
ISSN 0280-5316
ISRN LUTFD2/TFRT--5799--SE

TrueTime in Scicos

Daniel Kusnadi

Department of Automatic Control
Lund University

June 2007

Document name
MASTER THESIS
Date of issue
June 2007

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5799--SE
Supervisor
Karl-Erik Årzén at Automatic Control in Lund
Anton Cervin at Automatic Control in Lund (Examiner)

Author(s)
Daniel Kusnadi

Sponsoring organization

Title and subtitle
TrueTime in Scicos (TrueTime I Scicos)

Abstract
TrueTime is a MATLAB/Simulink-based simulator for real-time control systems that has been developed at the
Department of Automatic Control, LTH. The aim of this thesis is to port the TrueTime kernel block to the open-source
Scilab/Scicos simulation environment. The original kernel block is a variable-step, discrete S-function written in C++. In
this work, the Scicos engine should replace the Simulink engine that is being used for timing and interfacing with the rest
of the simulation model. The scope of work does not include the network related implementation in TrueTime kernel
block, since the TrueTime network block is not part of this thesis project. Neither is the implementation of the user
interface is included, since Scilab is planning to reorganize the implementation on its graphical editor. The results show
that it is possible to port TrueTime to the Scilab/Scicos environment, although the developed Scilab version does not
provide as many simulation features as the MATLAB version. The simulation outputs from tests of TrueTime in
Scilab/Scicos give the same results as those simulated in MATLAB/Simulink.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
72

Security classification

Recipient’s notes

http://www.control.lth.se/publications/

1

Contents
1 Introduction ... 2

1.1 Aim of the thesis .. 2
1.2 Results .. 2

2 Background ... 3
2.1 The TrueTime simulator... 3
2.2 MATLAB/Simulink.. 6
2.3 Scilab/Scicos ... 6

3 Porting TrueTime to Scilab... 8
3.1 Writing blocks for Simulink and Scicos - a Comparison.............. 8

3.1.1 Activation signals ... 8
3.1.2 Collaboration with C files...10
3.1.3 Function call structure ...10
3.1.4 Block input and output sizes..12
3.1.5 Sample times ..13
3.1.6 Error messages...13
3.1.7 Getting system time ..14
3.1.8 Simulation option for computational function14
3.1.9 Abort the simulation ..14

3.2 Work performed..15
3.2.1 Visual C++ configuration ...15
3.2.2 Adjustments to succeed compilation and linking19
3.2.3 Code restructuring...21
3.2.4 Input reading and output settings24
3.2.5 Scicos user interface for TrueTime kernel block..........28
3.2.6 Excluded functions ..31

3.3 Examples..32
3.3.1 Simple Timer – Sinus Sampler32
3.3.2 SimplePID...34
3.3.3 ThreeServos ...41

4 Conclusions..47
4.1 Good story..47
4.2 Difficulties ...47
4.3 Possible future work ...47

4.3.1 Improvement on the ported TrueTime kernel block47
4.3.2 Calling PID parameters written in Scicos.....................47
4.3.3 Porting of TrueTime network blocks47
4.3.4 Completing the network part in TrueTime Kernel

block ...47

5 References..48

6 Appendices...49
6.1 Appendix A: Code listing of ttkernel.h49
6.2 Appendix B: Code listing of ttkernel.cpp....................................54
6.3 Appendix C: Code listing of truetimekernel.sci70

2

1 Introduction

1.1 Aim of the thesis
The aim of the thesis is to port the TrueTime kernel block to the Scilab/Scicos simulation
environment. The original block is a variable-step, discrete, MATLAB S-function written in
C++. The Scicos engine shall replace the Simulink engine that is being used for timing and
interfacing with the rest of the model (the continuous dynamics).

Two main problems to be solved in this thesis are:

• To translate as many TrueTime functions as possible into the Scicos/Scilab
environment

• To make Scilab/Scicos collaborate with the translated TrueTime application and
produce as similar results as possible compared to MATLAB/Simulink.

The output figures of the provided process control examples from TrueTime will be used to
measure the result of this porting work.

Those two problems are important to open the possibilities to port other MATLAB/Simulink
based tool blocks, so that the tool can also be accessible by the Scilab user, with consideration
that Scilab is a free software package and has a quite strong market. In other words, solving
this problem will give possibilities to expand the market area for the developed tools.

The scope of work does not include the network related implementation in TrueTime kernel
block, since the TrueTime network block is not part of this project. Neither the
implementation of the user setting interface is included, since Scilab is planning to reorganize
the implementation on its graphical editor.

1.2 Results
The results show that it is possible to port the MATLAB/Simulink based tool TrueTime to the
Scilab/Scicos environment, although Scilab/Scicos does not provide as many simulation
features as MATLAB/Simulink. The simulation outputs from the test of TrueTime on
Scilab/Scicos give the same figures as those simulated on MATLAB/Simulink. These figures
confirm that the assignments given in this project are accomplished.

Although the user setting interface is not included in the scope of work, it is successfully
completed in the last stage of this thesis project. The main purpose is to improve the user
friendliness of the setting interface of the ported TrueTime Kernel. As in Simulink, the kernel
block is available in a TrueTime library that is accessible from Scicos palettes.

3

2 Background

2.1 The TrueTime simulator
TrueTime is a MATLAB/Simulink-based simulator written in C++ MEX for real-time control
systems. It facilitates the simulations of:

• Controller task execution using a multitasking real-time kernel, where the tasks are
controlling processes that are modelled as ordinary Simulink blocks

• Simple models of communication networks and their influence on networked control
loops

The TrueTime simulator was developed by Department of Automatic Control, LTH1, Sweden,
and commonly used in:

• Investigation on the effects of timing non-determinism caused, for example, by pre-
emption or transmission delays, on control performance.

• Development of compensation schemes that adjust the controller dynamically based on
measurements of actual timing variations

• Experiment with new, more flexible approaches to dynamic scheduling, such as
feedback scheduling of CPU time and communication bandwidth and quality-of-
service (QoS)-based scheduling approaches.

• Simulation of event-driven control system, e.g. engine controllers and distributed
controllers.

TrueTime version 1.4 that is used in this project is delivered as a Simulink library, as shown
in Figure 1, consisting of the following blocks:

• Kernel block supporting external interruptions, possibility to write tasks as M-files or
C++ functions and possibility to call Simulink block diagrams from within the code
functions

• Network block with protocol settings available for Ethernet, CAN, TDMA, FDMA,
Round Robin, and switched Ethernet networks

• Wireless network block that supports 802.11b WLAN and 802.15.4 ZigBee

• Battery block supporting Dynamic Voltage Scaling

Since the project scope of work is to port only the kernel block, the other three blocks will not
be discussed in details. Further information about these blocks can be found in the TrueTime
Reference Manual [5]. The porting of the network-related implementation in the kernel block
will include only the configuration of network I/O ports (Receive/Send) to maintain the
compatibility in future development. In other words, there is no functionality available behind
these network I/O ports.

