
ISSN 0280-5316
ISRN LUTFD2/TFRT--5785--SE

Object Oriented Automation Systems

Maja Arvehammar

Department of Automatic Control
Lund University
February 2007

Document name
MASTER THESIS
Date of issue
February 2007

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5785--SE
Supervisor
Mattias Wallinius at Tetra Pak D&E in Lund
Karl-Erik Årzén at Automatic Control in Lund

Author(s)
Maja Arvehammar

Sponsoring organization

Title and subtitle
Object Oriented Automation Systems (Objektorienterad automation)

Abstract
This master’s thesis is about the implementation and evaluation of a small object-oriented automation system. By using a
realtime Java VM from Jamaica, a sheet feeding magazine from the machine Tetra Aptiva Aseptic has been controlled.
The expectations included to achieve more structured and safer programming, better documentation through UML and to
separate application developers from developers of basic functionality. The work has involved to understand the existing
control program, to design an object oriented model in Java and to run it on a test rack. The system worked fine, and most
expectations were fulfilled. The performance measurements indicated that the Java was fast but also had a slightly larger
jitter.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
70

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 42 43

2

Preface

This thesis marks the end of Maja Arvehammar’s Master of Science degree in

Engineering Physics at the Lund Institute of Technology in Sweden.

The project work was carried out at Tetra Pak D&E in Lund and has taught

me plenty. Mostly about managing different software tools and interaction be-

tween hardware and software, but also a little about how large companies work

and many other things.

I would like to thank my supervisor att Tetra Pak, Mattias Wallinius for

support and inspiration and the people at B&R and aicas for helping me through

the tricky parts in managing their hardware and software tools. I would also

like to thank Karl-Erik Årzén, my examiner at LTH, the co-workers at Tetra

Pak and family and friends for supporting me during this master thesis.

3

4

Contents

1 Introduction 11

1.1 Background . 11

1.2 Vision . 12

1.3 Project task and methods . 13

1.4 Limitations . 14

2 Companies involved 16

2.1 Tetra Pak . 16

2.2 aicas . 16

2.3 B&R . 17

3 Theoretical background 18

3.1 IEC 61131-3 . 18

3.2 The Java Native Interface . 19

3.3 UML and Design Patterns . 21

4 Software tools 23

4.1 Automation Software . 23

4.2 Realtime Java . 26

4.3 Jamaica VM . 27

4.4 Eclipse . 27

4.5 ArgoUML . 27

4.6 Other Programs . 28

5 The sheet magazine 29

5.1 Hardware . 29

5.2 Software . 29

5.3 The Machine Phases . 32

5.4 The Magazine State Machines . 32

6 Design and Implementation 35

6.1 Solution overview . 35

6.2 JNI Interface . 35

6.3 State Machines . 36

6.4 Package Overview . 37

6.5 Program Flow . 39

7 Performance Testing 44

7.1 Test Program Flow . 44

7.2 Calculations . 45

7.3 Results . 45

8 Discussion 47

8.1 Vision Fulfilling . 47

8.2 Performance Testing . 49

8.3 Further Work . 49

Bibliography 49

Glossary 52

A Additional Figures 54

B Test Results 65

C Implementation Methods and Issues 69

List of Figures

3.1 Example of appearance of a Sequential Function Chart program.

The picture is taken from Automation Studio’s help file (used

with permission) . 20

3.2 Example of appearance of a ladder diagram. The picture is taken

from Automation Studio’s help file (used with permission) 20

4.1 Cam control in history. The picture is taken from Automation

Studio’s help file (used with permission) 24

4.2 Cam control in software. The picture is taken from Automation

Studio’s help file (used with permission) 25

4.3 The simplified model of the S88-interface used by mclib and the

magazine software. The picture is taken from Automation Stu-

dio’s help file (used with permission) 26

5.1 The event flow of the magazine. The axis controlled by the mag-

azine software is represented by the rightmost circle. The figure

is drawn by Johan Henricson (used with permission). 30

5.2 An UML diagram showing the hardware hierarchy of the magaz-

ine. Drawn by Mattias Wallinius (used with permission). 31

5.3 An internal state machine (i.e. switch-case statement) from the

function block calculating signals for the cam control. 33

5.4 The state machine of the cam control. Each state (except from

state 0) has an own cam curve. 33

6.1 An overview of the solution architecture 36

6.2 State machine for the sheet feeding servo 37

6.3 Shows the state mapping between the magazine and the machine.

The leftmost state machine is an excerpt from the one in Ap-

pendix A. The middle is represented by an integer stateLevel

and the rightmost is the one from Figure 6.2. 38

6.4 Shows an overview of all classes in the magazine application . . . 40

7

6.5 Shows the thread communication through monitors. RTFState-

Machine and FeederThread are threads. RTFMonitor, Magazine

and the Axis classes are monitors. 42

6.6 Shows the sequence of awaiting a cam state index. 43

A.1 A minor part of the axis handler state machine. The function

block starts in state 0 and the axis is up and running (and await-

ing external commands) in state 500. 55

A.2 Machine phases. Continuing in the next figure. 56

A.3 Machine phases. Continuing in the next figure. 57

A.4 The first of the machine phases. 58

A.5 The brasruntime package providing basic motion controlling func-

tionality . 59

A.6 The brasruntime.event package providing basic event handling . 60

A.7 The brasruntime.configuration package facilitating axis configu-

ration . 61

A.8 The utilities package with a few useful classes. 62

A.9 The com.tetrapak.a5.packagingline.rtf package representing the

rest of the machine communicating with the magazine. 62

A.10 The com.tetrapak.a5.packagingline.rtf.magazine package contain-

ing classes for magazine control. 63

A.11 The

com.tetrapak.a5.packagingline.rtf.magazine.magazineServo pack-

age containing axis-classes for the magazine servo. 64

8

List of Acronyms

ANSI American National Standards Institute

AR Automation Runtime

AS Automation Studio

B&R Bernecker&Rainer

D&E Development & Engineering

GmbH Gesellschaft mit beschränkter Haftung (company with limited liability)

HMI Human Machine Interface

IEC International Electrotechnical Commission

ISA Instrumentation, Systems, and Automation Society

JAR Java ARchive

JNI Java Native Interface

LTH Lunds Tekniska Högskola (Lund Institute of Technology)

OO Object Oriented

PLC Programmable Logic Controller

PVI Process Visualization Interface

SFC Sequential Function Chart

ST Structured Text

SysML Systems Modeling Language

TAA Tetra Aptiva Aseptic

UML Unified Modeling Language

VM Virtual Machine

9

10

Chapter 1

Introduction

1.1 Background

The software solutions that Tetra Pak develops for their automats are very much

focused on old solutions, consisting of PLC programs written in ladder diagrams

and other primitive languages. The standard of PLC programming was mostly

developed during the 80s, standardized by the International Electrotechnical

Commission (IEC) in 1993 [8] and lacks features like object-orientation and

declarative programming. The standard for industrial control programming is

called IEC 61131-3 and defines five different language standards, both textual

and graphical.

Although several standard libraries for basic functions and motion control

have been developed, see PLCopen [13], they are still quite primitive and require

much knowledge from the developer. In B&R Automation Studio, a develop-

ment environment for PLC-programs, a library is defined by a collection of

function blocks compiled to a library file.

An object-oriented system has very much to offer when it comes to develop

PLC programs. Languages like Java, C++ and C# include extensive standard

libraries, inheritance possibilities and ready-made design pattern solutions for

common problems. A design pattern is not a natural part of an IEC61131-3

program. Furthermore, there are several documentation standards like UML

and SysML which (when used correctly) can contribute enormously to both

design, documentation and debugging of applications. They can also make the

programs more easy to read and understand.

Several development environments, unit testing and programs for UML-

drawing are already common tools in the object-oriented world. Since the tools

already exist, why not use them for PLC-programming as well?

It would be interesting to see if, for instance, Java can be used to control a

11

Tetra Pak machine automat, if it is stable enough, fast enough and at all works

for a hard realtime system.

1.2 Vision

This section presents some of the advantages to gain with an object-oriented

(OO) automation system.

Structure, test, model and document applications

Large automation programs, large function blocks with many uses are very

difficult to completely test and maintain. As the control programs grow larger,

this becomes more and more of an issue. OO-methods offer the UML standard to

model large programs by using sequence- and activity diagrams to show process

flows, state diagrams to show the machine states and not least: class diagrams

to show application design. Design solutions for common problems exist in

established design patterns to keep programmers from constantly reinventing

the wheel. Several tools for unit testing OO-programs already exist for the

debugging and validation of applications.

To be able to structure and specify the software solution modeling is a neces-

sary part. A standard for this is UML [7]. Properly used it shortens development

times and reduces the number of errors in the code. It also leads to better test

specifications and better testing since unit testing is possible. Tools in which

you can test and debug at UML diagram level lead to greater productivity for

the application developers.

Privacy and reuse of code

OO-libraries with clear hierarchies and well-designed interfaces would increase

the possibility of reusing code. Using inheritance and common interfaces, it

would be possible to represent mechanical parts of the automat by objects. If

a mechanical solution is reused, much of the controlling code could also im-

mediately be reused. One could, for instance, create a standard class library

representing basic functionality for a specific mechanical part.

