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Chapter 1
Introduction

In this master’s thesis a stabilizing controller for the car-trailer combination is
derived and implemented using active steering as actuator. The implemented
system is evaluated with respect to the unstable behavior. This is done by test
drives at different test tracks.

1.1 Motivation

People driving a car with a trailer have known that the car-trailer combination
can give an unstable behavior, which in worst cases can result in an accident.
To prevent accidents most car built today have some sort of stabilization con-
trol that uses the brakes as actuators (for example ESP, Elecironic Stability
Program). The company ZF Lenksysteme GmbH has developed a product for
BMW called Active Front Steering which can be used as an actuator for stabi-
lization of the car. Interactions from the Active Front Steering are faster then
the interactions from the breaks and they are more comfortable, this is why it
is more desirable to use the Active Front Steering as actuator instead of the
brakes.

1.2 Active Front Steering

The Active Front Steering is an invention which superimposes an electrically
controlled angle to the steering wheel angle. The concept can be seen in figure
1.1. The motor angle §;y is controlled electrical and is summed with the steering
wheel angle from the driver dg, and together they form the pinion angle 5. The
pinion angle is mechanically connected to the steering wheel angle é5.

1.3 Software and Hardware used in Thesis

For all symbolic calculations the free program Maxima was used. The system
was implemented in Matlab Simulink and then compiled to be used in a dASPACE
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lanetar e
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Figure 1.1: The principle of the AFS system, The steering wheel angle ds and
the electrical controlled motor angle 8y together gives é4.

real time computer that was installed in the car. Parameter optimization was
done off line with the help of the Matlab command lsqnonlin.

1.4 Notations

The following notation is used.

1.4.1 Acronyms

The following acronyms are used:
AFS Active Front Steering
DAE Differential Algebraic Equation
DE Differential Equation
ESP Electronic Stability Program
RMSE Root Mean Square Error

1.4.2 Variables, Constants and Parameters

The following variables, constants and parameters are used in the thesis.



1.4 Notations

reference frame

origin of the reference frame

local frame of body ¢

origin of the frame ¢

point ¢, defined in text

vector with the coordinates

coordinates for the frame ¢

vector from O to P; seen in frame R

matrix with mass and moment of inertia of body ¢
mass of body i

moment of inertia of body 1

force acting along the x-axis of frame R on body i
force acting along the y-axis of frame R on body ¢
torque acting on body ¢ seen in local frame of body ¢
force acting in the longitudinal direction of a tire
force acting in the lateral direction of a tire
cornering stiffness, a tire constant

front wheel angle

steering wheel angle

pinion angle

AFS motor angle

slip angle of the cars center of mass

slip angle of front axle

slip angle of front wheel/tire

slip angle of rear wheel

slip angle of trailer wheel

speed of the cars mass center

angular velocity of the car

car-trailer angle
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Chapter 2

Car and Trailer Model

In this chapter the dynamic model of the car and the trailer is investigated
and the differential algebraic equations for the system are derived. First the
geometrical definitions of the system are set up, there after the DAEs will be
defined. Finally the constraints for the system are derived, making it possible
to derive the DEs from the DAEs.

2.1 Basic Geometrical Definitions

The car geometrics can be seen in figure 2.1. Here the global inertial frame
R is introduced, this frame can be seen as the fixed road that the car drives
on. Further the local frames L; and Ly with their origins located in the mass
center of the car respective the mass center of the trailer are shown. For further
. ; coR . ( .R R g
calculations the displacement vector rE, = ( 2§, yfo ) is introduced as
seen in figure 2.2. The angle between the frame I; and the frame R, iy, is
defined in figure 2.2. Observe that the angle is positive in counter clockwise

Figure 2.1: Definition of the coordinate system for the car and trailer



6 Car and Trailer Model

rotation.

Define the planar orientation matrix as the matrix that maps a vector rep-
resented in L; into a vector represented in R as

AH.L,' — ( cos %bi _Sin".'f)i ) . (21)

sint; cosyy

The points Q1 ... Qs and Py, P, are defined according to figure 2.3. (} is
the point between the front wheels, Qs is the point between the rear wheels, Qs
is the point at the towing hook of the car, @ is the point of the towing hook
on the trailer and Qs is the point between the trailer wheels. P, is located in
the mass center of the car and P is located in the mass center of the trailer.

The car-trailer angle v = 9; — ¢ is defined as seen in figure 2.4. The y
angle is positive in a left turn.

Figure 2.2: Definition of the displacement vector, starting in the origin of frame
R and ending in the origin of frame I; which has the point P as the origin.

Figure 2.3: Definition of different points on the car and trailer, and the distance
between the different points.
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Figure 2.4: Definition of the car-trailer angle gamma

2.2 Bicycle Model

A bicycle model of the car is adopt for the sake of simplicity. Instead of two
wheels on each axle of the car and trailer only one wheel is used, in the centerline
of the car and trailer. This is shown in figure 2.5.

i E
ESIPREL |
dad

RN ia :
‘1 N

Figure 2.5: Definition of different points on the car and trailer using a bicycle
model.

2.3 The Differential Algebraic Equations

In small mechanisms with few bodies and few forces acting on the bodies it is
often simple and straight forward to derive the DEs. The car and trailer system
includes a large number of forces and a passive joint connecting the two bodies
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which makes this a complex system. Therefore the theory of modeling bodies
with constraints described in [1] is applied.

2.3.1 General Equations

Each body’s position is described with three coordinates that are gathered in
the position vector p; according to

T
Pi={(280 vho i) . (2.2)

Bach body’s position vector is gathered in the system position vector p with
the definition

p=(oT o). (2.3)

The whole system position is described by the 6 elements in p. The time
derivative of p is defined as

. . o aT
p=(p{ 5%) (2.4)

where .
pi={( 280 9Bo i) . (2.5)

The velocity vector and the time derivative of the position vector has in this
planar case the relation

v = P. (2.6)
The mass matrix is defined as
M = diag (M My) (2.7)
with
M; = diag (m; m; JF) (2.8)

where m; is the mass of body ¢ and Jf"' is the moment of inertia for the body
i. The matrix

gz =10 (2.9)
because both local frames have their origins in the center of mass of their re-
spectively body.

2.3.2 Forces Acting on the System

The force vector is defined as

F=(s7 15 (2.10)
with
o
=1 % 1 ) (2.11)
Y M
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SR and 3 ?ﬁ are the sums of forces acting on body ¢ seen in the frame R
and ZAJiLi is the sum of torque acting on body i seen in the frame L;.

The forces acting on the car are defined in figure 2.6. From these definitions
the following force vector elements are derived.

fir - (cosdp - cosihy — sindp - siniy)
+fof - (—cosdp - sinehy —sindp - cosyy)
> +fir - cosh; — farsinyy
- (2.12)
Z 51 fir - (cosdp - singy +sindp - cos i)
+fa_f . (COS§F <cosih; —sindg - Sin¢1)
+fir -sinyy + fagr cosiy
JSip-cos{6p + 1) — fay - sin(dr + 1)
+fir - cosPr — farsiniy
- . (2.13)
fir sin{dp + 1) + fay - cos{dp + 1)
+fin - sinyy + forcosth

From the definitions of forces acting on the trailer in figure 2.7 the following
force vector components are derived.