The kernel block works as a computer with a simple but flexible real-time kernel equipped
with A/D and D/A converters, a network interface, and external interrupt channels. As
common real-time kernels, it maintains data structures for a ready-queue, a time queue, and
records for tasks, interrupt handlers, monitors, and timers that have been created for the

1 Lund Tekniska Högskolan

4

simulation. The execution of tasks and interrupt handlers is configured by user-defined code
functions that can be written in C++ (for speed) or as MATLAB m-files (for ease of use).
Control algorithm is modelled graphically using ordinary Simulink block diagram.

Figure 1 - The TrueTime block Library

Figure 1 shows three groups of inputs on the kernel block: A/Ds, Interrupts and Network
Receive. The A/Ds are continuous-time inputs with A/D converters and the rest are discrete-
time inputs. There is one more discrete-time input for energy supply, but it is hidden and only
accessible from the configuration interface window. All outputs are discrete-time signals. The
schedulers and monitors display the allocation of kernel resources during the simulation, such
as tasks and handlers.

An arbitrary number of tasks can be created to run in TrueTime kernel and they can be both
periodic (such as controller and I/O tasks) and a-periodic (such as communication tasks).
Each task has a set of attributes and a code function. The attributes include a name, a release
time, a worst-case execution time, an execution time budget, relative and absolute deadlines, a
priority, and a period (if task is periodic). The priority scheduling is dynamic given as a user-
defined priority function. There are four priority functions supported by TrueTime:

• prioFP (fixed priority)

• prioRM (rate monotonic)

• prioDM (deadline monotonic)

• prioEDF (earliest deadline first)

Interrupts can be generated externally or internally. An external interrupt is triggered by
signal connected to the corresponding interrupt input channel of the kernel block. Internal
interrupt is activated by timers; either periodic timers or one-shot timers. When an interrupt
occurs, a user-defined interrupt handler is scheduled to serve the interrupt according to fixed
priorities. This interrupt handler has higher priority than a task although it works similarly. It
has simpler attribute consisting of a name, a priority and a code function.

5

The code function mentioned above is a function defining the activities to be performed by
the task or the interrupt. This code function is scheduled and executed by the kernel that is
prioritized lower than the interrupts but higher than the tasks. The code is normally divided
into several segments and it returns the simulated execution time of each segment. The value
of the execution time can be constant, random or data-dependent. The kernel calls the code
functions with the proper arguments and keeps track of the segment execution. The
assignments in a segment are normally built using kernel primitives. Some examples of kernel
primitives called by the code functions are listed in Table 1, the rest can be found in the
TrueTime documentation [5].

Kernel primitives
(called from code functions)

Description

ttCurrentTime() Get current time in simulation
ttAnalogIn(ch) Get the value of an input channel
ttAnalogOut(ch, val) Set value to an output channel
ttCreateTimer(time, ih) Trigger interrupt handler at a specific time
ttSleepUntil(time) Wait until a specific time
ttWait(ev) Await an event
ttSetPriority(val) Change the priority of a task
ttSetPeriod(val) Change the period of a task

Table 1 - Examples of kernel primitives

Figure 2 below shows an example of a code function implementing a simple controller. The
first segment (indicated by case 1) samples the input signal at channel 1 and computes the
control signal. The second segment actuates the control signal to the output channel 1 and
updates the controller states. The third segment indicates the end of execution by returning a
negative value. The functions calculateOutput and updateState are assumed to represent the
implementation of an arbitrary controller. The data structure data represents the local memory
of the task and is used to store the control signals and measured variable between calls to
different segments. A/D and D/A conversions are performed using kernel primitives:
ttAnalogIn and ttAnalogOut.

Figure 2 - Example of a simple code function

In this project the code functions are written in C++ instead of MATLAB m-file code, like the
example above. The code structure is more or less similar.

���������	
 �
 ����

�� � �� ��� ��� � ������
 ���
 �
�� � �� ��

�� ���� ��
 �
�

���� �
 ��
�

����� � �� �� �� ���� �� ��� ����� �

����� � �� ���� ��� ����� �
 ! ��" ���� � �� �� � �

����
 �
 ����
 �� �# �# # $ �

���� �
 �$
�

������� �� ��� ! ����
�� � �� ��� �

�����" � � �
 % �� �
 �� � �� �� � �

����
 �
 ����
 �� �# �# # & �

���� �
 �&
�

����
 �
 ����
 �� �'� �(�������
 � �

6

2.2 MATLAB/Simulink
MATLAB is a software program package for technical calculations and data visualization.
The result from reliable calculations can be presented with advanced graphics. The program
package is flexible, user-friendly, and can be applied within, for example, mathematics,
physics, engineering, chemistry, biology, economics.

MATLAB is maintained and sold by The MathWorks, Inc., of Natick, Massachusetts, and is
available for MS Windows, Macintosh, Unix and Open VMS systems. It was developed from
the beginning in the 1970s for applications involving matrices, linear algebra, and numerical
analysis. The name MATLAB stands for “Matrix Laboratory”. Nowadays, the MATLAB’s
numerical routines have been thoroughly tested and improved through many years of use in
different wide sectors, which in turn contributes the fact that MATLAB’s capabilities have
been greatly expanded during that time. Below are some wide sectors where MATLAB is
used:

• Research and development in industry

• Teaching in mathematics such as linear algebra and numerical analysis, where different
calculation methods can be studied and compared in details

• Teaching and research in engineering subjects such as electronics, signal processing
and automatic control engineering

• Teaching and research in all subjects where calculation problem or data processing
problem exist, for example statistics, economics, physics, chemistry and biology

MATLAB has a number of add-on software modules, called toolboxes that perform more
specialized computations for specific application areas, such as digital signal processing and
automatic control system design. One of them is Simulink that is used by TrueTime. The
algorithm in the software modules is written by the experts on mathematical software and
often optimized for the present computer types and applications.

The graphics in MATLAB is object-oriented and provides a powerfull environment to
develop advanced graphics in both two and three dimensions. Since MATLAB are both an
interactive environment and a matrix/vector-oriented programming language, it is possible to
develop user-defined functions that can be used exactly as those built-in commands.

2.3 Scilab/Scicos
Scilab is a free open-source software package for general purpose numerical systems
performing numerical computations. It is designed specifically for scientific applications.
Scilab has the same market that is dominated by MATLAB. Widely used at universities and
engineering schools makes it gaining ground in industrial environments.

The software is available for downloading at http://www.scilab.org. It is in binary format
and runs on the main available platforms: Unix/Linux (the main software development is
performed on Linux), Windows and MacOSX.

