ISSN 0280-5316
ISRN LUTFD2 /TFRT--5785--SE

Object Oriented Automation Systems

Maja Arvehammar

Department of Automatic Control
Lund University
February 2007

Department of Automatic Control

Document name

Lund Institute of Technology MAST.ER THESTS
Date of issue
Box 118 February 2007
SE'221 00 Lund Sweden Document Number
ISRNLUTFD2/TFRT--5785--SE
Author(s) Supervisor

Maja Arvehammar

Mattias Wallinius at Tetra Pak D&E in Lund
Karl-Erik Arzén at Automatic Control in Lund

Sponsoring organization

Title and subtitle

Object Oriented Automation Systems (Objektorienterad automation)

Abstract

This master’s thesis is about the implementation and evaluation of a small object-oriented automation system. By using a
realtime Java VM from Jamaica, a sheet feeding magazine from the machine Tetra Aptiva Aseptic has been controlled.
The expectations included to achieve more structured and safer programming, better documentation through UML and to
separate application developers from developers of basic functionality. The work has involved to understand the existing
control program, to design an object oriented model in Java and to run it on a test rack. The system worked fine, and most
expectations were fulfilled. The performance measurements indicated that the Java was fast but also had a slightly larger

jitter.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 70

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through: University Library, Box 3, SE-221 00 Lund, Sweden

Fax +46 46 222 42 43

Preface

This thesis marks the end of Maja Arvehammar’s Master of Science degree in
Engineering Physics at the Lund Institute of Technology in Sweden.

The project work was carried out at Tetra Pak D&E in Lund and has taught
me plenty. Mostly about managing different software tools and interaction be-
tween hardware and software, but also a little about how large companies work
and many other things.

I would like to thank my supervisor att Tetra Pak, Mattias Wallinius for
support and inspiration and the people at B&R and aicas for helping me through
the tricky parts in managing their hardware and software tools. I would also
like to thank Karl-Erik Arzén, my examiner at LTH, the co-workers at Tetra

Pak and family and friends for supporting me during this master thesis.

Contents

1 Introduction

1.1 Background
1.2 Vision
1.3 Project task and methods 0L
1.4 Limitations 0 oo

2 Companies involved

2.1 TetraPak
2.2 AlCAS e e e e e e
2.3 B&R ...

3 Theoretical background

3.1 TIECG61131-3.
3.2 The Java Native Interface
3.3 UML and Design Patterns

4 Software tools

4.1 Automation Software
4.2 Realtime Java Lo oo
4.3 Jamaica VM
4.4 Eclipse
4.5 ArgoUML
4.6 Other Programs.

5 The sheet magazine

5.1 Hardware
5.2 Software
5.3 The Machine Phases

5.4 The Magazine State Machines

11
11
12
13
14

16
16
16
17

18
18
19
21

23
23
26
27
27
27
28

6 Design and Implementation

6.1 Solution overview
6.2 JNI Interface
6.3 State Machines
6.4 Package Overview oL
6.5 Program Flow

7 Performance Testing

7.1 Test Program Flow
7.2 Calculations
7.3 Results. e

8 Discussion
8.1 Vision Fulfilling oL
8.2 Performance Testing,
8.3 Further Work

Bibliography
Glossary

A Additional Figures
B Test Results

C Implementation Methods and Issues

35
35
35
36
37
39

44
44
45
45

47
47
49
49

49

52

54

65

69

List of Figures

3.1

3.2

4.1

4.2

4.3

5.1

5.2

5.3

5.4

6.1
6.2
6.3

6.4

Example of appearance of a Sequential Function Chart program.
The picture is taken from Automation Studio’s help file (used
with permission)o
Example of appearance of a ladder diagram. The picture is taken

from Automation Studio’s help file (used with permission)

Cam control in history. The picture is taken from Automation
Studio’s help file (used with permission)
Cam control in software. The picture is taken from Automation
Studio’s help file (used with permission)
The simplified model of the S88-interface used by mclib and the
magazine software. The picture is taken from Automation Stu-

dio’s help file (used with permission)

The event flow of the magazine. The axis controlled by the mag-
azine software is represented by the rightmost circle. The figure
is drawn by Johan Henricson (used with permission).
An UML diagram showing the hardware hierarchy of the magaz-
ine. Drawn by Mattias Wallinius (used with permission).

An internal state machine (i.e. switch-case statement) from the
function block calculating signals for the cam control.
The state machine of the cam control. Each state (except from

state 0) has an own cam curve. L.

An overview of the solution architecture
State machine for the sheet feeding servo
Shows the state mapping between the magazine and the machine.
The leftmost state machine is an excerpt from the one in Ap-
pendix A. The middle is represented by an integer stateLevel
and the rightmost is the one from Figure 6.2.

Shows an overview of all classes in the magazine application . . .

6.5 Shows the thread communication through monitors. RTFState-
Machine and FeederThread are threads. RTFMonitor, Magazine
and the Axis classes are monitors.

6.6 Shows the sequence of awaiting a cam state index.

A.1 A minor part of the axis handler state machine. The function
block starts in state 0 and the axis is up and running (and await-
ing external commands) in state 500.

A.2 Machine phases. Continuing in the next figure.

A.3 Machine phases. Continuing in the next figure.

A.4 The first of the machine phases.

A.5 The brasruntime package providing basic motion controlling func-
tionality L

A.6 The brasruntime.event package providing basic event handling

A.7 The brasruntime.configuration package facilitating axis configu-
ration ...

A.8 The utilities package with a few useful classes..

A.9 The com.tetrapak.ab.packagingline.rtf package representing the
rest of the machine communicating with the magazine.

A.10 The com.tetrapak.ab.packagingline.rtf.magazine package contain-
ing classes for magazine control.

A.11 The
com.tetrapak.ab.packagingline.rtf.magazine.magazineServo pack-

age containing axis-classes for the magazine servo.

List of Acronyms

ANSI American National Standards Institute

AR Automation Runtime

AS Automation Studio

B&R Bernecker&Rainer

D&E Development & Engineering

GmbH Gesellschaft mit beschrankter Haftung (company with limited liability)
HMI Human Machine Interface

IEC International Electrotechnical Commission

ISA Instrumentation, Systems, and Automation Society

JAR Java ARchive

JNI Java Native Interface

LTH Lunds Tekniska Hogskola (Lund Institute of Technology)
OO Object Oriented

PLC Programmable Logic Controller

PVI Process Visualization Interface

SFC Sequential Function Chart

ST Structured Text

SysML Systems Modeling Language

TAA Tetra Aptiva Aseptic

UML Unified Modeling Language

VM Virtual Machine

10

Chapter 1

Introduction

1.1 Background

The software solutions that Tetra Pak develops for their automats are very much
focused on old solutions, consisting of PLC programs written in ladder diagrams
and other primitive languages. The standard of PLC programming was mostly
developed during the 80s, standardized by the International Electrotechnical
Commission (IEC) in 1993 [8] and lacks features like object-orientation and
declarative programming. The standard for industrial control programming is
called TEC 61131-3 and defines five different language standards, both textual
and graphical.

Although several standard libraries for basic functions and motion control
have been developed, see PLCopen [13], they are still quite primitive and require
much knowledge from the developer. In B&R Automation Studio, a develop-
ment environment for PLC-programs, a library is defined by a collection of
function blocks compiled to a library file.

An object-oriented system has very much to offer when it comes to develop
PLC programs. Languages like Java, C++ and C# include extensive standard
libraries, inheritance possibilities and ready-made design pattern solutions for
common problems. A design pattern is not a natural part of an IEC61131-3
program. Furthermore, there are several documentation standards like UML
and SysML which (when used correctly) can contribute enormously to both
design, documentation and debugging of applications. They can also make the
programs more easy to read and understand.

Several development environments, unit testing and programs for UML-
drawing are already common tools in the object-oriented world. Since the tools
already exist, why not use them for PLC-programming as well?

It would be interesting to see if, for instance, Java can be used to control a

11

Tetra Pak machine automat, if it is stable enough, fast enough and at all works

for a hard realtime system.

1.2 Vision

This section presents some of the advantages to gain with an object-oriented

(OO) automation system.

Structure, test, model and document applications

Large automation programs, large function blocks with many uses are very
difficult to completely test and maintain. As the control programs grow larger,
this becomes more and more of an issue. OO-methods offer the UML standard to
model large programs by using sequence- and activity diagrams to show process
flows, state diagrams to show the machine states and not least: class diagrams
to show application design. Design solutions for common problems exist in
established design patterns to keep programmers from constantly reinventing
the wheel. Several tools for unit testing OO-programs already exist for the
debugging and validation of applications.

To be able to structure and specify the software solution modeling is a neces-
sary part. A standard for this is UML [7]. Properly used it shortens development
times and reduces the number of errors in the code. It also leads to better test
specifications and better testing since unit testing is possible. Tools in which
you can test and debug at UML diagram level lead to greater productivity for

the application developers.

Privacy and reuse of code

OO-libraries with clear hierarchies and well-designed interfaces would increase
the possibility of reusing code. Using inheritance and common interfaces, it
would be possible to represent mechanical parts of the automat by objects. If
a mechanical solution is reused, much of the controlling code could also im-
mediately be reused. One could, for instance, create a standard class library
representing basic functionality for a specific mechanical part.

Compared to Automation Studio (AS) function blocks, the OO world also
provides greater possibilities to protect code. When calling an AS function
block in C, all variables are totally unprotected. It is just as easy to set an
input variable as an output- or internal variable (the reason is described in
Section 4.1). Using the OO class-definition it is natural to declare how private

a function or variable is.

