the wobbling of the dart tale better.

42

6. Conclusions

Seeing how wobbling of the dart degrades the performance, it becomes obvious
that detection of the dart orientation is needed to get good performance. As a first
step this could be used without making a more complex model of the dart
dynamics. The orientation of the dart and the position of the tail can be used to
calculate the position of the center of mass. If this is used as input to the Kalman
filter describing a particle, the accuracy could probably be improved a lot.

With the current frame rate of 50 fps 5-10 position measurements are made
during one throw. This seems to be quite sufficient, but still more measurements
could probably improve the measurement accuracy. If the wobbling of the dart
should be modeled, its dynamics are probably so fast that a higher frame rate is
needed. This is not possible when the full resolution of the cameras is used. One
solution is to use prediction to calculate where the dart is expected to be seen and
only capture this part of the image, thus reducing time for data transfer and image
analysis.

The system typically has to move the board to its destination in less than
150-200 ms. Recalling the feasibility analysis in Section 1.3 it was concluded that
it takes the robot approximately 120 ms to move the dart board 0.2 m. This
distance is probably longer than is usually needed (depending on the skill of the
thrower), but on the other hand the final destination is not known from the
beginning, causing the movement time to be longer. On top of that the trajectory
generation will also cause some delay. The numbers indicate that the system has
the performance needed to catch a dart, but the margins are not big. If possible,
optimization of the algorithms to reduce the delays would be useful.

43

7. Future Work

The project described in this thesis serves many areas of future development. This
chapter lists a few of them:
• The most obvious is to finish the trajectory generation and robot control, so

the system can start catching darts.
• Measure the angle of the dart in the images and use this in a more advanced

model of the dart dynamics.
• Add a third high speed camera. This would help making good estimates of the

dart orientation. Using only two cameras it is hard to measure rotations with a
rotation axis orthogonal to the plane containing the cameras and the dart.

• Use the state estimate of the Kalman filter to calculate the expected position
and size of the dart in the images. This can be fed back to the image analysis
algorithms to make them faster and more accurate. Similarly it can be used to
read in smaller parts of the images from the cameras, reducing the time for
data transfer.

• Let the image analysis algorithms vary the measurement uncertainty based on
the image quality.

• Make the image analysis algorithms more robust to different lighting
conditions and backgrounds.

• Finish the image analysis algorithms for detecting a dart on the dart board,
making it possible to automatically measure the position where the dart
actually hit the board.

• Make it possible to detect more than one dart in every image. This could be
used in a future extension where the sum of the darts’ distances from bull’s
eye should be minimized or the score on a dart board should be maximized.

• Make it possible to catch darts with high rotation rates in any direction. This
puts high demands on the modeling and prediction. It also makes it useful to
move the dart board in the z-direction to make sure the dart always hits the
board with the tip first.

• Make it possible to use fully automatic grid detection in camera calibration.
This would remove the time consuming step where grid corners have to be
marked manually.

44

References

[1] Wikipedia page on “HSL and HSV”. Visited August 2008.
http://en.wikipedia.org/wiki/HSL_color_space

[2] libdc1394 Homepage. Visited August 2008.
http://damien.douxchamps.net/ieee1394/libdc1394/

[3] The OpenCV Wiki. Visited August 2008.
http://opencvlibrary.sourceforge.net/

[4] Camera Calibration Toolbox for Matlab by Jean-Yves Bouguet, California
Institute of Technology. Site visited August 2008.
http://www.vision.caltech.edu/bouguetj/calib_doc/

[5] Multi-Camera Self-Calibration by Tomas Svoboda, Czech Technical
University. Site visited August 2008.
http://cmp.felk.cvut.cz/~svoboda/SelfCal/index.html

[6] EasyCal from University of Pennsylvania. Site visited August 2008.
http://www.cis.upenn.edu/~kostas/tele-
immersion/research/downloads/EasyCal/

[7] Wikipedia page on “Nelder-Mead method”. Visited August 2008.
http://en.wikipedia.org/wiki/Nelder-Mead_method

[8] Wikipedia page on “Rodrigues’ rotation formula”. Visited August 2008.
http://en.wikipedia.org/wiki/Rodrigues'_rotation_formula

[9] Forsyth D. A. and Ponce J., “Computer Vision A Modern Approach”,
Prentice Hall, 2003

[10] DC 1394-based Digital Camera Specification, IIDC (Instrumentation &
Industrial Digital Camera), available e.g. at
http://damien.douxchamps.net/ieee1394/libdc1394/iidc/

[11] Basler A600f User’s Manual, Document number DA00056107, 2 March
2005

[12] Åström K. J. and Wittenmark B., “Computer Controlled Systems” Prentice
Hall, 1997

[13] Fully Automatic Camera and Hand Eye Calibration by Christian Wengert,
ETH Zürich. Site visited August 2008.
http://www.vision.ee.ethz.ch/~cwengert/calibration_toolbox.php

[14] Enhanced Matlab Camera Calibration Toolbox by Graphics and Media
Lab, Moscow State University. Site visited August 2008.
http://graphics.cs.msu.ru/en/research/calibration/index.html

[15] Sven Gestegård Robertz, Roger Henriksson, Klas Nilsson, Anders
Blomdell, and Ivan Tarasov Using real-time Java for Industrial robot
control, in Proceedings of the 5th International Workshop on Java
Technologies for Real-time and Embedded Systems, Sepember 26-28,
2007, Vienna, Austria. Paper available at
http://www.cs.lth.se/home/Sven_Robertz/publ/JTRES07.html

[16] Homepage of EtherCAT Technology Group, visited August 2008.
http://ethercat.org/default.htm

