
ISSN 0280-5316
ISRN LUTFD2/TFRT--5789--SE

Ultrasound-based Navigation
for Mobile Robots

Jerker Nordh

Department of Automatic Control
Lund University
February 2007

Document name
MASTER THESIS
Date of issue
February 2007

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5789--SE
Supervisor
Peter Alriksson and Karl-Erik Årzén at Automatic Control
in Lund

Author(s)
Jerker Nordh

Sponsoring organization

Title and subtitle
Ultrasound-based Navigation for Mobile Robots (Ultraljudsnavigering för mobila robotar)

Abstract
This thesis presents an implementation of a positioning and navigation system for a mobile robot using ultrasonic pulses
and passive sensors that are part of a sensor network.
The system uses the Telos Tmote Sky sensor-boards running Contiki. In addition to the Tmote Sky the mobile robot
consists of a number of processors and is equipped with position encoders for the wheels in order to be able to accurately
estimate the position using dead-reckoning. It is also equipped with an ultrasound transmitter. The sensor nodes are
equipped with ultrasound receivers.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
english

Number of pages
64

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

Acknowledgments

I would like to thank professor Karl-Erik Årzén at the Department of Automatic
Control in Lund for the opportunity to do this master thesis which has been very
interesting and rewarding.

I would also like to Peter Alriksson for all the assistance when I encountered
problems during my work and Rolf Braun for building the hardware required.

I also extend my thanks to Björn Grönvall at the Swedish Institute of
Computer Science (SICS) for always being willing to answer questions regarding
Contiki and the related software.

Jerker Nordh
Lund, January 2007

5

Contents

1. Introduction.. 11
1.1 Background..11
1.2 Purpose.. 12

2. Position estimation..14
2.1 Existing techniques..14
2.2 Methods... 15
2.3 Theory..17
2.4 Simulation..19

3. The Extended Kalman filter.. 27
3.1 Introduction... 27
3.2 Model...28
3.3 The Extended Kalman filter.. 29

4. Hardware...32
4.1 Tmote Sky..32
4.2 Mobile robot.. 33
4.3 Joystick.. 34
4.4 Sensor node...35

5. Software... 36
5.1 Contiki... 36
5.2 I²C.. 37

6. Distance measuring...38
6.1 Theory..38
6.2 Implementation..39
6.3 Results... 39

7. Wheel control.. 41
7.1 Hardware... 41
7.2 Software...41
7.3 Performance...43

8. Obstacle detection...46

9. Robot controller..48
9.1 Overview... 48
9.2 Design..48
9.3 Implementation..48

7

10. Multiple robots...50
10.1 Problem..50
10.2 Solution..50

11. Implementation.. 53
11.1 Sensor nodes.. 53
11.2 Mobile robot.. 54
11.3 Radio packet types...59
11.4 I2C message types... 61

12. Experimental results..63

13. Conclusion.. 69

8

1. Introduction

This chapter gives the background to the master thesis, it's goal and limitations.

1.1 Background

RUNES is an European Union sponsored research project on the use of sensor
networks, it stands for Reconfigurable Ubiquitous Network Embedded Sensors.
The master thesis was done as a part of the Department of Automatic Control at
LTH involvement in the RUNES[1] project.

RUNES consortium
The following quote is from the RUNES consortiums introduction to the project,
and summarizes their goals rather well.

“We stand on the brink of a revolution, in which the worlds of the embedded
system and the Internet will collide. This will lead to the construction of the first
truly pervasive networked computer systems and thus open up a marketplace of a

scale unparalleled in the history of technology. To realise this commercial
potential requires a research and development programme focussed on the

creation of the infrastructure that actively promotes the efficient and inexpensive
construction and anagement of novel services and applications that are

predictable and intuitively usable, so as to fulfil the global user expectations for
invisible computing.”

Introduction to RUNES[2]

The RUNES consortium consists of 21 partners from 9 countries[3]:

• Australia: National ICT Australia, University of Queensland, Victoria
University

• Canada: Communications Research Centre Canada
• Germany: Industrieanlagen-Betriebsgesellschaft mbH, LiPPERT

Automationstechnik GmbH, Rheinisch-Westfaelische Technische
Hochschule Aachen

• Greece: University of Patras
• Italy: Politecnico di Milano, Università di Pisa
• Hungary: Ericsson
• Sweden: ConnectBlue AB, Ericsson AB, Swedish Institute of Computer

Science A, Kungliga Tekniska Högskolan, Lund Institute of Technology
• United Kingdom: Kodak Ltd., Lancaster University, University College

London, United States of America, University of California, Berkeley,
University of California, San Diego

9

RUNES project goals
The RUNES project is scenario-based and all parties involved work together to
solve a specific scenario[4]. The scenario chosen revolves around a road tunnel
accident in central Europe. The idea is that in the future road tunnels will be
equipped with sensor networks which can detect problems in the tunnel, i.e. fires.
The scenario starts with an accident occurring in the tunnel, the sensors detects it
and notifies the control center which can reroute the traffic around the tunnel.

During the rescue operation the sensor network will continuously assist the
rescue personnel by keeping track of the temperature and other significant
variables. The scenario also specifies that mobile robots will be sent into the
tunnel to avoid sending humans into dangerous situations. In addition providing
additional sensors the mobile robot should also be able to bridge gaps that might
occur in the network if nodes are damaged for any reason.

To be able to accomplish these goals the project will have to develop
middleware to hide the complexities of the sensor network from the applications,
it must also allow the interconnectivity of different types of nodes that may be
present both in the tunnel and on the vehicles that travel through it and on the
personnel working in the tunnel.

To meet these requirements the project has chosen a component-based
approach, where the different functionalities in the network are developed as
components with well defined interfaces that can be dynamically loaded and
unloaded. This facilitates the development of components independently of the
rest of the system.

1.2 Purpose

The main focus of this thesis with regard to the RUNES-project is the part of the
scenario that requires mobile robots moving within the network. This requires
accurate positioning of the robot using the sensor network. The scenario also
specifies that parts of the network shall become inoperable and that the mobile
robot will move to these areas to reinforce the sensor network. This implies that
the robot must be able to navigate with good precision even after it has lost
contact with the network, implying the use of dead-reckoning during this part of
the scenario. It must be able to correctly detect when it has reached the specified
position and then communicate this back to the network control center which will
attempt to reconfigure the network to work with the mobile robot as an additional
node. If this fails the mobile robot should be able to resume operation and start
moving between the segments of the network carrying network data with it.

The robot hardware already exists, so this thesis is limited to designing the
software for the position estimation and navigation. In order to improve the robot
handling the underlying control software for controlling the robot movements will
also be improved.

Robot positioning and estimation have previously been implemented in a
project course during the spring semester of 2006. This work will serve as a basis
for this thesis, which will try to improve the performance and capabilities of the

10

implementation. This thesis will also use a more systematic approach to see what
level of performance that can be expected.

11

2. Position estimation

This chapter discusses different techniques for determining the position of an
object.

2.1 Existing techniques

Camera
Camera-based system can, in combination with image processing, be used to
detect and track the position of objects in an image. One such system is used in the
thesis to check the accuracy of the position estimation implemented on the mobile
robot.