12

Other common functions like communication standards can also be ab-
stracted with OO libraries and reused. PLC communication is yet at a rather
low abstraction level requiring the programmer to know plenty about each way

to communicate.

Separating developers

As mentioned in the previous section, OO would simplify development of sepa-
rate libraries for common functions and basic functionality of mechanical parts.
It would be favourable to separate application engineers that are design experts
from developers of basic functionality that specialize on the hardware. It would
allow one group of hardware experts to focus only on creating basic libraries
while the application developers could focus solely on object diagrams, compo-
sition, execution sequences, process flows and state diagrams. They would use

the basic libraries in their applications, without caring about the code inside.

Graphical programming

Ladder programming is a graphical programming language, looking very much
like an electric circuit, see Section 3.1. The Sequential Function Chart language
is also graphical, where the objects represent states and transitions. Graphical
programming has several advantages and the vision is that the graphical pro-
gramming methods will remain, but at a much higher abstraction level. The
application programmer would be able to create programs by drawing class di-
agrams and state charts in a ”drag-and-drop”-like way, based on the standard
libraries. Tools already exist for this. Instead of drawing coils and relays one

could draw axes and sensors, and perhaps assign certain behaviours to them.

1.3 Project task and methods

The task of this thesis project is to run Java on a (test rack for a) sheet magazine
from the Tetra Pak automat TAA, Tetra Aptiva Aseptic. The goal is to examine
if it is possible to get a Java environment to work on the hardware platform,
and see if it meets the hard real-time requirements. The next step is to develop
base functionality for motion control and then use UML or SysML tools for the
application programming.

Several software and hardware tools have been used to achieve this. The
sheet magazine, i.e. the target system, is from B&R (introduced in Section
2.3). It uses the operating system VxWorks with the runtime environment
B&R Automation Runtime. The file system on target is FAT32.

13

A Java VM suitable for the PLC is provided by aicas (presented in Section
2.2) and is called Jamaica VM (which is described in Section 4.3).

The magazine’s task is to separate sheets from each other and pass them on
at a very high speed. The existing control program for the magazine is written
in the IEC 61131-3 languages (presented in Section 3.1) and C. The major task
for it is to control an ACOPOS Servo from B&R using Cam control (explained in
Section 4.1) and to response to sensor-information. The magazine is described
further in Section 5.

Part of the task in this thesis is to rewrite the control program in Java.
Since the Java-application could not directly communicate with the ACOPOS,
an intervening layer had to be created. A Java Native Interface (see Section
3.2) was the solution, Java calling C-functions to send commands and obtain
status information and measurements. With object-oriented programming most
of modeling is done upfront, using UML to draw state machines, classes and
threads before implementation and testing.

The concrete work can be divided into the following sub-tasks:

e Set up the environment and make the necessary arrangements to make
JamaicaVM work with B&R hardware and Automation Runtime (AR).
Make sure the standalone Java application can be started from within a

program written in Automation Studio.

e Develop a JNI for basic motion control to enable communication with the
ACOPOS. Test it with Automation Runtime.

e Develop a standard class library to make the basic functionality available

at a higher Java-level.

e Read and understand the sheet magazine control program (described in

Section 5.2) in order to create an object-oriented design.

e Create an object-oriented model of the magazine software. This means
drawing state machines, class diagrams and illustrate communication be-

tween threads.
e Implement the solution. Test it with Automation Runtime and the JNI.

e Test the application and measure the performance.

1.4 Limitations

At the time for this project, it was not possible to develop all the basic function-

ality using Java, the hardware was too dependent on the Automation Runtime

14

solution from B&R. It would also be far too much work. Therefore the existing
motion control C-library mclib together with cyclic AR tasks, have been used
and is called from the Java application using the Java Native Interface. This

solution might have a significant negative effect on the magazine performance.

15

Chapter 2

Companies involved

This section contains a brief description of the companies involved and how they

have contributed to the project.

2.1 Tetra Pak

Tetra Pak is one of the leading companies in processing, packaging and distri-
bution of groceries. It was founded by Ruben Rausing and Erik Wallenberg in
1951 and has now more than 20000 employees in more than 160 countries.
Tetra Pak’s vision is to make food safe and available everywhere, see Tetra
Pak’s webpage [14]. To achieve this vision, they work together with their cust-
omers to develop intelligent process- and packaging solutions for groceries.
This master’s thesis project has been carried out for and at Tetra Pak D&E
Automation and Line Integration in Lund, using a magazine from their filling

machine Tetra Aptiva Aseptic.

2.2 alcas

T he company aicas GmbH has developed a way to use Java in hard realtime
control systems. This includes a virtual machine, object oriented development
environment and analysis tools. Their aim is the promotion of modern software
development methods in embedded and time-critical control systems, see aicas’
webpage [1]. aicas is a growing company that was founded in 2001 in Karlsruhe,
Germany and has 16 employees.

In this project, their Java virtual machine Jamaica has been used and tested

on the magazine.

16

2.3 B&R

B&R was founded by Erwin Bernecker and Josef Rainer and their business
defining motto Perfection in automation, as their their web page [2] states, has
been valid for over 26 years.

The hardware used in this thesis, i.e. the magazine parts, were produced
by this company. Their enclosed software, B&R Automation Software, has also

been used.

17

Chapter 3

Theoretical background

To perform the tasks mentioned in Section 1.3 some theoretical studies had do
be done. This section presents some facts relevant to the project and where

they have been used.

3.1 IEC 61131-3

Since most of the magazine software (see Section 5.2) is written using the IEC
61131-standard, understanding the magazine design requires knowledge of some
of the languages. IEC 61131-3 is a global standard for industrial control pro-
gramming. It defines syntactic and semantic rules for two textual (Structured
Text and Instruction List) and two graphical (Ladder and Function Block Dia-
gram) languages. There is also the Sequential Function Chart syntax which is
used to structure programs.

The IEC standard defines basic concepts like data types and variables. It
also defines some standard functions, for instance basic maths (like ADD, SQRT
and SIN). There are also user-defined functions which can be created by pro-
grammers. The standard also defined Function Blocks, which are said to be
equivalent to Integrated Circuits, ICs, representing a specialized control func-
tion, IEC 61131-3: a standard programming resource [12]. Function Blocks may,
unlike traditional functions, have several outputs and an internal state which
remains between calls.

Below are descriptions of some languages which syntax has affected the mag-

azine (and machine) control program design and for that reason are relevant.

Sequential Function Chart, SFC is basically states connected with transition
conditions. Each state (also known as step) has a certain task, executed

every time the SFC-block is called (like once every cycle) until the tran-

18

sition condition to exit is fulfilled. It may also contain an entry and an
exit action. The first one is performed only when entering the state and
the second just before exiting it. A state which action is being executed
is described as active. An action may consist of a piece of code written in
any IEC61131-3 language or C. The TAA machine steps through certain
phases, and each phase steps through S88 states (Section 4.1). For that
reason it is convenient to encapsulate the tasks for each state and phase
into elements of SFCs. An example of what an SFC program might look

like is shown in Figure 3.1.

Ladder is basically a drawing of an electric circuit. Commands and links are
represented by connections lines and symbols like contacts and coils. On
the left side there are an imaginary line continuously supplying power. On
the right hand side the coils are placed, representing the devices to control
(for instance a lamp or a boolean variable). Since state transitions often
are determined by boolean variables (whether a not a task execution has
succeeded, if an error has occurred, etc.) the ladder syntax is often useful.

An example of a ladder diagram is shown in Figure 3.2.

Structured text, ST is, unlike the above ones, textual and very similar to Pascal.
An ST program consists of a sequence of instructions, with standard high
level statements like IF' .. THEN .. ELSE, WHILE .. DO and SWITCH
.. CASE. The magazine control program is built out of cyclic tasks (see
5.2 and 4.1), but sometimes it is desirable to execute large pieces of code
sequentially. In that case state machines, with many small states, can be
built out of SWITCH .. CASE statements, switching on a variable that is
increased by 1 every cycle. This is very common behaviour in the magazine
software, especially during the start up phase (initialize, configure, enable

power and so on).

More information about the IEC61131-3 standard can be found on the
PLCOpen webpage, [13].

3.2 The Java Native Interface

The Java Native Interface is a framework that enables a Java Virtual Machine
to interact with native code written in for example C or C++. In this section
only a few capabilities is presented and focus will be on the C language. The
Java Native Interface by Shen Liang [11] is an extensive reference to JNI and

contains information about how to implement it.

19

Trans0

Stepld

—Trans

_[:;3,

=tep

Figure 3.1: Example of appearance of a Sequential Function Chart program.
The picture is taken from Automation Studio’s help file (used with permission)

Diagram:
+
Contact_1 Contact_2 Lamp

T T o

Representation in Ladder Diagram:

oood

Contact_1 Contact_2 Lamp
| | 1 f
I 11 \

Figure 3.2: Example of appearance of a ladder diagram. The picture is taken
from Automation Studio’s help file (used with permission)

20

Calling native functions from Java

One JNI feature is to call methods written in C from a Java application. By
declaring methods native in a Java application they can be implemented in a
native library. The native methods must be declared in a special, non-trivial
way. To obtain the correct declaration of a certain native method, the javah
(or in Jamaica, jamaicah) program can be used with the class file as input. It
generates a header-file containing declarations of all native methods of the class.
The methods can then be implemented and compiled to a library. The library is
loaded in the Java application using the System.loadLibrary() function. When
the Jamaica builder is used, the library-loading is not necessary; Jamaica links

the pre-compiled object files itself.

