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Chapter 1

Introduction

The study of vehicle dynamics has interested many people for decades. Plenty of
studies with the objectives of improving the safety and the performances of ve-
hicles have been published. Especially in race car sports the performances of the
cars are important since the professional race car drivers operate at the limits of
their stability envelope. In the studies concentrated on race car sports, optimal
trajectories have been obtained with different optimisation techniques [2], [8], [9].
The purpose is usually to minimize the time it takes for a vehicle to drive through
a segment of a track [2], [8], [9]. In some studies other variables than time are
minimized or maximized. The velocity at the exit of a corner is maximized in [9].
In [8] the tyre forces are maximized. In [8] and [9] the optimisations are done
over a short distance, while in [2] the optimal path is tried to be found for an
entire lap of a race track but for different segments of the track at a time. The
optimal path is useful when evaluating the performances of a race car. Race car
models with different parameter sets can be simulated driving along the optimal
path. Conclusions concerning what parameter set gives the best performances
can then be made. Testing the vehicles in different simulation tests saves time
and money compared to testing the vehicles in reality.

1.1 Objective

The main purpose of this thesis is to find an optimal path for a vehicle model
driving on a specified track. By following the optimal path, the time it takes
for the vehicle to traverse the track is minimized. In order to achieve the main
goal, a method for finding the optimal path is needed to be introduced.

1.2 Method

The Modelica language and the Optimica language have been used trough out
this project. Modelica is an object-oriented language for physical modeling [6].
The Optimica language is an extension of the Modelica language [11]. The
optimal path will be found for vehicle models created in Modelica. In order to
find the optimal path, the problem is formulated as an optimal control problem
in Optimica. The optimal control problem is solved with AMPL and IPOPT [3].
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1.3 Thesis Outline

The thesis begins with describing the modeling of the vehicles in Chapter 2. In
Chapter 3 the optimal control problem is formulated and different approaches

for solving the problem are discussed.

In Chapter 4, results from different

optimisation cases are presented. The thesis is finished with conclusions and a
section discussing future work in Chapter 5.

1.4 Notations

Longitudinal acceleration of vehicle

Lateral acceleration of vehicle

Stiffness factor in the Magic Formula

General constraints

Shape factor in the Magic Formula

Centre of gravity of vehicle

Cornering stiffness constant for front (rear) wheel
Distance between vehicle and centre of track

Peak value in the Magic Formula

Curvature factor in the Magic Formula

Distance from centre of gravity to front (rear) axis
Longitudinal force acting on front (rear) wheel
Maximum longitudinal force acting on front (rear) wheel
Lateral force acting on front (rear) wheel
Maximum lateral force acting on front (rear) wheel
Vertical load

Height of the centre of gravity

Cost function

Yaw Inertia

Curvature of the centre of the track

Under steer gradient

Mass of vehicle

Direction vector of vehicle

Effective rolling radius

Radius of the centre of the track

Longitudinal slip

Time to distance scaling factor

Distance from the start point of the track

Time

Vector of continuous control variables

Lower control bound

Upper control bound

Longitudinal velocity of vehicle

Lateral velocity of vehicle

Velocity of wheel in the x-direction

Velocity of wheel in the y-direction

Width of the track

General vector of continuous system state variables
The x-coordinate of the centre of the track
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Lcds
Lpos
Lyel
Ye
Yeds
Ypos
Yvel
g, Qp

6T€f
Way

(o

The x-coordinate of the centre of the track at s; + d,
Global x position of vehicle

Global x velocity of vehicle

The y-coordinate of the centre of the track

The y-coordinate of the centre of the track at s+ ds
Global y position of vehicle

Global y velocity of vehicle

Front (rear) lateral slip angle

Steering angle of vehicle

Steering angle of driver model

Friction coefficient between the tyre and road surface
Angular velocity of wheel

Yaw angle of vehicle

The angle between the tangent of the centre of the track and the x-axis



Chapter 2

Vehicle Modeling

One of the larger parts of this thesis has been modeling of vehicles. The vehicle
models have been used when solving the optimisation problem. The models
have been created in a modeling language called Modelica. A short description of
Modelica will begin this chapter. The chapter will then continue with describing
different models of tyres and chassis. Since the tyres generate the forces that
acts on the vehicle, the modeling of the tyres will be considered before the
modeling of the chassis. Discussion concerning vehicle handling will finish the
chapter.

2.1 Modelica

Modelica is an object-oriented modeling language, used for describing complex
physical models. Models in Modelica are mathematically described by differen-
tial, algebraic and discrete equations. The Modelica language is free to use and
is developed by a non-profit organisation called the Modelica Association [6].

2.2 Tyre Modeling

The forces acting on a vehicle when traction, braking or steering occur are gen-
erated by its tyres. Therefore the tyres are very important for several functions
and properties of the vehicle. Tyre modeling is difficult and several different
tyre models exist. Some of them are based on physical models and some of
them are based on empirical models. In order for a tyre to generate force, slip
has to occur. These forces are nonlinear in reality but can be modeled as linear
functions of the slip angles. Under normal driving conditions it is sufficient to
assume the forces to be linear. During more extreme driving conditions these
forces will saturate and become nonlinear. There are three different types of
slip: lateral, longitudinal and spin. Lateral slip will be considered first.

2.2.1 Lateral slip

Lateral slip occurs when the vehicle is cornering. The definition of the lateral
slip angle, « is:
tan o = — Uy /Vuwz (2.1)



CHAPTER 2. VEHICLE MODELING 8
where vy, is the velocity of the wheel in the y-direction, while v, is the velocity
of the wheel in the x-direction, see Figure 2.1.

Vwy

Direction of travel

Figure 2.1: Definition of slip angle

For a linear tyre model the lateral forces acting on the vehicle are defined
as:
By p=—Cray (2.2)

Fy,=—-Cray (2.3)

where F), ; is the lateral force acting on the front wheel and Fy , is the lateral
force acting on the rear wheel. Cy and C, are cornering stiffness constants.

For a nonlinear tyre model, the lateral forces will saturate for large slip
angles, shown in Figure 2.2.

8000

6000 [

4000

2000

—-2000 [

Lateral Force, Fy [N]
o

—-4000 [

—-6000 [

-8000
-30 -20 -10 0 10 20 30

Lateral Slip, alpha [deg]

Figure 2.2: The relation between the lateral force, F, and the lateral slip, o for
a nonlinear tyre model.
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Nonlinear tyre forces are often described with the Magic Formula [7]. This
is an empirical method that has been developed from measuring tyre character-
istics. For the lateral case the formula is defined as follows:

F, = Dsin(C arctan(Ba — E(Ba — arctan(Ba)))) (2.4)

where:

B is the stiffness factor
C' is the shape factor

D is the peak value

FE is the curvature factor

The factor B determines the slope at the origin of the curve. The coefficient
C defines the extent of the sine function and therefore determines the shape of
the curve. The coefficient D represents the peak value of the curve. The factor
E controls the curvature at the peak and the horizontal position of the peak.

2.2.2 Longitudinal slip

Longitudinal slip occurs when the wheel is subjected to an external driving or
braking moment, which will make the angular velocity of the wheel, w,, different
from when free-rolling. When the wheel is free-rolling, its angular velocity, w,,
is defined as the ratio between the wheel centre velocity in the x-direction, vy
and the effective rolling radius, R.;

Wy = Vya [/ Re (2.5)

There are several definitions of longitudinal slip, s. In [10] the following defini-
tion is used: R
g = et Tur (2.6)

v’u)il)

The following values for w,, and s are obtained with definition 2.5 and 2.6:

Locked wheel wy =0, s=-1
Free-rolling wheel w,, = vyz/Re, $=10
Spinning wheel  wy, = 20y /Re, s =1

The longitudinal force, F, can be computed by the Magic Formula as well,
but with the longitudinal slip, s as an input instead.

2.2.3 Combined slip

In some situations both lateral slip and longitudinal slip occur, for instance when
cornering and braking at the same time. Figure 2.3 illustrates a friction ellipse,
which is based on combined slip. The friction ellipse describes the dependency
between lateral force and longitudinal force. The friction ellipse is defined as:

Y 2 =1 (2.7)
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Fxmam

Figure 2.3: The friction ellipse

The idea is that a resultant force of F, and Fy lies on the ellipse. F,
cannot exceed the maximum longitudinal force, Fymq, and Fy cannot exceed
the maximum lateral force, Fymqz. Frmaez may be defined as:

Fomaz = 1F, (2.8)

where p is a coefficient of friction between the tyre and the road surface, and
F’, is the vertical load.

