
ISSN 0280-5316 
ISRN LUTFD2/TFRT--5797--SE 

Vehicle Path Optimisation 
 

Henrik Danielsson 
 

Department of Automatic Control 
Lund University 

June 2007 



 



 
Document name 
MASTER THESIS 
Date of issue 
June 2007 

Lund University 
Department of Automatic Control 
Box 118 
SE-221 00 Lund Sweden Document Number 

ISRNLUTFD2/TFRT--5797--SE 
Supervisor 
Magnus Gäfvert and Johan Andreasson at Modelon 
In Lund. Johan Åkesson  Automatic Control in Lund. 
Anders Rantzer Automatic Control in Lund (Examiner) 
 

Author(s) 
Henrik Danielsson 
 

Sponsoring organization 

Title and subtitle 
Vehicle Path Optimisation (Banoptimering för fordon) 
 

Abstract 
Optimal paths are useful when testing the performances of vehicles. In this thesis, optimal paths for vehicle models 
created in Modelica have been obtained. The optimal paths have been obtained by applying the theory of optimal control. 
The optimal control problem has been formulated with the Optimica language and has been solved with AMPL and 
IPOPT. Two approaches for finding optimal paths have been applied. In the first approach the vehicle models are 
dependent of time, and the time it takes for the vehicle to traverse a specified track is minimized.  Finding optimal paths 
when using this approach has been difficult. In  the second approach the vehicle models have been transformed to be 
dependent of distance instead of time before finding the optimal path.  In this approach the cost function is formulated in a 
different way, and the cost function is minimized over travelled distance. Optimal paths for an one-track vehicle model 
with linear tyre characteristics driving on specified tracks have been found with both approaches. Some optimal paths 
have also been found for an one-track vehicle model with nonlinear tyre characteristics. 

Keywords 

Classification system and/or index terms (if any) 
 

Supplementary bibliographical information 
 
ISSN and key title 
0280-5316 

ISBN 
 

Language 
english 

Number of pages 
68 

Security classification 

Recipient’s notes 

http://www.control.lth.se/publications/ 
 



 



A
knowledgementsThe topi
 of this thesis has been 
hosen upon a request from a 
ompany 
alledModelon AB. I would like to thank Magnus Gäfvert and Johan Andreasson atModelon for ex
ellent supervision. I would also like to thank Johan Åkesson atthe department of Automati
 Control at Lund University for 
ontributing withthe The Optimi
a Compiler and for ex
ellent supervision.

1



 



Contents
A
knowledgements 11 Introdu
tion 41.1 Obje
tive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Vehi
le Modeling 72.1 Modeli
a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Tyre Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2.1 Lateral slip . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2.2 Longitudinal slip . . . . . . . . . . . . . . . . . . . . . . . 92.2.3 Combined slip . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Chassis Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.4 Tra
k Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.5 Time to Distan
e Transformation . . . . . . . . . . . . . . . . . . 152.6 The Driver Model . . . . . . . . . . . . . . . . . . . . . . . . . . 162.7 Vehi
le Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Optimisation 193.1 The Optimal Control Problem . . . . . . . . . . . . . . . . . . . 193.2 AMPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.3 Optimi
a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.4 Solving the Optimal Control Problem . . . . . . . . . . . . . . . 213.5 Transforming the Optimal Control Problem . . . . . . . . . . . . 234 Optimal Path Results 254.1 Bi
y
le Model with Linear Tyres . . . . . . . . . . . . . . . . . . 254.1.1 Minimizing Time . . . . . . . . . . . . . . . . . . . . . . . 264.1.2 Minimizing the S
aling Fa
tor . . . . . . . . . . . . . . . . 324.1.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 394.2 Bi
y
le Model with Nonlinear Tyres . . . . . . . . . . . . . . . . 404.2.1 Minimizing Time . . . . . . . . . . . . . . . . . . . . . . . 414.2.2 Minimizing the S
aling Fa
tor . . . . . . . . . . . . . . . . 495 Con
lusions and Future Work 545.1 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552



CONTENTS 3Bibliography 57A Vehi
le Model 58B Optimisation S
ript 63B.1 Minimizing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 63B.2 Minimizing the S
aling Fa
tor . . . . . . . . . . . . . . . . . . . . 64



Chapter 1Introdu
tionThe study of vehi
le dynami
s has interested many people for de
ades. Plenty ofstudies with the obje
tives of improving the safety and the performan
es of ve-hi
les have been published. Espe
ially in ra
e 
ar sports the performan
es of the
ars are important sin
e the professional ra
e 
ar drivers operate at the limits oftheir stability envelope. In the studies 
on
entrated on ra
e 
ar sports, optimaltraje
tories have been obtained with di�erent optimisation te
hniques [2℄, [8℄, [9℄.The purpose is usually to minimize the time it takes for a vehi
le to drive througha segment of a tra
k [2℄, [8℄, [9℄. In some studies other variables than time areminimized or maximized. The velo
ity at the exit of a 
orner is maximized in [9℄.In [8℄ the tyre for
es are maximized. In [8℄ and [9℄ the optimisations are doneover a short distan
e, while in [2℄ the optimal path is tried to be found for anentire lap of a ra
e tra
k but for di�erent segments of the tra
k at a time. Theoptimal path is useful when evaluating the performan
es of a ra
e 
ar. Ra
e 
armodels with di�erent parameter sets 
an be simulated driving along the optimalpath. Con
lusions 
on
erning what parameter set gives the best performan
es
an then be made. Testing the vehi
les in di�erent simulation tests saves timeand money 
ompared to testing the vehi
les in reality.1.1 Obje
tiveThe main purpose of this thesis is to �nd an optimal path for a vehi
le modeldriving on a spe
i�ed tra
k. By following the optimal path, the time it takesfor the vehi
le to traverse the tra
k is minimized. In order to a
hieve the maingoal, a method for �nding the optimal path is needed to be introdu
ed.1.2 MethodThe Modeli
a language and the Optimi
a language have been used trough outthis proje
t. Modeli
a is an obje
t-oriented language for physi
al modeling [6℄.The Optimi
a language is an extension of the Modeli
a language [11℄. Theoptimal path will be found for vehi
le models 
reated in Modeli
a. In order to�nd the optimal path, the problem is formulated as an optimal 
ontrol problemin Optimi
a. The optimal 
ontrol problem is solved with AMPL and IPOPT [3℄.4



CHAPTER 1. INTRODUCTION 51.3 Thesis OutlineThe thesis begins with des
ribing the modeling of the vehi
les in Chapter 2. InChapter 3 the optimal 
ontrol problem is formulated and di�erent approa
hesfor solving the problem are dis
ussed. In Chapter 4, results from di�erentoptimisation 
ases are presented. The thesis is �nished with 
on
lusions and ase
tion dis
ussing future work in Chapter 5.1.4 Notations
ax Longitudinal a

eleration of vehi
le
ay Lateral a

eleration of vehi
le
B Sti�ness fa
tor in the Magi
 Formula
c General 
onstraints
C Shape fa
tor in the Magi
 Formula
CG Centre of gravity of vehi
le
Cf , (Cr) Cornering sti�ness 
onstant for front (rear) wheel
d Distan
e between vehi
le and 
entre of tra
k
D Peak value in the Magi
 Formula
E Curvature fa
tor in the Magi
 Formula
f, (r) Distan
e from 
entre of gravity to front (rear) axis
Fx,f , (Fx,r) Longitudinal for
e a
ting on front (rear) wheel
Fxmax,f , (Fxmax,r) Maximum longitudinal for
e a
ting on front (rear) wheel
Fy,f , (Fy,r) Lateral for
e a
ting on front (rear) wheel
Fymax,f , (Fymax,r) Maximum lateral for
e a
ting on front (rear) wheel
Fz Verti
al load
h Height of the 
entre of gravity
J Cost fun
tion
Jz Yaw Inertia
kt Curvature of the 
entre of the tra
k
Kus Under steer gradient
m Mass of vehi
le
r Dire
tion ve
tor of vehi
le
Re E�e
tive rolling radius
rt Radius of the 
entre of the tra
k
s Longitudinal slip
Scf Time to distan
e s
aling fa
tor
st Distan
e from the start point of the tra
k
t Time
u Ve
tor of 
ontinuous 
ontrol variables
uL Lower 
ontrol bound
uU Upper 
ontrol bound
vx Longitudinal velo
ity of vehi
le
vy Lateral velo
ity of vehi
le
vwx Velo
ity of wheel in the x-dire
tion
vwy Velo
ity of wheel in the y-dire
tion
wt Width of the tra
k
x General ve
tor of 
ontinuous system state variables
xc The x-
oordinate of the 
entre of the tra
k
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xcds The x-
oordinate of the 
entre of the tra
k at st + ds

xpos Global x position of vehi
le
xvel Global x velo
ity of vehi
le
yc The y-
oordinate of the 
entre of the tra
k
ycds The y-
oordinate of the 
entre of the tra
k at s+ ds

ypos Global y position of vehi
le
yvel Global y velo
ity of vehi
le
αf , αr Front (rear) lateral slip angle
δ Steering angle of vehi
le
δref Steering angle of driver model
µ Fri
tion 
oe�
ient between the tyre and road surfa
e
ωw Angular velo
ity of wheel
ψ Yaw angle of vehi
le
ψt The angle between the tangent of the 
entre of the tra
k and the x-axis



Chapter 2Vehi
le ModelingOne of the larger parts of this thesis has been modeling of vehi
les. The vehi
lemodels have been used when solving the optimisation problem. The modelshave been 
reated in a modeling language 
alled Modeli
a. A short des
ription ofModeli
a will begin this 
hapter. The 
hapter will then 
ontinue with des
ribingdi�erent models of tyres and 
hassis. Sin
e the tyres generate the for
es thata
ts on the vehi
le, the modeling of the tyres will be 
onsidered before themodeling of the 
hassis. Dis
ussion 
on
erning vehi
le handling will �nish the
hapter.2.1 Modeli
aModeli
a is an obje
t-oriented modeling language, used for des
ribing 
omplexphysi
al models. Models in Modeli
a are mathemati
ally des
ribed by di�eren-tial, algebrai
 and dis
rete equations. The Modeli
a language is free to use andis developed by a non-pro�t organisation 
alled the Modeli
a Asso
iation [6℄.2.2 Tyre ModelingThe for
es a
ting on a vehi
le when tra
tion, braking or steering o

ur are gen-erated by its tyres. Therefore the tyres are very important for several fun
tionsand properties of the vehi
le. Tyre modeling is di�
ult and several di�erenttyre models exist. Some of them are based on physi
al models and some ofthem are based on empiri
al models. In order for a tyre to generate for
e, sliphas to o

ur. These for
es are nonlinear in reality but 
an be modeled as linearfun
tions of the slip angles. Under normal driving 
onditions it is su�
ient toassume the for
es to be linear. During more extreme driving 
onditions thesefor
es will saturate and be
ome nonlinear. There are three di�erent types ofslip: lateral, longitudinal and spin. Lateral slip will be 
onsidered �rst.2.2.1 Lateral slipLateral slip o

urs when the vehi
le is 
ornering. The de�nition of the lateralslip angle, α is:
tanα = −vwy/vwx (2.1)7