GPS
GPS is the Global Positioning System, it is a system consisting of more than two
dozen satellites orbiting the earth. The system was developed by the United States
Department of Defense and is controlled by the U.S. military.

Each satellite contains a very accurate clock and continuously broadcasts
its current time as radio messages. Receivers can use the distance to a number of
satellites to calculate its own position. The system gives a precision of roughly 15
m for civilian users, providing a somewhat more accurate signal to the U.S.
Military. The GPS system does not work very well indoors and underground since
it is difficult to receive the radio signals from the satellites under those conditions.
If the signal has been reflected before reaching the receiver the precision is also
degraded.

Ultrasound – Cricket
Cricket[5] is a ultrasound based system for indoor localization developed at the
Massachusetts Institute of Technology. It uses a combination of radio message and
ultrasound pulses to measure the distance to a number of beacons.

The system is based around active beacons which transmits a radio
message followed by an ultrasonic pulse. When the listener receives the radio
message it tries to correlate it to the ultrasonic pulse and uses the difference in
time of arrival to determine the distance. It is designed for use in indoor
environments and gives a precision of 1-3 cm. Its main strength is that the
listeners are entirely passive making it possible for the system to scale very well to
a large number of listeners.

IMU – Inertial Measurement Unit
An IMU is a system used to track position and velocity, it typically consists of 3
accelerometers and 3 gyroscopes, each mounted in perpendicular directions. This
provides the ability to measure acceleration and rotation in all directions. Often

12

the system also contains temperature sensors and/or is temperature controlled to
increase the accuracy of the measurements. By accumulating this data it is
possible to calculate the position, however due to measurement errors this leads to
drift in the estimates, requiring the system to be reset according to a external
reference regularly.

2.2 Methods

This section briefly discusses different methods for determining the position of an
object

Triangulation
The method of measuring the angle to a given object from at least two known
reference positions to determine its position is known as triangulation[6] . To
determine a position in a three dimensional space at least two reference positions
are required. The use of triangulation requires the ability to measure the angle
between the object and reference points.

Trilateration
Trilateration[7] uses distances to a number of known reference points to determine
the position. To determine a point uniquely in a two-dimensional plane at least 3
distances are required, in a three-dimensional space 4 measurements are required.
Trilateration needs the ability to accurately measure the distance to the object from
different reference points.

Multilateration
Multilateration[8] is a method for using the difference in time of arrival of a signal
to different receivers, the main difference to trilateration is that it does not need to
know the time at which the signal was transmitted. To determine the position of
an object in a three dimensional space at least 4 such receivers would be required.
Multilateration is dependent on the ability to accurately measure the time
difference of arrival for signals.

The Kalman filter
The Kalman filter is a method for combining the use of measurements affected by
noise with a model for how the object is assumed to be moving. The Kalman filter
could be implemented using any of the above methods for estimating the position.

The Kalman filter also uses the inputs of the model to predict the behavior,
in this case the available inputs are the velocity estimates for the two wheels.

The Extended Kalman filter
The Kalman filter requires a linear relationship between the measurement

input and the model states, but it is also possible to use a so called Extended
Kalman filter which allows the use of non-linear relationships. This also makes it
possible to use a non-linear model for how the object is assumed to move.

13

Basically the Extended Kalman filter takes a non-linear model and
linearizes it around the current estimate, and then works in the same way as the
Kalman filter.

Using an Extended Kalman filter it is also possible to use any measurements
that can be estimated from the current model, that is the as long as the measured
quantity is somehow related to the position the Extended Kalman filter can use it
to improve the estimation of the position. This has the advantage that the relative
accuracy of each measurement can also be taken into consideration when updating
the estimate.

Method selection
Because of the available hardware the positioning has to be done using ultrasound
pulses. Since the nodes have no ability to decide from which direction the pulse
arrived, the possibility of using triangulation is ruled out. This leaves the
possibility of using multilateration, or estimating the distance and using that for
either trilateration or as inputs to an Extended Kalman filter.

The main advantage of multilateration is that there is no need to know
when the signal was emitted, but since the nodes clocks are not synchronized we
would first have to synchronize them, eliminating this advantage.

If a radio package is sent at the same time as the ultrasound pulse it is
possible to use the difference in time of arrival of the two signals to calculate the
distance to each node, assuming that the propagation velocity of the radio signal is
much larger than that of the signal. This gives an accurate way of calculating the
distance. The distance can then be used either for trilateration or directly as input
to the Extended Kalman filter.

Of these methods the trilateration and the use of distance measurements to
the Extended Kalman filter were selected for evaluation by simulation in Matlab.

14

2.3 Theory

Trilateration

The distance measurement to each reference point will form a sphere of possible
positions. Assuming that P1,P2 and P3 all lie in the same plane and that P1 is at
the origin and P2 is on the x-axis, it can easily be shown that the point of
intersection is

x=
r1

2−r2
2d 2

2d

y=
r 1

2−r3x−i 2

2j


j
2
−
r 1

2−r 2
2d 22

8 d 2 j
z=r1

2−x2− y2

The sign of the z coordinate cannot be uniquely established without a fourth
measurement. For the purposes of this report it is, however, assumed that the
positive solution is the correct one. The conditions above can easily be fulfilled
for any three points by a simple linear transformation, as long as they are not on
the same line.

First the coordinates of P1 are subtracted from each of the other points to
fulfill the requirement that P1 must be at the origin. The other requirement is that
P2 must lie on the x-axis, this is accomplish by making a coordinate system

15

r1 r2

r3

d

i

j

x

y

P1 P2

P3

switch where the first unit vector points in the direction of P1->P2 . The
remaining unit vectors should be chosen so that all points lie in the plane and the
unit vector are orthogonal to each other. The required transformation matrix T for
transforming the result back can be calculated as:

v1=P2−P1

v2=P3−P2

v3=v1×v2

e1=
v1

∣v1∣

e3=
v3

∣v3∣
e2=e3×e1

T=e1 e2 e3

The procedure for finding the unknown point then becomes:

Q1=P1−P1

Q2=T−1×P2−P1=T T×P2−P1
Q3=T−1×P3−P1=T T×P3−P1
Qunknown=trilaterationQ1 Q2 Q3, r 1 r2 r3
Punknown=T ×QunknownP0

If the above transformation matrix T is used the inverse is simple to calculate
since all the row vectors are unit vectors and orthogonal, hence the inverse is
equal to the transpose of the matrix.

Extended Kalman
In this thesis two versions of the Extended Kalman filter are used, one with the
position estimate of the trilateration as input and one with the actual distance
measurements as inputs. This information is then combined for a model of how
the robot moves given the current velocities of the wheels. This is explained in
more detail in Chapter 3.

16

2.4 Simulation

Trilateration
Depending on the arrangement of the reference points the precision of the estimate
will vary. Some different configurations were simulated in Matlab to see how the
estimation was affected. Note that the scale of the colorbar differs between the
different figures. The first and best case is the equilateral triangle. The value on
the color-scale is the absolute error in the position estimation measured in meters.

 As can be seen in figures 2 to 5 all other cases gives worse results, when using
non-regular arrangements the precision is also very dependent on the position
relative to the reference points.