Zfa:Rz Jir - cosipa — farsiniyy
= . (2.14)

P Jor - sinthp + far cos i

For the torque element in the force matrix there is the comfortable relationship
that M =r x F giving

D M =1y (cosdp - Fop +sindp - Fip) ~la- Far (2.15)
N My = —l5- Far. (2.16)

Figure 2.6: Definition of forces acting on car. f; represents a longitudinal force
where as f, represents a lateral force. 1 and @5 is the front and rear wheel
respectively.
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2.4 Constraint Equations

The two bodies are connected through the trailer hook, meaning that there
exists a constraint for how the bodies can move in relation to each other. The
trailer hook is modeled as a revolutional joint.

The two point coinciding are (3 for the car and @4 for the trailer. This
leads to the constraint position equation

‘rglo + 'PSSPI - (ngo + TS4P2) =0 (2'17)
or
rﬁlo + AR, rélapl — (AM’2 . 'Péipz + 'ngo) = [ (2.18)
where
—(la+12
TGPy = ( 0 ) (2.19a)
i
TG p, = ( 3 ) : (2.19b)
All together gives
:L'glo—(ls+l2)-cosy')1—54-cos¢2—$§20 = 0 (2.20)
yglo —{lz+ o) -sintdy — g - sinhy — yﬁo = 0.

With this all matrices needed to set up the DAE are defined.

2.5 Deriving the Differential Equations

The DAEs can not be used in a control problem, but rather to simulate the
system on a computer. Therefore is it necessary to transform the DAEs into
DEs that can be used for derivation of a controller,

la
s
Qa
y 12 i
1.0 AETNE

for

Figure 2.7: Definition of forces acting on trailer. f; represents the longitudinal
force and f,, represents the lateral force. @)y is the trailer wheel.
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2.5.1 Global Symbolic Projection of DAE into DE

With the theory in [2] the DAE is mapped into the DE in a single step. The
DAE is described in the form

p=v

. (2.21)
M. 6= f —+ qe.

To map the DAE to DE it’s necessary to choose independent coordinates.
There are 6 position variables and 2 constraint equations (2.20), therefore there
are 2 dependent position variables and 4 independent. These can be chosen
rather freely, but the following arguments are used.

The velocity of the car is important, therefore 2§ o, yE o are chosen to be
independent coordinates. Furthermore the car-trailer angle is important and
according to figure 2.4 this means that ¥; and 1, , which are used to calculate
7, should be independent coordinates. Therefore these 4 coordinates are chosen
to be the independent coordinates.

Let the vector p;,4 be the vector with the independent coordinates and
let pge, be the vector with the dependent coordinates. When the dependent
and independent coordinates are chosen it is possible to define the projection
matrices Fring and Prgep 88

ap;
Prind = —“g nd
P (2.22)
P don — apdep
rdep — .
ap

With the constraints equations (2.20) it is possible to rewrite the dependent
coordinates as

R R
_{ *Bo \ _ [ 2ho —(s+12) cosyn — Ly cosyy ) 2.23
Paep ( Yo ) ( Yho — (a+1a) singhy — g singy /) (2:23)

Together with
o
P.0

y}f O
- 't
Pind 1!)1 (224}

o
these equations yields the explicit constraints position equations
P = h(Pya) (2.25)
that is shown in equation {A.15). Further is

Fh(Pina) (2.26)

hpina(Ping) = OPina

and is shown in equation (A.16). The spatial transform matrices are

Tind(Ping) = I (2.27)
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and
T=1Is (2.28)

due to a planar system. The global projector is defined as

Jv = T—l ) h’P’nd ' ﬂnd = h'pind (2'29)

and its time derivative is defined as
jv = }:lpind (Pind)- (2-30)

J, is shown in equation (A.20).
This provides the DE in the minimal coordinates p;,g and ving

Ping = Vind (2.31)
Mind(Ping) * Pind = find{Ping; Vina) + €e,, (Pind, Vind)
where
Ming = hL M hy,, (2.32)
fima =hL - f—hE M By, - vina (2.33)
dging = 0. (2.34)

With this the goal is reached, the DEs are revealed. With help of the matrix
inverse it is possible to rewrite the independent variables,

Pind = Mind(Dind) ™" * find(Pind; Vind)- (2.35)

2.6 Force Estimation

The car and trailer moves as a result of forces acting on them. These forces
are not measurable since they represent the friction force between the tire and
the road. Therefore they must be estimated from known measurable variables.
Force estimation in longitudinal direction can be estimated through the relation
F = m-aq, where a is the acceleration of the car. Force estimation in the lateral
direction requires more advanced theories about tire dynamics, see for example
[3] and [4]. The estimated forces are used in the force matrix (2.10).

The velocity, acceleration and yaw rate for the mass center of the car are
known from measurements in the car, through this it is possible to calculate the
velocity, and the direction of the velocity, for other points on the car. In this
case it is desirable to know the front and rear wheels velocity and direction of
velocity.

2.6.1 Deriving Lateral Force

The lateral force has, according to [4], a linear relationship with the slip angle
assuming small slip angles, see figure 2.8. That is
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fo= -0 ca (2.36)

The constant ¢, is known as the "cornering stiffness” and is said to depend
on the properties of the tire, such as load and air pressure. In i5] there is the
more detailed formula

Co = Cg - e(f‘::’:x -Ial) (2.37)

where fo..., 18 the maximum available friction force in the lateral direction (read
more about friction estimation in [6]).

More on Tire Cornering Stiffness, ¢

The ¢y is dependent of surface, temperature, weather and the load on the axle
according to [4]. The load on the axle changes during driving because of wind
resistance and acceleration. Therefore it is desirable to make ¢y a function
of axle load. Let the forces be defined according to figure 2.9. The torque
equations around the contact surface for each wheel and the torque equation
around the towing hook are derived in the equations {A.27a) to (A.27d). From
these equations the axle loads can be derived as in equation {A.28b) to (A.28d).
With this it is possible to make ¢ dependent on the actual load on the wheel.

2.6.2 Calculation of Slip Angles

When there is angular velocity besides the normal velocity, the different points
of the body move in different velocity compared to the velocity of the local
frames origin. This is shown for the car in figure 2.10 and for the trailer in
figure 2.11. Slip is defined as the difference in direction of velocity and heading
direction of the tire, see figure 2.8. With known velocity and angular velocity
it is possible to derive the velocity vector for the different points on the car and
trailer.