2.3 Chassis Modeling

One of the simplest chassis models is the bicycle model. The bicycle model is a
two dimensional vehicle model, see Figure 2.5. Basically it has only one wheel
on each axis, which means that only planar motion in the earth fixed x-y plane
is considered. To be able to derive the equations of motion it is necessary to
introduce one additional coordinate system, the vehicle frame, which origin is
located at the centre of gravity of the vehicle, as illustrated in Figure 2.4.
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Y

ca

=3

7
7

N

Figure 2.4: The earth fixed frame and the vehicle frame. The vehicle frame is
rotated with v around the z-axis.

X

The yaw angle, 1 is the angle between the two coordinate systems. The
equations of motion of the model originate from Newton’s second law, F' = ma.
Lateral acceleration occurs while driving and steering, this is compensated for
by forces acting on the vehicle. The acceleration of the vehicle can be obtained
by derivation of the velocity vector of the vehicle, 7. The velocity vector is

denoted as: .
T =T = (vg,0y,0) (2.9)

and the yaw velocity of the vehicle, ¢ as:
= = (0,0,) (2.10)
The following derivation rule is applied when differentiating 7:

d .

%:EF:mexﬁ (2.11)
Uy ] 2 Uy —’L/.J’Uy
r = 'U.y + 0 0 ’l/} = 'U'y +1/}’UI (212)
0 Vg vy 0 0
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Figure 2.5: The bicycle model.

The equation of motion can now be written as:

T mv, —1bv,) = —F, ssind (2.13)
— m(vy +Pv,) = Fyr + F, cosd (2.14)
Jop = 1;F, fcosd — 1, Fy ¢ (2.15)

where J. is the moment of inertia of the vehicle and ¢ is the angular acceleration
of the vehicle around the z-axis. A more thoroughly derivation of the equations
of motion for the bicycle model can be found in [5].

As shown in Section 2.2.1, the lateral forces, F, y and F),, are dependent
of the lateral slip angles, oy and .., while the slip angles are dependent of the
velocities of the wheels. The expressions for the slip angles can be rewritten as
functions of the velocities of the vehicle instead. This makes more sense when
dealing with the lateral forces in the equations of motion. In order to accomplish
this, the velocity vectors of the wheels need to be derived. The velocity vector of
the front wheel, 77 and the velocity vector of the rear wheel, 7, can be obtained
as follows:

.. d— — Uz Ty oz Uz

7:?+Elf+wxlf: vy o+l 0 0 9 ||=¢ v, +lf (2.16)
0 Iy 0 0 0

.. d— — U Toyoz Uz

ﬁ:?+%lr+wxlrz vy o4 0 0 ¥ | =4 v,—Yl, (2.17)
0 -, 0 0 0

It is now possible to write the lateral slip angles for the front and the rear wheel
as functions of the velocities of the vehicle:

oy = arctan(L YUY 5 (2.18)

Vg

Uy — wlr

Uz

o, = arctan( ) (2.19)
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2.4 Track Modeling

Two different tracks have been used during this project. These two tracks have
been modeled in Modelica and the coordinates of the tracks are arbitrarily
imposed. A trajectory has been defined for each of the two tracks, this trajec-
tory represents the centre of the track, shown in Figure 2.6. The trajectory,
(xc(8t),ye(st)) is represented as a function of s:(t), while s:(¢) is a function of
time. This means s;(t) increases over time, while the trajectory increases over
s¢(t). z. and y. are the global x- and y-positions of the centre of the track.

Y

Figure 2.6: The track model.

The first track used was ellipse-shaped, see Figure 2.7. The coordinates was
chosen in a way so the ellipse became twice as long as it is wide. The total length
of the track is 450 meters. The centre of the ellipse-shaped track is defined as:

(%, ye) = (45 cos(st),90sin(sy)) (2.20)

Further on a circular-shaped track with a sinus curvature added to it was in-
troduced. As seen in Figure 2.8, this track has more corners than the previous
one. This track is supposed to be more challenging for the vehicle model. The
length of this track is about 1400 meters, which makes it more than three times
further than the ellipse-shaped track. The coordinates of the centre of the track
are defined as:

(Ze,ye) = ((200+40 sin(4s; —w/2)) cos s¢, (200440 sin(4s; —w/2)) sin ;) (2.21)
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Figure 2.8: The flower-shaped track.
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2.5 Time to Distance Transformation

In Section 2.3, the equations of motion of the vehicle model were derived with
respect of time. In this section the equations will be derived with respect of
travelled distance instead. In order to achieve this, a time to distance scaling
factor, S¢s is needed to be introduced. In [2] the transformation from time to
distance has been done with a scaling factor defined as:

_ il 2.22
T ds; v cos(y — i) — vy sin(y, — YPy) (2.22)

Where d is the shortest distance between the vehicle and the centre of the track.
d = (Ypos — Ye) c08() — (Zpos — ) sin(y) (2.23)

1 is the angle between the tangent of the centre of the track and the x-axis. ¥
can be defined as:

Sey

(@c, ) (1,0) e

o 7)1 01,0) NEEEL

r¢ is the radius of the centre of the track and can be written as r, = 1/k;, where
k; is the curvature of the centre of the track and defined as follows:

¥y = arccos( ) = arccos( (2.24)

|(Ze, ye) X (Ze, g

ky = (2.25)

|(2e, )|

Figure 2.9: The track model.

Consider a model dependent of time with the following definition:
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&= f(z(t),u(t),t), z(0) = zo, t € [0,1f]
When the model is transformed to be dependent of travelled distance, it will be
defined as:

j_; = Cff(z(st)vu(st);st), z(0) = g, st € [O,Stf]

2.6 The Driver Model

A quite simple driver model has been introduced with the purpose of obtaining
a first initial guess for the optimisation problem. The driver model is supposed
to make the vehicle follow a specified trajectory, in this case the centre of the
track. The driver model consists of a type of steering control but doesn’t have
an acceleration control, the vehicle is supposed to have constant velocity. The
steering control model spots a point on the trajectory a few meters ahead and
simply tells the vehicle to steer towards this point. This can be compared to how
a human driver would steer the vehicle, he looks at the road a few meters ahead
and steers in order to keep the vehicle on the road. The position of the vehicle
in the world frame is (Zpos, Ypos) and the point a few meters ahead of the vehicle
is (zcds, Yeds). The vector between these points is (Zeas — Tpos, Yeds — Ypos) and
the direction of the vehicle is denoted as (Zyer, Yver). The angle between these
two vectors is equal to the steering angle, as illustrated in Figure 2.10.

(-Tcds - xpos)x'uel + (ycds - ypos)yvel
\/(xcds - xpos)Q + (ycds - yp08)2 + \/‘Tiel + ygel
The vehicle model is then simulated with a constant velocity and with 6,.f as

an input for the steering angle. The simulated result can then be used as an
initial guess for the first optimisation run.

drey = arccos (2.26)

Y

Direction of the vehicle

X 5 4
(Teds, Yeds) (Zpos: Ypos)

Figure 2.10: The driver model
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2.7 Vehicle Handling

Vehicle handling describes the way vehicles perform transverse to their direction
of motion, particularly during cornering. When dealing with planar vehicle
models, the focus lies on yaw stability and response to steering input. An
under steer gradient is often measured or computed when describing the steering
characteristics of a vehicle. The under steer gradient, K, is defined as:

Oa,  Oay

where 04 is called the Ackerman angle and is derived from a pure geometrical
approach. An under steer vehicle has a positive under steer gradient (K,s > 0)
and an over steer vehicle has a negative under steer gradient (K,s < 0). The
steering characteristics of a vehicle can be tested, by driving the vehicle around a
circle, while the vehicle constantly accelerates. Figure 2.11 illustrates the result
from a test case where a bicycle model with linear tyre properties is simulated
driving in a circle with a given radius. The lateral acceleration is plotted against
the steering angle. The solid line represents an under steer bicycle model while
the dashed line represents an over steer model. The under steer model was used
later on in the optimisations. For an under steer vehicle the slip angles of the
front wheels are larger than the slip angles of the rear wheels. This means the
driver usually needs to compensate for this by steering harder. For an over
steer vehicle it is the opposite, the driver should not steer as much and the rear
wheels have larger slip angles than the front wheels.