Mapping of types

The JNI defines a set of C-types that correspond to Java primitive types which
can be used in C functions without further thought. When it comes to objects,
arrays and strings, special care has to be taken. The JNI Environment provides
a large set of functions to perform actions on these types, for instance accessing

arrays and object fields.

Callbacks and Constructor invoking

Another possibility is to call Java functions from the C-functions, i.e. to perform
callbacks. This is done by providing a special signature describing inputs and
return type. The signature can be obtained by using the javap -p -s tool on the
class file in which the function is. Constructors are invoked in a similar way. It

is also possible to throw exceptions from JNI by using a certain JNI function.

Caching field and method IDs

To access a certain method or field, an ID that is defined by the symbolic name
and type descriptor is required. The ID can be obtained by calling certain
methods of the JNI environment, but includes a symbolic lookup which might
slow the program down if performed often. A possible optimization is to cache
the values when the class loads. This can be done by calling a native method

in the static initializer of the class.

3.3 UML and Design Patterns

Various ways exist to model and document applications. The one used in this

project is the Unified Modeling Language (UML). This includes class diagrams,

21

state charts and activity diagrams. Examples of these kinds of diagrams are
shown in Figures 6.2 and 6.5 . Advantages of UML are for instance that one
does not have to look at the source code to understand what a program does.
State charts, activity diagrams and use cases make the design transparent.

A design pattern can be a standardized solution to a common problem and
a major advantage in OO programming. The solution can be described with a
class diagram showing hierarchies, dependencies and methods. Several design
patterns have been used in the magazine design. One of the most common
design patterns is the Observer pattern, where objects may observe each other
and are notified when a state changes. The observer pattern has been used when
implementing events, consisting of the IBRAxisEventNotification, BRAxisEvent
and Mailbox classes in Figure A.6.

For more information about design patterns, look at the web page [5]. More

about UML can be found on the Object Management Group webpage, [7].

22

Chapter 4

Software tools

This chapter presents some programs that were used in the project. The inten-

tion is to briefly describe their main purpose and what they were used for.

4.1 Automation Software

Automation Software is the environment for developing, testing and running
control applications on B&R hardware. It consists of three different parts: Au-
tomation Runtime, Automation Studio and PVI transfer. Automation Runtime
(AR) is the runtime environment and PVI-transfer the tool to transfer programs

to the target (in this project that is the magazine cpu flash disk).

Automation studio

In Automation Studio (AS) the control programs are written, compiled, run and
tested. The programs are built out of cyclic tasks, written in either Automation
Basic!, Ansi C, or one of the IEC 61131 languages. Libraries of function blocks
can be created and some libraries for basic functionality (for example parsing
strings) are included in the installation. Languages can be mixed freely inside
a program, so that a Structured Text program can easily call a function block
written in C.

Automation Studio also contains tools for configuring the hardware and
change and watch process variables. A few cyclic tasks have been created using
Automation Studio, to load and start the Java program and to manage mclib
(further described in Chapter 6).

As mentioned before (in Section 3.1), calling a function block from C-

language requires some caution. The function block input consists of a structure

LA language invented by B&R, [15]

23

N

Figure 4.1: Cam control in history. The picture is taken from Automation
Studio’s help file (used with permission)

containing all variables, both input output and internal ones. The reason for
that is that a function block has an internal state that has to endure during

several calls.

Motion control library

Due to the limitations of this project an existing motion control library written
in C has been used to control the ACOPOS servo (see Section 5.1). This library
is called mclib and is created by B&R. It contains for instance functions to
retrieve measured values, moving and power controlling functions. Many of the
functions uses the PLC open interface, see Section 4.1, and need to be called

several times before the execution is finished.

Cam control

Cam control originates from mechanical solutions where typically a rotating axis
was connected to a pole to achieve a linear movement, as in Figure 4.1. The
same result can be obtained using cam control, but with much more flexibility.

The principle is the same: a slave axis’ movement depends on a master axis
position. The slave axis follows a cam curve y = f(x), where z is the master
position, the principle is shown in Figure 4.2. In the magazine software (5.2), the
master axis is a virtual axis rotating at a constant speed. Depending on sensor
and trigger values (like indicating sheet position and sensing double sheets), the

slave axis (i.e. the ACOPOS servo) follows one out of six different cam curves.

mclib cam control

The motion control library contains functions to perform the cam control. A
large data structure containing all cam information is given as input. It contains
up to 14 cam states, where each state contains a cam curve (except from state 0

which is empty). A cam state also has up to 5 events that trigger state changes.

24

axisRef |—> 4@

‘ masterRef |

Figure 4.2: Cam control in software. The picture is taken from Automation
Studio’s help file (used with permission)

This enables simple and fast switching between different cam curves in order to

achieve certain movement patterns.

PLC open interface

In the PLC motion control libraries, a common method is to start a function
and then keep it active. An interface enabling this behaviour is the PLC Open
interface. The function blocks have enable/active or execute/done variables. An
example is the mc'moveAbsolute function block in mclib. At a positive edge of
the execute input, the function block can start communicating with the drive.
As soon as the function is successfully completed, the done flag is set. The
function block needs to be called several times before the execution is finished,
due to the implementation of the function blocks. Function blocks may also
abort or block each others execution since some has higher priority than others
(for instance, mc’stop has higher priority than mc'moveAbsolute). If a function
block is aborted, the commandAborted flag is set on the output. If an error has
occurred, the output error is set, and the status integer output holds the error
number.

A function block which execution does not finish has instead of execute/done
the enable/active variables. An example of such a function block is mc’actValues
which reads measured values from the servo, for instance the axis position and

if it is moving.

S88 States

S88 (also known as ANSI/ISA-88) was standardized by ISA 1995 and adopted
by IEC in 1997. It provides models and terminology for batch control and is
said to make the execution of automation projects more efficient. The standard
defines several things, see for instance [4] or [9] but meclib uses a very simplified
model of the S88 state and command matrix in their cam control. The same

interface is used for the magazine software states (see Section 5.2). A picture

25

of the defined states and transition commands is shown in Figure 4.1. In the
interlocked and ready state the application basically waits for commands to
proceed to ready and run respectively. When a start command is recieved in
the ready state a transition to run is performed. In the run state the ordinary
operation actions are executed. When the running is finish a transition to done
is performed. In the held state the equipment is placed in a safe state. A
transition to held happens either when an exception from ordinary operations
has occurred or when it is issued by the operator. Also in the aborted state the

equipment is in a safe state. The transition to aborted is issued by the operator.

reset
INTERLOCKED)=
reset
enahle error

L 4

READY start
—

error

ABORTED

Figure 4.3: The simplified model of the S88-interface used by mclib and the
magazine software. The picture is taken from Automation Studio’s help file
(used with permission)

4.2 Realtime Java

A common Java runtime environment uses a technique called just-in-time com-
piling. That usually means that bytecode is compiled to native machine code at
runtime. Another technique is the ahead-of-time compiling, where the compi-
lation to native machine code takes place before the program execution starts.
An example of such a compiler is the Jamaica builder (see next section). The
reason for ahead-of-time compiling is often to optimize the application on speed
and memory requirements.

The unpredictable garbage collection has always been an obstacle when it
comes to writing hard realtime applications in Java. There are several projects

working on solutions to this. Jamaica, which is presented in the next section, is

26

one of them. Another one is RTSJ.

The Real Time Specification for Java (RTSJ) is an application programming
interface to control the Java Virtual Machine behaviour in certain time-critical
parts of the application. By letting the programmer manually managing the
memory in certain memory areas it is kind of a work-around to the ordinary

garbage collector. For more information, see for instance [16] and [3].

4.3 Jamaica VM

Jamaica Virtual Machine is a Java VM for realtime systems, designed to run
under hard realtime conditions on realtime platforms. It features deterministic
and efficient garbage collection, priority inheritance and other necessary real-
time functionality, see [1]. It was created by Aicas (see 2.2). JamaicaVM also
supports many of the Java standard libraries? and the Real Time Specification
for Java®.

In this project, the Jamaica VM was used to run Java on the VxWorks
operating system, on B&R hardware. The tool consists both of a virtual machine
and a builder, which translates the Java into C-code and creates a standalone
application out of it (that is, ahead-of-time compiling). Jamaica also supports
the Java Native Interface, which has been used to call the motion controlling

C-functions from Java (see Section 4.1).

4.4 Eclipse

Eclipse is among other things an environment for developing, testing and de-
bugging Java applications. It was developed by the Eclipse foundation, which
is an open-source community (see [6]).

Many plugins exist for additional functionality. In this project a plugin for
Jamaica was used. The plugin (developed by aicas) contains tools for configuring

and running the Jamaica builder.

4.5 ArgoUML

ArgoUML is a tool for drawing UML-diagrams, like class- and activity diagrams
and state charts. A useful feature is the export-functionality which enables
projects to be exported to xmi (XML (Extensive Markup Language) Metadata
Interchange) or source code for use in other contexts. It is also possible to

export diagrams as graphics.

2Jamaica APT at http://www.aicas.com/jamaica/doc/jamaica_api/index.html, [1]
3For further reading: https://rtsj.dev.java.net/

27

4.6 Other Programs

This section contains brief descriptions of other programs that have been useful,

but has not taken especially large place in the project.

VMWare is a program that acts as a virtual PC. It was very useful when running

programs that were not so stable as they ought to be.

