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Chapter 1IntrodutionThe study of vehile dynamis has interested many people for deades. Plenty ofstudies with the objetives of improving the safety and the performanes of ve-hiles have been published. Espeially in rae ar sports the performanes of thears are important sine the professional rae ar drivers operate at the limits oftheir stability envelope. In the studies onentrated on rae ar sports, optimaltrajetories have been obtained with di�erent optimisation tehniques [2℄, [8℄, [9℄.The purpose is usually to minimize the time it takes for a vehile to drive througha segment of a trak [2℄, [8℄, [9℄. In some studies other variables than time areminimized or maximized. The veloity at the exit of a orner is maximized in [9℄.In [8℄ the tyre fores are maximized. In [8℄ and [9℄ the optimisations are doneover a short distane, while in [2℄ the optimal path is tried to be found for anentire lap of a rae trak but for di�erent segments of the trak at a time. Theoptimal path is useful when evaluating the performanes of a rae ar. Rae armodels with di�erent parameter sets an be simulated driving along the optimalpath. Conlusions onerning what parameter set gives the best performanesan then be made. Testing the vehiles in di�erent simulation tests saves timeand money ompared to testing the vehiles in reality.1.1 ObjetiveThe main purpose of this thesis is to �nd an optimal path for a vehile modeldriving on a spei�ed trak. By following the optimal path, the time it takesfor the vehile to traverse the trak is minimized. In order to ahieve the maingoal, a method for �nding the optimal path is needed to be introdued.1.2 MethodThe Modelia language and the Optimia language have been used trough outthis projet. Modelia is an objet-oriented language for physial modeling [6℄.The Optimia language is an extension of the Modelia language [11℄. Theoptimal path will be found for vehile models reated in Modelia. In order to�nd the optimal path, the problem is formulated as an optimal ontrol problemin Optimia. The optimal ontrol problem is solved with AMPL and IPOPT [3℄.4



CHAPTER 1. INTRODUCTION 51.3 Thesis OutlineThe thesis begins with desribing the modeling of the vehiles in Chapter 2. InChapter 3 the optimal ontrol problem is formulated and di�erent approahesfor solving the problem are disussed. In Chapter 4, results from di�erentoptimisation ases are presented. The thesis is �nished with onlusions and asetion disussing future work in Chapter 5.1.4 Notations
ax Longitudinal aeleration of vehile
ay Lateral aeleration of vehile
B Sti�ness fator in the Magi Formula
c General onstraints
C Shape fator in the Magi Formula
CG Centre of gravity of vehile
Cf , (Cr) Cornering sti�ness onstant for front (rear) wheel
d Distane between vehile and entre of trak
D Peak value in the Magi Formula
E Curvature fator in the Magi Formula
f, (r) Distane from entre of gravity to front (rear) axis
Fx,f , (Fx,r) Longitudinal fore ating on front (rear) wheel
Fxmax,f , (Fxmax,r) Maximum longitudinal fore ating on front (rear) wheel
Fy,f , (Fy,r) Lateral fore ating on front (rear) wheel
Fymax,f , (Fymax,r) Maximum lateral fore ating on front (rear) wheel
Fz Vertial load
h Height of the entre of gravity
J Cost funtion
Jz Yaw Inertia
kt Curvature of the entre of the trak
Kus Under steer gradient
m Mass of vehile
r Diretion vetor of vehile
Re E�etive rolling radius
rt Radius of the entre of the trak
s Longitudinal slip
Scf Time to distane saling fator
st Distane from the start point of the trak
t Time
u Vetor of ontinuous ontrol variables
uL Lower ontrol bound
uU Upper ontrol bound
vx Longitudinal veloity of vehile
vy Lateral veloity of vehile
vwx Veloity of wheel in the x-diretion
vwy Veloity of wheel in the y-diretion
wt Width of the trak
x General vetor of ontinuous system state variables
xc The x-oordinate of the entre of the trak



CHAPTER 1. INTRODUCTION 6
xcds The x-oordinate of the entre of the trak at st + ds

xpos Global x position of vehile
xvel Global x veloity of vehile
yc The y-oordinate of the entre of the trak
ycds The y-oordinate of the entre of the trak at s+ ds

ypos Global y position of vehile
yvel Global y veloity of vehile
αf , αr Front (rear) lateral slip angle
δ Steering angle of vehile
δref Steering angle of driver model
µ Frition oe�ient between the tyre and road surfae
ωw Angular veloity of wheel
ψ Yaw angle of vehile
ψt The angle between the tangent of the entre of the trak and the x-axis



Chapter 2Vehile ModelingOne of the larger parts of this thesis has been modeling of vehiles. The vehilemodels have been used when solving the optimisation problem. The modelshave been reated in a modeling language alled Modelia. A short desription ofModelia will begin this hapter. The hapter will then ontinue with desribingdi�erent models of tyres and hassis. Sine the tyres generate the fores thatats on the vehile, the modeling of the tyres will be onsidered before themodeling of the hassis. Disussion onerning vehile handling will �nish thehapter.2.1 ModeliaModelia is an objet-oriented modeling language, used for desribing omplexphysial models. Models in Modelia are mathematially desribed by di�eren-tial, algebrai and disrete equations. The Modelia language is free to use andis developed by a non-pro�t organisation alled the Modelia Assoiation [6℄.2.2 Tyre ModelingThe fores ating on a vehile when tration, braking or steering our are gen-erated by its tyres. Therefore the tyres are very important for several funtionsand properties of the vehile. Tyre modeling is di�ult and several di�erenttyre models exist. Some of them are based on physial models and some ofthem are based on empirial models. In order for a tyre to generate fore, sliphas to our. These fores are nonlinear in reality but an be modeled as linearfuntions of the slip angles. Under normal driving onditions it is su�ient toassume the fores to be linear. During more extreme driving onditions thesefores will saturate and beome nonlinear. There are three di�erent types ofslip: lateral, longitudinal and spin. Lateral slip will be onsidered �rst.2.2.1 Lateral slipLateral slip ours when the vehile is ornering. The de�nition of the lateralslip angle, α is:
tanα = −vwy/vwx (2.1)7



CHAPTER 2. VEHICLE MODELING 8where vwy is the veloity of the wheel in the y-diretion, while vwx is the veloityof the wheel in the x-diretion, see Figure 2.1.
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Figure 2.1: De�nition of slip angleFor a linear tyre model the lateral fores ating on the vehile are de�nedas:
Fy,f = −Cfαf (2.2)
Fy,r = −Crαr (2.3)where Fy,f is the lateral fore ating on the front wheel and Fy,r is the lateralfore ating on the rear wheel. Cf and Cr are ornering sti�ness onstants.For a nonlinear tyre model, the lateral fores will saturate for large slipangles, shown in Figure 2.2.
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Figure 2.2: The relation between the lateral fore, Fy and the lateral slip, α fora nonlinear tyre model.



CHAPTER 2. VEHICLE MODELING 9Nonlinear tyre fores are often desribed with the Magi Formula [7℄. Thisis an empirial method that has been developed from measuring tyre harater-istis. For the lateral ase the formula is de�ned as follows:
Fy = D sin(C arctan(Bα− E(Bα − arctan(Bα)))) (2.4)where:

B is the sti�ness fator
C is the shape fator
D is the peak value
E is the urvature fatorThe fator B determines the slope at the origin of the urve. The oe�ient

C de�nes the extent of the sine funtion and therefore determines the shape ofthe urve. The oe�ient D represents the peak value of the urve. The fator
E ontrols the urvature at the peak and the horizontal position of the peak.2.2.2 Longitudinal slipLongitudinal slip ours when the wheel is subjeted to an external driving orbraking moment, whih will make the angular veloity of the wheel, ωw di�erentfrom when free-rolling. When the wheel is free-rolling, its angular veloity, ωwis de�ned as the ratio between the wheel entre veloity in the x-diretion, vwxand the e�etive rolling radius, Re;

ωw = vwx/Re (2.5)There are several de�nitions of longitudinal slip, s. In [10℄ the following de�ni-tion is used:
s =

Reωw − vwx

vwx

(2.6)The following values for ωw and s are obtained with de�nition 2.5 and 2.6:Loked wheel ωw = 0, s = −1Free-rolling wheel ωw = vwx/Re, s = 0Spinning wheel ωw = 2vwx/Re, s = 1The longitudinal fore, Fx an be omputed by the Magi Formula as well,but with the longitudinal slip, s as an input instead.2.2.3 Combined slipIn some situations both lateral slip and longitudinal slip our, for instane whenornering and braking at the same time. Figure 2.3 illustrates a frition ellipse,whih is based on ombined slip. The frition ellipse desribes the dependenybetween lateral fore and longitudinal fore. The frition ellipse is de�ned as:
(
Fx

