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1. Introduction 

This chapter describes the problem to be solved and analyzes its feasibility. Some 
guidelines for the solution are also listed. 

1.1 Background 

In practical robot applications it is often desirable to have systems that respond 
quickly to input from the robot environment. The most common input is position, 
velocity etc. of the robot or an object to be tracked. 

Using cameras as sensors has several advantages. They can make touch free 
measurements of very generic types, e.g. position, shape or color. The limitation 
for what can be done often lies in the algorithms that analyze the images. Some 
image properties can be very difficult to extract and the execution time is often 
significant. Hence the problem gets even harder when the camera is used as a 
sensor in a real-time system. 

1.2 Problem formulation 

The objective of this thesis has been to evaluate the use of high speed computer 
vision in a motion control application. The specific problem chosen was to 
develop the foundation for a dart catching robot. A sketch describing the problem 
can be seen in Figure 1.1. A dart board is mounted on a robot and when a dart is 
thrown toward the board, the robot should move the board so the dart always hits 
the bull’s eye. The detection of the dart is performed with cameras that provide 
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Figure 1.1    Sketch of setup. 
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data to the algorithms that estimate the position and future trajectory of the dart. 
This information should in turn be used to move the dart board to the correct 
position. 

1.3 Feasibility Analysis 

A typical dart throw is performed 2-3 m away from the dart board and the dart 
gets a forward velocity of 5-8 m/s. Consequently the duration of the throw is 
approximately 0.25-0.6 s. In this time the trajectory of the dart should be 
estimated with sufficient precision and the dart board should be moved to the 
predicted hit point. 

Assume that the robot has the maximum acceleration capacity a. The fastest 
way to move the dart board between two points, having zero speed at both end 
points, is to first give full acceleration towards the end point, and half way give 
full acceleration in the opposite direction. If this movement has the duration T, the 

distance traveled is 2
2

)2/(
2

)2/(
2 Ta

Ta
d =⋅= . Assuming a = 6g (the capacity of 

the Flexpicker described in Section 2.3) and that we want to be able to move the 
dart board d = 0.2 m, this movement can hence be done in s 12.0/2 ≈= adT . 
Considering that the duration of the dart throw was previously estimated to 0.25-
0.6 s there seems to be a good margin. This margin will be reduced by delays 
from data transmission and computations. Another limiting factor is that good 
estimates of the hit point will not be available until the dart has traversed a part of 
its trajectory. 

1.4 Guidelines 

It is desirable that the solution conforms to some guidelines to optimize the 
utilization of the hardware and make maintenance easy. 
• Modularity. The software should be split into modules that can be developed 

independently or be replaced without having to make changes in the rest of the 
system. Examples of such modules can be image acquisition, image analysis, 
triangulation, dart trajectory estimation and dart board trajectory generation. 

• Easy exchange of hardware components. It should be easy to e.g. switch to 
other cameras or another kind of robot. 

• Restrictive movement of the dart board. Every time a measurement of the 
dart position is acquired during its flight, there is an update of the estimate of 
where the dart is predicted to hit the dart board. If the estimate moves around a 
lot and there is a long time left to the impact, it is desirable that the robot does 
not shake the dart board too much. Still the robot should try to move the board 
to the approximate position where the dart is expected to hit, so the board will 
have a shorter way to go when the estimate improves. When the dart is close 
to the board, the robot should use its full capacity to move the dart to the 
estimated hit point if it is necessary to get there before the impact. 
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2. Hardware and Platform 

This chapter describes the different hardware components and tools used to 
develop and realize the system. 

2.1 Setup 

An overview of the setup can be seen in Figure 2.1. The dart board is mounted on 
a robot. On each side of the dart board there is a camera (denoted FWA and FWB) 
pointing toward the dart thrower. These are used to get images of the dart’s flight 
and provide data to the prediction of where the dart will hit the dart board. 
Another camera (denoted NW) is pointed toward the dart board and used to 
evaluate where the dart actually hit the board. 

2.2 Cameras 

The cameras used to photograph the flight of the darts (FWA and FWB) have to 
be able to capture images at a high frame rate, and fine control of the image 
acquisition is desirable. The cameras used in this project were two Basler A602fc 

Figure 2.1    Overview of the setup. The main frame is used to measure 
the position of the dart. A possible position and trajectory of the dart are 
marked in green. The cameras are denoted NW, FWA and FWB. Their 
coordinate axes are marked in blue. The cones in front of the cameras 
illustrate their fields of view. 
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(Figure 2.2 (a)), which can supply color images at resolutions up to 656×490 
pixels with a maximum frame rate of 100 fps (frames per second) at full 
resolution. The communication with the cameras is done with the IEEE1394 serial 
bus commercially known as Firewire or iLink. The cameras conform to the IIDC 
[10] standard for digital cameras 

The camera pointed toward the dartboard does not have to fulfill the same 
real-time requirements, since it is used mainly to get still images of the dart on the 
dart board to measure where it hit. For this an Axis 211A (Figure 2.2 (b)), 
connected through Ethernet, was used. It can supply 640×480 pixel color images 
at rates up to 30 fps, but with latencies up to 1 s in the current setup. 

2.3 Robot 

The implementation has not been specialized for any special kind of robot. The 
robot that is planned to be used is a Flexpicker IRB 340 from ABB. Its truss-like 
structure makes it stiff, though light-weight parts are used. This in turn allows it to 
effect large accelerations, something that is essential for the dart catcher 
application. The robot can be seen in Figure 2.3. 

Figure 2.3    Flexpicker IRB 340 

(a) Basler A602fc (b) Axis 211A 

Figure 2.2    The cameras used in the project. 
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2.4 Tools 

Matlab 

Most algorithms have been developed and evaluated using Matlab, which 
facilitates fast development through a large set of functions for calculations and 
visualization. Most algorithms have then been implemented in C or Java for better 
real-time performance. Some scripts that are run offline (e.g. for camera 
calibration) are implemented only in Matlab. 

Programming Languages 

The first steps in the data flow, including image acquisition, image analysis, state 
estimation and prediction, are implemented in C, running on a Linux platform. 
Given an estimation of where the dart will hit the board, the Java part generates a 
trajectory for the robot and actuates it. The reason for splitting the implementation 
into two languages is that the Firewire cameras are interfaced through a C driver 
and the interface to the robot is written in Java. 

