
ISSN 0280-5316
ISRN LUTFD2/TFRT--5793--SE

Evaluation of Automatic
 Code Generation Tools

Nora Ajwad

Department of Automatic Control
Lund University

April 2007

Document name
MASTER THESIS
Date of issue
April 2007

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5793--SE
Supervisor
Jacco Koppenaal at Haldex Traction AB in Landskrona
Karl-Erik Årzén at Automatic Control in Lund (examiner)

Author(s)
Nora Ajwad

Sponsoring organization

Title and subtitle
Evaluation of Automatic Code Generation Tools. TargetLink from dSPACE Real-Time Workshop Embedded Coder from
The MathWorks. (Utvärdering av automatiskt kodgenereringsverktyg TargetLink från dSPACE. Real-Time workshop
embedded coder från the MathWorks)

Abstract
There are different tools for automatic code generation today. A comparison between different tools is necessary in order
to highlight the differences between the tools according to specific aspects. TargetLink from dSPACE and Real-Time
Workshop Embedded Coder from The MathWorks are two tools that have been evaluated and tested in order to point out
the differences between the performance of those tools regarding, among others, user friendliness, generated code
interface, code readability and traceability, execution time and memory usage. Even though both tools differ slightly in
their performance they both show good, sometimes even better performance when compared with hand written code.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
74

Security classification

Recipient’s notes

http://www.control.lth.se/publications/

 I

Acknowledgements

During this work many people have helped and supported me and I would like to
thank all of them.

First I want to express my gratitude to my supervisors: Prof. Karl-Erik Årzén at
The Department of Control, Lund University, Sweden and Jacco Koppenaal at
Haldex Traction AB in Landskrona, Sweden. I want to thank Prof. Karl-Erik
Årzén for recommending me for this master thesis. I also want to thank Jacco
Koppenaal and Staffan Nilsson at Haldex Traction AB for giving me the
opportunity to perform my master thesis at Haldex Traction AB.

Also a special thank to all Haldex employees who have helped me along the way
with any questions that I had.

I would like to thank Roger Aarenstrup at The MathWorks who has been very
helpful during my work with Real-Time Workshop Embedded Coder. I also want
to thank Henry Feng and Jonas Cornelsen at Fengco for their support with
TargetLink.

Finally I would like to thank my family for their patience and support during this
time. A special thank goes to my sister for being there for me all the way from
New York, to my brothers Nawar, Naofal and Nawras for motivating me all the
way. I also want to thank my friends for being there for me when I needed them.

For my mother who has always believed in me and supported me throughout my
journey. For my father who has already shown me the real model of being a
successful engineer that I would be proud to be one day. Thank you.

April 2007

Nora Ajwad

 II

 III

Content

Acknowledgements.. I

1 Introduction...1

1.1 Background ...1
1.2 Purpose..2
1.3 Target Group ...2
1.4 Automatic Code Generation Tools..2

2 Automatic Code Generation Tools Manufacturers...................5

2.1 dSPACE – Solutions for Control ..5
2.1.1 Support... 5

2.2 The MathWorks – Accelerating the Pace of Engineering and Science5
2.2.1 Support... 6

3 Code generation ..7

3.1 TargetLink...7
3.1.1 Automatic Scaling .. 7
3.1.2 Generating Code for One Subsystem ... 7
3.1.3 Code Interface.. 7
3.1.4 Simulation Using the Generated Code... 8
3.1.5 External Function Calls and S-function Support ... 9
3.1.6 MISRA C, Platform Dependency and Different Microprocessors Support.... 9

3.2 Real-Time Workshop Embedded Coder ...10
3.2.1 Automatic Scaling .. 10
3.2.2 Generating Code for One Subsystem ... 10
3.2.3 Code Interface.. 11
3.2.4 Simulation Using the Generated Code... 12
3.2.5 External Function Calls and S-function Support ... 12
3.2.6 MISRA C, Platform Dependency and Different Microprocessors Support.. 13

4 Analysis of the Generated Code ..15

4.1 Memory Usage RAM, ROM and Execution Time15
4.2 Readability and Traceability ...17

4.2.1 TargetLink.. 17
4.2.2 Real-Time Workshop Embedded Coder... 17

5 Haldex Traction Specific Requirements...................................19

5.1 TargetLink...19
5.2 Real-Time Workshop Embedded Coder ...21

6 Simulation and Modelling ..23

6.1 Usability ..23
6.1.1 TargetLink.. 23
6.1.2 Real-Time Workshop Embedded Coder... 25

6.2 Supported Simulink Blocks and Their Properties...................................26
6.2.1 TargetLink.. 26
6.2.2 Real-Time Workshop Embedded Coder... 26

6.3 Fixed-Point Support ..27

 IV

6.3.1 TargetLink.. 28
6.3.2 Real-Time Workshop Embedded Coder... 29

7 Miscellaneous...31

7.1 Own Experiences ..31
7.2 Generated Warnings..34
7.3 Make-file ...34
7.4 The Generated Files ..34

8 Results ..37

9 Conclusions..48

10 Further Studies ..50

Appendix IV: Pressure Controller – The Design63

Appendix V: Simulink Model ..64

 1

1 Introduction

1.1 Background

Haldex Traction AB is part of the Haldex Group, which consists of four product
divisions: Haldex Brake Systems, Haldex Traction Systems, Haldex Hydraulic
Systems and Haldex Garphyttan Wire. Haldex Traction AB is responsible for the
manufacture and worldwide marketing of the advanced and flexible All-Wheel-
Drive-system, AWD-system.

Haldex Traction designs and develops a coupling called Haldex Limited Slip
Coupling, HLSC, which is a complete AWD-system. The coupling consists of two
main parts: torque transfer part and control system. The latter contains a
microprocessor with the needed software. The control system part is responsible
for controlling the coupling function with the desired properties, depending on
several factors e.g. the driving situation. The idea behind the coupling is that when
the front and rear shafts of the vehicle start to rotate with different speeds, e.g.,
due to slip, a hydraulic piston pump will start and generate an oil flow through an
open throttle valve. When the throttle valve is partially closed an oil pressure will
start to build up in the clutch piston. The clutch piston will then force discs in the
multi-plate clutch together leading to a torque capacity from the front to the rear
shaft, see Figure 1. The torque transferred in the coupling is thus a function of the
pressure. The idea here is to control the hydraulic pressure in the clutch in order to
be able to control the torque transfer. Today there are four generations of Haldex
Limited Slip Coupling and a fifth generation is under the development phase. The
tested HLSC in this work belongs to the second generation.

Figure 1: Schematic sketch of Haldex Limited Slip Coupling [1]

Today Matlab/Simulink is widely used to develop and test control models. At
Haldex, rapid prototyping is used, as well, to test control algorithms designed in
Simulink. A tool from dSPACE, called MicroAutoBox, is used for this purpose.
MicroAutoBox makes it possible to test the model on the target processor directly.

 2

A tool for automatic generation of code is desirable to save time and avoid
programming errors that can be made by the programmer.

1.2 Purpose

The purpose of this work is to evaluate and compare two automatic code
generation tools: TargetLink from dSPACE and Real-Time Workshop Embedded
Coder from The MathWorks. The tools will be evaluated according to Haldex
Traction specific requirements and needs. A model of a controller from Haldex
Limited Slip Coupling Generation II is used during this evaluation.

1.3 Target Group

The target groups for this work are the employees of Haldex Traction AB and
MSc. students. The readers are assumed to be familiar with Matlab/Simulink and
C programming language.

1.4 Automatic Code Generation Tools

There are several tools for automatic code generation used in industrial companies
today. In this work two tools are chosen to be evaluated: TargetLink and Real-
Time Workshop Embedded Coder. The evaluated versions are TargetLink 2.1.6
and Real-Time Embedded Coder R2006b.

TargetLink is a development tool that uses Simulink as a base environment.
TargetLink uses its own blocks in addition to several Simulink supported blocks.
The tool generates C code straight from the graphical model specification made in
Matlab/Simulink/Stateflow. The model can be designed directly in TargetLink or
in Simulink, but in the latter case, a conversion of the model is required.

A TargetLink model can look like Figure 2 below.

 3

Figure 2: A simple model built in TargetLink

 TargetLink generates C code for the model shown above in just one click giving
the C code shown below. Note that most generated code comments have been
deleted from this code due to lack of space:

 4

Other C- and h-files are generated for the model to specify a header-file, the base
types, e.g. Int32, and the data types, e.g. CONTINUOUS in the example code
above.

TargetLink also provides powerful simulation capabilities to analyse fixed-point
quantization and overflow effects which is done by choosing to simulate using the
generated code using Software In the Loop, SIL, simulation. The code can also be
run on the target directly using Process In the Loop, PIL, to validate the controller
designs directly on the target.