Basile was the original name of Scilab and was developed at INRIA2 as part of Meta2 project.
The development continued under the name of Scilab by the Scilab group, which was a team

2 Institut National de Recherche en Informatique et en Automatique

7

of researchers from INRIA Metalau and ENPC3. Since 2004, a consortium coordinates the
Scilab development.

As it is mainly dedicated to scientific computing, Scilab provides access to large numerical
libraries from such areas as linear algebra, numerical integration and optimization. It is
possible to extend the Scilab environment by importing new functionalities from external
libraries using either static or dynamic links.

One important Scilab toolbox is Scicos (http://www.scicos.org), which corresponds to
Simulink in MATLAB. Scilab/Scicos is the open-source alternative to commercial packages
for dynamical system modelling and simulation packages such as MATLAB/Simulink and
MATRIXx/SystemBuild. Scicos provides a modular way to construct and simulate complex
dynamical systems using a block-diagram graphical editor. It handles, in particular, the
interaction between continuous-time dynamics and system events including events associated
with the timing of a discrete-time clock.

Using Scicos, the user can construct a library of reusable modules (blocks) that can be used in
different models in different projects. A large number of blocks are already available in
Scicos palettes for elementary operations. There are quite many useful functionalities for the
designer to optimize model parameters, validate models, generate C code, etc. The most
important facility used in this project is linking to a new library constructed and compiled in
C++.

Running some of the examples presented in the delivered Scilab product requires C compiler,
which is usually no problem under Linux, MacOSX and most Unix workstations. Under
windows operating system, Scilab requires the installation of Visual C++. Scilab version 4.1
running on Windows XP Professional SP2 operating system is used during this project.

3 Ecole Nationale des Ponts et des Chaussées

8

3 Porting TrueTime to Scilab

3.1 Writing blocks for Simulink and Scicos - a Comparison
This section summarizes important differences between MATLAB/Simulink and
Scilab/Scicos in the way to write blocks, to load them, and use them in the models.

3.1.1 Activation signals
The behaviour of simulation block is primarily specified by the way it is activated. There are
three ways to activate a block: event activation, continuous-time activation and internal
mode/zero-crossing activation.

Event activation

A block with this activation updates its output only when it receives external activation signal.
It is illustrated by the formula below for the implementation in Scicos:

))(),(),(),(,()(1 eeeeee ttutztxtfty µ−−=
te denotes the event time, x(te

-) and z(te
-) denote respectively the continuous-time and discrete-

time states.

Scicos has different approach compared to Simulink on how to design the simulation model
regarding to this matter. One simple and clear example that can describe the difference is the
modelling of a Square-Wave Generator block with amplitude 1 and period 1.

Simulink Approach Scicos Approach

 Figure 3 – Comparison of Event Activation of Square-Wave Generator Block

9

In Simulink this can be constructed by a Signal Generator block and completed with those
parameters required. In Scicos, two blocks are needed: Square-Wave Generator block with its
parameter ‘Amplitude’ and Event Generator block with its parameters ‘Period’ and ‘Init
Time’.

The Scicos block can have event output activation ports, where upon activation the block can
program events on the ports by providing the delay time to event firing on each port. If the
block is configured to have internal states, it can update them, both continuous-time states and
discrete time states. The output activation ports and internal states are not used in these
porting activities.

Continuous-time activation

In this case, the activation occurs over time intervals and not at specific times as in the case of
event activation. No further discussion on this topic since it is similar as in MATLAB.

Internal mode and zero-crossing

The mode parameter is not part of the Scicos formalism. It is introduced to facilitate the
implementation of the numerical solver. The mode is not used in these porting activities.

When zero-crossing occurs inside the block, this block is activated at the time of crossing. To
make sure the simulation stops at the time of crossing, a zero-crossing surface is introduced at
zero. After the zero-crossing the simulation continues. The computation of the zero-crossing
is performed by the block. In Scicos, if the simulation phase is 1, then

[]))(),(),(),(,()(),(9 ttutztxtftstm µ=

m(t) denotes the mode and the zero-crossing surfaces s(t) may be present even if the block has
no mode.

Zero-crossing is the most important feature used in the TrueTime implementation. The zero
crossing surface function is defined generally by the following equation:

tnextHitts −=)(

This surface function s(t) can be illustrated against the current simulation time t as shown in
Figure 4. The value of nextHit is updated and calculated by the kernel at each zero crossing
points pointed by the green arrows in the figure.

Figure 4 – The zero crossing surface function in TrueTime, the green arrows show the crossing

point

The illustration shows that zero crossing is the key for TrueTime to simulate the different
execution times of the scheduled tasks and interrupts. The method of zero-crossing between
Scilab/Scicos and MATLAB/Simulink is similar, which makes it possible to port the
TrueTime implementation into the Scilab environment.

t

s(t)

10

3.1.2 Collaboration with C files
The idea behind the collaboration with C files is quite similar between Scilab and MATLAB
but the implementations are slightly different as shown in Figure 5. Both Scilab and
MATLAB are written in C and they use pointers to exchange data with the C files.

MATLAB Approach Scilab Approach

To compile and link C files
�
 � �)��	�" ����������
 �� �
 �

can be used outside MATLAB environment
���* +���+���, ��� �
 �
���
 �
��* �
��� � ��

can only be used inside Scilab environment

Figure 5 – Compiling and linking C files

The function ilib_for_link is not used in this project since it compiles only C code. TrueTime
code is written in C++ which can not pass the compilation restrictions used in ilib_for_link.
One approach is done by compiling the TrueTime code using Visual C++ to generate
truetime.dll file and then link the .dll file from Scilab using command below:

Figure 6 – Scicos command to link the function truetimekernel in the file ttkernel.dll

The way the block is called in Scicos is characterized by the type of interfacing function.
Since the TrueTime program is written in C/C++ language, Type 4 of Scicos block is used.
Type 4 C functions receive two arguments: a structure containing block information and a
flag.

Figure 7 – Main structure of Scicos computational function

3.1.3 Function call structure
The computational function is called in various ways by Scicos simulator and flag is used to
indicate the job that must be performed. The valid flags are listed in the table below.

flag input output Description

0 t, nervprt, x, z,
inptr, mode, phase

xd Compute the derivative of continuous
time state

1 t, nervprt, x, z,
inptr, mode, phase

outptr Compute the outputs of the block

2 t, nervprt>0, x, z,
inptr

x, z Update states due to external activation

2 t, nervprt=-1, x, z,
inptr, jroot

x, z Update states due to internal zero-
crossing

3 t, x, z, inptr, jroot evout Program activation output delay times
4 t, x, z x, z, outptr Initialize states and other initializations
5 X, z, inptr x, z, outptr Final call to block for ending the

simulation
6 Not needed

- ������
 �.������+* ���, �� /�

0 ��� ����
 ���
 ,
 ��
 ��������+* ���, �1 * ���,
�������� � ��2�

��������

3�

���, ��� * ���, +" � �� 4 5��,
 ��
 ��� ��5
	5���
 ���
 ,
 ��
 �5�
5�5� �

11

flag input output Description

7 Only used for internally implicit blocks
9 t, phase=1, nervprt,

x, z, inptr
g, mode Compute zero-crossing surfaces and set

modes
9 t, phase=2, nervprt,

x, z, inptr
g Compute zero-crossing surfaces

Table 2 – The jobs that the computational function must perform for different flag

Instead of using flag, Simulink distributes the code into several pre-defined modules with
dedicated functions. Figure 8 shows the comparison of the programming structure between
those two simulators.

