
ISSN 0280-5316
ISRN LUTFD2/TFRT--5794--SE

Automatic Calibration of
Vehicle Models

Henrik Hultgren
Henrik Jonasson

Department of Automatic Control
Lund University

June 2007

Document name
MASTER THESIS
Date of issue
June 2007

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5794--SE
Supervisor
Magnus Gäfvert and Johan Andreasson at Modelon in
Lund. Johan Åkesson at Automatic Control in Lund.
Anders Rantzer Automatic Control in Lund (examiner)

Author(s)
Henrik Hultgren and Henrik Jonasson

Sponsoring organization

Title and subtitle
Automatic Calibration of Vehicle Models (Automatisk kalibrering av fordons modeller)

Abstract
In this thesis simple vehicle models are compared to more advanced models. The parameters in the simple models have
to be chosen in such a way, that the model behaviour is as close to the advanced model as possible. This parameter
optimisation is done with help of The Optimica Compiler, wich generates AMPL files that solves the problems. To run a
successful parameter estimation there is a need for polynomial interpolation of the measurements from the advanced
model. This is done with the spline toolbox Splines1.1 for Modelica.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
93

Security classification

Recipient’s notes

http://www.control.lth.se/publications/

ACKNOWLEDGEMENTS

Thanks to Modelon AB, especially Magnus Gäfvert and Johan Andreasson
for the opportunity and help to carry out this thesis. For excellent support
and guidance we would also like to give thanks to Johan Åkesson, PhD stu-
dent at the department of automatic control LTH.

Henrik Hultgren & Henrik Jonasson

Lund June 2007

iii

CONTENTS

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Modelon . 2

1.3.1 Vehicle Dynamics Library 2
1.4 Outline . 2

2 Curve Fitting with Splines 5
2.1 Piecewise Polynomials . 5
2.2 B-splines . 6
2.3 FORTRAN Spline Functions . 8

2.3.1 Redeclaration of Variable Types 8
2.3.2 FORTRAN90 . 8
2.3.3 C-wrappers . 8

2.4 Splines in Modelica . 10
2.5 Modification of FORTRAN

Subroutine interv . 10
2.6 Spline Tools In Modelica . 11

3 Vehicle Models 13
3.1 Model Overview . 13

3.1.1 One Track Model with Linear and Nonlinear Tires . . 13
3.1.2 Two Track Model with Nonlinear Tires 14
3.1.3 Two Track Model with Nonlinear Tyres and Roll 14

3.2 Modelica . 14
3.2.1 DYMOLA . 15

3.3 Vehicle Models . 15
3.3.1 One Track Model with Linear Tyres 15
3.3.2 One Track Model with Nonlinear Tyres 16
3.3.3 Behaviour of linear and nonlinear tyres 16
3.3.4 Two Track Model with Linear Tyres 17
3.3.5 Two Track with Roll and Load Distribution (Linear

Tyres) . 19
3.3.6 Two Track with Roll, Load Distribution and Magic For-

mula Tyres . 20
3.4 Modelling Tyres . 20

3.4.1 Slip Angle . 20
3.4.2 Linear Tyre Model . 22

v

CONTENTS CONTENTS

3.4.3 Magic Formula for lateral slip 22
3.4.4 Longitudinal Slip . 23
3.4.5 Magic Formula for Combined Slip 24
3.4.6 Brush Model . 24

4 Optimisation 29
4.1 The Optimica Compiler . 29
4.2 Dynamic Optimisation . 30

4.2.1 Orthogonal Collocation 30
4.3 AMPL and IPOPT . 30
4.4 Intermediate Spline Solutions 31

4.4.1 Matlab Splines . 31
4.4.2 AMPL Splines . 32

4.5 Parameter Optimisation . 32
4.5.1 Servo Optimisation . 33

5 Parameter Optimisation in Vehicle Models 37
5.1 One Track Model . 37

5.1.1 One Track Model with Linear Tyres 37
5.1.2 One Track Model with Nonlinear Tyres 38
5.1.3 Optimisation of Nonlinear Tyre Parameters 41

5.2 Optimisation and VDL . 42
5.2.1 Vehicle Manoeuvres . 42
5.2.2 Parameter Optimisation Procedure 43
5.2.3 VDL model . 44

6 Conclusion 49
6.1 Spline Toolbox . 49
6.2 Optimisation . 49

6.2.1 General optimisation . 49
6.2.2 Vehicle Parameter Optimisation 50

6.3 Future Work . 50
6.3.1 Splines1.1 . 50
6.3.2 Vehicle Parameter Optimisation 50

Appendix A Spline Tools in Modelica 53
A.1 Examples . 53
A.2 Spline construction . 57

Appendix B Vehicle Models 65
B.1 One Track with Linear Tyres 65
B.2 Two Track Linear Tyres . 66
B.3 Two Track Magic Formula and Load Distribution 68

Appendix C AMPL Spline Code 73
C.1 funcadd.c . 73
C.2 Roll.run . 80
C.3 Roll.Cost.mod . 80

vi

LIST OF FIGURES

2.1 Different polynomial interpolations 6
2.2 The four first B-splines . 7
2.3 Principle of modified interv function 11

3.1 One track model. 16
3.2 Lateral tyre forces in the linear region 17
3.3 Lateral tyre forces in the nonlinear region 18
3.4 Lateral acceleration in the nonlinear region 19
3.5 Two track model. 20
3.6 Slip angle is defined as the difference between the wheel centre

velocity and the wheel plane. 21
3.7 Characteristic of tyres. 22
3.8 Effective rolling radius. 23
3.9 Extract from Figure 3.10 showing how to calculate lateral dis-

placement for a bristle. 24
3.10 The brush model for lateral force 25
3.11 Longitudinal slip for the brush model. 27

4.1 Flowchart over the steps involved in running an optimisation
problem . 29

4.2 Splines were created with a MATLAB script. 31
4.3 Steps involved to run an AMPL spline 32
4.4 Process and model are excited with the same input and the

difference in output will be minimised. 33
4.5 The model structure in DYMOLA. 33
4.6 Comparison between the model and the real servo 34
4.7 The dynamics is modelled in Modelica and the optimisation

specifications are written in Optimica code 35
4.8 Parameter estimation of spring-mass system 36

5.1 Original, simulated initial guess and optimised ay 38
5.2 Original, simulated initial guess and optimised ay for linear

model versus nonlinear . 39
5.3 Global model positions after optimisation, the tyres are in the

linear region . 40
5.4 Original, simulated initial guess and optimised ay for linear

model versus nonlinear in the nonlinear region 41

vii

LIST OF FIGURES LIST OF FIGURES

5.5 Global model positions for linear model versus nonlinear in
the nonlinear region after optimisation 42

5.6 Original, simulated initial guess and optimised ay for optimi-
sation of Magic Formula parameters 43

5.7 Original, simulated initial guess and optimised Ψ̈ for optimi-
sation of Magic Formula parameters 44

5.8 Comparison of lateral acceleration between VDL-, initial guess-
and optimised model for a steer ramp. 46

5.9 Comparison of yaw rate between VDL-, initial guess- and op-
timised model for a steer ramp. 46

5.10 Comparison of lateral acceleration between VDL-, initial guess-
and optimised model for a lane change. 47

5.11 Comparison of yaw rate between VDL-, initial guess- and op-
timised model for a lane change. 47

A.1 The structure of the spline package 54
A.2 There are six examples for demonstration purpose included in

the package. 55
A.3 To plot results a special command is necessary. 55
A.4 A complete test of all examples 56

viii

LIST OF TABLES

5.1 Parameter optimisation results for One Track Model. 38
5.2 Parameter optimisation results for linear One Track Model

versus nonlinear when the tyres are in the linear region. . . . 40
5.3 Parameter optimisation results for linear One Track Model

versus nonlinear when the tyres are in the nonlinear region. . 41
5.4 Parameters in magic formula optimised. 42
5.5 Parameters optimised in VDL model (steer ramp). 45
5.6 Parameters optimised in VDL model (lane change). 45

6.1 Suitable manoeuvres and cost function states for finding dif-
ferent types of parameters . 50

ix

1
INTRODUCTION

This thesis is carried out in cooperation with Modelon AB and the Depart-
ment of Automatic Control, Lund University.

1.1 Background
A detailed model that describes the movements of a vehicle may be very
complex and may contain tens of thousand equations. It is difficult to un-
derstand every detail in such an advanced model. Problems also occur due
to the model complexity when designing control systems. If less complex
models could imitate the behaviour of more advanced ones it would be of
interest when determining parameters and conditions.

1.2 Purpose
The aim of this master thesis is to construct reduced car models such as one
track models or simple two track models of low complexity that are nearly as
good, in comparison to the complex ones during certain conditions, but with
fewer design parameters and less complexity. In these small models there
are parameters that have to be tuned in order to make the model perform in
an optimal way. Optimal meaning a minimisation of a specific cost function.
In the cost function different state derivations between the real model and
the reduced model are punished.

A new tool for optimisation of Modelica models called The Optimica
Compiler or TOC [Åkesson Johan, 2007] is developed by Johan Åkesson at
the Department of Automatic Control at Lund University. This is utilised
during the parameter optimisation process.

In order to use the data from the advanced models, which will be con-
sidered the truth or optimum, there has to be a polynomial interpolation
between the discrete data points. This due to that the optimisation tool

1

CHAPTER 1. INTRODUCTION 1.3. MODELON

needs a continuous and two times differentiable function as input. Polyno-
mial interpolation could be done in many ways but in this thesis splines
will be used. For this purpose a special spline toolbox for DYMOLA has been
developed.

1.3 Modelon
Modelon AB is a company that provides advanced models in Modelica for au-
tomotive, aerospace and process industries. Modelon has developed several
libraries for DYMOLA, among them, the Vehicle Dynamics Library (VDL), is
of interest for this thesis [Modelon, 2007].

1.3.1 Vehicle Dynamics Library
This library is a tool for simulation and analysis of the dynamics during
handling manoeuvres of a vehicle. It is based on the Modelica programming
language. VDL is a drag-and-drop system that is easy to use, it is also
possible to edit the Modelica source code for more advanced features.

Handling behaviour is the primary aim of this library, but other ve-
hicle properties are also possible to study. It is feasible to involve other
types of components like electronics, pneumatics and hydraulics. Also de-
tailed models from other model libraries such as Transmission- (Ricardo,
UK), PowerTrain- (DLR, Germany) and SmartElectricDrives-library (Arse-
nal Research, Austria) can be used. This makes VDL to a very flexible tool.
Other examples on features are the test rigs which make it possible to iso-

late vehicle behaviour and wheel test rigs for validation of models against
measurements. 3D roads are constructed with tabular data which makes
it possible for the user to define own surfaces. The possibility to use VDL
models in Simulink makes it practical to use Simulink as a design tool of
controllers and then try it in the VDL model.

The purpose with VDL in this thesis is to compare the reduced models
against those in VDL and estimate parameters in an optimal manner.

1.4 Outline
The thesis consists of two major parts, the spline part and the optimisation
part. The optimisation part is divided in two areas, modelling of vehicle

2

CHAPTER 1. INTRODUCTION 1.4. OUTLINE

dynamics and parameter optimisation.
Chapter 2 considers the polynomial reconstruction of the simulation data

sets. In Chapter 3, simple one and two track models are constructed. Chap-
ter 4 discusses the optimisation process and how to optimise parameters. To
illustrate the optimisation process a simple optimisation experiment with
two masses and a spring is also performed.

Further optimisation on vehicle models is done in Chapter 5. The last
chapter contains a conclusion of the thesis, analyses and discussions on the
obtained results.

The functions in the spline package are described in Appendix A and the
Modelica source code for the models is in Appendix B. Source code for the
intermediate solution with AMPL spline are in Appendix C.

3

2
CURVE FITTING WITH SPLINES

To make the parameter optimisation possible, the discrete data points from
the simulated advanced model have to be transformed into a continuous
differentiable function. This can be done by using some sort of interpolation
between the points, see Figure 2.1. In this thesis two types of constructions
have been used.

• Piecewise polynomials

• B-spline

As will be described later on both types have their advantages and disad-
vantages. For easy handling and convenience, the aim was to construct a
toolbox containing spline tools similar to the one in MATLAB [de Boor, 2007].
The spline-toolbox that has been created in DYMOLA has similar features as
the MATLAB spline-toolbox. The MATLAB spline-toolbox has also been used to
validate spline results created in DYMOLA.

The starting point was the PPPack which contains the spline algorithms
written in FORTRAN code [de Boor, 1978]. These subroutines will be called
from DYMOLA by an external function call, which causes some problems as
described below. Different approaches have been made to overcome commu-
nication problems due to different variable types in FORTRAN and Modelica.

2.1 Piecewise Polynomials
It is possible to approximate a function f with a polynomial as long as the
function is sufficiently smooth and the approximated interval is rather small.
If the interval is large the polynomial has to be of a high order and with in-
creasing length of the interval the order eventually becomes unacceptably
large. Also if the function to be approximated behaves badly somewhere

5

CHAPTER 2. CURVE FITTING WITH SPLINES 2.2. B-SPLINES

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

linear
quadratic
quartic
data

Figure 2.1: Different polynomial interpolations

in the interval of the approximation, then the approximation is poor every-
where. To avoid large oscillations it is common to use so called piecewise
polynomials. The idea is that large intervals are divided into smaller inter-
vals and a polynomial of low degree is fitted in each subinterval, hence the
name piecewise polynomial. The main advantage of this pp-interpolation
is that a large number of data points can be fitted with a polynomial with
low degree. The simplest polynomial that can be fitted between two points
is a straight line, which is called piecewise linear interpolation. In such a
piecewise polynomial there are different polynomials that are used in the
different intervals. The points where one polynomial changes to another,
are called knots or breakpoints. Assuming the breakpoint sequence consists
of strictly increasing points

τ i < τ2 < . . . < τ l+1

then the breakpoints, coefficients, number of polynomial pieces and the order
represent the pp-form. An advantage of the pp-form is its efficiency to eval-
uate. However, when it comes to construction of piecewise-polynomials the
efficiency is lower than for the B-form.

2.2 B-splines
The B-spline is the standard representing format when constructing splines
due to the possibility to enforce smoothness requirements across breaks. A
B-spline is a weighted sum of basis functions hence the name Basis-spline
[Heath, 2002].

n∑
j=1
Bkj a j

where Bkj is a is piecewise polynomial of degree < k with knots t j , . . . , t j+k
and a j are the B-spline coefficients. The first B-spline of degree 0 is defined

6

CHAPTER 2. CURVE FITTING WITH SPLINES 2.2. B-SPLINES

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2
zero order B−spline

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2
first order B−spline

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2
second order B−spline

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2
third order B−spline

Figure 2.2: The four first B-splines. Vertical thin lines denotes placement of knots. As can be
seen the first B-spline consists of only one polynomial piece, the second consist of two pieces etc.

as
B0
i (t) =

{
1 if ti < t < ti+1
0 otherwise (2.1)

The following B-splines are calculated recursively.

Bki (t) = vki (t)Bk−1
i (t) + vki+1(t)Bk−1

i+1 (2.2)

where
vki (t) =

t− ti
ti+k − ti

(2.3)

The four first B-splines are depicted in Figure 2.2. A B-spline consists of
a knot-sequence, B-spline coefficients and the order. The difference between
knots and breakpoints is the non-strictly increasing requirement, which al-
lows repeated knots i.e. the knots could have multiplicities.

t1 ≤ t2 ≤ . . . ≤ ti+k
The relation between knots, order and smoothness conditions is

knot multiplicity + condition multiplicity = order.

Smoothness condition is a figure that describes the number of continuous
derivatives. The knot multiplicity affect the smoothness condition so that
higher multiplicity results in fewer continuous derivatives. For a B-spline of
order three, the meaning of the smoothness condition is

7

CHAPTER 2. CURVE FITTING WITH SPLINES 2.3. FORTRAN SPLINE FUNCTIONS

• smoothness condition 2 means a continuous function and a continuous
first derivative (1+ 2 = 3 in relation above)

• smoothness condition 1 means only a continuous function (2+1 = 3 in
relation above)

the relation is the same for higher order B-splines. A B-spline with the
above knot-sequence is zero outside the interval t1 . . . ti+k. As discussed above
the main advantage compared to the pp-form is the efficiency to construct
splines.

2.3 FORTRAN Spline Functions
Carl de Boor has written several FORTRAN-routines that construct piecewise
polynomials and B-splines. In addition, there are routines for calculating the
jth derivative value in a certain point, convert B-spline to pp, and treat the
breaks and knots. These can be obtained from the public available PPPack
(http://netlib.org/pppack/index.html).