Real-Time Workshop Embedded Coder is a separate, additional product for use in
Matlab/Simulink environment. RTW EC generates code from Simulink and
Stateflow models. For fixed-point simulation and code generation an additional
tool is required, that is the Fixed-Point Toolbox. Code can be generated by a
simple click for both fixed-point and floating-point. To run the code directly on
the target some modifications are required to the Embedded Real-Time target files
provided by RTW EC.

RTW EC generates code directly from Simulink model and no conversion is
necessary.

#ifndef _TARGETLINK_TEST_C_
#define _TARGETLINK_TEST_C_
#include "tl_defines_a.h"
#include "TargetLink_test.h"

CONTINUOUS Sa1_InPort;
CONTINUOUS Sa1_OutPort;

Void TargetLink_test(Void)
{

/* SLLocal: Default storage class for local variables |
Width: 32 */
 CONTINUOUS Sa1_Gain;

 /* Gain: TargetLink_test/Gain */
 Sa1_Gain = Sa1_InPort * 5.F;

 /* Saturation: TargetLink_test/Saturation */
 if (Sa1_Gain > 100.F) {
 /* # combined # TargetLink outport:
TargetLink_test/OutPort */
 Sa1_OutPort = 100.F;
 }
 else {
 if (Sa1_Gain < 0.F) {
 /* # combined # TargetLink outport:
TargetLink_test/OutPort */
 Sa1_OutPort = 0.F;
 }
 else {
 /* # combined # TargetLink outport:
TargetLink_test/OutPort */
 Sa1_OutPort = Sa1_Gain;
 }
 }
}
#endif/*_TARGETLINK_TEST_C_ */

 5

2 Automatic Code Generation Tools
Manufacturers

2.1 dSPACE – Solutions for Control

dSPACE develops and distributes integrated electronics and software systems for
electronic control units. The systems are widely used in the automotive industry
and also employed in electrical, aerospace, and robotics. dSPACE was established
in 1988 and has its headquarter in Germany and subsidiaries in France, the USA,
the UK and Japan.

TargetLink is a main product from dSPACE that was launched in 1999. Many
companies use TargetLink today for automatic code generation. Haldex Brake
AB, in Landskrona, uses TargetLink and the tool is highly recommended by the
users from Haldex Brake AB. TargetLink has been developed throughout the
years and new versions that have better performance are launched successfully.

2.1.1 Support
Fengco Real Time Control AB is the only representative for dSPACE products in
Sweden. During testing and evaluation of TargetLink, Fengco has been contacted
for evaluation license and technical support. A contact person was assigned for
support during the work. Fengco offers courses and seminars for dSPACE
products. These courses and seminars can be given at the location of the company
or locally at Fengco in Stockholm [6].

2.2 The MathWorks – Accelerating the Pace of Engineering
and Science

The MathWorks develops, sells and supports Matlab and Simulink as well as a
broad range of products in the areas of technical computing, data analysis, signal
and image processing, control design and dynamic systems simulation. The
company is well established and has a dominant place in the market. It has Matlab
and Simulink as its main products. This does not imply that RTW EC is a side
product since The MathWorks is well involved in custom needs and requirements
regarding this product. According to The MathWorks production code generation
is a top priority.

Real-Time Workshop Embedded Coder is one of many in the Simulink product
family which has been developed by The MathWorks. It is considered as a rather
new product and has been developed a great deal since 2002 when Haldex
Traction did their first study about it. New versions of RTW EC are coming
during 2007.

 6

2.2.1 Support
The MathWorks in Stockholm has been very supportive during this work. A
contact person was assigned to help throughout testing and evaluation of the tool.

Online support is useful too where the user can find all the documentation for any
of The MathWorks products.

 7

3 Code generation

3.1 TargetLink

TargetLink makes it easy to generate code since everything related to the code
generation is gathered in one place. It is one tool for both scaling and code
generation. For fixed-point in Simulink environment the user can specify scaling
by choosing the type of the signal, or the parameter, and the maximum and
minimum ranges or by simply choosing the type of the signal/parameter, the
scaling factor and the offset. The maximum and minimum of the block will then
be automatically calculated.

3.1.1 Automatic Scaling
Automatic scaling can be performed on the whole model. This is done by feeding
the model with as much information as possible. The user should enter maximum
and minimum ranges of all known signals and parameters. Since all inputs and
outputs ranges are known, these are propagated to adjacent blocks following the
signal lines forward and backward. The automatic scaling tool, called autoscaling
in TargetLink, can then be chosen and a worst case scaling is determined. A
limitation for TargetLink automatic scaling is that closed loops in the model will
stop the automatic scaling process unless at least one block ranges are specified
by the user.

Simulation based scaling is also supported in TargetLink. This gives the user the
responsibility to enter the worst case simulation inputs to obtain useful results.

3.1.2 Generating Code for One Subsystem
TargetLink makes it possible to generate code for one subsystem by choosing to
generate a separate file for the subsystem during code generation. This is done by
adding a Function block which is a TargetLink block that makes it possible to
generate separate code for the chosen subsystem. Code can also be generated for
the subsystem only, without needing to generate code for the whole model. All of
these are possible via the Function block [2].

3.1.3 Code Interface
The user of TargetLink has the freedom to influence the interface of the generated
code in an easy and practical way. The user can choose the output value for any
subsystem in the model to be a reference variable, a return value, a pointer
parameter or a global variable, see Table 1 [3]. There is also flexibility in
choosing the generated function parameters since every signal and parameter can
be chosen to fulfil certain functionality in the generated code, see Table 1.

 8

Variable Class Object Description Memory
GLOBAL Normal global

variables
RAM

CAL Global calibratable
parameters

ROM

DISP Global observable
variables

RAM

MACRO Global pre-processor
macros

-

CONST Global constant ROM
FCN_ARG Function arguments

(non-constant, call-by-
value)

STACK

FCN_PARAM Function parameters
(constant, call-by-
value)

STACK

FCN_RETURN Function return value STACK
EXTERN_GLOBAL_ALIAS Global variables,

which are declared in
a user-written header
file

-

EXTERN_CAL_ALIAS Calibratable global
variables, which are
declared in a user-
written header file

-

RTOS_ACCESS_FUNCTION Apply an access
function to read/write
the variable

-

Table 1: Categories of variable classes

3.1.4 Simulation Using the Generated Code
The user can check and test whether the model behaves in the same way when
using the generated code. TargetLink has three options for running the model in
Simulink, Model In the Loop, MIL, Software In the Loop, SIL, and Process In the
Loop, PIL. By choosing MIL, the program runs the model as it is, using floating
point. If the user wants to run the model with the generated code then SIL should
be chosen and the program runs using the generated code. Process In the Loop
mode is used to verify simulation results from the MIL and SIL simulation modes
by executing the code on the actual target hardware. Process In the Loop was not
tested in this work.

By just clicking on the desired option: MIL, SIL or PIL, the user can easily and
without changing the model, control how to run in Simulink and the comparison
is, in that way, easily done between floating point and fixed point results.

 9

3.1.5 External Function Calls and S-function Support
Function calls to hardware are sometimes replaced with a subsystem in the
simulation model which will do something different during the simulation. This is
to avoid having to be connected to the hardware during the simulation and code
generation stage. In TargetLink the user can have, as mentioned earlier, a
subsystem for which separate code is generated in a separate file. The user can
specify the name of that specific file and the name of the function call. In that way
the user can replace the generated file with the original file that contains the
function call to the hardware. No changes in the generated code are then required
since the user can choose the same name and interface for the function call in
question. In that way the simulation will run smoothly and when running against
the target the user does not need to change anything in the code but only replaces
certain files. External code can be added easily to the model as well, this is done
by using a specific block to add custom code to the model or using S-functions
which are fully supported in TargetLink.

3.1.6 MISRA C, Platform Dependency and Different Microprocessors
Support

The Motor Industry Software Reliability Association, MISRA, has developed a
standard for C programming language for guidelines in safety critical systems.
TargetLink respects the majority of MISRA C rules. Deviations from MISRA C
rules are technical necessity and when they occur they are identified and well
documented [10]. For interested users there is specific documentation for
TargetLink support of MISRA C provided by TargetLink.

TargetLink generates ANSI-C code which is platform independent and can
therefore be compiled with any ANSI-C C-compiler on any platform.

TargetLink supports a list of microprocessors if the program Target Optimisation
Module, TOM, is purchased. TOM is an additional program for TargetLink Base
Suite, TBS. below is a list of the supported microprocessors in TargetLink 2.2:

Freescale HCS12

Freescale MPC5xx

Freescale MPC55xx

Infineon C16x

Infineon TriCore

Renesas M32R

Renesas SH-2

The optimised generated code is still effective ANSI C code which is platform
independent. TOM code can also be target specific, i.e. insertion of assembly code
and usage of compiler specific extensions to further improvement of code
efficiency is available if the user allows TargetLink to do so.