CHAPTER 2. VEHICLE MODELING 8where vwy is the velo
ity of the wheel in the y-dire
tion, while vwx is the velo
ityof the wheel in the x-dire
tion, see Figure 2.1.
Direction of travel

TyrePSfrag repla
ements
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Figure 2.1: De�nition of slip angleFor a linear tyre model the lateral for
es a
ting on the vehi
le are de�nedas:
Fy,f = −Cfαf (2.2)
Fy,r = −Crαr (2.3)where Fy,f is the lateral for
e a
ting on the front wheel and Fy,r is the lateralfor
e a
ting on the rear wheel. Cf and Cr are 
ornering sti�ness 
onstants.For a nonlinear tyre model, the lateral for
es will saturate for large slipangles, shown in Figure 2.2.
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CHAPTER 2. VEHICLE MODELING 9Nonlinear tyre for
es are often des
ribed with the Magi
 Formula [7℄. Thisis an empiri
al method that has been developed from measuring tyre 
hara
ter-isti
s. For the lateral 
ase the formula is de�ned as follows:
Fy = D sin(C arctan(Bα− E(Bα − arctan(Bα)))) (2.4)where:

B is the sti�ness fa
tor
C is the shape fa
tor
D is the peak value
E is the 
urvature fa
torThe fa
tor B determines the slope at the origin of the 
urve. The 
oe�
ient

C de�nes the extent of the sine fun
tion and therefore determines the shape ofthe 
urve. The 
oe�
ient D represents the peak value of the 
urve. The fa
tor
E 
ontrols the 
urvature at the peak and the horizontal position of the peak.2.2.2 Longitudinal slipLongitudinal slip o

urs when the wheel is subje
ted to an external driving orbraking moment, whi
h will make the angular velo
ity of the wheel, ωw di�erentfrom when free-rolling. When the wheel is free-rolling, its angular velo
ity, ωwis de�ned as the ratio between the wheel 
entre velo
ity in the x-dire
tion, vwxand the e�e
tive rolling radius, Re;

ωw = vwx/Re (2.5)There are several de�nitions of longitudinal slip, s. In [10℄ the following de�ni-tion is used:
s =

Reωw − vwx

vwx

(2.6)The following values for ωw and s are obtained with de�nition 2.5 and 2.6:Lo
ked wheel ωw = 0, s = −1Free-rolling wheel ωw = vwx/Re, s = 0Spinning wheel ωw = 2vwx/Re, s = 1The longitudinal for
e, Fx 
an be 
omputed by the Magi
 Formula as well,but with the longitudinal slip, s as an input instead.2.2.3 Combined slipIn some situations both lateral slip and longitudinal slip o

ur, for instan
e when
ornering and braking at the same time. Figure 2.3 illustrates a fri
tion ellipse,whi
h is based on 
ombined slip. The fri
tion ellipse des
ribes the dependen
ybetween lateral for
e and longitudinal for
e. The fri
tion ellipse is de�ned as:
(
Fx

Fxmax

)2 + (
Fy

Fymax

)2 = 1 (2.7)
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PSfrag repla
ements
Fymax

Fxmax

Fy

Fx

( Fx

Fxmax
)2 + (

Fy

Fymax
)2 = 1

Figure 2.3: The fri
tion ellipseThe idea is that a resultant for
e of Fx and Fy lies on the ellipse. Fx
annot ex
eed the maximum longitudinal for
e, Fxmax and Fy 
annot ex
eedthe maximum lateral for
e, Fymax. Fxmax may be de�ned as:
Fxmax = µFz (2.8)where µ is a 
oe�
ient of fri
tion between the tyre and the road surfa
e, and

Fz is the verti
al load.2.3 Chassis ModelingOne of the simplest 
hassis models is the bi
y
le model. The bi
y
le model is atwo dimensional vehi
le model, see Figure 2.5. Basi
ally it has only one wheelon ea
h axis, whi
h means that only planar motion in the earth �xed x-y planeis 
onsidered. To be able to derive the equations of motion it is ne
essary tointrodu
e one additional 
oordinate system, the vehi
le frame, whi
h origin islo
ated at the 
entre of gravity of the vehi
le, as illustrated in Figure 2.4.
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PSfrag repla
ements

X

Y

ψ

r

CG

vy vx

Figure 2.4: The earth �xed frame and the vehi
le frame. The vehi
le frame isrotated with ψ around the z-axis.The yaw angle, ψ is the angle between the two 
oordinate systems. Theequations of motion of the model originate from Newton's se
ond law, F = ma.Lateral a

eleration o

urs while driving and steering, this is 
ompensated forby for
es a
ting on the vehi
le. The a

eleration of the vehi
le 
an be obtainedby derivation of the velo
ity ve
tor of the vehi
le, ṙ. The velo
ity ve
tor isdenoted as:
ṙ = v = (vx, vy, 0) (2.9)and the yaw velo
ity of the vehi
le, ψ̇ as:
ω = (0, 0, ψ̇) (2.10)The following derivation rule is applied when di�erentiating ṙ:

r̈ =
d

dt
ṙ = v̇ + ω × v (2.11)

r̈ =







v̇x

v̇y

0







+

∥

∥

∥

∥

∥

∥

x̂ ŷ ẑ

0 0 ψ̇
vx vy 0

∥

∥

∥

∥

∥

∥

=







v̇x − ψ̇vy

v̇y + ψ̇vx

0







(2.12)
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PSfrag repla
ements δ

Fy,r

Fy,fvy

vx

lr lfFigure 2.5: The bi
y
le model.The equation of motion 
an now be written as:
↑ m(v̇x − ψ̇vy) = −Fy,f sin δ (2.13)

→ m(v̇y + ψ̇vx) = Fy,r + Fy,f cos δ (2.14)
Jzψ̈ = lfFy,f cos δ − lrFy,f (2.15)where Jz is the moment of inertia of the vehi
le and ψ̈ is the angular a

elerationof the vehi
le around the z-axis. A more thoroughly derivation of the equationsof motion for the bi
y
le model 
an be found in [5℄.As shown in Se
tion 2.2.1, the lateral for
es, Fy,f and Fy,r are dependentof the lateral slip angles, αf and αr, while the slip angles are dependent of thevelo
ities of the wheels. The expressions for the slip angles 
an be rewritten asfun
tions of the velo
ities of the vehi
le instead. This makes more sense whendealing with the lateral for
es in the equations of motion. In order to a

omplishthis, the velo
ity ve
tors of the wheels need to be derived. The velo
ity ve
tor ofthe front wheel, ṙf and the velo
ity ve
tor of the rear wheel, ṙr 
an be obtainedas follows:

ṙf = ṙ +
d

dt
lf + ω × lf =







vx

vy

0







+

∥

∥

∥

∥

∥

∥

x̂ ŷ ẑ

0 0 ψ̇
lf 0 0

∥

∥

∥

∥

∥

∥

=







vx

vy + ψ̇lf
0







(2.16)
ṙr = ṙ +

d

dt
lr + ω × lr =







vx

vy

0







+

∥

∥

∥

∥

∥

∥

x̂ ŷ ẑ

0 0 ψ̇
−lr 0 0

∥

∥

∥

∥

∥

∥

=







vx

vy − ψ̇lr
0







(2.17)It is now possible to write the lateral slip angles for the front and the rear wheelas fun
tions of the velo
ities of the vehi
le:
αf = arctan(

vy + ψ̇lf
vx

) − δ (2.18)
αr = arctan(

vy − ψ̇lr
vx

) (2.19)



CHAPTER 2. VEHICLE MODELING 132.4 Tra
k ModelingTwo di�erent tra
ks have been used during this proje
t. These two tra
ks havebeen modeled in Modeli
a and the 
oordinates of the tra
ks are arbitrarilyimposed. A traje
tory has been de�ned for ea
h of the two tra
ks, this traje
-tory represents the 
entre of the tra
k, shown in Figure 2.6. The traje
tory,
(xc(st), yc(st)) is represented as a fun
tion of st(t), while st(t) is a fun
tion oftime. This means st(t) in
reases over time, while the traje
tory in
reases over
st(t). xc and yc are the global x- and y-positions of the 
entre of the tra
k.

PSfrag repla
ements
X

Y

(xc, yc)

st

wt wtFigure 2.6: The tra
k model.The �rst tra
k used was ellipse-shaped, see Figure 2.7. The 
oordinates was
hosen in a way so the ellipse be
ame twi
e as long as it is wide. The total lengthof the tra
k is 450 meters. The 
entre of the ellipse-shaped tra
k is de�ned as:
(xc, yc) = (45 cos(st), 90 sin(st)) (2.20)Further on a 
ir
ular-shaped tra
k with a sinus 
urvature added to it was in-trodu
ed. As seen in Figure 2.8, this tra
k has more 
orners than the previousone. This tra
k is supposed to be more 
hallenging for the vehi
le model. Thelength of this tra
k is about 1400 meters, whi
h makes it more than three timesfurther than the ellipse-shaped tra
k. The 
oordinates of the 
entre of the tra
kare de�ned as:

(xc, yc) = ((200+40 sin(4st−π/2)) cos st, (200+40 sin(4st−π/2)) sin st) (2.21)
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CHAPTER 2. VEHICLE MODELING 152.5 Time to Distan
e TransformationIn Se
tion 2.3, the equations of motion of the vehi
le model were derived withrespe
t of time. In this se
tion the equations will be derived with respe
t oftravelled distan
e instead. In order to a
hieve this, a time to distan
e s
alingfa
tor, Scf is needed to be introdu
ed. In [2℄ the transformation from time todistan
e has been done with a s
aling fa
tor de�ned as:
Scf =

dt

dst

=
1 − d

rt

vx cos(ψv − ψt) − vy sin(ψv − ψt)
(2.22)Where d is the shortest distan
e between the vehi
le and the 
entre of the tra
k.