45t 1

3.5 1

Steering Angle, delta [deg]

15 i i i i i i i
0 1 2 3 4 5 6 7 8

Lateral Acceleration, ay [m/52]

Figure 2.11: The relation between steering angle, § and lateral acceleration, a,,.
The solid line shows an under steer vehicle model while the dashed line shows
an over steer vehicle model.
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For a bicycle model with linear tyres, the steering characteristics depend on
two factors, the cornering stiffness constants of the tyres and the place of the
centre of gravity of the vehicle. The bicycle model is neutral steer if the corner-
ing stiffness constants of the front and rear wheels are equal while the centre of
gravity of the vehicle is placed in the middle.

Cy < Cy -> under steer
Cy = C, -> neutral steer
C¢ > C) -> over steer

ly <l -> under steer
ly =l -> neutral steer
ly > . -> over steer

Another way to illustrate the steering characteristics could be done by plot-
ting the lateral forces F, s and Fj, against the slip angles, a¢ and a,, see
Figure 2.12.

0.8 8

0.4 .

0.2 1

Normalized Lateral Force, Fy/Fz

0.2 i i i i i
-10 -8 -6 4 2 0 2

Lateral Slip, alpha [deg]

Figure 2.12: The relation between the normalized lateral forces, Fy ¢ and F,, ,
and the lateral slip angles, oy and a

The diagram shows the normalized lateral forces of the tyres plotted against
the lateral slip angles of the tyres. The solid curve represents the front tyre while
the dashed curve represents the rear tyre. The diagram shows a bicycle model
with nonlinear tyre properties, which was used later on in the optimisations.
This particular model is under steer during the entire simulation run, since the
curve of the rear tyres is above the curve of the front tyres. If the curve of the
rear tyres is below the curve of the front tyres at any point then the vehicle is
over steer at that point.



Chapter 3
Optimisation

The following chapter will begin with a short description of an optimal control
problem. AMPL and Optimica will be described briefly in the next section.
Finally two different approaches for solving the optimal control problem will be
introduced.

3.1 The Optimal Control Problem

The objective of this project has been to find an optimal path that will minimize
the time for a vehicle model travelling along a specified track. The optimal path
can be found by using the theory of optimal control. In optimal control the
objective is to minimize or in some cases maximize a cost function. An optimal
control problem is typically formulated as follows:

min ] = min/o L((x(t), u(t), p)dt (3.1)
subject to: @ = f(x(t), u(t)) z(0) = xg

e(t) = e(x(t), u(t),t) <0
ur, < u(t) <uy
for all t € [to, t/]

where J is the cost function and
&= f(z(t),u(t)), z(0) = zo, t € [to,tf]

is a mathematical model of the system. In our case, this is the vehicle model.
c(x(t),u(t),t) <0 (3.2)

are the physical constraints of the optimal control problem. Physical constraints
arise from limitations on control variables and limitations on the state variables
of the model. For instance in the minimum time problem, there are constraints
on the longitudinal and lateral acceleration of the vehicle and on the steering
angle. Other constraints come from the fact that the vehicle must stay within
the track boundaries.

ur, < u(t) <uy (3.3)

19
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are the constant control bounds.

An optimal control, u* and its corresponding optimal state trajectory, x*
are found when the cost function is minimized.

When dealing with a minimum time problem, the cost function takes the
following form:

t
min J = min/ 1dt (3.4)
0

There are several methods for solving an optimal control problem. These
methods can be divided into two different main methods, direct and indirect
methods. When applying direct methods, the optimal control problem is con-
verted into a nonlinear programming problem and is solved directly using math-
ematical programming techniques. The continuous control history is replaced
with a discrete approximation. This means that the control input can only be
adjusted at a fixed number of positions along the trajectory, while the values
in between the points are estimated by interpolation. The Optimica Compiler
uses a simultaneous method, known as the direct collocation method. This
method fully discretize the state and the control variables, which leads to large-
scale NLP problems. Simultaneously methods are discussed in [1]. AMPL and
an external solver, called IPOPT have been used when solving the nonlinear
programming problem.

3.2 AMPL

AMPL is a high-level, mathematical programming language, used for describing
and solving large scale optimisation problems. AMPL expresses the symbolic
algebraic notation familiar to people in a way that can serve as direct input
to a computer system [3]. AMPL does not solve the problem directly, instead
it uses an external solver such as IPOPT. AMPL handles linear and nonlinear
problems.

3.3 Optimica

Optimica is an extension of the Modelica language and the Optimica Compiler
is an optimisation tool developed for Modelica. The Optimica language admits
formulation of dynamic optimisation problems on the following form, according
to [11]:

min/o " L (), ult), p)dt (3.5)

subject to: f(&,x,u,p)
ci(z(t),u(t),p) <
ce(a(t), u(t),p) =
cp(a(ty), ulty),p)

The cost function and the constraints are written in an Optimica file. This
Optimica file consists of three sections. In the first section the variable bounds
are specified. The next section contains the cost function and the optimisation
horizon. The last section contains all the constraints. The Optimica Compiler
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compiles the Optimica file and the Modelica file, containing the model repre-
sentation and generates a set of new files containing AMPL code. The problem
is then solved using AMPL, which in turn invokes the numerical solver.

model.mo Optimica AMPL
model
. . Compiler Mathematical programming
equation
AMPL files Result
optimica.op

bounds
cost function
constraints

Figure 3.1: Flow chart for AMPL and Optimica.

3.4 Solving the Optimal Control Problem

The purpose has been to minimize the driving time for a vehicle model travelling
along a specific track. Solving a minimum time problem like this one is very
difficult. It is necessary to specify a good initial guess, in order to find an
optimal solution. The initial guess needs to be close to the optimal solution.
One approach for obtaining an initial guess is to come up with a driver model,
which takes the vehicle around the track in a way that is close to the optimal
way. A driver model that accomplish this will be quite complex [2]. Another
approach for finding a good initial guess is to minimize another cost function
for a fixed final time. For instance could the control inputs be minimized for
a given time. The result obtained can then be used as an initial guess when
solving the minimum time problem. This is a common method when solving
minimum time problems and has been used in this project as well.

The driver model introduced in Section 2.6 is used for producing an initial
guess for the optimisation case where the control inputs are minimized. This
driver model is quite simple but good enough for taking the vehicle around
the specified track. The main limitation of the driver model is the lack of an
acceleration control, the driver model has constant velocity through out the
track. The vehicle is simulated driving through the track with the specified
driver model. The result obtained from the simulation will then be used as
a first initial guess for the optimal control problem. This initial guess is too
poor for solving the minimum time problem but is sufficient for minimizing the
control inputs for a given time. This given time will be the same as the time it
took for the driver model to drive around the track. The cost function is defined
as:

min / Y () + us(t)dt (3.6)
0

where wu;(t) and ug(t) are the control inputs, in most cases the longitudinal
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acceleration, a, and the steering angle, ¢ of the vehicle. ¢; is the fixed final
time. The optimal solution is put in a result file and this result will be used
as an initial guess for the next optimisation. In the next optimisation the cost
function will stay the same while the fixed final time, t¢ is decreased. This
procedure will keep going until ¢¢ is sufficiently close to the optimal time. The
optimal time is obviously not known at this point but one can have an hint of
what it is. The cost function is then redefined in a way so the time is minimized.
When minimizing the time, the result from the last optimisation of the control
inputs is used as an initial guess. Hopefully this initial guess is good enough for
finding an optimal solution for the minimum time case.

Initial guess

Simulation

. Optimization:
Initial guess

minimizing the inputs

Optimal No optimal
solutjon solutjon found
found

Increase the

Decrease tf nbr of elements|

No optimal
solutjon found

Weight the
cost function

No optimal
solutign found

Change the o
fixed final time Optimization:
Initial guess minimizing the time

Optimal control

Figure 3.2: Flow chart for the optimisation procedure.

The procedure described above might not always behave as desired. If AMPL
doesn’t find an optimal solution during any of the optimisation runs, something
needs to be changed. There are a few different possibilities for continuing when
no optimal solution is found. The number of elements of the grid can be respec-
ified, a larger number will improve the accuracy, which may lead to an optimal
solution. If an optimal solution is still not found, the next step is to change the
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cost function by penalizing one of the terms. For instance could the original
cost function be changed into:

min /tf 10 % uy (t) + ua(t)dt (3.7
0

which means that the first control input is now more heavily penalized. If
the search of an optimal solution fails once again, the fixed final time can be
changed. Let’s say that an optimisation case with the fixed final time, ¢y = 60
is run and AMPL finds an optimal solution. The next step is to decrease ty,
for instance to ¢ty = 56 and then run a new optimisation with the same cost
function. If an optimal solution isn’t found, then it might be needed to run an
optimisation for ¢ty = 58 first and then run the optimisation for ¢y = 56, which
might result in an optimal solution. The result from ¢; = 58 is a better initial
guess than the result from ¢y = 60 when trying to solve the case for ¢y = 56.
When all the above actions are carried through and an optimal solution is
still not found then the problem cannot be solved because of the fixed final time,
ty is being unfeasible without violating the constraints. This also means that
the last optimal solution found is close to the optimal solution for the minimum
time case and will be a good initial guess for solving the minimum time problem.