The C and Java parts of the program communicate through a socket, making 
it easy to either run the two parts on the same computer or on different computers. 

A schematic overview of the components and how they communicate can be 
seen in Figure 2.4. 

 
Figure 2.4    A schematic overview of the components in the system and how they 
communicate. 
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libdc1394 

The communication with the Firewire cameras is done with libdc1394 [2]. It 
provides a high level API in C for cameras conforming to the IIDC standard [10]. 

OpenCV (Open Source Computer Vision) 

OpenCV [3] is a C/C++ library mainly aimed at real-time computer vision. In this 
project it has mostly been used for matrix operations and to display images on the 
computer screen in real time. 

Robot interface 

The robot is interfaced through a Java control system developed at the Department 
of Computer Science at Lund University [15]. The Java controller takes position 
references with velocity feed forward and communicates with the robot through 
an EtherCAT interface [16]. 

Camera Calibration 

For camera calibration the Camera Calibration Toolbox for Matlab [4] by Jean-
Yves Bouguet was used. It uses series of images of a checkerboard pattern to 
extract both intrinsic camera parameters and the relative position of the cameras in 
a stereo pair. It has a relatively intuitive GUI with convenient functions for 
detecting and eliminating errors. The localization of grid corners is done semi-
automatically; the user has to click the approximate position of four corners in 
each image. Then the remaining corners in the grid are identified and their 
positions are calculated at sub pixel level. 

As alternative calibration tools Multi-Camera Self-Calibration by Tomas 
Svoboda [5] and EasyCal Camera Calibration Toolbox from University of 
Pennsylvania [6] were considered. They both use a point light source being 
moved around in front of the camera in a dark room. This strategy facilitates easy 
image analysis at the cost of requiring the possibility to make the room dark. 
Another important limitation of the toolbox by Svoboda, related to the fact that 
only one point is detected in each image, is that it requires at least three cameras 
with common field of view. EasyCal on the other hand requires that the intrinsic 
parameters of at least two of the cameras are determined with a checkerboard and 
the toolbox by Bouguet. 

Taking all these facts into account, the toolbox by Bouguet was considered 
to be the most appropriate. A desirable future extension would be to make the 
detection of the checkerboards completely automatic, maybe using [13] or [14]. 
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3. Methods 

3.1 Positioning of Cameras 

Many different ways of positioning the cameras are possible. The chosen 
positions of the high speed cameras are on each side of the dart board, pointing 
toward the thrower at an angle. The positioning and the stereo coverage are 
illustrated in Figure 3.1.  

This positioning allows the cameras to see the dart at a big distance if the 
thrower is straight in front of the board. The dart catcher application has a higher 
requirement on the accuracy of the estimated dart trajectory when the dart is close 
to the dart board than when it is far away, since there then is little time left to the 
impact and the dart board trajectory generator needs to know exactly where to 
send the dart board. This requirement is fulfilled by the chosen camera 
positioning, since the dart is close to the cameras when it is close to the board. 
The fact that the cameras observe the dart from very different angles (optimally 
90° difference) when the dart is close to the board, further increases the accuracy 
of the position estimate after the triangulation. 
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The last possible point on the trajectory, where the dart can be seen by both 
cameras simultaneously, is straight in front of the board, approximately 0.45 m 
away from the board. 

Another consideration in the placement of the cameras is that it should be 
easy to calibrate the setup. This is described in more detail in the following 
section. 

3.2 Camera Calibration 

To be able to calculate the position in space of a dart captured in an image, it is 
necessary to know the camera parameters. The extrinsic parameters tell the 
position and orientation of the camera with respect to some coordinate system. 
The intrinsic parameters tell how a point in space, measured in a coordinate 
system fixed to the camera, is projected onto the image. 

Homogeneous Coordinates 

In computer vision it is often convenient to represent points with homogeneous 
coordinates, since it allows projections and coordinate transformations to be 
performed as matrix multiplications. For the purposes of this report they can be 
described by the following paragraphs. 

To describe a point ( )Tzyx  in 3D space with homogeneous coordinates, 
a “1” is augmented: 

 ( ) ( )TT zyxzyx 1→  (3.1) 

To find out which point in space is represented by an arbitrary homogeneous 
coordinate vector, it is rescaled so that the last element is equal to one: 
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Camera Parameter Representation 

A point ( )TZYX 1=X  in some reference frame can be transformed to a 
coordinate ( )1ccc ZYX=cX  in the camera reference frame with some 
translation, 13t ×  , and some rotation, 33×R . 

 X
0

t
X

31

13
c ��

�

�
��
�

�
=

×

××

1
33R

 (3.3) 

Let nx  be the normalized projection of cX  defined by 
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It corresponds to the coordinate where a line between cX  and the camera’s focal 
point intersects the plane 1=cZ  (cf. Figure 3.2). This projection can be obtained 
by removing the last row from (3.3): 

 ( ) XXtx 13n PR == ××33  (3.5) 

The matrix P is the output from the extrinsic parameter estimation process.  
Since the camera lenses are not ideal, they exhibit nonlinear behavior. 

Consequently the normalized coordinates are distorted: dn xx  →distortion . Three 
coefficients (k1, k2 and k5) represent the radial distortion (along lines through the 
principal point). Two coefficients (k3, and k4) represent the tangential distortion 
(along circles with their centers at the principal point). For more details, consult 
[4]. 

Finally dx  is converted to pixel coordinates, px , through 

 ddp xxx
�
�
�

�

�

�
�
�

�

�

==
100

0 yy

xxx

cf

cff

K

α
 (3.6) 

where xf  and yf  are the focal lengths, ( )yx cc  ,  is the principal point and α  is the 
skew coefficient. 

For more details on camera parameterization, read [4, 9]. 

focal point 

Yc 

Xc 
Zc 

X 

xn 

yn 

image plane 

Figure 3.2    Illustration of projection of 3D-points onto an image plane. 
The projection of X, some point in space, is determined by finding the 
point where the line between X and the focal point intersects the image 
plane. 
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Calibration of Intrinsic Parameters 

In order to measure the intrinsic parameters, a checkerboard pattern with known 
square sizes is used. A set of images of the checkerboard in different position is 
captured. An example can be seen in Figure 3.3. The camera calibration toolbox 
by Bouguet has a function to extract the intrinsic parameters from these images, 
including lens distortion. 