Compared to Automation Studio (AS) function blocks, the OO world also

provides greater possibilities to protect code. When calling an AS function

block in C, all variables are totally unprotected. It is just as easy to set an

input variable as an output- or internal variable (the reason is described in

Section 4.1). Using the OO class-definition it is natural to declare how private

a function or variable is.

12

Other common functions like communication standards can also be ab-

stracted with OO libraries and reused. PLC communication is yet at a rather

low abstraction level requiring the programmer to know plenty about each way

to communicate.

Separating developers

As mentioned in the previous section, OO would simplify development of sepa-

rate libraries for common functions and basic functionality of mechanical parts.

It would be favourable to separate application engineers that are design experts

from developers of basic functionality that specialize on the hardware. It would

allow one group of hardware experts to focus only on creating basic libraries

while the application developers could focus solely on object diagrams, compo-

sition, execution sequences, process flows and state diagrams. They would use

the basic libraries in their applications, without caring about the code inside.

Graphical programming

Ladder programming is a graphical programming language, looking very much

like an electric circuit, see Section 3.1. The Sequential Function Chart language

is also graphical, where the objects represent states and transitions. Graphical

programming has several advantages and the vision is that the graphical pro-

gramming methods will remain, but at a much higher abstraction level. The

application programmer would be able to create programs by drawing class di-

agrams and state charts in a ”drag-and-drop”-like way, based on the standard

libraries. Tools already exist for this. Instead of drawing coils and relays one

could draw axes and sensors, and perhaps assign certain behaviours to them.

1.3 Project task and methods

The task of this thesis project is to run Java on a (test rack for a) sheet magazine

from the Tetra Pak automat TAA, Tetra Aptiva Aseptic. The goal is to examine

if it is possible to get a Java environment to work on the hardware platform,

and see if it meets the hard real-time requirements. The next step is to develop

base functionality for motion control and then use UML or SysML tools for the

application programming.

Several software and hardware tools have been used to achieve this. The

sheet magazine, i.e. the target system, is from B&R (introduced in Section

2.3). It uses the operating system VxWorks with the runtime environment

B&R Automation Runtime. The file system on target is FAT32.

13

A Java VM suitable for the PLC is provided by aicas (presented in Section

2.2) and is called Jamaica VM (which is described in Section 4.3).

The magazine’s task is to separate sheets from each other and pass them on

at a very high speed. The existing control program for the magazine is written

in the IEC 61131-3 languages (presented in Section 3.1) and C. The major task

for it is to control an ACOPOS Servo from B&R using Cam control (explained in

Section 4.1) and to response to sensor-information. The magazine is described

further in Section 5.

Part of the task in this thesis is to rewrite the control program in Java.

Since the Java-application could not directly communicate with the ACOPOS,

an intervening layer had to be created. A Java Native Interface (see Section

3.2) was the solution, Java calling C-functions to send commands and obtain

status information and measurements. With object-oriented programming most

of modeling is done upfront, using UML to draw state machines, classes and

threads before implementation and testing.

The concrete work can be divided into the following sub-tasks:

• Set up the environment and make the necessary arrangements to make

JamaicaVM work with B&R hardware and Automation Runtime (AR).

Make sure the standalone Java application can be started from within a

program written in Automation Studio.

• Develop a JNI for basic motion control to enable communication with the

ACOPOS. Test it with Automation Runtime.

• Develop a standard class library to make the basic functionality available

at a higher Java-level.

• Read and understand the sheet magazine control program (described in

Section 5.2) in order to create an object-oriented design.

• Create an object-oriented model of the magazine software. This means

drawing state machines, class diagrams and illustrate communication be-

tween threads.

• Implement the solution. Test it with Automation Runtime and the JNI.

• Test the application and measure the performance.

1.4 Limitations

At the time for this project, it was not possible to develop all the basic function-

ality using Java, the hardware was too dependent on the Automation Runtime

14

solution from B&R. It would also be far too much work. Therefore the existing

motion control C-library mclib together with cyclic AR tasks, have been used

and is called from the Java application using the Java Native Interface. This

solution might have a significant negative effect on the magazine performance.

15

Chapter 2

Companies involved

This section contains a brief description of the companies involved and how they

have contributed to the project.

2.1 Tetra Pak

Tetra Pak is one of the leading companies in processing, packaging and distri-

bution of groceries. It was founded by Ruben Rausing and Erik Wallenberg in

1951 and has now more than 20000 employees in more than 160 countries.

Tetra Pak’s vision is to make food safe and available everywhere, see Tetra

Pak’s webpage [14]. To achieve this vision, they work together with their cust-

omers to develop intelligent process- and packaging solutions for groceries.

This master’s thesis project has been carried out for and at Tetra Pak D&E

Automation and Line Integration in Lund, using a magazine from their filling

machine Tetra Aptiva Aseptic.

2.2 aicas

T he company aicas GmbH has developed a way to use Java in hard realtime

control systems. This includes a virtual machine, object oriented development

environment and analysis tools. Their aim is the promotion of modern software

development methods in embedded and time-critical control systems, see aicas’

webpage [1]. aicas is a growing company that was founded in 2001 in Karlsruhe,

Germany and has 16 employees.

In this project, their Java virtual machine Jamaica has been used and tested

on the magazine.

16

2.3 B&R

B&R was founded by Erwin Bernecker and Josef Rainer and their business

defining motto Perfection in automation, as their their web page [2] states, has

been valid for over 26 years.

The hardware used in this thesis, i.e. the magazine parts, were produced

by this company. Their enclosed software, B&R Automation Software, has also

been used.

17

Chapter 3

Theoretical background

To perform the tasks mentioned in Section 1.3 some theoretical studies had do

be done. This section presents some facts relevant to the project and where

they have been used.

3.1 IEC 61131-3

Since most of the magazine software (see Section 5.2) is written using the IEC

61131-standard, understanding the magazine design requires knowledge of some

of the languages. IEC 61131-3 is a global standard for industrial control pro-

gramming. It defines syntactic and semantic rules for two textual (Structured

Text and Instruction List) and two graphical (Ladder and Function Block Dia-

gram) languages. There is also the Sequential Function Chart syntax which is

used to structure programs.

The IEC standard defines basic concepts like data types and variables. It

also defines some standard functions, for instance basic maths (like ADD, SQRT

and SIN). There are also user-defined functions which can be created by pro-

grammers. The standard also defined Function Blocks, which are said to be

equivalent to Integrated Circuits, ICs, representing a specialized control func-

tion, IEC 61131-3: a standard programming resource [12]. Function Blocks may,

unlike traditional functions, have several outputs and an internal state which

remains between calls.

Below are descriptions of some languages which syntax has affected the mag-

azine (and machine) control program design and for that reason are relevant.

Sequential Function Chart, SFC is basically states connected with transition

conditions. Each state (also known as step) has a certain task, executed

every time the SFC-block is called (like once every cycle) until the tran-

18

sition condition to exit is fulfilled. It may also contain an entry and an

exit action. The first one is performed only when entering the state and

the second just before exiting it. A state which action is being executed

is described as active. An action may consist of a piece of code written in

any IEC61131-3 language or C. The TAA machine steps through certain

phases, and each phase steps through S88 states (Section 4.1). For that

reason it is convenient to encapsulate the tasks for each state and phase

into elements of SFCs. An example of what an SFC program might look

like is shown in Figure 3.1.

Ladder is basically a drawing of an electric circuit. Commands and links are

represented by connections lines and symbols like contacts and coils. On

the left side there are an imaginary line continuously supplying power. On

the right hand side the coils are placed, representing the devices to control

(for instance a lamp or a boolean variable). Since state transitions often

are determined by boolean variables (whether a not a task execution has

succeeded, if an error has occurred, etc.) the ladder syntax is often useful.

An example of a ladder diagram is shown in Figure 3.2.

Structured text, ST is, unlike the above ones, textual and very similar to Pascal.

An ST program consists of a sequence of instructions, with standard high

level statements like IF .. THEN .. ELSE, WHILE .. DO and SWITCH

.. CASE. The magazine control program is built out of cyclic tasks (see

5.2 and 4.1), but sometimes it is desirable to execute large pieces of code

sequentially. In that case state machines, with many small states, can be

built out of SWITCH .. CASE statements, switching on a variable that is

increased by 1 every cycle. This is very common behaviour in the magazine

software, especially during the start up phase (initialize, configure, enable

power and so on).

More information about the IEC61131-3 standard can be found on the

PLCOpen webpage, [13].

3.2 The Java Native Interface

The Java Native Interface is a framework that enables a Java Virtual Machine

to interact with native code written in for example C or C++. In this section

only a few capabilities is presented and focus will be on the C language. The

Java Native Interface by Shen Liang [11] is an extensive reference to JNI and

contains information about how to implement it.

19

Figure 3.1: Example of appearance of a Sequential Function Chart program.
The picture is taken from Automation Studio’s help file (used with permission)

Figure 3.2: Example of appearance of a ladder diagram. The picture is taken
from Automation Studio’s help file (used with permission)

20

Calling native functions from Java

One JNI feature is to call methods written in C from a Java application. By

declaring methods native in a Java application they can be implemented in a

native library. The native methods must be declared in a special, non-trivial

way. To obtain the correct declaration of a certain native method, the javah

(or in Jamaica, jamaicah) program can be used with the class file as input. It

generates a header-file containing declarations of all native methods of the class.