3.5 Transforming the Optimal Control Problem

In the previous section, the optimal control problem was set up with the equa-
tions of the vehicle model dependent of time. In this section, the optimal control
problem will be set up after the transformation from time to distance has been
applied, which was described in 2.5. The equations of the vehicle model will be
dependent on travelled distance. The purpose is still to find an optimal path,
which will minimize the time. Since S.¢ is defined as an increment of travelled
distance, ds; divided by an increment in time, d¢, minimizing the integral of
Sc¢ will have the same effect as minimizing time. The cost function will be
formulated as follows:

Stf
mint,; = min/ Secrds (3.8)
0

The cost function is now minimized over a certain distance, s,y instead of over a
certain time. The reason why the transformation from time to travelled distance
is applied, is because it should be easier for the optimisation tools to find an
optimal solution. The variable that the cost function is minimized over, in this
case the distance, s;s is fixed as opposed to when minimizing over time. As
mentioned before it is easier to find an optimal solution when having a fixed
final variable.

A good initial guess is still vital when searching for an optimal solution.
When the problem was formulated with respect to time, the inputs were mini-
mized for a fixed final time. The fixed final time was decreased between every
optimisation run until the fixed final time was close enough to the minimum
time. This approach cannot be used when the problem is formulated with re-
spect to travelled distance, because the cost function is not minimized over time.
Instead another approach, which is based on increasing s:¢, is tried. The idea
is to start with a low s;f, which means S.y is minimized for the first part of
the track, in the next optimisation run s;s is increased and S.; is minimized
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once again. s;r is then increased until it equals the entire track. Let’s consider
a case where the purpose is to drive a lap around the ellipse-shaped track. In
the first optimisation an optimal path is found for the first part of the track. In
the next optimisation an optimal solution is found when the vehicle drives a bit
further on the track, the s;; is increased. When solving this problem the previ-
ous optimal solution is used as an initial guess. Then s;f is increased again and
a new optimal solution is found, this procedure will continue until the vehicle
has driven around the entire track.

Figure 3.3: Optimal paths for different s,y
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Optimal Path Results

Several optimisation results have been obtained, the following results will be
presented in this section:

e Bicycle Model with Linear tyres

— mint
x The Ellipse Track, 2 Laps
x The Flower Track, 1 Lap

— min S¢y
x The Ellipse Track, 2 Laps
x The Flower Track, 1 Lap

e Bicycle Model with Nonlinear tyres

— mint
x The Ellipse Track, 2 Laps
*x The Flower Track, 1 Lap

— min S¢y

x The Ellipse Track, 2 Laps

4.1 Bicycle Model with Linear Tyres

For the first optimisation tests, a bicycle model with linear tyres was used. The
parameters of the bicycle model are presented in Table 4.1. These parameters
are arbitrarily imposed and not received from any real vehicle model, but the
parameters are realistic. Variables with lower and upper bound constraints are
presented in Table 4.2. Notice that the longitudinal velocity of the vehicle, v,
has a starting value. The entire vehicle model in Modelica can be found in
Appendix A.

25
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Parameter

Yaw Inertia, J, [kgm?] 2800
Front Cornering Stiffness, Cy || 100000
Rear Cornering Stiffness, C,. [| 150000
Distance from centre of gravity to front axle, Iy [m] 1.33
Distance from centre of gravity to rear axle, I, [m] 1.43
Mass of vehicle, m [kg] 1550

Table 4.1: Parameters of the bicycle model.

26

Variable Lower Upper Start Value
Bound Bound

delta [rad] | -1 1 0

vy [m/s] 0 100 10

a; Im/s% | -10 10 0

d [m] -5 5 0

Table 4.2: Variables of the bicycle model.

4.1.1 Minimizing Time

In the first optimisation case the time around an ellipse-shaped track was min-
imized and in the second case the time around a flower-shaped track was min-
imized. The cost function and the constraints for both of the two cases are
formulated as follows:

Cost function:
min J = min fotf 1dt

Constraints:
a + ai <102

The Ellipse Track, 2 Laps

The optimal path for the vehicle model when minimizing time is shown in Fig-
ure 4.1. The resulting control signals, a, and § are presented in Figure 4.2. The
velocity of the vehicle and the lateral slip angles of the tyres are shown in Fig-
ure 4.3. In Figure 4.4, the lateral acceleration is plotted against the longitudinal
acceleration, usually called g-g diagram. The purpose of the g-g diagram is to
show how close the vehicle is to its limitations in acceleration during driving.
The dashed line in Figure 4.4 illustrates the limitations in acceleration of the
vehicle, noticeable is that the vehicle is extremely close to its limitations the
entire run. In Figure 4.2 it can be seen that the steering angle, § decreases
very quickly at the very end of the run. Since it doesn’t matter how the ve-
hicle behave after the run is completed, the final value of the steering angle is
unimportant. This also explains the straight line in the g-g diagram.
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Figure 4.1: The optimal path obtained when minimizing the time, for a bicycle
model with linear tyres driving 2 laps on the track.
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Figure 4.2: The control inputs for a bicycle model with linear tyres driving

2 laps on the ellipse-shaped track when minimizing the time.
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Figure 4.3: The velocity, v, and the slip angles, af(thin) and o, (thick) of the
bicycle model with linear tyres driving 2 laps on the ellipse-shaped track when
minimizing the time.
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Figure 4.4: The relation between the lateral acceleration, a, and the longitudinal
acceleration, a, of the bicycle model with linear tyres driving 2 laps on the
ellipse-shaped track when the time is minimized. The dashed line shows the
constraints on the accelerations.

The procedure described in Section 3.4 was applied in order to obtain the
minimum time solution. The control inputs, a, and & were minimized for a
decreasing fixed final time, t;. After t; was decreased a few times, the steering
angle, § started to oscillate. The result wasn’t satisfying, since it was a poor
initial guess for the minimum time case. Instead a, and the derivative of § were
minimized, in addition the derivative of § was penalized. In the received result
the oscillations of the § vanished and the result was good enough as an initial
guess for the minimum time case.

The Flower Track, 1 Lap

The optimal path for the vehicle model driving one lap through the second
track is shown in Figure 4.5. The acceleration, a, and the steering angle, § are
presented in Figure 4.6. In Figure 4.7, the velocity of the vehicle and the lateral
slip angles of the tyres are presented. Figure 4.8 illustrates a g-g diagram. Even
for this track the vehicle is very close to its limitations trough out the run.
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Figure 4.5: The optimal path obtained when minimizing the time, for a bicycle
model with linear tyres driving 1 lap on the track.
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Figure 4.6: The control inputs for a bicycle model with linear tyres driving 1
lap on the flower-shaped track when minimizing the time. Longitudinal accel-

eration, a, and steering angle, §.
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Figure 4.7: The velocity, v, and the slip angles, af(thin) and o, (thick) of the
bicycle model with linear tyres driving 1 lap on the flower-shaped track when
minimizing the time.
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Figure 4.8: The relation between the lateral acceleration, a, and the longitudinal
acceleration, a, of the bicycle model with linear tyres driving 1 lap on the flower-
shaped track when the time is minimized. The dashed lines show the constraints
on the accelerations.

Finding the optimal path was more difficult for this track, which is explained
with the fact that this track has more corners. As for the previous case the
derivative of § and a, were minimized for a fixed final time and the result was
then used as an initial guess for the minimum time case.