17

Figure 1: Equilateral triangle

18

Figure 2: Low triangle

Figure 3: Narrow triangle

19

Figure 5: Skewed triangle

Figure 4: Isosceles triangle

Extended Kalman filter
When simulating the Extended Kalman filter the model for how the mobile robot
moves was used to generate a reference trajectory with the wheel velocities as
inputs, this trajectory was then used to generate noise-corrupted range
measurements to each reference point. The Extended Kalman filter was then used
to estimate the position using just the noise-corrupted input signals and range
measurements. The noise added was normally distributed with standard deviation
comparable to what was observed in the physical process.

Four different methods were simulated. The first uses one using trilateration
to estimate the position which is then used as an input. The other three methods all
use the range measurements directly, but differ in how many measurements that
are handled at a time. One uses all measurements at the same time, one uses a
single measurement at a time, and the third uses two measurements at a time. If
the total number of available measurements is odd a single measurement is used at
the end. The reason for not using all measurements at the same time is that the
implementation requires the inversion of a matrix with the same dimensions as the
number of measurement, which can be very computationally expensive when there
are many measurements.

As can be seen in figures 6 to 9 all the methods give approximately the same
results. However, one important distinction between the trilateration and the direct
methods is not visible in this test; when the positioning of the reference nodes is
poor the direct methods will take that into consideration and thus rely more on the
model and less on the measurements. Since the robot is expected to be able to
navigate when regions of the sensor network may be inoperable the direct methods
are much better suited for the implementation. The difference between the direct
methods are hardly discernible, thus there is no reason to not choose the method
which uses one measurement at a time since it is vastly less computationally
expensive than the others.

Figure 6 to 9 show the estimated paths from a number of simulations with
the correct path superimposed as a green curve.

20

21

Figure 6: Trilateration

22

Figure 7: Direct measurements, all at once

23

Figure 8: Direct measurements, one at a time

24

Figure 9: Direct measurements, two at a time

3. The Extended Kalman filter

3.1 Introduction

A Kalman filter is a method for combining noisy measurements of a process with
a model of how the process works. The inputs to a Kalman filter are the
measurements, the process model, the model noise and the measurement noise.
The noise describes the error in the measurements and model. For linear systems it
is possible to calculate an optimal estimation strategy for the process state given
these inputs. Both the model noise and measurement noise are assumed to be zero
mean multivariate normally distributed.

The Extended Kalman filter is an extension of the Kalman filter for non-
linear systems. This is achieved by linearizing the system for each iteration.
Unlike the standard Kalman filter the Extended Kalman filter can not be
guaranteed to be optimal, nor that it will converge to the correct solution.

Due to the difficulties in determining the noise of the model for the mobile
robot the noise matrices have been experimentally determined to give a reasonable
trade off between how fast the estimate converges and how much noise is present
in the estimate.

In addition to estimating the state the Kalman filter also estimates the
covariance of the estimated states, this is used for determining the relation
between the state variables and to estimate how good the current estimate is.

25

3.2 Model

The model used for the mobile robot is show in figure 10.

d
dt  x

y
=

1
2

cos uaub

1
2

sin uaub

1
d
ub−ua 

x and y are the position coordinates, Ө is the angle, d is the length of the
wheel base and ua, ub are the velocities of the two wheels. Since the Kalman filter
is a discrete time filter the model must be discretized before it can be used. Due to
the slow sampling rate used in the mobile robot the Tustin approximation is used
for the sampling, this gives the following discrete time model:

26

Figure 10: Mobile robot model

d

x

y

ub

ua

θ

d
dt

≈
2 z−1
h  z1



 x
y
k

= f ⋅=x k−1
h
4
cos k−1u

a
k−1ub

k−1cosk u
a

kub
k 

yk−1
h
4
sink −1u

a
k−1ub

k−1sin k u
a

kub
k 

k−1
h
2d

ua
k−1−ub

k−1ua
kub

k 


The function f() is the so called next-state function, which calculates the
next state using the current state and the inputs. When using the Tustin
approximation the state at time k is dependent on the input a time k and k-1. This
often this results in that numerical methods have to be used when calculating the
next state. However in this case the relationship between the state variables allows
an analytical solution since the Ө-state is independent of both x and y and x and y
are independent of each other.

3.3 The Extended Kalman filter

The Extended Kalman[9] filter needs two models, the state transition model and
the observation model. These two models relate the current state to the next state
and to the external measurements. The state transition model must be a
differentiable function of the previous state and the current input and current
model noise (wk) . The observation must be a differentiable function of the current
state and measurement noise (vk). wk has the covariance Qk and vk has the
covariance Rk. This can be written as:

xk= f xk−1 , uk ,w k 
z k=h xk , v l

The function f is the same as the next-state function in the discrete time
model in Section 3.2. The function h() is dependent on whether trilateration or
direct measurements are used. For trilateration it becomes:

zk x=x k x

z k y=x k y

When using direct measurements the observation model becomes slightly
more complex, for each distance measurement, ri to the point Pi, the following
model is used (time index k omitted for clarity):

z i=P ix−x 2P iy− y2P iz−z 2

27

The filter consists of two phases, the predict phase and the update phase. For
every time step the next state is predicted during the predict phase. Since
measurements may not be available at all time steps the update part of the filter is
only used during those time steps where new measurements are available.

When updating the covariance the non-linear function f() and h() cannot be
used directly, instead the Jacobian's Fk and Hk, of f() and h() respectively, are used.
Since they are matrices of the partial derivatives they must be recalculated at each
time-step using the current state.

Predict phase
The predict phase uses the non-linear state transition model and predicts the next
state and updates the covariance matrix of the state estimate.

xk= f xk−1 , uk 
P k∣k−1=F k P k−1∣k−1 FT

kQ k

Update phase
The update phase takes the current state and estimates what the measurements
should be using the observation model. The result is then compared to the actual
measurements, and the current state is corrected accordingly taking the
measurement noise into consideration.

yk=zk−h  xk∣k−1,0
Sk=H k P k∣k−1 HT

kRk

K k=Pk∣k−1 H T
k S−1

k

xk∣k=xk∣k−1K k yk

P k∣k= I−K k H k Pk∣k−1

Implementation
The implementation of the Kalman filter is computationally expensive. To
increase efficiency results of expensive trigonometric functions are cached. No
matrix math library is used, so all matrix operation are expanded manually, this
also provides the possibility for further optimizations by manually removing
multiplications by constant zeros and ones. Below the update function is shown as
an example.