The methods can then be implemented and compiled to a library. The library is

loaded in the Java application using the System.loadLibrary() function. When

the Jamaica builder is used, the library-loading is not necessary; Jamaica links

the pre-compiled object files itself.

Mapping of types

The JNI defines a set of C-types that correspond to Java primitive types which

can be used in C functions without further thought. When it comes to objects,

arrays and strings, special care has to be taken. The JNI Environment provides

a large set of functions to perform actions on these types, for instance accessing

arrays and object fields.

Callbacks and Constructor invoking

Another possibility is to call Java functions from the C-functions, i.e. to perform

callbacks. This is done by providing a special signature describing inputs and

return type. The signature can be obtained by using the javap -p -s tool on the

class file in which the function is. Constructors are invoked in a similar way. It

is also possible to throw exceptions from JNI by using a certain JNI function.

Caching field and method IDs

To access a certain method or field, an ID that is defined by the symbolic name

and type descriptor is required. The ID can be obtained by calling certain

methods of the JNI environment, but includes a symbolic lookup which might

slow the program down if performed often. A possible optimization is to cache

the values when the class loads. This can be done by calling a native method

in the static initializer of the class.

3.3 UML and Design Patterns

Various ways exist to model and document applications. The one used in this

project is the Unified Modeling Language (UML). This includes class diagrams,

21

state charts and activity diagrams. Examples of these kinds of diagrams are

shown in Figures 6.2 and 6.5 . Advantages of UML are for instance that one

does not have to look at the source code to understand what a program does.

State charts, activity diagrams and use cases make the design transparent.

A design pattern can be a standardized solution to a common problem and

a major advantage in OO programming. The solution can be described with a

class diagram showing hierarchies, dependencies and methods. Several design

patterns have been used in the magazine design. One of the most common

design patterns is the Observer pattern, where objects may observe each other

and are notified when a state changes. The observer pattern has been used when

implementing events, consisting of the IBRAxisEventNotification, BRAxisEvent

and Mailbox classes in Figure A.6.

For more information about design patterns, look at the web page [5]. More

about UML can be found on the Object Management Group webpage, [7].

22

Chapter 4

Software tools

This chapter presents some programs that were used in the project. The inten-

tion is to briefly describe their main purpose and what they were used for.

4.1 Automation Software

Automation Software is the environment for developing, testing and running

control applications on B&R hardware. It consists of three different parts: Au-

tomation Runtime, Automation Studio and PVI transfer. Automation Runtime

(AR) is the runtime environment and PVI-transfer the tool to transfer programs

to the target (in this project that is the magazine cpu flash disk).

Automation studio

In Automation Studio (AS) the control programs are written, compiled, run and

tested. The programs are built out of cyclic tasks, written in either Automation

Basic1, Ansi C, or one of the IEC 61131 languages. Libraries of function blocks

can be created and some libraries for basic functionality (for example parsing

strings) are included in the installation. Languages can be mixed freely inside

a program, so that a Structured Text program can easily call a function block

written in C.

Automation Studio also contains tools for configuring the hardware and

change and watch process variables. A few cyclic tasks have been created using

Automation Studio, to load and start the Java program and to manage mclib

(further described in Chapter 6).

As mentioned before (in Section 3.1), calling a function block from C-

language requires some caution. The function block input consists of a structure

1A language invented by B&R, [15]

23

Figure 4.1: Cam control in history. The picture is taken from Automation
Studio’s help file (used with permission)

containing all variables, both input output and internal ones. The reason for

that is that a function block has an internal state that has to endure during

several calls.

Motion control library

Due to the limitations of this project an existing motion control library written

in C has been used to control the ACOPOS servo (see Section 5.1). This library

is called mclib and is created by B&R. It contains for instance functions to

retrieve measured values, moving and power controlling functions. Many of the

functions uses the PLC open interface, see Section 4.1, and need to be called

several times before the execution is finished.

Cam control

Cam control originates from mechanical solutions where typically a rotating axis

was connected to a pole to achieve a linear movement, as in Figure 4.1. The

same result can be obtained using cam control, but with much more flexibility.

The principle is the same: a slave axis’ movement depends on a master axis

position. The slave axis follows a cam curve y = f(x), where x is the master

position, the principle is shown in Figure 4.2. In the magazine software (5.2), the

master axis is a virtual axis rotating at a constant speed. Depending on sensor

and trigger values (like indicating sheet position and sensing double sheets), the

slave axis (i.e. the ACOPOS servo) follows one out of six different cam curves.

mclib cam control

The motion control library contains functions to perform the cam control. A

large data structure containing all cam information is given as input. It contains

up to 14 cam states, where each state contains a cam curve (except from state 0

which is empty). A cam state also has up to 5 events that trigger state changes.

24

Figure 4.2: Cam control in software. The picture is taken from Automation
Studio’s help file (used with permission)

This enables simple and fast switching between different cam curves in order to

achieve certain movement patterns.

PLC open interface

In the PLC motion control libraries, a common method is to start a function

and then keep it active. An interface enabling this behaviour is the PLC Open

interface. The function blocks have enable/active or execute/done variables. An

example is the mc˙moveAbsolute function block in mclib. At a positive edge of

the execute input, the function block can start communicating with the drive.

As soon as the function is successfully completed, the done flag is set. The

function block needs to be called several times before the execution is finished,

due to the implementation of the function blocks. Function blocks may also

abort or block each others execution since some has higher priority than others

(for instance, mc˙stop has higher priority than mc˙moveAbsolute). If a function

block is aborted, the commandAborted flag is set on the output. If an error has

occurred, the output error is set, and the status integer output holds the error

number.

A function block which execution does not finish has instead of execute/done

the enable/active variables. An example of such a function block is mc˙actValues

which reads measured values from the servo, for instance the axis position and

if it is moving.

S88 States

S88 (also known as ANSI/ISA-88) was standardized by ISA 1995 and adopted

by IEC in 1997. It provides models and terminology for batch control and is

said to make the execution of automation projects more efficient. The standard

defines several things, see for instance [4] or [9] but mclib uses a very simplified

model of the S88 state and command matrix in their cam control. The same

interface is used for the magazine software states (see Section 5.2). A picture

25

of the defined states and transition commands is shown in Figure 4.1. In the

interlocked and ready state the application basically waits for commands to

proceed to ready and run respectively. When a start command is recieved in

the ready state a transition to run is performed. In the run state the ordinary

operation actions are executed. When the running is finish a transition to done

is performed. In the held state the equipment is placed in a safe state. A

transition to held happens either when an exception from ordinary operations

has occurred or when it is issued by the operator. Also in the aborted state the

equipment is in a safe state. The transition to aborted is issued by the operator.

Figure 4.3: The simplified model of the S88-interface used by mclib and the
magazine software. The picture is taken from Automation Studio’s help file
(used with permission)

4.2 Realtime Java

A common Java runtime environment uses a technique called just-in-time com-

piling. That usually means that bytecode is compiled to native machine code at

runtime. Another technique is the ahead-of-time compiling, where the compi-

lation to native machine code takes place before the program execution starts.

An example of such a compiler is the Jamaica builder (see next section). The

reason for ahead-of-time compiling is often to optimize the application on speed

and memory requirements.

The unpredictable garbage collection has always been an obstacle when it

comes to writing hard realtime applications in Java. There are several projects

working on solutions to this. Jamaica, which is presented in the next section, is

26

one of them. Another one is RTSJ.

The Real Time Specification for Java (RTSJ) is an application programming

interface to control the Java Virtual Machine behaviour in certain time-critical

parts of the application. By letting the programmer manually managing the

memory in certain memory areas it is kind of a work-around to the ordinary

garbage collector. For more information, see for instance [16] and [3].

4.3 Jamaica VM

Jamaica Virtual Machine is a Java VM for realtime systems, designed to run

under hard realtime conditions on realtime platforms. It features deterministic

and efficient garbage collection, priority inheritance and other necessary real-

time functionality, see [1]. It was created by Aicas (see 2.2). JamaicaVM also

supports many of the Java standard libraries2 and the Real Time Specification

for Java3.

In this project, the Jamaica VM was used to run Java on the VxWorks

operating system, on B&R hardware. The tool consists both of a virtual machine

and a builder, which translates the Java into C-code and creates a standalone

application out of it (that is, ahead-of-time compiling). Jamaica also supports

the Java Native Interface, which has been used to call the motion controlling

C-functions from Java (see Section 4.1).

4.4 Eclipse

Eclipse is among other things an environment for developing, testing and de-

bugging Java applications. It was developed by the Eclipse foundation, which

is an open-source community (see [6]).

Many plugins exist for additional functionality. In this project a plugin for

Jamaica was used. The plugin (developed by aicas) contains tools for configuring

and running the Jamaica builder.

4.5 ArgoUML

ArgoUML is a tool for drawing UML-diagrams, like class- and activity diagrams

and state charts. A useful feature is the export-functionality which enables

projects to be exported to xmi (XML (Extensive Markup Language) Metadata

Interchange) or source code for use in other contexts. It is also possible to

export diagrams as graphics.

2Jamaica API at http://www.aicas.com/jamaica/doc/jamaica api/index.html, [1]
3For further reading: https://rtsj.dev.java.net/

27

4.6 Other Programs

This section contains brief descriptions of other programs that have been useful,

but has not taken especially large place in the project.

VMWare is a program that acts as a virtual PC. It was very useful when running

programs that were not so stable as they ought to be.

