
ISSN 0280-5316 
ISRN LUTFD2/TFRT--5789--SE 

Ultrasound-based Navigation 
for Mobile Robots 

Jerker Nordh 
 

Department of Automatic Control 
Lund University 
February 2007 



 



Document name 
MASTER THESIS 
Date of issue 
February 2007 

Department of Automatic Control 
Lund Institute of  Technology 
Box 118 
SE-221 00 Lund Sweden Document Number 

ISRNLUTFD2/TFRT--5789--SE 
Supervisor 
Peter Alriksson and Karl-Erik Årzén at Automatic Control 
in Lund 
 

Author(s) 
Jerker Nordh 
 

Sponsoring organization 

Title and subtitle 
Ultrasound-based Navigation for Mobile Robots (Ultraljudsnavigering för mobila robotar) 
 

Abstract 
This thesis presents an implementation of a positioning and navigation system for a mobile robot using ultrasonic pulses 
and passive sensors that are part of a sensor network. 
The system uses the Telos Tmote Sky sensor-boards running Contiki. In addition to the Tmote Sky the  mobile robot 
consists of a number of processors and is equipped with position encoders for the wheels in order to be able to accurately 
estimate the position using dead-reckoning. It is also equipped with an ultrasound transmitter. The sensor nodes are 
equipped with ultrasound receivers. 
 

Keywords 

Classification system and/or index terms (if any) 
 

Supplementary bibliographical information 
 
ISSN and key title 
0280-5316 

ISBN 
 

Language 
english 

Number of pages 
64 

Security classification 

Recipient’s notes 

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46 
222 42 43 



 



Acknowledgments

I would like to thank professor Karl-Erik Årzén at the Department of Automatic 
Control in Lund for the opportunity to do this master thesis which has been very 
interesting and rewarding.

I would also like to Peter Alriksson for all the assistance when I encountered 
problems during my work and Rolf Braun for building the hardware required.

I also extend my thanks to Björn Grönvall at the Swedish Institute of 
Computer Science (SICS) for always being willing to answer questions regarding 
Contiki and the related software. 

Jerker Nordh
Lund, January 2007

5





Contents

1. Introduction................................................................................ 11
1.1  Background................................................................................................11
1.2  Purpose...................................................................................................... 12

2. Position estimation......................................................................14
2.1  Existing techniques....................................................................................14
2.2  Methods..................................................................................................... 15
2.3  Theory........................................................................................................17
2.4  Simulation..................................................................................................19

3. The Extended Kalman filter...................................................... 27
3.1  Introduction............................................................................................... 27
3.2  Model.........................................................................................................28
3.3  The Extended Kalman filter...................................................................... 29

4. Hardware.....................................................................................32
4.1  Tmote Sky..................................................................................................32
4.2  Mobile robot.............................................................................................. 33
4.3  Joystick...................................................................................................... 34
4.4  Sensor  node...............................................................................................35

5. Software....................................................................................... 36
5.1  Contiki....................................................................................................... 36
5.2  I²C.............................................................................................................. 37

6. Distance measuring.....................................................................38
6.1  Theory........................................................................................................38
6.2  Implementation..........................................................................................39
6.3  Results....................................................................................................... 39

7. Wheel control.............................................................................. 41
7.1  Hardware................................................................................................... 41
7.2  Software.....................................................................................................41
7.3  Performance...............................................................................................43

8. Obstacle detection.......................................................................46

9. Robot controller..........................................................................48
9.1  Overview................................................................................................... 48
9.2  Design........................................................................................................48
9.3  Implementation..........................................................................................48

7



10.  Multiple robots...........................................................................50
10.1  Problem....................................................................................................50
10.2  Solution....................................................................................................50

11.  Implementation.......................................................................... 53
11.1  Sensor nodes............................................................................................ 53
11.2  Mobile robot............................................................................................ 54
11.3  Radio packet types...................................................................................59
11.4  I2C message types................................................................................... 61

12.  Experimental results..................................................................63

13.  Conclusion.................................................................................. 69

8



1. Introduction

This chapter gives the background to the master thesis, it's goal and limitations.

1.1 Background

RUNES is an European Union sponsored research project on the use of sensor 
networks, it stands for Reconfigurable Ubiquitous Network Embedded Sensors.  
The master thesis was done as a part of the Department of Automatic Control at 
LTH involvement in the RUNES[1] project.

RUNES consortium
The following quote is from the RUNES consortiums introduction to the project, 
and summarizes their goals rather well.

“We stand on the brink of a revolution, in which the worlds of the embedded 
system and the Internet will collide. This will lead to the construction of the first  
truly pervasive networked computer systems and thus open up a marketplace of a 

scale unparalleled in the history of technology. To realise this commercial  
potential requires a research and development programme focussed on the 

creation of the infrastructure that actively promotes the efficient and inexpensive 
construction and anagement of novel services and applications that are 

predictable and intuitively usable, so as to fulfil the global user expectations for 
invisible computing.”

Introduction to RUNES[2]

The RUNES consortium consists of 21 partners from 9 countries[3]:

• Australia: National ICT Australia, University of Queensland, Victoria 
University

• Canada: Communications Research Centre Canada
• Germany: Industrieanlagen-Betriebsgesellschaft mbH, LiPPERT 

Automationstechnik GmbH, Rheinisch-Westfaelische Technische 
Hochschule Aachen

• Greece: University of Patras
• Italy: Politecnico di Milano, Università di Pisa
• Hungary: Ericsson
• Sweden: ConnectBlue AB, Ericsson AB, Swedish Institute of Computer 

Science A, Kungliga Tekniska Högskolan, Lund Institute of Technology
• United Kingdom: Kodak Ltd., Lancaster University, University College 

London, United States of America, University of California, Berkeley, 
University of California, San Diego
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RUNES project goals
The RUNES project is scenario-based and all parties involved work together to 
solve a specific scenario[4]. The scenario chosen revolves around a road tunnel 
accident in central Europe. The idea is that in the future road tunnels will be 
equipped with sensor networks which can detect problems in the tunnel, i.e. fires. 
The scenario starts with an accident occurring in the tunnel, the sensors detects it 
and notifies the control center which can reroute the traffic around the tunnel. 

During the rescue operation the sensor network will continuously assist the 
rescue personnel by keeping track of the temperature and other significant 
variables. The scenario also specifies that mobile robots will be sent into the 
tunnel to avoid sending humans into dangerous situations. In addition providing 
additional sensors the mobile robot should also be able to bridge gaps that might 
occur in the network if nodes are damaged for any reason.

To be able to accomplish these goals the project will have to develop 
middleware to hide the complexities of the sensor network from the applications, 
it must also allow the interconnectivity of different types of nodes that may be 
present both in the tunnel and on the vehicles that travel through it and on the 
personnel working in the tunnel. 

To meet these requirements the project has chosen a component-based 
approach, where the different functionalities in the network are developed as 
components with well defined interfaces that can be dynamically loaded and 
unloaded. This facilitates the development of components independently of the 
rest of the system.

1.2 Purpose

The main focus of this thesis with regard to the RUNES-project is the part of the 
scenario that requires mobile robots moving within the network. This requires 
accurate positioning of the robot using the sensor network. The scenario also 
specifies that parts of the network shall become inoperable and that the mobile 
robot will move to these areas to reinforce the sensor network. This implies that 
the robot must be able to navigate with good precision even after it has lost 
contact with the network, implying the use of dead-reckoning during this part of 
the scenario. It must be able to correctly detect when it has reached the specified 
position and then communicate this back to the network control center which will 
attempt to reconfigure the network to work with the mobile robot as an additional 
node. If this fails the mobile robot should be able to resume operation and start 
moving between the segments of the network carrying network data with it.