The result of a calibration of the intrinsic parameters is shown in Table 3.1. 
The presented uncertainties are approximately three times the standard deviations. 
The parameters � and k5 are assumed to be negligible and thus set to zero to make 
the estimation process more robust. 

 
Parameter NW FWA FWB 
fx / mm 1394 ± 8.52 874.9 ± 4.48 877.8 ± 4.37 
fy / mm 1396 ± 8.53 875.8 ± 4.81 879.0 ± 4.46 
cx / mm 318.9 ± 19.0 317.9 ± 8.36 314.1 ± 8.59 
cy / mm 260.8 ± 14.8 294.3 ± 7.26 271.7 ± 7.08 
� 0 ± 0 0 ± 0 0 ± 0 
k1 / mm-2 -0.3245 ± 0.0804 -0.03927 ± 0.0383 -0.1608 ± 0.0359 
k2 / mm-4 0.5830 ± 1.53 -0.2954 ± 0.371 0.1121 ± 0.279 
k3 / mm-1 0.004018 ± 0.00179 0.007887 ± 0.00255 0.004027 ± 0.00205 
k4 / mm-1 0.002602 ± 0.00170 -0.002283 ± 0.00287 -0.001657 ± 0.00219 
k5 / mm-6 0 ± 0 0 ± 0 0 ± 0 

Table 3.1    Results from a calibration of the intrinsic parameters. The errors are 
approximately three times the standard deviations. 

Calibration of Extrinsic Parameters 

To measure the relative position of two cameras, a set of synchronized images are 
captured, showing the checkerboard in the same positions from the different 
viewpoints of the cameras. 

Figure 3.3    Set of images of a checkerboard used to calibrate the 
intrinsic parameters of a camera. 
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The calibration toolbox comes with a function that extracts the relative 
position of two cameras from this kind of data, and at the same time enhances the 
estimate of the intrinsic parameters. An inconvenient limitation is that the exact 
same part of the grid has to be selected in both image sets when clicking corners, 
though different portions of the grid may be visible in the different images. More 
importantly, the intrinsic parameters used in the calculation of the extrinsic 
parameters are extracted from the images where the grid is visible in both 
cameras, with no option to use predetermined measurements of the intrinsic 
parameters. Since the cameras may have a limited common field of view, it may 
then be impossible to get images where the grid covers a large part of the image, 
resulting in poor estimates of the nonlinearities. 

Considering the arguments in the above paragraph, a new script for 
calibration of the extrinsic parameters was written. It uses the same set of images 
as input data, where the grids are identified by manually clicking at the 
approximate position of the grid corners in the images. The largest grid portion 
visible in two corresponding images is detected automatically. The 3D position of 
each grid, with respect to the camera used to capture the image, is then calculated 
using the extrinsic_computation function in the calibration toolbox. 

Figure 3.4    Illustration of calibration of the extrinsic camera parameters. 
The red lines are the forward direction of the cameras. The rectangles are 
the perimeters of the used checkerboard grids. Small displacements can be 
seen between the corresponding boards. 
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We now have two sets of corresponding 3D points, each belonging to one 
camera. The relative position of the cameras can be obtained by matching these 
points. To do this a weight function is defined as the root-mean-square value of 
the distances between the corresponding points. Its minimum is then found 
numerically using the Nelder-Mead simplex method [7]. Occasionally the 
minimization gets stuck in local minima. Therefore it is checked whether the 
weight function is below some threshold (a few mm is sufficient), otherwise a 
random value is added to the result and the minimization process is resumed. 

To perform the minimization, a parameterization of the transform between 
the camera frames is needed. The translation has three DOFs (degrees of freedom) 
and is naturally represented as the position of one of the cameras in the coordinate 
system of the other camera. The representation of the 3-DOF orientation serves a 
few alternatives. One alternative would be to use a 3-by-3 rotation matrix, but it 
uses nine elements to describe a 3-DOF quantity. Since the nine elements are not 
independent the minimization algorithm can not simply vary all elements in the 
search for a minimum of the weight function. The yaw-pitch-roll representation 
uses three parameters, but has the drawback of singularities at pitches equal to 

2/π± . Instead a representation related to Rodrigues’ rotation formula [8] was 
chosen, avoiding both problems of the other parameterizations. The direction of 
the rotation vector ( )Trrr 321=r  defines the axis around which to make the 
rotation. The 2-norm of r  defines the angle to rotate in radians. 

This algorithm could quite easily be extended to calibration of several 
cameras simultaneously if they partly share a field of view. 

Figure 3.4 visualizes the result of the calibration of the extrinsic parameters. 
Figure 3.5 shows the distribution of the errors. The errors are mainly along the 
forward directions of the cameras. 

Figure 3.5    Distribution of distances between corresponding points in the calibration 
of the extrinsic parameters illustrated in Figure 3.4. 
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Calibration of the Whole Setup 

When calibrating the whole setup, the first step is to measure the intrinsic 
parameters of each camera. The origin of the main reference frame (cf. Figure 2.1) 
is defined by the center of the dart board. To align the reference frame with the 
gravity field, the orientation of the dart board should be measured. This can be 
done e.g. with a plummet and a ruler. The pose of camera NW can then be 
determined by taking pictures of the dart board and identifying the markers, see 
Figure 3.6. Since cameras NW and FWA share a common field of view, their 
relative positions can be determined with the method described in the previous 
section. Similarly the relative positions of FWA and FWB can be determined. A 
potential problem with this procedure is accumulation of errors in the absolute 
pose of FWB, since it is determined through a series of relative poses. In practice, 
however, the errors do not seem to cause any problems. 

Alternative calibration procedures were considered, where markers with 
known positions would be put in front of the dartboard on the floor or on tripods. 
If the markers are put on the floor, that puts constraints on the direction of the 
cameras. If the markers are put on a tripod in front of the board, it has to be 
removed before any darts can be thrown. In either case it would be hard to 
measure the position of the markers accurately. 

The chosen calibration procedure could be improved by adding more 
cameras, so more cameras share a field of view. With a proper setup this could 
reduce the accumulation of errors described above. 

Figure 3.6    Dart board with markers 
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3.3 Image acquisition 

Triggering and synchronization 

Two strategies for triggering of the cameras FWA and FWB were considered: 
1. Let the cameras stream images continuously. 
2. Trig every image individually. 