d = (ypos − yc) cos(ψt) − (xpos − xc) sin(ψt) (2.23)
ψt is the angle between the tangent of the 
entre of the tra
k and the x-axis. ψt
an be de�ned as:

ψt = arccos(
(ẋc, ẏc)(1, 0)

|(ẋc, ẏc)||(1, 0)|
) = arccos(

ẋc
√

ẋc
2 + ẏc

2
) (2.24)

rt is the radius of the 
entre of the tra
k and 
an be written as rt = 1/kt, where
kt is the 
urvature of the 
entre of the tra
k and de�ned as follows:

kt =
|(ẋc, ẏc) × (ẍc, ÿc)|

|(ẋc, ẏc)|3
(2.25)

Vehicle

PSfrag repla
ements
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wt wtFigure 2.9: The tra
k model.Consider a model dependent of time with the following de�nition:
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ẋ = f(x(t), u(t), t), x(0) = x0, t ∈ [0, tf ]When the model is transformed to be dependent of travelled distan
e, it will bede�ned as:

dx
dst

= Scff(x(st), u(st), st), x(0) = x0, st ∈ [0, stf ]2.6 The Driver ModelA quite simple driver model has been introdu
ed with the purpose of obtaininga �rst initial guess for the optimisation problem. The driver model is supposedto make the vehi
le follow a spe
i�ed traje
tory, in this 
ase the 
entre of thetra
k. The driver model 
onsists of a type of steering 
ontrol but doesn't havean a

eleration 
ontrol, the vehi
le is supposed to have 
onstant velo
ity. Thesteering 
ontrol model spots a point on the traje
tory a few meters ahead andsimply tells the vehi
le to steer towards this point. This 
an be 
ompared to howa human driver would steer the vehi
le, he looks at the road a few meters aheadand steers in order to keep the vehi
le on the road. The position of the vehi
lein the world frame is (xpos, ypos) and the point a few meters ahead of the vehi
leis (xcds, ycds). The ve
tor between these points is (xcds − xpos, ycds − ypos) andthe dire
tion of the vehi
le is denoted as (xvel, yvel). The angle between thesetwo ve
tors is equal to the steering angle, as illustrated in Figure 2.10.
δref = arccos

(xcds − xpos)xvel + (ycds − ypos)yvel
√

(xcds − xpos)2 + (ycds − ypos)2 +
√

x2

vel + y2

vel

(2.26)The vehi
le model is then simulated with a 
onstant velo
ity and with δref asan input for the steering angle. The simulated result 
an then be used as aninitial guess for the �rst optimisation run.
Direction of the vehicle

PSfrag repla
ements
δref

X

Y

(xpos, ypos)(xcds, ycds)

wt wtFigure 2.10: The driver model
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le HandlingVehi
le handling des
ribes the way vehi
les perform transverse to their dire
tionof motion, parti
ularly during 
ornering. When dealing with planar vehi
lemodels, the fo
us lies on yaw stability and response to steering input. Anunder steer gradient is often measured or 
omputed when des
ribing the steering
hara
teristi
s of a vehi
le. The under steer gradient, Kus is de�ned as:
Kus =

∂δ

∂ay

−
∂δA
∂ay

(2.27)where δA is 
alled the A
kerman angle and is derived from a pure geometri
alapproa
h. An under steer vehi
le has a positive under steer gradient (Kus > 0)and an over steer vehi
le has a negative under steer gradient (Kus < 0). Thesteering 
hara
teristi
s of a vehi
le 
an be tested, by driving the vehi
le around a
ir
le, while the vehi
le 
onstantly a

elerates. Figure 2.11 illustrates the resultfrom a test 
ase where a bi
y
le model with linear tyre properties is simulateddriving in a 
ir
le with a given radius. The lateral a

eleration is plotted againstthe steering angle. The solid line represents an under steer bi
y
le model whilethe dashed line represents an over steer model. The under steer model was usedlater on in the optimisations. For an under steer vehi
le the slip angles of thefront wheels are larger than the slip angles of the rear wheels. This means thedriver usually needs to 
ompensate for this by steering harder. For an oversteer vehi
le it is the opposite, the driver should not steer as mu
h and the rearwheels have larger slip angles than the front wheels.
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Figure 2.11: The relation between steering angle, δ and lateral a

eleration, ay.The solid line shows an under steer vehi
le model while the dashed line showsan over steer vehi
le model.



CHAPTER 2. VEHICLE MODELING 18For a bi
y
le model with linear tyres, the steering 
hara
teristi
s depend ontwo fa
tors, the 
ornering sti�ness 
onstants of the tyres and the pla
e of the
entre of gravity of the vehi
le. The bi
y
le model is neutral steer if the 
orner-ing sti�ness 
onstants of the front and rear wheels are equal while the 
entre ofgravity of the vehi
le is pla
ed in the middle.
Cf < Cr -> under steer
Cf = Cr -> neutral steer
Cf > Cr -> over steer
lf < lr -> under steer
lf = lr -> neutral steer
lf > lr -> over steerAnother way to illustrate the steering 
hara
teristi
s 
ould be done by plot-ting the lateral for
es Fy,f and Fy,r against the slip angles, αf and αr, seeFigure 2.12.
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Figure 2.12: The relation between the normalized lateral for
es, Fy,f and Fy,rand the lateral slip angles, αf and αrThe diagram shows the normalized lateral for
es of the tyres plotted againstthe lateral slip angles of the tyres. The solid 
urve represents the front tyre whilethe dashed 
urve represents the rear tyre. The diagram shows a bi
y
le modelwith nonlinear tyre properties, whi
h was used later on in the optimisations.This parti
ular model is under steer during the entire simulation run, sin
e the
urve of the rear tyres is above the 
urve of the front tyres. If the 
urve of therear tyres is below the 
urve of the front tyres at any point then the vehi
le isover steer at that point.



Chapter 3OptimisationThe following 
hapter will begin with a short des
ription of an optimal 
ontrolproblem. AMPL and Optimi
a will be des
ribed brie�y in the next se
tion.Finally two di�erent approa
hes for solving the optimal 
ontrol problem will beintrodu
ed.3.1 The Optimal Control ProblemThe obje
tive of this proje
t has been to �nd an optimal path that will minimizethe time for a vehi
le model travelling along a spe
i�ed tra
k. The optimal path
an be found by using the theory of optimal 
ontrol. In optimal 
ontrol theobje
tive is to minimize or in some 
ases maximize a 
ost fun
tion. An optimal
ontrol problem is typi
ally formulated as follows:
min
u,p

J = min

∫ tf

0

L((x(t), u(t), p)dt (3.1)subje
t to: ẋ = f(x(t), u(t)) x(0) = x0

c(t) = c(x(t), u(t), t) ≤ 0
uL ≤ u(t) ≤ uUfor all t ∈ [t0, tf ]where J is the 
ost fun
tion and

ẋ = f(x(t), u(t)), x(0) = x0, t ∈ [t0, tf ]is a mathemati
al model of the system. In our 
ase, this is the vehi
le model.
c(x(t), u(t), t) ≤ 0 (3.2)are the physi
al 
onstraints of the optimal 
ontrol problem. Physi
al 
onstraintsarise from limitations on 
ontrol variables and limitations on the state variablesof the model. For instan
e in the minimum time problem, there are 
onstraintson the longitudinal and lateral a

eleration of the vehi
le and on the steeringangle. Other 
onstraints 
ome from the fa
t that the vehi
le must stay withinthe tra
k boundaries.
uL ≤ u(t) ≤ uU (3.3)19



CHAPTER 3. OPTIMISATION 20are the 
onstant 
ontrol bounds.An optimal 
ontrol, u∗ and its 
orresponding optimal state traje
tory, x∗are found when the 
ost fun
tion is minimized.When dealing with a minimum time problem, the 
ost fun
tion takes thefollowing form:
min J = min

∫ tf

0

1dt (3.4)There are several methods for solving an optimal 
ontrol problem. Thesemethods 
an be divided into two di�erent main methods, dire
t and indire
tmethods. When applying dire
t methods, the optimal 
ontrol problem is 
on-verted into a nonlinear programming problem and is solved dire
tly using math-emati
al programming te
hniques. The 
ontinuous 
ontrol history is repla
edwith a dis
rete approximation. This means that the 
ontrol input 
an only beadjusted at a �xed number of positions along the traje
tory, while the valuesin between the points are estimated by interpolation. The Optimi
a Compileruses a simultaneous method, known as the dire
t 
ollo
ation method. Thismethod fully dis
retize the state and the 
ontrol variables, whi
h leads to large-s
ale NLP problems. Simultaneously methods are dis
ussed in [1℄. AMPL andan external solver, 
alled IPOPT have been used when solving the nonlinearprogramming problem.3.2 AMPLAMPL is a high-level, mathemati
al programming language, used for des
ribingand solving large s
ale optimisation problems. AMPL expresses the symboli
algebrai
 notation familiar to people in a way that 
an serve as dire
t inputto a 
omputer system [3℄. AMPL does not solve the problem dire
tly, insteadit uses an external solver su
h as IPOPT. AMPL handles linear and nonlinearproblems.3.3 Optimi
aOptimi
a is an extension of the Modeli
a language and the Optimi
a Compileris an optimisation tool developed for Modeli
a. The Optimi
a language admitsformulation of dynami
 optimisation problems on the following form, a

ordingto [11℄:
min

∫ tf

0

L((x(t), u(t), p)dt (3.5)subje
t to: f(ẋ, x, u, p) = 0
ci(x(t), u(t), p) ≤ 0
ce(x(t), u(t), p) = 0
cf (x(tf ), u(tf ), p) = 0The 
ost fun
tion and the 
onstraints are written in an Optimi
a �le. ThisOptimi
a �le 
onsists of three se
tions. In the �rst se
tion the variable boundsare spe
i�ed. The next se
tion 
ontains the 
ost fun
tion and the optimisationhorizon. The last se
tion 
ontains all the 
onstraints. The Optimi
a Compiler
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ompiles the Optimi
a �le and the Modeli
a �le, 
ontaining the model repre-sentation and generates a set of new �les 
ontaining AMPL 
ode. The problemis then solved using AMPL, whi
h in turn invokes the numeri
al solver.
model.mo

optimica.op

model

.

equation

.