Deriving Front Slip

The heading direction of the front wheel is not the same as the heading direction
of the car because of the turning possibility, This means that it is necessary to
subtract the turning angle from the angle between the velocity vector and the
cars heading direction of the point Q1 as seen in figure 2.12. The velocity vector

el

V4

Figure 2.8: How the slip angle o creates lateral force f,. The dotted line is the
heading direction of the tire, v is the velocity vector and f, is the induced force.
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can be moved to the front with help of equations derived in [1], Tt yields that

Fifo =" iho+ AT i, + iy R (AT rh, ). (2.38)

airc

Figure 2.9: Definition of the longitudinal and horizontal forces acting on the car
and the trailer. F,;; and Fy;p. is the force caused by air resistance. F,.. and
Foye is acceleration force acting on each body’s mass center. Fi, Fir and Fiy
are the longitudinal forces acting on the trailer wheel, the cars rear wheel and
the cars front wheel. Ny, N, and N 7 are the horizontal forces acting between
the trailer wheel, the cars rear wheel and the cars front wheel and the road.
Fry, is the horizontal force acting between the trailer hook on the car and the
trailer and Fipy is the longitudinal force. h.; and A is the height of the mass
center for the trailer respectively the car. hgir and by is the height where
the force from air resistance is acting. }; is the distance between the ground
and the trailer hook.

QB Q2 1? v Ql UF
.U\R" / /

.% @

A
Figure 2.10: The different velocity vectors of the car.

% B Q

BN PN

Figure 2.11: The different velocity vectors of the trailer,
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This together with definitions according to figure 2.3 gives

R . ;4
TrPp =TQP
L1 _

Top = 0

{
L 1
TQ11P1 = ( 0 )

and the equation can be rewritten as

vp=v 1+t R- (ARL‘-TEIIPI).

(2.39)

(2.40)

The slip angle for the front wheel, ap, is the angle between the front tires

direction and vg, see figure 2.12. This angle can be derived from

arp =0p —o

where « is derived from
v X el

L1|

singg = —2%
(vr|-|e;

yielding

—vy - cos ) + Vg - sinaly — Iy - Py

\/[v[2 + 201 - ¥y (vy - cos s — v - singfy) + 1392

sing =

Deriving Rear slip

(2.41)

(2.42)

(2.43)

With help of equation (2.38) derivation of the rear slip is straight forward. This

time
rER = TG
- ( )
giving

o m v (4 ).

\ £,

Figure 2.12: The slip angle ap for the front wheel.

(2.44)

(2.45)
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The rear slip angle, ag, can now be derived according to (2.42)

—vy, - oS W + vy - siny + Iy -y

. (2.46)
\/|v!2 + 2 - 1,1’)1 (vr - sinyy — vy - cos¥hs) + 521)1

sinog —

Deriving Trailer Slip

By transforming the velocity vector to the trailer wheel it is possible to estimate
the trailer’s slip. This is done according to earlier derivations. With help from
equation {2.38) it yields

fibio= Tifio+ - R (470 rggpl) (2.47)
Pifio = "ho+ie- R (AR rk ) (2.48)
BpR o= BpE 4 eh R (ARLZ 'ré";Pg) (2.49)

Here R'i*gso is the searched variable. Adding one of the existing constraints
Bigo= %o (2.50)
makes it possible to derive Rfi‘ﬁo as
Fifo= "rfho+¥i- R (ARL1 "’Qgpl) Yo R (ARL? réip ) . {2.51)

This yields that

RiGeo = "ifio+i1 R (AR r&ip)
- 11”).2 . R . (ARL2 . TQ-!PZ)
s R ( ARLz . pla p;,) (2.52)
= Bifo+ii- R (ARL] 'TQapl)
e (0 (1o
which together with
L
. v X eg?
sinpp = — % (2.53)
lor| - |ez?|
gives
Uy COSy — Vg - sinthy — (I -+ l5) - 4 — (Iz +13) - cos(thy — va) - N
sinar =

[of? + (2 +12) - 97 + (la + 15)” - 43
+2(lg + I3)(vz - sin s — vy - costhy) -
+2(1a + l5)(v - sinefs — vy, - costhy) - 1o
+2(I2 +13) - (Ia + ls) - cos(ypr — 1) - - 2o
(2.54)
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Possible Problems with Slip Estimation

The velocity of the vehicle must be unequal zero. At zero is it not possible
to calculate the slip since the denominator in the equations (2.42), (2.46) and
(2.54) turns zero. It is obvious that when the car is not moving, there is no slip.

Observe that the slip estimations are estimations of the model’s slip, not the
real system’s slip. Under the circumstances that the model and its parameters
are accurate the slip of the model will be the same as the slip of the real system.

2.6.3 Longitudinal Force Estimations

It is possible to achieve a longitudinal force estimation with help of brake pres-
sure, engine torque and a correction factor from the difference between the
models velocity and the real systems velocity.

Rear Wheel

Since the car has rear wheel traction, it is a good approximation that engine
torque after the transmission losses transforms to longitudinal force in the rear
wheels. When the car is braking the approximation that the deceleration force
is split equally between front and rear wheels is used. The normal split when the
car is driving without the trailer is 70/30 between front/rear wheels, but here
the assumption that the trailer weight shifts the split toward the rear wheels is
made.

Front Wheel

For the front wheels all longitudinal force originates from braking force. The
braking force is as stated earlier split equally between front and rear wheels and
calculated from deceleration.

Trailer Wheel

The trailer brake actuator is connected to the towing hook. During braking the
trailer is pressed toward the car and a spring, connected to the trailer brake,
gets pressed together and the trailer starts to brake. Therefore the assumption
is made that braking force is proportional to the deceleration, but only when
the car brakes.

2.7 Finalize the Model

2.7.1 Optimizing Variables

When the model is simulated the first time, all of the constants are calculated
approximations or taken from either [5] or [6). To make the model accurate
these variables are optimized using a nonlinear optimization algorithm.
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2.7.2 Model Validation

The model is validated with input data from test drives. The results seen in
figure 2.14 to figure 2.18 shows that the model is fairly accurate.

A sketch of the test track where the test drives were performed is shown in
figure 2.13. The dotted line displays the car’s trajectory.

In figure 2.14 are the position coordinates calculated during a test drive
drawn. There exists a drift between each lap, but this is small enough to make
the statement that the model is accurate. This can be compared with the
position coordinates calculated according to the kinematic model in [7) and is
displayed in figure 2.15. It is clear that the drift of the model stated here is less
then the drift in the kinematic model.

Figure 2.16 is a plot of the car-trailer angle, v, during a test drive. The speed
during the test drive was around 50 km /h, somewhat slower around the corners.
It is clear that the modeled car-trailer angle matches the measured angle very
well. Figure 2.17 displays a magnification of figure 2.16. It also contains the
car-trailer angle moedeled by the kinematic model stated in [7].

Figure 2.18 is a plot of the car’s yaw rate, 3, during the same test drive as
in figure 2.16. Here is it clear that the modeled car yaw rate is accurate. Figure
2.19 displays a magnification of figure 2.18. It also contains the car yaw rate
modeled by the kinematic model stated in [7].

A way to describe the difference between the different models and the actual
system is to calculate the root mean square error

1
RMSE = \/ - > (Tmeas — Teate)” (2.55)
where n is the number of samples, 2.5 is the measured variable value and

Tcale 18 the modeled variable value. This makes it possible to compare the two
models as seen in table 2.1. The RMSE values shows that for the yaw rate the

Table 2.1: The RMSE vahlues of the different models and the different states.