A potential problem with strategy 1 is that the cameras eventually get out of 
synch, since they do not use the same clock. If strategy 2 is used, the program has 
to wait for the camera to be ready with the previous frame before sending a new 
trigger. This can be achieved either by reading back the status from the camera or 
sending the triggers with a period that is slightly longer than the time it takes for 
the camera to process one frame, in either case achieving a frame rate slightly 
lower than the bandwidth of the data transmission allows. Strategy 2 would also 
give a more irregular frame rate, since there would be jitter on the trigger due to 
the scheduling of processes on the host computer. 

Considering the discussion above, strategy 1 was believed to be the best. 
Due to problems getting the single trig functionality of the cameras to work, the 
choice of strategy 1 was even more obvious. 

To handle the problem of the cameras drifting out of synch, they are 
restarted periodically. If the cameras are restarted while there is a dart flying 
towards the dart board, the resulting interruption of the image flow disturbs the 
filter that estimates the position and velocity of the dart. Thus the restart gets 
postponed until there is no dart detected. 

To find an appropriate period for the restart, the drift was measured. It is 
hard to measure the actual time the frames are received on the computer, due to 
the jitter induced by the scheduler. Thus the strategy used was to let the cameras 
stream data and count the received images, to see when one camera has sent more 
images than the other. When streaming images at 50 fps, the number of sent 
images would still be the same after one hour. This means that the drift is less 
than 1/50 s in 3600 s. Under the simple assumption that the cameras have 
different constant frame rates, a restart period of 20 s would give frames that are 
captured with a time difference less than ms 11.0 s )360050/(20 ≈⋅ . This time 
difference is well within the limits of what is acceptable, since the used exposure 
time typically is 1-4 ms. A quite hard dart throw has a speed of approximately 
8 m/s, resulting in that the dart moves less than 0.9 mm during the possible time 
difference of 0.11 ms between the time instants for exposure start. 

Bayer Decoding 

On most digital color cameras, including Basler A602fc, each pixel of the image 
sensor is covered by a red, green or blue color filter. Consequently each pixel only 
registers the amount of light in one part of the color spectrum. The filters are 
arranged in a so called Bayer pattern, depicted in Figure 3.7. There are a large 
number of algorithms available that use some kind of interpolation to convert a 
Bayer coded image to an image with red, green and blue intensities for every 
pixel. 

The Basler A602fc has a few options for the format of the images it 
transfers to the computer. When using the Raw 8 format, Bayer coded images are 
transferred using 8 bits per pixel. If this format is used the Bayer decoding has do 
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be performed on the computer. When using the YUV 4:2:2 format, the Bayer 
decoding is performed on the camera and an average of 16 bits per pixel are used 
in the transmission. See [11] for more information on the formats. 

Using the YUV 4:2:2 format it takes 20 ms to transfer one frame. Using the 
Raw 8 format it only takes 10 ms to transfer one frame, but the computer gets 
some extra work decoding the Bayer pattern. The Bayer decoding takes 
approximately 2 ms for one frame and the rate limiting factor is the transfer of 
frames from the cameras, not computer load. Thus the Raw 8 format was chosen. 

3.4 Image Analysis 

This section describes the process of analyzing images and extracting the image 
coordinates, at which there are darts. In the development of the algorithm an 
important consideration has been to make it simple and computationally efficient 
due to the high real-time requirements on the implementation 

Pixel Classification 

As a first step the color of each pixel is examined in order to determine whether it 
is likely to be part of a dart in the image. To do this the RGB (red, green, blue) 
image is converted to the HSV (hue, saturation, value) color space defined by 
(3.7) [1]. Assuming ]1 ,0[,, ∈bgr  this yields [360 ,0[ °°∈h  and ]1 0,[, ∈vs . 
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Figure 3.7    Bayer pattern. 
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Intuitively h can be interpreted as the tone of the color. Large values of s give 
intense colors, while small values of s give shades close to gray. The value of v 
indicates the brightness. 

To determine if a pixel is part of a dart, the criterion 

 7.02.065.0360/55.0 <<∧<°< vh  (3.8) 

was found to work well empirically for the dart depicted in Figure 3.10. The basic 
idea was to use mostly the hue, since it does not vary much with different lighting 
conditions. Initially a minimum value of the saturation was also used, since the 
darts have an intense green color. This criterion was however removed later, 
allowing detection of darts in darker conditions without introducing much false 
positives. The lower limit of the brightness is needed because the calculation of 
the hue is very sensitive to noise at low intensities and then generates hue values 
in the entire range, including the hue range used to discriminate dart pixels. 
Similarly incorrect hue values are generated at high brightness, when some pixel 
intensities saturate. Consequently a maximum value of the brightness was 
introduced. 

Using (3.8), a new image, D, can be generated, where the value of each 
pixel is 1 if it is likely to be part of a dart, 0 otherwise. This is expressed more 
formally in (3.9). An example of D can be seen in Figure 3.9 (c). 
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Calculating the Number of Dart Pixels in a Rectangle 

In the process of finding darts in an image, the number of dart pixels in a 
rectangle is calculated a large number of times. A naïve way to do this would be 
to use D from (3.9) each time and simply sum all the pixel values in the rectangle. 
If the rectangle is h-by-w pixels this would require 1−⋅ wh  additions. As an 

example, p in Figure 3.8 would be computed with the formula � �
−+

=

−+

=

=
1 1

),(
ht

ti

wl

lj

jiDp . 

When the number of dart pixels in a rectangle is to be computed for a large 
number of rectangles in the same image, a computationally more efficient method 
is to use the integral image, I, defined by (3.10). 
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This is quite a heavy computation, but once it is done the number of dart pixels in 
any rectangle can be computed by only summing 4 values. This can be understood 
by looking at Figure 3.8. The sum of the pixel values in D over the different 
rectangles are denoted by m, n, o and p. A formula for calculating p and a 
derivation of the formula are given in (3.11). 
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Finding Blobs 

The criterion (3.8) for detecting dart pixels generates quite a large number of false 
positives, as can be seen in Figure 3.9 (c). A large number of these are caused by 
the Bayer pattern, which can be seen in Figure 3.9 (b). Because of the 
displacement of the color filters a large number of colors are generated at sharp 
edges in the images. These artifacts occur in lines that are one, or possibly two, 
pixels wide. Thus they can be filtered out by keeping only the pixels that are the 
centers of 3-by-3 pixel boxes where at least 7 out of the 9 pixels satisfy (3.8). This 
results in Figure 3.9 (d). 