bounds

cost function

constraints

Compiler

Optimica

AMPL files Result

AMPL

Mathematical programming

Figure 3.1: Flow 
hart for AMPL and Optimi
a.3.4 Solving the Optimal Control ProblemThe purpose has been to minimize the driving time for a vehi
le model travellingalong a spe
i�
 tra
k. Solving a minimum time problem like this one is verydi�
ult. It is ne
essary to spe
ify a good initial guess, in order to �nd anoptimal solution. The initial guess needs to be 
lose to the optimal solution.One approa
h for obtaining an initial guess is to 
ome up with a driver model,whi
h takes the vehi
le around the tra
k in a way that is 
lose to the optimalway. A driver model that a

omplish this will be quite 
omplex [2℄. Anotherapproa
h for �nding a good initial guess is to minimize another 
ost fun
tionfor a �xed �nal time. For instan
e 
ould the 
ontrol inputs be minimized fora given time. The result obtained 
an then be used as an initial guess whensolving the minimum time problem. This is a 
ommon method when solvingminimum time problems and has been used in this proje
t as well.The driver model introdu
ed in Se
tion 2.6 is used for produ
ing an initialguess for the optimisation 
ase where the 
ontrol inputs are minimized. Thisdriver model is quite simple but good enough for taking the vehi
le aroundthe spe
i�ed tra
k. The main limitation of the driver model is the la
k of ana

eleration 
ontrol, the driver model has 
onstant velo
ity through out thetra
k. The vehi
le is simulated driving through the tra
k with the spe
i�eddriver model. The result obtained from the simulation will then be used asa �rst initial guess for the optimal 
ontrol problem. This initial guess is toopoor for solving the minimum time problem but is su�
ient for minimizing the
ontrol inputs for a given time. This given time will be the same as the time ittook for the driver model to drive around the tra
k. The 
ost fun
tion is de�nedas:
min

∫ tf

0

u1(t) + u2(t)dt (3.6)where u1(t) and u2(t) are the 
ontrol inputs, in most 
ases the longitudinal
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eleration, ax and the steering angle, δ of the vehi
le. tf is the �xed �naltime. The optimal solution is put in a result �le and this result will be usedas an initial guess for the next optimisation. In the next optimisation the 
ostfun
tion will stay the same while the �xed �nal time, tf is de
reased. Thispro
edure will keep going until tf is su�
iently 
lose to the optimal time. Theoptimal time is obviously not known at this point but one 
an have an hint ofwhat it is. The 
ost fun
tion is then rede�ned in a way so the time is minimized.When minimizing the time, the result from the last optimisation of the 
ontrolinputs is used as an initial guess. Hopefully this initial guess is good enough for�nding an optimal solution for the minimum time 
ase.
Simulation

Optimization:

minimizing the inputs

Weight the

cost function

Increase the

nbr of elements

Change the 

fixed final time Optimization:

minimizing the time

Decrease tf

Initial guess

No optimal

solution found

No optimal 

solution found

No optimal 

solution found

Initial guess

Optimal

solution

found

Initial guess

Optimal controlFigure 3.2: Flow 
hart for the optimisation pro
edure.The pro
edure des
ribed above might not always behave as desired. If AMPLdoesn't �nd an optimal solution during any of the optimisation runs, somethingneeds to be 
hanged. There are a few di�erent possibilities for 
ontinuing whenno optimal solution is found. The number of elements of the grid 
an be respe
-i�ed, a larger number will improve the a

ura
y, whi
h may lead to an optimalsolution. If an optimal solution is still not found, the next step is to 
hange the
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ost fun
tion by penalizing one of the terms. For instan
e 
ould the original
ost fun
tion be 
hanged into:
min

∫ tf

0

10 ∗ u1(t) + u2(t)dt (3.7)whi
h means that the �rst 
ontrol input is now more heavily penalized. Ifthe sear
h of an optimal solution fails on
e again, the �xed �nal time 
an be
hanged. Let's say that an optimisation 
ase with the �xed �nal time, tf = 60is run and AMPL �nds an optimal solution. The next step is to de
rease tf ,for instan
e to tf = 56 and then run a new optimisation with the same 
ostfun
tion. If an optimal solution isn't found, then it might be needed to run anoptimisation for tf = 58 �rst and then run the optimisation for tf = 56, whi
hmight result in an optimal solution. The result from tf = 58 is a better initialguess than the result from tf = 60 when trying to solve the 
ase for tf = 56.When all the above a
tions are 
arried through and an optimal solution isstill not found then the problem 
annot be solved be
ause of the �xed �nal time,
tf is being unfeasible without violating the 
onstraints. This also means thatthe last optimal solution found is 
lose to the optimal solution for the minimumtime 
ase and will be a good initial guess for solving the minimum time problem.3.5 Transforming the Optimal Control ProblemIn the previous se
tion, the optimal 
ontrol problem was set up with the equa-tions of the vehi
le model dependent of time. In this se
tion, the optimal 
ontrolproblem will be set up after the transformation from time to distan
e has beenapplied, whi
h was des
ribed in 2.5. The equations of the vehi
le model will bedependent on travelled distan
e. The purpose is still to �nd an optimal path,whi
h will minimize the time. Sin
e Scf is de�ned as an in
rement of travelleddistan
e, dst divided by an in
rement in time, dt, minimizing the integral of
Scf will have the same e�e
t as minimizing time. The 
ost fun
tion will beformulated as follows:

min tf = min

∫ stf

0

Scfds (3.8)The 
ost fun
tion is now minimized over a 
ertain distan
e, stf instead of over a
ertain time. The reason why the transformation from time to travelled distan
eis applied, is be
ause it should be easier for the optimisation tools to �nd anoptimal solution. The variable that the 
ost fun
tion is minimized over, in this
ase the distan
e, stf is �xed as opposed to when minimizing over time. Asmentioned before it is easier to �nd an optimal solution when having a �xed�nal variable.A good initial guess is still vital when sear
hing for an optimal solution.When the problem was formulated with respe
t to time, the inputs were mini-mized for a �xed �nal time. The �xed �nal time was de
reased between everyoptimisation run until the �xed �nal time was 
lose enough to the minimumtime. This approa
h 
annot be used when the problem is formulated with re-spe
t to travelled distan
e, be
ause the 
ost fun
tion is not minimized over time.Instead another approa
h, whi
h is based on in
reasing stf , is tried. The ideais to start with a low stf , whi
h means Scf is minimized for the �rst part ofthe tra
k, in the next optimisation run stf is in
reased and Scf is minimized
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e again. stf is then in
reased until it equals the entire tra
k. Let's 
onsidera 
ase where the purpose is to drive a lap around the ellipse-shaped tra
k. Inthe �rst optimisation an optimal path is found for the �rst part of the tra
k. Inthe next optimisation an optimal solution is found when the vehi
le drives a bitfurther on the tra
k, the stf is in
reased. When solving this problem the previ-ous optimal solution is used as an initial guess. Then stf is in
reased again anda new optimal solution is found, this pro
edure will 
ontinue until the vehi
lehas driven around the entire tra
k.
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Figure 3.3: Optimal paths for di�erent stf



Chapter 4Optimal Path ResultsSeveral optimisation results have been obtained, the following results will bepresented in this se
tion:
• Bi
y
le Model with Linear tyres� min t

∗ The Ellipse Tra
k, 2 Laps
∗ The Flower Tra
k, 1 Lap� minScf

∗ The Ellipse Tra
k, 2 Laps
∗ The Flower Tra
k, 1 Lap

• Bi
y
le Model with Nonlinear tyres� min t

∗ The Ellipse Tra
k, 2 Laps
∗ The Flower Tra
k, 1 Lap� minScf

∗ The Ellipse Tra
k, 2 Laps4.1 Bi
y
le Model with Linear TyresFor the �rst optimisation tests, a bi
y
le model with linear tyres was used. Theparameters of the bi
y
le model are presented in Table 4.1. These parametersare arbitrarily imposed and not re
eived from any real vehi
le model, but theparameters are realisti
. Variables with lower and upper bound 
onstraints arepresented in Table 4.2. Noti
e that the longitudinal velo
ity of the vehi
le, vxhas a starting value. The entire vehi
le model in Modeli
a 
an be found inAppendix A.
25



CHAPTER 4. OPTIMAL PATH RESULTS 26ParameterYaw Inertia, Jz [kgm2℄ 2800Front Cornering Sti�ness, Cf [℄ 100000Rear Cornering Sti�ness, Cr [℄ 150000Distan
e from 
entre of gravity to front axle, lf [m℄ 1.33Distan
e from 
entre of gravity to rear axle, lr [m℄ 1.43Mass of vehi
le, m [kg℄ 1550Table 4.1: Parameters of the bi
y
le model.Variable LowerBound UpperBound Start Value
delta [rad℄ -1 1 0
vx [m/s℄ 0 100 10
ax [m/s2℄ -10 10 0
d [m℄ -5 5 0Table 4.2: Variables of the bi
y
le model.4.1.1 Minimizing TimeIn the �rst optimisation 
ase the time around an ellipse-shaped tra
k was min-imized and in the se
ond 
ase the time around a �ower-shaped tra
k was min-imized. The 
ost fun
tion and the 
onstraints for both of the two 
ases areformulated as follows:Cost fun
tion:

min J = min
∫ tf

0
1dtConstraints:

a2

x + a2

y ≤ 102The Ellipse Tra
k, 2 LapsThe optimal path for the vehi
le model when minimizing time is shown in Fig-ure 4.1. The resulting 
ontrol signals, ax and δ are presented in Figure 4.2. Thevelo
ity of the vehi
le and the lateral slip angles of the tyres are shown in Fig-ure 4.3. In Figure 4.4, the lateral a

eleration is plotted against the longitudinala

eleration, usually 
alled g-g diagram. The purpose of the g-g diagram is toshow how 
lose the vehi
le is to its limitations in a

eleration during driving.The dashed line in Figure 4.4 illustrates the limitations in a

eleration of thevehi
le, noti
eable is that the vehi
le is extremely 
lose to its limitations theentire run. In Figure 4.2 it 
an be seen that the steering angle, δ de
reasesvery qui
kly at the very end of the run. Sin
e it doesn't matter how the ve-hi
le behave after the run is 
ompleted, the �nal value of the steering angle isunimportant. This also explains the straight line in the g-g diagram.
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Figure 4.1: The optimal path obtained when minimizing the time, for a bi
y
lemodel with linear tyres driving 2 laps on the tra
k.
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Figure 4.2: The 
ontrol inputs for a bi
y
le model with linear tyres driving2 laps on the ellipse-shaped tra
k when minimizing the time. Longitudinala

eleration, ax and steering angle, δ.
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Figure 4.3: The velo
ity, vx and the slip angles, αf (thin) and αr(thi
k) of thebi
y
le model with linear tyres driving 2 laps on the ellipse-shaped tra
k whenminimizing the time.
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Figure 4.4: The relation between the lateral a