Tornado, a development environment for VxWorks applications. It was used
while examining the standard libraries in VxWorks, and Tornado’s com-

piler was used by JamaicaVM to build the standalone application.

SVN, subversion is an open source version control system*. There is also a

plugin for Eclipse which has been used in the project. It is called subclipse.

4The management of multiple revisions of the same project. Information on
http://en.wikipedia.org/wiki/Revision_control and http://subversion.tigris.org/, [17]

28

Chapter 5

The sheet magazine

The hardware to be controlled is, as mentioned in the introduction chapter,
a sheet magazine from Tetra Aptiva Aseptic (TAA). This section contains a
description of the magazine hardware, functionality and the existing software.
The software part is focused on internal state machines and does neither contain

details on managing sensors nor any of the error handling.

5.1 Hardware

The sheet feeding process consists basically of the steps showed in Figure 5.1.
The magazine consists of several parts, optical sensors and digital I/O. An

UML diagram showing the hardware hierarchy is shown in Figure 5.2.

5.2 Software

Programs developed in Automation Studio are normally built out of cyclic tasks
(see Section 4.1). The application controlling the magazine consists roughly out
of three cyclic tasks (several parts concerning error handling, sensor-checking
and communication with other machine software parts have been left out). A
major part of the application consists of SWITCH..CASE statements which
have been interpreted as state machines. All state machines presented in this
section that are implemented in Structured Text are actually such statements.

The cyclic tasks controlling the magazine are:

e A fast task which has a cycle time of 2ms and is responsible for the auto-
matic cam control (see Section 4.1). First it waits until the axis is active
and then starts calling three function blocks. The first one is for calcu-

lating the cam curves, the second is for calculating the signals and the

29

=— 0O

—————

o

o

1. Cut sheets of paper arrive
from the cutter section and are
stored in the buffer

2.Vacuum pulls a sheet to make
it stick to the conveyor belt.
The belt pulls the sheet out of
the buffer

3.In case more than one sheet
was pulled out, the surplus is
pushed back in the buffer by the
sheet separator

4. The conveyor belt changes
direction and the single sheet is
delivered to the next compo-
nent

Figure 5.1: The event flow of the magazine. The axis controlled by the magazine
software is represented by the rightmost circle. The figure is drawn by Johan

Henricson (used with permission).

30

FTATEA FTIICIYL UET WIIes

ICHEITPUT 8845 W] WINSER Burgdnes fun sarag AT SATHS

Fuss [ea7ids plroa asqunog R cfow [esraasta| PEEum ATsd T84 IHpESI ICUHE BATIITPUL Eurassg |BErz 1eaTusyosw

31

¢

afaeatpur A3dug | xojyearpur TEaST| qpink Jssus ITHYS TIEM reredss Jssyus IOPPSIBP JSHSYE STINST

utzebem JEEys

Figure 5.2: An UML diagram showing the hardware hierarchy of the magazine.

Drawn by Mattias Wallinius (used with permission).

third is the mclib cam control function. The signals are calculated in an
internal state machine supervising the cam states. A visualization of the
state machine can be seen in Figure 5.3, it is implemented in ST. The
cam control itself has an own state machine, controlled within the mclib

function block, described in Section 4.1.

e A task controlling the physical axis. It uses an extremely large axis han-
dling function block to start and supervise it. The axis handling function
block contains eight internal state machines controlling various things.
The function block is written in ST and all state machines are repre-
sented by SWITCH..CASE-statements. The largest one is the main case
controller for the axis which steps through all the initializing functions
and executes motion control commands. A minor part of the main case

controller state machine is illustrated in Appendix A.

External commands trigger state switches in the main case controller and
the function block reacts to the S88-state of the axis, which is part of the
output from the cam control. Depending on the S88 state and the internal
state machines, the function block produces an S88-command as part of

the output, which is passed as input to the cam control.

e A task controlling the virtual axis which serves as master in the cam
control. It is started, powered up and then set to spin at a constant

speed. The real axis’ position depends on the virtual axis’ position.

5.3 The Machine Phases

The machine program is designed so that it steps through certain phases, each
phase containing S88-states. Figures A.2,A.3 and A.4 in Appendix A show the
phases and inner states of TAA.

5.4 The Magazine State Machines

From the list in the previous section it is clear that the magazine software
contains many state machines. The topmost one consists of the machine phases.
Each phase has an S88 state. Furthermore, the axis handler has eight internal
state machines (in the SWICH..CASE fashion), and the task controlling the
master axis also has one. The cam control has at least one and even the function
block calculating the cam curves has one. It can be mentioned that the cam
control’s S88-state has no connection to the s88-state of the machine phase. One

of the ambitions with designing the magazine software in an object-oriented

32

no sheet initialized

(Sheet feeding) .
= The next state depends on wether Init first sheet
0 — the Xth sheet is enabled and the
—
| current cam state. 101 and 102 changes 1000

,\ cam state to running or idle respectively,
S Zsheel initialised
10 If the sheet is enabled and the state is running
S | or

if the sheet is disabled and the state is idle. 1001
immediate progress to state 20 is performed.

reset

Sheet initializing or releasing failure I— 1002

Init Fail |’ (F{elease fail l]

i

(2000 Init sheet] |3000 Release sheet |

Sheet init fail

[
I |

The transitions depends on
the sheet indicator: if a sheet is

reset L
to be released or initialized

2001 | 3001 |

2002 | 3002 |

This pattern continues for

the feeding control of
six sheets

Sheet init or release fail

| 601 | | 602 |

Figure 5.3: An internal state machine (i.e. switch-case statement) from the
function block calculating signals for the cam control.

End of state

End of state

\L End of state

Sheet indicator negative edge

8 End of state

End of state

End of state

Signal 4: Reset

End of state End of state

Bignal 4: Reset

Figure 5.4: The state machine of the cam control. Each state (except from state
0) has an own cam curve.

33

way has been to simplify the state machines, in some cases by making the
states larger and fewer. Another goal is to try and choose the states from an
axis-specific and magazine-specific point of view, i.e. avoid adjusting them to
standardized interfaces which means nothing to the functionality of the device.
The hardware-specific states could then be mapped to the S88-interface, so that
the common states still exist to an external observer. The resulting object-

oriented design is presented in Chapter 6.

34

Chapter 6

Design and Implementation

In this section some interesting aspects of the implementation are described and
some some benefits of OO-design are demonstrated. It also contains an overview
of the packages and most important classes in the magazine model.

Figures of the written Java packages and all classes are enclosed in Appendix
A.

The resulting implementation’s functionality corresponds roughly to the pro-

gram described in Section 5.2, leaving out all error handling in the OO-version.

6.1 Solution overview

As explained in Section 1.3, an existing motion control library had to be used in
the solution and the connection was made using a Java Native Interface. Figure
6.1 shows an overview of the solution.

A few cyclic tasks were written in Automation Studio, one was to load and
start the Java program. Another one with 2ms cycle time took care of mclib
function calls.

The communication between the fast cyclic task and the Java program was
carried out by a function pointer, which was passed to the JNI-interface. By
using that pointer, mclib commands were pushed to the cyclic tasks and by using

common structures protected by a semaphore the results could be obtained.

6.2 JNI Interface

The native interface is basically a wrapper around mclib (see Section 4.1). A
minor issue was that the Java-implementation was not cyclic and the mclib

functions could only be called once a cycle.

35

Java Application

[N]

N

N
(Cyclic C task]

r_ Ty
mclib

L J

f' Ty
Automation Runtime

. <

\ VxWorks

Figure 6.1: An overview of the solution architecture

When a function is called, for instance moveAbsolute, a command is pushed
to a fast cyclic task on automation runtime. The cyclic task then calls the
mclib-function once every 2ms cycle until the execution is done or an error
occurs. The axis’ poll thread (explained in Section 6.5) continuously polls the
result structure, keeping the thread that called the function waiting. The native
structure is protected by a mutex-semaphore!, using the VxWorks standard
library semLib. If an error occurs, or the command is aborted, an exception is

thrown to the Java application.

6.3 State Machines

The magazine has an internal state machine, reflecting the state of the ACOPOS
servo. It is shown in Figure 6.2. Each state is represented by a Java class, in
CamAutControlRun the internal states are represented by internal classes. The
classes are part of the package com.tetrapak.a5.rtf.magazine and can be seen in
Figure A.10.

In order to correctly map the internal states to the S88-interface, another
internal state machine was also implemented, consisting only of an integer,

called stateLevel in the Magazine class. The possible values are declared in the

1A semaphore that ensures mutual exclusion

36

MagazineState-class and ranges from AXIS'OFF to RUN, with an AXISSERROR
state as an exception. An UML diagram of how the states are mapped is shown

in Figure 6.3.

BRAXisOff
include /
BRAXxisStart . S
include /
-
BRAXxisErrorState ShutDown
L O«
\|/ include / include /
(CamAutControlStart
N O~ OO
include /
L O« Unresolved error Running done
(" N\
CamAutControlRun
. ; (StartState w sheet pulled back Running
- include /
include /
S L)
L OO
no sheet pulled back
-
TryReset
include / init / release failed
S
. /

Figure 6.2: State machine for the sheet feeding servo

6.4 Package Overview

An overview of all packages and classes is shown in Figure 6.4. More detailed

class diagrams, with methods and attributes, can be seen in Appendix A.

brasruntime contains the classes related to the native code. The class
BRASruntime contains a native method to obtain axes references. From

the axis addresses instances of the base class BRAxis are created.