 10

3.2 Real-Time Workshop Embedded Coder

Real-Time Workshop Embedded Coder is a well integrated tool in Simulink. To
generate code for fixed-point another Matlab tool, called Fixed-Point Toolbox,
has to be used. This tool is used for scaling parameters and signals. The user
chooses the signal/parameter type, scaling factor and offset value directly in every
block in the model. Some blocks do not need to be scaled, e.g. saturation block
which automatically gives an output that has the same scaling as the input.

3.2.1 Automatic Scaling
Automatic scaling is supported in Real-Time Workshop Embedded Coder, but
worst case automatic scaling is not. An automatic scaling can be performed based
on simulation inputs. A simulation must first be run to log in the maximum and
minimum values of every signal in the model. The maximum and minimum
simulation values must cover the full intended operating range of the design in
order to obtain meaningful results. It is the user’s responsibility to run and find the
worst case input values for the simulation which guarantee a full coverage of the
worst case ranges.

3.2.2 Generating Code for One Subsystem
To make the generation of the code easy, it is recommended to use a model
reference for that part of the main model that code will be generated for. In that
way, the code will be generated easily and independently from the rest of the
Simulink model that may have been added for testing reasons. For traceability
reasons every subsystem can have its own function. This is possible if the user
chooses the right options in the Subsystem Parameters dialog, a precondition is
that the subsystem is atomic. See Figure 3. If a subsystem is atomic it will be
treated as having direct feedthrough and thus be sorted to execute before any
blocks that depend on it.

 11

Figure 3: Subsystem parameter dialog pane

3.2.3 Code Interface
Real-Time Workshop Embedded Coder cannot offer the user full control over the
generated code interface. Two options can mainly be selected, reusable code and
non-reusable code. The user often needs the code to be reused again in other
applications. A PID controller, for example, can be used in several applications
and models. When the generated code is reusable all inputs, outputs and tunable
parameters are passed on as function arguments. Tunable parameters are saved in
a structure which is used as a function argument along with the inputs and outputs
of the model.

Function return is not supported yet in Real-Time Workshop Embedded Coder.

Another approach can be used to control the interface of the generated code.
Every signal and parameter can be chosen as a global variable and in that way
non-reusable code can be generated when the user has access to the global
variables making the code reusable. This approach is not preferred by Haldex
Traction since the use of global variables is not preferred in the company code.

However in release 2007a there is a user interface to customise any step function,
see Figure 4 below.

 12

Figure 4: RTW EC - non-reusable code options for release 2007a

3.2.4 Simulation Using the Generated Code
To compare between a fixed-point simulation and a simulation with the generated
code an S-function of the generated code can be obtained by simply selecting an
option to generate an S-function in the code generation pane. The user can test the
behaviour of the generated code by replacing the original fixed-point model
reference with the generated S-function block.

3.2.5 External Function Calls and S-function Support
Replacing a hardware invocation with another function during simulation stage is
not always practical when generating code with Real-Time Workshop Embedded
Coder due to the difficulties of shaping the interface of the code. Here the only
way to achieve the desired result is to use so called Legacy Code. Legacy code
helps integrate external code into the model. In this project an S-function is
generated and added to the model. Legacy code is then used so that the S-function
block is replaced by the desired hardware function call in the generated code.
However legacy code can not be used with reusable code unless the option
SS_OPTION_WORKS_WITH_CODE_REUSE is set in the S-function.

 13

3.2.6 MISRA C, Platform Dependency and Different Microprocessors
Support

Real-Time Workshop Embedded Coder supports most of MISRA-C code standard
rules. There is always a good motivation for those parts of MISRA-C rules that
RTW EC does not support1.

The generated code is ANSI-C or ISO-C by default which is platform
independent. The generated code is therefore applicable in all kinds of platform
and no changes are necessary if the platform is changed.

RTW EC supports many microprocessors, a list of which is:

xPC Target

Real-Time Windows Target

Target for Infineon C166®
Target for Freescale (tm) MPC5xx

Target for TI C2000 (tm)

Target for TI C6000 (tm)

The optimised generated code is platform dependent and all data types and storage
classes that can be influenced by different platforms should be specified in
different configuration sets as some targets have optimised blocks with target
specific implementations for code generation.

1 Information from Roger Aarenstrup, Senior Application Engineer at The MathWorks,

Stockholm.

 14

 15

4 Analysis of the Generated Code

4.1 Memory Usage RAM, ROM and Execution Time

To make a comparison between the generated code and the hand written code, the
system is built for host and target with the generated code from both TargetLink
and the code generated from Real-Time Workshop Embedded Coder. Memory
usage and execution time are calculated. The tables below show the execution
times, RAM and ROM memory usage. The tested program code is the code for
the pressure controller including a PID controller. See Appendix IV The Model.

The hand written code in Haldex base software was replaced by the generated
code and a model was built and run on a C166 microprocessor as a target. Many
tests were carried out while running on the target to see if the controller behaves
as expected. ROM and RAM memory usage were calculated after the whole
model was built. ROM and RAM memory usage were saved in a map file.

The generated code that was used in the tests is ANSI-C code when generated
with TargetLink and optimised for Infineon C16x, XC16x when generated with
RTW EC.

Pressure Controller
& PID

TargetLink
(bytes)

Real-Time Workshop
Embedded Coder
(bytes)

Hand-written
Code (bytes)

ROM 1594 2676 2282
RAM 31 2 52

Table 2: RAM and ROM memory usage

It should be mentioned here that calibrated parameters were not chosen in RTW
EC. The use of calibrated parameters in RTW EC was not investigated in this
work due to lack of time. This can be why RTW EC gives less RAM memory
usage than TargetLink as shown in Table 2 above. However, for future studies the
option Inline Parameters should be investigated.

The generated code from TargetLink uses functions for all saturation checks in the
whole code while RTW EC uses if-sets in every saturation checking everywhere
in the code. This makes the RTW EC code less efficient and that is one of the
reasons for the memory usage differences between TargetLink and RTW EC as
shown in Table 2 above. An example of this is the following code which is
generated for the same block:

 16

TargetLink:

C__I16FITI32_SAT is a function called in more than one place in the code.

Real-Time Workshop Embedded Coder:

In the process one thread usually runs for the pressure controller. This thread is
called CtrlTorqueUpdate and the execution time for that thread is saved in the
vector RedThreadMaxTimes. Execution time is shown in the table below. The test
was carried out for different inputs of the actual pressure and the results are
summarised in Table 3 below.

Actual Pressure TargetLink

(μs)
Real-Time Workshop
Embedded Coder (μs)

Hand-written
Code (μs)

6 Bar 596 692 648
12 Bar 597 694 638
40 Bar 568 694 602
Fluctuating
between
10-20 Bar

592 694 640

Table 3: Execution times

The table shows that TargetLink has the smallest execution time in all ranges of
input.

/* Sum: PressureController/PID controller/I-part/TrackingError */
Aux_I32 = (LONG) (((ULONG) (LONG) (I32UIn >> 1)) - ((ULONG) (LONG)
(X_Sa2_VOld >> 14)));
I16TrackingError = C__I16FITI32_SAT(Aux_I32, 32767
/*0.0004882663488 */);

/* Sum: '<S4>/TrackingError' incorporates:
 * UnitDelay: '<S1>/VOld'
 */
 tmp_1 = (localDW->VOld_DSTATE >> 14);
 if (tmp_1 > 32767L) {
 tmp_0 = MAX_int16_T;
 } else if (tmp_1 <= -32768L) {
 tmp_0 = MIN_int16_T;
 } else {
 tmp_0 = (INT)tmp_1;
 }

 tmp_1 = (LONG)(rtu_U >> 1) - (LONG)tmp_0;
 if (tmp_1 > 32767L) {
 tmp_0 = MAX_int16_T;
 } else if (tmp_1 <= -32768L) {
 tmp_0 = MIN_int16_T;
 } else {
 tmp_0 = (INT)tmp_1;

}

 17

4.2 Readability and Traceability

4.2.1 TargetLink
The generated code is well documented and follows the model designed in
TargetLink. Any block in the model can be tracked in the code by either name or
by following the code and comparing with the model.

The names of variables, blocks outputs, states or parameters in the generated code
can be defined manually in every block or automatically generated by TargetLink
using name macros. Every name macro starts with $ followed by a letter which is
replaced by the string it represents during code generation. E.g. MB is replaced
by <model name><block name> in the generated code. TargetLink has a total of
20 name macros.

TargetLink gives full freedom to change the code interface as desired. Any
subsystem in the model can be chosen to be generated as a function with certain
parameters and function returns if desired.

4.2.2 Real-Time Workshop Embedded Coder
RTW EC generates a code that is readable and can be traced if the Simulink
model is followed carefully.