Fxmax

)2 + (
Fy

Fymax

)2 = 1 (2.7)
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Figure 2.3: The frition ellipseThe idea is that a resultant fore of Fx and Fy lies on the ellipse. Fxannot exeed the maximum longitudinal fore, Fxmax and Fy annot exeedthe maximum lateral fore, Fymax. Fxmax may be de�ned as:
Fxmax = µFz (2.8)where µ is a oe�ient of frition between the tyre and the road surfae, and

Fz is the vertial load.2.3 Chassis ModelingOne of the simplest hassis models is the biyle model. The biyle model is atwo dimensional vehile model, see Figure 2.5. Basially it has only one wheelon eah axis, whih means that only planar motion in the earth �xed x-y planeis onsidered. To be able to derive the equations of motion it is neessary tointrodue one additional oordinate system, the vehile frame, whih origin isloated at the entre of gravity of the vehile, as illustrated in Figure 2.4.
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Figure 2.4: The earth �xed frame and the vehile frame. The vehile frame isrotated with ψ around the z-axis.The yaw angle, ψ is the angle between the two oordinate systems. Theequations of motion of the model originate from Newton's seond law, F = ma.Lateral aeleration ours while driving and steering, this is ompensated forby fores ating on the vehile. The aeleration of the vehile an be obtainedby derivation of the veloity vetor of the vehile, ṙ. The veloity vetor isdenoted as:
ṙ = v = (vx, vy, 0) (2.9)and the yaw veloity of the vehile, ψ̇ as:
ω = (0, 0, ψ̇) (2.10)The following derivation rule is applied when di�erentiating ṙ:

r̈ =
d

dt
ṙ = v̇ + ω × v (2.11)
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(2.17)It is now possible to write the lateral slip angles for the front and the rear wheelas funtions of the veloities of the vehile:
αf = arctan(

vy + ψ̇lf
vx

) − δ (2.18)
αr = arctan(

vy − ψ̇lr
vx

) (2.19)



CHAPTER 2. VEHICLE MODELING 132.4 Trak ModelingTwo di�erent traks have been used during this projet. These two traks havebeen modeled in Modelia and the oordinates of the traks are arbitrarilyimposed. A trajetory has been de�ned for eah of the two traks, this traje-tory represents the entre of the trak, shown in Figure 2.6. The trajetory,
(xc(st), yc(st)) is represented as a funtion of st(t), while st(t) is a funtion oftime. This means st(t) inreases over time, while the trajetory inreases over
st(t). xc and yc are the global x- and y-positions of the entre of the trak.
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X

Y

(xc, yc)

st

wt wtFigure 2.6: The trak model.The �rst trak used was ellipse-shaped, see Figure 2.7. The oordinates washosen in a way so the ellipse beame twie as long as it is wide. The total lengthof the trak is 450 meters. The entre of the ellipse-shaped trak is de�ned as:
(xc, yc) = (45 cos(st), 90 sin(st)) (2.20)Further on a irular-shaped trak with a sinus urvature added to it was in-trodued. As seen in Figure 2.8, this trak has more orners than the previousone. This trak is supposed to be more hallenging for the vehile model. Thelength of this trak is about 1400 meters, whih makes it more than three timesfurther than the ellipse-shaped trak. The oordinates of the entre of the trakare de�ned as:

(xc, yc) = ((200+40 sin(4st−π/2)) cos st, (200+40 sin(4st−π/2)) sin st) (2.21)
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CHAPTER 2. VEHICLE MODELING 152.5 Time to Distane TransformationIn Setion 2.3, the equations of motion of the vehile model were derived withrespet of time. In this setion the equations will be derived with respet oftravelled distane instead. In order to ahieve this, a time to distane salingfator, Scf is needed to be introdued. In [2℄ the transformation from time todistane has been done with a saling fator de�ned as:
Scf =

dt

dst

=
1 − d

rt

vx cos(ψv − ψt) − vy sin(ψv − ψt)
(2.22)Where d is the shortest distane between the vehile and the entre of the trak.

d = (ypos − yc) cos(ψt) − (xpos − xc) sin(ψt) (2.23)
ψt is the angle between the tangent of the entre of the trak and the x-axis. ψtan be de�ned as:

ψt = arccos(
(ẋc, ẏc)(1, 0)

|(ẋc, ẏc)||(1, 0)|
) = arccos(

ẋc
√

ẋc
2 + ẏc

2
) (2.24)

rt is the radius of the entre of the trak and an be written as rt = 1/kt, where
kt is the urvature of the entre of the trak and de�ned as follows:

kt =
|(ẋc, ẏc) × (ẍc, ÿc)|

|(ẋc, ẏc)|3
(2.25)

Vehicle
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wt wtFigure 2.9: The trak model.Consider a model dependent of time with the following de�nition:



CHAPTER 2. VEHICLE MODELING 16
ẋ = f(x(t), u(t), t), x(0) = x0, t ∈ [0, tf ]When the model is transformed to be dependent of travelled distane, it will bede�ned as:

dx
dst

= Scff(x(st), u(st), st), x(0) = x0, st ∈ [0, stf ]2.6 The Driver ModelA quite simple driver model has been introdued with the purpose of obtaininga �rst initial guess for the optimisation problem. The driver model is supposedto make the vehile follow a spei�ed trajetory, in this ase the entre of thetrak. The driver model onsists of a type of steering ontrol but doesn't havean aeleration ontrol, the vehile is supposed to have onstant veloity. Thesteering ontrol model spots a point on the trajetory a few meters ahead andsimply tells the vehile to steer towards this point. This an be ompared to howa human driver would steer the vehile, he looks at the road a few meters aheadand steers in order to keep the vehile on the road. The position of the vehilein the world frame is (xpos, ypos) and the point a few meters ahead of the vehileis (xcds, ycds). The vetor between these points is (xcds − xpos, ycds − ypos) andthe diretion of the vehile is denoted as (xvel, yvel). The angle between thesetwo vetors is equal to the steering angle, as illustrated in Figure 2.10.
δref = arccos

(xcds − xpos)xvel + (ycds − ypos)yvel
√

(xcds − xpos)2 + (ycds − ypos)2 +
√

x2

vel + y2

vel

(2.26)The vehile model is then simulated with a onstant veloity and with δref asan input for the steering angle. The simulated result an then be used as aninitial guess for the �rst optimisation run.
Direction of the vehicle

PSfrag replaements
δref

X

Y

(xpos, ypos)(xcds, ycds)

wt wtFigure 2.10: The driver model



CHAPTER 2. VEHICLE MODELING 172.7 Vehile HandlingVehile handling desribes the way vehiles perform transverse to their diretionof motion, partiularly during ornering. When dealing with planar vehilemodels, the fous lies on yaw stability and response to steering input. Anunder steer gradient is often measured or omputed when desribing the steeringharateristis of a vehile. The under steer gradient, Kus is de�ned as:
Kus =

∂δ

∂ay

−
∂δA
∂ay

(2.27)where δA is alled the Akerman angle and is derived from a pure geometrialapproah. An under steer vehile has a positive under steer gradient (Kus > 0)and an over steer vehile has a negative under steer gradient (Kus < 0). Thesteering harateristis of a vehile an be tested, by driving the vehile around airle, while the vehile onstantly aelerates. Figure 2.11 illustrates the resultfrom a test ase where a biyle model with linear tyre properties is simulateddriving in a irle with a given radius. The lateral aeleration is plotted againstthe steering angle. The solid line represents an under steer biyle model whilethe dashed line represents an over steer model. The under steer model was usedlater on in the optimisations. For an under steer vehile the slip angles of thefront wheels are larger than the slip angles of the rear wheels. This means thedriver usually needs to ompensate for this by steering harder. For an oversteer vehile it is the opposite, the driver should not steer as muh and the rearwheels have larger slip angles than the front wheels.
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Figure 2.11: The relation between steering angle, δ and lateral aeleration, ay.The solid line shows an under steer vehile model while the dashed line showsan over steer vehile model.