2.3.1 Redeclaration of Variable Types
These original FORTRAN-routines are written in FORTRAN77 and the aim was
to be able to use them from DYMOLA without any change. A problem that
occurred initially was that DYMOLA calls external FORTRAN code with double
precision (64 bits) and the FORTRAN-routines uses single precision (32 bits).
The first attempt to overcome this obstacle was to manually change the
declarations in the routines. This worked for some of the routines but others
contained intrinsic calls that required single precision arguments. If the
approach would have been successful the idea was to write a script that
simply changed all the declarations from real to double precision but the
FORTRAN compiler is very strict with column layout and the longer declaration
sometimes caused the text to exceed the limits which caused an error. This
could be overcome by manually adjusting the code, however this was not
desirable. The idea was that anyone should be able to use the spline package
without changes in the original PPPack.

2.3.2 FORTRAN90
The next approach was to use pppack.f90 a PPPack that is rewritten in
FORTRAN90 (also a public code package) and it had the correct variable type
from the beginning, double precision. This appeared to work at first but then
it was discovered that the source code was under development and not bug
free. Since this code is changing, and was changing during the work process,
it was considered unstable and was abandoned. The source code can be found
on (http://people.scs.fsu.edu/∼burkardt/f_src/pppack/pppack.html).

2.3.3 C-wrappers
Eventually it was decided to use the original FORTRAN code unchanged since
it came from a reliable source and appeared thoroughly tested. In order

8

http://netlib.org/pppack/index.html
http://people.scs.fsu.edu/~ burkardt/f_src/pppack/pppack.html

CHAPTER 2. CURVE FITTING WITH SPLINES 2.3. FORTRAN SPLINE FUNCTIONS

to do this a layer between DYMOLA and FORTRAN had to be created, i.e. a
wrapper. These were to be written in C for simplicity and compliance with
DYMOLA. The wrappers had to contain all the conversions between double and
single precision. All arrays are declared and created in DYMOLA to utilise
the memory maximally, including work arrays for C and FORTRAN. In the
respective wrappers n dimensional arrays are converted from row convention
in C to column convention in FORTRAN and vice verse. Below is an example
on a wrapper structure

extern void cubspl_(const float*, const float*, const int*,
const int*, const int*);

int cubsplwc(double* tau, double* bc, int n, int ibcbeg, int ibcend,
float* tauW, float* bcW) {

int i, j;

for (i=0;i<n;++i){
tauW[i] = (float)tau[i];

}

for (i=0;i<n;++i){
bcW[i*4] = (float)bc[i]; //data

}

//conditions
bcW[1] = (float)bc[n];
bcW[4*n-3] = (float)bc[2*n-1];

/*### call FORTRAN function ###*/
cubspl_(tauW, bcW, &n, &ibcbeg, &ibcend);

/* Revert, Dymola (c) Row - FORTRAN Column*/
for(j=0;j<n;++j){

for(i=0;i<4;++i){
bc[i*n+j]=(double)bcW[i+j*4];

}
}

return splineInit();
}

All wrappers are written in similar fashion.

• Conversion from double precision to single precisions is done with loops
in the wrapper. Due to the different matrix row and colon notations in
C and FORTRAN it is also necessary to transpose the matrices.

• Call the external FORTRAN subroutine.

• Transpose once again and convert back to double precision.

The last expression return splineInit() gives the spline a individual
identification number, as explained below.

An interesting aspect to consider is the time that each C-wrapper con-
sumes. Measurements on wrappers have been done and the results indicates
that the time lag that wrappers contributes are very small, less than µs. This
depends of course on the matrix dimensions, in the test above the size of the
data inputs were 2000$1.

9

CHAPTER 2. CURVE FITTING WITH SPLINES 2.4. SPLINES IN MODELICA

2.4 Splines in Modelica
When the C-wrapper were written so they could pass the arrays, matrices
and values to the FORTRAN subroutines the challenge was to write Modelica
functions in DYMOLA. In these functions external calls to the C-wrappers
made it possible to use the FORTRAN routines. The functions written in Mod-
elica are split into two levels. The purpose of the first level functions is
to construct values, arrays and matrices that the higher level functions not
necessarily have to see. In this level all the work arrays that the wrappers
and FORTRAN need are created. The first layer is named PPPack and the
second Splines.

2.5 Modification of FORTRAN
Subroutine interv

When splines are to be evaluated a function ppval or bvalu has to be called.
Inside these two subroutines there is a call for a function interv written in
FORTRAN. Its commission is to find in which interval the point to be evaluated
is located in.

In interv a local variable ilo keeps the position from the last call in
memory. When it is called again it does not have to search through the
whole data set to find the right evaluation point, it just looks where it was
in the last call. It is an advantage to do so when the evaluation functions are
to be called repeatedly. This original solution has a problem when different
splines with different data sets are calling ppval or bvalu repeatedly, then
the locally stored variable is not valid for more than one spline. It will mix
up the intervals and the previous call do not necessarily contain any relevant
information to the current call.

To overcome this, specific Id’s for every spline is introduced. Every spline
has its own interval memory stored in a static array. When constructing
a spline it receives an ID-number, this number corresponds to a interval
position stored in the array, see Figure 2.3. With this solution every spline
has its own interval position stored and the intervals are kept separate. This
results in a faster evaluation when large data sets and multiple splines are
to be handled. The updated version of ppval as described above is ppval2.

However today’s fast computers working with GHz processors make this
interval search fast. An experiment made with two different splines con-
structed with ppcub with 2000 respective 5 breakpoints, calling ppval and
ppval2 repeatedly 50 000 times in different points showed no significant im-
provements in time. There was however an improvement in the number of
iterations that were made between the two versions.

• ppval needed 824 798 iterations

• ppval2 needed 2001 iterations

Assumed that ppval needs 1000 instructions more than ppval2, this is a
high figure, in each function call to be able to find the right interval. The

10

CHAPTER 2. CURVE FITTING WITH SPLINES 2.6. SPLINE TOOLS IN MODELICA

2
3
4
5
6
7
8
9

n

1
ID

...

Pos
⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

read position in save position in

interv

ilo ilo

ppvalue

(a) Subroutine interv and its position storage.

0 1 2 3 4 5 6 7 8 9 10
interval 6

point evaluated
in latter call

point to evaluate

(b) ilo keeps the last interval in
memory

Figure 2.3: The lower interval is stored in ilo which is saved in a global vector with different
intervals for different splines. This makes it possible for a spline to keep its last position even
though other splines are called in between

computer works with approximately 2.5 GHz.

1
2.5 GHz (1000 inst)824798

2001 = 1, 65e−4s

These calculations indicate that the speed of the computer is so high that
400 times more iterations, does not make a large difference. However this
leads to a more efficient handling of the interval search in interv as the
results indicate. The result depends on usage, larger array dimensions and
multiple splines will give a larger improvement.

2.6 Spline Tools In Modelica
All C wrappers, Modelica wrappers and FORTRAN subroutines are collected
and linked together into a DYMOLA package called Splines 1.1. It contains
several spline construction tools for both piecewise polynomial and B-spline.
Also included are tools for work on knots and breakpoints. A few examples
included demonstrate the functions of the splines.

To use above described tools, the complete package Splines 1.1 is needed.
It contains the DYMOLA model, wrappers, instructions for how to use and
install. For complete functionality most of FORTRAN subroutines in public
PPPack have to be downloaded from the Internet, which ones can be seen
in README.TXT. Splines 1.1 only contains the modified versions of ppval,
bval and interv located in the folder src/.

For more details about functions and the structure of Splines 1.1, see
manual in Appendix A.

11

3
VEHICLE MODELS

The models created and presented in this chapter ranges from simple, with
few degrees of freedom (DOF), to more advanced with more DOFs. These
models are however still quite simple compared to models in VDL. It is de-
sired not to use a more advanced model than required to complete a certain
manoeuvre.

3.1 Model Overview
The models that have been constructed are introduced in Sections 3.1.1-3.1.3
with their important input and output signals, area of interest and advan-
tages versus disadvantages. The outputs are states that are interesting to
observe, but they are not all the states available. More detailed descriptions
are found in Section 3.3.

3.1.1 One Track Model with Linear and Nonlinear Tires
The least complex vehicle model is the One Track with linear tyres.

DOFs 2-3

Inputs Steering angle (δ), Longitudinal velocity (vx) / acceleration (ax) /
force (fx)

Outputs Yaw angle velocity (ψ̇), lateral velocity (vy)

Areas of interest Steady state manoeuvres and references to, for example,
Electronic Stability Program (ESP)

Advantages Easy to calibrate for the linear case

Disadvantages Does not handle transients, does not handle individual tyre
traction and braking

13

CHAPTER 3. VEHICLE MODELS 3.2. MODELICA

3.1.2 Two Track Model with Nonlinear Tires
This model has four wheels and the tyres are nonlinear, no roll freedom is
considered. A load distribution is however included in the model.

DOFs 3

Inputs Steering angle (δ), Longitudinal force (fi)

Outputs Yaw angle velocity (ψ̇), lateral acceleration (vy)

Areas of interest Steady state manoeuvres and references to, for example,
Electronic Stability Program (ESP)

Advantages Individual tyre braking or acceleration, nonlinear load distri-
bution

Disadvantages Does not describe the roll angle (ϕ)

3.1.3 Two Track Model with Nonlinear Tyres and Roll
The most advanced model with roll dynamics introduced.

DOFs 5

Inputs Steering angle (δ), Longitudinal velocity (vx) / acceleration (ax) /
force (fx)

Outputs Roll and pitch

Areas of interest Transient manoeuvres

Advantages Contains most of the dynamics needed

Disadvantages Difficult to find the roll axis, toe and camber are not in-
cluded, more parameters to tune

3.2 Modelica
All vehicle models that were used during simulations were implemented in
Modelica code. Modelica is a free object orientated language suited for mod-
elling complex physical systems. A nice feature in Modelica is that it is quite
simple to describe physical systems, one only has to specify the differential
equations for the system. Single variable solving is not necessary, this is
all done in the compiler. To solve problems with Modelica, a modelling and
simulation environment is needed. In this thesis a program called DYMOLA
was used.

14

CHAPTER 3. VEHICLE MODELS 3.3. VEHICLE MODELS

3.2.1 Dymola
DYMOLA is a program created by the com-
pany Dynasim. It has a graphical edi-
tor where built in components can be con-
nected in a drag-and-drop manner. The
components are mechanical, electrical and
thermal. There are also other types of
blocks like maths functions and different
source blocks etc. Examples of mechani-
cal blocks are inertias, springs and rods.
In the graphical editor models are built
by differential equations describing their
behaviour. To build a model, components
that corresponds to the real systems are
connected. The DYMOLA model reflects how it looks in reality, see the DYMOLA
example furuta pendulum to the right. It consists of three joints denoted R
and three bodies B which are the arms of the pendulum.

When vehicle models were constructed the graphical editor was not used.
Instead force and moment equations were written directly in the text editor.

3.3 Vehicle Models
This section has a more detailed explanation of how the models are con-
structed. It starts with the One Track model with linear tyres and ends
with the Two Track model with nonlinear tyres, pitch and roll. The Model-
ica code for vehicle models created and used can be found in Appendix B

3.3.1 One Track Model with Linear Tyres
The simplest car model is the One Track model, or the bicycle model, with
linear tyres. It is modelled such that the front tyres are combined to one and
the rear tyres are combined to one. These are placed in the centre, i.e. the
y-coordinate equals zero. Effects such as pitch and roll are discounted when
setting the z-coordinate to zero. This gives a model that is easy to calibrate
for the linear case and is usable for steady state manoeuvres. It does not
handle transients or individual breaking. See Figure 3.1.

The equations needed to put together the model are the force equations
and the moment equation:

↑ m(v̇x − Ψ̇vy) = −F12 sin(δ) (3.1)
→ m(v̇y + Ψ̇vx) = F34 + F12 cos(δ) (3.2)
	 JzΨ̈ = f F12 cos(δ) − bF34 (3.3)

where equation (3.1) are the forces acting in the y-direction, equation (3.2)
are the forces acting in the x-direction and equation (3.3) are the moments
of inertia around the z-axis through the centre of gravity. The slip angles
front (α 12) and rear (α 34) are calculated according to equations (3.4 - 3.5).

α 12 = arctan
(
vy + ψ̇ f
vx

)
− δ (3.4)

15

CHAPTER 3. VEHICLE MODELS 3.3. VEHICLE MODELS

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

f

b

δ

F12

F34

x

vx
vyy

α 12

Figure 3.1: One track model.

α 34 = arctan
(
vy − ψ̇ f
vx

)
(3.5)

where δ is the steering angle.
These combined with the force equation for the linear tyre, equation

(3.23), and applying the rules for derivation of vectors according to (3.6)
are enough to assemble the one track model.

d f
dt =

� f
�t +ω $ f (3.6)

3.3.2 One Track Model with Nonlinear Tyres
To extend the above One Track model non linear tyres are introduced. The
model for the tyres is the Magic Formula equation (3.25).

3.3.3 Behaviour of linear and nonlinear tyres
To verify that the linear and nonlinear tyres behave similar in the linear
region and that they differ in the nonlinear region, two simulations were
done. See section 3.4 for description of linear and nonlinear tyres. The
first simulation demonstrates the linear region. Both models had the same
inputs; a steady longitudinal velocity (vx) of 10m/s and a steering angle (δ)
that increased from 0-2 rad/s over the simulation period 30 seconds. As can
be seen in Figure 3.2 the lateral forces (fy) are very similar for both models.

16

CHAPTER 3. VEHICLE MODELS 3.3. VEHICLE MODELS

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000
Comparison lateral tire forces in the linear region

Simulation time (s)

F
or

ce
 (

N
)

Nonlinear tire
Linear tire

Figure 3.2: Lateral tyre forces in the linear region

To make the models enter the nonlinear region a larger longitudinal velocity
of 20m/s was used. This made the nonlinear tyre reach its top value, which
is the maximum lateral value, while the linear tyre behaved as before, see
Figure 3.3. The effects of the nonlinearity can be seen in states in the model,
for example the lateral acceleration (ay). In Figure 3.4 it can be seen that the
lateral acceleration of the nonlinear tyre model reaches a maximum but the
linear model continues without curving, which is not realistic under these
conditions.

3.3.4 Two Track Model with Linear Tyres
To make the two track model, the forces on each tyre was defined and used
in the same force equalities and momentum equality as for the one track
model, equations (3.7 - 3.9). Then the moment equalities around the x-axle
and the y-axle was introduced as well as the force equality in the z-direction,
equations (3.10 - 3.12). The centre of gravity is placed at the height h, see
Figure 3.5.

max =
4∑
i=1
Fix (3.7)

may =
4∑
i=1
Fiy (3.8)

JzΨ̈ = f
2∑
i=1
Fiy, f ront + b

2∑
i=1
Fiy,rear (3.9)

17

CHAPTER 3. VEHICLE MODELS 3.3. VEHICLE MODELS

0 5 10 15 20 25 30
0

5000

10000

15000
Comparison lateral tire forces in the nonlinear region

Simulation time (s)

F
or

ce
 (

N
)

Nonlinear tire
Linear tire

Figure 3.3: Lateral tyre forces in the nonlinear region

m� =
4∑
i=1
Fiz (3.10)

mayh =
tw
2

4∑
i=1
Fiz (3.11)

maxh = f
2∑
i=1
Fiz, f ront + b

2∑
i=1
Fiz,rear (3.12)

In order to eliminate the roll angle (ϕ) from the equations it was assumed
that the body is rigid, i.e. ϕ f ront = ϕ rear. Modelling the roll angle in front
and in rear is done with the torsion stiffnesses in front (k f ront) and in rear
(krear) and then compared with the momentums (τ x, f ront and τ x,rear) given by
the tyre forces, see equations (3.13 - 3.16).