Embedded coder generates, if selected, a html report of the generated code where
the code can be followed. In the code comments in the html report there are links
to the blocks in the model. By just pressing on the block name in the code the
corresponding block in the model is highlighted.

Any signal can be named and accessed in the code. The user can for example
name a signal between two blocks and make it defined as a global variable in the
generated code. Variables, blocks outputs, signals, states and parameters are
automatically named in the same way as for TargetLink. RTW EC has less name
macros to choose from, it has totally 6 name macros. These name macros apply to
the whole model simultaneously and the user can not specify certain name macros
for every block separately.

RTW EC is limited in the choice of code interface. Non-reusable and reusable are
the only possible options here.

Function return is not supported in RTW EC.

 18

 19

5 Haldex Traction Specific
Requirements

In this chapter specific Haldex Traction requirements are investigated in both
TargetLink and Real-Time Workshop Embedded Coder.

Haldex Traction uses a practical approach to have several parameter sets which
the user can change before driving and during runtime. These parameters are
saved in a so called pdc-file which is programmed by Haldex Traction to access
the parameters during runtime. The parameters sets are saved in vectors in the
pdc-file. By calling the right index in the vectors, the desired parameter set is
chosen.

Example:

If parameter sets are saved in the vectors ref1= [5 6 7] and ref2= [3 9 5] then
parameter ref1 can have the value 5, 6 or 7 while ref2 can have the value 3, 9 or 5.

The user can access the parameters by a call for param1 = ref1[nbr] and param2 =
ref2[nbr] where nbr is the index of the desired parameter set , 0, 1 or 2 in this
example. By simply changing the value of nbr in one place in the code, the whole
set is changed everywhere the parameters are called in the entire code.

It is also desired to make variables calibratable in order to be able to change the
parameters via a calibration system. Calibration systems access variables directly
by their addresses in the ECU memory.

5.1 TargetLink

TargetLink offers so called variant coding to handle parameter sets. There are two
types of variant coding: data variants and code variants. The user can assign
different values to a variable during runtime while code variant is to assign
different data types or scaling parameter to a variable during code generation
time. For Haldex Traction data variant is the interesting kind of variant coding. In
the generated code all variables belonging to one data variant item, one parameter
set, are collected in a struct. An example is shown below [3]:

One instance of the structure above is generated for each variant item, that is one
structure for each parameter set. There are two variant coding styles that are

typedef struct Vca DV tag {
const volatile UInt8 param1;
const volatile UInt8 param2;
const volatile UInt8 param3;

} Vca_DV_tp;/*Struct data type for data variant
configuration DV*/

 20

supported by TargetLink: the user can either generate a separate structure for
every parameter set or generate an array of structures containing all instances.
Those structures can have as many parameters as the memory allows and no
limitation is set for how large the structures can be. The following example shows
three parameters and two parameter sets in two separate structures:

In the generated code the parameter sets are accessed by a pointer which refers to
the selected parameter set structure. The following code example shows how the
parameter set structures are used in the generated code:

It is a simple task for the user of TargetLink to make a parameter calibratable. The
right class should be chosen for the calibratable parameter in question. TargetLink
has predefined classes that make variable calibration possible. The variables are
written into a ASAM-MCD 2MC file. ASAM-MCD 2MC, formerly known as
ASAP2, is a commonly used standard for describing ECU-internal data. The
standard was developed by ASAM e.V. which stands for Association for
Standardization of Automation and Measuring Systems e.V. ASAM-MCD 2MC
files contain the information required by an MC system to access an ECU for
parameter calibration.

Vca DV tp Vca DVA = {
 5
 3
 1
}; /* for data variant item A */
Vca_DV_tp Vca_DVB = {
 6
 9
 1
}; /* for data variant item B */

switch(varID) {
case 1: {

pVca_DV = &Vca_DVA;
break;

}
case 2: {

pVca_DV = &Vca_DVB;
break;

}
default: {

pVca_DV = &Vca_DVA;
break;

}
}

 21

5.2 Real-Time Workshop Embedded Coder

No parameter set approach is available in RTW EC yet. After discussing the idea
with Roger Aarenstrup, senior application engineer from The Mathworks, a
solution was discussed with The MathWorks development.

The solution that The Mathworks offers in the coming releases is to have a
parameter vector in the Simulink model in Matlab workspace. This vector can be
defined in an external file and accessed by a pointer, external code can therefore
have access to the vector. The example below shows the idea, this has not been
tested in this work but it is a recommendation from The MathWorks.

Figure 5: Example for the parameter set solution

The model in Figure 5 gives the following code:

 22

In another file, which is not generated from the model above, the following code
can be used to specify the parameter sets:

Calibratable parameter can be chosen by GetSet function that can be chosen for
any parameter or signal in the model. The tool for calibration can get access to the
parameter/signals in that way. ASAP2 files can be generated too.

Param_test.c

 22 void param_test_step(void)
 23 {
 24 /* Sum: '<Root>/Sum' incorporates:
 25 * Gain: '<Root>/Gain'
 26 * Gain: '<Root>/Gain1'
 27 * Inport: '<Root>/In1'
 28 * Inport: '<Root>/In2'
 29 */
 30 out1 = P[(int32_T)a - 1] * in1 + K[(int32_T)a - 1] * in2;
 31 }

Param_test_private.h

 30 /* Imported (extern) block parameters */
 31 extern real_T a; /* Expression: P(a)
 32 * Referenced by blocks:
 33 * '<Root>/Gain'
 34 * '<Root>/Gain1'
 35 */
 36
 37 /* Imported (extern) pointer block parameters */
 38 extern real_T *K; /* Expression: K(a)
 39 * '<Root>/Gain1'

 40 */
 41 extern real_T *P; /* Expression: P(a)
 42 * '<Root>/Gain'
 43 */

Int a = 1; /* Specify parameter set */

/* Parameter sets */
Real_T *P = {0.3, 0.5, 0.2…}; /* P – constant */
Real_T *K = {0.3, 0.5, 0.2…}; /* K – constant */

 23

6 Simulation and Modelling

6.1 Usability

How easy and how practical it is to use the code generation tools is investigated in
this chapter. Simulink is the common main environment in both TargetLink and
RTW EC. The model can be built and tested in Simulink first and then converted
to the code generation tool since both TargetLink and Real-Time Worskhop
Embedded Coder use Simulink. The model can also be built directly in
TargetLink. Both TargetLink and RTW EC have tools that help the user along the
way while building and generating the code.

6.1.1 TargetLink
The user can directly use TargetLink blocks to build the model. It is also possible
to easily convert an already existing Simulink model to a TargetLink model.
TargetLink has a conversion tool which can be used to convert any model from
Simulink model to TargetLink model and vice versa. After conversion the user
will be able to enter scaling, data type and offset for every block in the model.

The user can easily specify which subsystem in the model the code will be
generated for. TargetLink generates code for only the subsystems that contain
TargetLink blocks. TargetLink subsystem can be part of a Simulink model. In that
way the user can use Simulink blocks connecting to the TargetLink block system
which makes it easy to test and handle in general.

TargetLink offers Data Dictionary, DD, where all central data can be saved. The
user can manage all variables and the corresponding properties from the Data
Dictionary Manager. A library for data can be created in the Data Dictionary and
a central data library is then available and can be accessed independently by any
project TargetLink model. This makes managing data practical and helps keep
data consistent, especially in large and complicated models. TargetLink gives the
user full freedom to save the desired properties as subjects in the Data Dictionary.
The user can, for example, choose to create a data object for scaling which the
user can refer to anywhere in a model. In that way the user will save time by just
referring to the created scaling object in several blocks in the model. If a change
in the data object occurs then the change will apply to all blocks that are
connected to that data object and the user will only need to make the desired
change once. There are different kinds of Data Dictionary objects and Table 4
shows the important kinds of these objects.

 24

Data Dictionary Object Description
Variable Defines the properties of a variable in

the C code. All kinds of variables are
supported: plain variables, pointers,
macros, structs and bitfields. Relevant
variable properties are Type, Class,
Scaling, Value, Min, Max. Further
properties exist to describe how a
variable can be accessed in a
calibration system, for example,
ByteOrder, Deposit, Format and
MaxRefreshRate. The latter mentioned
properties were not tested in this work.

Typedef Defines a C data type, including
pointers, structs and bitfields. The user
can create user-defined types. Each
typedef is mapped to one of TargetLink
basetypes like Bool, Int8, or Int16. If
needed, the user can also associate a
typedef with certain constraints, e.g., a
scaling data object or min/max values.

Scaling Describes how to convert the fixed-
point representation of a variable in the
ECU memory into the corresponding
physical value.

Table 4: TargetLink Data Dictionary object types

Another useful tool is the Property Manager. It is a graphical user interface that
displays the properties of TargetLink blocks in the model. The Property Manager
allows the user to view and modify several blocks properties simultaneously.