The robot hardware already exists, so this thesis is limited to designing the 
software for the position estimation and navigation. In order to improve the robot 
handling the underlying control software for controlling the robot movements will 
also be improved.

Robot positioning and estimation have previously been implemented in a 
project course during the spring semester of 2006. This work will serve as a basis 
for this thesis, which will try to improve the performance and capabilities of the 
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implementation. This thesis will also use a more systematic approach to see what 
level of performance that can be expected.
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2. Position estimation

This chapter discusses different techniques for determining the position of an 
object.

2.1 Existing techniques

Camera
Camera-based system can, in combination with image processing, be used to 
detect and track the position of objects in an image. One such system is used in the 
thesis to check the accuracy of the position estimation implemented on the mobile 
robot.

GPS
GPS is the Global Positioning System, it is a system consisting of more than two 
dozen satellites orbiting the earth. The system was developed by the United States 
Department of Defense and is controlled by the U.S. military. 

Each satellite contains a very accurate clock and continuously broadcasts 
its current time as radio messages. Receivers can use the distance to a number of 
satellites to calculate its own position. The system gives a precision of roughly 15 
m for civilian users, providing a somewhat more accurate signal to the U.S. 
Military. The GPS system does not work very well indoors and underground since 
it is difficult to receive the radio signals from the satellites under those conditions. 
If the signal has been reflected before reaching the receiver the precision is also 
degraded.

Ultrasound – Cricket
Cricket[5] is a ultrasound based system for indoor localization developed at the 
Massachusetts Institute of Technology. It uses a combination of radio message and 
ultrasound pulses to measure the distance to a number of beacons. 

The system is based around active beacons which transmits a radio 
message followed by an ultrasonic pulse. When the listener receives the radio 
message it tries to correlate it to the ultrasonic pulse and uses the difference in 
time of arrival to determine the distance. It is designed for use in indoor 
environments and gives a precision of 1-3 cm. Its main strength is that the 
listeners are entirely passive making it possible for the system to scale very well to 
a large number of listeners.

IMU – Inertial Measurement Unit
An IMU is a system used to track position and velocity, it typically consists of 3 
accelerometers and 3 gyroscopes, each mounted in perpendicular directions. This 
provides the ability to measure acceleration and rotation in all directions. Often 
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the system also contains temperature sensors and/or is temperature controlled to 
increase the accuracy of the measurements. By accumulating this data it is 
possible to calculate the position, however due to measurement errors this leads to 
drift in the estimates, requiring the system to be reset according to a external 
reference regularly.

2.2 Methods

This section briefly discusses different methods for determining the position of an 
object

Triangulation
The method of measuring the angle to a given object from at least two known 
reference positions to determine its position is known as triangulation[6] . To 
determine a position in a three dimensional space at least two reference positions 
are required. The use of triangulation requires the ability to measure the angle 
between the object and reference points.

Trilateration
Trilateration[7] uses distances to a number of known reference points to determine 
the position. To determine a point uniquely in a two-dimensional plane at least 3 
distances are required, in a three-dimensional space 4 measurements are required. 
Trilateration needs the ability to accurately measure the distance to the object from 
different reference points.

Multilateration
Multilateration[8] is a method for using the difference in time of arrival of a signal 
to different receivers, the main difference to trilateration is that it does not need to 
know the time at which the signal was transmitted. To determine the position of 
an object in a three dimensional space at least 4 such receivers would be required. 
Multilateration is dependent on the ability to accurately measure the time 
difference of arrival for signals.

The Kalman filter
The Kalman filter is a method for combining the use of measurements affected by 
noise with a model for how the object is assumed to be moving. The Kalman filter 
could be implemented using any of the above methods for estimating the position.

The Kalman filter also uses the inputs of the model to predict the behavior, 
in this case the available inputs are the velocity estimates for the two wheels.

The Extended Kalman filter
The Kalman filter requires a linear relationship between the measurement 

input and the model states, but it is also possible to use a so called Extended 
Kalman filter which allows the use of non-linear relationships. This also makes it 
possible to use a non-linear model for how the object is assumed to move.
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Basically the Extended Kalman filter takes a non-linear model and 
linearizes it around the current estimate, and then works in the same way as the 
Kalman filter.

Using an Extended Kalman filter it is also possible to use any measurements 
that can be estimated from the current model, that is the as long as the measured 
quantity is somehow related to the position the Extended Kalman filter can use it 
to improve the estimation of the position. This has the advantage that the relative 
accuracy of each measurement can also be taken into consideration when updating 
the estimate. 

Method selection
Because of the available hardware the positioning has to be done using ultrasound 
pulses. Since the nodes have no ability to decide from which direction the pulse 
arrived, the possibility of using triangulation is ruled out. This leaves the 
possibility of using multilateration, or estimating the distance and using that for 
either trilateration or as inputs to an Extended Kalman filter.

The main advantage of multilateration is that there is no need to know 
when the signal was emitted, but since the nodes clocks are not synchronized we 
would first have to synchronize them, eliminating this advantage.

If a radio package is sent at the same time as the ultrasound pulse it is 
possible to use the difference in time of arrival of the two signals to calculate the 
distance to each node, assuming that the propagation velocity of the radio signal is 
much larger than that of the signal. This gives an accurate way of calculating the 
distance. The distance can then be used either for trilateration or directly as input 
to the Extended Kalman filter.

Of these methods the trilateration and the use of distance measurements to 
the Extended Kalman filter were selected for evaluation by simulation in Matlab.
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2.3 Theory

Trilateration

The distance measurement to each reference point will form a sphere of possible 
positions. Assuming that P1,P2 and P3 all lie in the same plane and that P1 is at 
the origin and P2 is on the x-axis, it can easily be shown that the point of 
intersection is

x=
r1

2−r2
2d 2

2d

y=
r 1

2−r3x−i 2

2j


j
2
−
r 1

2−r 2
2d 22

8 d 2 j
z=r1

2−x2− y2

The sign of the z coordinate cannot be uniquely established without a fourth 
measurement. For the purposes of this report it is, however, assumed that the 
positive solution is the correct one. The conditions above can easily be fulfilled 
for any three points by a simple linear transformation, as long as they are not on 
the same line. 

First the coordinates of P1 are subtracted from each of the other points to 
fulfill the requirement that P1 must be at the origin. The other requirement is that 
P2 must lie on the x-axis, this is accomplish by making a coordinate system 
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switch where the first unit vector points in the direction of P1->P2 . The 
remaining unit vectors should be chosen so that all points lie in the plane and the 
unit vector are orthogonal to each other.  The required transformation matrix T for 
transforming the result back  can be calculated as:

v1=P2−P1

v2=P3−P2

v3=v1×v2

e1=
v1

∣v1∣

e3=
v3

∣v3∣
e2=e3×e1

T=e1 e2 e3

The procedure for finding the unknown point then becomes:

Q1=P1−P1

Q2=T−1×P2−P1=T T×P2−P1
Q3=T−1×P3−P1=T T×P3−P1
Qunknown=trilaterationQ1 Q2 Q3, r 1 r2 r3
Punknown=T ×QunknownP0

If the above transformation matrix T is used the inverse is simple to calculate 
since all the row vectors are unit vectors and orthogonal, hence the inverse is 
equal to the transpose of the matrix.