28

/* Predict next position, Tustin approximation */
void kalman_predict(float X[3], float P[3][3],

 float u[2], float uo[2])
{
 /* old theta */
 float tho = X[2];

 /* Predict new theta using tustin */
 float th = X[2] + H_KALMAN/(2.0f*L_BOT)*
 ((u[1]-u[0]) + (uo[1]-uo[0]));

 /* Store computed trig funcs, saves approx 70 ms/call */
 float cos_th = cosf(th);
 float sin_th = sinf(th);
 float cos_tho = cosf(tho);
 float sin_tho = sinf(tho);

 /* store computed values to save time
 (saves approx 7 ms/call) */
 float u_cos_th = (u[0]+u[1])*cos_th+(uo[0]+uo[1])*cos_tho;
 float u_sin_th = (u[0]+u[1])*sin_th+(uo[0]+uo[1])*sin_tho;

 X[0] = X[0] + H_KALMAN/4.0f * u_cos_th;
 X[1] = X[1] + H_KALMAN/4.0f * u_sin_th;
 X[2] = th;

 float h1 = -H_KALMAN/4.0f * u_sin_th;
 float h2 = H_KALMAN/4.0f * u_cos_th;

 float a = P[0][0];
 float b = P[1][1];
 float c = P[2][2];
 float d = P[1][2];
 float e = P[0][1];
 float f = P[0][2];

 float fh1c = f+h1*c;
 float dh2c = d+h2*c;

 /* P = Fk*P*Fk+Qk' */
 P[0][0] = (a+h1*f)+fh1c*h1+QK11;
 P[0][1] = (e+h1*d)+fh1c*h2+QK12;
 P[0][2] = fh1c+QK13;

 P[1][0] = (e+h2*f)+dh2c*h1+QK21;
 P[1][1] = (b+h2*d)+dh2c*h2+QK22;
 P[1][2] = dh2c+QK23;

 P[2][0] = fh1c+QK31;
 P[2][1] = dh2c+QK32;
 P[2][2] = c+QK33;

 return;
}

29

4. Hardware

The system consists of a number of sensor nodes with ultrasound receivers and a
mobile robot with an ultrasound transmitter. Both the nodes and the robot use the
Tmote Sky hardware as the interface to the network.

4.1 Tmote Sky

The Tmote Sky is a wireless sensor network platform manufactured by the Moteiv
corporation[10]. Its main features are:

• 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver
• 8MHz Texas Instruments MSP430 micro controller
• USB interface

The version used in the thesis has been mounted in a custom enclosure built
at the Department of Automatic Control at Lund Institute of Technology. A Telos
Mote board is shown in figure 11.

30

Figure 11: Telos Mote

4.2 Mobile robot

There are two mobile robots used in the thesis, they have the same overall design
with some minor differences. One of the robots is shown in figure 12.

The robots are of dual-drive unicycle type, they have two independently
driven wheels, and uses a third ball-type wheel that is free to rotate in all
directions to maintain balance. Each motor is controlled by one Atmel AVR
Mega16 processor. The two sides are entirely identical, this results in the
directions for the right and the left side being reversed, so for the robot to move
forward one side has to run in the positive direction and the other side in the
negative direction.

The robots are also equipped with an ultrasound transmitter which is
connected to an additional AVR Mega16 processor. A plastic cone has been
mounted directly above the ultrasound transmitter in order to scatter the sound in a
360 º plane. Each robot also has a Tmote Sky which provides the connection to the
sensor network over the radio interface. The Tmote Sky also acts as master of the
I²C-bus which all processors are connected to. A schematic overview of the
hardware is shown in figure 13.

One of the robots have additional hardware in order to detect and avoid
collisions. It consists of two touch sensor and an IR-distance sensor mounted on a
RC-servo. The RC-servo can be used to sweep the distance sensor in an arc in
front of the robot, thus acting as a form of IR-radar that can be used to detect
obstacles. All of these sensors are connected to same processor that controls the
ultrasound transmitter.

31

Figure 12: RBBot mobile robot

Figure 13: Mobile robot hardware overview

4.3 Joystick

The joystick is simply two potentiometers attached to a stick, when the stick
moves the potentiometers also move. The outputs from the potentiometers are
connected to the two analog inputs available on the expansion header of a Tmote
Sky. The expansion header also provides the necessary GND and V+ connections.
The joystick can be used to manually control a robot.

32

I2C-bus

AVR
Mega16

Ultrasound
Transmitter

Touch Bar

IR
Sensor

Position
encoder

Motor

Position
encoder

Motor

Tmote Sky

AVR Mega16
Wheel

Controller

AVR Mega16
Wheel

Controller

4.4 Sensor node

A sensor node consists of a Tmote Sky equipped with an ultrasound receiver. The
ultrasound receiver is a small circuit board with an ultrasound microphone which
is connect to the expansion header of the Tmote Sky. Above the microphone is the
same type of plastic cone that is used on the transmitter of the mobile robot, this is
used to reflect incoming sound from all directions down into the microphone

33

Figure 14: Sensor node

5. Software

This chapter describes the software and protocols used on the mobile robot.

5.1 Contiki

Contiki[11] is an operating system developed at SICS, Swedish Institute of
Computer Science. It is designed to be very light weight and have a very small
foot-print in both program memory and RAM. Contiki provides a protothread
primitive which is similar to a thread, but requires explicit yielding for a context
switch to take place. A simple protothread example is shown below. When
context switching the current state is not saved, so the programmer is required to
not put any variables on the stack if they are needed between different instances of
the thread.

Through the use of the CRTK, Component Runtime Kernel, Contiki
supports dynamic loading of components which is a fundamental part of the
RUNES-project. Contiki also contains the uIP ip-stack which provides methods
for sending and receiving both UDP and TCP messages. This make it very easy to
communicate with any platform implementing the IP protocol.

PROCESS(example_process, "Example process description");

PROCESS_THREAD(example_process, ev, data)
{
 PROCESS_EXITHANDLER(goto exit);
 PROCESS_BEGIN();

 /* Variables must be declared static */
 static int i;
 i = 0;

 while (1) {

 PROCESS_WAIT_EVENT();
 /* Handle events */

 i++; // Count number of events received
 }
 exit:

 /* Do clean-up here */

 PROCESS_END();
}

Example process implementing a simple event handler

34

5.2 I²C

The different processors on the mobile robot use I²C to communicate. I2C is a
simple two wire serial bus developed by Phillips Semiconductors[12]. The
protocol is implemented by many other vendors but under different names due to
licensing restrictions, for instance the Atmel AVR refer to it as the “two-wire
serial interface”[13].

The basic working principle is that all devices are connected to the two
wires, SCL and SDA. SCL is the serial clock and SDA is serial data. Both lines
are kept logically high by two resistors unless one of the devices pulls them low.
Due to the nature of the bus it acts as AND gates, if one devices pulls the bus low
all other devices will detect it as low as well. One device acts as the bus master
and initiates all communications and generates the SCL clock. A slave device has
the ability to extend the SCL low period if the master wants to send data faster
than it can receive. All devices on the bus must have a unique 7-bit id. Figure 15
shows a typical I2C-bus.

There is also an arbitration protocol for running multiple masters on the
same bus, however this is not used on the mobile robot. The main reason for not
using multi-master in this case is that the Telos Mote shares some pins between
the radio interface and the I²C bus, resulting in corruption of the radio traffic if
any other device were to initiate an I²C transfer.

35

Figure 15: I2C bus

R1 R2

Vcc

SCL
SDA

Device
2

Device
1

Device
n

6. Distance measuring

This chapter discusses the theory and implementation of the range measurements.

6.1 Theory

The distance measurements are done by sending ultrasound pulses from the
mobile robot that are detected by the sensor nodes. Since the propagation speed of
the radio waves is much faster than that of the sound waves we can get an accurate
measurement of the propagation time by first sending a radio packet and then
measuring the time of arrival difference between the radio packet and the
ultrasonic pulse. In order to accurately detect the start of the pulse the data first
has to be filtered.

Figure 16: Typical ultrasound pulse after sampling

36

6.2 Implementation

Since the radio packet needs to be sent to all nodes within range UDP packets
must be used.