eleration, ay and the longitudinala

eleration, ax of the bi
y
le model with linear tyres driving 2 laps on theellipse-shaped tra
k when the time is minimized. The dashed line shows the
onstraints on the a

elerations.The pro
edure des
ribed in Se
tion 3.4 was applied in order to obtain theminimum time solution. The 
ontrol inputs, ax and δ were minimized for ade
reasing �xed �nal time, tf . After tf was de
reased a few times, the steeringangle, δ started to os
illate. The result wasn't satisfying, sin
e it was a poorinitial guess for the minimum time 
ase. Instead ax and the derivative of δ wereminimized, in addition the derivative of δ was penalized. In the re
eived resultthe os
illations of the δ vanished and the result was good enough as an initialguess for the minimum time 
ase.The Flower Tra
k, 1 LapThe optimal path for the vehi
le model driving one lap through the se
ondtra
k is shown in Figure 4.5. The a

eleration, ax and the steering angle, δ arepresented in Figure 4.6. In Figure 4.7, the velo
ity of the vehi
le and the lateralslip angles of the tyres are presented. Figure 4.8 illustrates a g-g diagram. Evenfor this tra
k the vehi
le is very 
lose to its limitations trough out the run.
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Figure 4.5: The optimal path obtained when minimizing the time, for a bi
y
lemodel with linear tyres driving 1 lap on the tra
k.
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Figure 4.6: The 
ontrol inputs for a bi
y
le model with linear tyres driving 1lap on the �ower-shaped tra
k when minimizing the time. Longitudinal a

el-eration, ax and steering angle, δ.
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Figure 4.7: The velo
ity, vx and the slip angles, αf (thin) and αr(thi
k) of thebi
y
le model with linear tyres driving 1 lap on the �ower-shaped tra
k whenminimizing the time.
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Figure 4.8: The relation between the lateral a

eleration, ay and the longitudinala

eleration, ax of the bi
y
le model with linear tyres driving 1 lap on the �ower-shaped tra
k when the time is minimized. The dashed lines show the 
onstraintson the a

elerations.Finding the optimal path was more di�
ult for this tra
k, whi
h is explainedwith the fa
t that this tra
k has more 
orners. As for the previous 
ase thederivative of δ and ax were minimized for a �xed �nal time and the result wasthen used as an initial guess for the minimum time 
ase.4.1.2 Minimizing the S
aling Fa
torIn the two following optimisation 
ases, the equations of the vehi
le model andthe optimal 
ontrol problem are dependent of distan
e. The 
ost fun
tion andthe 
onstraints are now de�ned as:Cost fun
tion:
min J = min

∫ stf

0
ScfdsConstraints:

a2

x + a2

y ≤ 102The Ellipse Tra
k, 2 LapsThe optimal path for the ellipse-shaped tra
k is presented in Figure 4.9. Fig-ure 4.10 shows the 
ontrol inputs, ax and δ, while Figure 4.11 shows the velo
ityof the vehi
le, vx and the slip angels of the tyres, α. The g-g diagram in Fig-ure 4.12 illustrates that the vehi
le on
e again is extremely 
lose to its limita-
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urves in Figure 4.10 illustrate the result from Se
tion 4.1.1,where the time was minimized. Sin
e the obje
tive is the same when minimizingthe s
aling fa
tor as when minimizing time, the results may be 
ompared. Theresults are quite similar as observed in Figure 4.10. In this 
ase the steeringangle, δ in
reases qui
kly at the end, but as mentioned earlier the �nal value ofthe steering angle doesn't a�e
t the optimal path.
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Figure 4.9: The optimal path obtained when minimizing the s
aling fa
tor, fora bi
y
le model with linear tyres driving 2 laps on the tra
k.
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Figure 4.10: The 
ontrol inputs for a bi
y
le model with linear tyres driving 2laps on the ellipse-shaped tra
k when minimizing the s
aling fa
tor. Longitu-dinal a

eleration, ax and steering angle, δ. The dashed lines show the 
ontrolinputs from the 
ase where the time was minimized.
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Figure 4.11: The velo
ity, vx and the slip angles, αf (thin) and αr(thi
k) of thebi
y
le model with linear tyres driving 2 laps on the ellipse-shaped tra
k whenminimizing the s
aling fa
tor. The dashed lines show the 
ontrol inputs fromthe 
ase where the time was minimized.
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Figure 4.12: The relation between the lateral a

eleration, ay and the longitu-dinal a

eleration, ax of the bi
y
le model with linear tyres driving 2 laps onthe ellipse-shaped tra
k when the s
aling fa
tor is minimized. The dashed lineshows the 
onstraints on the a

elerations.The approa
h introdu
ed in Se
tion 3.5 was applied at �rst. In general thisapproa
h behaved well but at 
ertain parts of the tra
k, an optimal solutionwasn't found and 
aused the method to fail. Parti
ularly at the top and in these
tion after together with the bottom and the se
tion after the bottom thesear
h for an optimal solution was di�
ult. Scf was minimized for the very �rstpart of the tra
k and an optimal solution was found. stf was then in
reasedand an optimal solution was found again. This pro
edure worked out good untilrea
hing the top of the ellipse, where an optimal solution were no longer found.The explanation was that the vehi
le had a bad position and the velo
ity wastoo high for 
ontinuing on the tra
k, thereby the failure of the next optimisation.This problem was solved by putting terminal 
onstraints into the optimisation.Following terminal 
onstraints were introdu
ed:
• low terminal velo
ity of the vehi
le
• the �nal position of the vehi
le needs to be in the middle of the tra
k
• the �nal dire
tion of the vehi
le needs to equal the �nal dire
tion of thetangent of the tra
kThe next problem arose in the se
tion after the top of the ellipse. The steeringangle began to os
illate, this problem was solved by adding the derivative ofthe steering angle to the 
ost fun
tion and penalizing it. This means both thes
aling fa
tor and the derivative of the steering angle were minimized. Onemight believe this will interfere with �nding an optimal path, but that wasn't
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ase. Instead it be
ame easier for the optimisation tools to 
onverge tothe optimal solution. After introdu
ing the above improvements an optimalpath for the entire tra
k was found. A s
ript automating this pro
ess was used,see Appendix B.1. In the s
ript a few di�erent options may be 
hosen, oneparti
ular option 
alled, "mu_strategy=adaptive" required less iterations inthe optimisation runs. More about di�erent IPOPT options 
an be found in [4℄.The optimal path was also found when using the result from a simulationwith the driver model as an initial guess. The simulated initial guess is preferablewhen it works be
ause the pro
edure with all the other optimisations are notneeded, but for more 
hallenging tra
ks and more advan
ed vehi
le models thesimulated initial guess will probably not be good enough.The Flower Tra
k, 1 LapThe optimal path for the se
ond tra
k when minimizing the s
aling fa
tor, Scfis shown in Figure 4.13. The 
ontrol inputs, the velo
ity of the vehi
le and theslips angles are presented in Figures 4.14 and 4.15. The g-g diagram is presentedin Figure 4.16. The steering angle and the slip angles are a bit smoother whenminimizing the s
aling fa
tor 
ompared to when minimizing time. In the 
ase ofminimizing the s
aling fa
tor, the derivative of the steering angle was added tothe 
ost fun
tion. This means the derivative of the steering angle was minimizedas well, whi
h makes the steering angle smoother. As mentioned earlier, thisdoesn't a�e
t the sear
h of the optimal path. The vehi
le is still driving on itslimitations, as seen in Figure 4.16.
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Figure 4.13: The optimal path obtained when minimizing the s
aling fa
tor, fora bi
y
le model with linear tyres driving 1 lap on the tra
k.
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Figure 4.14: The 
ontrol inputs for a bi
y
le model with linear tyres driving 1lap on the �ower-shaped tra
k when minimizing the s
aling fa
tor. Longitudinala

eleration, ax and steering angle, δ. The dashed lines show the 
ontrol inputsfrom the 
ase where the time was minimized.
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Figure 4.15: The velo
ity, vx and the slip angles, αf (thin) and αr(thi
k) of thebi
y
le model with linear tyres driving 1 lap on the �ower-shaped tra
k whenminimizing the s
aling fa
tor. The dashed lines show the 
ontrol inputs fromthe 
ase where the time was minimized.
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Figure 4.16: The relation between the lateral a

eleration, ay and the longitu-dinal a

eleration, ax of the bi
y
le model with linear tyres driving 1 lap on the�ower-shaped tra
k when the s
aling fa
tor is minimized. The dashed line showthe 
onstraints on the a

elerations.The approa
h des
ribed in Se
tion 3.5 failed at �rst at 
ertain points ofthis tra
k as well, but with the improvements made in the previous 
ase anoptimal solution was obtained. The optimal path was also found when usingthe simulated initial guess, just like for the 
ase with the ellipse-shaped tra
k.4.1.3 ComparisonThe time it takes for the vehi
le to traverse di�erent numbers of laps on the twotra
ks are presented in Table 4.3. The table shows the minimum time re
eivedwhen minimizing the time and when minimizing the s
aling fa
tor.Tra
k Number of laps min t minScfEllipse 1 18.039s 18.042sEllipse 2 35.242s 35.243sEllipse 3 52.443s 52.443sFlower 1 42.228s 42.220sFlower 2 83.506s 83.504sTable 4.3: Comparison between minimizing time and minimizing the s
alingfa
tor for a bi
y
le model with linear tyres driving di�erent number of laps onthe two di�erent tra
ks.The exe
ution times for the di�erent optimisation 
ases are dependent onhow good the initial guesses are. A better initial guess will obviously lead to a
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ution time. Generally the exe
ution time is less when minimizing thes
aling fa
tor 
ompared to when minimizing the time. Normally it takes a fewminutes for ea
h optimisation run when minimizing the time. When minimizingthe s
aling fa
tor an optimisation run takes a few se
onds but aggregately moreoptimisation runs are needed 
ompared to when minimizing the time. Thenumber of optimisation runs depend on the distan
e of the tra
k and on howmu
h stf is in
reased between the runs, when minimizing the s
aling fa
tor. Inthe 
ase where the time is minimized the number of optimisation runs dependon how mu
h tf is de
reased between the runs.4.2 Bi
y
le Model with Nonlinear TyresIn this se
tion, optimal path results for a bi
y
le model with nonlinear tyresare presented. For the ellipse-shaped tra
k, optimal paths were found whenminimizing time and when minimizing the s
aling fa
tor. Unfortunately nooptimal paths were found for the se
ond tra
k, instead the result from the 
asewhen minimizing the 
ontrol inputs (the result that fun
tioned as an initialguess when trying to minimize time) are presented. The parameters of thevehi
le model are shown in Table 4.4. Just as for the previous vehi
le model,these parameters are arbitrarily 
hosen and not re
eived from any real vehi
le.Variables with lower and upper bound 
onstraints are presented in Table 4.5.ParameterYaw Inertia, Jz [kgm2℄ 2800Distan
e from 
entre of gravity to front axle, lf [m℄ 1.33Distan
e from 
entre of gravity to rear axle, lr [m℄ 1.43Mass of vehi
le, m [kg℄ 1550Distan
e from 
entre of gravity to the ground, h [m℄ 0.3The shape fa
tor of the front wheel, Cf 1.3The shape fa
tor of the rear wheel, Cr 1.3The 
urvature fa
tor of the front wheel, Ef -2The 
urvature fa
tor of the rear wheel, Er -2.5Table 4.4: Parameters of the bi
y
le model with nonlinear tyres.Variable LowerBound UpperBound Start Value
delta [rad℄ -1 1 0
vx [m/s℄ 0 100 15
ax [m/s2℄ -10 10 0
d [m℄ -5 5 0
αf -0.175 0.175 0
αr -0.175 0.175 0Table 4.5: Variables of the bi
y
le model with nonlinear tyres.