Tornado, a development environment for VxWorks applications. It was used

while examining the standard libraries in VxWorks, and Tornado’s com-

piler was used by JamaicaVM to build the standalone application.

SVN, subversion is an open source version control system4. There is also a

plugin for Eclipse which has been used in the project. It is called subclipse.

4The management of multiple revisions of the same project. Information on
http://en.wikipedia.org/wiki/Revision control and http://subversion.tigris.org/, [17]

28

Chapter 5

The sheet magazine

The hardware to be controlled is, as mentioned in the introduction chapter,

a sheet magazine from Tetra Aptiva Aseptic (TAA). This section contains a

description of the magazine hardware, functionality and the existing software.

The software part is focused on internal state machines and does neither contain

details on managing sensors nor any of the error handling.

5.1 Hardware

The sheet feeding process consists basically of the steps showed in Figure 5.1.

The magazine consists of several parts, optical sensors and digital I/O. An

UML diagram showing the hardware hierarchy is shown in Figure 5.2.

5.2 Software

Programs developed in Automation Studio are normally built out of cyclic tasks

(see Section 4.1). The application controlling the magazine consists roughly out

of three cyclic tasks (several parts concerning error handling, sensor-checking

and communication with other machine software parts have been left out). A

major part of the application consists of SWITCH..CASE statements which

have been interpreted as state machines. All state machines presented in this

section that are implemented in Structured Text are actually such statements.

The cyclic tasks controlling the magazine are:

• A fast task which has a cycle time of 2ms and is responsible for the auto-

matic cam control (see Section 4.1). First it waits until the axis is active

and then starts calling three function blocks. The first one is for calcu-

lating the cam curves, the second is for calculating the signals and the

29

Figure 5.1: The event flow of the magazine. The axis controlled by the magazine
software is represented by the rightmost circle. The figure is drawn by Johan
Henricson (used with permission).

30

Figure 5.2: An UML diagram showing the hardware hierarchy of the magazine.
Drawn by Mattias Wallinius (used with permission).

31

third is the mclib cam control function. The signals are calculated in an

internal state machine supervising the cam states. A visualization of the

state machine can be seen in Figure 5.3, it is implemented in ST. The

cam control itself has an own state machine, controlled within the mclib

function block, described in Section 4.1.

• A task controlling the physical axis. It uses an extremely large axis han-

dling function block to start and supervise it. The axis handling function

block contains eight internal state machines controlling various things.

The function block is written in ST and all state machines are repre-

sented by SWITCH..CASE-statements. The largest one is the main case

controller for the axis which steps through all the initializing functions

and executes motion control commands. A minor part of the main case

controller state machine is illustrated in Appendix A.

External commands trigger state switches in the main case controller and

the function block reacts to the S88-state of the axis, which is part of the

output from the cam control. Depending on the S88 state and the internal

state machines, the function block produces an S88-command as part of

the output, which is passed as input to the cam control.

• A task controlling the virtual axis which serves as master in the cam

control. It is started, powered up and then set to spin at a constant

speed. The real axis’ position depends on the virtual axis’ position.

5.3 The Machine Phases

The machine program is designed so that it steps through certain phases, each

phase containing S88-states. Figures A.2,A.3 and A.4 in Appendix A show the

phases and inner states of TAA.

5.4 The Magazine State Machines

From the list in the previous section it is clear that the magazine software

contains many state machines. The topmost one consists of the machine phases.

Each phase has an S88 state. Furthermore, the axis handler has eight internal

state machines (in the SWICH..CASE fashion), and the task controlling the

master axis also has one. The cam control has at least one and even the function

block calculating the cam curves has one. It can be mentioned that the cam

control’s S88-state has no connection to the s88-state of the machine phase. One

of the ambitions with designing the magazine software in an object-oriented

32

The next state depends on wether
the Xth sheet is enabled and the
current cam state. 101 and 102 changes
cam state to running or idle respectively,

If the sheet is enabled and the state is running
or
if the sheet is disabled and the state is idle.
immediate progress to state 20 is performed.

Sheet initializing or releasing failure

Release failInit Fail

2000 Init sheet 3000 Release sheet

2001

2002

3001

3002

Sheet feeding

101

20

102

201

60 < master position < 120

30

202

This pattern continues for
the feeding control of
six sheets

60

601 602

10

300 < master position < 360

The transitions depends on
the sheet indicator: if a sheet is
to be released or initialized

0

sheet initialised

reset

Sheet init or release fail

Init first sheet

1000

1001

1002

Sheet init fail

reset

no sheet initialized

Figure 5.3: An internal state machine (i.e. switch-case statement) from the
function block calculating signals for the cam control.

1 0 10

2 34

5

6

7

8

9

11
Signal 1: Stop

Signal 2: Start
Periodic: S_START

Signal 3: Init first sheet

End of state

Sheet indicator positive edge

End of state

End of state

Sheet indicator negative edge End of state

End of state

End of state

End of state
End of state

End of state End of state

Signal 4: Reset

Signal 4: Reset

End of state

Figure 5.4: The state machine of the cam control. Each state (except from state
0) has an own cam curve.

33

way has been to simplify the state machines, in some cases by making the

states larger and fewer. Another goal is to try and choose the states from an

axis-specific and magazine-specific point of view, i.e. avoid adjusting them to

standardized interfaces which means nothing to the functionality of the device.

The hardware-specific states could then be mapped to the S88-interface, so that

the common states still exist to an external observer. The resulting object-

oriented design is presented in Chapter 6.

34

Chapter 6

Design and Implementation

In this section some interesting aspects of the implementation are described and

some some benefits of OO-design are demonstrated. It also contains an overview

of the packages and most important classes in the magazine model.

Figures of the written Java packages and all classes are enclosed in Appendix

A.

The resulting implementation’s functionality corresponds roughly to the pro-

gram described in Section 5.2, leaving out all error handling in the OO-version.

6.1 Solution overview

As explained in Section 1.3, an existing motion control library had to be used in

the solution and the connection was made using a Java Native Interface. Figure

6.1 shows an overview of the solution.

A few cyclic tasks were written in Automation Studio, one was to load and

start the Java program. Another one with 2ms cycle time took care of mclib

function calls.

The communication between the fast cyclic task and the Java program was

carried out by a function pointer, which was passed to the JNI-interface. By

using that pointer, mclib commands were pushed to the cyclic tasks and by using

common structures protected by a semaphore the results could be obtained.

6.2 JNI Interface

The native interface is basically a wrapper around mclib (see Section 4.1). A

minor issue was that the Java-implementation was not cyclic and the mclib

functions could only be called once a cycle.

35

Figure 6.1: An overview of the solution architecture

When a function is called, for instance moveAbsolute, a command is pushed

to a fast cyclic task on automation runtime. The cyclic task then calls the

mclib-function once every 2ms cycle until the execution is done or an error

occurs. The axis’ poll thread (explained in Section 6.5) continuously polls the

result structure, keeping the thread that called the function waiting. The native

structure is protected by a mutex-semaphore1, using the VxWorks standard

library semLib. If an error occurs, or the command is aborted, an exception is

thrown to the Java application.

6.3 State Machines

The magazine has an internal state machine, reflecting the state of the ACOPOS

servo. It is shown in Figure 6.2. Each state is represented by a Java class, in

CamAutControlRun the internal states are represented by internal classes. The

classes are part of the package com.tetrapak.a5.rtf.magazine and can be seen in

Figure A.10.

In order to correctly map the internal states to the S88-interface, another

internal state machine was also implemented, consisting only of an integer,

called stateLevel in the Magazine class. The possible values are declared in the

1A semaphore that ensures mutual exclusion

36

MagazineState-class and ranges from AXIS˙OFF to RUN, with an AXIS˙ERROR

state as an exception. An UML diagram of how the states are mapped is shown

in Figure 6.3.

CamAutControlRun

BRAxisStart

include /

CamAutControlStart

include /

ShutDown

include /

BRAxisErrorState

include /

StartState

include /

TryReset

include /

Running

include /

no sheet pulled back

sheet pulled back

BRAxisOff

include /

Running doneUnresolved error

init / release failed

Figure 6.2: State machine for the sheet feeding servo

6.4 Package Overview

An overview of all packages and classes is shown in Figure 6.4. More detailed

class diagrams, with methods and attributes, can be seen in Appendix A.

brasruntime contains the classes related to the native code. The class

BRASruntime contains a native method to obtain axes references. From

the axis addresses instances of the base class BRAxis are created.

37

Phase Zero

Ready

Run

Done

Axis On

Machine phases
Magazine level Magazine State

ServoOn

Homed

Run

AxisOff

enable

active

Machine On

Ready

Run

swenable

sevo on

Done

Calibrate

Ready

Run

Done

search home

homed

BRAxisStart

CamAutControlStart

enable S88

CamAutControlRun
S88 state: run

Production

Ready

Run

S88 state: run

Figure 6.3: Shows the state mapping between the magazine and the machine.
The leftmost state machine is an excerpt from the one in Appendix A. The
middle is represented by an integer stateLevel and the rightmost is the one from
Figure 6.2.

38

brasruntime.event provides basic functionality for handling events. The

Mailbox class acts an observer of any object that fires instances of

BRAxisEvent and holds one event at a time.

brasruntime.configuration contains structure-like classes for holding input to

motion controlling native functions that often requires many parameters.