4.1.2 Minimizing the Scaling Factor

In the two following optimisation cases, the equations of the vehicle model and
the optimal control problem are dependent of distance. The cost function and
the constraints are now defined as:

Cost function:
min J = min fostf Secrds

Constraints:
ag + ai < 102

The Ellipse Track, 2 Laps

The optimal path for the ellipse-shaped track is presented in Figure 4.9. Fig-
ure 4.10 shows the control inputs, a, and §, while Figure 4.11 shows the velocity
of the vehicle, v, and the slip angels of the tyres, a. The g-g diagram in Fig-
ure 4.12 illustrates that the vehicle once again is extremely close to its limita-
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tions. The dashed curves in Figure 4.10 illustrate the result from Section 4.1.1,
where the time was minimized. Since the objective is the same when minimizing
the scaling factor as when minimizing time, the results may be compared. The
results are quite similar as observed in Figure 4.10. In this case the steering
angle, ¢ increases quickly at the end, but as mentioned earlier the final value of
the steering angle doesn’t affect the optimal path.
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-100 100

Figure 4.9: The optimal path obtained when minimizing the scaling factor, for
a bicycle model with linear tyres driving 2 laps on the track.
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: The control inputs for a bicycle model with linear tyres driving 2
laps on the ellipse-shaped track when minimizing the scaling factor. Longitu-
dinal acceleration, a, and steering angle, 5. The dashed lines show the control
inputs from the case where the time was minimized.
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Figure 4.11: The velocity, v, and the slip angles, o (thin) and «,(thick) of the
bicycle model with linear tyres driving 2 laps on the ellipse-shaped track when
minimizing the scaling factor. The dashed lines show the control inputs from
the case where the time was minimized.
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Figure 4.12: The relation between the lateral acceleration, a, and the longitu-
dinal acceleration, a, of the bicycle model with linear tyres driving 2 laps on
the ellipse-shaped track when the scaling factor is minimized. The dashed line
shows the constraints on the accelerations.

The approach introduced in Section 3.5 was applied at first. In general this
approach behaved well but at certain parts of the track, an optimal solution
wasn’t found and caused the method to fail. Particularly at the top and in the
section after together with the bottom and the section after the bottom the
search for an optimal solution was difficult. Sy was minimized for the very first
part of the track and an optimal solution was found. s;r was then increased
and an optimal solution was found again. This procedure worked out good until
reaching the top of the ellipse, where an optimal solution were no longer found.
The explanation was that the vehicle had a bad position and the velocity was
too high for continuing on the track, thereby the failure of the next optimisation.
This problem was solved by putting terminal constraints into the optimisation.
Following terminal constraints were introduced:

e low terminal velocity of the vehicle
e the final position of the vehicle needs to be in the middle of the track

e the final direction of the vehicle needs to equal the final direction of the
tangent of the track

The next problem arose in the section after the top of the ellipse. The steering
angle began to oscillate, this problem was solved by adding the derivative of
the steering angle to the cost function and penalizing it. This means both the
scaling factor and the derivative of the steering angle were minimized. One
might believe this will interfere with finding an optimal path, but that wasn’t
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the case. Instead it became easier for the optimisation tools to converge to
the optimal solution. After introducing the above improvements an optimal
path for the entire track was found. A script automating this process was used,
see Appendix B.1. In the script a few different options may be chosen, one
particular option called, "mu_strategy=adaptive" required less iterations in
the optimisation runs. More about different IPOPT options can be found in [4].

The optimal path was also found when using the result from a simulation
with the driver model as an initial guess. The simulated initial guess is preferable
when it works because the procedure with all the other optimisations are not
needed, but for more challenging tracks and more advanced vehicle models the
simulated initial guess will probably not be good enough.

The Flower Track, 1 Lap

The optimal path for the second track when minimizing the scaling factor, S.s
is shown in Figure 4.13. The control inputs, the velocity of the vehicle and the
slips angles are presented in Figures 4.14 and 4.15. The g-g diagram is presented
in Figure 4.16. The steering angle and the slip angles are a bit smoother when
minimizing the scaling factor compared to when minimizing time. In the case of
minimizing the scaling factor, the derivative of the steering angle was added to
the cost function. This means the derivative of the steering angle was minimized
as well, which makes the steering angle smoother. As mentioned earlier, this
doesn’t affect the search of the optimal path. The vehicle is still driving on its
limitations, as seen in Figure 4.16.
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Figure 4.13: The optimal path obtained when minimizing the scaling factor, for
a bicycle model with linear tyres driving 1 lap on the track.
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Figure 4.14: The control inputs for a bicycle model with linear tyres driving 1
lap on the flower-shaped track when minimizing the scaling factor. Longitudinal
acceleration, a, and steering angle, §. The dashed lines show the control inputs
from the case where the time was minimized.
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Figure 4.15: The velocity, v, and the slip angles, o (thin) and «,(thick) of the
bicycle model with linear tyres driving 1 lap on the flower-shaped track when
minimizing the scaling factor. The dashed lines show the control inputs from
the case where the time was minimized.
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Figure 4.16: The relation between the lateral acceleration, a, and the longitu-
dinal acceleration, a, of the bicycle model with linear tyres driving 1 lap on the
flower-shaped track when the scaling factor is minimized. The dashed line show
the constraints on the accelerations.

The approach described in Section 3.5 failed at first at certain points of
this track as well, but with the improvements made in the previous case an
optimal solution was obtained. The optimal path was also found when using
the simulated initial guess, just like for the case with the ellipse-shaped track.

4.1.3 Comparison

The time it takes for the vehicle to traverse different numbers of laps on the two
tracks are presented in Table 4.3. The table shows the minimum time received
when minimizing the time and when minimizing the scaling factor.

Track | Number of laps min ¢ min S, f
Ellipse | 1 18.039s 18.042s
Ellipse | 2 35.242s 35.243s
Ellipse | 3 52.443s 52.443s
Flower | 1 42.228s 42.220s
Flower | 2 83.506s 83.504s

Table 4.3: Comparison between minimizing time and minimizing the scaling
factor for a bicycle model with linear tyres driving different number of laps on
the two different tracks.

The execution times for the different optimisation cases are dependent on
how good the initial guesses are. A better initial guess will obviously lead to a
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shorter execution time. Generally the execution time is less when minimizing the
scaling factor compared to when minimizing the time. Normally it takes a few
minutes for each optimisation run when minimizing the time. When minimizing
the scaling factor an optimisation run takes a few seconds but aggregately more
optimisation runs are needed compared to when minimizing the time. The
number of optimisation runs depend on the distance of the track and on how
much sy is increased between the runs, when minimizing the scaling factor. In
the case where the time is minimized the number of optimisation runs depend
on how much ¢ is decreased between the runs.

4.2 Bicycle Model with Nonlinear Tyres

In this section, optimal path results for a bicycle model with nonlinear tyres
are presented. For the ellipse-shaped track, optimal paths were found when
minimizing time and when minimizing the scaling factor. Unfortunately no
optimal paths were found for the second track, instead the result from the case
when minimizing the control inputs (the result that functioned as an initial
guess when trying to minimize time) are presented. The parameters of the
vehicle model are shown in Table 4.4. Just as for the previous vehicle model,
these parameters are arbitrarily chosen and not received from any real vehicle.
Variables with lower and upper bound constraints are presented in Table 4.5.

Parameter

Yaw Inertia, J, [kgm?] 2800
Distance from centre of gravity to front axle, Iy [m] | 1.33
Distance from centre of gravity to rear axle, [, [m] 1.43
Mass of vehicle, m [kg] 1550
Distance from centre of gravity to the ground, h [m] 0.3
The shape factor of the front wheel, Cf 1.3
The shape factor of the rear wheel, C,. 1.3
The curvature factor of the front wheel, Ef -2
The curvature factor of the rear wheel, E, -2.5

Table 4.4: Parameters of the bicycle model with nonlinear tyres.

Variable Lower Upper Start Value
Bound Bound

delta [rad] | -1 1 0

vy [Mm/s] 0 100 15

az Im/s% | -10 10 0

d [m] -5 5 0

of -0.175 0.175 0

Qp -0.175 0.175 0

Table 4.5: Variables of the bicycle model with nonlinear tyres.
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4.2.1 Minimizing Time

The time was minimized for the vehicle model driving on the two tracks. The
cost function for both of the two cases are formulated as follows:

Cost function:
minJ = minfotf 1dt

The Ellipse Track, 2 Laps

The result from the bicycle model with nonlinear tyres driving on the ellipse-
shaped track are presented in Figures 4.17- 4.22. In Figures 4.21 and 4.22 the
lateral tyre force and the maximum lateral tyre force are plotted against the
longitudinal tyre force for the front and rear tyres respectively. The blue curve
represents the lateral tyre force, while the red curve represents the maximum
lateral tyre force. The lateral force is for most of the time close to the maximum
lateral force for the front tyre except when braking heavily. For the rear tyre
the lateral force is close to the maximum lateral force only when braking. The
conclusion is, the vehicle tends to go from being under steer to over steer when
braking and cornering heavily.
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Figure 4.17: The optimal path obtained when minimizing the time, for a bicycle
model with nonlinear tyres driving 2 laps on the track.
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Figure 4.18: The control inputs for a bicycle model with nonlinear tyres driving

2 laps on the ellipse-shaped track when minimizing the time.
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Figure 4.19: The velocity, v, and the slip angles, af(thin) and «,(thick) of the
bicycle model with nonlinear tyres driving 2 laps on the ellipse-shaped track

when minimizing the time.
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Figure 4.20: The relation between the lateral acceleration, a, and the longitu-
dinal acceleration, a, of the bicycle model with nonlinear tyres driving 2 laps
on the ellipse-shaped track when the time is minimized.
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Figure 4.21: The lateral force(blue) and the maximum lateral force(red) plotted
against the longitudinal force for the front tyre in the case where the time was
minimized for a bicycle model with nonlinear tyres driving 2 laps on the ellipse-
shaped track.
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Figure 4.22: The lateral force(blue) and the maximum lateral force(red) plotted
against the longitudinal force for the rear tyre in the case where the time was
minimized for a bicycle model with nonlinear tyres driving 2 laps on the ellipse-
shaped track.