CHAPTER 4. OPTIMAL PATH RESULTS 414.2.1 Minimizing TimeThe time was minimized for the vehi
le model driving on the two tra
ks. The
ost fun
tion for both of the two 
ases are formulated as follows:Cost fun
tion:
min J = min

∫ tf

0
1dtThe Ellipse Tra
k, 2 LapsThe result from the bi
y
le model with nonlinear tyres driving on the ellipse-shaped tra
k are presented in Figures 4.17- 4.22. In Figures 4.21 and 4.22 thelateral tyre for
e and the maximum lateral tyre for
e are plotted against thelongitudinal tyre for
e for the front and rear tyres respe
tively. The blue 
urverepresents the lateral tyre for
e, while the red 
urve represents the maximumlateral tyre for
e. The lateral for
e is for most of the time 
lose to the maximumlateral for
e for the front tyre ex
ept when braking heavily. For the rear tyrethe lateral for
e is 
lose to the maximum lateral for
e only when braking. The
on
lusion is, the vehi
le tends to go from being under steer to over steer whenbraking and 
ornering heavily.
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Figure 4.17: The optimal path obtained when minimizing the time, for a bi
y
lemodel with nonlinear tyres driving 2 laps on the tra
k.



CHAPTER 4. OPTIMAL PATH RESULTS 42
0 5 10 15 20 25 30 35

−5

0

5

10

15

Time, t [s]

S
te

e
ri
n

g
 a

n
g

le
, 

d
e

lt
a

 [
d

e
g

]

0 5 10 15 20 25 30 35
−10

−5

0

5

10

Time, t [s]L
o

n
g

it
u

d
in

a
l 
a

c
c
e

le
ra

ti
o

n
, 

a
x
 [

m
/s

2
]

Figure 4.18: The 
ontrol inputs for a bi
y
le model with nonlinear tyres driving2 laps on the ellipse-shaped tra
k when minimizing the time. Longitudinala

eleration, ax and steering angle, δ.
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Figure 4.19: The velo
ity, vx and the slip angles, αf (thin) and αr(thi
k) of thebi
y
le model with nonlinear tyres driving 2 laps on the ellipse-shaped tra
kwhen minimizing the time.
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Figure 4.20: The relation between the lateral a

eleration, ay and the longitu-dinal a

eleration, ax of the bi
y
le model with nonlinear tyres driving 2 lapson the ellipse-shaped tra
k when the time is minimized.
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Figure 4.21: The lateral for
e(blue) and the maximum lateral for
e(red) plottedagainst the longitudinal for
e for the front tyre in the 
ase where the time wasminimized for a bi
y
le model with nonlinear tyres driving 2 laps on the ellipse-shaped tra
k.
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Figure 4.22: The lateral for
e(blue) and the maximum lateral for
e(red) plottedagainst the longitudinal for
e for the rear tyre in the 
ase where the time wasminimized for a bi
y
le model with nonlinear tyres driving 2 laps on the ellipse-shaped tra
k.A minimum time solution wasn't found at �rst but when upper and lowerbounds on the slip angles of the tyres were introdu
ed an optimal solution wasobtained. This 
an be explained by observing Figure 2.3 in Se
tion 2.2.3, thelateral for
e has a peak at a 
ertain slip angle. If the slip angle in
reases more,then the lateral for
e will de
rease. This peak makes it hard for the optimisationtools to 
onverge to a solution. Therefore the upper and lower bounds on theslip angles were introdu
ed preventing the slip angles from in
reasing pass thepeaks.Before the optimal solution was found, another problem 
on
erning the equa-tion 2.7, whi
h de�nes the fri
tion ellipse 
ame up. The equation was at �rstwritten on the following form:
D = Fymax

√

(1 − (
Fx

Fxmax

)2) (4.1)When the optimisation tools evaluate equation 4.1, the expression under thesquare root sign might be
ome negative. This problem disappeared when theequation was rewritten as:
(
Fx

Fxmax

)2 + (
D

Fymax

)2 = 1 (4.2)It is an advantage if the square root 
an be avoided in all equations.The Flower Tra
k, 1 LapNo optimal solution was found when minimizing time for the vehi
le modeldriving on the �ower-shaped tra
k. The initial guess used for the minimumtime 
ase might have been too poor. The initial guess used was the result froma optimisation 
ase, where the a

eleration, the derivative of the steering angle
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eleration were minimized for a �xed �nal time. The
ost fun
tion was formulated as:
min J =

∫ tf

0

a2

x + 1000
d

dt
δ2 + 10

d

dt
a2

xdt (4.3)The result from this 
ase is presented in Figures 4.23- 4.28. A better initialguess 
ouldn't be found without violating the 
onstraints. By evaluating the�gures showing the tyre for
es, the 
on
lusion that the vehi
le is performingvery 
lose to its limitations 
an be made. This result should be a good initialguess for the minimum time 
ase. Another reason for not �nding an optimalsolution when minimizing time 
ould originate from the equations of the vehi
lemodel, parti
ularly the equations of the nonlinear tyre model. There might existmore than one equilibrium at 
ertain points, if that's the 
ase, it is hard for theoptimisation tools to 
onverge to an optimal solution.If the optimal path results of the 
urrent vehi
le model are 
ompared tothe optimal path results of the bi
y
le model with linear tyre properties, it 
anbe seen that the results have the same tenden
ies. It is di�
ult to 
omparethe di�erent results more 
losely, sin
e some of the 
onstraints di�er. For themodel with linear tyres, the limitation of the lateral a

eleration is set with anlimitation envelope, depending on the longitudinal a

eleration, as illustratedin every g-g diagram. For the vehi
le model with nonlinear tyre properties thelateral for
e is limited by the fri
tion ellipse, depending on the longitudinalfor
e.
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Figure 4.23: The optimal path obtained when minimizing 
ost fun
tion 4.3, fora bi
y
le model with nonlinear tyres driving 1 lap on the tra
k.
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Figure 4.24: The 
ontrol inputs for a bi
y
le model with nonlinear tyres driving 1lap on the �ower-shaped tra
k when minimizing 
ost fun
tion 4.3. Longitudinala

eleration, ax and steering angle, δ.
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Figure 4.25: The velo
ity, vx and the slip angles, αf (thin) and αr(thi
k) ofthe bi
y
le model with nonlinear tyres driving 1 lap on the �ower-shaped tra
kwhen minimizing 
ost fun
tion 4.3.
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Figure 4.26: The relation between the lateral a

eleration, ay and the longitu-dinal a

eleration, ax of the bi
y
le model with nonlinear tyres driving 1 lap onthe �ower-shaped tra
k when 
ost fun
tion 4.3 is minimized.
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Figure 4.27: The lateral for
e(blue) and the maximum lateral for
e(red) plottedagainst the longitudinal for
e for the front tyre in the 
ase where 
ost fun
tion 4.3was minimized for a bi
y
le model with nonlinear tyres driving 1 lap on the�ower-shaped tra
k.
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Figure 4.28: The lateral for
e(blue) and the maximum lateral for
e(red) plottedagainst the longitudinal for
e for the front tyre in the 
ase where 
ost fun
tion 4.3was minimized for a bi
y
le model with nonlinear tyres driving 1 lap on the�ower-shaped tra
k.4.2.2 Minimizing the S
aling Fa
torAs mentioned before, an optimal path was only found for the ellipse-shapedtra
k. The 
ost fun
tion was formulated as follows:Cost fun
tion:
min J = min

∫ stf

0
ScfdsThe Ellipse Tra
k, 2 LapsThe optimal path is presented in Figure 4.29. The 
ontrol inputs, ax and δare shown in Figure 4.30, the dashed lines are the resulting 
ontrol inputs fromSe
tion 4.2.1, when minimizing time. The velo
ity of the vehi
le, vx and theslip angles of the tyres, α are presented in Figure 4.31.