τ x, f ront =
tw
2 F1z +

tw
2 F2z (3.13)

τ x,rear =
tw
2 F3z +

tw
2 F4z (3.14)

ϕ f ront =
τ x, f ront
k f ront

(3.15)

ϕ rear =
τ x,rear
krear

(3.16)

18

CHAPTER 3. VEHICLE MODELS 3.3. VEHICLE MODELS

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18
Comparison between lateral accelerations with linear and nonlinear tires

Simulation time (s)

La
te

ra
l a

cc
el

er
at

io
n

(m
/s

2)

Nonlinear tire
Linear tire

Figure 3.4: Lateral acceleration in the nonlinear region

3.3.5 Two Track with Roll and Load Distribution (Lin-
ear Tyres)

If the roll angle (ϕ) is assumed to be small it can be calculated accordingly

ϕ =
mayh′

cϕ1 + cϕ2 −m�h′
(3.17)

where cϕ1,2 are the axle roll stiffnesses front and rear [Pacejka, 2002]. The
distance h′ is the distance from the centre of gravity to the roll axle. The
roll axle stretches from the height h1 in front and the height h2 in the rear.
The load transfer ∆Fzi caused by the centripetal acceleration ay is given by
the equations

∆Fz1 =
1
tw

(cϕ1
cϕ1 + cϕ2 −m�h′

h′ + b
f + bh1

)
may (3.18)

∆Fz2 =
1
tw

(cϕ2
cϕ1 + cϕ2 −m�h′

h′ + f
f + bh2

)
may (3.19)

The longitudinally effects of weight distribution, acceleration and decelerat-
ing are taken into account by summarising the z-forces per tyre. The total
z-forces on tyre1 (front left tyre) is given by equation (3.20).

F1z =
b

2(f + b)m� − ∆F1z −
h

2(f + b)max +
Jϕϕ̈

tw
2

(3.20)

The roll angle dynamics are modelled as in equation (3.21) where Dϕ is the
roll damping.

Jϕϕ̈ +Dϕϕ̇ + (cϕ ,1 + cϕ ,2)ϕ = hrollmay (3.21)

19

CHAPTER 3. VEHICLE MODELS 3.4. MODELLING TYRES

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

F2y

F2z

F2x
F1y

F1z

F1x

f

b

x

vx
vyy

δ

F4z

F4y

F4x

F3z

F3y

F3x

tw
2

tw

z

ϕ

h

Figure 3.5: Two track model.

3.3.6 Two Track with Roll, Load Distribution and Magic
Formula Tyres

The two track model that included roll and load distribution was then mod-
ified with non linear tyres. This was was done with the Magic Formula, see
section 3.4.3.

3.4 Modelling Tyres
Modelling a tyre can be done in many different ways, with a wide span of
complexity.

3.4.1 Slip Angle
A linear tyre model is a natural starting point. Linear tyres are approxi-
mated with a linear function. The angular difference between the direction
in which a tyre is rolling and the wheel plane is called slip angle (α). When
there is a difference between the directions a lateral force Fy arise. The

20

CHAPTER 3. VEHICLE MODELS 3.4. MODELLING TYRES

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

y

x

α

Figure 3.6: Slip angle is defined as the difference between the wheel centre velocity and the
wheel plane.

definition of slip angle is
tan(α) = −VyVx

. (3.22)

When the slip angel is small actually no sliding occurs, the difference be-
tween the two directions is due to the elasticity in the tyre. A tyre has
the ability to roll in different direction compared to the direction defined
by the wheel plane. For small angles the relationship between slip angles
and cornering forces are linear but become nonlinear for large angles. This
relation is called cornering stiffness and designates Cα see Figure 3.7 for a
typical slip angel - lateral force relationship. As can be seen there are three
different regions; elastic, transitional and frictional.

• elastic Linear relation between the lateral force Fy and slip angle α .
The slip angle is a result of the elastic properties in the tyre and no
sliding between the road and the tread occurs.

Fy = −Cαα (3.23)

• transitional The relation is nonlinear and sliding occurs in a region
of the thread.

• frictional The lateral force is starting to decrease, sliding occurs over
the whole tread area.

The definition of cornering stiffness is the derivative at zero slip of the lat-
eral force with regards to the slip angle curve. The negative sign in equation
(3.24) is due to that it is more natural with a positive stiffness than a neg-
ative one.

Cα = −

(
�Fy
�α

)
α=0

(3.24)

21

CHAPTER 3. VEHICLE MODELS 3.4. MODELLING TYRES

La
te

ra
lF

or
ce
F y

Slip angle −α

FrictionalElastic Transitional

(a) Relation between lateral force and slip
angle

Slip angle −α

La
te

ra
lF

or
ce
F y

E < 0
E = 0
0 < E < 1

BCD

D

−Sh

−
S v

(b) Illustration of coefficients in Magic For-
mula

Figure 3.7: Characteristic of tyres.

3.4.2 Linear Tyre Model
This simple tyre model approximates the cornering stiffness with a linear
function i.e. Cα is constant. This model is also modelled for pure cornering
and does not handle longitudinal forces such as braking and traction. The
model consist of the following relation between the slip angle and the lateral
force.

Fy = −Cαα

The only parameter to specify in this model is the cornering stiffens Cα

3.4.3 Magic Formula for lateral slip
The magic formula is an semi empirical model invented by Bakker, Lidner
and Pacejka. The formula fits measurements from a real tyre to a curve
[Wennerström et al., 2005].

y(x) = D sin(C arctan(Bx − E(Bx − arctan(Bx))))
Y(X) = y(x) + Sv

x = X + Sh
(3.25)

The tyre formula contain six parameters

• B stiffness factor

• C shape factor

• D peak factor

• E curvature factor

• Sh horizontal shift

• Sv vertical shift

22

CHAPTER 3. VEHICLE MODELS 3.4. MODELLING TYRES

Where Y(X) can be lateral force, longitudinal force or self aligning torque.

The influence that the parameters have on the tyre curve can be seen in
Figure 3.7. This figure shows a side force–slip angle relation, the Magic
Formula can also be used to describe the traction force and the self aligning
torque of a tyre as well.

As can be seen, B affects the slope of the curve at α = 0 hence the name
stiffness factor. The maximum side force that could be attained is the value
of D, the peak factor. By changing the parameter C the formula can be fitted
to also describe brake force and self aligning torque. E shape the curvature
for the horizontal position of the peak. Sh and Sv allows offsets to the curve
with respect to the origin due to ply steer, rolling resistance, conicity and
camber.

3.4.4 Longitudinal Slip
When traction and braking forces affect the tyre longitudinal slip occurs.
This phenomena is due to the velocity difference in the thread of the tyre.
Longitudinal slip denotes with κ and the definition is

κ = −
vx − reω
vx

(3.26)

where
re =

vx
ω 0

(3.27)

is the effective rolling radius and vx is the wheel centre velocity. The effective
rolling radius is the ratio between distance vx that the wheel has travelled
and the corresponding rotation angle speed ω 0. A wheel has a re less than
the real radius r and larger than the loaded radius rl, this due to compression
of the tyre, see Figure 3.8. The minus sign in equation (3.26) is introduced

vx

ω

r

rl

Figure 3.8: Effective rolling radius rl < re < r. In this picture the difference is highly
exaggerating.

so that positive κ means a positive longitudinal force. For a spinning wheel
reω is larger than vx which results in a positive κ . For surfaces with low
friction like ice and wet roads κ could be very large. The opposite situation
with a breaking wheel gives a negative κ and when the wheel is locked the
longitudinal slip becomes minus one. It is then natural that a free rolling
wheel has zero slip.

23

CHAPTER 3. VEHICLE MODELS 3.4. MODELLING TYRES

a

x − ax

v α

Figure 3.9: Extract from Figure 3.10 showing how to calculate lateral displacement for a
bristle.

3.4.5 Magic Formula for Combined Slip
The magic formula can also be fitted to measurements from longitudinal
forces and self aligning torque.

3.4.6 Brush Model
The brush model is an analytical model that describes lateral an longitudinal
forces for a tyre. The idea is to model the rubber as a brush with small
flexible bristles. The bristles are extended over the whole contact area in y
direction but is indefinitely small in x direction.

Lateral Force and Aligning Moment

When slip occurs the bristles starts to deform. As depicted in Figure 3.10,
the lateral displacement (vα) in the adhesion region

vα = (x − a) tan(α) (3.28)

see Figure 3.9 for how to obtain the above relation. The force that a single
bristle gives arise to is cpvα , this is a linear relation with the introduced
lateral stiffness factor (cp). The total force over the whole region is Fy and
can be calculated with an integral as.

Fy =
∫ a

−a
cp(x − a) tan(α) (3.29)

Solving the integrand gives an expression for the lateral force.

Fy = −2a2cp tan(α)

The aligning force is calculated in the same manner. The lateral force times
the distance x and then integrate to get the total moment.

Mz =
∫ a

−a
xcp(x − a) tan(α) = 2

3 cpa
3 tan(α) (3.30)

24

CHAPTER 3. VEHICLE MODELS 3.4. MODELLING TYRES

a a

α

α

x

y

z

Fz

−xt

τ z

Wheel spin axis

2aλ

v
Fy

x

CMz

max deflection

Figure 3.10: The brush model for lateral forces(Upper top view and lower side view).

Large Slip Angles

The above equations are only valid for small slip angles when the relation
between force and slip angle is linear in the entire contact area. When the
slip angle becomes large sliding occurs in one part of the tyre contact area.
To model this, a parameter λ is added to the model. In the upper part of
Figure 3.10 the shaded area bounded by 2aλ and the lateral displacement
v, is the adhesion region. In this part the linear relation is still valid. The
other part is a sliding region where a nonlinear force relation comes up.

The pressure that Fz gives arise to is equal distributed over the contact
area 2a

τ z =
Fz
2a (3.31)

The lateral force for a bristle is limited by the above pressure and the road
tyre friction.

pcp(x − a) tan(α)p ≤ µτ z (3.32)

Sliding must then occur when the force becomes equal or larger than µτ z.

25

CHAPTER 3. VEHICLE MODELS 3.4. MODELLING TYRES

This sliding point denotes with xs
−cp tan(α)(xs − a) = µτ z

solving for xs gives

xs = − µτ z
cp tan(α) + a

(3.33)

The parameter λ describes how large the adhesion-sliding part is relation to
the entire contact area.

λ =
a− xs

2a (3.34)

The side force has to be split into two parts, one from the sliding (−a →
a(1−2λ)) and one from the adhesion region (a(1−2λ) → a). The total force
from the two regions becomes

Fy = −
∫ a(1−2λ)

−a

µFz
2a dx +

∫ a

a(1−2λ)

cp tan(α)(x − a)dx (3.35)

and solved
Fy = − µFz︸︷︷︸

2Cα tan(α)λ

(1− λ) − λ
2 2a2cp︸ ︷︷ ︸

Cα

tan(α) (3.36)

The rewritings above comes from

λ =
a− xs

2a =
µτ z

2acp tan(α) =
µFz

4a2 tan(α) =
µFz

2Cα tan(α) (3.37)

where equation (3.33) and (3.31) have been used. After further simplifica-
tions the force can be written as

Fy = −2Cα tan(α)λ(1+ λ) − Cα tan(α)λ2 =

Cα tan(α) (λ(2− λ))︸ ︷︷ ︸
f (λ)

(3.38)

where
f (λ) =

{
λ(2− λ) λ ≤ 1
1 λ < 1 (3.39)

Slip starts at the longitudinal position given by

λ =
Fzµ

2Cα p tan(α)p (3.40)

The relation for aligning moment also differ with large slip angles. Sim-
ilar results as in the case of lateral slip is obtained, the same method is
used.

The contact area is split into two pieces, one adhesion- and one slip area.
The λ parameter describes where the border between those areas is located.
The total moment is split up and described by two separate contributing
parts.

Mz = −
∫ a(1−2λ)

−a
xµFz

2a dx +
∫ a

a(1−2λ)

xcp tan(α)(x − a)dx (3.41)

26

CHAPTER 3. VEHICLE MODELS 3.4. MODELLING TYRES

Mz = −µFzaλ(λ − 1) + a
3cp tan(α)

6 (−12λ
2 + 16λ

3) (3.42)
or

Mz = Cm tan(α)6λ
2(1− λ) + Cm tan(α)λ2(4λ − 3) (3.43)

with
Cm = Cα

a
3 =

2a3cp
3 and µFz = 2Cα tan(α)λ (3.44)

Expression for Cα is found in equation (3.37). The sum results in an expres-
sion for the aligning torque.

Mz = Cm tan(α)�(x) (3.45)

�(λ) =

{
λ2(3− 2λ) λ ≤ 1
1 λ < 1 (3.46)

λ =
Fzµ

2Cα p tan(α)p =
aFzµ

6CM p tan(α)p (3.47)

Longitudinal Slip

If there is a difference between the angular wheel velocity and the free rolling
velocity, slip arises as described above. If this is the case the slip deform the
bristles as in Figure 3.11. Direction of the bristles deformation depends on
the type of moment acting on the wheel. If it is a braking force the velocity is
slower in the upper part of the bristles relative to the lower part, for traction
it is the opposite situation. The difference or the longitudinal displacement

2a

vx

Fz

Fx

ω

2aλ

(a) Difference between angular velocity ω and free
rolling wheel gives arise to a longitudinal slip. A
traction moment is acting on the wheel.

a xl = a− vx∆t

xu = vxrω ∆t

vx

(b) Bristle deformation dur-
ing traction

Figure 3.11: Longitudinal slip for the brush model.

is thus

27

CHAPTER 3. VEHICLE MODELS 3.4. MODELLING TYRES

vκ = xl − xu = rω ∆t− vx∆t =
rω − vx
vx

(vx∆t) (3.48)

This can be written with the definition of longitudinal slip equation (3.26).

κ (a− x) (3.49)

This is very similar to the lateral slip displacement with the difference that
tan(α) is substituted with κ .

Once again the total force over the contact region be written in the same
manner as for lateral slip, by introducing a stiffness Cκ and integrate, this
results in

Fx = Cκ κ h(x) (3.50)

h(λ) =
{

λ(2− λ) λ ≤ 1
1 λ < 1 (3.51)

with
λ =

Fzµ
2Cκ pκ p

(3.52)

Combined Lateral and Longitudinal Forces

The idea is now to combine the above described slips and write a simple
combined relation, the combined slip can be written as

σ x = Cκ κ

σ y = −Cα tan(α)

σ =
√

σ 2
x +σ 2

y

(3.53)

This results in a complete tyre model that consider slip in both lateral and
longitudinal directions.

Fx = Cκ κ f (λ)

Fy = −Cα tan(α) f (λ)
(3.54)

f (λ) =

{
λ(2− λ) λ ≤ 1
1 λ < 1

λ =
Fzµ
2σ

28

4
OPTIMISATION

With the spline package implemented in DYMOLA, the next step was to opti-
mise simple vehicle models. In order to get a feel for the optimisation tools,
tests on even simpler mechanical systems were performed. Below are some
simple examples that show that it is not always the correct parameter value
that is received although the AMPL solver indicates that, problem with local
minimum can occur.

4.1 The Optimica Compiler
The Optimica Compiler (TOC) is a tool that was used to optimise parameters
in vehicle models. TOC is written by Johan Åkesson, PhD student at the
Department of Automatic Control, Lund University, Lund, Sweden. During
this master thesis, TOC was under construction and was updated repeatedly.

An optimisation problem to be solved with help of TOC consists of a
model for the system written in Modelica, an Optimica file containing the
description of the problem and an optional initial guess. TOC then combines
the files and generate a new set of files written in AMPL code. This code
is then to be executed in AMPL to obtain a solution to the problem, see
Figure 4.1. For a more detailed explanation and how to install TOC, see
[Åkesson Johan, 2007].

Optimica
description

AMPL,
IPOPT

Modelica
model

TOC

Figure 4.1: Flowchart over the steps involved in running an optimisation problem

29

CHAPTER 4. OPTIMISATION 4.2. DYNAMIC OPTIMISATION

4.2 Dynamic Optimisation
The optimisation method used in this thesis is a simultaneous method, or
a direct transcription. This approach is a fairly new branch, it has existed
for about twenty years. Older approaches are the indirect methods dynamic
programming and the maximum principle. Direct methods fully discretise
the states and control variables which leads to large-scale, but sparse, non
linear programming (NLP) problems, see section 4.2.1. These methods cou-
ple directly to the solution of the differential-algebraic equations (DAE) and
is solved once, at the optimal point. The methods have the ability to han-
dle large scale problems and it is possible to put path constraints on states
and controls. The orthogonal collocation is algebraically stable and con-
verges for unstable systems, it is also equivalent to the implicit Runge-Kutta
[Biegler et al., 2001].

4.2.1 Orthogonal Collocation
One way to discretisise differential equations is orthogonal collocation. The
idea of this approach is to split the function into a finite set of points a = t1 <
. . . < tn = b, these points tn are called collocation points. The task is to fit an
analytic solution consisting of a linear combination of basic functions to the
differential equation according to equation (4.1). The approximation must
satisfy the differential equation in every collocation point [Heath, 2002].

u(t) (v(t,x) =
n∑
i=1
xiϕ i(t) (4.1)

The basis functions can for example be polynomials, B-splines or trigonomet-
ric functions. In TOC Langrange polynomials are used as basic functions
ϕ i(t) = Li(t).