RMSE RMSE
Model | for the yaw rate  for the car-trailer angle
Kinetic model stated here | 0.008 0.017
Kinematic model stated in [7] | 0.040 0.037

kinetic model is twice as good as the kinematic model, but only slightly worse
for the car-trailer angle.
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Figure 2.13: Simple sketch of the ZFLS test track. The dotted line indicates
the driving trajectory during test drives.

Plot of X,y coordinates

T T T T T

y coordinate [m}

~-150 -100 -50 0 50
X coordinate [m)

Figure 2.14: After a simulation the following x,y coordinates were calculated.
The simulation input data is taken during driving around the test track with
speeds around 50 km/h, somewhat slower in the turns. Even though all move-
ments of the car and trailer comes from estimated forces that are calculated with
help of estimated slip angles, the coordinates represent the driving trajectory
well. After one lap it differs about 30 meters in y-direction and 35 meters in
x-direction which shows how well the approximations works., The red dot in the
origin shows the start point.
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Plot of x,y coordinates

T T T T T

100 ;

y coordinate [m)

-150 -100 -50 0 50
% coordinate [m]

Figure 2.15: Comparison of the kinetic model derived here (blue line} and the
kinematic model derived in [7] (red line). Same test drive as in figure 2.14.
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Plot of model gamma (red} and measured gamma (red)
0-4 13 T T T T T T T

angle [rad]

_0.3 1 I 3 I I 1 1 1
0 20 40 60 80 100 120 140 160 180

time [s]

Figure 2.16: Comparison of the calculated gamma (red) and the measured
(blue}. Data collected during test drive in speeds around 50 km/h. Positive
angle indicates left turn, and is performed in the small circle on the test track,
gee figure 2.14.
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Plot of gamma
0-4 F T T T T
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Figure 2.17: Comparison of the calculated model «v (blue), -y from the kinematic
model in [7] (red) and the measured -y (black). This is a magnified graph of figure
2.16. The graph indicates that this model is better then the kinematic model
during hard cornering.
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Plot of yaw rate
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Figure 2.18: Comparison of the calculated yaw rate of the model (red) and the
measured (blue). Data collected during the same test drive as in figure 2.16.
Positive value of the yaw rate indicates left turn, and is performed in the small
circle on the test track, see figure 2.14.
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Plot of yaw rate
0. 8 T T T T 13

yaw rate [rad/s]

60 70 a0 a0 100 110 120
time [s]

Figure 2.19: Comparison of the calculated yaw rate of the model (blue), the
model derived in [7] (red) and the measured (black). This is a magnified graph
of figure 2.18,



Chapter 3
Derivation of Controllers

In this chapter two different controllers are derived for three of the system
states, The controllers derived are a linear controller for a linearized version of
the model and a feedback linearization controller. The three system states that
are controlled are the yaw rate of the car, the car-trailer angle and the time
derivative of the car-trailer angle. The control signal is the front wheel angle,
dr, since this is what the AFS-system can control.

3.1 Controlling Nonlinear Systems

One way to control a nonlinear system is to linearize the system around a
working point, and then calculate control parameters for the linearized system.
More advanced theory about controlling nonlinear systems can be found in [8].
The linearization feedback method from [8] is used in this thesis,

3.2 States to Control

The system is built up by 8 DEs, the following state space variables and control
signals are defined.

u = 5F
(71 = af,
Tz = 'Ugl
T3 = yglo
Jm= v (3.1)
5 = th
e = i
Ty = %’?2
\ Tz = 2

Three of these or combination of these may be of interest: 9y, v =1 — ¢ and
¥ = 11 — t2, that is the car yaw rate, the car-trailer angle and the car-trailer
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angle derivative respectively.

3.3 Controller for the Linearized Model

A way to reach a linear system to control, is to linearize the nonlinear system
around a working point. The nonlinear system

& =f(m,z,u) (3.2)

is linearized around a working point (g, u).

Z2=Az+ By (3.3)
where
zZ=T -~ &y
v=U-—1Up
2h oh
61:1 T 6.’138
A = E .. E
B8fs Bfs {3.4)
EN T bzg (20:“0)
( 8f
Bu
B=| :
Ofs
Bu (zﬂguD)

Here A and B is said to be the Jacobian matrices of £ with respect to @ and
u Tespectively evaluated at the point (xp,ug). When the A and B matrices are
calculated, it is possible to make an attempt to derive a controller that stabilizes
the system.

3.4 Feedback Linearization

According to |8] feedback linearization is a way to linearize the nonlinear system,
making it possible to apply well known linear controlling. If a system is described
as

2 = f(z) + g(x) - u (3.5)

and has no zeros in the right half-plane it is possible to apply feedback lin-
earization. In this case for the car with trailer there are four equations like
this

Ey; = filw, z,u) + gilm, 2z,u) v i=1,2,3,4 (3.6)

and four equations like

951 = Ty i=1,2,3,4 (3.7)
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and depending on what variable to control, we define the system outputs

Y1 = Tg (¥1)
ya=a5 — a7 () (3.8)
yz=ws— 2z (¥)

3.4.1 Yaw Rate Controller

Controlling the yaw rate means controlling 3 in equation (3.8). The system
looks like
&g = fa(m,z,u) +os(m, 2,u) u

3.9
y = e (3.9)

Since there is no direct relationship between y and u we differentiate y one time,
giving

y=1s (3.10a)

= fa(z, z,u) + g3(2, z,u) - u. (3.10b)

The feedback linearization is introduced by introducing the new variable w
that is chosen in the way

1

U= m(m — fa(z, z,u)). (38.11)

Inserting this u in equation (3.10b) gives

y:f3(waziﬂ')+g3(m=zsu)' ”f3(m:zau))

g3(z, 2, u) (w
= fa(®, z,u) + (w — fa(z, z,u)
= .

(3.12)

This supplies a simple integrator relationship between the yaw rate and the new
input

U=uw (3.13)

which simplifies the controlling into controlling a linear system.

Desired Yaw Rate

The normal input to the system is the steering wheel angle, but that signal does
not contain any information about how the driver desires the car to behave.
Therefore it is necessary to find out the yaw rate the driver expects for a given
steering wheel angle and a given velocity. By comparing the desired yaw rate
and the actual yaw rate it is then possible to adjust the front wheel angle so
that the actual yaw rate changes toward the desired yaw rate.



28 Derivation of Controllers

According to [3] the yaw rate at steady state driving can be calculated as

j Uz
= 6p
(lh +Ip) + Hus
e Uy
= . —
i+l 1+ aEes gvg
b o ) (3.14)
- . -
I +1is 1.+ (ﬁ:)
. (I +12)g
lf ’Ugar = —I{l:—.

Here veqr is the characteristic velocity of the car, the velocity where the highest
yaw rate gain, ¢ /ép, is achieved. This parameter can be measured from test
drives.

Using this equation to calculate the desired yaw rate is not entirely correct,
since the driver might expect a slightly different behavior when driving with the
trailer. Still the behavior can be expected not to differ too much, and therefore
this equation is used.