To make the model easier to follow, the blocks properties are preferred to be
visible in the model. Properties like data type, offset and scaling are practical
information to have visible in the model to make it easier for the user to see, for
example, if scaling mismatch occurs. TargetLink makes this possible but only
during the use of the automatic scaling tool. The information disappears as soon
as the automatic scaling tool is closed. According to dSPACE a script can be
written that will make the desired information visible constantly2.

To have default block properties is not fully supported by TargetLink. The only
default property that TargetLink blocks can have is the data type e.g. Int16, Int32
or Bool3.

2 Jonas Cornelsen from Fengco.
3 Has not been tested in this work but Jonas Cornelsen from Fengco has confirmed it.

 25

If a TargetLink license is not available a model can still be run in Model In the
Loop mode, which means that the model runs with floating-point. This allows co-
workers who do not have a license to have access to any model built in
TargetLink. These users can use TargetLink stand-alone-mode for which no
license is necessary.

6.1.2 Real-Time Workshop Embedded Coder
The user starts to build the model in Simulink using fixed-point and no model
conversion is necessary. It is recommended to use model reference for the
subsystem that the code will be generated for. This makes it easier to generate the
code.

In Simulink the user can easily visualise important information for every block in
the model. The user can choose to visualise port data types, storage class and
sorted order of every block in the model. These options are available in any
Simulink model under Format. In that way the user can easily follow the scaling
flow in the model.

RTW EC does not have the possibility to change the properties for several blocks
at the same time. The user has to change the properties of every block separately.
Matlab/Simulink offers Model Explorer which contains all data from the model.
Model Explorer allow the user to easily change the properties of every variable,
block or signal from the model without having to go back to the model interface.
Creating and saving a central data library that can be used in many models from
different projects is possible in RTW EC by using storage class objects. This has
not been investigated in this work.

Carrying out code modifications in RTW EC is not always straight forward. In
order to define a parameter as a macro in the generated code, two steps at least are
required. The user has to change properties for the parameter in two different
places in RTW EC tools. This is what makes it sometimes confusing for the user,
especially for first time users.

Most kinds of variables are supported in RTW EC: plain variables, pointers,
structs and macros with the restriction of the earlier mentioned Constant block.

Users who do not have a license for RTW EC and Fixed-Point Toolbox can also
run the model. These users must first change some properties in the Fixed-Point
Settings from the model Tools menu. These changes will enable users without
license to simulate with floating-point.

 26

6.2 Supported Simulink Blocks and Their Properties

6.2.1 TargetLink
In a TargetLink subsystem the user can use TargetLink simulation blocks,
TargetLink utility blocks and supported Simulink blocks. Appendix II shows all
available blocks that the user can use to build a model in TargetLink.

If the user knows what blocks to use from the beginning then the implementation
of any control model can be done. Almost all TargetLink blocks have overflow
protection available. There are two separate alternatives for overflow protection,
one for the maximum value and one for the minimum value. The user can choose
protection against upper overflow, lower underflow or both. Figure 6 shows an
example of a Gain block and how overflow protection can be chosen easily.

Figure 6: TargetLink Gain block dialog

TargetLink provides the user with Addfile block that makes it possible to add
custom code to the generated code. Another block called Custom Code can also
be used for this purpose. This block uses S-function when simulating the model in
Simulink and in the generated code added in the Custom Code block is used
instead of the S-function in the model. All TargetLink blocks and Simulink
supported blocks are listed in Appendix II.

6.2.2 Real-Time Workshop Embedded Coder
Real-Time Workshop Embedded Coder supports all Simulink blocks except
Matlab Fcn and M-file and Fortran S-function which are not inlined with TLC,
Target Language Compiler [4]. Some blocks have restrictions, for example some
blocks cannot be used inside a triggered subsystem hierarchy as a triggered
subsystem can not include blocks that are dependant on a sample time since the
trigger makes it non-sample time based. On the other hand not all Simulink blocks
support fixed-point implementation and that should be taken into consideration.
Appendix III shows the fixed-point blocks that are supported by Simulink and
code generation tool [5].

 27

Some blocks have overflow protection. Blocks like Gain block can saturate the
output if the latter increases or decreases the desired maximum or minimum
values. This is not preferred for code protection since it gives an extra amount of
code lines which takes extra time from the CPU. At the same time it is practical
for critical blocks in the model where the user expect overflow.

Real-Time Workshop Embedded Coder has a convenient way for adding custom
code to the generated code. The user can write custom code to be included in the
header file or the C file of the generated code. The user can write the C-code in
the Custom Code pane of the Configuration Parameters dialog. Another way to
incorporate existing code in the generated code is to use Legacy Code Tool. This
tool transforms an existing C code into C MEX S-function for inclusion in the
Simulink model. If the user does not want to build an S-function from scratch, an
S-function can be built automatically by converting a subsystem into an S-
function. Legacy Code Tool can then be used to include the desired custom code
instead of the S-function used in the Simulink model.

A reference model principle can be used in designing a model in Simulink where
some subsystems are designed as separate models and then added as a model
reference to any kind of design. This results in subsystem saving for reuse in
different projects.

6.3 Fixed-Point Support

Fixed-point is used in microprocessors to represent floating values and a loss of
accuracy often occurs. Scaling is used to convert the real floating value to a fixed-
point value and vice versa.

A value can be, for example, represented as an 8-bit unsigned integer, which
correspond to a range between 0 and 255 (= 128 −). If the represented value is
between 50 and 150 then almost 60% of the unsigned integer range is unused and
all decimals are ignored when they occur, see Figure 7 below.

Figure 7: Representing a value without scaling

For example the integer representation of 75.7 is, according to the representation
above, 75. A loss of 0.7 can be large depending on the design and the type of the

 28

value. To solve this kind of problem a conversion rule is made to use the entire
number range provided by an integer and to be able to shift this range. The
following equation describes the relation between the real value, x, and its integer
representation, x´:

xx OxSx +⋅= ´ , where xS is the scaling factor and xO represents an offset
that can be used to shift the integer number range.

Using a scaling factor of 0.5, xS = 12− , and an offset, 25=xO gives the following
conversion of the real value into the 8-bit unsigned integer range:

Figure 8: Representing a value with scaling

Using this approach, more than 75% of the 8-bit integer number range is covered
and used. This gives a better resolution of the representation of the real value.
This kind of scaling is called the power-of-two scaling which uses the scaling
factor n

xS 2= , where n is an integer type. Another type of scaling can be used
too, called arbitrary scaling where xS is an arbitrary real number.

6.3.1 TargetLink
Fixed-point is supported in all TargetLink blocks, as mentioned earlier. Both
power of two scaling and arbitrary scaling, where the scaling factor is an arbitrary
real number, are supported in TargetLink. Scaling can be done with or without
offset value. The user can easily choose scaling parameters manually in every
block in the model. Blocks can also refer to an already defined scaling objects
from the Data Dictionary, see chapter 5.1.1 TargetLink and Table 4.

The user can also perform automatic scaling in the model. TargetLink supports
two methods for the determination of the range of a variable: by simulation and by
worst case value range propagation. Based on the determined ranges, TargetLink
calculates suitable scaling parameters and automatically enters them in the
respective block dialog. The user must first enter as many known ranges as
possible in the model. If there is a closed loop in the model, at least one block
must have known ranges otherwise worst case value range propagation will stop.
Every block has a protection option against scaling. The user can choose to leave

 29

specific data information in the block untouched when running the automatic
scaling tool. Output data type and output offset are examples of block information
that can be chosen not to be effected by automatic scaling.

6.3.2 Real-Time Workshop Embedded Coder
To support fixed-point implementations, Matlab must have the Fixed-Point
Toolbox installed as well as RTW EC. Fixed-point is supported in many useful
blocks, see Appendix III. By knowing which blocks that support fixed-point, the
user can build the desired model without any problem. Any control model can be
build if the supported blocks are used wisely. The Matlab Fixed-Point Toolbox
supports both power of two scaling and arbitrary scaling.

In RTW EC automatic scaling is supported depending on simulation results
ranges. No worst case range propagation is supported in Real-Time Workshop
Embedded Coder/ Simulink Fixed-Point Toolbox. Propagations depending on the
simulation ranges are not preferred. To obtain a useful result the user has to
choose the simulation inputs very carefully to cover all the critical ranges.
Another problem is that the user cannot have fixed outputs ranges after automatic
scaling. The automatic scaling tool propagates ranges depending on the simulation
inputs, the outputs of the model will then have specific ranges which are
determined by the scaling tool. This results in output scaling factors that do not
match those required by the company.