The Lagrange polynomials are defined as

Li(t) =
n∏
k=1
k,=i

(t− tk)
(t− tk)

i = 1, . . . ,n (4.2)

L j(ti) =
{

1 if i = j
0 if i ,= j i, j = 1, . . . ,n (4.3)

4.3 AMPL and IPOPT
AMPL is a modelling language for mathematical programming. It is a high-
level programming language for describing and solving large scale optimisa-
tion and scheduling problems. AMPL does not solve these problems directly,
this is done by external solvers, for example IPOPT, CPLEX and KNITRO.
The solver used in this thesis is the IPOPT. AMPL handles both linear and
non-linear problems. AMPL was developed at Bell laboratories. For more
information visit AMPL on the web [AMPL RF, 2007].

30

CHAPTER 4. OPTIMISATION 4.4. INTERMEDIATE SPLINE SOLUTIONS

IPOPT stands for Interior Point OPTimizer and is an open software pack-
age for large scale nonlinear optimisation. It is designed to find solutions of
mathematical optimisation problems in the form of

min
x∈Rn

f (x)

subject to �L ≤ �(x) ≤ �U
xL ≤ x ≤ xU

where x ∈ Rn are the optimisation variables with possible lower and upper
bounds, xL and xU . The constraints, �(x) have upper and lower bounds
�L and �U . The functions f (x) and �(x) can be both linear and nonlinear
[IPOPT, 2007].

4.4 Intermediate Spline Solutions
During the progress of this thesis there was initially no support for the newly
constructed spline package in TOC and AMPL. A first temporary solution
was to create splines in MATLAB and import these into DYMOLA, see section
4.4.1. Later it became possible to run Splines1.1 with a solution that reflects
the future function in TOC, it is described in section 4.4.2.

4.4.1 Matlab Splines
The first temporary solution was a MATLAB script that construct “splines”
from the DYMOLA generated result file. These splines were if-statements
that returned a value depending on in which interval the evaluation point
was placed. The work flow is depicted in Figure 4.2 and can be described

if−statements

Spline

gen_spline_code.m
result file.txt

MATLAB

first simulation in DYMOLA gives a result file

DYMOLA

Figure 4.2: Splines were created with a MATLAB script.

as:

1. simulate real process

2. run gen_spline_code.m, which produces Modelica files containing if-
-statements and the spline polynomial expressions based on the simu-
lation result file.

3. simulate splines and estimation model. This result in a initial guess.

4. run TOC which generates the AMPL files

5. use AMPL/IPOPT to solve the optimisation problem

31

CHAPTER 4. OPTIMISATION 4.5. PARAMETER OPTIMISATION

4.4.2 AMPL Splines
Later in the thesis work it was made possible to run the spline package
Splines1.1 in AMPL via an AMPL function. The AMPL function is the
same function that will be supported in later versions of TOC. The work
flow can be seen in Figure 4.3 and the steps are as follows:

1. simulate real process

2. run gen_incs.m, which produces a C header file with the data from
the real model

3. include the header file in the AMPL funcadd.c to make the data avail-
able and write a function within funcadd.c that uses the desired func-
tions from the spline package Splines1.1.

4. declare the function in the AMPL <file>.run

5. use the function in AMPL cost function, <file>.Cost.mod

Since Splines1.1 uses single precision it is necessary to increase the
tolerance in AMPL to 1e−5, otherwise it is possible that IPOPT does not
find a point that fulfills the optimality condition at the tolerance specified.
Example files to run an AMPL spline can be seen in Appendix C.

<file>.run

AMPL

MATLAB

first simulation in DYMOLA gives a result file

DYMOLA

result.txt gen_incs.m funcadd.c

AMPL
<file>.Cost.mod

AMPL
DYMOLA

Figure 4.3: Steps involved to run an AMPL spline

4.5 Parameter Optimisation
A parameter estimation problem can be treated as an optimisation problem.
For a parameter optimisation problem there has to be two systems, one pro-
cess treated as the real and one model containing the unknown parameters
that are to be estimated. The task is to compare these two systems and min-
imise the deviations, see Figure 4.4. Below a cost function that integrates
the error between the process states yp and the model states ym is shown.
The optimal solution is found when this function is minimal.

min
∫ t

0
(yp − ym)TQ(yp − ym)dt

32

CHAPTER 4. OPTIMISATION 4.5. PARAMETER OPTIMISATION

input e-

[yp1 yp2 ⋅ ⋅ ⋅ ypn]

[ym1 ym2 ⋅ ⋅ ⋅ ymn]

Process

Model

Figure 4.4: Process and model are excited with the same input and the difference in output
will be minimised.

The cost function could consist of more than just one state, if this is the
case it is necessary with weights (Q) on the different model states due to
different sizes of the states.

4.5.1 Servo Optimisation
A simple model for parameter optimisation consisting of two masses com-
bined with a spring and a damper will be used to illustrate some common
phenomena. The aim is to find the best value of one or more unknown pa-
rameters, eg. the spring constant, damper constant or one of the two masses.
It is also possible to estimate more than just one parameter at time.

Figure 4.5: The model structure in DYMOLA.

One has to be careful when several parameters are to be estimated, erro-
neous combinations of parameters could be found and the optimisation tool
would find a local minimum as the optimal solution. This scenario does not
just happen when identification of several parameters are involved, it could
also happen when initial guesses are too far away from the correct values or
too large parameter intervals are used in the Optimica constraints.

Another aspect to keep in mind is the choice of input to the two systems.
To get a good estimation of parameters it is important to excite the system
with a good enough input signal. In the case with an unknown mass in the
servo described above, the input to the systems was a sinusoid.

The system with a unknown parameter m1 has the initial guess m1 = 0.7
the real servo has m1 = 1. Outputs of the two systems can be seen in
Figure 4.6. After a run in the optimisation tool, an estimate of the mass is
m1 = 0.977807. The major reason for the difference is the accuracy in the
splines that were used to represent the original process data. As could be

33

CHAPTER 4. OPTIMISATION 4.5. PARAMETER OPTIMISATION

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Servo and model output with diffrent masses

Simulation time (s)

P
os

iti
on

 (
m

)

Servo output
model output

Figure 4.6: A comparison of the two servo systems, which have the same model structure,
show different outputs due to different masses.

seen in the optModel class below the allowed interval for m1 ranges from
0.3 to 3. This interval can in this case be stretched much further and still a
correct optimal solution will be found. To provoke the optimisation problem,
the initial guess is changed to m1 = 0.05 but still the same optimal solution
is found. This due to that it is a rather simple example with low complexity.

class optModel
/*Which parameter that will be optimised*/
oq servo.m1(lowerBound=0.3,upperBound=3);

optimization
grid(finalTime=fixedFinalTime(finalTime=100),

nbrElements=100);
/*Cost-function*/
minimize(lagrangeIntegrand=(servo.y-sp.servo_y)^2);

subject to

end optModel;

To make the problem more complex and to find some limitations, two pa-
rameters can be optimised simultaneously. With narrow intervals for the
parameters the estimation gives excellent parameters m1 = 0.999969 and c1
= 0.0101851. A wider parameter interval result in an other optimal solution
m1 = 5.58 and c1 = 0.731468. In general, optimisation of several parameters
at the same time gave a more precise solution than one parameter optimi-
satiom at a time, as long as the parameters do not depend too much on each
other.

34

CHAPTER 4. OPTIMISATION 4.5. PARAMETER OPTIMISATION

(a) Structure of the parameter
optimisation

(b) Input to the servo

Figure 4.7: The dynamics is modelled in Modelica and the optimisation specifications are
written in Optimica code

oq servo.m1(lowerBound=0.1,upperBound=10);
oq servo.c1(lowerBound=0.001,upperBound=4);

This clearly shows that one has to be aware of the difficulty of setting up
the optimisation problem, to keep an eye on the total cost function and to
carefully evaluate obtained solutions. Solutions could be found in a local
minimum, different from the global minimum. For example, the cost func-
tions differs in the above simulations by a factor of 66 000.

• Objective for first optimisation 8.63e−4

• Objective for second optimisation 57.33

Outputs from the two optimised systems are in Figure 4.8. Some physical
parameters are however easy to measure or manually estimate, examples are
masses and lengths. Here, a mass of 5.5k� should be considered unreasonble.
It is advisable to have a clue about the size of the estimated parameter.
Without this knowledge, approximate values of the parameters may be found
by means of simple experiments. Those values may then serve as initial
guesses to the optimisation procedure and to get the last fitting, optimisation
can be used.

35

CHAPTER 4. OPTIMISATION 4.5. PARAMETER OPTIMISATION

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5
Servo and model output with faulty parameter estimation

Simulation time (s)

P
os

iti
on

 (
m

)

Parameter optimisation result: m1 = 5.58 and c1 = 0.731468, objective = 57.33

Servo output
optimised model output

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Servo and model output with correct estimation

Simulation time (s)

P
os

iti
on

 (
m

)

Parameter optimisation result: m1 = 0.999969 and c1 = 0.0101851, objective= 8.632e
−4

Servo output
optimised model output

Figure 4.8: Two optimal solutions for the spring-mass system. Upper optimisation results
in a local minimum due to wide parameter interval. Lower figure shows the correct parameter
optimisation, in this case a narrow parameter interval has been used, and the correct global
minimum is found by the optimisation algorithm.

36

5
PARAMETER OPTIMISATION IN

VEHICLE MODELS

In this chapter results of experiments on simple vehicle models are pre-
sented. The starting point is a simple One Track model with a few degrees
of freedom consisting of only two wheels. The models that were used during
the experiments can bee found in Chapter 3

5.1 One Track Model
The first model created was the One Track model and it was used to get
a feel for the optimisation process and evaluate how well parameters could
be determined. The One Track model has two inputs; velocity (vin) and
steering wheel angle (δ). In reality, forces and velocities for a vehicle are
difficult to measure with high accuracy, while accelerations are easier to
obtain. Therefore it is the accelerations that are used in the cost functions.

5.1.1 One Track Model with Linear Tyres
The initial optimisation was to compare two One Track models to each other
and see if good parameter values could be obtained.

Model One Track with linear tyres

Optimisation model One Track with linear tyres

Parameters to be optimised Inertia (Jz), Cornering stiffness front (C12)
and rear (C34)

Input Steering angle (δ) is a ramp from 0-2 rad
Longitudinal velocity (vx) is constant at 15m/s

37

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.1. ONE TRACK MODEL

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Model a
y
, optimisation model (initial guess) a

y
 and optimisation model (final result) a

y

Simulation time (s)

La
te

ra
l a

cc
el

er
at

io
n

(m
/s

2)

Original model
Optimisation model (initial guess)
Optimised model

Figure 5.1: Original, simulated initial guess and optimised ay

Vehicle states in cost function Lateral acceleration (ay)

Simulation time 30s

Optimisation time < 1min

The cost function minimises the quadratic error, here the error in ay, see
Figure 5.1. The original data is represented by splines.

minimize(lagrangeIntegrand = (car.a_y-spline_a_y.car_a_y)^2);

The parameter values and the result from the optimisation can be seen in
Table 5.1 and Figure 5.1. As can be seen, the optimised results compare well
with the original values.

Parameter Original Init guess TOC limits Optimised Cost
Jz 2800 5000 100-10000 2800.97 5.05e-8
C12 40000 100000 1000-200000 40000.1 5.05e-8
C34 50000 100000 1000-200000 49999.9 5.05e-8

Table 5.1: Parameter optimisation results for One Track Model.

5.1.2 One Track Model with Nonlinear Tyres
The next step was to extended the One Track with nonlinear tyres based
on the Magic Formula [Pacejka, 2002]. The nonlinear model is considered

38

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.1. ONE TRACK MODEL

0 5 10 15 20 25 30
−5

−4

−3

−2

−1

0

1

2

3

4

5

Model a
y
, optimisation model (initial guess) a

y
 and optimisation model (final result) a

y

Simulation time (s)

La
te

ra
l a

cc
el

er
at

io
n

(m
/s

2)

Original model
Optimisation model (initial guess)
Optimised model

Figure 5.2: Original, simulated initial guess and optimised ay for linear model versus non-
linear

to be the reference model that the linear should be optimised to follow as
close as possible. In this experiment there are non matching parameters
between the two models and some parameters are unknown from the start.
The nonlinear tyre model has four parameters and the linear model only
one.

Model One Track with nonlinear tyres

Optimisation model One Track with linear tyres

Parameters to be optimised Cornering stiffness front (C12) and rear (C34)

Input Steering angle (δ) is a sinus with amplitude 2 and frequency 0.1 Hz
Longitudinal velocity (vx) is constant at 10m/s

Vehicle states in cost function Lateral acceleration (ay)

Simulation time 30s

Optimisation time < 1min

The results from the optimisation can be seen in Table 5.2 and Figure 5.2,
and it shows that the cost function was acceptable and that the optimised ay
follows the original very well. Since there are no tyre parameters to compare
with directly, and to demonstrate how the vehicle models behaves, the global
positions have been plotted in Figure 5.3. The two trajectories are almost a
perfect match, which implies that the tyre models are within the nonlinear
region.

39

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.1. ONE TRACK MODEL

Parameter Original Init guess TOC limits Optimised Cost
C12 Unknown 70000 1000-200000 62030.8 4.05e-3
C34 Unknown 60000 1000-200000 57987.6 4.05e-3

Table 5.2: Parameter optimisation results for linear One Track Model versus nonlinear when
the tyres are in the linear region.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180
Model position trajectory and optimisation model position trajectory

Global x distance (m)

G
lo

ba
l y

 d
is

ta
nc

e
(m

)

Original model (nonlinear)
Optimisation model (linear)

Figure 5.3: Global model positions after optimisation, the tyres are in the linear region

To evaluate what happens if the tyres operates in the nonlinear region,
the experiment is redone with a larger velocity. The parameter optimisation
results can be seen in Table 5.3 and the cost function indicates that it is
not a good match. The different lateral accelerations involved can be seen in
Figure 5.4. To further see the result, the global position is plotted in Figure
5.5 where it clearly shows that the linear model can not follow the nonlinear.

Model One Track with nonlinear tyres

Optimisation model One Track with linear tyres

Parameters to be optimised Cornering stiffness front (C12) and rear (C34)

Input Steering angle (δ) is a sinus with amplitude 2 and frequency 0.1 Hz
Longitudinal velocity (vx) is constant at 20m/s

Vehicle states in cost function Lateral acceleration (ay)

Simulation time 30s

Optimisation time < 1min

40

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.1. ONE TRACK MODEL

Parameter Original Init guess TOC limits Optimised Cost
C12 Unknown 10000 1000-200000 3390.18 1.63e+3
C34 Unknown 20000 1000-200000 3158.05 1.63e+3

Table 5.3: Parameter optimisation results for linear One Track Model versus nonlinear when
the tyres are in the nonlinear region.

0 5 10 15 20 25 30
−8

−6

−4

−2

0

2

4

6

8

Model a
y
, optimisation model (initial guess) a

y
 and optimisation model (final result) a

y

Simulation time (s)

La
te

ra
l a

cc
el

er
at

io
n

(m
/s

2)

Original model
Optimisation model (initial guess)
Optimised model

Figure 5.4: Original, simulated initial guess and optimised ay for linear model versus non-
linear in the nonlinear region

5.1.3 Optimisation of Nonlinear Tyre Parameters
The accuracy of an optimisation of the nonlinear parameters in the tyre
model (Magic Formula [Pacejka, 2002]) is evaluated in this experiment. Two
One Track vehicle models, both with nonlinear tyres are used and one is to
be optimised to follow the other. The parameter values and results can be
seen in table 5.4. All the parameter values was found with high accuracy.
The states used in the cost function can be seen in Figures 5.6-5.7 and it
can be seen that the optimised model follows the original very well.

Model One Track with nonlinear tyres

Optimisation model One Track with nonlinear tyres

Parameters to be optimised The Magic Formula parameters for the front
tyre: B12, C12, D12, E12

Input Steering angle (δ) is a ramp from 0-2 rad
Longitudinal velocity (vx) is ramp from 0-20 m/s

41

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.2. OPTIMISATION AND VDL

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

450
Model position trajectory and optimisation model position trajectory

Global x distance (m)

G
lo

ba
l y

 d
is

ta
nc

e
(m

)

Original model (nonlinear)
Optimisation model (linear)

Figure 5.5: Global model positions for linear model versus nonlinear in the nonlinear region
after optimisation

Vehicle states in cost function Lateral acceleration (ay) and Yaw accel-
eration (Ψ̈)

Simulation time 30s

Optimisation time 1min

Parameter Original Init guess TOC limits Optimised Cost
B12 7.69231 2 1-10 7.67933 2.1017e-4
C12 1.3 1 0.5-2 1.30299 2.1017e-4
D12 6307.2 4000 1000-10000 6305.63 2.1017e-4
E12 -2 -1 -3-(-0.5) -1.99374 2.1017e-4

Table 5.4: Parameters in magic formula optimised.