Extended Kalman
In this thesis two versions of the Extended Kalman filter are used, one with the 
position estimate of the trilateration as input and one with the actual distance 
measurements as inputs. This information is then combined for a model of how 
the robot moves given the current velocities of the wheels. This is explained in 
more detail in Chapter 3.
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2.4 Simulation

Trilateration
Depending on the arrangement of the reference points the precision of the estimate 
will vary. Some different configurations were simulated in Matlab to see how the 
estimation was affected. Note that the scale of the colorbar differs between the 
different figures. The first and best case is the equilateral triangle. The value on 
the color-scale is the absolute error in the position estimation measured in meters. 

 As can be seen in  figures 2 to 5 all other cases gives worse results, when using 
non-regular arrangements the precision is also very dependent on the position 
relative to the reference points.
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Figure 1: Equilateral triangle
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Figure 2: Low triangle

Figure 3: Narrow triangle



19

Figure 5: Skewed triangle

Figure 4: Isosceles triangle



Extended Kalman filter
When simulating the Extended Kalman filter the model for how the mobile robot 
moves was used to generate a reference trajectory with the wheel velocities as 
inputs, this trajectory was then used to generate noise-corrupted range 
measurements to each reference point. The Extended Kalman filter was then used 
to estimate the position using just the noise-corrupted input signals and range 
measurements. The noise added was normally distributed with standard deviation 
comparable to what was observed in the physical process.

Four different methods were simulated. The first uses one using trilateration 
to estimate the position which is then used as an input. The other three methods all 
use the range measurements directly, but differ in how many measurements that 
are handled at a time. One uses all measurements at the same time, one uses a 
single measurement at a time, and the third uses two measurements at a time. If 
the total number of available measurements is odd a single measurement is used at 
the end. The reason for not using all measurements at the same time is that the 
implementation requires the inversion of a matrix with the same dimensions as the 
number of measurement, which can be very computationally expensive when there 
are many measurements.

As can be seen in figures 6 to 9 all the methods give approximately the same 
results. However, one important distinction between the trilateration and the direct 
methods is not visible in this test; when the positioning of the reference nodes is 
poor the direct methods will take that into consideration and thus rely more on the 
model and less on the measurements. Since the robot is expected to be able to 
navigate when regions of the sensor network may be inoperable the direct methods 
are much better suited for the implementation. The difference between the direct 
methods are hardly discernible, thus there is no reason to not choose the method 
which uses one measurement at a time since it is vastly less computationally 
expensive than the others.

Figure 6 to 9  show the estimated paths from a number of simulations with 
the correct path superimposed as a green curve.
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Figure 6: Trilateration
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Figure 7: Direct measurements, all at once
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Figure 8: Direct measurements, one at a time
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Figure 9: Direct measurements, two at a time



3. The Extended Kalman filter

3.1 Introduction

A Kalman filter is a method for combining noisy measurements of a process with 
a model of how the process works. The inputs to a Kalman filter are the 
measurements, the process model, the model noise and the measurement noise. 
The noise describes the error in the measurements and model. For linear systems it 
is possible to calculate an optimal estimation strategy for the process state given 
these inputs. Both the model noise and measurement noise are assumed to be zero 
mean multivariate normally distributed.

The Extended Kalman filter is an extension of the Kalman filter for non-
linear systems. This is achieved by linearizing the system for each iteration. 
Unlike the standard Kalman filter the Extended Kalman filter can not be 
guaranteed to be optimal, nor that it will converge to the correct solution.

Due to the difficulties in determining the noise of the model for the mobile 
robot the noise matrices have been experimentally determined to give a reasonable 
trade off between how fast the estimate converges and how much noise is present 
in the estimate.

In addition to estimating the state the Kalman filter also estimates the 
covariance of the estimated states, this is used for determining the relation 
between the state variables and to estimate how good the current estimate is.
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3.2 Model

The model used for the mobile robot is show in figure 10.

d
dt  x

y
=

1
2

cos uaub

1
2

sin uaub

1
d
ub−ua 

x and y are the position coordinates, Ө is the angle, d is the length of the 
wheel base and ua, ub are the velocities of the two wheels. Since the Kalman filter 
is a discrete time filter the model must be discretized before it can be used.  Due to 
the slow sampling rate used in the mobile robot the Tustin approximation is used 
for the sampling, this gives the following discrete time model:
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Figure 10: Mobile robot model
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d
dt

≈
2 z−1
h  z1



 x
y
k

= f ⋅=x k−1
h
4
cos k−1u

a
k−1ub

k−1cosk u
a

kub
k 

yk−1
h
4
sink −1u

a
k−1ub

k−1sin k u
a

kub
k 

k−1
h
2d

ua
k−1−ub

k−1ua
kub

k 


The function f() is the so called next-state function, which calculates the 
next state using the current state and the inputs. When using the Tustin 
approximation the state at time k is dependent on the input a time k and k-1. This 
often this results in that numerical methods have to be used when calculating the 
next state. However in this case the relationship between the state variables allows 
an analytical solution since the  Ө-state is independent of both x and y and x and y 
are independent of each other.

3.3 The Extended Kalman filter

The Extended Kalman[9] filter needs two models, the state transition model and 
the observation model. These two models relate the current state to the next state 
and to the external measurements. The state transition model must be a 
differentiable function of the previous state and the current input and current 
model noise (wk) . The observation must be a differentiable function of the current 
state and measurement noise (vk). wk has the covariance Qk and vk has the 
covariance Rk. This can be written as:

xk= f xk−1 , uk ,w k 
z k=h xk , v l

The function f is the same as the next-state function in the discrete time 
model in Section 3.2. The function h() is dependent on whether trilateration or 
direct measurements are used. For trilateration it becomes:

zk x=x k x

z k y=x k y

When using direct measurements the observation model becomes slightly 
more complex, for each distance measurement, ri  to the point Pi,  the following 
model is used (time index k omitted for clarity):

z i=P ix−x 2P iy− y2P iz−z 2
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The filter consists of two phases, the predict phase and the update phase. For 
every time step the next state is predicted during the predict phase. Since 
measurements may not be available at all time steps the update part of the filter is 
only used during those time steps where new measurements are available.

When updating the covariance the non-linear function f() and h() cannot be 
used directly, instead the Jacobian's Fk and Hk, of f() and h() respectively, are used. 
Since they are matrices of the partial derivatives they must be recalculated at each 
time-step using the current state.