 30

 31

7 Miscellaneous

7.1 Own Experiences

As a beginner working with TargetLink was easier than working with Real-Time
Workshop Embedded Coder. TargetLink has a well written user guide that gives
the first time users all the information needed to start code generation for any
model, whether with floating point or with fixed point. To generate code in RTW
EC, two user guides are needed if fixed-point is used which makes it hard for
beginners to start code generation. It takes time to know where the desired tools
are located in the RTW EC and sometimes it is not clear what steps the user
should take in order to give a certain result. For example the user has to make
changes in two different panes to make a variable defined as extern global
variable in the generated code. However it is not hard to handle once the user gets
used to the tool.

In TargetLink all the information needed to generate code is gathered in one place
which makes it easy for the user to handle the tool. TargetLink has also a very
useful tool for gathering all variables and signals in the model in one place, so
called Data Dictionary, which can be saved and accessed from any model built in
TargetLink.

RTW EC tools are very well integrated with the rest of the Simulink tools which
can be confusing for the user at first. But once the user can find his way around,
most desirable code settings can be achieved. The MathWorks recommends to use
an excel sheet to save variables for reuse.

One of the problems that were faced with Real-Time Workshop Embedded Coder
was to have a function call in the simulation that executes a different code when
connected to the hardware. This problem can be caused by quantization errors.
These errors should be considered when running with the target, but they are
irrelevant in the simulation since no quantization errors occur when the hardware
is not connected. To solve this problem, a different code is executed when
connected to the hardware, while in the simulation a simpler code is run instead.

The model tested in this work contained a block called Quantisation. This block
takes care of the problem described above. Two approaches were tested to solve
this. The first is the use of the so called Legacy Code in RTW EC. An S-Function
is used in the simulation which just gives an output that is equal to one of the
inputs, see Figure 9. Using Legacy Code tool the generated code can have a
certain function call instead of the S-function that is used when simulation is run.
This solution was not adopted in this work since it was not clear how it can be
used with reusable code. If the user chooses to generate the S-function for a
subsystem automatically then an extra option must be set manually in the S-
function in order to be able to use Legacy Code with reusable code. This was not
clear from the beginning so another approach was used in this work.

 32

The other approach was to manually exchange the function call in the generated
code. The function call is made in one place only in the whole code. The block
Quantisation, Figure 9, has two inputs which are the function parameters, but
Real-Time Workshop Embedded Coder always optimises away the declaration of
any irrelevant signal. This made it hard to have access to both inputs since one of
the signals is terminated inside the block and thus optimised away in the
generated code, see Figure 9. The solution to this specific problem was to make a
small change inside the Quantisation block in order to have access to both inputs
in the code, see Figure 10. This solution did not affect the rest of the generated
code since the whole subsystem was chosen to be a function with its own code
file. As mentioned earlier this problem could have been solved using Legacy
Code Tool.

Figure 9: Quantisation subsystem

Figure 10: Quantisation subsystem after modifications

 33

Another issue that was a problem in both TargetLink and Real-Time Workshop
Embedded Coder was the definition of the base data types. Depending on the
target microprocessor every base data type is defined differently, e.g. integers are
defined as int or short depending on the type of the microprocessor used in the
target. Haldex Traction has its own defined base types. A specific code is
developed for the purpose of defining data base types depending on whether the
code is running in the PC or on the target.

In TargetLink the base data types are defined in a header file and the user can
rename them easily. All base data types in TargetLink were renamed so that they
match those of Haldex Traction. TargetLink declaration of those data types were
manually removed from the generated code and instead Haldex Traction base data
type declarations were used.

Real-Time Workshop Embedded Coder works in the same way as TargetLink.
The user can rename the base data types that are declared in a header file that can
be modified in the same way described above. The user can also choose to
generate code for a specific microprocessor and thus the right declaration of all
base data types is achieved. This option is available in TargetLink too but it does
not change the declaration of the base data types as required. However the user
can change the declaration for all base data types manually in the TargetLink base
files and in that way the base data types will be declared as desired. This need to
be done only once and the changes made will be applicable every time code is
generated.

One of the problems that were faced with RTW EC was choosing the right option
in some blocks to obtain the desired simulation results. The simulation gave a
graph with a lot of variations in the signal due to sampling. A small change in the
properties of the blocks of multiplications, divisions and look-up tables gave the
expected result, which was a smooth graph that followed the set points. By simply
choosing to round to simplest, see Figure 11, the whole result changed and a
smooth graph was obtained. This option also saves 30-40 rows of code for every
block.

 34

Figure 11: Multiplication block in RTW EC with the right options

7.2 Generated Warnings

Both TargetLink and Real-Time Workshop Embedded Coder give a set of
warnings regarding overflows and loss of precision. TargetLink generates a text
file for these kinds of warnings while RTW EC gives a set of warnings displayed
on the Matlab workspace.

7.3 Make-file

Both TL and RTW EC generate a make-file. None of these make-files was used in
this work. Haldex Traction general make-file was modified to include the
generated files instead.

7.4 The Generated Files

TargetLink has a practical way to gather all the generated files into one place
which makes it easier for the user to see which files are relevant. With just one
click all generated files are exported into a map. Real-Time Workshop Embedded
Coder does not have this property.

By default TargetLink generates the following files:

<subsystem>.c Contains the production code that is
generated for the subsystem named in
the angle brackets.

 35

<subsystem>.h Provides the declerations of global
variables and functions defined in
<subsystem>.c. The variables and the
functions in this header file describe
the interface of the generated code.

<subsystem>_udt.h Contains user-defined types. This file
is not generated if no user-defined
types are included in the model.

tl_basetype.h and tl_types.h Contains TargetLink defined types, for
example, Int8 or UInt32.

tl_defines_<subsystem_ID>.h Contains TargetLink-defined pre-
processor macros like FX_GROUND,
macros of variable classes with the use
name attribute and the log macro. This
file was not generated in this work.

More files are generated for simulation purposes only, those files do not affect the
production code in any way and are not mentioned here.

Real-Time Workshop Embedded Coder generates the following files:

<subsystem>.c Contains entry points for all code

implementing the model algorithm.

<subsystem>_private.h Contains local macros and local data
that are required by the model and
subsystems. This file is included by the
generated source files in the model.

<subsystem>.h Declares model data structures and a
public interface to the model entry
points and data structures.

<subsystem>_data.c Conditionally generated. It contains the
declarations for the parameters data
structure, the constant block I/O data
structure, and any zero representations
used for the model’s structure data
types.

<subsystem>_types.h Provides forward declarations for the
real-time model data structure and the
parameters data structure. These may
be needed by function declarations of
reusable functions. Also provides type
definitions for user-defined types used
by the model.

 36

rtwtypes.h Defines data types, structures and

macros required by Real-Time
Workshop Embedded Coder generated
code.

ert_main.c This file is generated only if the
Generate an example main program
option is on. This option is on by
default.
autobuild.h is generated only if the
Generate an example main program
option is off. autobuild.h contains
#include directives required by the
static version of the ert_main.c main
program module. Since the static
ert_main.c is not created at code
generation time, it includes autobuild.h
to access model-specific data structures
and entry points.

<subsystem>_capi.c and
<subsystem>_capi.h

Optional files, provide data structures
that enable a running program to access
model parameters and signals without
use of external mode.

There is a pack-and-go capability in RTW EC to give a zip-file with all the
generated files.

 37

8 Results

A comparison between the simulation results in Simulink and the simulation
results in the respective tool was done. Four different simulations were carried out
for different inputs to test the behaviour of the controller in different situations:

Test case 1 - constant pressure set points and constant differential speed
Test case 2 - varying pressure set point and constant differential speed
Test case 3 - constant pressure set point and varying differential speed
Test case 4 - Extern VCS control with constant pressure set points and constant
differential speed

Figures 13-16 show results for Simulink, TargetLink and Real-Time Workshop
Embedded Coder respectively. Note that the results from the simulation in both
tools are the results of running software in the loop, which means that the
generated code is used in the simulation:

 38

Test case 1:

Figure 12: Test case 1- constant pressure set points and constant differential speed

 39

Test case 2:

Figure 13: Test case 2- varying pressure set point and constant differential speed

 40

Test case 3:

Figure 14: Test case 3- constant pressure set point and varying differential speed

 41

The above figures show the simulations for different inputs for the system. It is
clear that the controller acts in the same in all simulations, whether it is a
Simulink floating-point simulation or a simulation with the generated code from
TargetLink or Real-Time Workshop Embedded Coder.

 42

Test case 4:

Figure 15: Test case 4- Extern VCS control with constant pressure set points and

constant differential speed

 43

TargetLink and RTW EC give the same result in the simulation for test case 4. As
shown in Figure 16 for test case 4, the result is a signal which does not follow the
set points. This is expected since in this case an external signal is used in the
system and the controller signal is ignored and not used.

Another comparison is made, this time between controlling against target with the
handwritten code and the generated code from both tools. This is done by
integrating the generated code with the base software using Lauterbach to run on
the target. Lauterbach is an embedded system that helps to connect and run the
software with the hardware which is a microprocessor that controls the valve of
the coupling.