5.2 Optimisation and VDL
The most advanced parameter optimisation that was performed was the VDL
optimisation.

5.2.1 Vehicle Manoeuvres
With more complex models two standard manoeuvres were also tried.

42

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.2. OPTIMISATION AND VDL

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Model a
y
, optimisation model (initial guess) a

y
 and optimisation model (final result) a

y

Simulation time (s)

La
te

ra
l a

cc
el

er
at

io
n

(m
/s

2)

Original model
Optimisation model (initial guess)
Optimised model

Figure 5.6: Original, simulated initial guess and optimised ay for optimisation of Magic
Formula parameters

Fishhook

A fishhook manoeuvre starts with a substantial turn in one direction and
then another in the opposite direction. The trajectory looks like a fishhook,
hence the name. This manoeuvre is usually used by the automotive industry
for testing rollover behaviour.

Lane Change

The lane change manoeuvre can be described by a single period sinus. A
double lane change consists of two consecutive, single period, sinuses with
different signs.

5.2.2 Parameter Optimisation Procedure
With models from Vehicle Dynamics Library (VDL) generating reference
data, the optimisation has to be divided into sub-optimisations. This because
static and dynamic parameters can not be estimated at the same time with
acceptable results. To optimise a parameter separately, the inputs to the
model have to be chosen carefully, ie. run a specific experiment. Features
for the models are stated in Section 3.1. Below a summary of models and
possible inputs to estimate certain parameters.

1. Estimate steady state parameters

Model choice One track, Two track

43

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.2. OPTIMISATION AND VDL

0 5 10 15 20 25 30
−0.02

−0.01

0

0.01

0.02

0.03

0.04
Model Yaw acc., optimisation model (initial guess) Yaw acc. and optimisation model (final result) Yaw acc.

Simulation time (s)

Y
aw

 a
cc

el
er

at
io

n
(r

ad
/s

2)

Original model
Optimisation model (initial guess)
Optimised model

Figure 5.7: Original, simulated initial guess and optimised Ψ̈ for optimisation of Magic
Formula parameters

Input choice Constant force/torque in longitudinal direction and ramp
for steering angle

Vehicle states in cost function lateral acceleration, yaw rate

2. Estimate dynamic parameters

Model choice Two track with roll and pitch
input choice Constant force in longitudinal direction and eg. lane

change for roll, alternating force in longitudinal direction and con-
stant steering angle for pitch or a fishhook

Vehicle states in cost function Roll rate, yaw acceleration

5.2.3 VDL model
This optimisation used data generated from a model from VDL. The model
is the CompactLKRill chassi with a McPherson suspension in front and a
trailing arm in the rear. It is a large difference in complexity between the
VDL model and the optimisation model. To get acceptable results from the
estimation, the above described optimisation procedure was intended to be
used. Tries with all parameter estimation were also performed without an
acceptable result. The first step is to optimise the steady state parameters.
This is done with the simple Two Track with linear tyres.

Model VDL model

Optimisation model Two Track with linear tyres

44

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.2. OPTIMISATION AND VDL

Parameters to be optimised Cornering stiffness front (C12) and rear (C34),
vehicle mass (m), distance from centre of gravity to rear axle (b) and
height of centre of gravity (h)

Input Ramp as steering angle and constant force in longitudinal direction

Vehicle states in cost function Lateral acceleration (ay) and yaw rate
(Ψ̇)

Simulation time 10s

Optimisation time 20 min

Results from the experiment are presented in Table 5.5, there can it be seen
that the cornering stiffnesses are to large. The original states, the initial
guesses and the resulting states in the cost function can be seen in Figures
5.8-5.9.

Different inputs to the systems and different states in the cost function
were tried. In Table 5.6 are parameters for a run with a lane change ma-
noeuvre. This resulted in a better result for cornering stiffness. But mass
and centre of gravity height are not close to the original. This however, do
not necessarily mean that it is unrealistic parameters. There are lots of
dynamics in the VDL model that the reduced model do not handle, compro-
mises between parameters must take place. The original states, the initial
guesses and the resulting states in the cost function can be seen in Figures
5.10-5.11.

With more time to spend on these optimisation issues it would most likely
result in better parameter values.

Parameter Original Init guess TOC limits Optimised Cost
C12 72000 70000 30000-800000 280902 5.125e-3
C34 72000 60000 30000-800000 170188 5.125e-3
h 0.48 0.5 0.1-2 1.05012 5.125e-3
b 2.24 2.2 0.5-2.47 1.91018 5.125e-3
m 1192 1150 800-1600 1257.6 5.125e-3

Table 5.5: Parameters optimised in VDL model (steer ramp).

Parameter Original Init guess TOC limits Optimised Cost
C12 72000 70000 20000-800000 77507.6 2.482e-3
C34 72000 60000 20000-800000 27813.9 2.482e-3
h 0.48 0.5 0.1-2 1.04964 2.482e-3
b 2.24 2.2 0.5-2.47 2.02792 2.482e-3
m 1192 1150 800-1600 941.207 2.482e-3

Table 5.6: Parameters optimised in VDL model (lane change).

45

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.2. OPTIMISATION AND VDL

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

Model a
y
 and optimisation model (initial guess) a

y
 (Steer Ramp)

Simulation time (s)

La
te

ra
l a

cc
el

er
at

io
n

(m
/s

2)

Original model (VDL)
Optimisation model (initial guess and result)
Optimisation model (result)

Figure 5.8: Comparison of lateral acceleration between VDL-, initial guess- and optimised
model for a steer ramp.

0 1 2 3 4 5 6 7 8 9 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model yaw rate and optimisation model (initial guess and result) yaw rate (Steer Ramp)

Simulation time (s)

Y
aw

 r
at

e
(r

ad
/s

)

Original model (VDL)
Optimisation model (initial guess)
Optimisation model (result)

Figure 5.9: Comparison of yaw rate between VDL-, initial guess- and optimised model for a
steer ramp.

46

CHAPTER 5. PARAMETER OPTIMISATION IN VEHICLE MODELS 5.2. OPTIMISATION AND VDL

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

Model a
y
 and optimisation model (initial guess and result) a

y
 (Lane Change)

Simulation time (s)

La
te

ra
l a

cc
el

er
at

io
n

(m
/s

2)

Original model (VDL)
Optimisation model (initial guess and result)
Optimisation model (result)

Figure 5.10: Comparison of lateral acceleration between VDL-, initial guess- and optimised
model for a lane change.

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Model yaw rate and optimisation model (initial guess and result) yaw rate (Lane Change)

Simulation time (s)

Y
aw

 r
at

e
(r

ad
/s

)

Original model (VDL)
Optimisation model (initial guess)
Optimisation model (result)

Figure 5.11: Comparison of yaw rate between VDL-, initial guess- and optimised model for a
lane change.

47

6
CONCLUSION

6.1 Spline Toolbox
The first part of this thesis was to develop the spline toolbox. This turned
out to be a more difficult task than first expected. Different variable types
in the programming languages caused problems. As described in the Curve
Fitting with Splines chapter, three approaches were tried to overcome these
problems. The solution that turned out to be the most practical was the
wrapper solution. This made it possible to use the FORTRAN source code un-
changed, which was a high ranking requirement. Wrapper construction was
quite straightforward when the first wrapper was constructed. Difficulties
were the matrix transposing, especially the forth dimensional matrix that
appeared in the two dimensional spline wrapper.

One drawback with using the PPPack written in FORTRAN77 is that it uses
single precision, if more precision is needed a future solution might be to
use the FORTRAN90 PPPack that uses double precision.

The resulting package Splines 1.1 turned out to work as expected in the
DYMOLA environment. The practical usage of the package was limited due
to the initial lack of compatibility to AMPL. With more practical experience
with Splines 1.1, issues might arise that can warrant improvements and
expansions. The intermediate solutions with MATLAB files generating splines
and AMPL splines did it possible to optimise without using the constructed
spline package directly.

6.2 Optimisation
6.2.1 General optimisation
The optimisation tools worked very well, for more simple problems the solu-
tion was found with a high degree of accuracy. When the problems are more
complex the initial guesses are more important for finding a solution. The

49

CHAPTER 6. CONCLUSION 6.3. FUTURE WORK

initial guess affects the chances of finding a valid solution and the number
of iterations required to find the solution, and thus the time to find it.

6.2.2 Vehicle Parameter Optimisation
When optimising parameters in a vehicle model it is important to choose
manoeuvres for the models that excite the system adequately to get good
parameter values. When optimising a low complexity model to a high com-
plexity model it is important to choose trajectories that are possible for both
models to follow. Table 6.1 gives a short overview of typical manoeuvres that
are suitable to find certain parameters. These are not all of the manoeuvres
possible to perform, but selected common ones. Steady state parameters are
for instance mass or tyre constants, dynamic parameters can be inertias or
roll dynamics.

Vehicle manoeuvre States in Type of parameters
cost function in optimisation

Turn with constant speed ay, Ψ̈ steady state
Lane change ay, Ψ̈, ϕ̇ dynamic
Fishhook ay, Ψ̈, ϕ̇ dynamic

Table 6.1: Suitable manoeuvres and cost function states for finding different types of param-
eters

The time consumed for the optimisation were significant larger with mod-
els from VDL. It was also much harder to find reasonable parameters. This
was the very last part of this thesis and due to lack of time it has only been
addressed briefly.

6.3 Future Work

6.3.1 Splines1.1
As stated earlier, the spline package Splines1.1 is finished, but minor errors
or expansion requests might arise when using it more thoroughly.

6.3.2 Vehicle Parameter Optimisation
To optimise parameters for the simple models that were constructed accord-
ing to Chapter 3 worked very well. It was more difficult to optimise the
simple models against the models from VDL, and since the thesis is time
limited it was necessary to end the experiments with just a few runs against
the VDL. This is an area were much time can be spent in the future. The
simple models can be expanded and the choices of manoeuvres can be altered
or added to.

The modelling of tires is a topic were much work can be done. The nonlin-
ear tires used in this thesis has been modelled with the Magic Formula, this

50

CHAPTER 6. CONCLUSION 6.3. FUTURE WORK

can be expanded with longitudinal slip. The Brush model has been modelled
but not experimented on.

51

A
SPLINE TOOLS IN MODELICA

Version 1.1
26-April-2007

This Modelica package contains spline tools to be used in DYMOLA. The sub-
package PPPack consists of several wrapper functions that call external FOR-
TRAN subroutines, written by Carl De Boor. The structure of the package is
presented below in Figure A.1. Functions intended to be used by the user
are listed directly under Splines. Descriptions of the spline functions are
presented in section A.2.

A.1 Examples
The package also includes six examples, listed below. These examples demon-
strate the functions of the different splines.

1. Creating cubic-spline (PP-form) and retrieving values with ppval Plot
with Commands see Figure A.3.

2. This example clearly illustrates the affect of the smoothing parameter.
The model creates two smooth-splines (PP-form) with different smooth-
ing ability and retrieving values with ppval. For comparison with the
original data, plot with Command see Figure A.3

3. OptPPSpline consists of three steps:

• Create optimal knots using splopt

• Calculate B-Spline using splint

• Convert to PP-representation using b2pp

Plot with Command see Figure A.3

53

APPENDIX A. SPLINE TOOLS IN MODELICA A.1. EXAMPLES

Figure A.1: The structure of the package. Intended functions to be used are listed under
Splines, functions in PPPack are called from the Splines-functions.

4. Creating spline with interpolation (B-form) and retrieving values with
bval. Using knots created with splopt. Plot with Command see Figure
A.3

5. Essentially same as example Splineinterpolation except that everything
is done in one step. The spline is created using interpolation (B-form)
and values are retrieved with bval2. Knots are created with splopt.
Plot with Command see Figure A.3
Note that not all of the outputs from PPPack are taken care of, this is
not necessary for this example..

6. Constructs a two dimensional B-spline, converts it to PP-representation
and retrieves values. Uses values from example 17.3 in PGS.

For a control of the complete package, it is recommended to run the script
Test Package in the model TestOfPackage see Figure A.4

54

APPENDIX A. SPLINE TOOLS IN MODELICA A.1. EXAMPLES

Figure A.2: There are six examples for demonstration purpose included in the package.

Figure A.3: To plot results a special command is necessary.

55

APPENDIX A. SPLINE TOOLS IN MODELICA A.1. EXAMPLES

Figure A.4: A complete test of all examples

56

APPENDIX A. SPLINE TOOLS IN MODELICA A.2. SPLINE CONSTRUCTION

A.2 Spline construction

ppcub(x,y,icbeg,icend)
Cubic spline interpolation
Gives a pp-cubic spline with not-a-knot end condition as default.
matlab-spline toolbox corresponding function: csapi
Input

• x-values

• y-values

• icbeg

– ibcbeg = 0 means no boundary condition at tau(1) is given. in
this case, the not-a-knot condition is used, i.e. the jump in the
third derivative across tau(2) is forced to zero, thus the first and
the second cubic polynomial pieces are made to coincide. Default

– ibcbeg = 1 means that the slope at tau(1) is made to equal c(2,1),
supplied by input.

– ibcbeg = 2 means that the second derivative at tau(1) is made to
equal c(2,1), supplied by input.

• ibcend = 0, 1, or 2 has analogous meaning concerning the boundary
condition at tau(n), with the additional information taken from c(2,n).

Output

• coef polynomial coefficient

ppopt(x,y,k)
Spline interpolant B-spline interpolant, arbitrary order, given data, same
as optspline(x,y,k) but return a pp-rep
Input

• x-values

• y-values

• order of spline

Output

• pp-function ie. l, coef, break

57

APPENDIX A. SPLINE TOOLS IN MODELICA A.2. SPLINE CONSTRUCTION

ppsmooth(x,y,dy,s)
Cubic smoothing spline Constructs the cubic smoothing spline f to given
data
matlab-spline toolbox corresponding function: spaps
Input

• x-values

• y-values

• estimate of uncertainty in data

• upper bound on the discrete weighted mean square distance of the
approximation f from the data

Output

• coef polynomial coefficient

splineint(x,y,t,k)
B-spline B-spline interpolant, arbitrary order, given data
matlab-spline toolbox corresponding function: spapi
Input

• x-values

• y-values

• knot sequence

• order of spline

Output

• the b-coefficients of the interpolant

optspline(x,y,k)
B-spline B-spline interpolant, arbitrary order, given data same as
splineint(x,y,t,k) but calculates the knots t for the optimal recovery
scheme of order k
Input

• x-values

• y-values

• order of spline

Output

• the b-coefficients of the interpolant

58

APPENDIX A. SPLINE TOOLS IN MODELICA A.2. SPLINE CONSTRUCTION

Evaluation of splines and work on knots and breaks

ppval(break,coef,x,k,jderiv)
Pp evaluation
Evaluate value of pp-spline in specified point
ppval(break,coef,x,k,jderiv)
Input

• break points

• coefficients

• point to evaluate

• degree of polynomials

• nth derivative in point x

Output

• output value in x, nth derivative

ppval2(ref,break,coef,x,k,jderiv)
Pp evaluation
Evaluate value of pp-spline in specified point. This version has better effi-
ciency when several splines are to be evaluated. It has different from ppval
ability to handle multiple interval index.
Input

• reference number for spline

• break points

• coefficients

• point to evaluate

• degree of polynomials

• nth derivative in point x

Output

• output value in x, nth derivative

bval(knots,bcoef,x,k,jderiv)
Spline evaluation b-rep Calculates value at x of jderiv-th derivative of
spline from b-repr.
Input

• knot sequence

• b-coefficients

59

APPENDIX A. SPLINE TOOLS IN MODELICA A.2. SPLINE CONSTRUCTION

• point to evaluate

• degree of polynomials

• nth derivative in point x

Output

• output value in x, nth derivative

bval2(ref,knots,bcoef,x,k,jderiv)
Spline evaluation b-rep Calculates value at x of jderiv-th derivative of
spline from b-repr.Like ppval2 it is more efficient than bval if multiple
splines are to be evaluated alternately.
Input

• reference number for spline

• knot sequence

• b-coefficients

• point to evaluate

• degree of polynomials

• nth derivative in point x

Output

• output value in x, nth derivative

b2pp(knots,bcoef,k)
Convert b-spline representation to piecewise polynomial. Converts
the b-representation t, bcoef, n, k of some spline into its pp-representation
break, coef, l, k .
matlab-spline toolbox corresponding function: fn2fm this function has
more transform options than b-to-pp.
Input

• knot sequence

• b-coefficients

• degree of polynomials

Output

• l

• pp-coefficient

• breakpoints

60

APPENDIX A. SPLINE TOOLS IN MODELICA A.2. SPLINE CONSTRUCTION

newknot(breaks,coef,lnew)
New break distribution Generate new knots, optimal locations, given pice-
wise polynomial representation
matlab-spline toolbox corresponding function: newknt
Input

• breakpoints

• pp-coefficients

• number of intervals into which the interval (a,b) is to besectioned by
the new breakpoint sequence brknew

Output

• new breakpoint sequence brknew

• the coefficient part of the pp-repr

augknt(breaks,k)
Augment knot sequence
Places knots in the following way:
t(1), . . . , t(n + k) = break(1) k times, then break(i), i = 2 . . . , l each once,
then break(l + 1) k times.
matlab-spline toolbox corresponding function: augknt
Input

• breakpoints

• k the order

Output

• t(1),. . . ,t(n+k) the knot sequence

• the dimension of the corresponding spline space of order k

brk2knt(breaks,k)
Break to knots
Placement:
t(1), . . . , t(n + kpm) = break(1) k times, then break(2), . . . , break(l) each k
times, then, finally, break(l + 1) k times.
matlab-spline toolbox corresponding function: brk2knt Input

• breakpoints

• k the order

Output

• t(1),. . . ,t(n+k) the knot sequence

• n = l . . . k =dimension of spline(k,t)

61

APPENDIX A. SPLINE TOOLS IN MODELICA A.2. SPLINE CONSTRUCTION

optspline(x,y,k)
B-spline B-spline interpolant, return a 2D spline of arbitrary order, given
data. Input

• x-values

• y-values

• z-values

• knot sequence (x)

• knot sequence (y)

• order of spline (x)

• order of spline (y)

Output

• containing the triangular factorization of the coefficient matrix of the
linear system for the b-coefficients of the spline interpolant.