Figure 3.8    Illustration of how to compute the pixel values in a 
rectangle by means of the integral image, defined in (3.10). The 
variables m, n, o and p denote the sum of the pixel values in the 
respective rectangles of D. 
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Still there may be some outliers. To filter these out, the pixel that is the 
center of the 5-by-5 pixel box with the largest number of pixels satisfying (3.8) is 
used as the estimate of the position of the dart. If several pixels share the same 
number of neighbors satisfying (3.8), their center of gravity is used. If the dart is 
close to the camera there are generally many pixels having 25 neighboring dart 
pixels in the 5-by-5 box. By using the maximum number of measured neighbors 

Figure 3.9    Illustration of image analysis process. 

(a) Original image. There is a dart at 
(row, column) = (303, 290) 

(b) Close-up showing artifacts of Bayer 
pattern. 

(c) Pixels with colors similar to a dart. (d) Pixels left after blob detection. 

(e) Close-up of dart with estimated 
position marked with a white circle. 
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in the image instead of always using 25, it is possible to detect darts that are far 
away and do not cover many pixels of the image. 

By means of (3.11) and the integral image (3.10) the blobs can be found 
efficiently with a binary search over the image. The basic idea is to discard a 
rectangular part of the image if it does not contain enough dart pixels to contain a 
dart. Otherwise the rectangle is split in half and each half is examined for the 
possibility of containing a dart. In this way the position of the dart is narrowed 
down through recursion. 

Depending on the background there may still be a significant number of 
false positives. These can however be filtered out at a later stage by analyzing if 
they correspond to the expected behavior of a flying dart. 

3.5 Kalman Filter 

A Kalman filter is used to estimate the state of the dart and to predict its future 
trajectory. The general form of the filter is derived in Chapter 11 of [12] and the 
results are repeated here. 

The process is described by the discrete time state-space model 
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where h is the time step and v and e are discrete time Gaussian white noise 
processes with zero mean value and 
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Throughout this report all elements of 12R  are assumed to be zero, i.e. the load 
disturbance, v, and the measurement noise, e, are assumed to be uncorrelated. The 
initial state is assumed to be Gaussian distributed with 

 [ ] 0)0(E mx =  and [ ] 0)0()0(E Rxx T =  (3.14) 

Assuming that h is used as time unit, the update laws for the Kalman filter 
are then described by (3.15) – (3.17). Here )|1(ˆ kkx +  denotes the estimate of x at 
sample k+1 based on measurements up to sample k. 

 ( ))1|(ˆ)()()()()1|(ˆ)|1(ˆ −−+Γ+−Φ=+ kkxkCkykKkukkxkkx  (3.15) 

 ( )( ) 1

212 )()()()()()()()(
−++Φ= kCkPkCkRkRkCkPkK TT  (3.16) 
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Process Model 

The model used for the free-flying dart dynamics is very simple. It is assumed to 
fly through the air with negligible air friction. Since the image analysis does not 
yet have the functionality to extract the dart’s orientation, it does not make much 
sense including the orientation in the model. Thus the dart is modeled as a 
particle. 

A problem with this simple model is that the point that conforms well to the 
model is the center of mass, but only the position of the tail is measured, and the 
point of interest is at the tip, since this determines where the dart hits the board. 
For the model to be valid it is thus required that the throws are “friendly” with 
small rotation rates, so that the three points traverse approximately the same 
trajectory in space. The different parts of the dart are shown in Figure 3.10. 

One problem with a wobbling dart is the displacement, that the tip and tail 
do not follow the same trajectory. Moreover, if the rotation of the dart gives the 
tale a supplementary downward velocity, the Kalman filter will think that the 
center of mass is moving downwards faster than it is. This error gets amplified 
more the longer time there is left to the impact, possibly giving hit point estimates 
that are far too low. 

Computation of Process Model Matrices 

The state vector used to describe the model contains first the positions and then 
the velocities as described in (3.18). The positions are measured with respect to 
the main reference frame in Figure 2.1. 

 ( )T
dddddd zyxzyxx ���=  (3.18) 

The continuous time description of the model is then given by (3.19). 

center of mass 

measured point point of interest 

Figure 3.10    Image of dart. 
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One way to compute the discrete time system is described in (3.20) [12]. 
Note that 02 =A  in our example. 
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Consequently (3.12) can be used with system matrices described by 
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Prediction 

In each filtering iteration the dart trajectory is extrapolated to predict where the 
dart will hit the board. This is done by simply running more iterations of the 
Kalman filter assuming that no measurements are available. The filtering is 
continued until dẑ  is equal to the z-coordinate of the dart board. The values of dx̂  
and dŷ  at that instant are used as the hit point estimate. 

As the dart approaches the board, the uncertainty of the estimate gets 
smaller and smaller. One reason for this is that the uncertainty of the dart state 
estimate gets smaller with every successful measurement. Another reason is that 
the uncertainty in the velocity estimate contributes less to the uncertainty of the 
hit point, the less time there is left to the impact. 
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Outlier Detection 

Before a measurement of the dart position is used in the Kalman filter, it is 
checked that it is close to what is expected based on the state estimate. Otherwise 
the measurement is discarded. 

Each measurement is associated with a measurement vector, y, a 
measurement covariance, 2R , and a matrix, C, relating the measurement to the 
state according to )()()()( kekxkCky += , cf. (3.12). Based on the state estimate 
the expected measurement and its variance become 
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Now let 

 yyd ˆ−=  (3.23) 

be the difference between the actual measurement and the expected measurement. 
Since the errors in y and x̂  are assumed to be uncorrelated the covariance of d is 

 22
ˆ)cov( RRdR +=≡  (3.24) 

The variance in the direction of d is 
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where d  is the 2-norm of d. The measurement is considered to be an outlier if 

 σad >  (3.26) 

i.e. if the distance between y and ŷ  is larger than a standard deviations, where a is 
a tuning parameter. (3.26) can be transformed to a computationally more efficient 
form: 
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Managing of Multiple Trajectories Simultaneously 

On top of the Kalman filter is a layer that can keep track of several state vectors, 
each representing the trajectory of one dart. The obvious advantage of this is that 
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the trajectories of several darts can be tracked simultaneously. A more important 
advantage has to do with outlier detection. 