PD-Controller

The system can be controlled with a PD-controller which calculates the linear
controll signal w. The choice of linear controller is based on tests with different
controllers during test drives. In [9] the discrete derivative of the controller is
derived as

D(kh) — ﬂ%dN—hD(kh ~h)

KTyN

= 7 v vh Wres (kh) —yrep(kh — h))  (3.15)

which has a high pass filter (N} implemented, and 5 is the sample time.

3.4.2 ~ Controller

Controlling y means controlling y, in equation (3.8). This concerns the system

.'b5 = Tg
g = fa(w, z,u) + g3(m, 2,u) - u
Ty = f4(m?z:u)+g4(m:z5u)'u

¥y = Ty—I7
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Since there is no direct relationship between y and u we differentiate y until
there is a direct relationship between y and u, giving

§=1a5 — &y
= Tg — Tg
Y=g — i3
= (fa(®, z,u) + gs(z, z,u) - u) (317

— (falm, 2,u) + ga(=, 2, 1) - u)
= (f3($: Z, u) - f‘l(xa z, u))

(93(32) Z,u} - 94(55, z,u)) *

With this information it is now possible to apply the earlier stated theory.

Desired -~

In [7] it is showed that for each front wheel angle dr there exists one unique
car-trailer angle, v, where the system is in equilibrium. For a front wheel angle
dr the equilibrium car-trailer angle v is

. (l4+15) tandp (13 tamip)
= ar +arctan [ —— | . 3.18
Ve (\/(ll +13)? -+ 5 tan? op S Ay (8.18)

PID controller

The linearization feedback system was controlled with a PID controller, with
anti windup implemented. The choice of linear controller is based on tests with
different controllers during test drives,

3.4.3 4 Controller

Controlling ¥ means controlling ys in equation (3.8). This concerns the system

5-'."6 = f3(:12,z,u) +g3(m’z:u) U
iy = f4(a:,z,u) +g4(m,z,u-) tUu (319)
¥y = Ts—1xg

and since there is no direct relationship between y and u we differentiate y until
there is a direct relationship between y and u, giving

U =26 — 1g
= (falm, 2,u) + ga(w, 2, 1) - )
— (falm, z,u) + ga(=, 2,u) - ) (3.20)
= (fa(x, z,u) — fa(z, 2, u))

(93(337 Z,U) - ,9'4(33, z,u)) * .
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Desired 4

Under the assumption that no lateral slip exists, the differential equation for
the car-trailer angle can be derived as in [7), giving

1 £3 v
¥ =wv + cosvy jtandp — ——sin 3.21

7 (31 +i (LAY +1) 7) anor la+1s i (3.21)
which is used as a reference value for . Observe that in the implementation ~
is the measured value, and not the model value. v is the measured speed of the
car.

PID controller

The linearization feedback system was controlled with a PID controller, with
anti windup implemented. The choice of linear controller is based on tests with
different controllers during test drives.

3.5 A First Evaluation of the Controllers

Test drives were made to find out how the different controllers could follow
their reference value. These are test drives with speeds around 15-20 km/h,
without any instability. During these test drives the steering wheel is only used
as a reference value to the controller, and the controller uses the AFS-system to
apply a front wheel angle. Thus might it feel strange to maneuver the car since
the front wheel angle may not behave as usual.

A controller is said to work, if it feels like driving the car as if there were no
controller.

3.5.1 Yaw Rate Controller

Linearization Feedback

This controller worked good. Except for a delay between the reference signal
and the measured signal, this was like driving the car normally.

Linearized Controller

Here was the reference following terrible. Almost impossible to drive the car
because a large delay between the reference value and the measured signal.

3.5.2 +« Controller

Neither the linearization feedback or the linearized comtroller works. There
was a large delay between the reference value and the measured value. This is
probably because how the reference value is calculated.
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3.6.3 4 Controller

Here is the same problem as with the v controller and also here it is probably
because the reference value calculation is not suitable for this application.

3.5.4 Conclusion

Since only the linearization feedback controller for the yaw rate works only this
will be further investigated.

3.6 Robustness and Stability Analysis

It is to be shown that if the feedback linearization is exact, the system will
be stabilized by a normal simple proportional controller. Further it is to be
investigated how the feedback linearization will function when the system differs
from the model.

3.6.1 Difference Between Model and System

As the model is not exact, the linearization feedback will not linearize the system
as desired. With the assumption that it will remove nonlinearities, but not
perfect, the remaining nonlinearity can be seen as a noise on the system input,
v. If the system with linearization feedback is linearized around a working point,
the system can be investigated to see how the system looks from v to 3.

With exact feedback linearization the new control signal u will be derived as
1
u=(w— f)-é- (3.22)

If there exists an error in the f and g, the feedback linearization can be derived
as

1
u=(w~(f+Af))(=+4g :
(g ) (3.23)

= w15+ (whe ag - £L - agag)

If there is a disturbance v on the input to the feedback linearization the output
can be written as
1 v w f
u=(v+w— e ot 3.24
( ) s st3 3 (3.24)
It is desired that the error in the feedback linearization is modeled as noise
on the input, therefore there is an equality between (3.23) and (3.24) that can
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be written as

v, w—f w—f Cragl A
g+ 7 P +(wAg fAg p Ang):>
g:(wAg-—ng—%i—Ang>=>
Af (3.25)
v:(wAgngg——a—uAng)-g

=w-g-Ag—f-g-Ag~Af—g-Af - Ag
(w—(f+Af)-g-Ag—Af.
This means that the error in the feedback linearization due to an inaccurate

model can be modeled as noise according to (3.25). For the noise to be small,
the following is stated

I

v—=0 if Ag—0,Af—0 (3.26)

which is the case when there is no error in the feedback linearization.

It is worth mentioning is that an error in f gives an offset error when only
using a proportional controller, and an error in g gives the wrong dynamic of
the controller, and an offset error. g can be seen as a modifier of the controller’s
proportional gain.

By examine the the transfer function from v to y, sec figure 3.1, it is clear
that the noise will be suppressed. The system is said to be stable if the error in
the feedback linearization is bounded,

[v] < Vmas. (3.27)

Although it is theoretical possible to use a very large gain in the proportional
controller, this would lead to a nondesired behavior of the control signal, mainly
because of the interaction of the actuator and the steering wheel. It is desired
that the vehicle has the same behavior with the controller as without in safe
situations.

3.6.2 Simulating Stability Limits

Because of the lack of good theory on robustness and stability of the linearization
feedback the system was simulated in order to find stability borders for the
different parameters. The simulations were performed with two simulated car-
trailer models, where one was acting as the real system on which the parameters
were changed. Only the parameters concerning the trailer were changed, as the
car parameters are said to be known. One parameter at a time was changed, if
nothing else is stated.

The system was simulated to turn for a few seconds, and then drive straight
again. If the controller managed to stabilize the car-trailer after and during the
turn, the system was said to be stable.
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Figure 3.1: Bode diagram over the transfer function from v to y.

Results

"The simulations showed how much it was possible to change the parameter value
compared to its nominal value. The permitted changes are shown in table 3.1,
figure 3.2 and figure 3.3.

Table 3.1: The range of possible change of different parameters with maintained
stability of the controller.