Simulink Approach Scicos Approach

Program code structure

- �
 ���
 �% +6 7 8 � 9 �! 8 +8 � : ; ���

- �
 ���
 �% +6 7 8 � 9 �! 8 +< ; = ; < �$ �

- ������
 �>���������� >�

�

��� ����0 ��� ��� ������� ��?
 % �?
 ��% ��% ������1 % ��2�

3�

��� ����0 ��� ��� ������� ��?
 % � �" �
 9 ��
 ��% ��% ������1 % ��2�

3�

��� ����0 ��� ��� �% �� ���% ��% ������1 % ��2�

3�

��� ����0 ��� ��� ������� ��?
 � ��� �������% ��% ������1 % ��2�

3�

��� ����0 ��� ��� �! ��" ����% ��% ������1 %
����+9 ���� ��2�

3�

��� ����0 ��� ��� �@
 ��� ������� ��% ��% ������1 % ��2�

3�

��� ����0 ��� ��� �9
 ����� �
 �% ��% ������1 % ��2�

3�

�

- ���
 ��: � 9 < � A +: ; B +6 �< ; �����

C1 ������ ������
 �*
 ��� ����" ��
 � �� ��� �: ; B '���
 D �1 C�

- ������
 �>�������, ��>������

C1 �: ; B '���
 ����
 ��� �
 ��
 �� � �����1 C�

-
 ��
 �

- ������
 �>�� +������ >�������

C1 �� ��
 ��
 �
 �� ������
 � ����� ��������������1 C�

-
 �� ����

- ������
 �.������+* ���, �� /�

�

0 ��� ���������+�� �
 �������+* ���, �1 * ���,
�������� � ��2�

��

�� ���� ����� � ��2�

�

���� �
 �E F��CC�1 1 1 1 1 ������ ��� ��? � �����1 1 1 1 1 �

�

����C1 �G G ��� ������� ��?
 % �?
 ��HH�1 C�

��������

����C1 �G G ��� ������� ��?
 % � �" �
 9 ��
 ��HH�1 C�

��������

����C1 �G G ��� �% �� ���HH�1 C�

��������

����C1 �G G ��� ������� ��?
 � ��� �������HH�1 C�

��������

�

���� �
 ��F��CC�1 1 1 1 1 �7 " � � �
 ����" ����1 1 1 1 1 �

����C1 �G G ��� �! ��" ����HH�1 C�

��������

�

���� �
 �I F��CC�1 1 1 1 1 �� � ����� �
 �?
 ��'�������� ��1 1 1 1 1 �

����C1 �G G ��� �@
 ��� ������� ��HH�1 C�

��������

�

���� �
 �J F��CC�1 1 1 1 1 �9
 ����� �����1 1 1 1 1 �

����C1 �G G ��� �9
 ����� �
 �HH�1 C�

��������

�

3�

12

Figure 8 – Comparison between Simulink and Scicos program structure

3.1.4 Block input and output sizes
When interfacing with Simulink, it is possible to define all input and output sizes from the
computational function written in C++. This is not the case for Scicos since the sizing is
expected to be done from the corresponding interface function, entered manually either from
its interaction window or in its interface function code.

MATLAB Approach Scilab Approach

To define the block input sizes
��%
 �8 ����" ��K �����%
�E � �

��%
 ���" ��K ���L �� �� �%
�#
����� �'H�* �! ���" ���� �

��%
 ���" ��K ���L �� �� �%
��
����� �'H�* �! �9 ��� �
 ��� �

��%
 ���" ��K ���L �� �� �%
�$
����� �'H�* �! �8
 �� ��, �� ��

��%
 ���" ��K ���L �� �� �%
�&
��� ��

The functions are called from computational
function written in C++ to set the input sizes

����* ���, 'H���� � E ��2�M �3�

����* ���, 'H���? 	# ��N� ����� �'H�* �! ���" �����2�M �3�

����* ���, 'H���? 	���N� ����� �'H�* �! �9 ��� �
 ����2�M �3�

����* ���, 'H���? 	$ ��N� ����� �'H�* �! �8
 �� ��, ���2�M �3�

����* ���, 'H���? 	& ��N� ����2�M �3�

The block structure can only be used to read
values from the C computational function.
To set the input sizes is done from the
setting interface of the block as shown in
Figure 10.

To define the block output sizes
��%
 �8 ��! ��" ��K �����%
�J � �

��%
 �! ��" ��K ���L �� �� �%
�#
����� �'H�* �! �! ��" ���� �

��%
 �! ��" ��K ���L �� �� �%
��
������ �'H�* �! �8
 �� ��, ��� �

��%
 �! ��" ��K ���L �� �� �%
�$
����� �'
H�* �! �% ��
 � 9 � �, �4 ���� �'H�* �! �% ��
 � O � �� �
 ��� �

��%
 �! ��" ��K ���L �� �� �%
�&
����� �'
H�* �! �% ��
 � : �������1 ���� �'H�* �! �9 � �, �� �

����%
 �! ��" ��K ���L �� �� �%
�E
��� �

�

����* ���, 'H����� � J ��2�M �3�

�������� �'H�* �! �! ��" ����H�# ��2�M �3�

����* ���, 'H����? 	���N� ����� �'H�* �! �8
 �� ��, ���2�M �3�

����* ���, 'H����? 	$ ��N� ����� �'H�* �! �% ��
 � 9 � �, �4 ���� �'
H�* �! �% ��
 � O � �� �
 ����2�M �3�

����* ���, 'H����? 	& ��N� ����� �'
H�* �! �% ��
 � : �������1 ���� �'H�* �! �9 � �, ���2�M �3�

����* ���, 'H����? 	E ��N� ����2�M �3�

The block structure can only be used to read
values from the C computational function.
To set the output sizes is done from the
setting interface of the block as shown in
Figure 10.

Figure 9 – Comparison in setting the block input and ouput sizes

Figure 10 – User setting interface using GENERIC block in Scicos

Under testing, GENERIC block is used to set the block input/output sizes via its interaction
window. Other alternative is to create user define interface block corresponding to this
Generic block and set the sizes in its interface function code truetimekernel.sci using

13

commands model.in=[6;1;1;1] and model.out=[3;1;3;1;1]. Further details are explained in
work performed under chapter 3.2.