In order to get good accuracy we must have a very deterministic delay
between sending our radio packet and the ultrasound pulse. In Contiki the standard
procedure for sending a packet is to first request sending and then wait for the
process to get an event allowing the transmission. However, due to the timing
constraints, in this project an alternative method is used where the actual sending
takes place in the calling process context to avoid context switches. This is
accomplished by using the function uip_udp_packet_send.

Since there are some delays when sending the radio packages there is a need
to wait a specific time before sending the ultrasound pulse, otherwise the pulse
will arrive before the radio package. Due to the difficulties in waiting with great
accuracy in Contiki this delay is implemented in the Atmel AVR Mega16 that
controls the ultrasound transmitter.

The ultrasound is sent by sending a message over the I²C-bus to the Mega16
specifying the duration of the pulse. The Mega16 will, after receiving the message,
wait 2 ms and then start outputting the ultrasound pulse under the specified
duration.

The detecting node receives the UDP packet and immediately starts
sampling the ultrasound receiver and stores the data in an array. The sampled
values are filtered by a median-3 filter and compared to a threshold value. The
median-3 filer is based on a sliding window of three samples where the filter at
every instance chooses the median of the three values within the window. When
the filtered absolute value exceeds the threshold the node considers the ultrasound
pulse to be detected. The index in the array of sampled value where the pulse is
detected is linearly related to the distance the sound traveled.

The slope of the line describing the relation between detection index and
distance should only be dependent on the sampling frequency and the speed of
sound, our sampling frequency is approximately 73 kHz and the speed of sound is
approximately 344 m/s. The offset should be entirely dependent on the delay
between sending the UDP packet and the ultrasound pulse.

6.3 Results

In figure 17 we can see that there is a linear relation between the distance and the
detection index, as would be expected the standard deviation does not seem to
have any correlation with the distance. The detection index is the scale used
internally by the system for measuring distances. It should only depend on how
deterministic the software running on the transmitter and receiver is. However for
large distances there seems to be an increased uncertainty, this also seems to be
near the maximum range of the transmitter, which might explain this. Most
notable during the experiment was that there is were measurement received for 10

37

meters. At this range 100% packet loss was experienced, radio contact was
however regained again when moving the receiver further away. Such dips in the
radio reception are hard to predict but are to be expected.

38

Figure 17: Detected index as function of distance

7. Wheel control

This chapter deals with the individual control of the wheels of the mobile robot.

7.1 Hardware

Each wheel of the robot is driven by a single DC-motor. On the wheel-axis there
is also a position encoder mounted. The encoder and DC-motor are connected to
an Atmel AVR Mega16 processor, the processor is connected to the rest of the
system as a slave on an I²C-bus.

The position encoder consists of a dish with 40 alternating black and white
fields and two light sensors that measure the reflected light from the dish. The two
sensors are mounted so that they are in opposite phase, this results in at least one
of the sensors switching from on/off every 1/80th of a revolution.

The position encoder is connected to two analog-to-digital converters on the
Mega16. The DC-motor is connected to an analog output.

7.2 Software

Working principle
The software works by continuously reading the values of the analog inputs and
comparing them to a reference value to decide whether the sensor currently is
reading a black or white field. Every time one of the sensors changes what type of
field it is over the position is either incremented of decremented depending on
what direction the wheel is moving in. Due to the out of phase nature of the
sensors it is possible to determine the direction without any additional
information.

With a sampling period of 1 ms the current angular velocity is estimated
from the change in position. Due to the discrete nature of the position
measurements the velocity estimate is low-pass filtered. The estimated velocity is
then compared to the reference velocity and depending on the difference a voltage
is calculated and output to the DC-motor.

Existing software
When the master thesis started there was already a P-controller implemented for
each wheel. This software however exhibited some problems. When the robot was
to run both wheels with the same speed it would drift considerably instead of
moving in a straight line. One of the goals of the thesis was to improve this
performance.

39

Problems
1. When manually turning the wheels the two sides would report different

velocities and one side would sometimes skip some values. The estimated
velocity was also much more noisy when doing a step response. The
reason for this was that the switching point for the sensors to switch
between a black and white field was set to a fixed value, but in reality the
sensors had somewhat different offset causing the position estimate to
change at the wrong time.

2. When requesting the wheel to move with a certain absolute speed it would
depend on whether it was moving in the positive or negative direction.

3. After having fixed problem 1 and 2 the robot would still drift due to
differences in friction on the two sides.

4. When doing reference changes the wheels sometimes loose traction, which
is a problem when doing dead-reckoning.

Improvements
1. To fix the error in position estimate the software stores the maximum and

minimum value recorded from each sensor and uses the average as the
switching point between black and white.

2. This effect was due to a rounding error in the fixed-point calculations in
the position estimation.

3. The regulator structure was changed to a PI-controller with anti-windup to
be able to compensate for load disturbances.

4. A low-pass filter was implemented on the reference velocity.

In addition to the above points the entire controller was re-implemented using
fixed-point arithmetics instead of purely integer based math which does not allow
for the use of decimals in the numbers. This gives the ability to have somewhat
more accurate estimates, but the main advantage is being able to use an integrator
with a time constant that is less than one.

40

7.3 Performance

Before the improvements the controller exhibited the following behavior when
requested to follow a sequence of reference changes. The tests were done both
with the wheels lifted from the ground and with the wheels in contact with the
ground so the robot moved in order to test with different load conditions.

The green line is the speed of the right wheel, the blue that left wheel. The
dotted red line is the reference value. The horizontal axis represents time
measured in samples, the sampling time being 0.2s. The vertical axis is the
velocity, measured in cm/s.

As can be seen in figure 18 and 19 the old controller has problems with
overshooting when the load is removed. The two wheels move with slightly
different speeds and neither wheel is able to follow the reference value.

The new regulator introduced filtering of the reference signal, the filtered
reference is the solid red line, the unfiltered reference is the dotted red line. As can
be seen in figure 20 and 21 the new regulator follows the filtered reference very
well and has no stationary errors. There is no noticeable difference between when
the robot is moving and when the wheels have been lifted of the floor. There is
neither any visible difference between the right and left wheel.

41

42

Figure 18: Old controller, no load

Figure 19: Old controller, moving

43

Figure 20: New controller, no load

Figure 21: New controller. moving

8. Obstacle detection

One of the mobile robots have has equipped with obstacle detection sensors.
Currently they consist of a touch sensor bar, which extends over the entire length
of the front of the robot, that can detect when the robot has collided with an
obstacle. In addition to this the robot is equipped with an IR-distance sensor
mounted on an RC-servo. This should be used to sweep the the distance sensor
over an arc of 180º in front of the robot creating the ability to make measurements
much in the same way that a traditional radar works.

All of the sensors are currently connected to the Atmel AVR that is also
responsible for the ultrasound. Due to limitations in the hardware this prevents the
servo from being operated at the same time as the ultrasound. Because of this the
RC-servo has been disconnected and fixed in the forward looking direction. Since
the AVR must act as a slave on the I²C-bus the Telos Mote periodically polls the
AVR asking if any obstacle has been detected. This, however, introduce a delay
that severely degrades the performance of the obstacle detection.