A minimum time solution wasn’t found at first but when upper and lower
bounds on the slip angles of the tyres were introduced an optimal solution was
obtained. This can be explained by observing Figure 2.3 in Section 2.2.3, the
lateral force has a peak at a certain slip angle. If the slip angle increases more,
then the lateral force will decrease. This peak makes it hard for the optimisation
tools to converge to a solution. Therefore the upper and lower bounds on the
slip angles were introduced preventing the slip angles from increasing pass the
peaks.

Before the optimal solution was found, another problem concerning the equa-
tion 2.7, which defines the friction ellipse came up. The equation was at first
written on the following form:

Fy

Fzmam

D = Fymaa/(1 = ( )?) (4.1)
When the optimisation tools evaluate equation 4.1, the expression under the
square root sign might become negative. This problem disappeared when the
equation was rewritten as:

F, 12 4 ( D

21 4.2
(FI’ITLG,CE Fymax) ( )

It is an advantage if the square root can be avoided in all equations.

The Flower Track, 1 Lap

No optimal solution was found when minimizing time for the vehicle model
driving on the flower-shaped track. The initial guess used for the minimum
time case might have been too poor. The initial guess used was the result from
a optimisation case, where the acceleration, the derivative of the steering angle
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and the derivative of the acceleration were minimized for a fixed final time. The
cost function was formulated as:

b d d
minJ = /0 aZ + 1000552 + 105aidt (4.3)
The result from this case is presented in Figures 4.23- 4.28. A better initial
guess couldn’t be found without violating the constraints. By evaluating the
figures showing the tyre forces, the conclusion that the vehicle is performing
very close to its limitations can be made. This result should be a good initial
guess for the minimum time case. Another reason for not finding an optimal
solution when minimizing time could originate from the equations of the vehicle
model, particularly the equations of the nonlinear tyre model. There might exist
more than one equilibrium at certain points, if that’s the case, it is hard for the
optimisation tools to converge to an optimal solution.

If the optimal path results of the current vehicle model are compared to
the optimal path results of the bicycle model with linear tyre properties, it can
be seen that the results have the same tendencies. It is difficult to compare
the different results more closely, since some of the constraints differ. For the
model with linear tyres, the limitation of the lateral acceleration is set with an
limitation envelope, depending on the longitudinal acceleration, as illustrated
in every g-g diagram. For the vehicle model with nonlinear tyre properties the
lateral force is limited by the friction ellipse, depending on the longitudinal
force.
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Figure 4.23: The optimal path obtained when minimizing cost function 4.3, for
a bicycle model with nonlinear tyres driving 1 lap on the track.
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Figure 4.24: The control inputs for a bicycle model with nonlinear tyres driving 1
lap on the flower-shaped track when minimizing cost function 4.3. Longitudinal
acceleration, a, and steering angle, 6.
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Figure 4.25: The velocity, v, and the slip angles, af(thin) and a,(thick) of
the bicycle model with nonlinear tyres driving 1 lap on the flower-shaped track
when minimizing cost function 4.3.
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Figure 4.26: The relation between the lateral acceleration, a, and the longitu-
dinal acceleration, a, of the bicycle model with nonlinear tyres driving 1 lap on
the flower-shaped track when cost function 4.3 is minimized.
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Figure 4.27: The lateral force(blue) and the maximum lateral force(red) plotted
against the longitudinal force for the front tyre in the case where cost function 4.3
was minimized for a bicycle model with nonlinear tyres driving 1 lap on the
flower-shaped track.
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Figure 4.28: The lateral force(blue) and the maximum lateral force(red) plotted
against the longitudinal force for the front tyre in the case where cost function 4.3
was minimized for a bicycle model with nonlinear tyres driving 1 lap on the
flower-shaped track.

4.2.2 Minimizing the Scaling Factor

As mentioned before, an optimal path was only found for the ellipse-shaped
track. The cost function was formulated as follows:

Cost function:
min J = min fostf Secrds

The Ellipse Track, 2 Laps

The optimal path is presented in Figure 4.29. The control inputs, a, and §
are shown in Figure 4.30, the dashed lines are the resulting control inputs from
Section 4.2.1, when minimizing time. The velocity of the vehicle, v, and the
slip angles of the tyres, « are presented in Figure 4.31.
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Figure 4.29: The optimal path obtained when minimizing the scaling factor, for
a bicycle model with nonlinear tyres driving 2 laps on the track.
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Figure 4.30: The control inputs for a bicycle model with nonlinear tyres driving
2 laps on the ellipse-shaped track when minimizing the scaling factor. Longitu-
dinal acceleration, a, and steering angle, 5. The dashed lines show the control
inputs from the case where the time was minimized.
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Figure 4.31: The velocity, v, and the slip angles, af(thin) and «,(thick) of the
bicycle model with nonlinear tyres driving 2 laps on the ellipse-shaped track
when minimizing the scaling factor.
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Figure 4.32: The lateral force(blue) and the maximum lateral force(red) plotted
against the longitudinal force for the front tyre in the case where the scaling
factor was minimized for a bicycle model with nonlinear tyres driving 2 laps on
the ellipse-shaped track.
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Figure 4.33: The lateral force(blue) and the maximum lateral force(red) plotted
against the longitudinal force for the rear tyre in the case where the scaling
factor was minimized for a bicycle model with nonlinear tyres driving 2 laps on
the ellipse-shaped track.

The above result was obtained when using the result from a simulation run
with the driver model as an initial guess. A simple acceleration control was
added to the driver model before the simulation run. The approach described
in Section 3.5 was applied at first but failed.

The control inputs are not very similar to the control inputs from the case
when minimizing time. By observing Figure 4.30 it can be noticed that the final
time it takes for the vehicle to drive around the track differ between the two
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optimisation cases. The final time is less when minimizing the scaling factor,
which might mean that the result obtained when minimizing the time is not
really optimal. It may also be discussed if the result from the case where the
scaling factor is minimized are really optimal, since some of the states behave
strangely. The lateral acceleration, a, doesn’t behave as desired, see Figure 4.34.
Unfortunately it is difficult to compare the results for the nonlinear model to
the linear model, since the limitations differ. It is hard to find optimal paths,
especially when the vehicle model becomes more advanced. Sometimes it is
problematic for AMPL to converge to an optimal solution and there is usually
a risk of finding a local minimum instead.
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Figure 4.34: The lateral acceleration, a, for a bicycle model with nonlinear tyres
driving 2 laps on the ellipse-shaped track when minimizing the scaling factor.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this project it has been shown that it is possible to find optimal paths for
vehicle models designed in Modelica. These optimal paths have been found by
applying the theory of optimal control. The optimal control problem has been
set up with the Optimica language and then been solved with AMPL.

A vehicle following the optimal path will traverse the track in minimum
time, which means by minimizing the time, the optimal path could be found.
An optimal control problem with the purpose of minimizing the time is a free
final time problem. Solving free final time problems is difficult, usually a good
initial guess is necessary in order to find a solution.

In this case the initial guess can be obtained by using a driver model. The
driver model will be rather complex in order of producing a proper initial guess.
The driver model needs to consist of a steering control and an acceleration con-
trol. Implementing a well-behaved acceleration control is particularly difficult.
A different approach based on minimizing the control inputs for a fixed final
time and reuse the result as an initial guess for the minimum time problem has
been applied in this project. Optimal control problems with fixed final time
are much easier to solve than problems with free final time, which has been
experienced during this study. A disadvantage with the approach is the many
optimisation runs that are needed before obtaining a proper initial guess, which
might be time-consuming but a special script automates this process.