Predict phase
The predict phase uses the non-linear state transition model and predicts the next 
state and updates the covariance matrix of the state estimate.

xk= f xk−1 , uk 
P k∣k−1=F k P k−1∣k−1 FT

kQ k

Update phase
The update phase takes the current state and estimates what the measurements 
should be using the observation model. The result is then compared to the actual 
measurements, and the current state is corrected accordingly taking the 
measurement noise into consideration. 

yk=zk−h  xk∣k−1,0
Sk=H k P k∣k−1 HT

kRk

K k=Pk∣k−1 H T
k S−1

k

xk∣k=xk∣k−1K k yk

P k∣k= I−K k H k Pk∣k−1

Implementation
The implementation of the Kalman filter is computationally expensive. To 
increase efficiency results of expensive trigonometric functions are cached. No 
matrix math library is used, so all matrix operation are expanded manually, this 
also provides the possibility for further optimizations by manually removing 
multiplications by constant zeros and ones. Below the update function is shown as 
an example. 
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/* Predict next position, Tustin approximation */
void kalman_predict(float X[3], float P[3][3], 

                float u[2],  float uo[2]) 
{
  /* old theta */
  float tho = X[2];

  /* Predict new theta using tustin */
  float th =  X[2] + H_KALMAN/(2.0f*L_BOT)*
            ((u[1]-u[0]) + (uo[1]-uo[0]));

  /* Store computed trig funcs, saves approx 70 ms/call */
  float cos_th = cosf(th);
  float sin_th = sinf(th);
  float cos_tho = cosf(tho);
  float sin_tho = sinf(tho);

  /* store computed values to save time 
     (saves approx 7 ms/call) */
  float u_cos_th = (u[0]+u[1])*cos_th+(uo[0]+uo[1])*cos_tho;
  float u_sin_th = (u[0]+u[1])*sin_th+(uo[0]+uo[1])*sin_tho;

  X[0] = X[0] + H_KALMAN/4.0f * u_cos_th;
  X[1] = X[1] + H_KALMAN/4.0f * u_sin_th;
  X[2] = th;

  float h1 = -H_KALMAN/4.0f * u_sin_th;
  float h2 = H_KALMAN/4.0f * u_cos_th;

  float a = P[0][0];
  float b = P[1][1];
  float c = P[2][2];
  float d = P[1][2];
  float e = P[0][1];
  float f = P[0][2];

  float fh1c = f+h1*c;
  float dh2c = d+h2*c;

  /* P = Fk*P*Fk+Qk' */
  P[0][0] = (a+h1*f)+fh1c*h1+QK11;
  P[0][1] = (e+h1*d)+fh1c*h2+QK12;
  P[0][2] = fh1c+QK13;

  P[1][0] = (e+h2*f)+dh2c*h1+QK21;
  P[1][1] = (b+h2*d)+dh2c*h2+QK22;
  P[1][2] = dh2c+QK23;

  P[2][0] = fh1c+QK31;
  P[2][1] = dh2c+QK32;
  P[2][2] = c+QK33;
  
  return;
}
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4. Hardware

The system consists of a number of sensor nodes with ultrasound receivers and a 
mobile robot with an ultrasound transmitter. Both the nodes and the robot use the 
Tmote Sky hardware as the interface to the network.

4.1 Tmote Sky

The Tmote Sky is a wireless sensor network platform manufactured by the Moteiv 
corporation[10]. Its main features are:

• 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver 
• 8MHz Texas Instruments MSP430 micro controller 
• USB interface 

The version used in the thesis has been mounted in a custom enclosure built 
at the Department of Automatic Control at Lund Institute of Technology. A Telos 
Mote board is shown in figure 11.
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4.2 Mobile robot

There are two mobile robots used in the thesis, they have the same overall design 
with some minor differences. One of the robots is shown in figure 12.

The robots are of dual-drive unicycle type, they have two independently 
driven wheels, and uses a third ball-type wheel that is free to rotate in all 
directions to maintain balance. Each motor is controlled by one Atmel AVR 
Mega16 processor. The two sides are entirely identical, this results in the 
directions for the right and the left side being reversed, so for the robot to move 
forward one side has to run in the positive direction and the other side in the 
negative direction.

The robots are also equipped with an ultrasound transmitter which is 
connected to an additional AVR Mega16 processor. A plastic cone has been 
mounted directly above the ultrasound transmitter in order to scatter the sound in a 
360 º plane. Each robot also has a Tmote Sky which provides the connection to the 
sensor network over the radio interface. The Tmote Sky also acts as master of the 
I²C-bus which all processors are connected to. A schematic overview of the 
hardware is shown in figure 13.

One of the robots have additional hardware in order to detect and avoid 
collisions. It consists of two touch sensor and an IR-distance sensor mounted on a 
RC-servo. The RC-servo can be used to sweep the distance sensor in an arc in 
front of the robot, thus acting as a form of IR-radar that can be used to detect 
obstacles. All of these sensors are connected to same processor that controls the 
ultrasound transmitter.
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Figure 13: Mobile robot hardware overview

4.3 Joystick

The joystick is simply two potentiometers attached to a stick, when the stick 
moves the potentiometers also move. The outputs from the potentiometers are 
connected to the two analog inputs available on the expansion header of a Tmote 
Sky. The expansion header also provides the necessary GND and V+ connections. 
The joystick can be used to manually control a robot.
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4.4 Sensor  node

A sensor node consists of a Tmote Sky equipped with an ultrasound receiver. The 
ultrasound receiver is a small circuit board with an ultrasound microphone which 
is connect to the expansion header of the Tmote Sky. Above the microphone is the 
same type of plastic cone that is used on the transmitter of the mobile robot, this is 
used to reflect incoming sound from all directions down into the microphone
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Figure 14: Sensor node



5. Software

This chapter describes the software and protocols used on the mobile robot.

5.1 Contiki

Contiki[11] is an operating system developed at SICS, Swedish Institute of 
Computer Science. It is designed to be very light weight and have a very small 
foot-print in both program memory and RAM. Contiki provides a protothread 
primitive which is similar to a thread, but requires explicit yielding for a context 
switch to take place. A simple protothread example is shown below. When 
context switching the current state is not saved, so the programmer is required to 
not put any variables on the stack if they are needed between different instances of 
the thread.

Through the use of the CRTK, Component Runtime Kernel, Contiki 
supports dynamic loading of components which is a fundamental part of the 
RUNES-project. Contiki also contains the uIP ip-stack which provides methods 
for sending and  receiving both UDP and TCP messages. This make it very easy to 
communicate with any platform implementing the IP protocol.

PROCESS(example_process, "Example process description");

PROCESS_THREAD(example_process, ev, data)
{
  PROCESS_EXITHANDLER(goto exit);
  PROCESS_BEGIN();

  /* Variables must be declared static */
  static int i;
  i = 0;

  while (1) {
   
    PROCESS_WAIT_EVENT();
    /* Handle events */
    
    i++;  // Count number of events received
  }
 exit:

  /* Do clean-up here */

  PROCESS_END();
}

Example process implementing a simple event handler
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5.2 I²C

The different processors on the mobile robot use I²C to communicate. I2C is a 
simple two wire serial bus developed by Phillips Semiconductors[12]. The 
protocol is implemented by many other vendors but under different names due to 
licensing restrictions, for instance the Atmel AVR refer to it as the “two-wire 
serial interface”[13].

The basic working principle is that all devices are  connected to the two 
wires, SCL and SDA. SCL is the serial clock and SDA is serial data. Both lines 
are kept logically high by two resistors unless one of the devices pulls them low. 
Due to the nature of the bus it acts as AND gates, if one devices pulls the bus low 
all other devices will detect it as low as well. One device acts as the bus master 
and initiates all communications and generates the SCL clock. A slave device has 
the ability to extend the SCL low period if the master wants to send data faster 
than it can receive. All devices on the bus must have a unique 7-bit id. Figure 15 
shows a typical I2C-bus.

There is also an arbitration protocol for running multiple masters on the 
same bus, however this is not used on the mobile robot. The main reason for not 
using multi-master in this case is that the Telos Mote shares some pins between 
the radio interface and the  I²C bus, resulting in corruption of the radio traffic if 
any other device were to initiate an  I²C transfer.
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6. Distance measuring

This chapter discusses the theory and implementation of the range measurements.