37

phases

: i Ieve\Bl : ine State Iﬁ

Phase Zero (AxisOff] BRAXxisStart
Run enable
O
active
Machine On
swenable
Ready
sevo on
ServoOn
Calibrate
Run search home
Homed
homed
enable S88
CamAutControlStart
S88 state: run
T CamAutControlRun
Run

Production

588 state: run

Figure 6.3: Shows the state mapping between the magazine and the machine.
The leftmost state machine is an excerpt from the one in Appendix A. The
middle is represented by an integer stateLevel and the rightmost is the one from
Figure 6.2.

38

brasruntime.event provides basic functionality for handling events. The
Mailbox class acts an observer of any object that fires instances of

BRAxisEvent and holds one event at a time.

brasruntime.configuration contains structure-like classes for holding input to
motion controlling native functions that often requires many parameters.
The class BRAxisConfiguration contains the input to functions that are
usually called only once, mostly for axis initializing and configuring. The
intention is that the class shall be inherited, and the configuration hard

coded into the subclass.

utilities contains a few general classes. The Recorder class writes to a log-file
on the PLC flash disk.

com.tetrapak.ab.packagingline.rtf consists of the classes representing the exter-
nal communication with the magazine. It is simply a matter of starting,
enabling functionality, observing and stopping the magazine, although
the stopping mechanism is not implemented. The magazine stops itself
after a certain amount of time. This package contains the main class
RTFStateMachine, and the monitor RTFMonitor is used to communicate

with the magazine.

com.tetrapak.ab.packagingline.rtf.magazine This package contains the
magazine controlling software, which includes all magazine states and the
FeederThread class to execute them. The Magazine class acts as a mon-
itor for communication between the RTFStateMachine and the magazine

states.

com.tetrapak.ab.packagingline.rtf.magazineServo is the package containing the
axis-classes required to control the magazine. It consists of a virtual
MasterAxis and a real CamAxis as slave and their configuration classes.
Both axis classes inherit from BRAxis and the configurations from BRAxisConfiguration.
There are also a few axis-specific events, which can be fired when the axes

are observed.

6.5 Program Flow

The final program flows according to the following list unless an error occurs,
in which case the BRAxisErrorState is immediately entered and the magazine

shut down.

e The main class is called RTFStateMachine and is part of the rtf package.

It creates an instance of the Magazine class and calls startFeeder().

39

brasruntime

configuration |
||nit|nputStruc1 I |Home|nput I CamlnputUpdate
|MoveVelocityInput I |MoveAbsoImeInput I |AxisCon1igInput I |CamAutEvent I
|CamAutState | |CamAu1DataStruct | |CamAutControIInput |

] event |
imeoutException

interface: IMCLibException
IBRAxisEventNotification /\

<<realige>>

MCLibErrorException
BRAxisEvent
S88Device
BRAXxis

JAVAN

rf |
RTFStateMachine
magazine |
magazineServo | FeederThread
FosilionﬂeachedEvem I |CamSlaleEvem| |MagazineMasterAxis|
I
MasterAxisConfiguration I ’\AagazineServoConfiguration I IM Magazine
N /N /NN
|CamAutControIStan | |BRAxisStan| |BRAxisShutDown | |BRAxisErrorState| |CamAutControIRun | |BRAxisOff |

|RTFMagazineMonitor| | Phase I

utilities

Figure 6.4: Shows an overview of all classes in the magazine application

40

e The magazine starts a FeederThread which contains a loop to execute the
states. The instance of FeederThread first retrieves the axes by calling the
getAxes method of the class BRASruntime. Then it creates a CamAxis
and a MasterAxis and also the initial state, of type StartState.

e The state execution flows according to Figure 6.2. CamAutControlRun
continues for a certain amount of time (if no errors occur) and then transits
to the ShutDown state. The FeederThread stops when the MagazineState
is BRAxiOff.

e When the magazine is started, the RTFStateMachine simulates the ma-
chine behaviour, stepping through the phases described in Section 5.3. In
some of the states, it communicates with the magazine, enabling certain
values allowing the magazine to proceed and awaiting certain magazine
levels. A Figure of the communication in different states is shown in Figure
6.3.

Threads and monitors

There are two controlling threads, plus one polling thread for each axis updat-
ing the properties. That makes a total of four threads in the whole application.
The threads only communicate through monitors, carefully designed to avoid
deadlocks and unnecessary locking. Figure 6.5 shows the monitor communicat-

ion.

Event communication

During the cam control it is necessary to await certain axis positions and cam
state indices (according to the flow in Figure 5.3), and react to changes fast. This
behaviour is obtained by using events and awaiting certain conditions to become
true. For this the MagazineMailbox, CamStateEvent and PositionReachedEvent
classes are used. A sequence diagram of the process awaiting a cam state index

is shown in Figure 6.6.

41

magazine

Magazine

1
“"| FeederThread

MagazineState I—

rtf \ |

magazineServo |

RTFStateMachine ; RTFMagazineMonitor I

| MagazineMasterAxis I | BRCamAxis I

Figure 6.5: Shows the thread communication through monitors.

RTFState-

Machine and FeederThread are threads. RTFMonitor, Magazine and the Axis

classes are monitors.

42

Qo dop

AIH |||||||||

(B JUEATS}E}SIWE)P AL Naa ORUEAE

pERy] od
ZLPERIYEE

p——

(y23= 463

! . (:@PUI U1 %00 I UOHEANL0 NIISAT Ty G343 U LS WE 303500
|
|
|
1

A LLE UG G

U | U3 R UE 581 S

w0q| 1B 3 UIZE BE |y 501 W

Figure 6.6: Shows the sequence of awaiting a cam state index.

43

Chapter 7

Performance Testing

7.1 Test Program Flow

The reaction speed of the program was measured by running the following se-

quence for several speeds:
e The axis starts and initializes by running BRAxisStart.

e The Magazine transits to a TestState which sets the axis to spin at a

constant speed.

e A measureStopDistance-function is called in the BRCamAxis class. It
awaits a trigger signal, registers the current position, stops the axis, reg-

isters the axis position again and returns the distance dgop.
e The distances for each speed are written to the log file.

Because of the PLC open interface (from Section 4.1), the execution of the
stop command is performed in several steps. Some of those steps could be
performed before the real execution (i.e. stopping of the axis) started. In
order to minimize the reaction time those steps were done before, requiring a
small modification of the JNI and BRAxis class. Since it was about four steps,
four extra calls of the stop function were performed once every 2ms cycle, it
shortened the reaction time with about 8ms.

In addition to the ordinary test, a test trying extra allocation of object was
performed in order to stress the garbage collector. In this test, 5 new Time
objects were created and dereferenced between each test speed. A test started
by measuring the stop distance for the lowest speed, then for the next, finishing
with the highest speed. Therefore, more garbage memory exist when testing
the highest speed.

44

Table 7.1: Jitter and standard deviations. The notation SS means that the mean
value was calculated for the same speeds as for the Cyclic Task (3 different
speeds instead of 7). GC means that the test was performed stressing the
garbage collector. ¢ means standard deviation

Java | Java SS | Java GC | Java GC SS | Cyclic AR task
Mean (ms) | 8.8 9.0 8.9 9.1 9.2
o (ms) | 1.13 1.13 1.07 1.13 0.68

Table 7.2: Mean values for certain speeds in ms. Speeds (rows) are measured
in units/s.

Java | Java GC | PLC
300 | 8.5 8.7 9.1
500 | 9.3 9.2 9.2
800 | 9.1 9.4 9.3

A cyclic task was also written to perform the same test directly from within
Automation Runtime. However, for this test only 3 different speeds were tested

(since it required more work).

7.2 Calculations

The deceleration distance was calculated and subtracted from the stop distance

with the formula for constant acceleration dreqct = dstop — where d,cqer 1S

v
2-adec
the reaction distance, v the initial speed and age. the deceleradtion. dreact 18 the
distance that the axis advances before the deceleration starts. The correspond-
ing time is calculated by t,eqct = %

The reaction times were calculated for 7 different speeds: 200, 300, 400, 500,
600 and 700units/s, where one revolution is 360 units. The deceleration was
36000units/s. 20 different measurements were performed. The axis position

was given as a number of units.

7.3 Results

Table 7.1 shows mean values and standard deviations for the Java applications
and the cyclic task in Automation Runtime. Mean values for different speeds
are shown in Table 7.2. The mean values for different speeds may also be viewed
in Figure 7.3.

Tables of all measurements are enclosed in Appendix B.

45

delay (ms)

program type

B 200 units/s
B 500 units/s
D800 units/s

46

Chapter 8

Discussion

In this section the results are discussed and analyzed.

8.1 Vision Fulfilling

In this section the vision from Chapter 1 is compared to the results to see what

has been achieved.

Structure, test, model and document applications

During the development of the software the connection between model and
implementation has been very strong. At first a model was built, process flows,
class diagrams with threads and communication. Since the testing environment
became available late in the project, the initial modeling was verbose.

When the implementation began the model changed much. Writing the
actual code while rethinking the design generated several improvements. During
the third step, explaining the model and presenting the UML-diagrams, even
more redesigning took place. The last redesign was mostly done by redrawing
the UML, but it was tested directly in the code. Traveling easily between code
and schematic pictures made one think of the design and functionality from more
than one point of view. Another advantage was that it more or less documented
itself - no program code was needed to explain the application.