In each iteration of the Kalman filter, the measurements are discarded if 
they are not close to where they are expected to be based on the current state 
estimate (cf. Outlier Detection). If the measurement initiating the trajectory is a 
false positive, successive correct measurements will be discarded, since they are 
not close to what would be expected after the incorrect measurement. This means 
that one incorrect measurement would block the system. The algorithm used to 
handle this situation is described by the following pseudo code: 

 
for all trajectories 
  if the measurement is not an outlier to this trajectory 
    perform iteration of Kalman filter 
  if the trajectory has not received a measurement for a while 
    discard it 
if the measurement did not match any existing trajectory 
  create a new trajectory 

3.6 Conversion from Image Measurements to 3D Space 
Measurements 

Approach 1 

In the first approach a pair of stereo images acquired simultaneously can only be 
used if the dart is detected properly in both images. The x, y and z coordinates of 
the dart at that instant are then calculated and used as input to the Kalman filter 
that estimates the state of the dart. The C matrix is then always ( )3333 0 ××I . 

From the position of the dart in a single image it is possible to determine a 
line in 3D-space along which the dart must be. In this report this line will be 
referred to as the viewline (cf. Figure 3.11). If a viewline is known for the same 
dart from two different cameras, the position of the dart can be calculated as the 
point where the viewlines intersect. In practice measurement noise will cause the 
lines not to intersect. Instead the midpoint of the shortest possible line connecting 
the two viewlines can be used. 

focal point 

Y 

X 
Z 

ly 

lx 
image plane 

viewline 

image point 

Figure 3.11    Illustration of viewline. An object projected onto some 
image point, can be located anywhere along the corresponding viewline. 
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Extracting Viewlines 
To determine the viewline for a point in an image, first two lines through the point 
in the image are chosen. The easiest way to do this is to take one horizontal and 
one vertical line. Each of these lines corresponds to a plane through the focal 
point and the projection of this line. Finally the viewline can be determined as the 
intersection of these planes. 

A line l in the images can be represented as the points fulfilling the equation 

 TT yxlll )1(  and  )(   where, 0 321 === xlxlT  (3.28) 

A plane � in space can similarly be represented by the points fulfilling 

 TT zyx )1(  and  )(   where, 0 4321 === X�X�
T ππππ  (3.29) 

Moreover if the plane � is projected onto the line l, then 

 Xx P~  (3.30) 

where P is the projection matrix of the camera, cf. (3.5). Inserting (3.30) into 
(3.28) we get 

 XlXlxl TT TTPP )(~0 ==  (3.31) 

Hence it can be can concluded that the points that project onto the line l reside in 
the plane 

 l�
TP=  (3.32) 

If the coordinate of the dart in an image is (x, y), a convenient choice of 
lines through this point are Tx)01(−=xl  and Ty)10( −=yl  (cf. Figure 
3.11) corresponding to the planes 
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The direction v of the viewline can then be calculated as the cross product of the 
normal directions of the planes: 

 )()( 321321 yyyxxx ππππππ ×=v  (3.34) 

To get a complete description of the line, some point on the line is also 
needed. Since all viewlines go through the focal point, c, it is convenient to 
calculate this point once for every camera and then use it for all viewlines. The 
focal point fulfills the relationship 

 0c =P  (3.35) 

Setting ( )TTTR 1)( tX −=  in (3.5) and recalling that R is orthonormal we get 
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Consequently the focal point of P in (3.5) can be calculated as 

 tc TR−=  (3.37) 

To sum up, points on the viewline satisfy (3.38) for some scalar s. 

 vcX s+=  (3.38) 

Finding Line Intersection 
Having two viewlines for the same dart from different cameras, indexed a and b, 
the position of the dart should be at the point satisfying 

 bbaa vcvc ba ss +=+  (3.39) 

This equation is however not likely to have a solution due to measurement error. 
Instead we can find the solution that minimizes the sum of the squared errors of 
the three components. This value is also the square of the minimum distance 
between the viewlines. The process of estimating the dart position is illustrated in 
Figure 3.12. Using the definitions 

ca 
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pa 

pb 

cb 
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vb 

sava 

sbvb 
viewline a 

viewline b 

Figure 3.12    Illustration of triangulation process. 
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we can rewrite (3.39) as 

 ecs +=V  (3.41) 

where e are the residuals. The parameters minimizing the error 
2

e  can then be 
solved as 

 cs TT VVV 1)( −=  (3.42) 

The point on each line closest to the other line can now be calculated as 

 bbbaaa vcpvcp ba ss +=+=   and   (3.43) 

It is reasonable to use the average of these points as the estimate of the dart 
position: 

 2/)( ba ppp +=  (3.44) 

Outlier detection 
A simple way to detect outliers during triangulation is to examine the shortest 
distance ba pp −=d  between the viewlines. If d is above some threshold it is 
considered that in at least one of the images something else than the dart was 
found, and the triangulation returns a failure. The distribution of d can be seen in 
Figure 3.13. A threshold of 25 mm was found to be appropriate to discriminate 
outliers. 

Figure 3.13    Distribution of the triangulation error, d. The histogram is the outcome 
of an experiment with 175 measurements. 
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Initialization 
When two position measurements with known time difference are available it is 
possible to make a unique initial estimate of all states in the Kalman filter 
(3 position states and 3 velocity states), including covariances. These are used as 

)0(x  and )0(P  in (3.15) – (3.17). 

Approach 2 

The second approach for converting measurements in the images into input to the 
Kalman filter is a bit more flexible and does not perform any explicit 
triangulation. This approach has not yet been implemented on the real system. 

The planes in (3.33) are calculated just like in the first approach. Using the 
more general form in (3.32) this puts the constraint 

 0=X�
T  (3.45) 

on the dart position X. This can be rewritten to a constraint on the state vector of 
the Kalman filter: 
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If �  is normalized so 12
3

2
2

2
1 =++ πππ , 4π−  can be interpreted as the signed 

length of the orthogonal projection of the dart position onto the direction 
( )321 πππ . 