CHAPTER 4. OPTIMAL PATH RESULTS 50

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

Figure 4.29: The optimal path obtained when minimizing the s
aling fa
tor, fora bi
y
le model with nonlinear tyres driving 2 laps on the tra
k.
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Figure 4.30: The 
ontrol inputs for a bi
y
le model with nonlinear tyres driving2 laps on the ellipse-shaped tra
k when minimizing the s
aling fa
tor. Longitu-dinal a

eleration, ax and steering angle, δ. The dashed lines show the 
ontrolinputs from the 
ase where the time was minimized.
0 5 10 15 20 25 30 35

0

10

20

30

40

50

Time, t [s]

V
e

lo
c
it
y
, 

v
x
 [

m
/s

]

0 5 10 15 20 25 30 35
−12

−10

−8

−6

−4

−2

0

Time, t [s]F
ro

n
t 

a
n

d
 r

e
a

r 
s
lip

 a
n

g
le

s
, 

a
f,

 a
r 

[d
e

g
]

Figure 4.31: The velo
ity, vx and the slip angles, αf (thin) and αr(thi
k) of thebi
y
le model with nonlinear tyres driving 2 laps on the ellipse-shaped tra
kwhen minimizing the s
aling fa
tor.
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Figure 4.32: The lateral for
e(blue) and the maximum lateral for
e(red) plottedagainst the longitudinal for
e for the front tyre in the 
ase where the s
alingfa
tor was minimized for a bi
y
le model with nonlinear tyres driving 2 laps onthe ellipse-shaped tra
k.
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Figure 4.33: The lateral for
e(blue) and the maximum lateral for
e(red) plottedagainst the longitudinal for
e for the rear tyre in the 
ase where the s
alingfa
tor was minimized for a bi
y
le model with nonlinear tyres driving 2 laps onthe ellipse-shaped tra
k.The above result was obtained when using the result from a simulation runwith the driver model as an initial guess. A simple a

eleration 
ontrol wasadded to the driver model before the simulation run. The approa
h des
ribedin Se
tion 3.5 was applied at �rst but failed.The 
ontrol inputs are not very similar to the 
ontrol inputs from the 
asewhen minimizing time. By observing Figure 4.30 it 
an be noti
ed that the �naltime it takes for the vehi
le to drive around the tra
k di�er between the two
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ases. The �nal time is less when minimizing the s
aling fa
tor,whi
h might mean that the result obtained when minimizing the time is notreally optimal. It may also be dis
ussed if the result from the 
ase where thes
aling fa
tor is minimized are really optimal, sin
e some of the states behavestrangely. The lateral a

eleration, ay doesn't behave as desired, see Figure 4.34.Unfortunately it is di�
ult to 
ompare the results for the nonlinear model tothe linear model, sin
e the limitations di�er. It is hard to �nd optimal paths,espe
ially when the vehi
le model be
omes more advan
ed. Sometimes it isproblemati
 for AMPL to 
onverge to an optimal solution and there is usuallya risk of �nding a lo
al minimum instead.
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Figure 4.34: The lateral a

eleration, ay for a bi
y
le model with nonlinear tyresdriving 2 laps on the ellipse-shaped tra
k when minimizing the s
aling fa
tor.



Chapter 5Con
lusions and Future Work5.1 Con
lusionsIn this proje
t it has been shown that it is possible to �nd optimal paths forvehi
le models designed in Modeli
a. These optimal paths have been found byapplying the theory of optimal 
ontrol. The optimal 
ontrol problem has beenset up with the Optimi
a language and then been solved with AMPL.A vehi
le following the optimal path will traverse the tra
k in minimumtime, whi
h means by minimizing the time, the optimal path 
ould be found.An optimal 
ontrol problem with the purpose of minimizing the time is a free�nal time problem. Solving free �nal time problems is di�
ult, usually a goodinitial guess is ne
essary in order to �nd a solution.In this 
ase the initial guess 
an be obtained by using a driver model. Thedriver model will be rather 
omplex in order of produ
ing a proper initial guess.The driver model needs to 
onsist of a steering 
ontrol and an a

eleration 
on-trol. Implementing a well-behaved a

eleration 
ontrol is parti
ularly di�
ult.A di�erent approa
h based on minimizing the 
ontrol inputs for a �xed �naltime and reuse the result as an initial guess for the minimum time problem hasbeen applied in this proje
t. Optimal 
ontrol problems with �xed �nal timeare mu
h easier to solve than problems with free �nal time, whi
h has beenexperien
ed during this study. A disadvantage with the approa
h is the manyoptimisation runs that are needed before obtaining a proper initial guess, whi
hmight be time-
onsuming but a spe
ial s
ript automates this pro
ess.Transforming the vehi
le model and the optimal 
ontrol problem to be de-pendent of distan
e instead of time will fa
ilitate the sear
h for an optimal path.The main reason why, is that the optimal 
ontrol problem be
omes a �xed �-nal time problem, still with the obje
tive of �nding a minimum time solution.It is therefore preferable to transform the vehi
le model and the optimal 
on-trol problem, before attempting to �nd an optimal path. One disadvantage isthat the 
ontrol inputs 
an no longer be minimized in order to obtain an initialguess. Instead another approa
h for solving the problem was introdu
ed. Theidea of the approa
h is to in
rease the distan
e the vehi
le travels between everyoptimisation until the vehi
le rea
hes the desired distan
e.Satisfying optimal path results for a vehi
le model with linear tyre propertieshave been obtained with both of the two approa
hes. The results have been54
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ompared and the 
on
lusion that the results are very similar has been made.Transforming the model and the problem to be dependent of distan
e is toprefer, sin
e the initial guess is not as 
ru
ial. This means it will take less timeto �nd a su�
iently good initial guess and the optimal path will be easier todetermine.During extreme driving 
onditions it is not adequate to approximate thetyre 
hara
teristi
s with linear properties. Unfortunately it is di�
ult to �ndoptimal paths for vehi
les with nonlinear tyre 
hara
teristi
s.When it is possible to �nd optimal paths for 
omplex vehi
le models, resem-bling real ra
e 
ars, 
on
lusions 
onsidering the vehi
le models 
an be made.These 
on
lusion will play a signi�
ant role when designing real vehi
les.5.2 Future WorkThere are several opportunities for 
ontinuation of this proje
t. The next goal
ould be to �nd optimal paths for a vehi
le model with nonlinear tyre proper-ties. If a

omplishing this isn't possible, vehi
le models with linear tyres 
anstill be used but some type of a 
onstraint on the maximum lateral for
e shouldbe introdu
ed. Any of the following suggestions 
ould be implemented:1. Fymax = Constant2. Fymax = Constant− |Fx|3. F 2

ymax + F 2

x = Constant2

1

2

3

PSfrag repla
ements Fx

Fy

Fymax

Figure 5.1: Three di�erent types of limitations on the lateral for
e.The �rst alternative is obviously the simplest. The third alternative, where
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onstraint on the maximum lateral for
e is nonlinear is ideal and is similarto the fri
tion ellipse used for the nonlinear tyres.The 
hassis model should also be developed towards a more 
omplex model.The next step is perhaps to introdu
e a two tra
k model and then implementsome type of suspension dynami
s.Other types of tra
ks 
an also be spe
i�ed. The tra
ks 
ould be de�ned ina di�erent way, for instan
e with splines.When sear
hing for the optimal path other aspe
ts but time 
ould be 
onsid-ered. Di�erent driving paths require di�erent driving te
hniques, whi
h in turnmight in�uen
e the vehi
le di�erently. For instan
e the wear of the tyres mightbe larger for one path, leading to worse performan
es of the vehi
le, whi
h inturn leads to a greater time. The wear of the tyres 
ould in this 
ase be a partof the 
ost fun
tion.The approa
h for �nding the optimal path when minimizing the s
alingfa
tor 
an be further developed. It would be interesting to see if the �rst partof the tra
k 
an be de
oupled when using the approa
h. It should at least bepossible to de
ouple the �rst lap when �nding an optimal path for the se
ondlap.
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Appendix AVehi
le Modelpartial model Bi
y
leModel_nonlinearextends I
ons.Audit;parameter SI.Inertia Jz=2800 "Yaw inertia";parameter SI.Length lf=1.33 "Distan
e from 
entre of gravity tofront axle";parameter SI.Length lr=1.43 "Distan
e from 
entre of gravity torear axle";parameter SI.Mass m=1550 "Mass of vehi
le";SI.Position xpos(start=45) "Global x position";SI.Position ypos(start=0) "Global y position";SI.Velo
ity xvel "Global x velo
ity";SI.Velo
ity yvel "Global y velo
ity";SI.A

eleration xa

 "Global x a

eleration";SI.A

eleration ya

 "Global y a

eleration";SI.Velo
ity vx(start=15,min=0.001) "Longitudinal velo
ity";SI.Velo
ity vy(start=0) "Lateral velo
ity";SI.A

eleration dvy "Derivative of lateral velo
ity";SI.A

eleration ax "Longitudinal a

eleration";SI.A

eleration ay "Lateral a

eleration";SI.Angle psi(start=Modeli
a.Constants.pi/2) "Yaw angle";SI.AngularVelo
ity z "Yaw velo
ity";SI.Angle delta "Steering angle";SI.Angle af "Front slip angle";SI.Angle ar "Rear slip angle";SI.Angle beta "Vehi
le slip angle";SI.For
e Fxf "Front wheel longitudinal for
e";SI.For
e Fxr "Rear wheel longitudinal for
e";SI.For
e Fyf "Front wheel lateral for
e";SI.For
e Fyr "Rear wheel lateral for
e";///NONLINEAR TYRE MODEL///SI.For
e Fxmaxf(min=0.001) "Maximum longitudinal for
e, front tyre";58



APPENDIX A. VEHICLE MODEL 59SI.For
e Fxmaxr(min=0.001) "Maximum longitudinal for
e, rear tyre";SI.For
e Fymaxf(min=0.001) "Maximum lateral for
e, front tyre";SI.For
e Fymaxr(min=0.001) "Maximum lateral for
e, rear tyre";SI.For
e Fx "Longitudinal for
e of vehi
le";Real Df "Peak value in the Magi
 Formula, front tyre";Real Dr "Peak value in the Magi
 Formula, rear tyre";Real Cf "Shape fa
tor in the Magi
 Formula, front tyre";Real Cr "Shape fa
tor in the Magi
 Formula, rear tyre";Real Bf "Stiffness fa
tor in the Magi
 Formula, front tyre";Real Br "Stiffness fa
tor in the Magi
 Formula, rear tyre";Real Ef "Curvature fa
tor in the Magi
 Formula, front tyre";Real Er "Curvature fa
tor in the Magi
 Formula, rear tyre";SI.For
e Fzf "Verti
al load, front wheel";SI.For
e Fzr "Verti
al load, rear wheel";SI.Height h=0.3 "Height of the 
entre of gravity";Real lamda=0.5;/////////TRACK//////////SI.Position x
 "The 
enter of the tra
k, x-axis";SI.Position y
 "The 
enter of the tra
k, y-axis";SI.Velo
ity dx
 "Derivative of x
";SI.Velo
ity dy
 "Derivative of y
";SI.A

eleration ddx
 "Derivative of dx
";SI.A

eleration ddy
 "Derivative of dy
";Real st(start=0) "Distan
e from the start point of the tra
k";SI.Distan
e d "Distan
e between the vehi
le and the 
entre of tra
k";SI.Position xmin;SI.Position ymin;SI.Position xmax;SI.Position ymax;Real ds;Real x
ds "The x-
oordinate of the 
entre of the tra
k at st+ds";Real y
ds "The y-
oordinate of the 
entre of the tra
k at st+ds";Real x
dsxpos "x
ds-xpos";Real y
dsypos "y
ds-ypos";Real delta_tmp;Real delta_ref "Steering angle of driver model";Real psit "The angle between the tangent of the 
entre of the tra
k andthe x-axis";Real kt "Curvature of the 
entre of the tra
k";Real rt "Radius of the 
entre of the tra
k";Real S
f "Time to distan
e s
aling fa
tor";equationassert(vx>0, "Longitudinal velo
ity (vx) is to low");/*Slip*/af=atan((vy+z*lf)/vx)-delta;ar=atan((vy-z*lr)/vx);