• the b-coefficients of the interpolant

• flag success if = 1 failure if = 2

• reference number

bval2D(ref,knotx,knoty,bcoef,kx,ky,a,
b,jderivA,jderivB)
2D spline evaluation b-rep Calculates value at a point (a,b) of jderiv-th
derivative of spline from 2D b-repr.
Input

• reference number

• knot sequence (x)

• knot sequence (y)

• b-coefficients

• degree of polynomials (x)

• degree of polynomials (y)

• point to evaluate (x)

• point to evaluate (y)

• nth derivative in point a

• nth derivative in point b

Output

• output value in (a,b), nth derivative

62

APPENDIX A. SPLINE TOOLS IN MODELICA A.2. SPLINE CONSTRUCTION

ppval2D(ref,breakx,breaky,coef,kx,ky,a,
b,jderivA,jderivB)
2D spline evaluation pp-rep Calculates value at a point (a,b) of jderiv-th
derivative of spline from 2D pp-repr.
Input

• reference number

• break sequence (x)

• break sequence (y)

• coefficients

• degree of polynomials (x)

• degree of polynomials (y)

• point to evaluate (x)

• point to evaluate (y)

• nth derivative in point a

• nth derivative in point b

Output

• output value in (a,b), nth derivative

b2pp(knotx,knoty,bcoef,kx,ky)
Convert a 2D b-spline representation to 2D piecewise polynomial.
Converts the b-representation tx, ty, bcoef, nx ,ny, kx ,ky of some spline into
its pp-representation breakx, breaky, coef, kx, ky .
Input

• knot sequence (x)

• knot sequence (y)

• b-coefficients

• degree of polynomials (x)

• degree of polynomials (y)

Output

• pp-coefficient

• breakpoints (x)

• breakpoints (y)

• reference number

63

B
VEHICLE MODELS

In this appendix the source code for four of the models are presented.

• One Track model with linear tires

• Two Track model with linear tires

• Two Track model with magic formula tires(pure lateral slip) and load
distribution

B.1 One Track with Linear Tyres

partial model OneTrack

parameter Modelica . SIunits . Iner t ia J_z=2800 "Yaw i n e r t i a " ;
parameter Modelica . SIunits . Mass m=1550 " Vehicle mass" ;
parameter Real C_12=40000 " Front axle s ide s t i f f n e s s " ;
parameter Real C_34=50000 " Rear axle s ide s t i f f n e s s " ;
parameter Modelica . SIunits . Length f=1.3

" Distance from centre o f gravi ty to f ront axle " ;
parameter Modelica . SIunits . Length b=1.4

" Distance from centre o f gravi ty to rear axle " ;
parameter Real i _ s (final quantity=" Gear r a t i o ")=16 " Steering gain " ;

Modelica . SIunits . Ve loc i ty v_x (s ta r t=1.0) " Longitudinal v e l o c i t y " ;
Modelica . SIunits . Angle de l ta " Steering wheel angle " ;
Modelica . SIunits . Pos i t i on r_x " Global x p o s i t i o n " ;
Modelica . SIunits . Pos i t i on r_y " Global y p o s i t i o n " ;
Modelica . SIunits . Ve loc i ty dr_x " Global x v e l o c i t y " ;
Modelica . SIunits . Ve loc i ty dr_y " Global y v e l o c i t y " ;
Modelica . SIunits . Ve loc i ty v_y (s ta r t=0) " Lateral v e l o c i t y " ;
Modelica . SIunits . Acce lerat ion dv_y ;
/∗ Derivat ive o f l a t e r a l v e l o c i t y ∗/
Modelica . SIunits . Acce lerat ion dv_x ;
/∗ Derivat ive o f l ong i tud ina l v e l o c i t y ∗/

Modelica . SIunits . Acce lerat ion a_y " Lateral a c c e l e r a t i o n " ;
Modelica . SIunits . Acce lerat ion a_x " Longitudinal a c c e l e r a t i o n " ;

65

APPENDIX B. VEHICLE MODELS B.2. TWO TRACK LINEAR TYRES

Modelica . SIunits . Angle ps i "Yaw angle " ;
Modelica . SIunits . AngularVelocity dpsi "Yaw v e l o c i t y " ;
Modelica . SIunits . AngularAcceleration ddpsi "Yaw ac ce l e ra t i o n " ;
Modelica . SIunits . Angle delta_12 " Front axle s teer angle " ;
Modelica . SIunits . Angle beta " Vehicle body s l i p angle " ;
Modelica . SIunits . Angle beta_12 " Front body s ide s l i p angle " ;
Modelica . SIunits . Angle beta_34 " Rear body s ide s l i p angle " ;
Modelica . SIunits . Angle alpha_12 " Front wheel s ide s l i p angle " ;
Modelica . SIunits . Angle alpha_34 " Rear wheel s ide s l i p angle " ;
Modelica . SIunits . Force f_12 " Front wheels l a t e r a l f o r c e " ;
Modelica . SIunits . Force f_21 " Front wheels l ong i tud ina l f o r c e " ;
Modelica . SIunits . Force f_34 " Rear wheel l a t e r a l f o r c e " ;
Modelica . SIunits . Force f_43 " Rear wheel l ong i tud ina l f o r c e " ;

equation
assert (v_x>0.01 , " Longitudinal v e l o c i t y (v_x) i s to low ") ;

/∗ Sl ip ∗/
i _ s ∗ delta_12=del ta ;
beta_12 = atan ((v_y+dpsi ∗ f)/ v_x) ;
alpha_12 = beta_12−delta_12 ;

beta_34 = atan ((v_y−dpsi ∗b)/ v_x) ;
alpha_34 = beta_34 ;

beta = atan (v_y/v_x) ;

/∗ Tyre f o r c e s ∗/
f_12=−C_12∗alpha_12 ;
f_34=−C_34∗alpha_34 ;

/∗ Kinematics ∗/
der (psi)=dpsi ;
der (dpsi)=ddpsi ;
der (r_x)=dr_x ;
der (r_y)=dr_y ;
der (v_y)=dv_y ;
der (v_x)=dv_x ;

dr_x = v_x∗ cos (psi) − v_y∗ sin (psi) " Coordinate transform " ;
dr_y = v_x∗ sin (psi) + v_y∗ cos (psi) " Coordinate transform " ;

a_y = dv_y+dpsi ∗v_x ;
a_x = dv_x+dpsi ∗v_y ;

/∗ Force balance ∗/
m∗a_x= f_21 ∗ cos (delta_12) − f_12 ∗ sin (delta_12) + f_43 ;
m∗a_y= f_12 ∗ cos (delta_12) + f_21 ∗ sin (delta_12) + f_34 ;
J_z∗ ddpsi = f ∗(f_12 ∗ cos (delta_12)+ f_21 ∗ sin (delta_12)) − b∗ f_34 ;

f_43=0;

end OneTrack ;

B.2 Two Track Linear Tyres

partial model TwoTrack

import SI = Modelica . SIunits ;
parameter SI . Iner t ia J_z=2800 "Yaw i n e r t i a " ;
parameter SI . Mass m=1550 " Vehicle mass" ;

66

APPENDIX B. VEHICLE MODELS B.2. TWO TRACK LINEAR TYRES

parameter Real C_12=40000 " Front axle s ide s t i f f n e s s " ;
parameter Real C_34=50000 " Rear axle s ide s t i f f n e s s " ;
parameter SI . Length f =1.3;
/∗ Distance from centre o f gravi ty to f ront axle ∗/
parameter SI . Length b=1.4;
/∗ Distance from centre o f gravi ty to rear axle ∗/
parameter SI . Length t_w=1.8 " Distance between tyre centers " ;
parameter SI . Length h=0.55 " height o f CG in z " ;
parameter Real k_f = 12 " f ront axel vr idstyvhet " ;
parameter Real k_r = 10 " rear axel vr idstyvhet " ;
Real tau_x_f " f ront axel moment" ;
Real tau_x_r " rear axel moment" ;

parameter Real i _ s (final quantity=" Gear r a t i o ")=16;
/∗ Steering gain ∗/

SI . Ve loc i ty v_x (s ta r t=0.02) " Longitudinal v e l o c i t y " ;
SI . Angle de l ta " Steering wheel angle " ;
SI . Pos i t i on r_x " Global x p o s i t i o n " ;
SI . Pos i t i on r_y " Global y p o s i t i o n " ;
SI . Ve loc i ty dr_x " Global x v e l o c i t y " ;
SI . Ve loc i ty dr_y " Global y v e l o c i t y " ;
SI . Ve loc i ty v_y (s ta r t=0) " Lateral v e l o c i t y " ;
SI . Acce lerat ion dv_y " Derivat ive o f l a t e r a l v e l o c i t y " ;
SI . Acce lerat ion dv_x " Derivat ive o f l ong i tud ina l v e l o c i t y " ;
SI . Acce lerat ion a_y " Lateral a c ce l e ra t i o n " ;
SI . Acce lerat ion a_x " Longitudinal a c ce l e ra t i o n " ;
SI . Angle ps i "Yaw angle " ;
SI . AngularVelocity dpsi "Yaw v e l o c i t y " ;
SI . AngularAcceleration ddpsi "Yaw ac ce l e ra t i o n " ;
SI . Angle delta_12 " Front axle s teer angle " ;
SI . Angle beta " Vehicle body s l i p angle " ;
SI . Angle beta_12 " Front body s ide s l i p angle " ;
SI . Angle beta_34 " Rear body s ide s l i p angle " ;
SI . Angle alpha_12 " Front wheel s ide s l i p angle " ;
SI . Angle alpha_34 " Rear wheel s ide s l i p angle " ;

SI . Force f_1x ;
SI . Force f_1y ;
SI . Force f_1z ;

SI . Force f_2x ;
SI . Force f_2y ;
SI . Force f_2z ;

SI . Force f_3x ;
SI . Force f_3y ;
SI . Force f_3z ;

SI . Force f_4x ;
SI . Force f_4y ;
SI . Force f_4z ;

constant SI . Acce lerat ion g = 9 . 8 2 ;

equation
assert (v_x>0.01 , " Longitudinal v e l o c i t y (v_x) i s to low ") ;

/∗ Sl ip ∗/
i _ s ∗ delta_12=del ta ;
beta_12 = atan ((v_y+dpsi ∗ f)/ v_x) ;
alpha_12 = beta_12−delta_12 ;

67

APPENDIX B. VEHICLE MODELS B.3. TWO TRACK MAGIC FORMULA AND LOAD DISTRIBUTION

beta_34 = atan ((v_y−dpsi ∗b)/ v_x) ;
alpha_34 = beta_34 ;

beta = atan (v_y/v_x) ;

/∗ Tyre f o r c e s ∗/
//f_12=−C_12∗alpha_12 ;
f_1y=−C_12∗alpha_12 ;
f_2y=−C_12∗alpha_12 ;

//f_34=−C_34∗alpha_34 ;
f_3y=−C_34∗alpha_34 ;
f_4y=−C_34∗alpha_34 ;

/∗ Kinematics ∗/
der (psi)=dpsi ;
der (dpsi)=ddpsi ;
der (r_x)=dr_x ;
der (r_y)=dr_y ;
der (v_y)=dv_y ;
der (v_x)=dv_x ;

dr_x = v_x∗ cos (psi) − v_y∗ sin (psi) " Coordinate transform " ;
dr_y = v_x∗ sin (psi) + v_y∗ cos (psi) " Coordinate transform " ;

a_y = dv_y+dpsi ∗v_x ;
a_x = dv_x+dpsi ∗v_y ;

/∗ Force balance ∗/
m∗g = f_1z + f_2z + f_3z + f_4z ;
/∗ z f o r c e equal i ty ∗/
m∗a_y∗h = f_1z ∗t_w/2 −f_2z ∗t_w/2 +f_3z ∗t_w/2 −f_4z ∗t_w /2;
/∗moment equal i ty around x axel ∗/
m∗a_x∗h = −f_1z ∗ f −f_2z ∗ f +f_3z ∗b +f_4z ∗b ;
/∗moment equal i ty around y axel ∗/

tau_x_f ∗k_r = tau_x_r ∗ k_f ; //r e l a t i on when phi_f = phi_r
tau_x_f = f_1z ∗t_w/2 −f_2z ∗t_w /2;
tau_x_r = f_3z ∗t_w/2 −f_4z ∗t_w /2;

m∗a_x= f_1x ∗ cos (delta_12) +f_2x ∗ cos (delta_12) −f_1y ∗ sin (delta_12)
−f_2y ∗ sin (delta_12) +f_3x +f_4x ;

m∗a_y= f_1y ∗ cos (delta_12) +f_2y ∗ cos (delta_12) +f_1x ∗ sin (delta_12)
+f_2x ∗ sin (delta_12) +f_3y +f_4y ;

J_z∗ ddpsi = f ∗(f_1y ∗ cos (delta_12) +f_2y ∗ cos (delta_12)
+f_1x ∗ sin (delta_12) +f_2x ∗ sin (delta_12)) −b∗(f_3y +f_4y) ;

f_3x = 0 ;
f_4x = 0 ;
f_1x = f_2x ;

end TwoTrack ;

B.3 Two Track Magic Formula and Load Dis-
tribution

partial model TwoTrackRollMagicFormula " Indiv idual tyre f o r c e input "

68

APPENDIX B. VEHICLE MODELS B.3. TWO TRACK MAGIC FORMULA AND LOAD DISTRIBUTION

import SI = Modelica . SIunits ;

parameter SI . Iner t ia J_z=1800 "Yaw i n e r t i a " ;
parameter SI . Iner t ia J_phi=500 " Rol l i n e r t i a " ;
parameter SI . Mass m=1100 " Vehicle mass" ;
parameter SI . Length f=L−b " Distance from centre o f grav i ty to f ront axle " ;
parameter SI . Length b=1.17 " Distance from centre o f gravi ty to rear axle " ;
parameter SI . Length L=2.47 " Vehicle length " ;
parameter SI . Length t_w=1.6 " Distance between tyre centers " ;
parameter SI . Length h=0.25 " height o f CG in z " ;
parameter Real h_1 = 0.30 " height o f f ront r o l l center " ;
parameter Real h_2 = 0.35 " height o f rear r o l l center " ;
parameter Real c_phi1 = 40000 " f ront r o l l s t i f f n e s s " ;
parameter Real c_phi2 = 25000 " rear r o l l s t i f f n e s s " ;
parameter Real i _ s (final quantity=" Gear r a t i o ")=15 " Steering gain " ;
parameter SI . Damping d_phi = 7000 " Rol l damping " ;

parameter Real k=1 " Gain " ;
parameter SI . Time T=0.01 "Time Constant " ;
parameter Real mu_f=1 " f r i c t i o n f ront " ;
parameter Real mu_r=1 " f r i c t i o n rear " ;