Each image with a measurement of the dart position gives two constraints 
specified by the row vector c in (3.46), one in the x direction and one in the y 
direction of the image. If more than one image is available this can be handled 
simply by adding rows in the C matrix of (3.12): 
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No explicit triangulation is done. However, if the rows in C correspond to 
measurements in many different directions, an estimate with low variance in all 
directions can be obtained. The Kalman filter simply makes sure to minimize the 
estimate variance based on the covariance matrix, P, of the previous estimate and 
the covariance matrix 2R  of the measurement. 

One advantage of this second approach is that it easily extends to any 
number of cameras. Two more rows are simply added to C for every camera. 
Another advantage is that a measurement can be used even if there are no valid 
measurements from any other cameras. The extreme case is where camera FWA 
only gives measurements at samples with odd time indices and camera FWB only 
gives measurements at samples with even time indices. In this case the second 
approach would give a good estimate, while the first approach would give no 
estimate at all. 

Initialization 
The state vector is initialized to the approximate state that the dart is expected to 
have when it is first detected, e.g. 
( ) ( )800200 −=dddddd zyxzyx ��� , corresponding to the dart 
being 2 m away from the dart board straight in front of bull’s eye with a velocity 
of 8 m/s straight towards the board. The initial estimate covariance, 0P , is set to a 
very large value so that the initial estimate is almost completely discarded when 
there are sufficient measurements. Care must be taken not to make 0P  too big, 
though. In (3.17), if )(kP  is much larger than )(2 kR , the first and third term are 
very large and approximately equal. Since these terms are subtracted from each 
other the calculations get sensitive to numerical errors. It is however not hard to 
find a good compromise for the value of 0P . 

3.7 Socket Communication 

A simple interface has been implemented to allow communication between the C 
and the Java parts of the system. The communication channel is a socket, making 
it easy to either run both parts on the same computer or on two different 
computers. The protocol includes hand shaking, clock synchronization and the 
sending of estimated hit points from the C part to the Java part. Together with the 
estimate of the hit point the expected impact time and variances are sent. 

3.8 Trajectory Generation 

The framework for generation of dart board trajectories has been implemented in 
Java. Its structure will be described briefly here. 

One thread does a blocking read on the socket described in the previous 
section and waits for an estimate of the hit point. When a new estimate is received 
the thread generates a new trajectory and puts it in a buffer. Then it does another 
blocking read on the socket. 

A second thread periodically sends position and velocity references to the 
robot controller. The references are taken from whatever trajectory was last put in 
the buffer by the other thread. This makes the system fairly robust to unreliable 
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transmission of hit points or long execution times for generation of trajectories, 
though the performance is degraded by long delays. 

The socket input buffer only has space for one hit point. If a new hit point 
arrives before the one in the buffer is used, the old one is discarded. Consequently 
the trajectory generator always uses the newest available data even if the hit 
points arrive at a higher rate than the trajectories can be generated. 

The code has not been specialized for any special kind of robot geometry. 
The only place where there is robot specific code is in an object describing the 
robot’s kinematics. Hence the only action needed to use the program with another 
robot is to switch the kinematics object and possibly the interface to the robot. 



37 

4. Results 

This chapter presents some data showing the performance of the dart tracking 
system as a whole and of its different components. 

4.1 Camera Calibration 

It takes quite long to perform camera calibration, up to 2 hours. The result of a 
calibration of the intrinsic parameters with error estimates is presented in Table 
3.1. No explicit error estimate of the extrinsic parameters has been derived. A 
good indicator of the accuracy, though, is the consistency of the position estimates 
made by the different cameras. Figure 3.5 shows a histogram of the distances 
between two cameras’ 3D-coordinate estimates of the same point during 
calibration. Based on a single image of a dart, a viewline, along which the dart 
must be, can be determined. Figure 3.13 shows a histogram of the minimum 
distance between the viewlines from two different cameras used to estimate the 
position of a dart at one time instance. 

4.2 Image Analysis 

The image analysis works well with few false positives and undetected darts. It is 
hard to give a useful quantitative measure of the error rate, since it varies much 
with the background and lighting conditions. An example of how the image 
analysis performs can be seen in Figure 3.9. False positives occur mostly when 
there are bluish gray objects in the background. It may appear strange that bluish 
gray objects are detected as green darts, but without white balancing the green 
color of the darts actually has a higher intensity on the blue channel than on the 
green channel with the cameras used, cf. (3.8). 

The computation time for the image analysis of a stereo image pair is 
approximately 10 ms and may increase a few ms when there are very many pixels 
with colors similar to the color of a dart. Recalling that the system runs with a 
sampling period of 20 ms it becomes apparent that the image analysis is the step 
that consumes the most computing power, and a faster computer (or more 
efficient algorithms) would allow additional image analysis steps to increase 
robustness. 

The main limitation imposed by the image analysis algorithm is that the 
background must not contain large objects with the same color as the darts that the 
system is tuned for. Another limitation is that it cannot handle the situation with 
more than one dart in the image. The current implementation would then report a 
dart at the center of gravity of the dart pixels. Further, only the position of the 
dart’s tale is detected. Detection of the dart’s orientation would improve the 
ability of the system to predict the future movements of the dart. 

4.3 State Estimation 

The entire process of extracting 3D-coordinates from the image coordinates, 
running an iteration of the Kalman filter and predicting where the dart will hit the 
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dart board plane takes a fraction of one millisecond and its computation time is 
hence negligible in comparison to that of the image analysis. 

Approximately 1 % of the position measurements are erroneously classified 
as outliers by the condition (3.26). If one, instead of throwing the dart, keeps it in 
the hand and tries to move it as if it was thrown, it is not trivial to fool the state 
estimator into believing that it was an actual dart throw. It took the writer of this 
report several minutes of training to learn how to move the dart in such a way that 
the fourth position measurement was not discarded as an outlier. Hence it can be 
concluded that the modeling works well and most measurements are classified 
correctly with respect to being the position of a real dart or not. 

4.4 Composite system 

Figure 4.1 and Figure 4.2 show how the hit point estimate evolves as a dart 
approaches the dart board. Each plot corresponds to one throw. The perimeter and 
center of the dart board are marked in red. The estimates of where the dart will hit 
the board are marked with blue stars and connected with blue lines to show how 
the estimate evolves. The last estimate is marked with a green star. Each estimate 
is surrounded by an ellipse at the distance of one standard deviation of the 
estimate. The coordinate where the dart actually hit the board is marked with a 
magenta star. 