Transforming the vehicle model and the optimal control problem to be de-
pendent of distance instead of time will facilitate the search for an optimal path.
The main reason why, is that the optimal control problem becomes a fixed fi-
nal time problem, still with the objective of finding a minimum time solution.
It is therefore preferable to transform the vehicle model and the optimal con-
trol problem, before attempting to find an optimal path. One disadvantage is
that the control inputs can no longer be minimized in order to obtain an initial
guess. Instead another approach for solving the problem was introduced. The
idea of the approach is to increase the distance the vehicle travels between every
optimisation until the vehicle reaches the desired distance.

Satisfying optimal path results for a vehicle model with linear tyre properties
have been obtained with both of the two approaches. The results have been

54
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compared and the conclusion that the results are very similar has been made.
Transforming the model and the problem to be dependent of distance is to
prefer, since the initial guess is not as crucial. This means it will take less time
to find a sufficiently good initial guess and the optimal path will be easier to
determine.

During extreme driving conditions it is not adequate to approximate the
tyre characteristics with linear properties. Unfortunately it is difficult to find
optimal paths for vehicles with nonlinear tyre characteristics.

When it is possible to find optimal paths for complex vehicle models, resem-
bling real race cars, conclusions considering the vehicle models can be made.
These conclusion will play a significant role when designing real vehicles.

5.2 Future Work

There are several opportunities for continuation of this project. The next goal
could be to find optimal paths for a vehicle model with nonlinear tyre proper-
ties. If accomplishing this isn’t possible, vehicle models with linear tyres can
still be used but some type of a constraint on the maximum lateral force should
be introduced. Any of the following suggestions could be implemented:

1. Fymaz = Constant
2. Fymaz = Constant — |F|
3. F2, ..+ F% = Constant?

ymax

E,
_________ qymaexr
- 7 |\ \\

7 ’ N SO
- s N N

2 ’ N N
’ s N \
/ 3 4 N \
7 N
/ , N \
/ , N \
[ N
’ N
r, Nl
v \

Figure 5.1: Three different types of limitations on the lateral force.

The first alternative is obviously the simplest. The third alternative, where
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the constraint on the maximum lateral force is nonlinear is ideal and is similar
to the friction ellipse used for the nonlinear tyres.

The chassis model should also be developed towards a more complex model.
The next step is perhaps to introduce a two track model and then implement
some type of suspension dynamics.

Other types of tracks can also be specified. The tracks could be defined in
a different way, for instance with splines.

When searching for the optimal path other aspects but time could be consid-
ered. Different driving paths require different driving techniques, which in turn
might influence the vehicle differently. For instance the wear of the tyres might
be larger for one path, leading to worse performances of the vehicle, which in
turn leads to a greater time. The wear of the tyres could in this case be a part
of the cost function.

The approach for finding the optimal path when minimizing the scaling
factor can be further developed. It would be interesting to see if the first part
of the track can be decoupled when using the approach. It should at least be
possible to decouple the first lap when finding an optimal path for the second
lap.
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Appendix A

Vehicle Model

partial model BicycleModel_nonlinear
extends Icons.Audit;

parameter SI.Inertia Jz=2800 "Yaw inertia";

parameter SI.Length 1f=1.33 "Distance from centre of gravity to
front axle";

parameter SI.Length 1r=1.43 "Distance from centre of gravity to
rear axle'";

parameter SI.Mass m=15560 '"Mass of vehicle";

SI.Position xpos(start=45) "Global x position";

SI.Position ypos(start=0) "Global y position";

SI.Velocity xvel "Global x velocity";

SI.Velocity yvel "Global y velocity";

SI.Acceleration xacc "Global x acceleration";

SI.Acceleration yacc "Global y acceleration";

SI.Velocity vx(start=15,min=0.001) "Longitudinal velocity";

SI.Velocity vy(start=0) "Lateral velocity";

SI.Acceleration dvy '"Derivative of lateral velocity";

SI.Acceleration ax "Longitudinal acceleration";

SI.Acceleration ay '"Lateral acceleration";

SI.Angle psi(start=Modelica.Constants.pi/2) "Yaw angle";

SI.AngularVelocity z "Yaw velocity";

SI.Angle delta "Steering angle";

SI.Angle af "Front slip angle";

SI.Angle ar "Rear slip angle";

SI.Angle beta "Vehicle slip angle";

SI.Force Fxf "Front wheel longitudinal force";

SI.Force Fxr "Rear wheel longitudinal force";

SI.Force Fyf "Front wheel lateral force";

SI.Force Fyr "Rear wheel lateral force";

///NONLINEAR TYRE MODEL///

SI.Force Fxmaxf(min=0.001) "Maximum longitudinal force, front tyre";
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SI.Force Fxmaxr(min=0.001) "Maximum longitudinal force, rear tyre";
SI.Force Fymaxf(min=0.001) "Maximum lateral force, front tyre";
SI.Force Fymaxr(min=0.001) "Maximum lateral force, rear tyre";
SI.Force Fx "Longitudinal force of vehicle";

Real Df "Peak value in the Magic Formula, front tyre";

Real Dr "Peak value in the Magic Formula, rear tyre";

Real Cf "Shape factor in the Magic Formula, front tyre";

Real Cr "Shape factor in the Magic Formula, rear tyre";

Real Bf "Stiffness factor in the Magic Formula, front tyre";
Real Br "Stiffness factor in the Magic Formula, rear tyre";
Real Ef "Curvature factor in the Magic Formula, front tyre";
Real Er "Curvature factor in the Magic Formula, rear tyre";
SI.Force Fzf "Vertical load, front wheel";

SI.Force Fzr "Vertical load, rear wheel";

SI.Height h=0.3 "Height of the centre of gravity";

Real lamda=0.5;

/////////TRACK//////////

SI.Position xc "The center of the track, x-axis";

SI.Position yc "The center of the track, y-axis";

SI.Velocity dxc "Derivative of xc";

SI.Velocity dyc "Derivative of yc";

SI.Acceleration ddxc "Derivative of dxc";

SI.Acceleration ddyc "Derivative of dyc";

Real st(start=0) "Distance from the start point of the track";

SI.Distance d "Distance between the vehicle and the centre of track";

SI.Position xmin;

SI.Position ymin;

SI.Position xmax;

SI.Position ymax;

Real ds;

Real xcds "The x-coordinate of the centre of the track at st+ds";

Real ycds "The y-coordinate of the centre of the track at st+ds";

Real xcdsxpos '"xcds-xpos";

Real ycdsypos '"ycds-ypos";

Real delta_tmp;

Real delta_ref "Steering angle of driver model";

Real psit "The angle between the tangent of the centre of the track and
the x-axis";

Real kt "Curvature of the centre of the track";

Real rt "Radius of the centre of the track";

Real Scf "Time to distance scaling factor";

equation
assert(vx>0, "Longitudinal velocity (vx) is to low");

/*S1lipx*/
af=atan((vy+z*1f)/vx)-delta;
ar=atan((vy-z*1lr)/vx);
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beta=atan(vy/vx);

/*Kinematics*/
der(psi)=z;
der (xpos)=xvel;
der (ypos)=yvel;
der (xvel)=xacc;
der (yvel)=yacc;
der (vx)=ax;
der (vy)=dvy;

/*Coordinate transform*/
xvel = vx*cos(psi) - vy*sin(psi);
yvel = vx*sin(psi) + vy*cos(psi);

ay = dvy+z*vx;

/*Equations of motion*/

// der(vx)-z*vy=(-Fyf*sin(delta))/m;
der (vy)+zxvx=(Fyr+Fyf*cos(delta))/m;
der(z)=(1f*Fyf*cos(delta)-1r*Fyr)/Jz;

///NONLINEAR TIRE MODEL///

Fyf=-Df*sin(Cf*atan(Bf*(af)-Ef*(Bf*(af)-atan(Bf*(af)))));
Fyr=-Dr*sin(Cr*atan(Br*(ar)-Er*(Br#*(ar)-atan(Br*(ar)))));

1=(Df/Fymaxf) ~2+(Fxf/Fxmaxf) ~2;
1=(Dr/Fymaxr) ~2+(Fxr/Fxmaxr) ~2;

Fx=ax*m;

Fxf=lamda*Fx;

Fxr=(1-lamda) *Fx;

Fxmaxf=Fymaxf;

Fxmaxr=Fymaxr;
Fzf=(m*Modelica.Constants.g_n¥lr-m*ax*h)/(1f+1lr);
Fzr=(m*Modelica.Constants.g_nx1f+m*ax*h)/(1f+1lr);