/∗Magic formula c o e f f i c e n t s ∗/
Real B_1 " S t i f f n e s s f a c t o r " ;
parameter Real C_1=1.2 " Shape f a c t o r " ;
Real D_1 " Peak f a c t o r " ;
Real E_1 " Curvature f a c t o r " ;

Real B_3 " S t i f f n e s s f a c t o r " ;
parameter Real C_3=1.2 " Shape f a c t o r " ;
Real D_3 " Peak f a c t o r " ;
Real E_3 " Curvature f a c t o r " ;

/∗Magic formula c o e f f i c e n t s ∗/
Real B_2 " S t i f f n e s s f a c t o r " ;
parameter Real C_2=1.2 " Shape f a c t o r " ;
Real D_2 " Peak f a c t o r " ;
Real E_2 " Curvature f a c t o r " ;

Real B_4 " S t i f f n e s s f a c t o r " ;
parameter Real C_4=1.2 " Shape f a c t o r " ;
Real D_4 " Peak f a c t o r " ;
Real E_4 " Curvature f a c t o r " ;

/∗ Parameters in MF∗/
parameter Real a_31=35000;
parameter Real a_32=35000;
parameter Real a_33=40000;
parameter Real a_34=40000;

parameter Real a_41=5000;
parameter Real a_42=5000;
parameter Real a_43=5000;
parameter Real a_44=5000;

parameter Real a_61=−0.0006;
parameter Real a_62=−0.0006;
parameter Real a_63=−0.0006;
parameter Real a_64=−0.0006;
SI . Acce lerat ion g = Modelica . Constants . g_n " Acce lerat ion du to gravi ty " ;

SI . Distance h _ r o l l " Distance from CG to r o l l center " ;

69

APPENDIX B. VEHICLE MODELS B.3. TWO TRACK MAGIC FORMULA AND LOAD DISTRIBUTION

SI . Angle phi " Rol l angle " ;
SI . Ve loc i ty v_x (s ta r t=10) " Longitudinal v e l o c i t y " ;
SI . Angle de l ta " Steering wheel angle " ;

SI . Pos i t i on r_x " Global x p o s i t i o n " ;
SI . Pos i t i on r_y " Global y p o s i t i o n " ;
SI . Ve loc i ty dr_x " Global x v e l o c i t y " ;
SI . Ve loc i ty dr_y " Global y v e l o c i t y " ;

SI . Ve loc i ty v_y " Lateral v e l o c i t y " ;
SI . Acce lerat ion dv_y " Derivat ive o f l a t e r a l v e l o c i t y " ;
SI . Acce lerat ion dv_x " Derivat ive o f l ong i tud ina l v e l o c i t y " ;
SI . Acce lerat ion a_y (s ta r t=0.01) " Lateral a c ce l e r a t i on " ;
SI . Acce lerat ion a_x " Longitudinal a c ce l e ra t i o n " ;
SI . Angle ps i "Yaw angle " ;
SI . AngularVelocity dpsi "Yaw v e l o c i t y " ;
SI . AngularAcceleration ddpsi "Yaw ac ce l e ra t i o n " ;
SI . AngularVelocity dphi ;
SI . AngularAcceleration ddphi ;

SI . Angle delta_12 " Front axle s teer angle " ;
SI . Angle beta " Vehicle body s l i p angle " ;
SI . Angle beta_12 " Front body s ide s l i p angle " ;
SI . Angle beta_34 " Rear body s ide s l i p angle " ;
SI . Angle alpha_12 " Front wheel s ide s l i p angle " ;
SI . Angle alpha_34 " Rear wheel s ide s l i p angle " ;

SI . Force f_1x " longi tudinalForce " ;
SI . Force f_1y ;
SI . Force f_1u ;
SI . Force f_1z ;

SI . Force f_2x " longi tudinalForce " ;
SI . Force f_2y ;
SI . Force f_2u ;
SI . Force f_2z ;

SI . Force f_3x " longi tudinalForce " ;
SI . Force f_3y ;
SI . Force f_3u ;
SI . Force f_3z ;

SI . Force f_4x " longi tudinalForce " ;
SI . Force f_4y ;
SI . Force f_4u ;
SI . Force f_4z ;

SI . Force delta_F_z1 " load t rans fer f ront " ;
SI . Force delta_F_z2 " load t rans fer rear " ;

Real BCD1 " s l i p s t i f f n e s at zero s l i p " ;
Real BCD2 " s l i p s t i f f n e s at zero s l i p " ;
Real BCD3 " s l i p s t i f f n e s at zero s l i p " ;
Real BCD4 " s l i p s t i f f n e s at zero s l i p " ;

equation
assert (v_x>0.01 , " Longitudinal v e l o c i t y (v_x) i s to low ") ;

/∗ Sl ip ∗/
i _ s ∗ delta_12=del ta ;
beta_12 = atan ((v_y+dpsi ∗ f)/ v_x) ;
alpha_12 = beta_12−delta_12 ;

70

APPENDIX B. VEHICLE MODELS B.3. TWO TRACK MAGIC FORMULA AND LOAD DISTRIBUTION

beta_34 = atan ((v_y−dpsi ∗b)/ v_x) ;
alpha_34 = beta_34 ;

beta = atan (v_y/v_x) ;

/∗ Tyre f o r c e s ∗/
f_1u=−D_1∗ sin (C_1∗atan (B_1∗alpha_12−E_1∗(B_1∗alpha_12−atan (B_1∗alpha_12)))) ;
f_2u=−D_2∗ sin (C_2∗atan (B_2∗alpha_12−E_2∗(B_2∗alpha_12−atan (B_2∗alpha_12)))) ;
f_3u=−D_3∗ sin (C_3∗atan (B_3∗alpha_34−E_3∗(B_3∗alpha_34−atan (B_3∗ beta_34)))) ;
f_4u=−D_4∗ sin (C_4∗atan (B_4∗alpha_34−E_4∗(B_4∗alpha_34−atan (B_4∗ beta_34)))) ;

/∗ Firs t order f i l t e r models e l a s t i c i t y in t i r e s ∗/
der (f_1y) = (k∗ f_1u − f_1y)/T ;
der (f_2y) = (k∗ f_2u − f_2y)/T ;
der (f_3y) = (k∗ f_3u − f_3y)/T ;
der (f_4y) = (k∗ f_4u − f_4y)/T ;

/∗Peak f a c t o r ∗/
D_1=mu_f∗ f_1z ;
D_2=mu_f∗ f_2z ;
D_3=mu_r∗ f_3z ;
D_4=mu_r∗ f_4z ;

/∗ s l i p s t i f f n e s s ∗/
BCD1=a_31∗ sin (2∗ atan (f_1z /a_41)) ;
BCD2=a_32∗ sin (2∗ atan (f_2z /a_42)) ;
BCD3=a_33∗ sin (2∗ atan (f_3z /a_43)) ;
BCD4=a_34∗ sin (2∗ atan (f_4z /a_44)) ;

/∗ Curvature f a c t o r ∗/
E_1=a_61∗ f_1z ;
E_2=a_62∗ f_2z ;
E_3=a_63∗ f_3z ;
E_4=a_64∗ f_4z ;

/∗ S t i f f n e s s f a c t o r ∗/
B_1=BCD1/(C_1∗D_1) ;
B_2=BCD2/(C_2∗D_2) ;
B_3=BCD3/(C_3∗D_3) ;
B_4=BCD4/(C_4∗D_4) ;

/∗ Kinematics ∗/
der (psi)=dpsi ;
der (dpsi)=ddpsi ;
der (r_x)=dr_x ;
der (r_y)=dr_y ;
der (v_y)=dv_y ;
der (v_x)=dv_x ;
dphi = der (phi) ;
ddphi = der (dphi) ;

dr_x = v_x∗ cos (psi) − v_y∗ sin (psi) " Coordinate transform " ;
dr_y = v_x∗ sin (psi) + v_y∗ cos (psi) " Coordinate transform " ;

a_y = dv_y+dpsi ∗v_x ;
a_x = dv_x+dpsi ∗v_y ;

/∗Load trans fer ∗/
delta_F_z1 =(1/t_w)∗ (c_phi1 /(c_phi1+c_phi2−m∗g∗ cos (phi)∗ h _ r o l l)∗ h _ r o l l

+ b/(f+b)∗ h_1)∗m∗a_y ;

71

APPENDIX B. VEHICLE MODELS B.3. TWO TRACK MAGIC FORMULA AND LOAD DISTRIBUTION

delta_F_z2 =(1/t_w)∗ (c_phi2 /(c_phi1+c_phi2−m∗g∗ cos (phi)∗ h _ r o l l)∗ h _ r o l l
+ f /(f+b)∗ h_2)∗m∗a_y ;

/∗Normal tyre f o r c e f o r c e x−d i r e c t i o n i n e r t i a ∗/
f_1z = b/(2∗(f+b))∗m∗g − delta_F_z1 −h/(2∗(f+b))∗m∗a_x
+ J_phi ∗ddphi /(t_w /2) ;
f_2z = b/(2∗(f+b))∗m∗g + delta_F_z1 −h/(2∗(f+b))∗m∗a_x
− J_phi ∗ddphi /(t_w /2) ;
f_3z = f /(2∗(f+b))∗m∗g − delta_F_z2 +h/(2∗(f+b))∗m∗a_x
+ J_phi ∗ddphi /(t_w /2) ;
f_4z = f /(2∗(f+b))∗m∗g + delta_F_z2 +h/(2∗(f+b))∗m∗a_x
− J_phi ∗ddphi /(t_w /2) ;

/∗ Height from r o l l centre to CG ∗/
h _ r o l l = (h − ((h_2−h_1)/(f+b)∗ f + h_1)) ;

/∗ Rol l angle dynamics∗/
J_phi ∗ddphi+d_phi ∗dphi+(c_phi1+c_phi2)∗ phi+h _ r o l l ∗m∗a_y=0;

/∗ Force balance ∗/
m∗a_x= f_1x ∗ cos (delta_12) +f_2x ∗ cos (delta_12) −f_1y ∗ sin (delta_12)
−f_2y ∗ sin (delta_12) +f_3x +f_4x ;

m∗a_y= f_1y ∗ cos (delta_12) +f_2y ∗ cos (delta_12) +f_1x ∗ sin (delta_12)
+f_2x ∗ sin (delta_12) +f_3y +f_4y ;

J_z∗ ddpsi = f ∗(f_1y ∗ cos (delta_12) +f_2y ∗ cos (delta_12)
+f_1x ∗ sin (delta_12) +f_2x ∗ sin (delta_12))

− b∗(f_3y +f_4y) ;

end TwoTrackRollMagicFormula ;

72

C
AMPL SPLINE CODE

C.1 funcadd.c

/∗ ∗∗∗

Copyright (C) 1997−1998 Lucent Technologies
Al l Rights Reserved

Permission to use , copy , modify , and d i s t r i bu t e th i s sof tware and
i t s documentation f o r any purpose and without f e e i s hereby
granted , provided that the above copyr ight no t i c e appear in a l l
cop i e s and that both that the copyr ight no t i c e and th i s
permission no t i c e and warranty disc laimer appear in supporting
documentation , and that the name o f Lucent or any o f i t s e n t i t i e s
not be used in adver t i s ing or pub l i c i t y per taining to
d i s t r i bu t i on o f the sof tware without s p e c i f i c , wri t t en pr ior
permission .

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
∗∗∗ ∗/

#include <s t d l i b . h>
#include "math . h" /∗ f o r sqr t ∗/
#include " funcadd . h" /∗ inc ludes " s td io1 . h" ∗/
#include " sp l ines . h"

char ∗ ix_detai ls_ASL [] = {0} ; /∗ no −i command−l i n e opt ion ∗/

#define N 5
#include " TwoTrackFiRoll . h"

static rea l Bsp_f1z (a r g l i s t ∗ al) {

73

APPENDIX C. AMPL SPLINE CODE C.1. FUNCADD.C

double x = al−>ra [0] ;
int i , j ;
int n = f_1z_n ;
int k = 7 ; //order o f the sp l ine

AmplExports ∗ae = al−>AE; // fo r f p r i n t f and s t r t od
static int in i t_done = 0 ;

static double ∗ t ; // knots ’ en
static int i f l a g ;
static double ∗ bcoef ;
static int r e f ;
f loat tW [n+k] ;
f loat bcoefW [n] ;

i f (in i t_done == 0){
in i t_done = 1 ;
t = (double∗) c a l l o c (n+k , sizeof (double)) ;
f loat scratch [(n−k)∗(2∗k+3)+5∗k+3] ;
f loat tauW [n] ;
f loat tW [n+k] ;
sploptwc (f_1z_x , n , k , scratch , t , i f l a g , tauW ,tW) ;

bcoe f = (double∗) c a l l o c (n , sizeof (double)) ;
double q [(2 ∗ k−1)∗n] ;
f loat gtauW [n] ;
f loat qW[(2 ∗ k−1)∗n] ;
r e f = spl intwc (f_1z_x , f_1z_y , t , n , k , q , bcoef , i f l a g , tauW ,

gtauW ,tW,qW, bcoefW) ;
} //end i f i n i t

f loat xW;
f loat yW;
double res ;
res = bvalue2wc (t , bcoef , n , k , x , 0 ,tW, bcoefW ,xW,yW, r e f) ;

i f (al−>der ivs) {
∗ al−>der ivs = bvalue2wc (t , bcoef , n , k , x , 1 ,tW,

bcoefW ,xW,yW, r e f) ;
i f (al−>hes) {

∗ al−>hes = bvalue2wc (t , bcoef , n , k , x , 2 ,tW,
bcoefW ,xW,yW, r e f) ;

}
}
return res ;

}

static rea l Bsp_f2z (a r g l i s t ∗ al) {
double x = al−>ra [0] ;
int i , j ;
int n = f_2z_n ;
int k = 7 ; //order o f the sp l ine

AmplExports ∗ae = al−>AE; // fo r f p r i n t f and s t r t od
static int in i t_done = 0 ;

static double ∗ t ; // knots ’ en
static int i f l a g ;
static double ∗ bcoef ;
static int r e f ;
f loat tW [n+k] ;
f loat bcoefW [n] ;

74

APPENDIX C. AMPL SPLINE CODE C.1. FUNCADD.C

i f (in i t_done == 0){
in i t_done = 1 ;
t = (double∗) c a l l o c (n+k , sizeof (double)) ;
f loat scratch [(n−k)∗(2∗k+3)+5∗k+3] ;
f loat tauW [n] ;
f loat tW [n+k] ;
sploptwc (f_2z_x , n , k , scratch , t , i f l a g , tauW ,tW) ;

bcoe f = (double∗) c a l l o c (n , sizeof (double)) ;
double q [(2 ∗ k−1)∗n] ;
f loat gtauW [n] ;
f loat qW[(2 ∗ k−1)∗n] ;
r e f = spl intwc (f_2z_x , f_2z_y , t , n , k , q , bcoef , i f l a g , tauW ,

gtauW ,tW,qW, bcoefW) ;
} //end i f i n i t

f loat xW;
f loat yW;
double res ;
res = bvalue2wc (t , bcoef , n , k , x , 0 ,tW, bcoefW ,xW,yW, r e f) ;

i f (al−>der ivs) {
∗ al−>der ivs = bvalue2wc (t , bcoef , n , k , x , 1 ,tW,

bcoefW ,xW,yW, r e f) ;
i f (al−>hes) {

∗ al−>hes = bvalue2wc (t , bcoef , n , k , x , 2 ,tW,
bcoefW ,xW,yW, r e f) ;

}
}
return res ;

}

static rea l Bsp_f3z (a r g l i s t ∗ al) {
double x = al−>ra [0] ;
int i , j ;
int n = f_3z_n ;
int k = 7 ; //order o f the sp l ine

AmplExports ∗ae = al−>AE; // fo r f p r i n t f and s t r t od
static int in i t_done = 0 ;

static double ∗ t ; // knots ’ en
static int i f l a g ;
static double ∗ bcoef ;
static int r e f ;
f loat tW [n+k] ;
f loat bcoefW [n] ;

i f (in i t_done == 0){
in i t_done = 1 ;
t = (double∗) c a l l o c (n+k , sizeof (double)) ;
f loat scratch [(n−k)∗(2∗k+3)+5∗k+3] ;
f loat tauW [n] ;
f loat tW [n+k] ;
sploptwc (f_3z_x , n , k , scratch , t , i f l a g , tauW ,tW) ;

bcoe f = (double∗) c a l l o c (n , sizeof (double)) ;
double q [(2 ∗ k−1)∗n] ;
f loat gtauW [n] ;
f loat qW[(2 ∗ k−1)∗n] ;
r e f = spl intwc (f_3z_x , f_3z_y , t , n , k , q , bcoef , i f l a g , tauW ,