In the current implementation the mobile robot stops when it detects an
obstacle, in the future it is supposed to be integrated with a collision avoidance
component developed at the University of Pisa, Italy, which should give it the
ability to operate more intelligently. The IR-distance sensor provides an output
voltage that depends on the distance to a possible object. This curve is very non-
linear, as can be seen in figure 22. Since the rudimentary implementation of the
collision detection only needs to know if an object is closer than a certain distance
it is only necessary to compare to a fixed value, thus the non-linearity is not a
problem.

44

45

Figure 22: Output value from ADC for distance sensor as function of range (m)

9. Robot controller

This chapter describes how the controller for the speed and heading of the mobile
robot works.

9.1 Overview

The speed of the robot can be modeled as the average velocity of the two wheels,
and the the angular velocity is proportional to the difference in velocity of the two
wheels. Using this model it is natural to design two controllers, one for the
velocity and one for the angle, the output of the angle controller is then added and
subtracted from the two wheels respectively.

9.2 Design

The two wheel controllers have been implemented with reference filtering which
gives them a time-constant of 0.5 s independently of the load. The wheels can then
be modeled as:

v̇=C vref−v

Using this an LQ-controller is designed for the control of the angle. This controller
will depend on the length of the wheel base of the robot, however the only
difference will be the constants L1 and L2 which have to be tuned for the
individual robot.

udiff =L1ref−−L2ub−ua

9.3 Implementation

The implementation of the controller is just a few lines of C-code which must be
called periodically with the same period that was used when designing the
controller. Care has to be taken so that the smallest angle difference is always used
and that the angle difference never exceeds 180 degrees. This is accomplished by
the function angle_diff(angle1, angle2).

46

/* Angle control

 u_diff = -L1*X[2]-L2*(u[1]-u[0])+LR*theta_ref = { LR=L1 } =

 = L1*(theta-X[2])-L2*(u[1]-u[0])
*/

u_diff = L1*angle_diff(theta_ref,X[2]) -
 L2*(u[1]-u[0]);

if (u_diff > 0) {
 u_diff = MIN(u_diff, 0.4f);
} else {
 u_diff = MAX(u_diff, -0.4f);
}

Source code extract showing controller implementation

47

10. Multiple robots

This chapter discusses how the implementation handles the simultaneous
positioning of multiple robots.

10.1 Problem

The ultrasound is a shared resource meaning that there can only be one ultrasonic
pulse in the air at any given time. Because the robots are the sender in the
positioning scheme this means that if multiple robots are to operate in the same
area they must somehow provide a method for guaranteeing that they will not
broadcast ultrasonic pulses at the same time. Another issue is that the increased
radio traffic might introduce extra delays when doing position estimation.

10.2 Solution

The amount of network traffic is reduced by only sending position information
every third iteration of the Kalman predict interval.

In order to avoid simultaneous ultrasound transmissions all robots listen for
the RANGE_REQUEST radio packet that precedes all ultrasound transmissions.
Whenever such a packet has been received by a robot that robot will block itself
for 310 ms preventing it from making any range requests. After this time the other
robot will have finished its request and all the sensor nodes will be ready to make
new measurements. This values is based on experimental data on how long time it
takes to receive the answers from all the sensor nodes.

If there was another robot that was blocked that wanted to make a
measurement while blocked it might end up in a form of starvation where the
other robot will always start its measurement slightly before and thus preventing it
from ever measuring the position. This problem is solved by temporarily
stretching the time period between the Kalman filter iterations every time the
robot was blocked when doing a range measurement. The end result of this is that
the second robot will eventually have delayed its execution cycle so much that the
measurements are done after the blocking time of the other robot.

In the implementation this extra delay is 50 ms, thus the maximum number
of missed measurements when running two robots are 7. By using a larger delay it
would be possible to escape the blocking situation quicker, however by choosing a
smaller value it is possible to be closer in time to the end of the other robots
blocking interval. If a too large value is choosen the robot might end up in the next
sending interval instead, it also degrades the performance of the Kalman filter as it
always calculates using the same fixed time. If the sample time of the Kalman
filter is 0.4 s and measurements are done every third iteration, it should be
possible to run three robots simultaneously using the values presented above.
Since there are only two robots available the algorithm has not been tested with
more than two robots.

48

Figure 23 shows a time schedule for two robots doing position estimation.
In the beginning Robot2 is unable to make any measurements since it is always
blocked by Robot1, however after three attempts its period has drifted far enough
to avoid the blocking from Robot1. After that point the two robots are able to
make measurements without disturbing each other. The blue rectangles illustrate
the time which the robots are blocked by each other. The zigzag shaped arrows
illustrate sending of radio packets.

49

50

Figure 23: Multiple robots synchronizing transmissions

R
obots sending out of phase

P
hase adjustm

ent (stretching)

R
obot 1

R
obot 2

Sending of range request from
 this robot blocked for 310 m

s

50 m
s delay

400 m
s

11. Implementation

This chapter describes how the techniques presented before have been
implemented on the mobile robot and nodes.

11.1 Sensor nodes

The main problems with implementing the code in the sensor nodes are to get
deterministic delays and to be able respond quickly to the robot without causing
unnecessary collisions and network traffic. In order to achieve the deterministic
delays the sensor nodes are idle and just waiting until they receive a packet
requesting a measurement, then the node immediately starts sampling and saves
the results to an array. In order to correctly identify the start of the pulse the values
in the array are then filtered. Because of the high sampling rate (~72 kHz) this
operation can not be done in real-time, which is the reason that the values are first
stored in an array. The filter is a simple Median-3 filter.

After having detected the start of the pulse the node will broadcast the result
back using an algorithm described below that avoids collisions with the other
nodes without unnecessary network traffic. In order to reduce network traffic all
responses are sent as UDP broadcasts, this avoids MAC-level resends and
confirmations reducing network traffic. This,however, results in that the packets
must somehow be guaranteed to not collide, or they will be lost. Since the robot
can not use more than five measurements at the same time there is no reason to
send responses from any other nodes than the five closest.

Since the layout of the sensor network is well known, (all nodes are
positioned along the edges of a straight tunnel), it is possible to calculate a
distance where there never is more than 5 nodes within that distance. All nodes
further away than this distance will discard the measurement. By numbering all
the nodes in strictly ascending order along the tunnel it is possible to calculate a
unique delay for each node sending a response by taking the node number
modulus five. The result of the modulus operation is multiplied by an
experimentally determined delay to avoid collisions. An extract from the code is
shown below.

if (hdr.type == RANGE_RESPONSE) {
 /* 256 == CLOCK_SECOND => max delay ~ 32/256 ~ 125 ms */
 etimer_set(&etimer_wait, ((NODE_ID)%5)*8);
 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&etimer_wait));
}

Code for delaying each transmission by a unique value

51

Figure 24: Sequence diagram for distance measurements on sensor node

11.2 Mobile robot

Overview
Everything in the mobile robot is implemented in a single protothread with the
different activities statically scheduled. The entire system runs with the same time-
step as the Extended Kalman filter, except the radio traffic which occurs
asynchronously whenever the process is idle. The activities on the mobile robot
are:

• State estimation using the Extended Kalman filter
• Navigation
• Robot control
• Communication with other robots/host PC
• Communication with AVR processors over I2C.
• Obstacle detection

Navigation is the process of generating reference values for the desired angle and
velocity. Robot control is the process of using the angle and velocity references to
calculate individual velocity references for the two wheels.