6.1 Theory

The distance measurements are done by sending ultrasound pulses from the 
mobile robot that are detected by the sensor nodes. Since the propagation speed of 
the radio waves is much faster than that of the sound waves we can get an accurate 
measurement of the propagation time by first sending a radio packet and then 
measuring the time of arrival difference between the radio packet and the 
ultrasonic pulse. In order to accurately detect the start of the pulse the data first 
has to be filtered.

Figure 16: Typical ultrasound pulse after sampling
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6.2 Implementation

Since the radio packet needs to be sent to all nodes within range UDP packets 
must be used. 

In order to get good accuracy we must have a very deterministic delay 
between sending our radio packet and the ultrasound pulse. In Contiki the standard 
procedure for sending a packet is to first request sending and then wait for the 
process to get an event allowing the transmission. However, due to the timing 
constraints, in this project an alternative method is used where the actual sending 
takes place in the calling process context to avoid context switches. This is 
accomplished by using the function uip_udp_packet_send.

Since there are some delays when sending the radio packages there is a need 
to wait a specific time before sending the ultrasound pulse, otherwise the pulse 
will arrive before the radio package. Due to the difficulties in waiting with great 
accuracy in Contiki this delay is implemented in the Atmel AVR Mega16 that 
controls the ultrasound transmitter.

The ultrasound is sent by sending a message over the I²C-bus to the Mega16 
specifying the duration of the pulse. The Mega16 will, after receiving the message, 
wait 2 ms and then start outputting the ultrasound pulse under the specified 
duration.

The detecting node receives the UDP packet and immediately starts 
sampling the ultrasound receiver and stores the data in an array. The sampled 
values are filtered by a median-3 filter and compared to a threshold value. The 
median-3 filer is based on a sliding window of three samples where the filter at 
every instance chooses the median of the three values within the window. When 
the filtered absolute value exceeds the threshold the node considers the ultrasound 
pulse to be detected. The index in the array of sampled value where the pulse is 
detected is linearly related to the distance the sound traveled.

The slope of the line describing the relation between detection index and 
distance should only be dependent on the sampling frequency and the speed of 
sound, our sampling frequency is approximately 73 kHz and the speed of sound is 
approximately 344 m/s. The offset should be entirely dependent on the delay 
between sending the UDP packet and the ultrasound pulse.

6.3 Results

In figure 17 we can see that there is a linear relation between the distance and the 
detection index, as would be expected the standard deviation does not seem to 
have any correlation with the distance. The detection index is the scale used 
internally by the system for measuring distances. It should only depend on how 
deterministic the software running on the transmitter and receiver is. However for 
large distances there seems to be an increased uncertainty, this also seems to be 
near the maximum range of the transmitter, which might explain this. Most 
notable during the experiment was that there is were measurement received for 10 
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meters. At this range 100% packet loss was experienced, radio contact was 
however regained again when moving the receiver further away. Such dips in the 
radio reception are hard to predict but are to be expected.
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Figure 17: Detected index as function of distance



7. Wheel control

This chapter deals with the individual control of the wheels of the mobile robot.

7.1 Hardware

Each wheel of the robot is driven by a single DC-motor. On the wheel-axis there 
is also a position encoder mounted. The encoder and DC-motor are connected to 
an Atmel AVR Mega16 processor, the processor is connected to the rest of the 
system as a slave on an I²C-bus.

The position encoder consists of a dish with 40 alternating black and white 
fields and two light sensors that measure the reflected light from the dish. The two 
sensors are mounted so that they are in opposite phase, this results in at least one 
of the sensors switching from on/off every 1/80th of a revolution.

The position encoder is connected to two analog-to-digital converters on the 
Mega16. The DC-motor is connected to an analog output.

7.2 Software

Working principle
The software works by continuously reading the values of the analog inputs and 
comparing them to a reference value to decide whether the sensor currently is 
reading a black or white field. Every time one of the sensors changes what type of 
field it is over the position is either incremented of decremented depending on 
what direction the wheel is moving in. Due to the out of phase nature of the 
sensors it is possible to determine the direction without any additional 
information.

With a sampling period of 1 ms the current angular velocity is estimated 
from the change in position. Due to the discrete nature of the position 
measurements the velocity estimate is low-pass filtered. The estimated velocity is 
then compared to the reference velocity and depending on the difference a voltage 
is calculated and output to the DC-motor.

Existing software
When the master thesis started there was already a P-controller implemented for 
each wheel. This software however exhibited some problems. When the robot was 
to run both wheels with the same speed it would drift considerably instead of 
moving in a straight line. One of the goals of the thesis was to improve this 
performance.
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Problems
1. When manually turning the wheels the two sides would report different 

velocities and one side would sometimes skip some values. The estimated 
velocity was also much more noisy when doing a step response. The 
reason for this was that the switching point for the sensors to switch 
between a black and white field was set to a fixed value, but in reality the 
sensors had somewhat different offset causing the position estimate to 
change at the wrong time.

2. When requesting the wheel to move with a certain absolute speed it would 
depend on whether it was moving in the positive or negative direction.

3. After having fixed problem 1 and 2 the robot would still drift due to 
differences in friction on the two sides.

4. When doing reference changes the wheels sometimes loose traction, which 
is a problem when doing dead-reckoning.

Improvements
1. To fix the error in position estimate the software stores the maximum and 

minimum value recorded from each sensor and uses the average as the 
switching point between black and white.

2. This effect was due to a rounding error in the fixed-point calculations in 
the position estimation.

3. The regulator structure was changed to a PI-controller with anti-windup to 
be able to compensate for load disturbances.

4. A low-pass filter was implemented on the reference velocity.

In addition to the above points the entire controller was re-implemented using 
fixed-point arithmetics instead of purely integer based math which does not allow 
for the use of decimals in the numbers. This gives the ability to have somewhat 
more accurate estimates, but the main advantage is being able to use an integrator 
with a time constant that is less than one.
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7.3 Performance

Before the improvements the controller exhibited the following behavior when 
requested to follow a sequence of reference changes. The tests were done both 
with the wheels lifted from the ground and with the wheels in contact with the 
ground so the robot moved in order to test with different load conditions. 

The green line is the speed of the right wheel, the blue that left wheel. The 
dotted red line is the reference value. The horizontal axis represents time 
measured in samples, the sampling time being 0.2s. The vertical axis is the 
velocity, measured in cm/s.

As can be seen in figure 18 and 19 the old controller has problems with 
overshooting when the load is removed. The two wheels move with slightly 
different speeds and neither wheel is able to follow the reference value.

The new regulator introduced filtering of the reference signal, the filtered 
reference is the solid red line, the unfiltered reference is the dotted red line. As can 
be seen in figure 20 and 21 the new regulator follows the filtered reference very 
well and has no stationary errors. There is no noticeable difference between when 
the robot is moving and when the wheels have been lifted of the floor. There is 
neither any visible difference between the right and left wheel.
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Figure 18: Old controller, no load

Figure 19: Old controller, moving
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Figure 20: New controller, no load

Figure 21: New controller. moving



8. Obstacle detection

One of the mobile robots have has equipped with obstacle detection sensors. 
Currently they consist of a touch sensor bar, which extends over the entire length 
of the front of the robot, that can detect when the robot has collided with an 
obstacle. In addition to this the robot is equipped with an IR-distance sensor 
mounted on an RC-servo. This should be used to sweep the the distance sensor 
over an arc of  180º in front of the robot creating the ability to make measurements 
much in the same way that a traditional radar works.