APPENDIX A. VEHICLE MODEL 60beta=atan(vy/vx);/*Kinemati
s*/der(psi)=z;der(xpos)=xvel;der(ypos)=yvel;der(xvel)=xa

;der(yvel)=ya

;der(vx)=ax;der(vy)=dvy;/*Coordinate transform*/xvel = vx*
os(psi) - vy*sin(psi);yvel = vx*sin(psi) + vy*
os(psi);ay = dvy+z*vx;/*Equations of motion*/// der(vx)-z*vy=(-Fyf*sin(delta))/m;der(vy)+z*vx=(Fyr+Fyf*
os(delta))/m;der(z)=(lf*Fyf*
os(delta)-lr*Fyr)/Jz;///NONLINEAR TIRE MODEL///Fyf=-Df*sin(Cf*atan(Bf*(af)-Ef*(Bf*(af)-atan(Bf*(af)))));Fyr=-Dr*sin(Cr*atan(Br*(ar)-Er*(Br*(ar)-atan(Br*(ar)))));1=(Df/Fymaxf)^2+(Fxf/Fxmaxf)^2;1=(Dr/Fymaxr)^2+(Fxr/Fxmaxr)^2;Fx=ax*m;Fxf=lamda*Fx;Fxr=(1-lamda)*Fx;Fxmaxf=Fymaxf;Fxmaxr=Fymaxr;Fzf=(m*Modeli
a.Constants.g_n*lr-m*ax*h)/(lf+lr);Fzr=(m*Modeli
a.Constants.g_n*lf+m*ax*h)/(lf+lr);Fymaxf=1.0*Fzf; //myf*Fzf;Fymaxr=1.3*Fzr; //myr*Fzr;Bf*Cf*Df=80000;Br*Cr*Dr=100000;Cf=1.3;Cr=1.3;Ef=-2;Er=-2.5;///////ELLIPSE TRACK////////x
=45*
os(st);
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=95*sin(st);dx
=-45*sin(st);dy
=95*
os(st);ddx
=-45*
os(st);ddy
=-95*sin(st);xmin=40*
os(st);xmax=50*
os(st);ymin=90*sin(st);ymax=100*sin(st);x
ds=45*
os(st+ds);y
ds=95*sin(st+ds);///////CIRCULAR TRACK///////// x
=(200+40*sin(4*(st)-Modeli
a.Constants.pi/2))*
os(st);// y
=(200+40*sin(4*(st)-Modeli
a.Constants.pi/2))*sin(st);// dx
=-(200)*sin(st)+40*4*
os(4*st-Modeli
a.Constants.pi/2)*
os(st)-40*sin(4*st-Modeli
a.Constants.pi/2)*sin(st);// dy
=(200)*
os(st)+40*4*
os(4*st-Modeli
a.Constants.pi/2)*sin(st)+40*sin(4*st-Modeli
a.Constants.pi/2)*
os(st);// ddx
=-200*
os(st)-680*sin(4*st-Modeli
a.Constants.pi/2)*
os(st)-320*
os(4*st-Modeli
a.Constants.pi/2)*sin(st);// ddy
=-200*sin(st)+
os(4*st-Modeli
a.Constants.pi/2)*(640*sin(st)+160*
os(st))+sin(4*st-Modeli
a.Constants.pi/2)*(160*
os(st)-40*sin(st));// xmin=(195+40*sin(4*(st)-Modeli
a.Constants.pi/2))*
os(st);// xmax=(205+40*sin(4*(st)-Modeli
a.Constants.pi/2))*
os(st);// ymin=(195+40*sin(4*(st)-Modeli
a.Constants.pi/2))*sin(st);// ymax=(205+40*sin(4*(st)-Modeli
a.Constants.pi/2))*sin(st);// x
ds=(200+40*sin(4*((st+ds))-Modeli
a.Constants.pi/2))*
os((st+ds));// y
ds=(200+40*sin(4*((st+ds))-Modeli
a.Constants.pi/2))*sin((st+ds));(xpos-x
)*dx
+(ypos-y
)*dy
=0;ds=0.07;x
dsxpos=x
ds-xpos;y
dsypos=y
ds-ypos;delta_tmp=a
os((x
dsxpos*xvel+y
dsypos*yvel)/(sqrt(x
dsxpos^2+y
dsypos^2)*sqrt(xvel^2+yvel^2)));delta_ref=if x
dsxpos>0 and xvel>0 and y
dsypos/x
dsxpos>yvel/xvel thendelta_tmp elseif x
dsxpos<0 and xvel>0 and yvel/xvel>y
dsypos/x
dsxpos thendelta_tmp elseif x
dsxpos<0 and xvel<0 and y
dsypos/x
dsxpos>yvel/xvel thendelta_tmp elseif x
dsxpos>0 and xvel<0 and yvel/xvel>y
dsypos/x
dsxpos thendelta_tmp elseif xvel>0 and x
dsxpos>0 and yvel/xvel>y
dsypos/x
dsxpos then-delta_tmp elseif xvel<0 and x
dsxpos>0 and y
dsypos/x
dsxpos>yvel/xvel then-delta_tmp elseif xvel<0 and x
dsxpos<0 and yvel/xvel>y
dsypos/x
dsxpos then



APPENDIX A. VEHICLE MODEL 62-delta_tmp elseif xvel>0 and x
dsxpos<0 and y
dsypos/x
dsxpos>yvel/xvel then-delta_tmp else0;psit=if ddx
<=0 then a
os(dx
/sqrt(dx
^2+dy
^2)) else2*Modeli
a.Constants.pi-a
os(dx
/sqrt(dx
^2+dy
^2));d=(ypos-y
)*
os(psit)-(xpos-x
)*sin(psit);kt=sqrt((dx
*ddx
)^2+(dy
*ddy
)^2)/(sqrt(dx
^2+dy
^2))^3;rt=if kt>0 then 1/kt else100000;S
f=(1-d*kt)/(vx*
os(psi-psit)-vy*sin(psi-psit));end Bi
y
leModel_nonlinear;



Appendix BOptimisation S
riptB.1 Minimizing Timereset;param i;let i:=2;#AMPL-filesmodel PlanarVehi
les.Experiments.Optimization.mod;data PlanarVehi
les.Experiments.Optimization.dat;model PlanarVehi
les.Experiments.Optimization.InitialGuess.mod;data PlanarVehi
les.Experiments.Optimization.InitialGuess.dat;model PlanarVehi
les.Experiments.Optimization.SquareProblemCost.mod;model PlanarVehi
les.Experiments.Optimization.Constraint.mod;option solver "/work/jakesson/software_tools/Ipopt/Ipopt-3.2.0/CoinIpopt/bin/ipopt";option ipopt_options "max_iter=10000";solve;in
lude PlanarVehi
les.Experiments.Optimization.GenLogFile.run;model PlanarVehi
les.Experiments.Optimization.Cost.mod;param tmp;let tmp:=TIME;rede
lare param TIME;let TIME:=tmp;#Loop finding optimal solutions when minimizing the optimal 
ontrolinputs and de
reasing TIME(=tf).repeat while i > 0.01 {solve;in
lude PlanarVehi
les.Experiments.Optimization.GenLogFile63



APPENDIX B. OPTIMISATION SCRIPT 64.run;#If an optimal solution is found then TIME(=tf) is de
reased.if solve_result_num == 0 then {shell '
p PlanarVehi
les.Experiments.Optimization_res.txt PlanarVehi
les.Experiments.Optimization_res_tmp.txt';let tmp := TIME;let i := 1*i;let TIME := TIME - i;}else if solve_result_num != 0 then {shell '
p PlanarVehi
les.Experiments.Optimization_res_tmp.txt PlanarVehi
les.Experiments.Optimization_res.txt';let i := i/2;let TIME := TIME + i;let tmp := TIME;}display TIME;};B.2 Minimizing the S
aling Fa
torreset;param i;let i:=1;#AMPL-filesmodel PlanarVehi
les_s.Experiments.Optimization.mod;data PlanarVehi
les_s.Experiments.Optimization.dat;model PlanarVehi
les_s.Experiments.Optimization.InitialGuess.mod;data PlanarVehi
les_s.Experiments.Optimization.InitialGuess.dat;model PlanarVehi
les_s.Experiments.Optimization.SquareProblemCost.mod;model PlanarVehi
les_s.Experiments.Optimization.Constraint.mod;option solver "/work/jakesson/software_tools/Ipopt/Ipopt-3.2.0/CoinIpopt/bin/ipopt";option ipopt_options "max_iter=2000 mu_strategy=adaptive";solve;in
lude PlanarVehi
les_s.Experiments.Optimization.GenLogFile.run;model PlanarVehi
les_s.Experiments.Optimization.Cost.mod;param tmp;let tmp:=TIME;rede
lare param TIME;let TIME:=tmp;



APPENDIX B. OPTIMISATION SCRIPT 65#Loop finding optimal solutions and in
reasing TIME(=sf), untilTIME=900.repeat while TIME < 900 {printf "grid(finalTime=fixedFinalTime(finalTime=%d),nbrElements=%d);", TIME, 0.5*TIME > temp_opt_u_2.op;
lose temp_opt_u_2.op;shell '
at temp_opt_u_1.op temp_opt_u_2.op temp_opt_u_3.op> temp_opt_u.op';shell 'optimi
a
 temp_opt_u.op PlanarVehi
les_s.moPlanarVehi
les_s.Experiments.OptimizationPlanarVehi
les_s.Experiments.Optimization_res.txt';solve;in
lude PlanarVehi
les_s.Experiments.Optimization.GenLogFile.run;#If an optimal solution is found then TIME(=sf) isin
reased.if solve_result_num == 0 then {shell '
p PlanarVehi
les_s.Experiments.Optimization_res.txt PlanarVehi
les_s.Experiments.Optimization_res_tmp.txt';let tmp := TIME;let i := 1*i;let TIME := TIME + i;}else if solve_result_num != 0 then {shell '
p PlanarVehi
les_s.Experiments.Optimization_res_tmp.txt PlanarVehi
les_s.Experiments.Optimization_res.txt';let i := i/2;let TIME := TIME - i;let tmp := TIME;}display TIME;};