3.1.5 Sample times
Both M-file and C MEX S-functions allow a high degree of flexibility in specifying when an
S-function executes. Simulink provides the following options for sample times:

• Continuous sample time (For S-functions that have continuous states or non-sampled
zero crossings. For this type of S-function, the output changes in minor time steps)

• Continuous but fixed in minor time step sample time (For S-functions that need to
execute at every major simulation step, but do not during minor time steps)

• Discrete sample time (For S-Function that is a function of discrete time intervals, so
that the block is called by Simulink based on a sample time defined by the user. An
offset that delays each sample time hit can also be defined.)

• Variable sample time (A discrete sample time where the intervals can vary)

• Inherited sample time (For S-Function block that is depending on the sample time of
some other block in the system).

The functions that are used for this purpose in TrueTime are as follows:

Figure 11 – Simulink functions related to sample time setting in TrueTime kernel block

In order to have the same purpose in Scicos, the user need to design the computational
function code by placing the code to be executed (e.g. update of output signals) under the
right scicos execution flag combined with either simulation phase (called by using scicos
command get_phase_simulation()) or external event (event input must be define in this case).
Fortunately, TrueTime uses the option CONTINUOUS_SAMPLE_TIME, which requires the
least amount of code to program.

3.1.6 Error messages
Simulink provides a built-in function to report errors that occur in its S-function (corresponds
to computational function in Scicos) as shown in Figure 12. It sends any message entered into
its function parameter to the simulator.

MATLAB Approach Scilab Approach

To report error message to simulator from the computational function
0 ��� ���%
 �; ����% �� ����% ��% ������1 %
��������� � �+9 �1��� �� 0 ��� ��
 �+* ���, +
 ����������

Figure 12 – Error message reporting from computational function

The corresponding built-in function in Scicos has limitation to a number of predefined
messages (selected by entering the ID of the desired message), and only three messages that
are related to errors that can occur in the computational function. Those three are as follows:

• -1 : This mean that the block input does not have the expected value

��%
 �8 ��% � �" �
 9 ��
 ��%
��� �

��%
 �% � �" �
 9 ��
 �%
�#
�� ! 8 9 �8 7 ! 7 % +% � : K < ; +9 �: ; � �

��%
 �! ���
 �9 ��
 �%
�#
�6 �B ; P +�8 +: �8 ! Q +% 9 ; K +! 6 6 % ; 9 � �

14

• -2 : Occurs if the block encounters singularity, such as division by zero

• -16 : Corresponds to the case when the block fails to allocate memory

3.1.7 Getting system time
Both Scicos and Simulink have their own built-in functions to get the system time into the
computational function.

MATLAB Approach Scilab Approach

To get system time from the simulator
��R
 �9 �% �� R
 �+������+���
 ���

Figure 13 – Different built-in functions to get simulator’s time

The only small difference is the placement of this built-in function. Porting the code directly
from Simulink will result that this function will land under flag 1, execution flag to update the
output signals. Scicos recommends that any time calculation with zero-crossing enabled shall
be executed under flag 9, the execution flag to calculate zero-crossing surface. Experience
during porting of TrueTime shows that built-in function get_scicos_time() can fetch a wrong
time value under flag 1.

3.1.8 Simulation option for computational function
Simulink provides a built-in function to specify the S-function options. A corresponding built-
in function in Scicos that match the functionality could not be found. The function is used in
TrueTime, and excluding this from the ported code does not introduce any big issue during
the project.

Figure 14 – Simulink function to set simulation options

3.1.9 Abort the simulation
There is one part of the computational function that requires simulation abortion when the
kernel has fatal error. Simulink has built-in function for this purpose as shown in Figure 15.
Scicos has a similar function but it is in Scicos diagram block type. The way to activate the
block is to create a new event activation output signal in TrueTime kernel block to be linked
to this STOP block. Upon the arrival of an event to this block, the simulation is stopped.

MATLAB Approach Scilab Approach

To abort the running simulation

�

��%
 �% ��" Q
 S �
 ��
 � �%
��� �

�

Figure 15 – Different method to abort simulation

The project decided not to implement this with the following considerations:

��%
 �! " ������%
�% % +! K 9 �! 8 +; B � ; K 9 �! 8 +6 Q ; ; +� ! P ; �T�
% % +! K 9 �! 8 +� � < < +9 ; Q : �8 � 9 ; +! 8 +; B �9 � �

15

• The TrueTime kernel block will not have the same look and feel as the MATLAB
version

• Sending an error message to the Scicos simulator will stop the simulation anyway, and
this can be assumed as a workaround.

3.2 Work performed
This is the main section detailing how to solve the compilation problem, how the block
function was finally written, details about reading inputs and outputs, and which parts of
TrueTime are excluded.

3.2.1 Visual C++ configuration
Since Windows XP is chosen as the platform to perform the porting in this project, Microsoft
Visual C++ is required by Scilab to compile the user-defined library written in C/C++. Some
adjustments must be done so that the compiled library code can be linked to Scilab.

First of all, a new Visual C++ project shall be created in the Microsoft Visual C++ Editor
with type Win32 Project as shown in Figure 16 below. In the Application Setting window,
select DLL for application type and Empty project as additional options.

Figure 16 - Creating Visual C++ Project for TrueTime

The *.cpp files of TrueTime that are planned to be edited are added into folder ‘Source Files’
and *.h files into folder ‘Header Files’. Since the main code is in ttkernel.cpp, all files
included in those two folders except ttkernel.cpp shall be marked ‘Excluded from Build’,
otherwise compilation error can occur. See example in Figure 18 below to exclude
getnode.cpp from the build.

16

Figure 17 - Microsoft Visual C++ Editor with ttkernel.cpp code

Figure 18 - Example of getnode.cpp excluded from build

17

The next challenging activity is to adjust some of the configuration properties on ttkernel
object. There are quite many properties here but normally most of the properties can be kept
as they are. Only the change-required configuration properties are described below.

The first part is C/C++->General as shown in Figure 19. The folder “..\scilab-4.1\routines”
shall be stated as Additonal Include Directories since it contains many important files
included in the project, one of them is \scicos\scicos_block.h. In C/C++->Preprocessor, some
pre-processor definitions are added based on file “Makefile.incl.mak” located under folder
“..\scilab-4.1” and file “Makelib.mak” under working directory.

Figure 19 - Configuration Properties -> C/C++ -> General

The complete configuration properties for C/C++ can be seen as text in C/C++->Command
Line.

Figure 20 - Command line for the C/C++ configuration properties

The next section of configuration properties is Linker. Under General properties, folder
“..\scilab-4.1\bin” shall be added as Additional Library Directories, because several important
libraries from Scilab need to be linked when generating ttkernel.dll. One of them is
LibScilab.lib according to file “Makefile.mak” under folder “..\scilab-4.1\config”.