75

APPENDIX C. AMPL SPLINE CODE C.1. FUNCADD.C

gtauW ,tW,qW, bcoefW) ;
} //end i f i n i t

f loat xW;
f loat yW;
double res ;
res = bvalue2wc (t , bcoef , n , k , x , 0 ,tW, bcoefW ,xW,yW, r e f) ;

i f (al−>der ivs) {
∗ al−>der ivs = bvalue2wc (t , bcoef , n , k , x , 1 ,tW,

bcoefW ,xW,yW, r e f) ;
i f (al−>hes) {

∗ al−>hes = bvalue2wc (t , bcoef , n , k , x , 2 ,tW,
bcoefW ,xW,yW, r e f) ;

}
}
return res ;

}
static rea l Bsp_f4z (a r g l i s t ∗ al) {
double x = al−>ra [0] ;
int i , j ;
int n = f_4z_n ;
int k = 7 ; //order o f the sp l ine

AmplExports ∗ae = al−>AE; // fo r f p r i n t f and s t r t od
static int in i t_done = 0 ;

static double ∗ t ; // knots ’ en
static int i f l a g ;
static double ∗ bcoef ;
static int r e f ;
f loat tW [n+k] ;
f loat bcoefW [n] ;

i f (in i t_done == 0){
in i t_done = 1 ;
t = (double∗) c a l l o c (n+k , sizeof (double)) ;
f loat scratch [(n−k)∗(2∗k+3)+5∗k+3] ;
f loat tauW [n] ;
f loat tW [n+k] ;
sploptwc (f_4z_x , n , k , scratch , t , i f l a g , tauW ,tW) ;

bcoe f = (double∗) c a l l o c (n , sizeof (double)) ;
double q [(2 ∗ k−1)∗n] ;
f loat gtauW [n] ;
f loat qW[(2 ∗ k−1)∗n] ;
r e f = spl intwc (f_4z_x , f_4z_y , t , n , k , q , bcoef , i f l a g , tauW ,

gtauW ,tW,qW, bcoefW) ;
} //end i f i n i t

f loat xW;
f loat yW;
double res ;
res = bvalue2wc (t , bcoef , n , k , x , 0 ,tW, bcoefW ,xW,yW, r e f) ;

i f (al−>der ivs) {
∗ al−>der ivs = bvalue2wc (t , bcoef , n , k , x , 1 ,tW,

bcoefW ,xW,yW, r e f) ;
i f (al−>hes) {

∗ al−>hes = bvalue2wc (t , bcoef , n , k , x , 2 ,tW,
bcoefW ,xW,yW, r e f) ;

}

76

APPENDIX C. AMPL SPLINE CODE C.1. FUNCADD.C

}
return res ;

}

static rea l Bspline_a_x (a r g l i s t ∗ al) {
double x = al−>ra [0] ;
int i , j ;
int n = Sp_a_x_n ;
int k = 7 ; //order o f the sp l ine

AmplExports ∗ae = al−>AE; // fo r f p r i n t f and s t r t od
static int in i t_done = 0 ;

static double ∗ t ; // knots ’ en
static int i f l a g ;
static double ∗ bcoef ;
static int r e f ;
f loat tW [n+k] ;
f loat bcoefW [n] ;

i f (in i t_done == 0){
in i t_done = 1 ;
t = (double∗) c a l l o c (n+k , sizeof (double)) ;
f loat scratch [(n−k)∗(2∗k+3)+5∗k+3] ;
f loat tauW [n] ;
f loat tW [n+k] ;
sploptwc (Sp_a_x_x , n , k , scratch , t , i f l a g , tauW ,tW) ;
bcoe f = (double∗) c a l l o c (n , sizeof (double)) ;
double q [(2 ∗ k−1)∗n] ;
f loat gtauW [n] ;
f loat qW[(2 ∗ k−1)∗n] ;
r e f = spl intwc (Sp_a_x_x , Sp_a_x_y , t , n , k , q , bcoef , i f l a g , tauW ,

gtauW ,tW,qW, bcoefW) ;
} //end i f i n i t

f loat xW;
f loat yW;
double res ;
res = bvalue2wc (t , bcoef , n , k , x , 0 ,tW, bcoefW ,xW,yW, r e f) ;

i f (al−>der ivs) {
∗ al−>der ivs = bvalue2wc (t , bcoef , n , k , x , 1 ,tW,

bcoefW ,xW,yW, r e f) ;
i f (al−>hes) {

∗ al−>hes = bvalue2wc (t , bcoef , n , k , x , 2 ,tW,
bcoefW ,xW,yW, r e f) ;

}
}
return res ;

}

static rea l Bspline_a_y (a r g l i s t ∗ al) {
double x = al−>ra [0] ;
int i , j ;
int n = Sp_a_y_n ;
int k = 7 ; //order o f the sp l ine

AmplExports ∗ae = al−>AE; // fo r f p r i n t f and s t r t od
static int in i t_done = 0 ;

static double ∗ t ; // knots ’ en
static int i f l a g ;

77

APPENDIX C. AMPL SPLINE CODE C.1. FUNCADD.C

static double ∗ bcoef ;
static int r e f ;
f loat tW [n+k] ;
f loat bcoefW [n] ;

// f p r i n t f (s tderr , " knutar !\n ") ;
i f (in i t_done == 0){

in i t_done = 1 ;
t = (double∗) c a l l o c (n+k , sizeof (double)) ;
f loat scratch [(n−k)∗(2∗k+3)+5∗k+3] ;
f loat tauW [n] ;
f loat tW [n+k] ;
sploptwc (Sp_a_y_x , n , k , scratch , t , i f l a g , tauW ,tW) ;

bcoe f = (double∗) c a l l o c (n , sizeof (double)) ;
double q [(2 ∗ k−1)∗n] ;
f loat gtauW [n] ;
f loat qW[(2 ∗ k−1)∗n] ;
r e f = spl intwc (Sp_a_y_x , Sp_a_y_y , t , n , k , q , bcoef , i f l a g , tauW ,

gtauW ,tW,qW, bcoefW) ;
} //end i f i n i t

f loat xW;
f loat yW;
double res ;
res = bvalue2wc (t , bcoef , n , k , x , 0 ,tW, bcoefW ,xW,yW, r e f) ;

i f (al−>der ivs) {
∗ al−>der ivs = bvalue2wc (t , bcoef , n , k , x , 1 ,tW,

bcoefW ,xW,yW, r e f) ;
i f (al−>hes) {

∗ al−>hes = bvalue2wc (t , bcoef , n , k , x , 2 ,tW,
bcoefW ,xW,yW, r e f) ;

}
}
return res ;

}

static rea l Spf_a_x (a r g l i s t ∗ al) {
double x = al−>ra [0] ;
int i , j ;
int n = Sp_a_x_n ;

AmplExports ∗ae = al−>AE; // fo r f p r i n t f and s t r t od

static int in i t_done = 0 ;

static double ∗ c ;
static float ∗bcW;
static float ∗tauW ;

i f (in i t_done == 0){
in i t_done = 1 ;

// Co e f f i c i e n t data
double bc [4∗n] ;

c = (double∗) c a l l o c ((n−1)∗4 , sizeof (double)) ;
bcW = (f loat ∗) c a l l o c (4∗n , sizeof (f loat)) ;
tauW = (f loat ∗) c a l l o c (n , sizeof (f loat)) ;
i f (c == NULL p p bcW == NULL p p tauW == NULL) {

78

APPENDIX C. AMPL SPLINE CODE C.1. FUNCADD.C

f p r i n t f (stderr , " Couldn ’ t a l l o c a t e memory\n") ;
e x i t (EXIT_FAILURE) ;

}
// I n i t i a l i z e
for (i=0; i<n ; i++) {

bc [i] = Sp_a_x_y [i] ;
}

int ibcbeg = 0 ;
int ibcend = 0 ;

cubsplwc (Sp_a_x_x , bc , n , ibcbeg , ibcend , tauW , bcW) ;

for (i=0; i <4; i++) {
for (j=0; j<n−1; j++) {

c [i ∗(n−1)+ j] = bc [i ∗n+j] ;
}

}
}

f loat xW;
double res ;
res = ppvaluwc (Sp_a_x_x , c , n−1 ,4 ,x , 0 , bcW, tauW , xW) ;

i f (al−>der ivs) {
∗ al−>der ivs = ppvaluwc (Sp_a_x_x , c , n−1 ,4 ,

x , 1 , bcW, tauW , xW) ;
i f (al−>hes) {

∗ al−>hes = ppvaluwc (Sp_a_x_x , c , n−1 ,4 ,
x , 2 , bcW, tauW , xW) ;

}
}
return res ;

}

void funcadd (AmplExports ∗ae){
/∗ Ins e r t c a l l s on addfunc here . . . ∗/
/∗ Arg 3 , ca l l ed argtype , can be 0 or 1 :

∗ 0 ==> f o r c e a l l arguments to be numeric
∗ 1 ==> pass both symbolic and numeric arguments .
∗

∗ Arg 4 , ca l l ed nargs , i s i n t e r p r e t t ed as fo l l ows :
∗ >= 0 ==> the funct ion has exac t l y nargs arguments
∗ <= −1 ==> the funct ion has >= −(nargs +1) arguments .
∗

∗ Arg 5 , funcinfo , i s passed to the func t ions in
∗ s t ru c t a r g l i s t ;
∗ i t i s not used in these examples , so we ju s t pass 0 .
∗/

addfunc (" Spf_a_x " , (ufunc ∗)Spf_a_x , 0 , 1 , 0) ;
addfunc (" Bspline_a_y " , (ufunc ∗)Bspline_a_y , 0 , 1 , 0) ;
addfunc (" Bspline_a_x " , (ufunc ∗)Bspline_a_x , 0 , 1 , 0) ;
addfunc (" Bsp_f1z " , (ufunc ∗)Bsp_f1z , 0 , 1 , 0) ;
addfunc (" Bsp_f2z " , (ufunc ∗)Bsp_f2z , 0 , 1 , 0) ;
addfunc (" Bsp_f3z " , (ufunc ∗)Bsp_f3z , 0 , 1 , 0) ;
addfunc (" Bsp_f4z " , (ufunc ∗)Bsp_f4z , 0 , 1 , 0) ;
}

79

APPENDIX C. AMPL SPLINE CODE C.2. ROLL.RUN

C.2 Roll.run

rese t ;

re load amplfunc . d l l ;
funct ion Bspline_a_x ;
funct ion Bspline_a_y ;
funct ion Bsp_f1z ;
funct ion Bsp_f2z ;
funct ion Bsp_f3z ;
funct ion Bsp_f4z ;

model TwoTrackFiRoll . CalibrateCarFi_opt . mod ;
model TwoTrackFiRoll . CalibrateCarFi_opt . In i t ia lGuess . mod ;
model TwoTrackFiRoll . CalibrateCarFi_opt . SquareProblemCost . mod ;
model TwoTrackFiRoll . CalibrateCarFi_opt . Constraint .mod ;

data TwoTrackFiRoll . CalibrateCarFi_opt . dat ;
data TwoTrackFiRoll . CalibrateCarFi_opt . In i t ia lGuess . dat ;
option so lver " /work/ jakesson / so f tware_too l s / Ipopt / Ipopt −3.2.0/
 CoinIpopt/bin/ ipopt " ;
#option so lver " /home/ jakesson /work/ so f tware_too l s / Ipopt /

Ipopt −3.2.0/CoinIpopt/bin/ ipopt " ;
opt ion ipopt_opt ions " max_iter = 10000 t o l=1e−5" ;
so lve ;
inc lude TwoTrackFiRoll . CalibrateCarFi_opt . GenLogFile . run ;

model Rol l . Cost .mod ;
so lve ;
inc lude TwoTrackFiRoll . CalibrateCarFi_opt . GenLogFile . run ;
d isplay carFi_J_z ;

C.3 Roll.Cost.mod

redec lare minimize COST: (sum{ _ i in FE} (TIME∗_H [_ i]∗sum{ _ j in CP}
(((carFi_ f_1z [_i , _ j]−Bsp_f1z (time [_i , _ j])))^2+(carFi_ f_2z [_i , _ j]

−Bsp_f2z (time [_i , _ j]))^2+(carFi_ f_3z [_i , _ j]−
Bsp_f3z (time [_i , _ j]))^2+(carFi_ f_4z [_i , _ j]−
Bsp_f4z (time [_i , _ j]))^2)∗_w [_ j])) ;

80

BIBLIOGRAPHY

[AMPL RF, 2007] AMPL RF(2007). A modeling language for mathematical
programming. http://www.ampl.com.

[Biegler et al., 2001] Biegler, L. T., Cervantes, A. M., and Wächter, A.
(2001). Advances in simultaneous strategies for dynamic process opti-
mization.

[de Boor, 1978] de Boor, C. (1978). A Practical Guide to Splines. Springer-
Verlag, New York, Heidelberg, Berlin.

[de Boor, 2007] de Boor, C. (2007). Spline Toolbox 3 User’s Guide. www.
mathworks.com.

[Heath, 2002] Heath, M. T. (2002). Scientific Computing, An Introductory
Survey, Second Edition. McGraw-Hill, New York.

[IPOPT, 2007] IPOPT (2007). Interior point optimization. https://projects.
coin-or.org/Ipopt.

[Modelon, 2007] Modelon (2007). http://www.modelon.se.

[Pacejka, 2002] Pacejka, H. B. (2002). Tire and Vehicle Dynamics.
Butterworth-Heinemann Ltd, Oxford.

[Wennerström et al., 2005] Wennerström, E., Nordmark, S., and Thorvald,
B. (2005). Fordonsdynamik. Kungliga Tekniska Högskolan Avd. Fordons-
dynamik, KTH Farkost och flyg, Stockholm.

[Åkesson Johan, 2007] Åkesson Johan (2007). The Optimica Compiler 0.3
Users’s Guide.

81

http://www.ampl.com
www.mathworks.com
www.mathworks.com
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
http://www.modelon.se

	Introduction
	Background
	Purpose
	Modelon
	Vehicle Dynamics Library

	Outline

	Curve Fitting with Splines
	Piecewise Polynomials
	B-splines
	FORTRAN Spline Functions
	Redeclaration of Variable Types
	FORTRAN90
	C-wrappers

	Splines in Modelica
	Modification of FORTRAN Subroutine interv
	Spline Tools In Modelica

	Vehicle Models
	Model Overview
	One Track Model with Linear and Nonlinear Tires
	Two Track Model with Nonlinear Tires
	Two Track Model with Nonlinear Tyres and Roll

	Modelica
	Dymola

	Vehicle Models
	One Track Model with Linear Tyres
	One Track Model with Nonlinear Tyres
	Behaviour of linear and nonlinear tyres
	Two Track Model with Linear Tyres
	Two Track with Roll and Load Distribution (Linear Tyres)
	Two Track with Roll, Load Distribution and Magic Formula Tyres

	Modelling Tyres
	Slip Angle
	Linear Tyre Model
	Magic Formula for lateral slip
	Longitudinal Slip
	Magic Formula for Combined Slip
	Brush Model

	Optimisation
	The Optimica Compiler
	Dynamic Optimisation
	Orthogonal Collocation

	AMPL and IPOPT
	Intermediate Spline Solutions
	Matlab Splines
	AMPL Splines

	Parameter Optimisation
	Servo Optimisation

	Parameter Optimisation in Vehicle Models
	One Track Model
	One Track Model with Linear Tyres
	One Track Model with Nonlinear Tyres
	Optimisation of Nonlinear Tyre Parameters

	Optimisation and VDL
	Vehicle Manoeuvres
	Parameter Optimisation Procedure
	VDL model

	Conclusion
	Spline Toolbox
	Optimisation
	General optimisation
	Vehicle Parameter Optimisation

	Future Work
	Splines1.1
	Vehicle Parameter Optimisation

	Appendix Spline Tools in Modelica
	Examples
	Spline construction

	Appendix Vehicle Models
	One Track with Linear Tyres
	Two Track Linear Tyres
	Two Track Magic Formula and Load Distribution

	Appendix AMPL Spline Code
	funcadd.c
	Roll.run
	Roll.Cost.mod