No unit testing has been done, but the drawback of having a long delay from
writing to running made testing a quite painful process. It should be considered
though, that this is a first step towards OO-automation and the tools could be
fit to suit this kind of development with help from the hardware vendors. The
Eclipse remote debugging showed some bugs itself (described in Appendix C),

but worked fine most of the time, which made testing very much easier.

47

Privacy and reuse of code - facilitating portability

Since the software part of this thesis was fairly small the contingencies of reusing
code is not totally clear. However, several classes from the Java API were used,
in many places in the code, and that can serve as an evidence of reusability.
Also, there is the obvious reusing of code in inheritance, for instance in the
subclasses of BRAxis.

Another point of view is the portability possibility. If the vendor were to be
replaced and another servo were to be used in the same magazine with the same
functionality, basically the only classes that would need replacement would be
the BRAxis and BRASruntime classes with the JNI. Assuming of course that
the cam control works the same way in the new servo.

The protection of methods and attributes in Java was also useful. An
example is the RTFStateMachine and RTFMonitor communicating with the
Magazine. By declaring the methods in Magazine protected, they are only vis-
ible to other classes in the same package (magazine) and to subclasses. That
means that the RTFStateMachine is only able to do what it is allowed to do
(i.e. start the magazine and observe it’s states, not change them) - protecting
the programmer from performing illegal variable assignments and method calls.
Comparing to the data types of IEC-61131 and the structures of C, this is a

great advantage and probably shortens development time.

Separating developers

The separating issue appears to be quite straight forward. One developer could
(for instance) write the brasruntime package while another one did the magaz-
ine. It is all about communication and package dependencies, designed by the
developers. A package may contain many complicated classes and methods -
not visible to any class outside the package. It is not necessary to distribute the
source code either since the packages can be distributed as JAR-files! with neat
auto-generated API’s attached to it2. If Java were to be supported by vendors

they could themselves construct basic hardware related packages.

Graphical programming

The figures in this report demonstrate some of the UML benefits when it comes
to graphical programming. For example there are class diagrams, as in Figure
A9, state charts as Figure 6.2 and sequence diagrams as Figure 6.6. Tools

exist for generating code out of UML-diagrams, and also to create diagrams

1 Java ARchive, http://en.wikipedia.org/wiki/JAR_-%28file_format%29, 2007-02-08
2Auto generation of APT from Java source: http://en.wikipedia.org/wiki/Javadoc, 2007-
02-08

48

out of existing code (known as reverse engineering). In this project mostly
generating code from class diagrams and generating class diagrams out of code
have been done, using the program argoUML. Still, that is just for creating
skeleton-classes. The method bodies still have to be implemented by writing

code.

8.2 Performance Testing

The most time critical parts were performed by the mclib-functions themself
and appeared to work fine. Since the performance testing did not contain very
much data (due to time limitations in measuring), safe conclusions can not be
drawn. However, indications and tendencies can be seen.

It seems like the Java program is increasing the jitter (Table 7.1) and also
that the stressing of the garbage collection affected the delay (as seen in Figure
7.3). The overall results can still be considered good though, since the Java
was neither especially slow nor significantly increased the jitter. The Java also

seemed a little faster than the plc, which was unexpected.

8.3 Further Work

This was a first test of an object oriented automation system. The main issue
is that it is not currently supported by hardware vendors. It would be good
if vendors would adjust their platforms to support Java and provide standard
classes to control their hardware.

A further step would be to connect the HMI (Human Machine Interface) to
the Java control application. A thesis performed at the same time at Tetra Pak
D&E by Johanna Byrlind and Kajsa Karlsson [10], is about the creation of a
new web based HMI. The idea of their thesis is to separate the programmers
from designers by using the MVC (Model View Controller) model. This involves
techniques such as JSP and the use of tag libraries.

With a web based HMI using applets or servlets, communicating with a
Java control application would be rather simple using for instance RMI (Remote
Method Invocation).

49

Bibliography

Aicas. Jamaica VM, 2006-10-01. http://www.aicas.com.

B&R. B&R - Perfection in Automation, 2006-10-01.

http://www.br-automation.com.

Don Busch. RTSJ - The Real-Time Specification for Java. Java News Brief,
(May), 2006. http://www.ociweb.com/jnb/jnbMay2006.html.

Todd Ham Christie Deizh and Steve Murray. Writing a functional specifi-
cation for an s88 batch project. Chemical Engineering, (August 01), 2003.
Available at http://www.finessephotonics.com/pdfs/CES88.pdf.

Data & Object Factory. Design Patterns in C# and VB.NET - Gang of
Four, 2006-09-11.
http://www.dofactory.com/Patterns/Patterns.aspx.

The Eclipse Foundation. Eclipse - an open development platform, 2007-01-
02. http://www.eclipse.org.

Object Management Group. Unified modelling language, 2007-02-18.
http://www.uml.org.

International Electrotechnical Commission. International Standards and

conformity assessment, 2007-02-18. http://www.iec.ch.

ISA, Instrumentation, Systems, and Automation Society. S88 for engineers,
2007-02-18. S88 White Paper - Engineers.pdf.

Kajsa Karlsson Johanna Byrlind. New web based hmi portal for tetra pak
equipment. Master’s thesis, Lund Institute of Technology, 2007.

Sheng Liang. The Java Native Interface, programmers guide and speifica-

tion. Addison Wesley Longman, Inc, first edition, 1999.

Plcopen organization. IEC 61131-3: A standard programming resource,
2004. http://www.plcopen.org/TC1/Intro TEC ' March04.doc.

50

[13] PLCopen organization. Plcopen - for efficiency in automation, 2006-06-12.
http://www.plcopen.org.

[14] Tetra Pak. Tetra Pak. About processing, packaging and aseptic technology.,
2006-10-01. http://www.tetrapak.com.

[15] B & R. B&R Automation Software Help, 2002. Automation Studio 2.4.0.9.

[16] The Real-Time for Java Expert Group. rtsj: Real-Time Specification for
Java, 2007-02-18. https://rtsj.dev.java.net/.

[17] Tigris.org. subversion.tigris.org, 2007-02-08.
http://subversion.tigris.org/.

o1

Glossary

A

ACOPOS Servo drive from B&R.
aicas The company that developed Jamaica. See Section 2.2.

Automation Software Software tools and runtime environment developed by
B&R. See Section 4.1.

Automation Studio The development environment for PLC programs to B&R

hardware. See Section 4.1.

Axis A rotating device, like the one in figure 5.1.
B
B&R Bernecker & Rainer. The company producing the hardware used

in this project. See Section 2.3.

|

IEC 61131-3 A PLC programming standard defining 5 languages. See Section
3.1.

J

Jamaica VM The program used for running Java on the plc. See Section 4.3.

L

Ladder One of the IEC61131-3 programming languages. See Section 3.1.

M

mclib A C-library for motion control written by B&R See Section 4.1.

52

P

PLC open interface See Section 4.1 .

S

S88 See Section 4.1.

Sequential Function Chart, SFC A programming syntax defined in
IEC61131-3. See Section 3.1.

Structured Text One of the IEC61131-3 programming languages. See Section
3.1.

93

Appendix A

Additional Figures

Existing Magazine Software

axisHandler

Figure A.1 shows a minor part of the function block axisHandler’s state machine.
Representing SWITCH..CASE statements in this way is not very helpful, and
these programs can indeed be fairly difficult to document, other than with the

code itself.

Machine Phases

The machine phases are shown in Figures A.2, A.3 and A.4.

Object Oriented Implementation

This section presents UML diagrams of all classes created during this project
using Eclipse and Jamaica. The complete software consists of the packages

illustrated in the Figures A.5 and forward.

54

O E AR N SR R € NN G N ST

kun boot tnit, reset and init event write run boot done lélrun boot end I
A

copy parameters and alarm trace
I &
203 202 201 100
1 enable=true
) })
211 4u L_J L_J\ wait for axis
- getAxis done enabled
run mc_getAxis
I 214
bus on = true
223
done 200
call mc_writeParameter
- I un me_init one 221
. J
.) 215
run mc_axisConfi
\y done {un me 9) enable ok f—————
enable warning handler,
224 : L error handler and
check position ok 225 \alarm viewer
control mode internal state machine
that writes several
parameters with
\m >_writeParameters
& 231
9011 internal state machine timeot
that reads several parameters
with mc_readParameter
233
error command aborted
9998 initiate brake control 232
9031 9032 with internal state —)
J L J machine that writes intiate
parameters with parameter control
mc_writeParameter
9039
291
9900
" enable power
Alarm reset, await
enable brake control
acknowledge
401 300
| 403] 402
" N " and axis active
@val servo ol request power await swenabled
—
498 500
499 await commands
and state changes
error error A
fatal error state 9033

Figure A.1: A minor part of the axis handler state machine. The function
block starts in state 0 and the axis is up and running (and awaiting external
commands) in state 500.

95

e

e

Sectete 7

Extibance

from/to
sterilization

Figure A.2: Machine phases. Continuing in the next figure.

56

from/to calibrate

Enter Sterilization

Entered

include /

Butten down O‘O

Held

RegCart include /

= oo

S
include [
Restart

oL o) Aborted

; Enmened run - include /
Done o0

include [

O

SIE Butten up

Interlocked

include /

Sa)

Machine ready

Entered

include [

o
S E'mnaady
Ready
include /
[o] Held
ToRun Restart include /
Run Hold oo

include / Restart

O‘O Aborted

Abort

Bucten down

include /

Finighed run

Dene

include [

o from/to

E‘” Cleaning

Interlocked

include /

ea)

from/to Tank fill

Figure A.3: Machine phases. Continuing in the next figure.