All of the sensors are currently connected to the Atmel AVR that is also 
responsible for the ultrasound. Due to limitations in the hardware this prevents the 
servo from being operated at the same time as the ultrasound. Because of this the 
RC-servo has been disconnected and fixed in the forward looking direction.  Since 
the AVR must act as a slave on the I²C-bus the Telos Mote periodically polls the 
AVR asking if any obstacle has been detected. This, however, introduce a delay 
that severely degrades the performance of the obstacle detection.

In the current implementation the mobile robot stops when it detects an 
obstacle, in the future it is supposed to be integrated with a collision avoidance 
component developed at the University of Pisa, Italy, which should give it the 
ability to operate more intelligently. The IR-distance sensor provides an output 
voltage that depends on the distance to a possible object. This curve is very non-
linear, as can be seen in figure 22. Since the rudimentary implementation of the 
collision detection only needs to know if an object is closer than a certain distance 
it is only necessary to compare to a fixed value, thus the non-linearity is not a 
problem.
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Figure 22: Output value from ADC for distance sensor as function of range (m)



9. Robot controller

This chapter describes how the controller for the speed and heading of the mobile 
robot works.

9.1 Overview

The speed of the robot can be modeled as the average velocity of the two wheels, 
and the the angular velocity is proportional to the difference in velocity of the two 
wheels.  Using this model it is natural to design two controllers, one for the 
velocity and one for the angle, the output of the angle controller is then added and 
subtracted from the two wheels respectively.

9.2 Design

The two wheel controllers have been implemented with reference filtering which 
gives them a time-constant of 0.5 s independently of the load. The wheels can then 
be modeled as:

v̇=C vref−v

Using this an LQ-controller is designed for the control of the angle. This controller 
will depend on the length of the wheel base of the robot, however the only 
difference will be the constants L1 and L2 which have to be tuned for the 
individual robot.

udiff =L1ref−−L2ub−ua

9.3 Implementation

The implementation of the controller is just a few lines of C-code which must be 
called periodically with the same period that was used when designing the 
controller. Care has to be taken so that the smallest angle difference is always used 
and that the angle difference never exceeds 180 degrees. This is accomplished by 
the function angle_diff(angle1, angle2).
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/* Angle control

  u_diff = -L1*X[2]-L2*(u[1]-u[0])+LR*theta_ref = { LR=L1 } =

     = L1*(theta-X[2])-L2*(u[1]-u[0])
*/

u_diff = L1*angle_diff(theta_ref,X[2]) -
    L2*(u[1]-u[0]);

if (u_diff > 0) {
  u_diff = MIN(u_diff, 0.4f);
} else {
  u_diff = MAX(u_diff, -0.4f);
}

Source code extract showing controller implementation

47



10. Multiple robots

This chapter discusses how the implementation handles the simultaneous 
positioning of multiple robots.

10.1 Problem

The ultrasound is a shared resource meaning that there can only be one ultrasonic 
pulse in the air at any given time. Because the robots are the sender in the 
positioning scheme this means that if multiple robots are to operate in the same 
area they must somehow provide a method for guaranteeing that they will not 
broadcast ultrasonic pulses at the same time. Another issue is that the increased 
radio traffic might introduce extra delays when doing position estimation.

10.2 Solution

The amount of network traffic is reduced by only sending position information 
every third iteration of the Kalman predict interval.

In order to avoid simultaneous ultrasound transmissions all robots listen for 
the RANGE_REQUEST radio packet that precedes all ultrasound transmissions. 
Whenever such a packet has been received by a robot that robot will block itself 
for 310 ms preventing it from making any range requests. After this time the other 
robot will have finished its request and all the sensor nodes will be ready to make 
new measurements. This values is based on experimental data on how long time it 
takes to receive the answers from all the sensor nodes.

If there was another robot that was blocked that wanted to make a 
measurement while blocked it might end up in a form of starvation where the 
other robot will always start its measurement slightly before and thus preventing it 
from ever measuring the position. This problem is solved by temporarily 
stretching the time period between the Kalman filter iterations every time the 
robot was blocked when doing a range measurement. The end result of this is that 
the second robot will eventually have delayed its execution cycle so much that the 
measurements are done after the blocking time of the other robot. 

In the implementation this extra delay is 50 ms, thus the maximum number 
of missed measurements when running two robots are 7. By using a larger delay it 
would be possible to escape the blocking situation quicker, however by choosing a 
smaller value it is possible to be closer in time to the end of the other robots 
blocking interval. If a too large value is choosen the robot might end up in the next 
sending interval instead, it also degrades the performance of the Kalman filter as it 
always calculates using the same fixed time. If the sample time of the Kalman 
filter is 0.4 s and measurements are done every third iteration, it should be 
possible to run three robots simultaneously using the values presented above. 
Since there are only two robots available the algorithm has not been tested with 
more than two robots.
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Figure 23  shows a time schedule for two robots doing position estimation. 
In the beginning Robot2 is unable to make any measurements since it is always 
blocked by Robot1, however after three attempts its period has drifted far enough 
to avoid the blocking from Robot1. After that point the two robots are able to 
make measurements without disturbing each other. The blue rectangles illustrate 
the time which the robots are blocked by each other. The zigzag shaped arrows 
illustrate sending of radio packets. 
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Figure 23: Multiple robots synchronizing transmissions
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11. Implementation

This chapter describes how the techniques presented before have been 
implemented on the mobile robot and nodes.

11.1 Sensor nodes

The main problems with implementing the code in the sensor nodes are to get 
deterministic delays and to be able respond quickly to the robot without causing 
unnecessary collisions and network traffic. In order to achieve the deterministic 
delays the sensor nodes are idle and just waiting until they receive a packet 
requesting a measurement, then the node immediately starts sampling and saves 
the results to an array. In order to correctly identify the start of the pulse the values 
in the array are then filtered. Because of the high sampling rate (~72 kHz) this 
operation can not be done in real-time, which is the reason that the values are first 
stored in an array. The filter is a simple Median-3 filter.

After having detected the start of the pulse the node will broadcast the result 
back using an algorithm described below that avoids collisions with the other 
nodes without unnecessary network traffic. In order to reduce network traffic all 
responses are sent as UDP broadcasts, this avoids MAC-level resends and 
confirmations reducing network traffic. This,however, results in that the packets 
must somehow be guaranteed to not collide, or they will be lost.  Since the robot 
can not use more than five measurements at the same time there is no reason to 
send responses from any other nodes than the five closest.