CHAPTER 2. VEHICLE MODELING 18For a biyle model with linear tyres, the steering harateristis depend ontwo fators, the ornering sti�ness onstants of the tyres and the plae of theentre of gravity of the vehile. The biyle model is neutral steer if the orner-ing sti�ness onstants of the front and rear wheels are equal while the entre ofgravity of the vehile is plaed in the middle.
Cf < Cr -> under steer
Cf = Cr -> neutral steer
Cf > Cr -> over steer
lf < lr -> under steer
lf = lr -> neutral steer
lf > lr -> over steerAnother way to illustrate the steering harateristis ould be done by plot-ting the lateral fores Fy,f and Fy,r against the slip angles, αf and αr, seeFigure 2.12.
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Figure 2.12: The relation between the normalized lateral fores, Fy,f and Fy,rand the lateral slip angles, αf and αrThe diagram shows the normalized lateral fores of the tyres plotted againstthe lateral slip angles of the tyres. The solid urve represents the front tyre whilethe dashed urve represents the rear tyre. The diagram shows a biyle modelwith nonlinear tyre properties, whih was used later on in the optimisations.This partiular model is under steer during the entire simulation run, sine theurve of the rear tyres is above the urve of the front tyres. If the urve of therear tyres is below the urve of the front tyres at any point then the vehile isover steer at that point.



Chapter 3OptimisationThe following hapter will begin with a short desription of an optimal ontrolproblem. AMPL and Optimia will be desribed brie�y in the next setion.Finally two di�erent approahes for solving the optimal ontrol problem will beintrodued.3.1 The Optimal Control ProblemThe objetive of this projet has been to �nd an optimal path that will minimizethe time for a vehile model travelling along a spei�ed trak. The optimal pathan be found by using the theory of optimal ontrol. In optimal ontrol theobjetive is to minimize or in some ases maximize a ost funtion. An optimalontrol problem is typially formulated as follows:
min
u,p

J = min

∫ tf

0

L((x(t), u(t), p)dt (3.1)subjet to: ẋ = f(x(t), u(t)) x(0) = x0

c(t) = c(x(t), u(t), t) ≤ 0
uL ≤ u(t) ≤ uUfor all t ∈ [t0, tf ]where J is the ost funtion and

ẋ = f(x(t), u(t)), x(0) = x0, t ∈ [t0, tf ]is a mathematial model of the system. In our ase, this is the vehile model.
c(x(t), u(t), t) ≤ 0 (3.2)are the physial onstraints of the optimal ontrol problem. Physial onstraintsarise from limitations on ontrol variables and limitations on the state variablesof the model. For instane in the minimum time problem, there are onstraintson the longitudinal and lateral aeleration of the vehile and on the steeringangle. Other onstraints ome from the fat that the vehile must stay withinthe trak boundaries.
uL ≤ u(t) ≤ uU (3.3)19



CHAPTER 3. OPTIMISATION 20are the onstant ontrol bounds.An optimal ontrol, u∗ and its orresponding optimal state trajetory, x∗are found when the ost funtion is minimized.When dealing with a minimum time problem, the ost funtion takes thefollowing form:
min J = min

∫ tf

0

1dt (3.4)There are several methods for solving an optimal ontrol problem. Thesemethods an be divided into two di�erent main methods, diret and indiretmethods. When applying diret methods, the optimal ontrol problem is on-verted into a nonlinear programming problem and is solved diretly using math-ematial programming tehniques. The ontinuous ontrol history is replaedwith a disrete approximation. This means that the ontrol input an only beadjusted at a �xed number of positions along the trajetory, while the valuesin between the points are estimated by interpolation. The Optimia Compileruses a simultaneous method, known as the diret olloation method. Thismethod fully disretize the state and the ontrol variables, whih leads to large-sale NLP problems. Simultaneously methods are disussed in [1℄. AMPL andan external solver, alled IPOPT have been used when solving the nonlinearprogramming problem.3.2 AMPLAMPL is a high-level, mathematial programming language, used for desribingand solving large sale optimisation problems. AMPL expresses the symbolialgebrai notation familiar to people in a way that an serve as diret inputto a omputer system [3℄. AMPL does not solve the problem diretly, insteadit uses an external solver suh as IPOPT. AMPL handles linear and nonlinearproblems.3.3 OptimiaOptimia is an extension of the Modelia language and the Optimia Compileris an optimisation tool developed for Modelia. The Optimia language admitsformulation of dynami optimisation problems on the following form, aordingto [11℄:
min

∫ tf

0

L((x(t), u(t), p)dt (3.5)subjet to: f(ẋ, x, u, p) = 0
ci(x(t), u(t), p) ≤ 0
ce(x(t), u(t), p) = 0
cf (x(tf ), u(tf ), p) = 0The ost funtion and the onstraints are written in an Optimia �le. ThisOptimia �le onsists of three setions. In the �rst setion the variable boundsare spei�ed. The next setion ontains the ost funtion and the optimisationhorizon. The last setion ontains all the onstraints. The Optimia Compiler



CHAPTER 3. OPTIMISATION 21ompiles the Optimia �le and the Modelia �le, ontaining the model repre-sentation and generates a set of new �les ontaining AMPL ode. The problemis then solved using AMPL, whih in turn invokes the numerial solver.
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AMPL files Result
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Figure 3.1: Flow hart for AMPL and Optimia.3.4 Solving the Optimal Control ProblemThe purpose has been to minimize the driving time for a vehile model travellingalong a spei� trak. Solving a minimum time problem like this one is verydi�ult. It is neessary to speify a good initial guess, in order to �nd anoptimal solution. The initial guess needs to be lose to the optimal solution.One approah for obtaining an initial guess is to ome up with a driver model,whih takes the vehile around the trak in a way that is lose to the optimalway. A driver model that aomplish this will be quite omplex [2℄. Anotherapproah for �nding a good initial guess is to minimize another ost funtionfor a �xed �nal time. For instane ould the ontrol inputs be minimized fora given time. The result obtained an then be used as an initial guess whensolving the minimum time problem. This is a ommon method when solvingminimum time problems and has been used in this projet as well.The driver model introdued in Setion 2.6 is used for produing an initialguess for the optimisation ase where the ontrol inputs are minimized. Thisdriver model is quite simple but good enough for taking the vehile aroundthe spei�ed trak. The main limitation of the driver model is the lak of anaeleration ontrol, the driver model has onstant veloity through out thetrak. The vehile is simulated driving through the trak with the spei�eddriver model. The result obtained from the simulation will then be used asa �rst initial guess for the optimal ontrol problem. This initial guess is toopoor for solving the minimum time problem but is su�ient for minimizing theontrol inputs for a given time. This given time will be the same as the time ittook for the driver model to drive around the trak. The ost funtion is de�nedas:
min

∫ tf

0

u1(t) + u2(t)dt (3.6)where u1(t) and u2(t) are the ontrol inputs, in most ases the longitudinal



CHAPTER 3. OPTIMISATION 22aeleration, ax and the steering angle, δ of the vehile. tf is the �xed �naltime. The optimal solution is put in a result �le and this result will be usedas an initial guess for the next optimisation. In the next optimisation the ostfuntion will stay the same while the �xed �nal time, tf is dereased. Thisproedure will keep going until tf is su�iently lose to the optimal time. Theoptimal time is obviously not known at this point but one an have an hint ofwhat it is. The ost funtion is then rede�ned in a way so the time is minimized.When minimizing the time, the result from the last optimisation of the ontrolinputs is used as an initial guess. Hopefully this initial guess is good enough for�nding an optimal solution for the minimum time ase.
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Optimal controlFigure 3.2: Flow hart for the optimisation proedure.The proedure desribed above might not always behave as desired. If AMPLdoesn't �nd an optimal solution during any of the optimisation runs, somethingneeds to be hanged. There are a few di�erent possibilities for ontinuing whenno optimal solution is found. The number of elements of the grid an be respe-i�ed, a larger number will improve the auray, whih may lead to an optimalsolution. If an optimal solution is still not found, the next step is to hange the



CHAPTER 3. OPTIMISATION 23ost funtion by penalizing one of the terms. For instane ould the originalost funtion be hanged into:
min