The class BRAxisConfiguration contains the input to functions that are

usually called only once, mostly for axis initializing and configuring. The

intention is that the class shall be inherited, and the configuration hard

coded into the subclass.

utilities contains a few general classes. The Recorder class writes to a log-file

on the PLC flash disk.

com.tetrapak.a5.packagingline.rtf consists of the classes representing the exter-

nal communication with the magazine. It is simply a matter of starting,

enabling functionality, observing and stopping the magazine, although

the stopping mechanism is not implemented. The magazine stops itself

after a certain amount of time. This package contains the main class

RTFStateMachine, and the monitor RTFMonitor is used to communicate

with the magazine.

com.tetrapak.a5.packagingline.rtf.magazine This package contains the

magazine controlling software, which includes all magazine states and the

FeederThread class to execute them. The Magazine class acts as a mon-

itor for communication between the RTFStateMachine and the magazine

states.

com.tetrapak.a5.packagingline.rtf.magazineServo is the package containing the

axis-classes required to control the magazine. It consists of a virtual

MasterAxis and a real CamAxis as slave and their configuration classes.

Both axis classes inherit from BRAxis and the configurations from BRAxisConfiguration.

There are also a few axis-specific events, which can be fired when the axes

are observed.

6.5 Program Flow

The final program flows according to the following list unless an error occurs,

in which case the BRAxisErrorState is immediately entered and the magazine

shut down.

• The main class is called RTFStateMachine and is part of the rtf package.

It creates an instance of the Magazine class and calls startFeeder().

39

brasruntime

configuration

CamAutControlInputCamAutDataStructCamAutState

CamAutEventAxisConfigInputMoveAbsoluteInputMoveVelocityInput

CamInputUpdate

BRAxisConfiguration

HomeInputInitInputStruct

event

BRAxisEvent

Mailbox

<<interface>>

IBRAxisEventNotification

<<realize>>

AxisInfo

BRAxis

BRASruntime

MCLibException

MCLibErrorException

S88Device

TimeoutException

MCErr

utilities

Recorder Timer

rtf

PhaseRTFMagazineMonitor

RTFStateMachine

magazine

magazineServo
FeederThread

BRAxisOff

MagazineMailbox

MagazineState

BRAxisShutDown BRAxisErrorState CamAutControlRunCamAutControlStart BRAxisStart

Magazine

CamStateEvent

MagazineServoConfigurationMasterAxisConfiguration
BRCamAxis

MagazineMasterAxisPositionReachedEvent

Figure 6.4: Shows an overview of all classes in the magazine application

40

• The magazine starts a FeederThread which contains a loop to execute the

states. The instance of FeederThread first retrieves the axes by calling the

getAxes method of the class BRASruntime. Then it creates a CamAxis

and a MasterAxis and also the initial state, of type StartState.

• The state execution flows according to Figure 6.2. CamAutControlRun

continues for a certain amount of time (if no errors occur) and then transits

to the ShutDown state. The FeederThread stops when the MagazineState

is BRAxiOff.

• When the magazine is started, the RTFStateMachine simulates the ma-

chine behaviour, stepping through the phases described in Section 5.3. In

some of the states, it communicates with the magazine, enabling certain

values allowing the magazine to proceed and awaiting certain magazine

levels. A Figure of the communication in different states is shown in Figure

6.3.

Threads and monitors

There are two controlling threads, plus one polling thread for each axis updat-

ing the properties. That makes a total of four threads in the whole application.

The threads only communicate through monitors, carefully designed to avoid

deadlocks and unnecessary locking. Figure 6.5 shows the monitor communicat-

ion.

Event communication

During the cam control it is necessary to await certain axis positions and cam

state indices (according to the flow in Figure 5.3), and react to changes fast. This

behaviour is obtained by using events and awaiting certain conditions to become

true. For this the MagazineMailbox, CamStateEvent and PositionReachedEvent

classes are used. A sequence diagram of the process awaiting a cam state index

is shown in Figure 6.6.

41

magazine

rtf

RTFMagazineMonitor

Magazine

RTFStateMachine

FeederThread

MagazineState

magazineServo

BRCamAxisMagazineMasterAxis

Figure 6.5: Shows the thread communication through monitors. RTFState-
Machine and FeederThread are threads. RTFMonitor, Magazine and the Axis
classes are monitors.

42

Figure 6.6: Shows the sequence of awaiting a cam state index.

43

Chapter 7

Performance Testing

7.1 Test Program Flow

The reaction speed of the program was measured by running the following se-

quence for several speeds:

• The axis starts and initializes by running BRAxisStart.

• The Magazine transits to a TestState which sets the axis to spin at a

constant speed.

• A measureStopDistance-function is called in the BRCamAxis class. It

awaits a trigger signal, registers the current position, stops the axis, reg-

isters the axis position again and returns the distance dstop.

• The distances for each speed are written to the log file.

Because of the PLC open interface (from Section 4.1), the execution of the

stop command is performed in several steps. Some of those steps could be

performed before the real execution (i.e. stopping of the axis) started. In

order to minimize the reaction time those steps were done before, requiring a

small modification of the JNI and BRAxis class. Since it was about four steps,

four extra calls of the stop function were performed once every 2ms cycle, it

shortened the reaction time with about 8ms.

In addition to the ordinary test, a test trying extra allocation of object was

performed in order to stress the garbage collector. In this test, 5 new Time

objects were created and dereferenced between each test speed. A test started

by measuring the stop distance for the lowest speed, then for the next, finishing

with the highest speed. Therefore, more garbage memory exist when testing

the highest speed.

44

Table 7.1: Jitter and standard deviations. The notation SS means that the mean
value was calculated for the same speeds as for the Cyclic Task (3 different
speeds instead of 7). GC means that the test was performed stressing the
garbage collector. σ means standard deviation

Java Java SS Java GC Java GC SS Cyclic AR task
Mean (ms) 8.8 9.0 8.9 9.1 9.2

σ (ms) 1.13 1.13 1.07 1.13 0.68

Table 7.2: Mean values for certain speeds in ms. Speeds (rows) are measured
in units/s.

Java Java GC PLC
300 8.5 8.7 9.1
500 9.3 9.2 9.2
800 9.1 9.4 9.3

A cyclic task was also written to perform the same test directly from within

Automation Runtime. However, for this test only 3 different speeds were tested

(since it required more work).

7.2 Calculations

The deceleration distance was calculated and subtracted from the stop distance

with the formula for constant acceleration dreact = dstop −
v2

2·adec

where dreact is

the reaction distance, v the initial speed and adec the deceleration. dreact is the

distance that the axis advances before the deceleration starts. The correspond-

ing time is calculated by treact = dreact

v
.

The reaction times were calculated for 7 different speeds: 200, 300, 400, 500,

600 and 700units/s, where one revolution is 360 units. The deceleration was

36000units/s. 20 different measurements were performed. The axis position

was given as a number of units.

7.3 Results

Table 7.1 shows mean values and standard deviations for the Java applications

and the cyclic task in Automation Runtime. Mean values for different speeds

are shown in Table 7.2. The mean values for different speeds may also be viewed

in Figure 7.3.

Tables of all measurements are enclosed in Appendix B.

45

46

Chapter 8

Discussion

In this section the results are discussed and analyzed.

8.1 Vision Fulfilling

In this section the vision from Chapter 1 is compared to the results to see what

has been achieved.

Structure, test, model and document applications

During the development of the software the connection between model and

implementation has been very strong. At first a model was built, process flows,

class diagrams with threads and communication. Since the testing environment

became available late in the project, the initial modeling was verbose.

When the implementation began the model changed much. Writing the

actual code while rethinking the design generated several improvements. During

the third step, explaining the model and presenting the UML-diagrams, even

more redesigning took place. The last redesign was mostly done by redrawing

the UML, but it was tested directly in the code. Traveling easily between code

and schematic pictures made one think of the design and functionality from more

than one point of view. Another advantage was that it more or less documented

itself - no program code was needed to explain the application.

No unit testing has been done, but the drawback of having a long delay from

writing to running made testing a quite painful process. It should be considered

though, that this is a first step towards OO-automation and the tools could be

fit to suit this kind of development with help from the hardware vendors. The

Eclipse remote debugging showed some bugs itself (described in Appendix C),

but worked fine most of the time, which made testing very much easier.

47

Privacy and reuse of code - facilitating portability

Since the software part of this thesis was fairly small the contingencies of reusing

code is not totally clear. However, several classes from the Java API were used,

in many places in the code, and that can serve as an evidence of reusability.

Also, there is the obvious reusing of code in inheritance, for instance in the

subclasses of BRAxis.

Another point of view is the portability possibility. If the vendor were to be

replaced and another servo were to be used in the same magazine with the same

functionality, basically the only classes that would need replacement would be

the BRAxis and BRASruntime classes with the JNI. Assuming of course that

the cam control works the same way in the new servo.

The protection of methods and attributes in Java was also useful. An

example is the RTFStateMachine and RTFMonitor communicating with the

Magazine. By declaring the methods in Magazine protected, they are only vis-

ible to other classes in the same package (magazine) and to subclasses. That

means that the RTFStateMachine is only able to do what it is allowed to do

(i.e. start the magazine and observe it’s states, not change them) - protecting

the programmer from performing illegal variable assignments and method calls.

Comparing to the data types of IEC-61131 and the structures of C, this is a

great advantage and probably shortens development time.