52

Start sampling
Detect ultrasound

pulse using
median_3 filter

Delay depending on
node ID

Broadcast index at
which pulse was

detected

Wait for radio
message

Figure 25: Mobile robot software architecture

Extended Kalman filter
Every 0.4 seconds the main process reads the current positions of the wheels and
calculates their velocities, this is then used as input to the predict part of the
Kalman filter. The update part is only executed every third step in order to
decrease the amount of network traffic and to allow other mobile robots to use the
ultrasound receivers.

Due to the numerical difficulties of inverting large matrices all the updates
are done sequentially. According to the simulations done this has almost no
impact at the performance of the position estimation, whereas it drastically
reduces the required computational resources. This also provides the possibility to
handle each update directly as it is received , making it possible to use the
available processor more effectively. If all the updates had been handled at the
same time it would be necessary to wait for all the measurements, making the
processor sit idle while waiting for the messages from the different nodes.

Since the distance measurements are for the position the mobile robot had
when the message was broadcast the old position has to be stored and used when
doing the update, this position then has to be used for the predict instead of the
previously calculated position. It would be theoretically possible to wait more than
one time-step before doing the updates, thus giving more nodes time to answer.
This would, however, require doing several extra predicts to catch up after the
update, and this is not feasible since the predicts are very computationally
expensive.

53

Main
process

I2C

EKF

predict
update

Global vars

x, y, theta
ua, ub

Navigator

Controller

set_speed_ref
set_angle_ref
do_control

get_speed_ref
get_angle_ref

Navigation
At every time-step the mobile robot compares its current position to the desired
position and calculates the direction and velocity it should travel with in order to
reach the desired position. It compares its current position with that of the desired
position and calculates an angle using the arctangent function. The velocity is a
function of the distance to the destination, with a saturation constraining it to a
maximum velocity. An extract from the code is shown below.

When the robots gets within a certain distance of the desired position it
switches to the next way-point, if there is one. Otherwise it stops at the current
position. The navigation can also operate in a tracking mode where it continuously
attempts to position itself a certain distance behind another robot, it also tries to
match the other robots heading and velocity.

In the future it is intended to move this functionality to another processor
which also handles collision avoidance. The current implementation is rather
computationally expensive as it involves the use of trigonometric functions.

float dist = sqrtf(SQR(waypoints[curr_wp].x-X[0])+
 SQR(waypoints[curr_wp].y-X[1]));

if (dist < waypoints[curr_wp].r) {

 curr_wp = waypoints[curr_wp].next;
 nav_get_references(speed, heading);

} else {
 /* Max speed V_MAX m/s */

 *heading = atan2f(waypoints[curr_wp].y-X[1],

 waypoints[curr_wp].x-X[0]);

 float angle_err = 2*ABS(angle_diff(*heading, X[2]));
 angle_err += 1.0f; /* [1, 1+2*PI] */

 float v_max = V_MAX / angle_err;

 /* run slower if large error in angle */
 *speed = MIN(v_max, dist/H_KALMAN/10.0f);
}

Extract from navigation code

Robot control
The desired angle and velocity from the navigation are used by the robot controller
to calculate the optimal, according to the criteria used when designing the LQ-
controller, reference velocities for the two wheels. Since the angle and velocity
are independent from each other the reference velocities from the velocity
controller are simply added to the result of the angle controller before sending it to
the AVR-controllers.

54

Communication
Every third time-step the mobile robot broadcasts its position to all other robot
within radio range. It also sends the current state to the host PC. The reason for
only sending the data every third time-step is to reduce the amount of network
traffic.

Timing
The entire robots runs a sequence which repeats itself every three time-steps.
During this time all the above functions are performed. Figure 26 below shows a
typical cycle, it also contains the amount of processor time required for the major
functions. Notice that the first update call is made when the second distance
measurement is received, this is to always save one update to the second time-slot.
This is done because there is a lot of spare processor time in that interval, whereas
the processor already has a lot to do in the first interval.

Figure 26: Mobile robot timing diagram

55

400 ms

EKF Predict --- 80 ms

Execute robot controller (do_control)

Range request, send ultrasound and
transmit radio package

Update navigator

Collect range response – 16 ms

EKF Update --- 50 ms

Send position

1 2 3

I2C

Poll obstacle detection

Receive position

PROCESS_THREAD(rbbot_process, ev, data)
{
 /* Initialisations */

 while (1) {

 PROCESS_WAIT_EVENT();

 if (etimer_expired(&etimer_predict)) {
 predicts++;

 /* Use restart, if we are late we don't want to
 'catch up' */

 etimer_restart(&etimer_predict);

 /* calculate estimate of current velocity and store
 in global u */
 get_speeds(u);

 switch (predicts % 3) {
 case 0:
 case 1:
 /* Predict current position */
 kalman_predict(X,P,u,old_u);
 /* Do robot control using nav. references*/
 mode = ctr_do_control(mode);
 break;
 case 2:
 /* Predict and control will be done after the
 update */
 break;
 }

 switch (predicts % 3) {
 case 0:
 /* Send data to host PC */
 case 1:
 /* Send range request */
 case 2:
 /* Calculate kalman_update */
 }

 /* Save velocity for next time-step */

 /* Update navigation */

 }
 if (tcpip_event && uip_newdata()) {
 /* handle network data, and do asynchronous updates
 when position messages are received*/
 }
 }
}

Mobile robot process, simplified for clarity

56

11.3 Radio packet types

Table 1 contains all the radio message types that are used by the mobile robot and
sensor nodes.

Message Protocol Type Explanation
JOYSTICK UDP/IP Unicast Sent to mobile robot from

joystick, directly controls
wheel velocities.

RANGE_REQUEST UDP/IP Broadcast Sent by mobile robot to
initiate a range measurement.

RANGE_RESPONSE UDP/IP Broadcast Send by sensor nodes in
response to a successful range
measurement.

POSITION_RESPONSE UDP/IP Unicast Sent by mobile robots,
contains the current position.

BOT_POSITION_BCAST UDP/IP Broadcast Sent by mobile robot,
contains current position and
wheel velocities. Used by
navigation when tracking
another robot.

Table 1: Radio packet types

All messages start with a 2-byte header:
struct BOT_MSG_HEADER {
 /* Id is the same as last 8-bits of ip address */
 uint8_t id;
 uint8_t type;
};

The type is a value from the following enumeration, it also contains some ids
which are not used in the current implementation:

/* Message types */
enum {
 /* request PONG response from all receivers */
 PING = 0,
 /* sent as response to PING */
 PONG,

 JOYSTICK,

 /* Start range measurement */
 RANGE_REQUEST,
 /* Sent after a successful measurement of
 the range */
 RANGE_RESPONSE,

 /* request the current position from a mote */

57

 GET_POSITION,
 /* set the position of a mote */
 SET_POSITION,

 /* return the current position */
 POSITION_RESPONSE,

 /* Broadcast our position */
 BOT_POSITION_BCAST
};

JOYSTICK
struct JOYSTICK_MSG {
 struct BOT_MSG_HEADER hdr;
 /* variables should be in the range [-1,1] */
 float x;
 float y;
};

RANGE_REQUEST
struct RANGE_REQUEST_MSG {
 struct BOT_MSG_HEADER hdr;
};

RANGE_RESPONSE
struct RANGE_RESPONSE_MSG {
 struct BOT_MSG_HEADER hdr;

 /* not the actual range, but the index at

 which the pulse is detected */
 uint16_t range;

/* Fixed-pint, 9-bit decimal
 => resolution 1/512 m, which is sufficient
 since we got a sdev of 0.02 on the range
 measurements anyhow */

 int16_t x;
 int16_t y;
};

58

POSITION_RESPONSE_MSG
struct POSITION_RESPONSE_MSG {
 struct BOT_MSG_HEADER hdr;
 /* Fixed-pint, 9-bit decimal

 => resolution 1/512 m, which is sufficient
 since we got a sdev of 0.02 on the range
 measurements anyhow */

 int16_t x;
 int16_t y;
};

The POSITION_RESPONSE_MSG is also used when logging data to the host
PC. The same structure is used but the integers are stored in Big-Endian format
instead.