∫ tf

0

10 ∗ u1(t) + u2(t)dt (3.7)whih means that the �rst ontrol input is now more heavily penalized. Ifthe searh of an optimal solution fails one again, the �xed �nal time an behanged. Let's say that an optimisation ase with the �xed �nal time, tf = 60is run and AMPL �nds an optimal solution. The next step is to derease tf ,for instane to tf = 56 and then run a new optimisation with the same ostfuntion. If an optimal solution isn't found, then it might be needed to run anoptimisation for tf = 58 �rst and then run the optimisation for tf = 56, whihmight result in an optimal solution. The result from tf = 58 is a better initialguess than the result from tf = 60 when trying to solve the ase for tf = 56.When all the above ations are arried through and an optimal solution isstill not found then the problem annot be solved beause of the �xed �nal time,
tf is being unfeasible without violating the onstraints. This also means thatthe last optimal solution found is lose to the optimal solution for the minimumtime ase and will be a good initial guess for solving the minimum time problem.3.5 Transforming the Optimal Control ProblemIn the previous setion, the optimal ontrol problem was set up with the equa-tions of the vehile model dependent of time. In this setion, the optimal ontrolproblem will be set up after the transformation from time to distane has beenapplied, whih was desribed in 2.5. The equations of the vehile model will bedependent on travelled distane. The purpose is still to �nd an optimal path,whih will minimize the time. Sine Scf is de�ned as an inrement of travelleddistane, dst divided by an inrement in time, dt, minimizing the integral of
Scf will have the same e�et as minimizing time. The ost funtion will beformulated as follows:

min tf = min

∫ stf

0

Scfds (3.8)The ost funtion is now minimized over a ertain distane, stf instead of over aertain time. The reason why the transformation from time to travelled distaneis applied, is beause it should be easier for the optimisation tools to �nd anoptimal solution. The variable that the ost funtion is minimized over, in thisase the distane, stf is �xed as opposed to when minimizing over time. Asmentioned before it is easier to �nd an optimal solution when having a �xed�nal variable.A good initial guess is still vital when searhing for an optimal solution.When the problem was formulated with respet to time, the inputs were mini-mized for a �xed �nal time. The �xed �nal time was dereased between everyoptimisation run until the �xed �nal time was lose enough to the minimumtime. This approah annot be used when the problem is formulated with re-spet to travelled distane, beause the ost funtion is not minimized over time.Instead another approah, whih is based on inreasing stf , is tried. The ideais to start with a low stf , whih means Scf is minimized for the �rst part ofthe trak, in the next optimisation run stf is inreased and Scf is minimized



CHAPTER 3. OPTIMISATION 24one again. stf is then inreased until it equals the entire trak. Let's onsidera ase where the purpose is to drive a lap around the ellipse-shaped trak. Inthe �rst optimisation an optimal path is found for the �rst part of the trak. Inthe next optimisation an optimal solution is found when the vehile drives a bitfurther on the trak, the stf is inreased. When solving this problem the previ-ous optimal solution is used as an initial guess. Then stf is inreased again anda new optimal solution is found, this proedure will ontinue until the vehilehas driven around the entire trak.
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Figure 3.3: Optimal paths for di�erent stf



Chapter 4Optimal Path ResultsSeveral optimisation results have been obtained, the following results will bepresented in this setion:
• Biyle Model with Linear tyres� min t

∗ The Ellipse Trak, 2 Laps
∗ The Flower Trak, 1 Lap� minScf

∗ The Ellipse Trak, 2 Laps
∗ The Flower Trak, 1 Lap

• Biyle Model with Nonlinear tyres� min t

∗ The Ellipse Trak, 2 Laps
∗ The Flower Trak, 1 Lap� minScf

∗ The Ellipse Trak, 2 Laps4.1 Biyle Model with Linear TyresFor the �rst optimisation tests, a biyle model with linear tyres was used. Theparameters of the biyle model are presented in Table 4.1. These parametersare arbitrarily imposed and not reeived from any real vehile model, but theparameters are realisti. Variables with lower and upper bound onstraints arepresented in Table 4.2. Notie that the longitudinal veloity of the vehile, vxhas a starting value. The entire vehile model in Modelia an be found inAppendix A.
25



CHAPTER 4. OPTIMAL PATH RESULTS 26ParameterYaw Inertia, Jz [kgm2℄ 2800Front Cornering Sti�ness, Cf [℄ 100000Rear Cornering Sti�ness, Cr [℄ 150000Distane from entre of gravity to front axle, lf [m℄ 1.33Distane from entre of gravity to rear axle, lr [m℄ 1.43Mass of vehile, m [kg℄ 1550Table 4.1: Parameters of the biyle model.Variable LowerBound UpperBound Start Value
delta [rad℄ -1 1 0
vx [m/s℄ 0 100 10
ax [m/s2℄ -10 10 0
d [m℄ -5 5 0Table 4.2: Variables of the biyle model.4.1.1 Minimizing TimeIn the �rst optimisation ase the time around an ellipse-shaped trak was min-imized and in the seond ase the time around a �ower-shaped trak was min-imized. The ost funtion and the onstraints for both of the two ases areformulated as follows:Cost funtion:

min J = min
∫ tf

0
1dtConstraints:

a2

x + a2

y ≤ 102The Ellipse Trak, 2 LapsThe optimal path for the vehile model when minimizing time is shown in Fig-ure 4.1. The resulting ontrol signals, ax and δ are presented in Figure 4.2. Theveloity of the vehile and the lateral slip angles of the tyres are shown in Fig-ure 4.3. In Figure 4.4, the lateral aeleration is plotted against the longitudinalaeleration, usually alled g-g diagram. The purpose of the g-g diagram is toshow how lose the vehile is to its limitations in aeleration during driving.The dashed line in Figure 4.4 illustrates the limitations in aeleration of thevehile, notieable is that the vehile is extremely lose to its limitations theentire run. In Figure 4.2 it an be seen that the steering angle, δ dereasesvery quikly at the very end of the run. Sine it doesn't matter how the ve-hile behave after the run is ompleted, the �nal value of the steering angle isunimportant. This also explains the straight line in the g-g diagram.
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Figure 4.1: The optimal path obtained when minimizing the time, for a biylemodel with linear tyres driving 2 laps on the trak.
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Figure 4.2: The ontrol inputs for a biyle model with linear tyres driving2 laps on the ellipse-shaped trak when minimizing the time. Longitudinalaeleration, ax and steering angle, δ.
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Figure 4.3: The veloity, vx and the slip angles, αf (thin) and αr(thik) of thebiyle model with linear tyres driving 2 laps on the ellipse-shaped trak whenminimizing the time.
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Figure 4.4: The relation between the lateral aeleration, ay and the longitudinalaeleration, ax of the biyle model with linear tyres driving 2 laps on theellipse-shaped trak when the time is minimized. The dashed line shows theonstraints on the aelerations.The proedure desribed in Setion 3.4 was applied in order to obtain theminimum time solution. The ontrol inputs, ax and δ were minimized for adereasing �xed �nal time, tf . After tf was dereased a few times, the steeringangle, δ started to osillate. The result wasn't satisfying, sine it was a poorinitial guess for the minimum time ase. Instead ax and the derivative of δ wereminimized, in addition the derivative of δ was penalized. In the reeived resultthe osillations of the δ vanished and the result was good enough as an initialguess for the minimum time ase.The Flower Trak, 1 LapThe optimal path for the vehile model driving one lap through the seondtrak is shown in Figure 4.5. The aeleration, ax and the steering angle, δ arepresented in Figure 4.6. In Figure 4.7, the veloity of the vehile and the lateralslip angles of the tyres are presented. Figure 4.8 illustrates a g-g diagram. Evenfor this trak the vehile is very lose to its limitations trough out the run.
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Figure 4.5: The optimal path obtained when minimizing the time, for a biylemodel with linear tyres driving 1 lap on the trak.
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Figure 4.6: The ontrol inputs for a biyle model with linear tyres driving 1lap on the �ower-shaped trak when minimizing the time. Longitudinal ael-eration, ax and steering angle, δ.
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Figure 4.7: The veloity, vx and the slip angles, αf (thin) and αr(thik) of thebiyle model with linear tyres driving 1 lap on the �ower-shaped trak whenminimizing the time.
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Figure 4.8: The relation between the lateral aeleration, ay and the longitudinalaeleration, ax of the biyle model with linear tyres driving 1 lap on the �ower-shaped trak when the time is minimized. The dashed lines show the onstraintson the aelerations.Finding the optimal path was more di�ult for this trak, whih is explainedwith the fat that this trak has more orners. As for the previous ase thederivative of δ and ax were minimized for a �xed �nal time and the result wasthen used as an initial guess for the minimum time ase.4.1.2 Minimizing the Saling FatorIn the two following optimisation ases, the equations of the vehile model andthe optimal ontrol problem are dependent of distane. The ost funtion andthe onstraints are now de�ned as:Cost funtion:
min J = min

∫ stf

0
ScfdsConstraints:

a2

x + a2

y ≤ 102The Ellipse Trak, 2 LapsThe optimal path for the ellipse-shaped trak is presented in Figure 4.9. Fig-ure 4.10 shows the ontrol inputs, ax and δ, while Figure 4.11 shows the veloityof the vehile, vx and the slip angels of the tyres, α. The g-g diagram in Fig-ure 4.12 illustrates that the vehile one again is extremely lose to its limita-



CHAPTER 4. OPTIMAL PATH RESULTS 33tions. The dashed urves in Figure 4.10 illustrate the result from Setion 4.1.1,where the time was minimized. Sine the objetive is the same when minimizingthe saling fator as when minimizing time, the results may be ompared. Theresults are quite similar as observed in Figure 4.10. In this ase the steeringangle, δ inreases quikly at the end, but as mentioned earlier the �nal value ofthe steering angle doesn't a�et the optimal path.
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Figure 4.9: The optimal path obtained when minimizing the saling fator, fora biyle model with linear tyres driving 2 laps on the trak.
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Figure 4.10: The ontrol inputs for a biyle model with linear tyres driving 2laps on the ellipse-shaped trak when minimizing the saling fator. Longitu-dinal aeleration, ax and steering angle, δ. The dashed lines show the ontrolinputs from the ase where the time was minimized.
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Figure 4.11: The veloity, vx and the slip angles, αf (thin) and αr(thik) of thebiyle model with linear tyres driving 2 laps on the ellipse-shaped trak whenminimizing the saling fator. The dashed lines show the ontrol inputs fromthe ase where the time was minimized.