Four tests have been carried out with Lauterbach. Different values of the actual
pressure in the valve were chosen to see how the controller works to regulate the
pressure to follow certain pressure setpoint:

Test case 1: Actual pressure = 0.6 MPa
Test case 2: Actual pressure = 1.2 MPa
Test case 3: Actual pressure = 4 MPa
Test case 4: Actual pressure is varying between 1MPa and 2 MPa

The results are shown in figures 17-23 below for handwritten code, TargetLink
generated code and Real-Time Workshop Embedded Coder generated code
respectively. In the figures below the green line is a simulation of a driving
situation, the red line is the pressure set points, the blue line is the actual pressure
which is set by the tester here and it always has a specific value that does not
change and does not follow the pressure set point in the figures and finally the
purple line is the valve signal which is controlled by the implemented controller.

 44

Test case 1:

Figure 16: Test case 1 - handwritten code where actual pressure = 0.6MPa

Figure 17: Test case 1 - TargetLink generated code, actual pressure =0.6MPa

 45

Figure 18: Test case 1- Real-Time Workshop Embedded Coder generated code,
actual pressure=0.6MPa

Test case 2:

Figure 19: Test case 2 - handwritten code, actual pressure=1.2MPa

 46

Figure 20: Test case 2 - TargetLink generated code, actual pressure = 1.2MPa

Figure 21: Test case 2 - Real-Time Workshop Embedded Coder code, actual

pressure = 1.2MPa

It is clear that in all stages the controller works as it should. It sends a signal to
open the valve when the pressure set points is above the actual value so that the

 47

actual pressure will follow the set points. The actual pressure is not changed
during this test because it is a predefined value that the user sets for testing only.
There can be some inconsistency between the graphs because of the manual errors
when defining the actual pressure.

Test case 3:

Figure 22: Test case 3 - handwritten code, actual pressure =4MPa

Both TargetLink generated code and RTW EC generated code act exactly in the
same way as the handwritten code in the third test case. Here the actual pressure is
4MPa which means that the controller signal will not be used but another special
signal is forced on the system and the controller signal is ignored, which is what
happens during the testing.

 48

9 Conclusions

This work was aimed at comparing two automatic code generating tools and find
which of these tools is more suitable for Haldex Traction. Many aspects were
tested and the results were evaluated.

TargetLink and Real-Time Workshop Embedded Coder are two powerful tools for
automatic code generation. Most functionalities can be achieved in both tools.

For first time users TargetLink can be found easier to manage because of the
simple interface and the practical way in finding all relevant options. RTW EC
can be easy to manage after some practice.

Real-Time Workshop Embedded Coder supports almost all blocks for code
generation but not all blocks support fixed-point. In TargetLink many Simulink
blocks are supported or have corresponding blocks in TargetLink but all these
blocks support fixed-point. Both TargetLink and RTW EC support most relevant
blocks for generating code for control systems if the blocks are used wisely.

The code generated from both tools give the same overall performance as the
handwritten code when running on the target. However there are some differences
in execution time and memory requirements where TargetLink gives a faster
execution time and better results regarding memory usage.

Both TargetLink and RTW EC generate well documented code that follows the
Simulink model flow which makes it easier for the user to understand the
generated code.

TargetLink is used by Haldex Brake in Landskrona and RTW EC is used by
Haldex Brake in UK. Both partners are happy with their choice but Haldex
Traction has its own requirements and priorities that should be taken into
consideration.

 49

 50

10 Further Studies

In this work only code generation has been evaluated and tested. However more
studies can be done related to integration with a real target and the inclusion of
code generation stage in the development process. Studies can also be made about
validation and verification.

Parameter set issue can also be studied further with respect to the solution that
both TargetLink and Real-Time Workshop Embedded Coder offer.

 51

Reference

[1] Haldex Traction AB (2007). Technical Information [www]. Information from
<http://www.haldex-traction.com> 19/03/07

[2] dSPACE (2005). Production Code Generation Guide For TagretLink 2.1.

[3] dSPACE (2005). Advanced Practices Guide For TagretLink 2.1.

[4] The MathWorks (2002-2006). Real-Time Workshop Embedded Coder User’s
Guide.

[5] Matlab/Simulink Help (2006).

[6] Fengco Real Time Control AB (2007). Kurser [www]. Information from
<http://www.fengco.se/> 20/02/07

[7] Nilsson, Staffan (2004). Linear Pressure Controller for HLSC Specification.
Reg.No 2002510. Haldex Traction Systems

[8] Jönsson, Bengt (2000). PID Controller. Reg.No 2001850. Haldex Traction
Systems.

[9] Åström, Karl & Wittenmark, Björn (1997). Computer-Controller Systems. 3rd
Edition, Prentice Hall.

[10] dSPACE (2007). TargetLink 2.2.

 52

Appendix I: Notations

Symbols Description Unit

vcs Valve characteristic signal
3m

sPa ⋅

p Clutch pressure Pa

bp Base pressure Pa

spp Pressure set point Pa

vQ Valve flow
s

m3

pQ Pump flow
s

m3

c Elasticity
3m

Pa

v Controller output
s

m3

u Controller output after limitation
s

m3

V Accumulated volume pressurising the clutch 3m

spV Set point volume to pressurise the clutch 3m

η Set point response factor -

K Controller gain
sPa

m
⋅

3

iT Controller integration time s

dT Controller derivation time s

trT Controller tracking time s

N Controller derivation gain limitation -

 53

Abbreviations

HLSC Haldex Limited Slip Coupling

RTW EC Real-Time Workshop Embedded Coder

TL TargetLink

MIL Model In the Loop

SIL Software In the Loop

PIL Process In the Loop

TOM TargetLink Optimisation Modules

TBS TargetLink Base Suite

MISRA C Motor Industry Software Reliability Association
for C

 54

Appendix II: TargetLink Blocks

TargetLink has its own blocksets and some Simulink supported blocks. All the
blocks below are supported in code generation and fixed-point.

Sublibrary Block Fixed-Point

Support
Code
Generation
Support

 Subsystem X X
 Addfile X X
TargetLink
Simulation Blocks

InPort X X

 OutPort X X
 Constant X X
 Sum X X
 Gain X X
 Product X X
 Logical Operator

AND
X X

 Rational Operator X X
 Fcn
 Look-Up Table X X
 Look-Up Table (2D) X X

 PreLook-Up Index

Search
X X

 Interpolation (n-D)
using PreLook-Up

X X

 Assignment X X
 Saturation X X
 MinMax X X
 Abs X X
 Sign X X
 Rate Limiter X X
 Relay X X
 Trigonometric

Function
X X

 Math X X
 Unit Delay X X
 Discrete Transfer

Fcn
X X

 Discrete Filter X X
 FIR Filter X X
 Discrete-Time

Integrator
X X

 Discrete State-Space X X

 55

 Data Store Write X X
 Data Store Memory X X
 Data Store Read X X
 Custom Code Block X X
 Merge X X
 Sink X X
 Bus Inport X X
 Bus Outport X X
 Switch X X
 Multiport Switch X X
 Unit Delay Reset

Enabled
X X

Sublibrary Block Fixed-Point
Support

Code
Generation
Support

Extras D Latch X X
 D Flip-Flop X X
 S-R Flip-Flop X X
 Pre-processor IF X X
 Stateflow Logger X X
 Stateflow FcnCall

Logger
X X

Sublibrary Block Fixed-Point
Support

Code
Generation
Support

RTOS Blocks Task X X
 ISR X X
 Crtitical Section X X
 Schedule X X
 CounterAlarm X X
Sublibrary Block Fixed-Point

Support
Code
Generation
Support

Supported Simulink
Blocks

Trigger X X

 Enable X X
 In1 X X
 Out1 X X
 Display X X
 Scope X X
 For Iterator

Subsystem
X X

 While Iterator
Subsystem

X X

 Function-Call
Generator

X X

 Ground X X
 Terminator X X
 To File X X

 56

 To Workspace X X
 From X X
 Goto Tag Visibility X X
 Goto X X
 Data Type

Conversion
X X

 Model Info X X
 Configurable

Subsystem
X X

 Switch Case X X
 If X X
 Mux X X
 Demux X X
 Bus Selector X X
 Bus Creator X X
 Selector X X
 Zero-Order Hold X X
 Rate Transition X X
 Switch Case Action

Subsystem
X X

 If Action Subsystem X X
 Check Static Lower

Bound
X X

 Check Static upper
Bound

X X

 Check Static Range X X
 Check Static Gap X X
 Assertion X X
 Check Discrete

Gradient
X X

 Check Input
Resolution

X X

 Check Dynamic
Lower Bound

X X

 Check Dynamic
Upper Bound

X X

 Check Dynamic
Range

X X

 Check Dynamic Gap X X

 57

Appendix III: Real-Time Workshop
Embedded Coder Blocks

All blocks that can generate code and support fixed-point are marked with X
under the corresponding column. Some blocks has caveats and/or notes that
should be taken into consideration. Caveats and notes are indicated by “C#” and
“N#”, respectively, and are described below the table.