57

from/to machine ready from/to Tank £ill

Elasning

BH
E

¥
]
i

i

Tntar
Eatar

Frestist Lo

Figure A.4: The first of the machine phases.

o8

BRAXxis BRASruntime

m_configuration : BRAxisConfiguration instance : BRASruntime
INIT_CMD : short.
AXI NFI MD : sh getAxis(interf : short,node : short,type : short) : longj
HOME_CMD : short checkPointerslnitialized() : int
MOVE ABSOLUTE_CMD : short poll(structAdr : long) : long
STOP_CMD : short BRASruntime()
MOVE_VELOCITY_CMD : short instance() : BRASruntime
$88 ENABLE : short checkPointers() : boolean
88 START : short getAxes(info : AxisInfo[]) : BRAXis[]
$88 HOLD : short.
$88 RESTART :short AxisInfo
$88 ABORT : short
S88_RESET : short m_interface : short

H m_type : short
m_axisRef : long m_node : short

m_busOn : boolean
m_controlReady : boolean
m_controlOn : boolean

Axislnfo(interf : short,type : short,node : short)

m_homed : boolean S88Device
m_moveActive : boolean

m_lagWarning : boolean INTERLOCKED : int
m_driveEnable : boolean RBEADY :int
m_pHwENd : boolean RUN :int
m_hHwEnd : boolean DONE :int
m_trigger1 : boolean HELD :int
m_trigger2 : boolean

m_error : boolean m_state : int
m_axisPos : float

m_posLag : float

m_velocity : float

m_errorinfoReal : float MCLibException
m_errorID :int

m_status :int serialVersionUID :long
m_errorinfo : long m_errorlD : long

m_camStatelndex : int
m_camS88State : short
m_camError : boolean
m_camStatus : int

MCLibException(errorID : String)
error() : long
toString() : String

m_axisPosString : String [F
m_velocityString : String
m_posLagString : String MCLibErrorException

m_errorinfoRealString : String
m_newCamDataReady : boolean
m_camDataChangeDone : boolean +MCLibErrorException(s : String)
m_pollThread : PollThread +toString() : String

m_actValAdr : long
m_powerAdr : long
m_camControlAdr : long TimeoutException

m_isPolling : boolean . .
serialVersionUID :long

TimeoutException(s : String)

startPoll() : long
pollVoidCmd(cmd : short,adr : long) : boolean

poll() : void

initF1D() - void MCErr
initPoUIFID() - voi

BRAXis(ref : long)

BRAXxis(axis : BRAXis)

doPoll() : boolean

axisConfig() : void 1—|
init() : void configuration

enablePower(enable : boolean) : void

home() : void

moveAbsolute(ma : MoveAbsolutelnput) : void

stop(deceleration : float) : void

moveVelocity(velocity : float ion : float, ion : float,direction : boolean) : void
startCamControl(configNbr : int,master : BRAxis) : void

stopCamControl() : void

updateCamControl(up : CamInputUpdate) : void event

startAxis() : void

startPollThread() : void

stopPolling() : void

print() : void

awaitDone(cmd : short,adr : long) : void
isUpdatingValues() : boolean

Figure A.5: The brasruntime package providing basic motion controlling func-
tionality

99

<<interface>> BRAxisEvent

IBRAXxisEventNotification

eventOccurred(e : BRAxisEvent) : void

toString() : String

A

: Mailbox -> IBRAxisEventNotification
|
1

<<realize>>

Mailbox

mail : BRAxisEvent

eventOccurred(e : BRAxisEvent) : void
fetch() : BRAxisEvent

doFetch() : BRAxisEvent
doFetch(timeout : long) : BRAxisEvent

Figure A.6: The brasruntime.event package providing basic event handling

60

BRAxisConfiguration

AxisConfiglnput

InitinputStruct

mcOFF : short
mcON : short

mcREAL AXIS : short
mcVIRT AXIS : short
mcACTIVE_Hl : short
mcSTANDARD : short
mcAT_ONCE : short

mcS START : short
mcSIGNALT : short
mcPOSITIVE : short
mcDIRECT : short
mcDEFAULT : short
axisConfig : AxisConfiginput
caminput : CamAutControllnput
init : InitinputStruct

home : Homelnput

Homelnput

+position : float
+mode : short
+velSwitch : float
+velTrigger : float
+acceleration : float
+edgeSwitch : short
+startDir : short
+triggDir : short
+refPulse : short
+refPulseBlock : float
+trgLimitBlock : float
+lagLimitBlock : float
+relPosBlock : float

+simulation : short
+reference : short
+pHwWENd : short
+nHwWENd : short
+trigger1 : short
+trigger2 : short
+countDir : short
+unitDecPlaces : short
+units : float
+axisPeriod : float
+motorRevs : long

MoveAbsolutelnput

+position : float
+velocity : float
+acceleration : float
+deceleration : float

+maxVelocity : float
+maxAcceleration : float
+maxDeceleration : float
+pSwENd : float
+nSwEnd : float
+lagWarning : float
+lagStop : float
+kvPosition : float
+tnPosition : float
+predictTime : float
+totalTime : float
+maxProportion : float
+maxlintegral : float
+kvSpeed : float
+tnSpeed : float
+ftSpeed : float
+freqNotch : float
+bwNotch : float
+spfMode : short
+maxdJerk : float
+configNbr : int

CaminputUpdate

MoveVelocityInput

+velocity : float

+acceleration : float
+deceleration : float
+direction : boolean

s1 : boolean
s2 : boolean
s3 : boolean
s4 : boolean
s88Cmd : short

resetSignals() : void
resetAll() : void

CamAutControllnput

CamAutDataStruct

CamAutState

+enable : boolean
+start : boolean
+hold : boolean
+restart : boolean
+abort : boolean
+reset : boolean
+newData : boolean
+change : boolean
+signall : boolean
+signal2 : boolean
+signal3 : boolean
+signal4 : boolean
+phase : float
+offset : float
+amplitude : float
+startMode : short
+restartMode : short
+startPos : float
+masterRef : long
+addMasterRef : long
+addSlaveRef : long
+camAutData : CamAutDataStruct

+period : float

+slavePeriod : float
+startState : short
+restartPeriodState : short
+restartCompEnable : short
+eventlD : int
+slaveFactorlD : int
+masterCompVelocity : float
+restartVelocity : float
+restartAcceleration : float
+restartDeceleration : float
+restartDeadBand : float
+holdDeceleration : float
+phaseVelocity : float
+phaseAcceleration : float
+offsetVelocity : float
+offsetAcceleration : float
+amplitudeVelocity : float
+amplitudeAcceleration : float
+state : CamAutState[]

+masterID : int
+compMode : short
+compSlave : float
+compCurve : short
+name : String

+length : float
+amplitude : float
+count : int

+event : CamAutEvent[]

+CamAutState()
+copy() : CamAutState

CamAutEvent

+type : short
+attribute : short
+nextState : short
+changeData : short

+copy() : CamAutControllnput

+CamAutDataStruct()
+copy() : CamAutDataStruct

+copy() : CamAutEvent

Figure A.7: The brasruntime.configuration package facilitating axis configura-
tion

61

Recorder Timer

~fw : FileWriter -m_msLimit : long

] -m_startTime : long
+create() : void

+finish() : void +Timer(msLimit : long)
+write(msq : String) : void +start() : void
+nativeWrite(status : int) : void +timeout() : boolean
+writeErr(msg : String) : void +timeLeft() : long

Figure A.8: The utilities package with a few useful classes.

magazine RTFStateMachine

m_phase : Phase

m_mag : Magazine

m_rtfMagMon : RTFMagazineMonitor
m_magMon : MagazineMonitor

main(args : String[]) : void

<<create>> RTFStateMachine()

RTFMagazineMonitor runRTF() : void
m enabled : boolean runPhaseZero() : boolean
m_swEnabled : boolean
m_s88Enabled : boolean Phase
m_searchHome : boolean
m_bE_Stop1 : boolean PHASE_ZERO : int
m_bDoor_Stop1 : boolean PHASE_MACHINE_ON : int
enableAxis(val : boolean) ZV(?Id PHASE STERELISATION : int
enableSW(val : boolean) : void PHASE READY : int
enableS88(val : boolean) : void PHASE TANK FILL : int
searchHomeCmd(val : boolean) : void PHASE PRODUCTION : int
awaitEnabled(val : boolean) : void PHASE CLEANING : int
awaitSWEnabled(val : boolean) : void m_phase : int
awaitSearchHomeCmd(val : boolean) : void
awaitS88Enabled(val : boolean) : void <<create>> Phase()
tryWait() : boolean getPhase() : int
checkValidConditon() : boolean setPhase(newPhase : int) : void

Figure A.9: The com.tetrapak.a5.packagingline.rtf package representing the rest
of the machine communicating with the magazine.

62

MagazineState

AXIS_OFF : short

AXIS_ON : short
AXIS_ACTIVE : short
SERVO_ON : short
HOMED : short.