Parameter ] Range of change

c3 60% — 1000%

ma 0% - 146%

Sy 0% — 164%
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Blue dot = stabil sim, Red dot = instabil sim
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Figure 3.2: Area of stability when changing the mass of the trailer and the
moment of inertia at the same time. A blue dot represents a stable simulation,
a red dot represents an unstable simulation.

300 cm u

A

Figure 3.3: Area of stability when changing load placement on the trailer, I,
The red arrow shows the nominal value, and the blue arrows how far from the
red arrow it is possible to move the mass center.




Chapter 4

Implementation and
Evaluation of the Controller

In this chapter is the controller implemented and evaluated.

4.1 Implementing Feedback Linearization

The feedback linearization is theoretical a perfect way of making a nonlinear
system linear. But it demands a very good model and even better knowledge
of the parameters in the model, The model stated here is good, but not perfect
which might lead to the worse performance of the controller.

In this situation there is a feedback from the actuator to the device creating
the reference value, the steering wheel. This means that when the actuator
makes fast movements, this will move the reference value and possibly inducing
unwanted osciltations. To avoid this it is necessary that the control signal is
bounded, which is achieved by using a low proportional gain. This means worse
performance which is avoided by using a feed forward from the reference signal
to the controller signal.

4.1.1 Controlling Area Constrains

The controller is not supposed to be acting at all time, only at high velocity
driving without too much cornering. This is solved by a variable maximal AFS
motor angle. This is done with a lookup table that uses speed as input and the
maximal AT'S motor angle as output, at low speeds (<30 km/h) the maximal
AFS motor angle is 0°.

4.1.2 Tuning the Controller to get the right Driving Feel-
ing

The setup with a bounded AFS motor angle turned out to be rather good, but it

stili did not feel ke driving a car. Likewise it is not desirable that the controller
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acts when the driver controls the car with trailer well enough, compared to how
the controller would do. The solution is to introduce a dead zone for the AFS
motor angle, meaning that the motor will only interact when the difference
between the controller desired 67 and of the driver applied §p. How dead zone
works together with a saturation of the output signal is shown in figure 4.1.

Q
c-l-_
=Y

Figure 4.1: The function of a dead zone together with a saturation. When the
input magnitude (|2]) is below a certain level a, the output (y) is zero. When
the input magnitude is between o and b, the output will be (z — a) or (¢ — )
depending on the sign of z. When |z — a| is greater then b, the output will be
b or —b depending on the sign of x.

By driving tests it is shown that the decision where to intervene is speed
dependent. At normal speeds (70 km/h) a dead zone of 2.5° on the front
wheel angle, §, will prevent unnecessary interaction, and still help the driver in
critical situations. For safety reasons the AFS motor is prevented to add more
then 5° on the front wheel angle, which in most situations is less then what the
controller ever puts as desired value.

Since a certain error is accepted it is not possible to have any integral part
in the controller.

4.1.3 Snake Behavior of the Trailer

One special case when the dead zone should be minimized is when the trailer
starts to snake. This very dangerous behavior can make the trailer tip over, or
in worst case make the trailer go all the way around and hit the car in the side.

What is Snake Behavior?

When the trailer starts to go from side to side behind the car, even if the car
is driving straight, it is called snake behavior of the trailer. This dangerous
oscillation often starts after hitting a small hole or a small bump in the road
or because of side wind, and is very hard, if not impossible, to maneuver away.
Most often the oscillation decreases in amplitude when one keeps on driving
steady, but with a badly loaded trailer and high speed the oscillations might
increase.
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Another way to induce the oscillation is to make a fast lane change. It seems
that the oscillation is a result of the moment of inertia. First the yaw rate of the
car increased and then decreased again, like a sinus curve. When the car drives
straight again, the lateral forces that are needed to keep the trailer straight are
too small.

Detecting the Snake Behavior

When the trailer moves from side to side behind the car it causes the car to
move from side to side. These movements can be seen on the yaw rate sensor,
and be compared to the desired yaw rate. When driving straight with snake
behavior the desired yaw rate is constant, while the measured value has a sinus
form. This implies that the controller should be able to stabilize the car if the
dead zone is small enough.

Examine the desired + and the measured v shows the same relationship, the
desired value is constant, while the measured has a sinus form. For the measured
~ the oscillation is much clearer and can be discovered earlier compared to the
measured yaw rate, see figure 4.5. Therefore the error between the desired ~
and the measured v is used for the snake detection.

The error between the measured - and the desired + is put through a high
pass filter, and then a dead zone with offset is applied, Integrating the modified
signal when it reaches above a certain level lim, and using a negative feedback
to the integrator when the modified signal is below lim, the integrated signal
is said to be a measurement of how much the trailer is oscillating. A block
diagram of the snake detection can be seen in figure 4.2

Xd ( —1 snake

€s A
—'—_—’{ _ ," / / o - detection
Xmeas .

-k

wi—

Figure 4.2: Block diagram of the snake detection, First is the error put through
a high pass filter, and then integrated if it reaches a certain level lim, otherwise a
negative feedback is connected to the integrator. The output from the integrator
is the snake detection signal. :

This snake detection signal is then used to decrease the controllers dead
zone, allowing the controller to interact earlier and prevent the car and trailer
from unstable behavior. A block diagram of the whole implementation can be
seen in figure 4.3.
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Figure 4.3: Block diagram of the controller implementation. § is the front
wheel angle and d;; is the AFS motor angle. The first block, P, is the linear
proportional controller, which is feed with the car’s yaw rate error. The lin-
earization feedback block is feed with the linear control signal and f and g from
the model block. The model block is feed with signals from the car used to
estimate forces. The block that converts the desired front whee! angle to a AFS
motor angle is feed with the actual front wheel angle, the desired front wheel
angle and the steering wheel angle. The dead zone block and the saturation
block is feed with the velocity of the car and the snake detection signal. The
output from the saturation block is feed to the AFS system, that actuates the
desired AFS motor angle.

4.1.4 Sliding Gain

In blocks with speed dependence sliding gain is used. This is implemented
using a lookup table with interpolation. An example can be seen in figure 4.4,
where there are given y-values at v = {30, 70, 120} and all other y-values are
interpolated. Outside the table the output holds the end point values.

Ui
a+

bt

L

0 30 70 120 v

Figure 4.4: Input output graph of a lookup table. v is input and y is output.

4.2 Controller Validation

The controller was validated at Bosch’s test track in Boxberg, Germany. The
trailer was loaded with maximum allowed load, around 1000 kg, and the center
of the load placed over the trailer axle. The weight of the car was around 1800
kg, so this was an instable setup.
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The result is shown in the figures 4.5 and 4.6. This clearly shows that the
controller works as desired. The driver feels safe driving with the controller
turned on, unlike driving in these high speeds without the controller.