Separating developers

The separating issue appears to be quite straight forward. One developer could

(for instance) write the brasruntime package while another one did the magaz-

ine. It is all about communication and package dependencies, designed by the

developers. A package may contain many complicated classes and methods -

not visible to any class outside the package. It is not necessary to distribute the

source code either since the packages can be distributed as JAR-files1 with neat

auto-generated API’s attached to it2. If Java were to be supported by vendors

they could themselves construct basic hardware related packages.

Graphical programming

The figures in this report demonstrate some of the UML benefits when it comes

to graphical programming. For example there are class diagrams, as in Figure

A.9, state charts as Figure 6.2 and sequence diagrams as Figure 6.6. Tools

exist for generating code out of UML-diagrams, and also to create diagrams

1Java ARchive, http://en.wikipedia.org/wiki/JAR %28file format%29, 2007-02-08
2Auto generation of API from Java source: http://en.wikipedia.org/wiki/Javadoc, 2007-

02-08

48

out of existing code (known as reverse engineering). In this project mostly

generating code from class diagrams and generating class diagrams out of code

have been done, using the program argoUML. Still, that is just for creating

skeleton-classes. The method bodies still have to be implemented by writing

code.

8.2 Performance Testing

The most time critical parts were performed by the mclib-functions themself

and appeared to work fine. Since the performance testing did not contain very

much data (due to time limitations in measuring), safe conclusions can not be

drawn. However, indications and tendencies can be seen.

It seems like the Java program is increasing the jitter (Table 7.1) and also

that the stressing of the garbage collection affected the delay (as seen in Figure

7.3). The overall results can still be considered good though, since the Java

was neither especially slow nor significantly increased the jitter. The Java also

seemed a little faster than the plc, which was unexpected.

8.3 Further Work

This was a first test of an object oriented automation system. The main issue

is that it is not currently supported by hardware vendors. It would be good

if vendors would adjust their platforms to support Java and provide standard

classes to control their hardware.

A further step would be to connect the HMI (Human Machine Interface) to

the Java control application. A thesis performed at the same time at Tetra Pak

D&E by Johanna Byrlind and Kajsa Karlsson [10], is about the creation of a

new web based HMI. The idea of their thesis is to separate the programmers

from designers by using the MVC (Model View Controller) model. This involves

techniques such as JSP and the use of tag libraries.

With a web based HMI using applets or servlets, communicating with a

Java control application would be rather simple using for instance RMI (Remote

Method Invocation).

49

Bibliography

[1] Aicas. Jamaica VM, 2006-10-01. http://www.aicas.com.

[2] B&R. B&R - Perfection in Automation, 2006-10-01.

http://www.br-automation.com.

[3] Don Busch. RTSJ - The Real-Time Specification for Java. Java News Brief,

(May), 2006. http://www.ociweb.com/jnb/jnbMay2006.html.

[4] Todd Ham Christie Deizh and Steve Murray. Writing a functional specifi-

cation for an s88 batch project. Chemical Engineering, (August 01), 2003.

Available at http://www.finessephotonics.com/pdfs/CES88.pdf.

[5] Data & Object Factory. Design Patterns in C# and VB.NET - Gang of

Four, 2006-09-11.

http://www.dofactory.com/Patterns/Patterns.aspx.

[6] The Eclipse Foundation. Eclipse - an open development platform, 2007-01-

02. http://www.eclipse.org.

[7] Object Management Group. Unified modelling language, 2007-02-18.

http://www.uml.org.

[8] International Electrotechnical Commission. International Standards and

conformity assessment, 2007-02-18. http://www.iec.ch.

[9] ISA, Instrumentation, Systems, and Automation Society. S88 for engineers,

2007-02-18. S88 White Paper - Engineers.pdf.

[10] Kajsa Karlsson Johanna Byrlind. New web based hmi portal for tetra pak

equipment. Master’s thesis, Lund Institute of Technology, 2007.

[11] Sheng Liang. The Java Native Interface, programmers guide and speifica-

tion. Addison Wesley Longman, Inc, first edition, 1999.

[12] Plcopen organization. IEC 61131-3: A standard programming resource,

2004. http://www.plcopen.org/TC1/Intro˙IEC˙March04.doc.

50

[13] PLCopen organization. Plcopen - for efficiency in automation, 2006-06-12.

http://www.plcopen.org.

[14] Tetra Pak. Tetra Pak. About processing, packaging and aseptic technology.,

2006-10-01. http://www.tetrapak.com.

[15] B & R. B&R Automation Software Help, 2002. Automation Studio 2.4.0.9.

[16] The Real-Time for Java Expert Group. rtsj: Real-Time Specification for

Java, 2007-02-18. https://rtsj.dev.java.net/.

[17] Tigris.org. subversion.tigris.org, 2007-02-08.

http://subversion.tigris.org/.

51

Glossary

A

ACOPOS Servo drive from B&R.

aicas The company that developed Jamaica. See Section 2.2.

Automation Software Software tools and runtime environment developed by

B&R. See Section 4.1.

Automation Studio The development environment for PLC programs to B&R

hardware. See Section 4.1.

Axis A rotating device, like the one in figure 5.1.

B

B&R Bernecker & Rainer. The company producing the hardware used

in this project. See Section 2.3.

I

IEC 61131-3 A PLC programming standard defining 5 languages. See Section

3.1.

J

Jamaica VM The program used for running Java on the plc. See Section 4.3.

L

Ladder One of the IEC61131-3 programming languages. See Section 3.1.

M

mclib A C-library for motion control written by B&R See Section 4.1.

52

P

PLC open interface See Section 4.1 .

S

S88 See Section 4.1.

Sequential Function Chart, SFC A programming syntax defined in

IEC61131-3. See Section 3.1.

Structured Text One of the IEC61131-3 programming languages. See Section

3.1.

53

Appendix A

Additional Figures

Existing Magazine Software

axisHandler

Figure A.1 shows a minor part of the function block axisHandler’s state machine.

Representing SWITCH..CASE statements in this way is not very helpful, and

these programs can indeed be fairly difficult to document, other than with the

code itself.

Machine Phases

The machine phases are shown in Figures A.2, A.3 and A.4.

Object Oriented Implementation

This section presents UML diagrams of all classes created during this project

using Eclipse and Jamaica. The complete software consists of the packages

illustrated in the Figures A.5 and forward.

54

0

run boot

1

init, reset and
copy parameters

2

init event write
and alarm trace

97 98

run boot done

99

run boot end

100

wait for axis
enabled

201

9999

fatal error state

enable=true
202203

211

run mc_getAxis 212

9011

.

9031 9032

getAxis done

9033

213

wait for
bus on

9039

9900

Alarm reset, await
acknowledge

9998

timeout

214
bus on = true

-

215

enable warning handler,
error handler and
alarm viewer

fbk step ok

-

221

run mc_axisConfig enable ok

222

run mc_init done

.

223

call mc_writeParameter

done

224

check position
control mode

done

error command aborted

225

internal state machine
that writes several
parameters with
mc_writeParameters

ok

error

230

231

internal state machine
that reads several parameters
with mc_readParameter

232

intiate
parameter control

233

initiate brake control
with internal state
machine that writes
parameters with
mc_writeParameter

291

enable power
enable brake control

done

297 298 299

300

and axis active
await swenabled

401
402

request power

403

await servo ok

error

498

499

500

await commands
and state changes

*

Figure A.1: A minor part of the axis handler state machine. The function
block starts in state 0 and the axis is up and running (and awaiting external
commands) in state 500.

55

Figure A.2: Machine phases. Continuing in the next figure.

56

Figure A.3: Machine phases. Continuing in the next figure.

57

Figure A.4: The first of the machine phases.

58

configuration

AxisInfo

AxisInfo(interf : short,type : short,node : short)

m_interface : short
m_type : short
m_node : short

BRAxis

startPoll() : long
pollVoidCmd(cmd : short,adr : long) : boolean
poll() : void
initFID() : void
initPollFID() : void
BRAxis(ref : long)
BRAxis(axis : BRAxis)
doPoll() : boolean
axisConfig() : void
init() : void
enablePower(enable : boolean) : void
home() : void
moveAbsolute(ma : MoveAbsoluteInput) : void
stop(deceleration : float) : void
moveVelocity(velocity : float,acceleration : float,deceleration : float,direction : boolean) : void
startCamControl(configNbr : int,master : BRAxis) : void
stopCamControl() : void
updateCamControl(up : CamInputUpdate) : void
startAxis() : void
startPollThread() : void
stopPolling() : void
print() : void
awaitDone(cmd : short,adr : long) : void
isUpdatingValues() : boolean

m_configuration : BRAxisConfiguration
INIT_CMD : short
AXIS_CONFIG_CMD : short
HOME_CMD : short
MOVE_ABSOLUTE_CMD : short
STOP_CMD : short
MOVE_VELOCITY_CMD : short
S88_ENABLE : short
S88_START : short
S88_HOLD : short
S88_RESTART : short
S88_ABORT : short
S88_RESET : short
S88_NOCMD : short
m_axisRef : long
m_busOn : boolean
m_controlReady : boolean
m_controlOn : boolean
m_homed : boolean
m_moveActive : boolean
m_lagWarning : boolean
m_driveEnable : boolean
m_pHwEnd : boolean
m_hHwEnd : boolean
m_trigger1 : boolean
m_trigger2 : boolean
m_error : boolean
m_axisPos : float
m_posLag : float
m_velocity : float
m_errorInfoReal : float
m_errorID : int
m_status : int
m_errorInfo : long
m_camStateIndex : int
m_camS88State : short
m_camError : boolean
m_camStatus : int
m_axisPosString : String
m_velocityString : String
m_posLagString : String
m_errorInfoRealString : String
m_newCamDataReady : boolean
m_camDataChangeDone : boolean
m_pollThread : PollThread
m_actValAdr : long
m_powerAdr : long
m_camControlAdr : long
m_isPolling : boolean