Since the layout of the sensor network is well known, (all nodes are 
positioned along the edges of a straight tunnel), it is possible to calculate a 
distance where there never is more than 5 nodes within that distance. All nodes 
further away than this distance will discard the measurement. By numbering all 
the nodes in strictly ascending order along the tunnel it is possible to calculate a 
unique delay for each node sending a response by taking the node number 
modulus five. The result of the modulus operation is multiplied by an 
experimentally determined delay to avoid collisions. An extract from the code is 
shown below.

if (hdr.type == RANGE_RESPONSE) {
  /* 256 == CLOCK_SECOND => max delay ~ 32/256 ~ 125  ms */
  etimer_set(&etimer_wait, ((NODE_ID)%5)*8);
  PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&etimer_wait));
}

Code for delaying each transmission by a unique value

51



Figure 24: Sequence diagram for distance measurements on sensor node

11.2 Mobile robot

Overview
Everything in the mobile robot is implemented in a single protothread with the 
different activities statically scheduled. The entire system runs with the same time-
step as the Extended Kalman filter, except the radio traffic which occurs 
asynchronously whenever the process is idle. The activities on the mobile robot 
are:

• State estimation using the Extended Kalman filter
• Navigation
• Robot control
• Communication with other robots/host PC
• Communication with AVR processors over I2C.
• Obstacle detection

Navigation is the process of generating reference values for the desired angle and 
velocity. Robot control is the process of using the angle and velocity references to 
calculate individual velocity references for the two wheels.
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Figure 25: Mobile robot software architecture

Extended Kalman filter
Every 0.4 seconds the main process reads the current positions of the wheels and 
calculates their velocities, this is then used as input to the predict part of the 
Kalman filter. The update part is only executed every third step in order to 
decrease the amount of network traffic and to allow other mobile robots to use the 
ultrasound receivers.

Due to the numerical difficulties of inverting large matrices all the updates 
are done sequentially. According to the simulations done this has almost no 
impact at the performance of the position estimation, whereas it drastically 
reduces the required computational resources. This also provides the possibility to 
handle each update directly as it is received , making it possible to use the 
available processor more effectively. If all the updates had been handled at the 
same time it would be necessary to wait for all the measurements, making the 
processor sit idle while waiting for the messages from the different nodes.

Since the distance measurements are for the position the mobile robot had 
when the message was broadcast the old position has to be stored and used when 
doing the update, this position then has to be used for the predict instead of the 
previously calculated position. It would be theoretically possible to wait more than 
one time-step before doing the updates, thus giving more nodes time to answer. 
This would, however, require doing several extra predicts to catch up after the 
update, and this is not feasible since the predicts are very computationally 
expensive.
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Navigation
At every time-step the mobile robot compares its current position to the desired 
position and calculates the direction and velocity it should travel with in order to 
reach the desired position. It compares its current position with that of the desired 
position and calculates an angle using the arctangent function. The velocity is a 
function of the distance to the destination, with a saturation constraining it to a 
maximum velocity. An extract from the code is shown below.

When the robots gets within a certain distance of the desired position it 
switches to the next way-point, if there is one. Otherwise it stops at the current 
position. The navigation can also operate in a tracking mode where it continuously 
attempts to position itself a certain distance behind another robot, it also tries to 
match the other robots heading and velocity.

In the future it is intended to move this functionality to another processor 
which also handles collision avoidance. The current implementation is rather 
computationally expensive as it involves the use of trigonometric functions.

float dist = sqrtf(SQR(waypoints[curr_wp].x-X[0])+
                   SQR(waypoints[curr_wp].y-X[1]));

if (dist < waypoints[curr_wp].r) {

  curr_wp = waypoints[curr_wp].next;
  nav_get_references(speed, heading);

} else {
  /* Max speed V_MAX m/s */
  
  *heading = atan2f(waypoints[curr_wp].y-X[1],

               waypoints[curr_wp].x-X[0]);
          

  float angle_err = 2*ABS(angle_diff(*heading, X[2]));
  angle_err += 1.0f; /* [1, 1+2*PI] */

  float v_max = V_MAX / angle_err;

  /* run slower if large error in angle */
  *speed = MIN(v_max, dist/H_KALMAN/10.0f);
}

Extract from navigation code

Robot control
The desired angle and velocity from the navigation are used by the robot controller 
to calculate the optimal, according to the criteria used when designing the LQ-
controller,  reference velocities for the two wheels.  Since the angle and velocity 
are independent from each other the reference velocities from the velocity 
controller are simply added to the result of the angle controller before sending it to 
the AVR-controllers.
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Communication
Every third time-step the mobile robot broadcasts its position to all other robot 
within radio range. It also sends the current state to the host PC. The reason for 
only sending the data every third time-step is to reduce the amount of network 
traffic.

Timing
The entire robots runs a sequence which repeats itself every three time-steps. 
During this time all the above functions are performed. Figure 26 below shows a 
typical cycle, it also contains the amount of processor time required for the major 
functions. Notice that the first update call is made when the second distance 
measurement is received, this is to always save one update to the second time-slot. 
This is done because there is a lot of spare processor time in that interval, whereas 
the processor already has a lot to do in the first interval.

Figure 26: Mobile robot timing diagram
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PROCESS_THREAD(rbbot_process, ev, data)
{
    /* Initialisations  */

    while (1) {
    
        PROCESS_WAIT_EVENT();
        
        if (etimer_expired(&etimer_predict)) {
            predicts++;

      
            /* Use restart, if we are late we don't want to 
               'catch up'  */

       etimer_restart(&etimer_predict);

       /* calculate estimate of current velocity and store
          in global u */
       get_speeds(u);

       switch (predicts % 3) {
          case 0:
          case 1:
              /* Predict current position */
              kalman_predict(X,P,u,old_u);
              /* Do robot control using nav. references*/
              mode = ctr_do_control(mode);
              break;
          case 2:
              /* Predict and control will be done after the
                 update */
              break;
       }

            switch (predicts % 3) {
           case 0:
               /* Send data to host PC */  
           case 1:
               /* Send range request */
           case 2:
               /* Calculate kalman_update */
        }

        /* Save velocity for next time-step  */
      

             /* Update navigation */

        }
        if (tcpip_event && uip_newdata()) {
            /* handle network data, and do asynchronous updates
               when position messages are received*/
        }
    }
}

Mobile robot process, simplified for clarity
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11.3 Radio packet types

Table 1 contains all the radio message types that are used by the mobile robot and 
sensor nodes.

Message Protocol Type Explanation
JOYSTICK UDP/IP Unicast Sent to mobile robot from 

joystick, directly controls 
wheel velocities.

RANGE_REQUEST UDP/IP Broadcast Sent by mobile robot to 
initiate a range measurement.

RANGE_RESPONSE UDP/IP Broadcast Send by sensor nodes in 
response to a successful range 
measurement.

POSITION_RESPONSE UDP/IP Unicast Sent by mobile robots, 
contains the current position.

BOT_POSITION_BCAST UDP/IP Broadcast Sent by mobile robot, 
contains current position and 
wheel velocities. Used by 
navigation when tracking 
another robot.

Table 1: Radio packet types

All messages start with a 2-byte header:
struct BOT_MSG_HEADER {
    /* Id is the same as last 8-bits of ip address */
    uint8_t id; 
    uint8_t type;
};

The type is a value from the following enumeration, it also contains some ids 
which are not used in the current implementation:

/* Message types */
enum {
    /* request PONG response from all receivers */
    PING = 0, 
    /* sent as response to PING */
    PONG, 

    JOYSTICK,

    /* Start range measurement */
    RANGE_REQUEST, 
    /* Sent after a successful measurement of
       the range */
    RANGE_RESPONSE, 

 
    /* request the current position from a mote */
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    GET_POSITION, 
    /* set the position of a mote */
    SET_POSITION, 

    /* return the current position */
    POSITION_RESPONSE, 

    /* Broadcast our position */
    BOT_POSITION_BCAST 
};

JOYSTICK
struct JOYSTICK_MSG {
    struct BOT_MSG_HEADER hdr;
    /* variables should be in the range [-1,1] */
    float x;
    float y;
};

RANGE_REQUEST
struct RANGE_REQUEST_MSG {
    struct BOT_MSG_HEADER hdr;
};

RANGE_RESPONSE
struct RANGE_RESPONSE_MSG {
    struct BOT_MSG_HEADER hdr;
  
    /* not the actual range, but the index at 

  which the pulse is detected */
    uint16_t range; 

/* Fixed-pint, 9-bit decimal 
   => resolution 1/512 m, which is sufficient
   since we got a sdev of 0.02 on the range 
   measurements anyhow */     

    int16_t x;
    int16_t y;
};
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POSITION_RESPONSE_MSG
struct POSITION_RESPONSE_MSG {
    struct BOT_MSG_HEADER hdr;
    /* Fixed-pint, 9-bit decimal 

  => resolution 1/512 m, which is sufficient
  since we got a sdev of 0.02 on the range 
  measurements anyhow */

    int16_t x;
    int16_t y;    
};

The POSITION_RESPONSE_MSG is also used when logging data to the host 
PC. The same structure is used but the integers are stored in Big-Endian format 
instead.