Fymaxf=1.0%Fzf; //myf*Fzf;
Fymaxr=1.3*Fzr; //myr*Fzr;
BfxC£xDf=80000;
Br*Cr*xDr=100000;

Cf=1.3;

Cr=1.3;

Ef=-2;

Er=-2.5;

///////ELLIPSE TRACK////////

xc=45%cos(st);
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yc=95*sin(st);
dxc=-45*sin(st);
dyc=95*cos(st);
ddxc=-45%cos(st);
ddyc=-95*sin(st);
xmin=40%cos (st) ;
xmax=50*cos (st) ;
ymin=90*sin(st);
ymax=100*sin(st);
xcds=45%cos (st+ds) ;
ycds=95*sin(st+ds) ;

///////CIRCULAR TRACK///////

// xc=(200+40*sin(4*(st)-Modelica.Constants.pi/2))*cos(st);

// yc=(200+40*sin(4*(st)-Modelica.Constants.pi/2))*sin(st);

// dxc=-(200)*sin(st)+40*4*cos(4*st-Modelica.Constants.pi/2)*cos(st)
-40*sin(4*st-Modelica.Constants.pi/2)*sin(st);

// dyc=(200) *cos (st)+40*4x*cos (4*st-Modelica.Constants.pi/2) *sin(st)
+40*sin(4*st-Modelica.Constants.pi/2)*cos(st);

// ddxc=-200*cos(st)-680*sin(4*st-Modelica.Constants.pi/2)*cos(st)
-320*cos (4*st-Modelica.Constants.pi/2)*sin(st);

// ddyc=-200*sin(st)+cos(4*st-Modelica.Constants.pi/2)*(640*sin(st)
+160*cos(st) ) +sin(4*st-Modelica.Constants.pi/2)*(160*cos(st)-40*sin(st));

// xmin=(195+40%*sin(4*(st)-Modelica.Constants.pi/2))*cos(st);

// xmax=(205+40*sin(4*(st)-Modelica.Constants.pi/2))*cos(st);

// ymin=(195+40*sin(4*(st)-Modelica.Constants.pi/2))*sin(st);

// ymax=(205+40*sin(4*(st)-Modelica.Constants.pi/2))*sin(st);

// xcds=(200+40*sin(4*((st+ds))-Modelica.Constants.pi/2))*cos((st+ds));

// ycds=(200+40*sin(4* ((st+ds))-Modelica.Constants.pi/2))*sin((st+ds));

(xpos-xc)*dxc+(ypos-yc)*dyc=0;
ds=0.07;
xcdsxpos=xcds-xpos;
ycdsypos=ycds-ypos;
delta_tmp=acos ((xcdsxpos*xvel+ycdsypos*yvel)/(sqrt(xcdsxpos~2+ycdsypos™2)
*xsqrt (xvel~2+yvel~2)));
delta_ref=if xcdsxpos>0 and xvel>0 and ycdsypos/xcdsxpos>yvel/xvel then
delta_tmp else
if xcdsxpos<0 and xvel>0 and yvel/xvel>ycdsypos/xcdsxpos then
delta_tmp else
if xcdsxpos<0 and xvel<0 and ycdsypos/xcdsxpos>yvel/xvel then
delta_tmp else
if xcdsxpos>0 and xvel<0 and yvel/xvel>ycdsypos/xcdsxpos then
delta_tmp else
if xvel>0 and xcdsxpos>0 and yvel/xvel>ycdsypos/xcdsxpos then
-delta_tmp else
if xvel<0 and xcdsxpos>0 and ycdsypos/xcdsxpos>yvel/xvel then
-delta_tmp else
if xvel<0 and xcdsxpos<0 and yvel/xvel>ycdsypos/xcdsxpos then
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-delta_tmp else
if xvel>0 and xcdsxpos<0 and ycdsypos/xcdsxpos>yvel/xvel then
-delta_tmp else
0;
psit=if ddxc<=0 then acos(dxc/sqrt(dxc~2+dyc~2)) else
2xModelica.Constants.pi-acos(dxc/sqrt(dxc™2+dyc~2));
d=(ypos-yc)*cos(psit)-(xpos-xc)*sin(psit);
kt=sqrt ((dxc*ddxc) ~2+(dyc*ddyc) ~2)/ (sqrt (dxc~2+dyc~2)) ~3;
rt=if kt>0 then 1/kt else
100000
Scf=(1-dxkt)/(vx*cos(psi-psit)-vy*sin(psi-psit));

end BicycleModel_nonlinear;
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Optimisation Script

B.1 Minimizing Time

reset;
param ij;
let i:=2;

#AMPL-files

model PlanarVehicles.Experiments.Optimization.mod;

data PlanarVehicles.Experiments.(Optimization.dat;

model PlanarVehicles.Experiments.0Optimization.InitialGuess.mod;

data PlanarVehicles.Experiments.Optimization.InitialGuess.dat;

model PlanarVehicles.Experiments.Optimization.SquareProblemCost.mod;
model PlanarVehicles.Experiments.Optimization.Constraint.mod;

option solver "/work/jakesson/software_tools/Ipopt/Ipopt-3.2.0

/CoinIpopt/bin/ipopt";
option ipopt_options "max_iter=10000";
solve;

include PlanarVehicles.Experiments.Optimization.GenLogFile.run;
model PlanarVehicles.Experiments.Optimization.Cost.mod;

param tmp;
let tmp:=TIME;
redeclare param TIME;

let TIME:=tmp;

#Loop finding optimal solutions when minimizing the optimal control
inputs and decreasing TIME(=tf).

repeat while i > 0.01 {

solve;
include PlanarVehicles.Experiments.Optimization.GenLogFile
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.run;
#If an optimal solution is found then TIME(=tf) is decreased.

if solve_result_num == 0 then {

shell ’cp PlanarVehicles.Experiments.Optimization

_res.txt PlanarVehicles.Experiments.Optimization_res_tmp.txt’;
let tmp := TIME;

let i := 1x%i;
let TIME := TIME - i;
}else if solve_result_num != O then {

shell ’cp PlanarVehicles.Experiments.Optimization_res
_tmp.txt PlanarVehicles.Experiments.Optimization_res.txt’;
let i := i/2;

let TIME := TIME + i;

let tmp := TIME;

}

display TIME;

};

B.2 Minimizing the Scaling Factor

reset;
param 1i;
let i:=1;

#AMPL-files

model PlanarVehicles_s.Experiments.Optimization.mod;

data PlanarVehicles_s.Experiments.Optimization.dat;

model PlanarVehicles_s.Experiments.Optimization.InitialGuess.mod;
data PlanarVehicles_s.Experiments.0Optimization.InitialGuess.dat;

model PlanarVehicles_s.Experiments.Optimization.SquareProblemCost.mod;
model PlanarVehicles_s.Experiments.Optimization.Constraint.mod;

option solver "/work/jakesson/software_tools/Ipopt/Ipopt-3.2.0
/CoinIpopt/bin/ipopt";

option ipopt_options "max_iter=2000 mu_strategy=adaptive";
solve;

include PlanarVehicles_s.Experiments.Optimization.GenLogFile.run;
model PlanarVehicles_s.Experiments.Optimization.Cost.mod;

param tmp;

let tmp:=TIME;
redeclare param TIME;
let TIME:=tmp;
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#Loop finding optimal solutions and increasing TIME(=sf), until
TIME=900.

repeat while TIME < 900 {

printf "grid(finalTime=fixedFinalTime(finalTime=Y%d)
,nbrElements=%d);", TIME, 0.5*TIME > temp_opt_u_2.o0p;
close temp_opt_u_2.op;

shell ’cat temp_opt_u_1.op temp_opt_u_2.op temp_opt_u_3.op
> temp_opt_u.op’;

shell ’optimicac temp_opt_u.op PlanarVehicles_s.mo

PlanarVehicles_s.Experiments.Optimization

PlanarVehicles_s.Experiments.Optimization_res.txt’;
solve;

include PlanarVehicles_s.Experiments.Optimization
.GenLogFile.run;

#If an optimal solution is found then TIME(=sf) is
increased.

if solve_result_num == O then {

shell ’cp PlanarVehicles_s.Experiments.Optimization

_res.txt PlanarVehicles_s.Experiments.Optimization_res_tmp.txt’;
let tmp := TIME;

let i := 1x%i;

let TIME := TIME + i;

}else if solve_result_num != O then {

shell ’cp PlanarVehicles_s.Experiments.Optimization
_res_tmp.txt PlanarVehicles_s.Experiments.0Optimization_res.txt’;
let i := i/2;

let TIME := TIME - i;

let tmp := TIME;

}

display TIME;

};