BRASruntime

getAxis(interf : short,node : short,type : short) : long
checkPointersInitialized() : int
poll(structAdr : long) : long
BRASruntime()
instance() : BRASruntime
checkPointers() : boolean
getAxes(info : AxisInfo[]) : BRAxis[]

instance : BRASruntime

MCLibException

MCLibException(errorID : String)
error() : long
toString() : String

serialVersionUID : long
m_errorID : long

MCLibErrorException

+MCLibErrorException(s : String)
+toString() : String

S88Device

INTERLOCKED : int
READY : int
RUN : int
DONE : int
HELD : int
ABORTED : int
m_state : int

TimeoutException

TimeoutException(s : String)

serialVersionUID : long

MCErr

+ErrorMap : Hashtable

event

Figure A.5: The brasruntime package providing basic motion controlling func-
tionality

59

<<interface>>

IBRAxisEventNotification

eventOccurred(e : BRAxisEvent) : void

BRAxisEvent

toString() : String

Mailbox

eventOccurred(e : BRAxisEvent) : void
fetch() : BRAxisEvent
doFetch() : BRAxisEvent
doFetch(timeout : long) : BRAxisEvent

mail : BRAxisEvent

Mailbox -> IBRAxisEventNotification

<<realize>>

Figure A.6: The brasruntime.event package providing basic event handling

60

AxisConfigInput

+simulation : short
+reference : short
+pHwEnd : short
+nHwEnd : short
+trigger1 : short
+trigger2 : short
+countDir : short
+unitDecPlaces : short
+units : float
+axisPeriod : float
+motorRevs : long

CamAutEvent

+copy() : CamAutEvent

+type : short
+attribute : short
+nextState : short
+changeData : short

CamAutState

+CamAutState()
+copy() : CamAutState

+masterID : int
+compMode : short
+compSlave : float
+compCurve : short
+name : String
+length : float
+amplitude : float
+count : int
+event : CamAutEvent[]

CamAutDataStruct

+CamAutDataStruct()
+copy() : CamAutDataStruct

+period : float
+slavePeriod : float
+startState : short
+restartPeriodState : short
+restartCompEnable : short
+eventID : int
+slaveFactorID : int
+masterCompVelocity : float
+restartVelocity : float
+restartAcceleration : float
+restartDeceleration : float
+restartDeadBand : float
+holdDeceleration : float
+phaseVelocity : float
+phaseAcceleration : float
+offsetVelocity : float
+offsetAcceleration : float
+amplitudeVelocity : float
+amplitudeAcceleration : float
+state : CamAutState[]

CamAutControlInput

+copy() : CamAutControlInput

+enable : boolean
+start : boolean
+hold : boolean
+restart : boolean
+abort : boolean
+reset : boolean
+newData : boolean
+change : boolean
+signal1 : boolean
+signal2 : boolean
+signal3 : boolean
+signal4 : boolean
+phase : float
+offset : float
+amplitude : float
+startMode : short
+restartMode : short
+startPos : float
+masterRef : long
+addMasterRef : long
+addSlaveRef : long
+camAutData : CamAutDataStruct

CamInputUpdate

resetSignals() : void
resetAll() : void

s1 : boolean
s2 : boolean
s3 : boolean
s4 : boolean
s88Cmd : short

HomeInput

+position : float
+mode : short
+velSwitch : float
+velTrigger : float
+acceleration : float
+edgeSwitch : short
+startDir : short
+triggDir : short
+refPulse : short
+refPulseBlock : float
+trqLimitBlock : float
+lagLimitBlock : float
+relPosBlock : float

InitInputStruct

+maxVelocity : float
+maxAcceleration : float
+maxDeceleration : float
+pSwEnd : float
+nSwEnd : float
+lagWarning : float
+lagStop : float
+kvPosition : float
+tnPosition : float
+predictTime : float
+totalTime : float
+maxProportion : float
+maxIntegral : float
+kvSpeed : float
+tnSpeed : float
+ftSpeed : float
+freqNotch : float
+bwNotch : float
+spfMode : short
+maxJerk : float
+configNbr : int

MoveAbsoluteInput

+position : float
+velocity : float
+acceleration : float
+deceleration : float

MoveVelocityInput

+velocity : float
+acceleration : float
+deceleration : float
+direction : boolean

BRAxisConfiguration

mcOFF : short
mcON : short
mcREAL_AXIS : short
mcVIRT_AXIS : short
mcACTIVE_HI : short
mcSTANDARD : short
mcAT_ONCE : short
mcS_START : short
mcSIGNAL1 : short
mcPOSITIVE : short
mcDIRECT : short
mcDEFAULT : short
axisConfig : AxisConfigInput
camInput : CamAutControlInput
init : InitInputStruct
home : HomeInput

Figure A.7: The brasruntime.configuration package facilitating axis configura-
tion

61

Recorder

+create() : void
+finish() : void
+write(msg : String) : void
+nativeWrite(status : int) : void
+writeErr(msg : String) : void
-ts() : String

~fw : FileWriter

Timer

+Timer(msLimit : long)
+start() : void
+timeout() : boolean
+timeLeft() : long

-m_msLimit : long
-m_startTime : long

Figure A.8: The utilities package with a few useful classes.

magazine

RTFMagazineMonitor

enableAxis(val : boolean) : void
enableSW(val : boolean) : void
enableS88(val : boolean) : void
searchHomeCmd(val : boolean) : void
awaitEnabled(val : boolean) : void
awaitSWEnabled(val : boolean) : void
awaitSearchHomeCmd(val : boolean) : void
awaitS88Enabled(val : boolean) : void
tryWait() : boolean
checkValidConditon() : boolean

m_enabled : boolean
m_swEnabled : boolean
m_s88Enabled : boolean
m_searchHome : boolean
m_bE_Stop1 : boolean
m_bDoor_Stop1 : boolean

Phase

<<create>> Phase()
getPhase() : int
setPhase(newPhase : int) : void

PHASE_ZERO : int
PHASE_MACHINE_ON : int
PHASE_CALIBRATE : int
PHASE_STERELISATION : int
PHASE_READY : int
PHASE_TANK_FILL : int
PHASE_PRODUCTION : int
PHASE_CLEANING : int
m_phase : int

RTFStateMachine

main(args : String[]) : void
<<create>> RTFStateMachine()
runRTF() : void
runPhaseZero() : boolean

m_phase : Phase
m_mag : Magazine
m_rtfMagMon : RTFMagazineMonitor
m_magMon : MagazineMonitor

Figure A.9: The com.tetrapak.a5.packagingline.rtf package representing the rest
of the machine communicating with the magazine.

62

FeederThread

<<create>> FeederThread(context : Magazine)
run() : void
runFeeder() : boolean
initAxes() : AxisInfo[]

m_context : Magazine
m_masterAxis : MagazineMasterAxis
m_camAxis : BRCamAxis

Magazine

<<create>> Magazine(rtfMon : RTFMagazineMonitor)
startFeeder() : void
awaitAxisActive(val : boolean) : void
awaitServoOn(val : boolean) : void
awaitHomed(val : boolean) : void
awaitStopped(val : boolean) : void
changeLevel(newLevel : short) : void
performTransition(newState : MagazineState) : void
getState() : MagazineState
getRTFMonitor() : RTFMagazineMonitor
tryWait() : void

m_stateLevel : short
m_rtfMon : RTFMagazineMonitor
m_state : MagazineState
m_th : FeederThread

BRAxisOff

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

MagazineMailbox

tryFetch() : BRAxisEvent
tryFetch(timeout : long) : BRAxisEvent

MAX_TIMEOUT : long

BRAxisShutDown

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

BRAxisErrorState

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

MagazineState

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

AXIS_OFF : short
AXIS_ERROR : short
AXIS_ON : short
AXIS_ACTIVE : short
SERVO_ON : short
HOMED : short

CamAutState

execute() : void

StartState

execute() : void

Running

execute() : void
runSheet() : void
pauseSheet() : void

TryReset

<<create>> TryReset(resetType : int)
execute() : void

INIT_FIRST : short
FORCE_INIT : short
FORCE_RELEASE : short
camReleaseResolved : int[]
camInitResolved : int[]
m_resetType : int

CamAutControlRun

<<create>> CamAutControlRun(camInput : CamInputUpdate)
execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void
stopCam() : void

MAX_FAIL_COUNT : int
INIT_TIMEOUT : long
REL_TIMEOUT : long
m_axis : BRCamAxis
m_master : MagazineMasterAxis
m_mon : Magazine
m_internalState : CamAutState
m_camInput : CamInputUpdate
m_mailbox : MagazineMailbox
m_failCount : int

CamAutControlStart

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

BRAxisStart

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

TorgStatFF : float
FtSpeed : float
FrictStatPosFF : float
FrictStatNegFF : float
FrictViscousFF : float
InertiaFF : float
AccFilterT2FF : float

Figure A.10: The com.tetrapak.a5.packagingline.rtf.magazine package contain-
ing classes for magazine control.