The oscillations in figure 4.5 are the oscillations known as snake behavior.
"The high speed seems to make the car over steered, why small movements on
the steering wheel is enough to make the car and trailer oscillate.
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Yaw Rate [*/s]

4 6 8 10 12 14 16 18
time [s]

Figure 4.5: Data collected during test drive in 120 km/h without the controller.
The red line in the yaw rate and + graphs is the caleulated desired value, the
blue line is the measured value. The driving trajectory is a double lane change.
After the first lane change the car and trailer starts to oscillate. After the second
lane change the oscillations increases but eventually will the oscillations slowly

decrease.
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Figure 4.6: Data collected during test drive in 120 kin/h with the controller
active. The driving trajectory is a double lane change. The red line in the yaw
rate and -y graphs is the calculated desired value, the blue line is the measured
value. The black line is the desired AFS motor angle from the controller, the
green line is the same signal after the dead zone and saturation functions. The
controller only intervenes during the lane changes, which clearly is enough to

keep the system stable.
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Appendix A

Derivations

A.1 The DE matrix

The DE matrix is the right hand side matrix in (2.35). The left hand side of
equation (2.35) can be written as

o= ¥ (A.1)

where the different variables are defined in section 2.5.1.

A.1.1 The DE matrix’s denominator

There is a special interest in the denominator of the DE matrix because when
the denominator equals zero there will be division by zero, which will make the
model behavior undefined and not valid. The DE matrix has the denominator

[(2m3 + 4myma + 2m3)J1
(202 + gl + 2A2)mym3
(2l3 +4disls + 2!2)m1m2]J2
+ (23mym3 + 205mEms)J;
+ (15 — 2als — 1) 2mEmZcos(2u2 — 201)
+ (12 + 20l + BYEmim?E

(A.2)

that can be written as
(2(m1 + mz)zJI + 2(!2 + la)zmlm% + 2(12 + lg)mgmz)JQ
+ 203 (mym3 + mPmy)Jy
— (I2 + 13)22m2mZeos2(hy — 1)
+ (la + 13)21§mim)

(A.3)
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or
2 (J1(m1 +ma)® + myma(my + ma)(lz + 13)?)
+ 2J113 (mama(my + ma)) (A.4)
+ (2 + ls) Lomamz)® (1 — cos(2(t2 — ¥1)))
or
(ma -+ ma) [2J2 (J1(m1 + ma) + mime (o + 13)?) + 2J115mymy)] (A.5)
+ [(l2 + la) Lgmams)? [1 - cos 2(hz — 1)) '
or in a different trigonometric way as
(m1 + mg) (2J2 [J1(m1 + ma) + myma(ls + 53)2] + 2J1£3m1m2) A6)

+ (I + Is) Lamama]® (1 + sin® (g — 1) — cos® (33 — 1))

A.1.2 The Different Elements in the DE Matrix

Here are the two last elernents in the DE matrix displayed. The different state
space variables are defined in section A.2.

The third element, 1, in the DE matrix

([ cos{zz — z5)(mima + m3)2es(lz + lo)zs
+ mama2eaz7(le — I3) + 2c:2(12m? — lg‘m,%)Z?
+sin(z7 — a5} (lsmama(ms + ma)al — (mama + m3) (26 + 23))2(ls + la)
+ sin(u) (myma(ls + 12 + 20) + mi(la + I + 1) + 11m3)221 | Jo
+ cos(wr — xs)lalsmima(my -+ mao)(—ls — I2)2c32
+ 2mym3(cos(2z7 — 2x5)(Iz + 12) + (I2 — I3))eazr
+ 2c2£2limfmgz;r
+ sin(zy — a5)2m3lima(—(25 + z2) + lymoad) (I3 + L)
+ sin(2zy — 2as)limama (s + la) (24 + 22) + (s + Ipymyzl)
+ sin(u)iZmyme (ma(ls + o + 211} + 2Lyma )2y
— lfmlmg sin{2xy — 225 — w)(—l3 — Is)z;
+ (cos(u)2es(~lym? —m3(ls -+ g + 1) — myma(ls + I + 200)) o
+ cos(u)ymimaliey (ma(—ls — Iy — 211) — 20ymy)
+ 2mym? cos(2ay — 25 — w)el(l3 + l2})(z6)
+ (= cos(w)2¢t (~lam} — m3(ls + Iz + 1) — mama(ls + Lo + 204)) o
— cos(u)mymalies(—ma(ls + la + 201) — 2lymy)
— Igmym3 cos(2z7 — 2as5 — u)el(ls + I2))(u))
(2(mz + ma)((mg +m)Jy + mama(ls + 1)%) e
+ 2Emama(ma + ma)Jy

+ (I3 + )2 3mImi(1 — cos(2ar — 225)))

(A7)
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4th element, 9, in the DE matrix

([2es{maima(2ls + 1a) + m3(ls + 1y) + Ism3)zg
— cos{zy — w5)2ealama{ma + my)zy
—sin(z7 — 25)(2lama(ms + ma)(zs + 22) + 2(l3 + lo)lamima(ma +my)z3)
—sin(zy — x5 — w)2lgmalms + ma)z]J1
+ mimacs(ls + 12)%(20s + ly) 2z
4 smymies(ls + 1)
— Lym%ng cos(2zy — 225 )ealls + 12)22s
+ cos(zy — xs)2lamimalaca(—ls — la}(my + ma) 2y
+ sin(2z7 — 275) (I3 + l2)*m3mala((z5 + 23) — lymaz3)
+sin(zy — z5)mima2ly(ls + 12)2((— 24 ~ 22) — (I3 + Iz)miad)
—sin{@r — x5 — ullamama(ls + L) (me{—l1 + I3 + l2) — mili)z
—sin(xr — x5 + ullgmima(ls + L) (mae(ls + o +13) + maly)2y
+ cos(zy — x5 + u){la + la)erlamama(ma(ls + 12 + 1) +muli) 26
+cos{z7 — x5 — u)lgmimaer (Is + 1) (ma(l — I — l2) + mili)zg
— Jycos(zr — x5 — u)2c1lama(ma + my )2
-+ [— cos{zy — x5 + u)(la + la)erlymomalma(lz + l2 + i) + mily)
— cos(zy — x5 — w)lamimaci (Iz + ) (ma(ly — I3 — la) + mqly)
+ J1cos(zy — w5 — u)2eilama(me + my)] (u))
(2(ma -+ ma)((mz + ma)Jy + muma(ls + 12)?).J2
+ 2l§m1m2(m2 + ma)Jy
+ (I3 + 1Y 13m3mE(1 — cos(27 — 225)))

(A.8)

A.2 State Space Variables

Observe that these x; are the model state variables, and are not to be confused
with car or trailer position zF.
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Here are all the state space variables listed to clarify any uncertainty.

u = §F
( Ty = $§10
2 = vf(=4f)
T3 = yglo
) Ty = Ub},i;
Ty = ",’?1
e = Y
Ty = 1{52
. Lg = 1/}2
( i‘l = In
dy = 0[]
Ty = T4
J gy = ?[2
j:ﬁ = g
g5 = 93
i"f = s
L ds = o[
2 = fif
2 = fir
3 = fu
) z4 = fairc
25 = fairt
Zg = ap
%7 = Qg
\ %3 = ar

(A.9)

Here fi; is the force acting in longitudinal direction on the front wheel, f, is
acting on the rear wheel and fy is acting on the trailer wheel. Jaire and foi
are the air resistance force acting on the car and trailer respectively. zg, 27 and

zg are the slip angles for the different wheels.