Sublibrary Block Fixed-Point
Support

Code
Generation
Support

Sources Constant X X
 Counter Free Running X X (N3)
 Counter Limited X X (C4)
 Ground X X
 Import (In1) X X
 Repeating Sequence

Interpolation
X X (C1, C4)

 Repeating Sequence Stair X X (C4)

Sink Display X X (N1)
 Floating Scope X X (N1)
 Outport (Out1) X X
 Scope X X (N1)
 Terminator X X
 To Workspace X X (N1)
 XY Graph X X (N1)
Sublibrary Block Fixed-Point

Support
Code
Generation
Support

Discrete Discrete-Time Integrator X X (C2, N2)
 Integer Delay X X (N2)
 Discrete Tapped Delay X X (N2)
 Discrete Derivative X X (C2, N2)
 Difference X X (C4)
 Transfer Fcn Lead or Lag X X (C4)
 Transfer Fcn First Order X X (C4)
 Transfer Fcn Real Zero X X (C4)
 Weighted Moving Average X X
 Memory X X
 Unit Delay X X (N2)
 Zero-Order Hold X X
Sublibrary Block Fixed-Point

Support
Code
Generation
Support

 58

Math
Operations

Abs X X

 Assignment X X (N2)
 Complex to Real-Imag X X
 Dot Product X X
 Gain X X
 Math Function

(magnitude^2)
X X

 Math Function (square) X X
 Math Function (conjugate) X X
 Math Function (reciprocal) X (C3) X
 Math Function (transpose) X X
 Math Function (hermitian) X X
 Matrix Concatenation X X (N2)
 MinMax X X
 MinMax Running

Resettable
X X

 Weighted Sample Time
Math

X X

 Bias X X
 Unary Minus X X
 Product X X (N2)
 Real-Imag to Complex X X
 Reshape X X
 Sign X X
 Slider Gain X X
 Sum X X
Sublibrary Block Fixed-Point

Support
Code
Generation
Support

Logic and Bit
Operations

Logical Operator X X

 Relational Operator X X
 Interval Test X X
 Interval Test Dynamic X X
 Compare to Zero X X
 Compare To Constant X X
 Bit Set X X
 Bit Clear X X
 Bitwise Operator X X
 Shift Arithmetic X X
 Extract Bits X X
 Detect Increase X X (N2)
 Detect Decrease X X (N2)
 Detect Change X X (N2)
 Detect Rise Positive X X (N2)
 Detect Rise Nonnegative X X (N2)
 Detect Fall Negative X X (N2)
 Detect Fall Nonpositive X X (N2)

 59

Sublibrary Block Fixed-Point
Support

Code
Generation
Support

Signal
Routing

Bus Creator X X

 Bus selector X X
 Bus Assignment X X
 Data Store Read X X
 Data Store Memory X X
 Index Vector X X
 Data Store Write X X
 Demux X X
 From X X
 Goto X X
 Environment Control X X
 Goto Tag Visibility X X
 Manual Switch X X (N3)
 Merge X X
 Multiport Switch X X (N2)
 Mux X X
 Selector X X
 Switch X X (N2)
Sublibrary Block Fixed-Point

Support
Code
Generation
Support

Signal
Attributes

Data Type Conversion X X

 Probe X X
 Weighted Sample Time X X
 Signal Conversion X X
 Data Type Duplicate X X
 Data Type Propagation X X
 Data Type Conversion

Inherited
X X

 Data Type Scaling Strip X X
 Rate Transition X X (C1, N2)
 Signal Specification x X
 Width X X
Sublibrary Block Fixed-Point

Support
Code
Generation
Support

Discontinuities Coulomb & Viscous
Friction

X X (C4)

 Dead Zero X X
 Dead Zero Dynamic X X (C4)
 Rate Limiter X X (C1)
 Rate Limiter Dynamic X X (C1, C4)
 Relay X X
 Saturation X X

 60

 Saturation Dynamic X X (C4)
 Wrap To Zero X X (C5)
Sublibrary Block Fixed-Point

Support
Code
Generation
Support

Lookup
Tables

Lookup Table X X

 Lookup Table Dynamic X X
 Sine X X (C4)
 Cosine X X (C4)
 Lookup Table (2-D) X X

User-Defined
Functions

S-Function X X (N4)

 S-Function Builder X X

Model
Verification

Assertion X X

 Check Discrete Gradient X X
 Check Dynamic Gap X X
 Check Dynamic Lower

Bound
X X

 Check Dynamic Range X X
 Check Dynamic Upper

Bound
X X

 Check Static Gap X X
 Check Static Lower Bound X X
 Check Static Range X X
 Check Static Upper Bound X X
Sublibrary Block Fixed-Point

Support
Code
Generation
Support

Ports &
Subsystems

Atomic Subsystem X X

 Configurable Subsystem X X
 CodeReuseSubsystem X X
 Enabled Subsystem X X
 Enabled and Triggered

Subsystem
X X

 For Iterator Subsystem X X
 Model X X
 Function-Call Subsystem X X
 If Action Subsystem X X
 Switch Case Action

Subsystem
X X

 Subsystem X X
 Triggered Subsystem X X
 While Iterator Subsystem X X
Sublibrary Block Fixed-Point Code

 61

Support Generation
Support

Increment/
Decrement

Increment Real World X X (C4)

 Decrement real World X X (C4)
 Increment Stored Integer X X (C4)
 Decrement Stored Integer X X (C4)
 Decrement to Zero X X (C4)
 Decrement Time To Zero X X
Sublibrary Block Fixed-Point

Support
Code
Generation
Support

Additional
Discrete

Transfer Fcn Direct From || X X (C4, N2)

 Transfer Fcn Direct From ||
Time Varying

X X (C4, N2)

 Fixed-Point State-Space X X (C4)
 Unit Delay External IC X X (C4)
 Unit Delay Resettable X X (C4, N2)
 Unit Delay Resettable

External IC
X X (C4, N2)

 Unit Delay Enabled X X (C4, N2)
 Unit Delay Enabled

External IC
X X (C4, N2)

 Unit Delay Enabled
Resettable

X X (C4, N2)

 Unit Delay Enabled
Resettable External IC

X X (C4, N2)

 Unit Delay With Preview
Enabled

X X (C4, N2)

 Unit Delay With Preview
Enabled Resettable

X X (C4, N2)

 Unit Delay With Preview
Enabled Resettable
External RV

X X (C4, N2)

 Unit Delay With Preview
Resettable

X X (C4, N2)

 Unit Delay With Preview
Resettable External RV

X X (C4, N2)

Caveats:
C1: Cannot be used inside a triggered subsystem hierarchy.
C2: Depends on absolute time when placed inside a triggered subsystem
hierarchy.
C3: Currently, the reciprocal supports fixed-point data types only for real inputs.
C4: The primitive blocks that constitute a non-atomic masked subsystem (block)
are not explicitly grouped together in the generated code. This flexibility allows

 62

for more optimal code generation. In certain cases, grouping can be achieved by
configuring the masked subsystem block to execute as an atomic unit (Subsystem
parameter “Treat as atomic unit”).

Notes:

N1: Ignored for code generation.
N2: Generated code relies on memcpy or memset (string.h) under certain
conditions.
N3: Not recommended for production code.
N4: M-file S-functions are not supported for the real-time code generation format.
S-functions that make calls into MATLAB are not supported for production code.

 63

Appendix IV: Pressure Controller –
The Design

The tested model is a design of a pressure controller that is used in Haldex
Traction base software. The coupling that the pressure controller is designed for is
a Haldex coupling generation 2. The model contains a rough approximation of the
coupling for test reasons, this subsystem will not be discussed here. The design
will not be discussed further here due to company requirements.

 64

Appendix V: Simulink Model

The PID controller described in Appendix IV is easy to build in Simulink. Every
part of the controller is built in a separate subsystem. The coupling subsystem is
an approximate design for the actual coupling used in the car, Figure 1. The
transform subsystem is used to transform the pressure to VCS signal and vice
versa. The subsystem is also used to track quantization and saturation errors. The
Quantisation block in the Transform subsystem uses an S-function that in
Simulink just let the calculated signal VCS through while in the software and
when the code is generated a function call is used instead to return the VCS signal
value after being quantised throughout the main program.

 65

 1
.

Pr
es

su
re

 C
on

tro
lle

r W
ith

 C
ou

pl
in

g

 66

3.
 P

ID
 C

on
tro

lle
r

 67

Transfrom