CHAPTER 4. OPTIMAL PATH RESULTS 35

−10 −5 0 5 10

−10

−5

0

5

10

Longitudinal acceleration, ax [m/s
2
]

L
a

te
ra

l 
a

c
c
e

le
ra

ti
o

n
, 

a
y
 [

m
/s

2
]

Figure 4.12: The relation between the lateral aeleration, ay and the longitu-dinal aeleration, ax of the biyle model with linear tyres driving 2 laps onthe ellipse-shaped trak when the saling fator is minimized. The dashed lineshows the onstraints on the aelerations.The approah introdued in Setion 3.5 was applied at �rst. In general thisapproah behaved well but at ertain parts of the trak, an optimal solutionwasn't found and aused the method to fail. Partiularly at the top and in thesetion after together with the bottom and the setion after the bottom thesearh for an optimal solution was di�ult. Scf was minimized for the very �rstpart of the trak and an optimal solution was found. stf was then inreasedand an optimal solution was found again. This proedure worked out good untilreahing the top of the ellipse, where an optimal solution were no longer found.The explanation was that the vehile had a bad position and the veloity wastoo high for ontinuing on the trak, thereby the failure of the next optimisation.This problem was solved by putting terminal onstraints into the optimisation.Following terminal onstraints were introdued:
• low terminal veloity of the vehile
• the �nal position of the vehile needs to be in the middle of the trak
• the �nal diretion of the vehile needs to equal the �nal diretion of thetangent of the trakThe next problem arose in the setion after the top of the ellipse. The steeringangle began to osillate, this problem was solved by adding the derivative ofthe steering angle to the ost funtion and penalizing it. This means both thesaling fator and the derivative of the steering angle were minimized. Onemight believe this will interfere with �nding an optimal path, but that wasn't



CHAPTER 4. OPTIMAL PATH RESULTS 36the ase. Instead it beame easier for the optimisation tools to onverge tothe optimal solution. After introduing the above improvements an optimalpath for the entire trak was found. A sript automating this proess was used,see Appendix B.1. In the sript a few di�erent options may be hosen, onepartiular option alled, "mu_strategy=adaptive" required less iterations inthe optimisation runs. More about di�erent IPOPT options an be found in [4℄.The optimal path was also found when using the result from a simulationwith the driver model as an initial guess. The simulated initial guess is preferablewhen it works beause the proedure with all the other optimisations are notneeded, but for more hallenging traks and more advaned vehile models thesimulated initial guess will probably not be good enough.The Flower Trak, 1 LapThe optimal path for the seond trak when minimizing the saling fator, Scfis shown in Figure 4.13. The ontrol inputs, the veloity of the vehile and theslips angles are presented in Figures 4.14 and 4.15. The g-g diagram is presentedin Figure 4.16. The steering angle and the slip angles are a bit smoother whenminimizing the saling fator ompared to when minimizing time. In the ase ofminimizing the saling fator, the derivative of the steering angle was added tothe ost funtion. This means the derivative of the steering angle was minimizedas well, whih makes the steering angle smoother. As mentioned earlier, thisdoesn't a�et the searh of the optimal path. The vehile is still driving on itslimitations, as seen in Figure 4.16.
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Figure 4.13: The optimal path obtained when minimizing the saling fator, fora biyle model with linear tyres driving 1 lap on the trak.
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Figure 4.14: The ontrol inputs for a biyle model with linear tyres driving 1lap on the �ower-shaped trak when minimizing the saling fator. Longitudinalaeleration, ax and steering angle, δ. The dashed lines show the ontrol inputsfrom the ase where the time was minimized.
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Figure 4.15: The veloity, vx and the slip angles, αf (thin) and αr(thik) of thebiyle model with linear tyres driving 1 lap on the �ower-shaped trak whenminimizing the saling fator. The dashed lines show the ontrol inputs fromthe ase where the time was minimized.
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Figure 4.16: The relation between the lateral aeleration, ay and the longitu-dinal aeleration, ax of the biyle model with linear tyres driving 1 lap on the�ower-shaped trak when the saling fator is minimized. The dashed line showthe onstraints on the aelerations.The approah desribed in Setion 3.5 failed at �rst at ertain points ofthis trak as well, but with the improvements made in the previous ase anoptimal solution was obtained. The optimal path was also found when usingthe simulated initial guess, just like for the ase with the ellipse-shaped trak.4.1.3 ComparisonThe time it takes for the vehile to traverse di�erent numbers of laps on the twotraks are presented in Table 4.3. The table shows the minimum time reeivedwhen minimizing the time and when minimizing the saling fator.Trak Number of laps min t minScfEllipse 1 18.039s 18.042sEllipse 2 35.242s 35.243sEllipse 3 52.443s 52.443sFlower 1 42.228s 42.220sFlower 2 83.506s 83.504sTable 4.3: Comparison between minimizing time and minimizing the salingfator for a biyle model with linear tyres driving di�erent number of laps onthe two di�erent traks.The exeution times for the di�erent optimisation ases are dependent onhow good the initial guesses are. A better initial guess will obviously lead to a



CHAPTER 4. OPTIMAL PATH RESULTS 40shorter exeution time. Generally the exeution time is less when minimizing thesaling fator ompared to when minimizing the time. Normally it takes a fewminutes for eah optimisation run when minimizing the time. When minimizingthe saling fator an optimisation run takes a few seonds but aggregately moreoptimisation runs are needed ompared to when minimizing the time. Thenumber of optimisation runs depend on the distane of the trak and on howmuh stf is inreased between the runs, when minimizing the saling fator. Inthe ase where the time is minimized the number of optimisation runs dependon how muh tf is dereased between the runs.4.2 Biyle Model with Nonlinear TyresIn this setion, optimal path results for a biyle model with nonlinear tyresare presented. For the ellipse-shaped trak, optimal paths were found whenminimizing time and when minimizing the saling fator. Unfortunately nooptimal paths were found for the seond trak, instead the result from the asewhen minimizing the ontrol inputs (the result that funtioned as an initialguess when trying to minimize time) are presented. The parameters of thevehile model are shown in Table 4.4. Just as for the previous vehile model,these parameters are arbitrarily hosen and not reeived from any real vehile.Variables with lower and upper bound onstraints are presented in Table 4.5.ParameterYaw Inertia, Jz [kgm2℄ 2800Distane from entre of gravity to front axle, lf [m℄ 1.33Distane from entre of gravity to rear axle, lr [m℄ 1.43Mass of vehile, m [kg℄ 1550Distane from entre of gravity to the ground, h [m℄ 0.3The shape fator of the front wheel, Cf 1.3The shape fator of the rear wheel, Cr 1.3The urvature fator of the front wheel, Ef -2The urvature fator of the rear wheel, Er -2.5Table 4.4: Parameters of the biyle model with nonlinear tyres.Variable LowerBound UpperBound Start Value
delta [rad℄ -1 1 0
vx [m/s℄ 0 100 15
ax [m/s2℄ -10 10 0
d [m℄ -5 5 0
αf -0.175 0.175 0
αr -0.175 0.175 0Table 4.5: Variables of the biyle model with nonlinear tyres.