A.2.1 The DEs written with State Space Variables

With the state space variables defined it is possible to rewrite the DEs,

1 3}1 = Ty
&y = fl(msz’u')+gl(mazau')'
T3 = &4
 B= falmzu)+ (@ 2,0 -
s = Tg
tg = f3($:z,u)+93(wazau)'
Iy = T8
\ g = f4(w,z,u)+g4(w,z,u)-

=2

=

&

(A.10)



A.3 DAE Projection Matrices 49

and if only the state space variables that are used are considered it can be
written as

[ &1 = z9
$g == f1($=zsu)+gl(maz=u)'u
iy = x4

) B = fal@ )+ (@ 5u) v (A.11)
5 = xg .
2g = falws.. ws, 2,u}+ ga{ws, w7, u) u
iy = g

L tg = f4(ﬂ;5...ﬂ)g,Z,U)+g4(m;zau)'u

A.3 DAE Projection Matrices

Here are the different matrices used in the DAE projection displayed.

Ping = Prind D

R
Tro

yﬁ 1)
i
5'352 0]
ygz 0

2

R e R R
e B o T S e |
e B S e B e
oo o o
o T e Y e B e
[aca i v B - B e

(A.12)

afo0
yglo
V1
r’31@20
yﬁ_,o

Wy

I
AN
oo
Lo B ]
oo
[ g
- O
oo
—

With the information about the dependent variables from the constraints equa-
tions (2.20) yields

R R . ccosthy — Ly -
Paey = ( zH o ) _ ( g0 — (I3 +12) - cosihy — 1y - cos il ) (A.13)

vE o yho — (s +12) singhy — g - singhy

Together with

5’311310
. = 1 N
DPind 1)',')1
"
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yields these equations the explicit consiraints position equations

ﬂ;glo
yglo
(21
= hipy. ) = Al
P = h{Pina) 2B o — (Ia+13) -cosghy — Ly cosfn (A.15)
yf.?lo — (13 + lg) csingdy — Iy - sinds
tha
Further is
_ Oh(pia) _
Ppina (Pina) = oy
1 0 0 0
0 1 0 0
Al
loo 1 0 (4.16)
Tl 10 (la+ly)-singy  lg-singy
0 1 —(lg+1y) -costyy 1y cosyn
0 0 0 1
and the time derivative of the independent position vector
Ho
r 9510 A
Pind = Vind = ",’?1 ( 17)
(7
and
Tin i = 1.
d(pmd) 4 (Alg)
T =I.
The global projector is defined as
Jy =T by Tind (A.19)
with the time derivative
0 0
0 0
. . 0 0
Jy = hpa(Pina) = (A.20)

(I3 + 12) - cosay 1,&1 ly - costh - iy
(Is+1a) -singhy - ¥ lg-sineds Uy
0 0

o O o o o o
T e TS o B o B BN i |

and the following matrices are defined

Mipg =h, - M by, = (A.21)
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mi + Mz 4] E
0 my + ms E
(lg + lg) -imng -sinyy —-(12 + 13) Mg - COS N 1
l4 +TRy - sin ’l,bg —l4 + Ty » COS 1,")2 i
| (Io + 13} - mp - sin ¢y ly-mo -sinty
| —(la +13) - mg - cosin —~l4 -z - costhy
| J1 (2 + 15)% - ma (Iz +13) - la - ma - cos(th1 + )
| (2413} la-ma - cos(spy + o) Jo+13-my
(A.22)
and
fma=hL - f—hD M- by, v (A.23)
where
LEI+YES
BT L f = LEI+FRS
Find S M 4 (b +1s) singn - S — (I +1p) - costhy - 30
STMyE 4y sintp - 3 FE — 1y costhe - PR
{A.24)
and
R oMby, cv= (A.25)
(Ia + 1) - ma » cos Py - ¢f + Iy - g - cosiy - 1,b§
(Z2+l3)-m2-sintf)1-¢f+l4-m2-sint{b2-1j)§ (A26)
—(12 -+ 53) . l4 ] -Sil’l(@')z — ¢1) ’n‘,l')%
(I +l3) - 1 - mo - sin(yhe — 1) - ¥
and

4Ging (Pind, Ving) = 0.
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With these matrix definitions the DEs are given according to the following
matrix relationship

mi + Mg 0 |
0 my + ma i
(la+13)-ma-sintyy —(lg+13) -ma-costhy |
Ly - mg - sin 1,[)2 —l4 - g - COS 1!)2 |
| (52 + 13) - g« sin ly g sints
| —(la+13)-ma-cosiy ~ly - mg - cosihy
| i+ (2 +13)?%-ma (2 +13) - 1a - ;g - cos(i -+ 102)
I (32 + lg) dy-mg- COS(“q'Jl + ’;[)2) Jr + lg Mo
R:‘?}§1O
Rij.glo =
(!
tha

LIPS+ YR
LEA RS
SOMEY Iy + 1s) - singy S FE —(ls +13) - cosafy - > FR
S Mg® Uy singy - SO FR — Uy costpy - 3 FR
(lg +ls) g » cos -’!,nfl%-l-f.; g - cos g - 14')3
(Ia+13) - ma -sinyfy -i,b%+l4 -mg-sinifbg . 'l,b%
~(la 4+ 13) « lg - ma - sin{aha — 1) ’t,bg
(52 +l3) g -me 'Sin('q’}z - 1[]1) . ’gf)%

A.4 Axle Load of Trailer and Car

Let the forces, heights and lengths be defined according to figure 2.9. Then
the torque equations around the contact surface for each wheel and the torque
equation around the towing hook ean be written as

Mrear wheet = — M1+ g+la — faire * Raire + Nr - (lI + lz)

(A.27a)
— Fry ‘ES—FTl‘ht“Faa:c‘hcc:O
Mront wheet = My - g1t — faire * hoire — Ng (ll +12) (A27b)
—Frp (W +la i) — Frp-hy — Foge - hee =0
Miraiter wheel = — Mg+ gls— faire  haire + Fpp - (Ll + IS) (A.27C)
+Frp- b — Fage - hee =0
Myrqiter hook = Ma ‘g Iy — fairt ' (hairt - ht) — N;- (Ll + lﬁ) (A27d)

+flt'ht*Famt‘(hct_ht):0

where

By = Faze + Foirt + f1r. {(A.27e)
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From equation (A.27a) to (A.27d) is it now possible to derive the normal forces
for each wheel, Ng, Np and Np,

Frp _m2-g-ls+ fairt + haire — Fri - by + Foat - b {A.28a)
la+1s
Ng _Mi-g-lo+ fairc - haire + Fro - by + Fry by + Foze - hee (A.28b)
L+l
N, _ 'Q'll *fairc‘ hairc_FTh ) (li +1 +£3) — Fry - ht _Fa;cc‘hcc
R= L+l
(A.28c)

N _my-g- Iy — fairt - (Paire *14}1) Z; Jio - s — Fogy - (het — hy) {A.28d)