63

CamStateEvent

+CamStateEvent(i : int)
+getIndex() : int

~camStateIndex : int

MagazineServoConfiguration

+MagazineServoConfiguration()
-getInitParameters() : InitInputStruct
-getCamInput() : CamAutControlInput

#moveAbsoluteHome : MoveAbsoluteInput
#stopDeceleration : float

MasterAxisConfiguration

+MasterAxisConfiguration()

+moveVel1 : MoveVelocityInput
+moveAbs1 : MoveAbsoluteInput
+stopDeceleration : float

BRCamAxis

BRCamAxis(axis : BRAxis)
axisConfig() : void
init() : void
powerUp() : void
spin() : void
isTrigger2() : boolean
getCamStateIndex() : int
homeSearch() : void
startCamControl(master : BRAxis) : void
updateCamControl(up : CamInputUpdate) : void
shutDown() : void
stop() : void
print() : void
doPoll() : boolean
observeCamStateIndex(notifyer : IBRAxisEventNotification,index : int,val : boolean) : boolean
observeCamStateIndices(notifyer : IBRAxisEventNotification,indices : int[],val : boolean,keepAlive : boolean) : boolean
awaitS88State(state : short,timeout : long) : void
awaitBusOn(val : boolean,timeout : long) : void
awaitControlOn(val : boolean,timeout : long) : void
awaitPowerPreconditions() : void
tryWait() : boolean
tryWait(timeout : long) : boolean

m_powerConditions : boolean
m_homed : boolean
m_input : CamAutControlInput
lastCamState : int
m_observers : Vector
m_controlReadyTimeout : int
m_controlOnTimeout : int

MagazineMasterAxis

MagazineMasterAxis(ax : BRAxis)
start() : void
shutDown() : void
observePosition(notifyer : IBRAxisEventNotification,lowerLimit : float,upperLimit : float) : boolean
doPoll() : boolean

m_observers : Vector

PositionReachedEvent

Figure A.11: The
com.tetrapak.a5.packagingline.rtf.magazine.magazineServo package containing
axis-classes for the magazine servo.

64

Appendix B

Test Results

This chapter presents the measurements from tests described in Chapter 7.

Table B.1 shows the stop delay in ms for the ordinary Java program, allocating

as little new objects as possible every test run. Table B.2 shows the stop delay

in ms when 5 extra new-calls where added to the functions. The new-calls

instantiated Time-objects which were dereferenced again as soon the test was

over. The tests were performed immediately after one another, starting with the

lowest speed and increasing. Table B.3 shows the corresponding values when

testing on the PLC not using the Java program.

65

Table B.1: Stop delay in ms. The columns are speed in units/s and the rows
are different test runs.

200 300 400 500 600 700 800 mean
1 7.2 9.2 9.4 9.1 10.0 8.8 8.9 8.9
2 7.2 9.2 9.4 9.1 8.3 10.3 7.6 8.7
3 7.2 5.8 9.4 11.1 8.3 8.8 10.1 8.7
4 7.2 5.8 9.4 9.1 10.0 10.3 8.9 8.7
5 7.2 9.2 9.4 9.1 10.0 8.8 8.9 8.9
6 7.2 9.2 9.4 9.1 8.3 7.4 7.6 8.3
7 7.2 9.2 9.4 11.1 10.0 8.8 8.9 9.2
8 7.2 9.2 9.4 9.1 10.0 8.8 10.1 9.1
9 7.2 9.2 9.4 9.1 10.0 10.3 8.9 9.2
10 7.2 9.2 9.4 7.1 10.0 8.8 10.1 8.8
11 7.2 9.2 9.4 9.1 8.3 7.4 10.1 8.7
12 7.2 9.2 9.4 11.1 8.3 8.8 8.9 9.0
13 7.2 9.2 9.4 9.1 10.0 8.8 8.9 8.9
14 7.2 9.2 9.4 9.1 10.0 10.3 8.9 9.2
15 7.2 5.8 6.9 9.1 10.0 8.8 8.9 8.7
16 7.2 9.2 6.9 7.1 8.3 8.8 10.1 9.2
17 7.2 9.2 9.4 9.1 8.3 8.8 8.9 8.7
18 7.2 9.2 9.4 11.1 10.0 8.8 8.9 9.2
19 7.2 9.2 9.4 9.1 8.3 8.8 8.9 8.7
20 7.2 5.8 9.4 9.1 10.0 10.3 8.9 8.7

mean 7.2 8.52 9.15 9.3 9.3 9.0 9.0

66

Table B.2: Measured stop delay in ms with allocation and dereferencing of 5
new Time-objects during each test. The columns are speed in units/s and the
rows are different test runs.

200 300 400 500 600 700 800
1 7.2 5.8 9.4 11.1 10.0 10.3 10.1
2 7.2 5.8 6.9 9.1 10.0 10.3 10.1
3 7.2 9.2 9.4 7.1 10.0 8.8 10.1
4 7.2 9.2 9.4 9.1 10.0 8.8 8.9
5 7.2 9.2 9.4 11.1 10.0 8.8 8.9
6 7.2 9.2 9.4 11.1 8.3 8.8 8.9
7 7.2 9.2 9.4 9.1 8.3 10.3 8.9
8 7.2 5.8 9.4 9.1 10.0 8.8 10.1
9 7.2 9.2 6.9 9.1 8.3 8.8 8.9
10 7.2 9.2 9.4 9.1 10.0 8.8 8.9
11 7.2 9.2 9.4 9.1 10.0 8.8 8.9
12 7.2 9.2 9.4 9.1 8.3 10.3 8.9
13 7.2 9.2 9.4 11.1 10.0 8.8 10.1
14 7.2 9.2 9.4 9.1 8.3 8.8 8.9
15 7.2 9.2 9.4 7.1 10.0 8.8 10.1
16 7.2 9.2 9.4 9.1 8.3 8.8 8.9
17 7.2 9.2 9.4 9.1 10.0 10.3 8.9
18 7.2 9.2 9.4 9.1 10.0 10.3 10.1
19 7.2 9.2 6.9 9.1 10.0 10.3 8.9
20 7.2 9.2 9.4 7.1 8.3 8.8 10.1

67

Table B.3: Corresponding measured stop delays for a cyclic Automation Run-
time task in ms. The columns are speed in units/s and the rows are different
test runs.

300 500 800 mean
1 9.4 9.3 9.8 9.5
2 9.8 8.5 9.3 9.3
3 9.8 8.6 9.3 9.3
4 8.5 8.6 9.8 9.0
5 8.5 8.5 9.8 9.0
6 8.5 9.7 8.6 9.0
7 9.8 9.3 8.6 9.3
8 9.3 9.7 8.6 9.3
9 9.8 9.7 8.6 9.4
10 9.3 9.4 8.6 9.1
11 9.8 9.8 8.6 9.2
12 8.5 9.3 9.8 9.3
13 8.5 8.5 9.8 9.0
14 8.5 8.5 9.4 8.9
15 9.8 8.5 9.4 9.3
16 9.8 8.5 9.8 9.3
17 9.3 8.6 9.8 9.3
18 9.8 9.8 9.4 9.7
19 8.5 9.3 9.8 9.3
20 5.9 9.7 9.8 8.5

mean 9.1 9.2 9.3

68

Appendix C

Implementation Methods and

Issues

It was not obvious what parts of which software tools to use and how to use

them. This chapter describes the specific methods and tools, issues, problem

solutions and reasons. It will probably be of interest only for those who wants to

try out a similar problem themselves with similar software and hardware tools.

C-compiler issues

The mclib is compiled with B&R’s gnu C-compiler, but it was not compatible

with Jamaica source code, due to optimizations made by B&R. Therefore, an-

other one had to be used to compile the Jamaica C-code. Aicas recommended

the compiler used in Tornado from Wind River, the former software development

environment for VxWorks. A smaller issue was that the Tornado environment

was no longer available, the present one is called Workbench.

Running Jamaica on target

The plan is to write a small C-program, which runs as a cyclic task from within

Automation Studio. The small C-program’s only task is to start the standalone

pre-built Jamaica application. The Jamaica application obtains a pointer to a

pusher function, so that it can push mclib commands to a cyclic task.

The -includeClasses option

To make the Jamaica JNI-implementation aware of all the classes used, the -

includeClasses option must be included into the configuration. All classes that

69

is to be reached from the JNI, but do not contain any own native methods have

to be mentioned.

File system

B&R target uses a FAT file system and provides the IO-library to manage files.

The CPU can be configured to include ”File Devices” - a special path on target

with an assigned device name. The external modules were transferred with ftp

to such a device and could then be loaded in AS.

Eclipse Remote Debugging

A few strange behaviours were observed during the Eclipse remote debugging.

Surely some of them origin in incorrect behaviour of the user.

• Presenting variable values: Sometimes true boolean values were presented

as false, and float- and double values were always zero. This was solved

by presenting them as Strings, which were always shown correctly.

• When having many breakpoints (especially in the vicinity of native meth-

ods), the debugger got disconnected. The program appeared to be still

running on the target though, stopping at breakpoints as usual and had

to be interrupted by force on target.

70