When the experiments presented in Figure 4.1 were performed, the thrower 
tried to make the dart wobble as little as possible. The last estimate of the hit point 
was then generally within 1 or 2 cm of the actual hit point. When the experiments 
presented in Figure 4.2 were performed, the dart wobbled more since the thrower 
did not pay any attention to reducing the wobbling. A crude estimate, made by 
letting the dart thrower look at the dart, is that the dart orientation deviated up to 
20-30° from the direction of movement. The error of the last estimate was then up 
to 5 cm. 

When the exposure of an image is done it takes 20 ms for it to be transferred 
to the computer. In all it takes 40-50 ms from the time when the image is captured 
until the estimation of the hit point is received and can start being processed in the 
Java part of the system. 

The first successful measurements are usually done when m 2≈dz (when 
the dart is approximately 2 m away from the dart board) and the last when 

m 5.0≈dz . The resolution of the cameras should allow darts do be detected 
further away than 2 m. The reason that this rarely happens should be investigated 
further. One reason could be that the image analysis algorithms need to be tuned 
better to detect smaller objects. 

When the first hit point estimate is received in the Java program there is 
usually 150-200 ms left to impact and when the last estimate is received there is 
usually 40-60 ms left. During one throw 5-10 position measurements are usually 
acquired. 
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(a) (b) 

(c) (d) 

Figure 4.1    Development of estimated hit points for darts as more measurements are 
acquired along the trajectory of the dart. When these darts were thrown, the thrower 
tried to make the darts wobble as little as possible. 
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 (a)  (b) 

 (c)  (d) 

Figure 4.2    Development of estimated hit points for darts as more measurements are 
acquired along the trajectory of the dart. When these darts were thrown, the thrower 
threw the way that felt natural, without paying attention to how much this would make 
the dart wobble. 
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5. Discussion 

The camera calibration procedure can be improved in several ways. One issue is 
how errors are accumulated. One way around this problem is to use 3D-points 
with known positions, which are then identified in images from the cameras. The 
problem that then arises is how to measure the position of the points accurately. 
Possibly a combination of the two methods could be used, with the drawback of a 
longer calibration time. Another alternative is to use more cameras, so the 
checkerboard can be seen by more than two cameras simultaneously. The 
additional cameras could then either be used to improve the position estimate of 
the dart in real-time (at the cost of computation time) or be removed after the 
calibration. 

The time it takes to perform a calibration is also an issue. Currently it takes 
two hours to calibrate the cameras, which makes one hesitate to perform a 
calibration. Much time is spent on manually clicking on the corners in every 
image. With fully automatic corner identification the calibration time could 
probably come down to 30-45 minutes. 

The image analysis is fairly robust to different lighting conditions and 
backgrounds. Still with some work it could be improved in several ways. For 
instance, currently different colors with the same hue in an image are perceived as 
different hues across different intensities and saturations on the real objects, which 
limits the range of lighting intensities that the system can handle with fixed 
parameter values. One solution to this could be performing white balancing, e.g. 
by capturing an image of a white reference object. The improvement of the image 
analysis that would have the most obvious impact on the overall system 
performance is detection of the dart orientation, which would allow more accurate 
modeling of the dart dynamics. 

The implementation of the Kalman filter is straight forward, but the choice 
of covariance matrices (3.13) is not thoroughly investigated. Currently the 
variances are set to crude estimates of what seems reasonable. Possibly better 
tuning could e.g. filter out the wobbling of the dart tale better. 
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6. Conclusions 

Seeing how wobbling of the dart degrades the performance, it becomes obvious 
that detection of the dart orientation is needed to get good performance. As a first 
step this could be used without making a more complex model of the dart 
dynamics. The orientation of the dart and the position of the tail can be used to 
calculate the position of the center of mass. If this is used as input to the Kalman 
filter describing a particle, the accuracy could probably be improved a lot. 

With the current frame rate of 50 fps 5-10 position measurements are made 
during one throw. This seems to be quite sufficient, but still more measurements 
could probably improve the measurement accuracy. If the wobbling of the dart 
should be modeled, its dynamics are probably so fast that a higher frame rate is 
needed. This is not possible when the full resolution of the cameras is used. One 
solution is to use prediction to calculate where the dart is expected to be seen and 
only capture this part of the image, thus reducing time for data transfer and image 
analysis. 

The system typically has to move the board to its destination in less than 
150-200 ms. Recalling the feasibility analysis in Section 1.3 it was concluded that 
it takes the robot approximately 120 ms to move the dart board 0.2 m. This 
distance is probably longer than is usually needed (depending on the skill of the 
thrower), but on the other hand the final destination is not known from the 
beginning, causing the movement time to be longer. On top of that the trajectory 
generation will also cause some delay. The numbers indicate that the system has 
the performance needed to catch a dart, but the margins are not big. If possible, 
optimization of the algorithms to reduce the delays would be useful. 
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7. Future Work 

The project described in this thesis serves many areas of future development. This 
chapter lists a few of them: 
• The most obvious is to finish the trajectory generation and robot control, so 

the system can start catching darts. 
• Measure the angle of the dart in the images and use this in a more advanced 

model of the dart dynamics. 
• Add a third high speed camera. This would help making good estimates of the 

dart orientation. Using only two cameras it is hard to measure rotations with a 
rotation axis orthogonal to the plane containing the cameras and the dart. 

• Use the state estimate of the Kalman filter to calculate the expected position 
and size of the dart in the images. This can be fed back to the image analysis 
algorithms to make them faster and more accurate. Similarly it can be used to 
read in smaller parts of the images from the cameras, reducing the time for 
data transfer. 

• Let the image analysis algorithms vary the measurement uncertainty based on 
the image quality. 

• Make the image analysis algorithms more robust to different lighting 
conditions and backgrounds. 

• Finish the image analysis algorithms for detecting a dart on the dart board, 
making it possible to automatically measure the position where the dart 
actually hit the board. 

• Make it possible to detect more than one dart in every image. This could be 
used in a future extension where the sum of the darts’ distances from bull’s 
eye should be minimized or the score on a dart board should be maximized. 

• Make it possible to catch darts with high rotation rates in any direction. This 
puts high demands on the modeling and prediction. It also makes it useful to 
move the dart board in the z-direction to make sure the dart always hits the 
board with the tip first. 

• Make it possible to use fully automatic grid detection in camera calibration. 
This would remove the time consuming step where grid corners have to be 
marked manually. 
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