/O2 /I "C:\Program Files\scilab-4.1\routines" /D "__MSC__" /D "WIN32" /D
"NDEBUG" /D "_WINDOWS" /D "_USRDLL" /D "STRICT" /D "__MAKEFILEVC__"
/D "mexFunction_=mex$*_" /D "mexFunction=mex_$*" /D "_WINDLL" /D "_MBCS"
/FD /EHsc /MT /GS /Fo"Release/" /Fd"Release/vc70.pdb" /W3 /nologo /c /Wp64 /Zi /TP

18

Figure 21 - Configuration Properties -> Linker -> General

Figure 22 - Configuration Properties -> Linker -> Input

Under properties Input, sub-properties Additional Dependencies and Ignore Specific Library
shall be updated according to file “Makefile.incl.mak” under folder “..\scilab-4.1”. See Figure

19

22 for details. In this project, sub properties Module Definition File is set to ttkernel.def,
which will be described further in chapter 3.2.2.

Under properties Advanced, the file extension of the import library can be changed to
ttkernel.ilib to synchronize with Scilab library. To keep it as it is will not be a problem.

Likewise the properties for C/C++, the complete command line for Linker can be displayed
also, and in this project it shows as below. The rest of the properties can be kept as they are.

Figure 23 - Command line for the Linker configuration properties

3.2.2 Adjustments to succeed compilation and linking
Since Scilab has different method than MATLAB to collaborate with a user-defined library
written in C++ as described in chapter 3.1.3, some adjustments are required to succeed the
linking between them. The major works performed for this purpose are described below.

Removing all MATLAB specific code that Scilab can not replace

The challenge in this work is to have as few excluded functions as possible by finding as
many Scicos replacement functions as possible. Figure 24 lists all the .cpp files used to
develop TrueTime kernel block. Each file is marked either with black text, red text or blue
text.

The black marked files are those files that were not changed due to one of the reasons below:

• No change required since they can be used as they are

• Excluded due to network related functions

• Excluded due to MATLAB specific functions

The list of functions or files that are excluded can be found in chapter 3.2.6.

The red marked files are those files that were changed due to adjustment to Scicos
environment. There is only one blue marked file (ttkernel.def) that was newly created to
define Scicos exported functions.

The most frequent error that occurs in most of the files is MEX_ERROR();. The function
printf() is used to replace this since there is no specific Scicos function that corresponds to
this function. This work did not take much effort but it was done for all changed files.

The file that has the most changes is ttkernel.cpp since all kernel code is located in this file.
The detail changes will be described in chapter 3.2.3. The next file that has important changes
is ttkernel.h. There are several signs that can be used to ease the identification of MATLAB
specific code, such as the following: ‘MATLAB’, ‘mx’, ‘MEX’, ‘ssSetxxx’.

/OUT:"Release/ttkernel.dll" /INCREMENTAL:NO /NOLOGO /LIBPATH:"C:\Program
Files\scilab-4.1\bin" /DLL /NODEFAULTLIB:"libcmt.lib" /DEF:"ttkernel.def" /DEBUG
/PDB:"Release/ttkernel.pdb" /SUBSYSTEM:WINDOWS /OPT:REF /OPT:ICF
/IMPLIB:"Release/ttkernel.ilib" /MACHINE:X86 comctl32.lib wsock32.lib libc.lib
msvcrt.lib LibScilab.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib
advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib "\Program
Files\scilab-4.1\bin\LibScilab.lib"

20

Figure 24 – List of all .cpp and .h files for TrueTime kernel block (red: modified; blue: new;

black: unmodified)

21

Statement of extern “C”

Since Scicos is written in C, the data structure and functions defined in file “scicos_block.h”
need to be stated as extern “C”. Without this statement, calling to any of the predefined
function, i.e. get_scicos_time(), will introduce compilation error in Visual C++ compilation.

Figure 25 – Declare scicos_block.h in extern “C” statement

Creation of ttkernel.def

The purpose of this file is to be attached to the Visual C++ linker so that it exports the
“truetimekernel” function, so that the function is accessible from Scilab/Scicos.

Figure 26 – Content of ttkernel.def

Modification in loader.sce

The script in the file loader.sce is intended to link the ttkernel.dll to Scicos so that the
exported function “truetimekernel” is visible from Scicos.

Figur 27 – Content of loader.sce

3.2.3 Code restructuring
Following up the discussion on the differences on computational function structure in chapter
3.1.3, some necessary changes were made in file ttkernel.cpp.

Figure 28 – Program code restructuring (part 1)

�� * ���, +" � �� � �
 �+� * �����
 +���
 +" � �� �5��� �
 ����
 5� �

���, ��� * ���, +" � �� 4 5��,
 ��
 ��� ��5
	5���
 ���
 ,
 ��
 �5�
5�5� �

�������% ��" �
 9 ��
 ����� �

< �A Q � Q U ������,
 ��
 ��� ���

; B K ! Q 9 % �

� ���
 ���
 ,
 ��
 ��

 � �
 ���>� >�2�

- ������
 �>������C������+* ���, �� >�

3�

#include "ttkernel.h"

RTsys *rtsys; // main global variable

#include Internal functions used by kernel
#include Initialization and creation
#include Real-time primitives
#include Sets and Gets

//-- Executes an m-file code function --

//-- Determines time for next clock interrupt
double getNextInvocation() { … }

//-- Kernel Function returns next invocation time
double runKernel(double externalTime) { … }

Same, no changes made

Exclude network related functions
and MATLAB specific

Excluded, MATLAB specific

Same, no changes made

22

Figure 29 – Program code restructuring (part 2)

case 1:
// Output Updates

case 9:
// Zero-Crossing

block->g[0]=…

void truetimekernel
(scicos_block *block,
int flag) {

//-- Simulink callback functions –

extern "C" {

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S){
 rtsys = new RTsys;
 /* Assign function pointers */
 /* Write rtsys pointer to global workspace */
 /* Evaluating user-defined init function (MATLAB) */
 /* Save pointer to init args */
 /* Evaluating user-defined init function (C++) */
 init();
 /* Input Ports */
 /* Output Ports */
}

static void mdlInitializeSampleTimes(SimStruct *S){ … }

static void mdlStart(SimStruct *S){ … }

static void mdlInitializeConditions(SimStruct *S){
 /* NETWORK */
}

static void mdlOutputs(SimStruct *S, int_T tid){
 /* Storing the time */
 /* Check interrupts */
 /* Check network */
 /* Run kernel? */
 /* Outputs */
 /* Network send */
 /* Task schedule */
 /* Handler schedule */
 /* Monitor graph */
 /* Energy consumption */
}

static void mdlZeroCrossings(SimStruct *S){
 /* Copy analog inputs */
 /* Copy interrupt inputs, check for events */
 /* Copy network input, check for event */
 /* Check the energy level */
 ssGetNonsampledZCs(S)[0] = rtsys->nextHit - ssGetT(S);
}

static void mdlTerminate(SimStruct *S){
 cleanup();
}

#include "simulink.c" /* MEX-file interface mechanism */

} // end of extern "C" scope

case 4:
// Initialization

 (network excluded)

case 5:
// Termination

Written in ttkernel.h
extern "C" {
#include scicos_block.h
}

//-- Scicos callback fcn

}

Written in <user application>.cpp
void init() { … }
void cleanup() { … }

User application
written in ttkernel.cpp

23

As described in Figure 28 above, this part is not affected by restructuring. The work
performed here is excluding code that is related to network implementation and MATLAB
specific function.