CHAPTER 4. OPTIMAL PATH RESULTS 414.2.1 Minimizing TimeThe time was minimized for the vehile model driving on the two traks. Theost funtion for both of the two ases are formulated as follows:Cost funtion:
min J = min

∫ tf

0
1dtThe Ellipse Trak, 2 LapsThe result from the biyle model with nonlinear tyres driving on the ellipse-shaped trak are presented in Figures 4.17- 4.22. In Figures 4.21 and 4.22 thelateral tyre fore and the maximum lateral tyre fore are plotted against thelongitudinal tyre fore for the front and rear tyres respetively. The blue urverepresents the lateral tyre fore, while the red urve represents the maximumlateral tyre fore. The lateral fore is for most of the time lose to the maximumlateral fore for the front tyre exept when braking heavily. For the rear tyrethe lateral fore is lose to the maximum lateral fore only when braking. Theonlusion is, the vehile tends to go from being under steer to over steer whenbraking and ornering heavily.
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Figure 4.17: The optimal path obtained when minimizing the time, for a biylemodel with nonlinear tyres driving 2 laps on the trak.
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Figure 4.18: The ontrol inputs for a biyle model with nonlinear tyres driving2 laps on the ellipse-shaped trak when minimizing the time. Longitudinalaeleration, ax and steering angle, δ.
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Figure 4.19: The veloity, vx and the slip angles, αf (thin) and αr(thik) of thebiyle model with nonlinear tyres driving 2 laps on the ellipse-shaped trakwhen minimizing the time.
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Figure 4.20: The relation between the lateral aeleration, ay and the longitu-dinal aeleration, ax of the biyle model with nonlinear tyres driving 2 lapson the ellipse-shaped trak when the time is minimized.
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Figure 4.21: The lateral fore(blue) and the maximum lateral fore(red) plottedagainst the longitudinal fore for the front tyre in the ase where the time wasminimized for a biyle model with nonlinear tyres driving 2 laps on the ellipse-shaped trak.
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Figure 4.22: The lateral fore(blue) and the maximum lateral fore(red) plottedagainst the longitudinal fore for the rear tyre in the ase where the time wasminimized for a biyle model with nonlinear tyres driving 2 laps on the ellipse-shaped trak.A minimum time solution wasn't found at �rst but when upper and lowerbounds on the slip angles of the tyres were introdued an optimal solution wasobtained. This an be explained by observing Figure 2.3 in Setion 2.2.3, thelateral fore has a peak at a ertain slip angle. If the slip angle inreases more,then the lateral fore will derease. This peak makes it hard for the optimisationtools to onverge to a solution. Therefore the upper and lower bounds on theslip angles were introdued preventing the slip angles from inreasing pass thepeaks.Before the optimal solution was found, another problem onerning the equa-tion 2.7, whih de�nes the frition ellipse ame up. The equation was at �rstwritten on the following form:
D = Fymax

√

(1 − (
Fx

Fxmax

)2) (4.1)When the optimisation tools evaluate equation 4.1, the expression under thesquare root sign might beome negative. This problem disappeared when theequation was rewritten as:
(
Fx

Fxmax

)2 + (
D

Fymax

)2 = 1 (4.2)It is an advantage if the square root an be avoided in all equations.The Flower Trak, 1 LapNo optimal solution was found when minimizing time for the vehile modeldriving on the �ower-shaped trak. The initial guess used for the minimumtime ase might have been too poor. The initial guess used was the result froma optimisation ase, where the aeleration, the derivative of the steering angle



CHAPTER 4. OPTIMAL PATH RESULTS 45and the derivative of the aeleration were minimized for a �xed �nal time. Theost funtion was formulated as:
min J =

∫ tf

0

a2

x + 1000
d

dt
δ2 + 10

d

dt
a2

xdt (4.3)The result from this ase is presented in Figures 4.23- 4.28. A better initialguess ouldn't be found without violating the onstraints. By evaluating the�gures showing the tyre fores, the onlusion that the vehile is performingvery lose to its limitations an be made. This result should be a good initialguess for the minimum time ase. Another reason for not �nding an optimalsolution when minimizing time ould originate from the equations of the vehilemodel, partiularly the equations of the nonlinear tyre model. There might existmore than one equilibrium at ertain points, if that's the ase, it is hard for theoptimisation tools to onverge to an optimal solution.If the optimal path results of the urrent vehile model are ompared tothe optimal path results of the biyle model with linear tyre properties, it anbe seen that the results have the same tendenies. It is di�ult to omparethe di�erent results more losely, sine some of the onstraints di�er. For themodel with linear tyres, the limitation of the lateral aeleration is set with anlimitation envelope, depending on the longitudinal aeleration, as illustratedin every g-g diagram. For the vehile model with nonlinear tyre properties thelateral fore is limited by the frition ellipse, depending on the longitudinalfore.
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Figure 4.23: The optimal path obtained when minimizing ost funtion 4.3, fora biyle model with nonlinear tyres driving 1 lap on the trak.
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Figure 4.24: The ontrol inputs for a biyle model with nonlinear tyres driving 1lap on the �ower-shaped trak when minimizing ost funtion 4.3. Longitudinalaeleration, ax and steering angle, δ.
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Figure 4.25: The veloity, vx and the slip angles, αf (thin) and αr(thik) ofthe biyle model with nonlinear tyres driving 1 lap on the �ower-shaped trakwhen minimizing ost funtion 4.3.
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Figure 4.26: The relation between the lateral aeleration, ay and the longitu-dinal aeleration, ax of the biyle model with nonlinear tyres driving 1 lap onthe �ower-shaped trak when ost funtion 4.3 is minimized.
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Figure 4.27: The lateral fore(blue) and the maximum lateral fore(red) plottedagainst the longitudinal fore for the front tyre in the ase where ost funtion 4.3was minimized for a biyle model with nonlinear tyres driving 1 lap on the�ower-shaped trak.
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Figure 4.28: The lateral fore(blue) and the maximum lateral fore(red) plottedagainst the longitudinal fore for the front tyre in the ase where ost funtion 4.3was minimized for a biyle model with nonlinear tyres driving 1 lap on the�ower-shaped trak.4.2.2 Minimizing the Saling FatorAs mentioned before, an optimal path was only found for the ellipse-shapedtrak. The ost funtion was formulated as follows:Cost funtion:
min J = min

∫ stf

0
ScfdsThe Ellipse Trak, 2 LapsThe optimal path is presented in Figure 4.29. The ontrol inputs, ax and δare shown in Figure 4.30, the dashed lines are the resulting ontrol inputs fromSetion 4.2.1, when minimizing time. The veloity of the vehile, vx and theslip angles of the tyres, α are presented in Figure 4.31.
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Figure 4.29: The optimal path obtained when minimizing the saling fator, fora biyle model with nonlinear tyres driving 2 laps on the trak.
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Figure 4.30: The ontrol inputs for a biyle model with nonlinear tyres driving2 laps on the ellipse-shaped trak when minimizing the saling fator. Longitu-dinal aeleration, ax and steering angle, δ. The dashed lines show the ontrolinputs from the ase where the time was minimized.
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Figure 4.31: The veloity, vx and the slip angles, αf (thin) and αr(thik) of thebiyle model with nonlinear tyres driving 2 laps on the ellipse-shaped trakwhen minimizing the saling fator.
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Figure 4.32: The lateral fore(blue) and the maximum lateral fore(red) plottedagainst the longitudinal fore for the front tyre in the ase where the salingfator was minimized for a biyle model with nonlinear tyres driving 2 laps onthe ellipse-shaped trak.
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Figure 4.33: The lateral fore(blue) and the maximum lateral fore(red) plottedagainst the longitudinal fore for the rear tyre in the ase where the salingfator was minimized for a biyle model with nonlinear tyres driving 2 laps onthe ellipse-shaped trak.The above result was obtained when using the result from a simulation runwith the driver model as an initial guess. A simple aeleration ontrol wasadded to the driver model before the simulation run. The approah desribedin Setion 3.5 was applied at �rst but failed.The ontrol inputs are not very similar to the ontrol inputs from the asewhen minimizing time. By observing Figure 4.30 it an be notied that the �naltime it takes for the vehile to drive around the trak di�er between the two



CHAPTER 4. OPTIMAL PATH RESULTS 53optimisation ases. The �nal time is less when minimizing the saling fator,whih might mean that the result obtained when minimizing the time is notreally optimal. It may also be disussed if the result from the ase where thesaling fator is minimized are really optimal, sine some of the states behavestrangely. The lateral aeleration, ay doesn't behave as desired, see Figure 4.34.Unfortunately it is di�ult to ompare the results for the nonlinear model tothe linear model, sine the limitations di�er. It is hard to �nd optimal paths,espeially when the vehile model beomes more advaned. Sometimes it isproblemati for AMPL to onverge to an optimal solution and there is usuallya risk of �nding a loal minimum instead.
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Figure 4.34: The lateral aeleration, ay for a biyle model with nonlinear tyresdriving 2 laps on the ellipse-shaped trak when minimizing the saling fator.