BOT_POSITION_BCAST_MSG
struct BOT_POSITION_BCAST_MSG {
 struct BOT_MSG_HEADER hdr;

 float x;
 float y;
 float theta;
 float v;
};

11.4 I2C message types

All I2C messages are sent with the Telos Tmote Sky as master, Table 2 contains
all messages that are used.

Function Slave TX-length RX-length
Get wheel positions Wheel control AVR A/B 0 bytes 4 bytes
Send ultra sound Ultrasound AVR 3 bytes -
Set wheel velocity reference Wheel control AVR A/B 2 bytes -

Table 2: I2C messages

Get wheel positions

Byte 0 1 2 3
Value (position>>24) (position>>16) (position>>8) position&0xff

59

Send ultrasound
Duration is in units of 1/40 ms.

Byte 0 1 3
Value 0x10 duration>>8 duration&0xff

Set wheel velocity reference

Byte 0 1
Value reference>>3 (reference<<5)&0x07

The reference value should be calculated using the following function which takes
the velocity (m/s) as input.

/* Given a speed in m/s return the reference value that
 should send to the motor controller, controller believes
 'speed' to be -2*'pos diff'/H, where H = 0.01;

 encoder_positions / (wheel_diameter*pi)=80*3.183
 1 m/s => 255 ticks/s

 The reference should thus be:
 vref * 255 * -2

 Zero points is at 1024, with inc. pos. speed <1024 and
 neg. >1024

 Take into consideration the the motors are mounted in
 opposite directions, and positive vref is always for
 forward movement. */

uint16_t calc_speed_ref(char motor, float vref)
{
 float tmp = (vref*255.0f*(-2.0f));
 if (tmp > 1024.0) tmp = 1024.0;
 if (tmp < -1024.0) tmp = -1024.0;

 /* Add 0.5f to get proper rounding */
 if (motor == 'A')
 return (1024.0f - tmp + 0.5f);
 else if (motor == 'B')

 return (1024.0f + tmp + 0.5f);
 else
 return 1024; /* Unknown motor, return zero ref */
}

60

12. Experimental results

In order to verify the estimation the robot was run in a room with a ceiling
mounted camera positioning system. The camera system has an accuracy of
approximately 1 cm. In all the following plots the blue curves are the camera
estimation and the green curves are the Kalman filter estimation. The two system
use different sampling intervals and are not synchronized in time, so the curves
have manually been positioned in time to get the best fit. In figure 27 the angle
estimate is shown, its accuracy is roughly 15°. As can be seen in figure 28 and 29
the accuracy of the x and y estimates is approximately 10 cm.

To get a better feeling for the performance of the estimation the X and Y
position can be simultaneously plotted in a XY-plot, this is done for both
experiments that were conducted. This is shown in figure 30 and 31, the scale on
the axis is in meters. As can be seen the combined accuracy is worse than for the
individual x and y estimates. The position estimation accuracy is roughly 25 cm.

61

Figure 27: angle (radians) as function of time (s)

62

Figure 28: x position (m) as function of time (s)

Figure 29: y position (m) as function of time (s)

63

Figure 30: XY-plot from experiment 1

Figure 31: XY-plot from experiment 2

13. Conclusion

The use of a sensor network for positioning of mobile robots is feasible. The
ultrasound based solution used in this thesis is able to provide high enough
accuracy for the position estimation, and has been shown to work for two mobile
robots at the same time.

The issues of packet loss and malfunction of sensor nodes are handled by
implementing dead-reckoning on the robots. The estimates of the dead-reckoning
is continuously updated using measurements from the sensor network as they
become available.

The main bottle-neck of the current implementation is the performance of
the dead-reckoning, especially the estimation of the angle. There are several
feasible alternatives for improving this:

– Increasing the accuracy of the robots mechanics, eliminating play in the
robot cogwheels. Increasing the precision of the wheel diameters.

– Offloading some calculations of the Extended Kalman filter to another
processor. This should make it possible to run dead-reckoning more often,
making the model more accurate.

– Adding another method for measuring the angle. There exists simple
compasses that can be connected via I2C.

– Including the model for the wheels in the Extended Kalman filter. This
should make the model more accurate. After the reference filtering the
wheels should be simple include in the model.

64

1 RUNES, Reconfigurable Ubiquitous Network Embedded Sensors, http://www.ist-runes.org/
2 Introduction to RUNES, http://www.ist-runes.org/introduction.html
3 RUNES participants, http://www.ist-runes.org/participants.html
4 A component-based approach to the design of networked control systems, Karl-Erik Årzen, Antonio Bicchi,

Gianluca Dini, Stephen Hailes, Karl H. Johansson, John Lygeros, and Anthony Tzes
5 Cricket, http://cricket.csail.mit.edu/
6 Triangulation, Wikipedia, http://en.wikipedia.org/wiki/Triangulation
7 Trilateration, Wikipedia, http://en.wikipedia.org/wiki/Trilateration
8 Multilateration, Wikipedia, http://en.wikipedia.org/wiki/Multilateration
9 The Extended Kalman filter, http://en.wikipedia.org/wiki/Kalman_filter
10 Moteiv Corporation, http://moteiv.com
11 The Contiki Operating System, http://www.sics.se/contiki
12 I2C, http://www.nxp.com/products/interface_control/i2c/
13 Two-wire serial interface, ATmega8(L) Complete, www.atmel.com

http://www.sics.se/contiki

	1.Introduction
	1.1Background
	1.2Purpose

	2.Position estimation
	2.1Existing techniques
	2.2Methods
	2.3Theory
	2.4Simulation

	3.The Extended Kalman filter
	3.1Introduction
	3.2Model
	3.3The Extended Kalman filter

	4.Hardware
	4.1Tmote Sky
	4.2Mobile robot
	4.3Joystick
	4.4Sensor node

	5.Software
	5.1Contiki
	5.2I²C

	6.Distance measuring
	6.1Theory
	6.2Implementation
	6.3Results

	7.Wheel control
	7.1Hardware
	7.2Software
	7.3Performance

	8.Obstacle detection
	9.Robot controller
	9.1Overview
	9.2Design
	9.3Implementation

	10. Multiple robots
	10.1Problem
	10.2Solution

	11. Implementation
	11.1Sensor nodes
	11.2Mobile robot
	11.3Radio packet types
	11.4I2C message types

	12. Experimental results
	13. Conclusion