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAXxis) : void

BRAXisOff

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

——

BRAxisShutDown

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

—

BRAXxisErrorState

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

7N

Magazine

m_stateLevel : short

m_rtfMon : RTFMagazineMonitor
m_state : MagazineState

m_th : FeederThread

<<create>> Magazine(rtfMon : RTFMagazineMonitor)
startFeeder() : void

awaitAxisActive(val : boolean) : void
awaitServoOn(val : boolean) : void

awaitHomed(val : boolean) : void

awaitStopped (val : boolean) : void
changelevel(newLevel : short) : void
performTransition(newState : MagazineState) : void
getState() : MagazineState

getRTFMonitor() : RTFMagazineMonitor

tryWait() : void

FeederThread

BRAXxisStart

TorgStatFF : float

E Al
ErictStatPosFF : float
FrictStatNegEF - floa
InertiaFF : float
AccFilterT2FF : float

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

m_context : Magazine
m_masterAxis : MagazineMasterAxis
m_camAxis : BRCamAXxis

<<create>> FeederThread(context : Magazine)
run() : void
runFeeder() : boolean

initAxes() : AxisInfol

CamAutControlStart

execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void

—

CamAutControlRun

MAX_FAIL_COUNT :int
INIT_TIMEOUT : long
REL_TIMEOUT : long

m_axis : BRCamAxis

m_master : MagazineMasterAxis
m_mon : Magazine
m_internalState : CamAutState
m_caminput : CamInputUpdate
m_mailbox : MagazineMailbox
m_failCount : int

<<create>> CamAutControlRun(camInput : CamInputUpdate)
execute(mon : Magazine,master : MagazineMasterAxis,axis : BRCamAxis) : void
stopCam() : void

CamAutState
[.
execute() : void
N —
TryReset
StartState
INIT_FIRST : short.

FORCE_INIT : short

FORCE RELEASE : short

execute() : void

camReleaseResolved : int[]
caminitResolved : int[]

Running m_resetType : int

<<create>> TryReset(resetType : int)

execute() : void
runSheet() : void
pauseSheet() : void

execute() : void

MagazineMailbox

MAX _TIMEOUT :long

tryFetch() : BRAxisEvent
tryFetch(timeout : long) : BRAxisEvent

Figure A.10: The com.tetrapak.ab.packagingline.rtf.magazine package contain-

ing classes for magazine control.

63

BRCamAxis

m_powerConditions : boolean
m_homed : boolean
m_input : CamAutControllnput
lastCamState : int
m_observers : Vector

ntrolR Tim . in
m_controlOnTimeout : int

BRCamAXxis(axis : BRAXis)

axisConfig() : void

init() : void

powerUp() : void

spin() : void

isTrigger2() : boolean

getCamStatelndex() : int

homeSearch() : void

startCamControl(master : BRAXxis) : void
updateCamControl(up : CamInputUpdate) : void
shutDown() : void

stop() : void

print() : void

doPoll() : boolean
observeCamStatelndex(notifyer : IBRAxisEventNotification,index : int,val : boolean) : boolean
observeCamStatelndices(notifyer : IBRAxisEventNotification,indices : int[],val : boolean,keepAlive : boolean) : boolean
awaitS88State(state : short,timeout : long) : void
awaitBusOn(val : boolean,timeout : long) : void
awaitControlOn(val : boolean,timeout : long) : void
awaitPowerPreconditions() : void

tryWait() : boolean

tryWait(timeout : long) : boolean

MagazineMasterAxis

m_observers : Vector

MagazineMasterAxis(ax : BRAxis)

start() : void

shutDown() : void

observePosition(notifyer : IBRAxisEventNotification,lowerLimit : float,upperLimit : float) : boolean
doPoll() : boolean

MasterAxisConfiguration MagazineServoConfiguration
+moveVell : MoveVelocityInput #moveAbsoluteHome : MoveAbsolutelnput
+moveAbs1 : MoveAbsolutelnput #stopDeceleration : float

+stopDeceleration : float

+MagazineServoConfiguration()
+MasterAxisConfiguration() -getlnitParameters() : InitinputStruct
-getCamlnput() : CamAutControlinput

PositionReachedEvent
CamStateEvent

~camStatelndex : int

+CamStateEvent(i : int)
+getindex() : int

Figure A.11: The
com.tetrapak.ab.packagingline.rtf.magazine.magazineServo package containing
axis-classes for the magazine servo.

64

Appendix B

Test Results

This chapter presents the measurements from tests described in Chapter 7.
Table B.1 shows the stop delay in ms for the ordinary Java program, allocating
as little new objects as possible every test run. Table B.2 shows the stop delay
in ms when 5 extra new-calls where added to the functions. The new-calls
instantiated Time-objects which were dereferenced again as soon the test was
over. The tests were performed immediately after one another, starting with the
lowest speed and increasing. Table B.3 shows the corresponding values when

testing on the PLC not using the Java program.

65

Table B.1: Stop delay in ms. The columns are speed in units/s and the rows
are different test runs.

200 300 400 500 600 700 800 | mean
72 92 94 91 100 88 89 8.9
72 92 94 91 83 103 76 8.7
72 58 94 111 83 88 10.1 8.7
72 58 94 91 100 103 8.9 8.7
72 92 94 91 100 88 89 8.9
72 92 94 91 83 74 76 8.3
72 92 94 11.1 100 88 89 9.2
72 92 94 91 100 88 10.1 9.1
72 92 94 91 100 103 89 9.2
10 72 92 94 71 100 88 10.1 | 8.8
11 72 92 94 91 83 74 101 | 8.7
12 72 92 94 111 83 88 89 9.0
13 72 92 94 91 100 88 89 8.9
14 72 92 94 91 100 103 89 9.2
15 72 58 69 91 100 88 89 8.7
16 72 92 69 71 83 88 101 | 9.2
17 72 92 94 91 83 88 89 8.7
18 72 92 94 11.1 100 88 89 9.2
19 72 92 94 91 83 88 89 8.7
20 72 58 94 91 100 103 8.9 8.7
mean | 7.2 852 915 93 93 9.0 9.0

© 00~ O U= W N -

66

Table B.2: Measured stop delay in ms with allocation and dereferencing of 5
new Time-objects during each test. The columns are speed in units/s and the
rows are different test runs.

200 300 400 500 600 700 800
1|72 58 94 111 10.0 103 10.1
2|72 58 69 91 100 103 10.1
3172 92 94 71 100 88 10.1
4 |72 92 94 91 100 88 89
5|72 92 94 11.1 100 88 89
6 |72 92 94 111 83 88 89
7|72 92 94 91 83 103 89
8§ | 72 58 94 91 100 88 10.1
9172 92 69 91 83 88 89
1072 92 94 9.1 100 88 89
11172 92 94 9.1 100 88 89
12172 92 94 91 83 103 89
13172 92 94 111 100 88 10.1
14172 92 94 91 83 88 89
5172 92 94 71 100 88 10.1
16|72 92 94 91 83 88 89
17172 92 94 91 10.0 103 8.9
8172 92 94 91 100 103 10.1
19172 92 69 91 10.0 103 8.9
20072 92 94 71 83 88 10.1

67

Table B.3: Corresponding measured stop delays for a cyclic Automation Run-
time task in ms. The columns are speed in units/s and the rows are different
test runs.

300 500 800 | mean
1 94 93 98 9.5
2 98 85 9.3 9.3
3 98 86 9.3 9.3
4 85 86 9.8 9.0
5 85 85 9.8 9.0
6 85 9.7 8.6 9.0
7 98 9.3 8.6 9.3
8 93 9.7 8.6 9.3
9 98 9.7 8.6 9.4
10 93 94 8.6 9.1
11 98 9.8 8.6 9.2
12 85 9.3 98 9.3
13 85 85 98 9.0
14 85 85 94 8.9
15 98 85 94 9.3
16 9.8 85 9.8 9.3
17 93 86 9.8 9.3
18 98 9.8 94 9.7
19 85 9.3 98 9.3
20 59 9.7 938 8.5
mean | 9.1 9.2 9.3

68

Appendix C

Implementation Methods and

[ssues

It was not obvious what parts of which software tools to use and how to use
them. This chapter describes the specific methods and tools, issues, problem
solutions and reasons. It will probably be of interest only for those who wants to

try out a similar problem themselves with similar software and hardware tools.

C-compiler issues

The mclib is compiled with B&R’s gnu C-compiler, but it was not compatible
with Jamaica source code, due to optimizations made by B&R. Therefore, an-
other one had to be used to compile the Jamaica C-code. Aicas recommended
the compiler used in Tornado from Wind River, the former software development
environment for VxWorks. A smaller issue was that the Tornado environment

was no longer available, the present one is called Workbench.

Running Jamaica on target

The plan is to write a small C-program, which runs as a cyclic task from within
Automation Studio. The small C-program’s only task is to start the standalone
pre-built Jamaica application. The Jamaica application obtains a pointer to a

pusher function, so that it can push mclib commands to a cyclic task.

The -includeClasses option

To make the Jamaica JNI-implementation aware of all the classes used, the -

includeClasses option must be included into the configuration. All classes that

69

is to be reached from the JNI, but do not contain any own native methods have

to be mentioned.

File system

B&R target uses a FAT file system and provides the 10-library to manage files.
The CPU can be configured to include ”File Devices” - a special path on target
with an assigned device name. The external modules were transferred with ftp
to such a device and could then be loaded in AS.

Eclipse Remote Debugging

A few strange behaviours were observed during the Eclipse remote debugging.

Surely some of them origin in incorrect behaviour of the user.

e Presenting variable values: Sometimes true boolean values were presented
as false, and float- and double values were always zero. This was solved

by presenting them as Strings, which were always shown correctly.

e When having many breakpoints (especially in the vicinity of native meth-
ods), the debugger got disconnected. The program appeared to be still
running on the target though, stopping at breakpoints as usual and had

to be interrupted by force on target.

70