Chapter 5Conlusions and Future Work5.1 ConlusionsIn this projet it has been shown that it is possible to �nd optimal paths forvehile models designed in Modelia. These optimal paths have been found byapplying the theory of optimal ontrol. The optimal ontrol problem has beenset up with the Optimia language and then been solved with AMPL.A vehile following the optimal path will traverse the trak in minimumtime, whih means by minimizing the time, the optimal path ould be found.An optimal ontrol problem with the purpose of minimizing the time is a free�nal time problem. Solving free �nal time problems is di�ult, usually a goodinitial guess is neessary in order to �nd a solution.In this ase the initial guess an be obtained by using a driver model. Thedriver model will be rather omplex in order of produing a proper initial guess.The driver model needs to onsist of a steering ontrol and an aeleration on-trol. Implementing a well-behaved aeleration ontrol is partiularly di�ult.A di�erent approah based on minimizing the ontrol inputs for a �xed �naltime and reuse the result as an initial guess for the minimum time problem hasbeen applied in this projet. Optimal ontrol problems with �xed �nal timeare muh easier to solve than problems with free �nal time, whih has beenexperiened during this study. A disadvantage with the approah is the manyoptimisation runs that are needed before obtaining a proper initial guess, whihmight be time-onsuming but a speial sript automates this proess.Transforming the vehile model and the optimal ontrol problem to be de-pendent of distane instead of time will failitate the searh for an optimal path.The main reason why, is that the optimal ontrol problem beomes a �xed �-nal time problem, still with the objetive of �nding a minimum time solution.It is therefore preferable to transform the vehile model and the optimal on-trol problem, before attempting to �nd an optimal path. One disadvantage isthat the ontrol inputs an no longer be minimized in order to obtain an initialguess. Instead another approah for solving the problem was introdued. Theidea of the approah is to inrease the distane the vehile travels between everyoptimisation until the vehile reahes the desired distane.Satisfying optimal path results for a vehile model with linear tyre propertieshave been obtained with both of the two approahes. The results have been54



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 55ompared and the onlusion that the results are very similar has been made.Transforming the model and the problem to be dependent of distane is toprefer, sine the initial guess is not as ruial. This means it will take less timeto �nd a su�iently good initial guess and the optimal path will be easier todetermine.During extreme driving onditions it is not adequate to approximate thetyre harateristis with linear properties. Unfortunately it is di�ult to �ndoptimal paths for vehiles with nonlinear tyre harateristis.When it is possible to �nd optimal paths for omplex vehile models, resem-bling real rae ars, onlusions onsidering the vehile models an be made.These onlusion will play a signi�ant role when designing real vehiles.5.2 Future WorkThere are several opportunities for ontinuation of this projet. The next goalould be to �nd optimal paths for a vehile model with nonlinear tyre proper-ties. If aomplishing this isn't possible, vehile models with linear tyres anstill be used but some type of a onstraint on the maximum lateral fore shouldbe introdued. Any of the following suggestions ould be implemented:1. Fymax = Constant2. Fymax = Constant− |Fx|3. F 2

ymax + F 2

x = Constant2

1

2

3

PSfrag replaements Fx

Fy

Fymax

Figure 5.1: Three di�erent types of limitations on the lateral fore.The �rst alternative is obviously the simplest. The third alternative, where



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 56the onstraint on the maximum lateral fore is nonlinear is ideal and is similarto the frition ellipse used for the nonlinear tyres.The hassis model should also be developed towards a more omplex model.The next step is perhaps to introdue a two trak model and then implementsome type of suspension dynamis.Other types of traks an also be spei�ed. The traks ould be de�ned ina di�erent way, for instane with splines.When searhing for the optimal path other aspets but time ould be onsid-ered. Di�erent driving paths require di�erent driving tehniques, whih in turnmight in�uene the vehile di�erently. For instane the wear of the tyres mightbe larger for one path, leading to worse performanes of the vehile, whih inturn leads to a greater time. The wear of the tyres ould in this ase be a partof the ost funtion.The approah for �nding the optimal path when minimizing the salingfator an be further developed. It would be interesting to see if the �rst partof the trak an be deoupled when using the approah. It should at least bepossible to deouple the �rst lap when �nding an optimal path for the seondlap.
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Appendix AVehile Modelpartial model BiyleModel_nonlinearextends Ions.Audit;parameter SI.Inertia Jz=2800 "Yaw inertia";parameter SI.Length lf=1.33 "Distane from entre of gravity tofront axle";parameter SI.Length lr=1.43 "Distane from entre of gravity torear axle";parameter SI.Mass m=1550 "Mass of vehile";SI.Position xpos(start=45) "Global x position";SI.Position ypos(start=0) "Global y position";SI.Veloity xvel "Global x veloity";SI.Veloity yvel "Global y veloity";SI.Aeleration xa "Global x aeleration";SI.Aeleration ya "Global y aeleration";SI.Veloity vx(start=15,min=0.001) "Longitudinal veloity";SI.Veloity vy(start=0) "Lateral veloity";SI.Aeleration dvy "Derivative of lateral veloity";SI.Aeleration ax "Longitudinal aeleration";SI.Aeleration ay "Lateral aeleration";SI.Angle psi(start=Modelia.Constants.pi/2) "Yaw angle";SI.AngularVeloity z "Yaw veloity";SI.Angle delta "Steering angle";SI.Angle af "Front slip angle";SI.Angle ar "Rear slip angle";SI.Angle beta "Vehile slip angle";SI.Fore Fxf "Front wheel longitudinal fore";SI.Fore Fxr "Rear wheel longitudinal fore";SI.Fore Fyf "Front wheel lateral fore";SI.Fore Fyr "Rear wheel lateral fore";///NONLINEAR TYRE MODEL///SI.Fore Fxmaxf(min=0.001) "Maximum longitudinal fore, front tyre";58



APPENDIX A. VEHICLE MODEL 59SI.Fore Fxmaxr(min=0.001) "Maximum longitudinal fore, rear tyre";SI.Fore Fymaxf(min=0.001) "Maximum lateral fore, front tyre";SI.Fore Fymaxr(min=0.001) "Maximum lateral fore, rear tyre";SI.Fore Fx "Longitudinal fore of vehile";Real Df "Peak value in the Magi Formula, front tyre";Real Dr "Peak value in the Magi Formula, rear tyre";Real Cf "Shape fator in the Magi Formula, front tyre";Real Cr "Shape fator in the Magi Formula, rear tyre";Real Bf "Stiffness fator in the Magi Formula, front tyre";Real Br "Stiffness fator in the Magi Formula, rear tyre";Real Ef "Curvature fator in the Magi Formula, front tyre";Real Er "Curvature fator in the Magi Formula, rear tyre";SI.Fore Fzf "Vertial load, front wheel";SI.Fore Fzr "Vertial load, rear wheel";SI.Height h=0.3 "Height of the entre of gravity";Real lamda=0.5;/////////TRACK//////////SI.Position x "The enter of the trak, x-axis";SI.Position y "The enter of the trak, y-axis";SI.Veloity dx "Derivative of x";SI.Veloity dy "Derivative of y";SI.Aeleration ddx "Derivative of dx";SI.Aeleration ddy "Derivative of dy";Real st(start=0) "Distane from the start point of the trak";SI.Distane d "Distane between the vehile and the entre of trak";SI.Position xmin;SI.Position ymin;SI.Position xmax;SI.Position ymax;Real ds;Real xds "The x-oordinate of the entre of the trak at st+ds";Real yds "The y-oordinate of the entre of the trak at st+ds";Real xdsxpos "xds-xpos";Real ydsypos "yds-ypos";Real delta_tmp;Real delta_ref "Steering angle of driver model";Real psit "The angle between the tangent of the entre of the trak andthe x-axis";Real kt "Curvature of the entre of the trak";Real rt "Radius of the entre of the trak";Real Sf "Time to distane saling fator";equationassert(vx>0, "Longitudinal veloity (vx) is to low");/*Slip*/af=atan((vy+z*lf)/vx)-delta;ar=atan((vy-z*lr)/vx);



APPENDIX A. VEHICLE MODEL 60beta=atan(vy/vx);/*Kinematis*/der(psi)=z;der(xpos)=xvel;der(ypos)=yvel;der(xvel)=xa;der(yvel)=ya;der(vx)=ax;der(vy)=dvy;/*Coordinate transform*/xvel = vx*os(psi) - vy*sin(psi);yvel = vx*sin(psi) + vy*os(psi);ay = dvy+z*vx;/*Equations of motion*/// der(vx)-z*vy=(-Fyf*sin(delta))/m;der(vy)+z*vx=(Fyr+Fyf*os(delta))/m;der(z)=(lf*Fyf*os(delta)-lr*Fyr)/Jz;///NONLINEAR TIRE MODEL///Fyf=-Df*sin(Cf*atan(Bf*(af)-Ef*(Bf*(af)-atan(Bf*(af)))));Fyr=-Dr*sin(Cr*atan(Br*(ar)-Er*(Br*(ar)-atan(Br*(ar)))));1=(Df/Fymaxf)^2+(Fxf/Fxmaxf)^2;1=(Dr/Fymaxr)^2+(Fxr/Fxmaxr)^2;Fx=ax*m;Fxf=lamda*Fx;Fxr=(1-lamda)*Fx;Fxmaxf=Fymaxf;Fxmaxr=Fymaxr;Fzf=(m*Modelia.Constants.g_n*lr-m*ax*h)/(lf+lr);Fzr=(m*Modelia.Constants.g_n*lf+m*ax*h)/(lf+lr);Fymaxf=1.0*Fzf; //myf*Fzf;Fymaxr=1.3*Fzr; //myr*Fzr;Bf*Cf*Df=80000;Br*Cr*Dr=100000;Cf=1.3;Cr=1.3;Ef=-2;Er=-2.5;///////ELLIPSE TRACK////////x=45*os(st);