BOT_POSITION_BCAST_MSG
struct BOT_POSITION_BCAST_MSG {
   struct BOT_MSG_HEADER hdr;

  
   float x;
   float y;
   float theta;
   float v;
};

11.4 I2C message types

All I2C messages are sent with the Telos Tmote Sky as master, Table 2 contains 
all messages that are used.

Function Slave TX-length RX-length
Get wheel positions Wheel control AVR A/B 0 bytes 4 bytes
Send ultra sound Ultrasound AVR 3 bytes -
Set wheel velocity reference Wheel control AVR A/B 2 bytes -

Table 2: I2C messages

Get wheel positions

Byte 0 1 2 3
Value (position>>24) (position>>16) (position>>8) position&0xff
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Send ultrasound
Duration is in units of 1/40 ms.

Byte 0 1 3
Value 0x10 duration>>8 duration&0xff

Set wheel velocity reference

Byte 0 1
Value reference>>3 (reference<<5)&0x07

The reference value should be calculated using the following function which takes 
the velocity (m/s) as input.

/* Given a speed in m/s return the reference value that 
   should send to the motor controller, controller believes
  'speed' to be -2*'pos diff'/H, where H = 0.01;
   
   encoder_positions / (wheel_diameter*pi)=80*3.183
   1 m/s => 255 ticks/s 

   The reference should thus be:
   vref * 255 * -2

   Zero points is at 1024, with inc. pos. speed <1024 and 
   neg. >1024

   Take into consideration the the motors are mounted in
   opposite directions, and positive vref is always for 
   forward movement. */

uint16_t calc_speed_ref(char motor, float vref)
{
   float tmp = (vref*255.0f*(-2.0f));
   if (tmp > 1024.0) tmp = 1024.0;
   if (tmp < -1024.0) tmp = -1024.0;

  
   /* Add 0.5f to get proper rounding */
   if (motor == 'A')
      return (1024.0f - tmp + 0.5f);
   else if (motor == 'B')

 return (1024.0f + tmp + 0.5f);
   else 
      return 1024; /* Unknown motor, return zero ref */
}
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12. Experimental results

In order to verify the estimation the robot was run in a room with a ceiling 
mounted camera positioning system. The camera system has an accuracy of 
approximately 1 cm. In all the following plots the blue curves are the camera 
estimation and the green curves are the Kalman filter estimation. The two system 
use different sampling intervals and are not synchronized in time, so the curves 
have manually been positioned in time to get the best fit. In figure 27 the angle 
estimate is shown, its accuracy is roughly 15°. As can be seen in figure 28 and 29 
the accuracy of the x and y estimates is approximately 10 cm. 

To  get a better feeling for the performance of the estimation the X and Y 
position can be simultaneously plotted in a XY-plot, this is done for both 
experiments that were conducted. This is shown in figure 30 and 31, the scale on 
the axis is in meters. As can be seen the combined accuracy is worse than for the 
individual x and y estimates. The position estimation accuracy is roughly 25 cm.
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Figure 27: angle (radians) as function of time (s)
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Figure 28: x position (m) as function of time (s)

Figure 29: y position (m) as function of time (s)
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Figure 30: XY-plot from experiment 1

Figure 31: XY-plot from experiment 2



13. Conclusion

The use of a sensor network for positioning of mobile robots is feasible. The 
ultrasound based solution used in this thesis is able to provide high enough 
accuracy for the position estimation, and has been shown to work for two mobile 
robots at the same time. 

The issues of packet loss and malfunction of sensor nodes are handled by 
implementing dead-reckoning on the robots. The estimates of the dead-reckoning 
is continuously updated using measurements from the sensor network as they 
become available.

The main bottle-neck of the current implementation is the performance of 
the dead-reckoning, especially the estimation of the angle. There are several 
feasible alternatives for improving this:

– Increasing the accuracy of the robots mechanics, eliminating play in the 
robot cogwheels. Increasing the precision of the wheel diameters.

– Offloading some calculations of the Extended Kalman filter to another 
processor. This should make it possible to run dead-reckoning more often, 
making the model more accurate.

– Adding another method for measuring the angle. There exists simple 
compasses that can be connected via I2C.

– Including the model for the wheels in the Extended Kalman filter. This 
should make the model more accurate. After the reference filtering the 
wheels should be simple include in the model.

64



1 RUNES, Reconfigurable Ubiquitous Network Embedded Sensors, http://www.ist-runes.org/
2 Introduction to RUNES, http://www.ist-runes.org/introduction.html
3 RUNES participants, http://www.ist-runes.org/participants.html
4 A component-based approach to the design of networked control systems, Karl-Erik Årzen, Antonio Bicchi, 

Gianluca Dini, Stephen Hailes, Karl H. Johansson, John Lygeros, and Anthony Tzes
5 Cricket, http://cricket.csail.mit.edu/
6 Triangulation, Wikipedia, http://en.wikipedia.org/wiki/Triangulation
7 Trilateration, Wikipedia, http://en.wikipedia.org/wiki/Trilateration
8 Multilateration, Wikipedia, http://en.wikipedia.org/wiki/Multilateration
9 The Extended Kalman filter, http://en.wikipedia.org/wiki/Kalman_filter
10 Moteiv Corporation, http://moteiv.com
11 The Contiki Operating System, http://www.sics.se/contiki
12 I2C, http://www.nxp.com/products/interface_control/i2c/
13 Two-wire serial interface, ATmega8(L) Complete, www.atmel.com

http://www.sics.se/contiki


 


	1.Introduction
	1.1Background
	1.2Purpose

	2.Position estimation
	2.1Existing techniques
	2.2Methods
	2.3Theory
	2.4Simulation

	3.The Extended Kalman filter
	3.1Introduction
	3.2Model
	3.3The Extended Kalman filter

	4.Hardware
	4.1Tmote Sky
	4.2Mobile robot
	4.3Joystick
	4.4Sensor  node

	5.Software
	5.1Contiki
	5.2I²C

	6.Distance measuring
	6.1Theory
	6.2Implementation
	6.3Results

	7.Wheel control
	7.1Hardware
	7.2Software
	7.3Performance

	8.Obstacle detection
	9.Robot controller
	9.1Overview
	9.2Design
	9.3Implementation

	10. Multiple robots
	10.1Problem
	10.2Solution

	11. Implementation
	11.1Sensor nodes
	11.2Mobile robot
	11.3Radio packet types
	11.4I2C message types

	12. Experimental results
	13. Conclusion