APPENDIX A. VEHICLE MODEL 61y=95*sin(st);dx=-45*sin(st);dy=95*os(st);ddx=-45*os(st);ddy=-95*sin(st);xmin=40*os(st);xmax=50*os(st);ymin=90*sin(st);ymax=100*sin(st);xds=45*os(st+ds);yds=95*sin(st+ds);///////CIRCULAR TRACK///////// x=(200+40*sin(4*(st)-Modelia.Constants.pi/2))*os(st);// y=(200+40*sin(4*(st)-Modelia.Constants.pi/2))*sin(st);// dx=-(200)*sin(st)+40*4*os(4*st-Modelia.Constants.pi/2)*os(st)-40*sin(4*st-Modelia.Constants.pi/2)*sin(st);// dy=(200)*os(st)+40*4*os(4*st-Modelia.Constants.pi/2)*sin(st)+40*sin(4*st-Modelia.Constants.pi/2)*os(st);// ddx=-200*os(st)-680*sin(4*st-Modelia.Constants.pi/2)*os(st)-320*os(4*st-Modelia.Constants.pi/2)*sin(st);// ddy=-200*sin(st)+os(4*st-Modelia.Constants.pi/2)*(640*sin(st)+160*os(st))+sin(4*st-Modelia.Constants.pi/2)*(160*os(st)-40*sin(st));// xmin=(195+40*sin(4*(st)-Modelia.Constants.pi/2))*os(st);// xmax=(205+40*sin(4*(st)-Modelia.Constants.pi/2))*os(st);// ymin=(195+40*sin(4*(st)-Modelia.Constants.pi/2))*sin(st);// ymax=(205+40*sin(4*(st)-Modelia.Constants.pi/2))*sin(st);// xds=(200+40*sin(4*((st+ds))-Modelia.Constants.pi/2))*os((st+ds));// yds=(200+40*sin(4*((st+ds))-Modelia.Constants.pi/2))*sin((st+ds));(xpos-x)*dx+(ypos-y)*dy=0;ds=0.07;xdsxpos=xds-xpos;ydsypos=yds-ypos;delta_tmp=aos((xdsxpos*xvel+ydsypos*yvel)/(sqrt(xdsxpos^2+ydsypos^2)*sqrt(xvel^2+yvel^2)));delta_ref=if xdsxpos>0 and xvel>0 and ydsypos/xdsxpos>yvel/xvel thendelta_tmp elseif xdsxpos<0 and xvel>0 and yvel/xvel>ydsypos/xdsxpos thendelta_tmp elseif xdsxpos<0 and xvel<0 and ydsypos/xdsxpos>yvel/xvel thendelta_tmp elseif xdsxpos>0 and xvel<0 and yvel/xvel>ydsypos/xdsxpos thendelta_tmp elseif xvel>0 and xdsxpos>0 and yvel/xvel>ydsypos/xdsxpos then-delta_tmp elseif xvel<0 and xdsxpos>0 and ydsypos/xdsxpos>yvel/xvel then-delta_tmp elseif xvel<0 and xdsxpos<0 and yvel/xvel>ydsypos/xdsxpos then



APPENDIX A. VEHICLE MODEL 62-delta_tmp elseif xvel>0 and xdsxpos<0 and ydsypos/xdsxpos>yvel/xvel then-delta_tmp else0;psit=if ddx<=0 then aos(dx/sqrt(dx^2+dy^2)) else2*Modelia.Constants.pi-aos(dx/sqrt(dx^2+dy^2));d=(ypos-y)*os(psit)-(xpos-x)*sin(psit);kt=sqrt((dx*ddx)^2+(dy*ddy)^2)/(sqrt(dx^2+dy^2))^3;rt=if kt>0 then 1/kt else100000;Sf=(1-d*kt)/(vx*os(psi-psit)-vy*sin(psi-psit));end BiyleModel_nonlinear;



Appendix BOptimisation SriptB.1 Minimizing Timereset;param i;let i:=2;#AMPL-filesmodel PlanarVehiles.Experiments.Optimization.mod;data PlanarVehiles.Experiments.Optimization.dat;model PlanarVehiles.Experiments.Optimization.InitialGuess.mod;data PlanarVehiles.Experiments.Optimization.InitialGuess.dat;model PlanarVehiles.Experiments.Optimization.SquareProblemCost.mod;model PlanarVehiles.Experiments.Optimization.Constraint.mod;option solver "/work/jakesson/software_tools/Ipopt/Ipopt-3.2.0/CoinIpopt/bin/ipopt";option ipopt_options "max_iter=10000";solve;inlude PlanarVehiles.Experiments.Optimization.GenLogFile.run;model PlanarVehiles.Experiments.Optimization.Cost.mod;param tmp;let tmp:=TIME;redelare param TIME;let TIME:=tmp;#Loop finding optimal solutions when minimizing the optimal ontrolinputs and dereasing TIME(=tf).repeat while i > 0.01 {solve;inlude PlanarVehiles.Experiments.Optimization.GenLogFile63



APPENDIX B. OPTIMISATION SCRIPT 64.run;#If an optimal solution is found then TIME(=tf) is dereased.if solve_result_num == 0 then {shell 'p PlanarVehiles.Experiments.Optimization_res.txt PlanarVehiles.Experiments.Optimization_res_tmp.txt';let tmp := TIME;let i := 1*i;let TIME := TIME - i;}else if solve_result_num != 0 then {shell 'p PlanarVehiles.Experiments.Optimization_res_tmp.txt PlanarVehiles.Experiments.Optimization_res.txt';let i := i/2;let TIME := TIME + i;let tmp := TIME;}display TIME;};B.2 Minimizing the Saling Fatorreset;param i;let i:=1;#AMPL-filesmodel PlanarVehiles_s.Experiments.Optimization.mod;data PlanarVehiles_s.Experiments.Optimization.dat;model PlanarVehiles_s.Experiments.Optimization.InitialGuess.mod;data PlanarVehiles_s.Experiments.Optimization.InitialGuess.dat;model PlanarVehiles_s.Experiments.Optimization.SquareProblemCost.mod;model PlanarVehiles_s.Experiments.Optimization.Constraint.mod;option solver "/work/jakesson/software_tools/Ipopt/Ipopt-3.2.0/CoinIpopt/bin/ipopt";option ipopt_options "max_iter=2000 mu_strategy=adaptive";solve;inlude PlanarVehiles_s.Experiments.Optimization.GenLogFile.run;model PlanarVehiles_s.Experiments.Optimization.Cost.mod;param tmp;let tmp:=TIME;redelare param TIME;let TIME:=tmp;



APPENDIX B. OPTIMISATION SCRIPT 65#Loop finding optimal solutions and inreasing TIME(=sf), untilTIME=900.repeat while TIME < 900 {printf "grid(finalTime=fixedFinalTime(finalTime=%d),nbrElements=%d);", TIME, 0.5*TIME > temp_opt_u_2.op;lose temp_opt_u_2.op;shell 'at temp_opt_u_1.op temp_opt_u_2.op temp_opt_u_3.op> temp_opt_u.op';shell 'optimia temp_opt_u.op PlanarVehiles_s.moPlanarVehiles_s.Experiments.OptimizationPlanarVehiles_s.Experiments.Optimization_res.txt';solve;inlude PlanarVehiles_s.Experiments.Optimization.GenLogFile.run;#If an optimal solution is found then TIME(=sf) isinreased.if solve_result_num == 0 then {shell 'p PlanarVehiles_s.Experiments.Optimization_res.txt PlanarVehiles_s.Experiments.Optimization_res_tmp.txt';let tmp := TIME;let i := 1*i;let TIME := TIME + i;}else if solve_result_num != 0 then {shell 'p PlanarVehiles_s.Experiments.Optimization_res_tmp.txt PlanarVehiles_s.Experiments.Optimization_res.txt';let i := i/2;let TIME := TIME - i;let tmp := TIME;}display TIME;};