The second part in Figure 29 shows that it is sufficient to put statement #include
“scicos_block.h” into extern “C” scope, instead of the whole function calls as done for
MATLAB. This section of code is moved to the header file ttkernel.h, due to programming
consistency reason.

Initialization job (Scicos flag 4)

The section to initialize the simulation is represented by four modules in MATLAB, but
Scicos does not have such detail. The code in those four modules was merged into one and
executed under Scicos initialization job in case flag 4. Some adjustments are needed, for
example, to collect all local variables in each original module into one place and to adapt
variables with the same name to avoid access collision.

Under the testing, it showed that variable nbrOfTask =1 after declaration of rtsys=new RTsys.
This was causing problem for the scheduler. Code to set this variable to zero was added.

Under module mdlInitializeConditions, there is code to initialize the network local variables
in the kernel. This code is excluded.

Updating output job (Scicos flag 1)

There is only one module from MATLAB here, which corresponds to updating output job in
case flag 1 in Scicos simulation. The code to store the simulation time to global variable rtsys
and the code to call the function runkernel() are moved to zero-crossing job in case 9. The
reason is that Scicos recommends that time-related code shall be allocated under this job.
When trying to port this code directly under flag 1, the simulation gave strange timing
problem, which was caused by a jump in time after certain period.

Another deviation made in this section is removing the intermediate pointers y, n, s, m and
connecting the output port directly to the application code, based on the consideration that
only pointer s has one-to-two-point connection. The rest of the pointers have one-to-one-point
connections.

Zero-crossing calculation job (Scicos flag 9)

There is only one module here from MATLAB, which corresponds to zero-crossing
calculation job in Scicos in case flag 9. The most important thing in this section is to
accommodate the zero-crossing calculations and in Scicos the code look like:

As mentioned in the previous paragraph, the simulation time storing and calling to the
function runkernel() are moved to this section. Important issue here is that the zero-crossing
calculation must precede the calling to the function runkernel(), otherwise the next invocation
time return by the function will give wrong simulation time. This is because the zero-crossing
calculation is supposed to make simulation time adjustment before it is used to calculate the
next invocation time.

One deviation was made to move the code to copy input values to updating output job under
case flag 1. The decision was taken based on the Scicos examples.

Termination job (Scicos flag 5)

Nothing is strange here since Scicos has the corresponding job to terminate the simulation.

block->g[0] = rtsys->nextHit - get_scicos_time();

24

User application

User application code such as PID controller and Three Servos controllers were put at the end
of the code in file ttkernel.cpp to simplify the testing. Future work to put the user application
to one separate .cpp file can be planned.

3.2.4 Input reading and output settings
The computational function receives most of its inputs from the block structure written in C
language and defined as C struct with components as follows:

Figure 30 – Components of Scicos data block structure

Since it is not possible to set the sizes of Scicos block inputs and outputs from C++ code,
different approach has to be done when porting the I/O handling part of the existing TrueTime
code. Changes are applied to module mdlInitializeSizes in file “ttkernel.cpp” and described in
Table 3 below. Scicos requires interface function to set those sizing parameters. In this
project, the provided generic interface function as shown in Figure 31 is used. The block is
available in palette “Others” in Scicos editor. To have a better user interaction, a user-defined
interface function shall be build. The Generic block parameters in Figure 32 must be adjusted
to match the compiled TrueTime function. The name of the simulation function is
truetimekernel, and the function type is 4 since it is written in C++.

typedef struct {
 int nevprt;
 voidg funpt ;
 int type;
 int scsptr;
 int nz;
 double *z;
 int nx;
 double *x;
 double *xd;
 double *res;
 int nin;
 int *insz;
 double **inptr;
 int nout;
 int *outsz;
 double **outptr;
 int nevout;
 double *evout;
 int nrpar;
 double *rpar;
 int nipar;
 int *ipar;
 int ng;
 double *g;
 int ztyp;
 int *jroot;
 char *label;
 void **work;
 int nmode;
 int *mode;
} scicos_block;

25

Figure 31 – Generic Interface Function Block

Figure 32 – Properties of the Generic Interface Function Block

The table below describes the Scilab approach done in this project corresponding to the
MATLAB approach made in the existing TrueTime Kernel code (ttkernel.cpp).

No. MATLAB Approach Scilab Approach

Setting number of input ports 1

����N��%
 �8 ����" ��K �����%
�E ����
 ���� � 7 �
 �R ; 8 ; Q �� �* ���, ��

%
 ��� ����� ���� ��� �� �
 ��" � �� �
 �
 ��.��" ���" �����
��?
 �/�����
 ���
 � �
 �� ��	V ��������'H���?
 �� �E ���

� � � ������ �����
 ����� ��0 � ��
 ���
 �, F��

����* ���, 'H���N� E ���
 ���� �

Setting number of output ports 2

����N��%
 �8 ��! ��" ��K �����%
�J ����
 ���� � 7 �
 �R ; 8 ; Q �� �* ���, ��

%
 ��� ����� ���� ��� �� �
 ��" � �� �
 �
 ��.���" ���" �����
��?
 �/�����
 ���
 � �
 �� ��	& ���& ������'H���?
 �� �J ���

� � � ������ �����
 ����� ��0 � ��
 ���
 �, F�

����* ���, 'H����N� J ���
 ���� �

26

No. MATLAB Approach Scilab Approach

Setting input port sizes 3

��%
 ���" ��K ���L �� �� �%
�#
����� �'H�* �! ���" ���� �

��%
 ���" ��K ���L �� �� �%
��
����� �'H�* �! �9 ��� �
 ��� �

��%
 ���" ��K ���L �� �� �%
�$
����� �'H�* �! �8
 �� ��, �� �

��%
 ���" ��K ���L �� �� �%
�&
��� �

7 �
 �R ; 8 ; Q �� �* ���, ��

%
 ��" � �� �
 �
 ��.��" ���" �������?
 �/����
 �� ��	V ����������

� � � ������ �����
 ����� ��0 � ��
 ���
 �, ����
 � �� ���" ���
" ������?
 �� �
 �" ��0 ��
 � ��

Setting output port sizes 4

��%
 �! ��" ��K ���L �� �� �%
�#
����� �'H�* �! �! ��" ���� �

��%
 �! ��" ��K ���L �� �� �%
��
����� �'H�
�* �! �8
 �� ��, �� �

��%
 �! ��" ��K ���L �� �� �%
�$
����� �'H�
�* �! �% ��
 � 9 � �, �4 ���� �'H�* �! �% ��
 � O � �� �
 ��� �

��%
 �! ��" ��K ���L �� �� �%
�&
����� �'H�
�* �! �% ��
 � : �������1 ���� �'H�* �! �9 � �, �� �

��%
 �! ��" ��K ���L �� �� �%
�E
��� �CC; �
 �� � �
������" �����

7 �
 �R ; 8 ; Q �� �* ���, ��

%
 ��" � �� �
 �
 ��.���" ���" �������?
 �/����
 �� ��	& ���& ���
�����

� � � ������ �����
 ����� ��0 � ��
 ���
 �, ����
 � �� ���" ���
" ������?
 �� �
 �" ��0 ��
 � ��

Setting number of continuous states 5

��%
 �8 ��� ���% �� �
 ��%
�# � � 7 �
 �R ; 8 ; Q �� �* ���, ��

%
 ��" � �� �
 �
 ��.������ ���������������� �
 /����	�����

� � � ������ �����
 ����� ��0 � ��
 ���
 �, ������ ���
" � �� �
 �
 ��� �
 �" ��0 ��
 � ��

Setting number of discrete states 6

��%
 �8 ��P ���% �� �
 ��%
�# � � 7 �
 �R ; 8 ; Q �� �* ���, ��

%
 ��" � �� �
 �
 ��.������ ��� ����
 �
 ���� �
 /����	�����

� � � ������ �����
 ����� ��0 � ��
 ���
 �, ������ ���
" � �� �
 �
 ��� �
 �" ��0 ��
 � ��

Setting offset time 7

��%
 �! ���
 �9 ��
 �%
�#
�
6 �B ; P +�8 +: �8 ! Q +% 9 ; K +! 6 6 % ; 9 � �

; � ����
 � �����
 ��
 �� ��������
 �����
 �� �# ������
 � ���

Setting number of sample times 8

��%
 �8 ��% � �" �
 9 ��
 ��%
��� � %
 ����������� ������
 ��" �� �� ���
 ��
 �� ����0 � ��
 ���

�

Setting number of modes 9

��%
 �8 ��: ��
 ��%
�# � � 7 �
 �R ; 8 ; Q �� �* ���, ��

%
 ��" � �� �
 �
 ��.���*
 ��������
 �/����# ���

� � � ������ �����
 ����" ��0 ��
 � ����� ��0 � ��
 ���
 �, ����
�� ,
 ����
 ��� � ��������
 ���������� ��
 � ������� ���
��� ��
 ��

Setting number of non sampled zero-crossings 10

��%
 �8 ��8 ���� �" �
 � @ � ��%
��� � 7 �
 �R ; 8 ; Q �� �* ���, ��

%
 ��" � �� �
 �
 ��.���*
 �����?
 ��'�������� �/��������

� � � ������ �����
 ����" ��0 ��
 � ����� ��0 � ��
 ���
 �, ����
�� ,
 ����
 ��� � ������ ���
 �?
 ��'�������� �����
 ���

27

No. MATLAB Approach Scilab Approach

Setting input port direct feed through 11

��%
 ���" ��K ���P ��
 ��6

 � 9 � ���� � �%
�#
�# � �

��%
 ���" ��K ���P ��
 ��6

 � 9 � ���� � �%
��
�# � �

��%
 ���" ��K ���P ��
 ��6

 � 9 � ���� � �%
�$
�# � �

��%
 ���" ��K ���P ��
 ��6

 � 9 � ���� � �%
�&
�# � �

7 �
 �R ; 8 ; Q �� �* ���, ��

%
 ��" � �� �
 �
 ��.� ��
 ����

 � �� ���� � ��� ������/�������

Setting number of workplaces 12

��%
 �8 ��Q L ��, �%
�# � �

��%
 �8 ���L ��, �%
�# � �

��%
 �8 ��K L ��, �%
�# � �

7 �
 �0 ��� �1 1 � ��, ��������
 �������+* ���, �� ��� � ��
� ��
 " ���� ���
 �
 ���� � �� ��� "
 ��� �� ������?
 ��
 ���������
�
 S ���
 � ��

Setting user data to workplace 13

��%
 �7 �
 �P � �� �%
����� �� � 1 * ���, 'H� ��, �� ����� � ��

Setting number of expected parameters 14

��%
 �8 ��% 6 ��K � �� ���%
�E � � 8 �����
 � �����
 �����
 �" ��� ��� ����
 ������
 � � ��� ����
�'���
 ��������" ���
 � ���

K ����* �
 ������
 �� ��, ��

Assigning values to output ports 15

�
 � �+9 �1 � �� ���R
 �! ��" ��K ���Q
 � �% �� �� ��%
� �

������ 	���� ����� �'H���" ���	�� �

�
 � �+9 �1��� ���R
 �! ��" ��K ���Q
 � �% �� �� ��%
�� �

������	���� ����� �'H�� % �� 	�� �

�
 � �+9 �1��� ���R
 �! ��" ��K ���Q
 � �% �� �� ��%
$ � �

������	W��� ����� �'H�� �, % ��
 � 	�� �

�
 � �+9 �1��� ���R
 �! ��" ��K ���Q
 � �% �� �� ��%
& � �

������	W4 , 1 ���� �'H�* �! �9 � �, ���� ����� �'H�

�����������������������������������R �� " � 	W� �

�
 � �+9 �1
 �
 �� � � �����" ������ ��

������������������������������R
 �! ��" ��K ���Q
 � �% �� �� ��%
E � �

�����
 �
 �� � � �����" ����	# ��� ����� �'H�

����������������������������
 �
 �� � � �����" ���� �

���
 ��
 � �� �
 �0 � ��� * �
 ���
��
��
���� �� �

 �
 �� � � �����" ������ �
 ��
 ��0
 � �� �� ��� ,
 �� ��
 ���
����
 �����������
 � � ��

* ���, 'H���" ��	# �	���� ����� �'H���" ���	�� �

* ���, 'H���" ��	��	���� ����� �'H�� % �� 	�� �

* ���, 'H���" ��	$ �	W��� ����� �'H�� �, % ��
 � 	�� �

* ���, 'H���" ��	& �	W4 , 1 ���� �'H�* �! �9 � �, ���� ����� �'H�
�������R �� " � 	W� �

* ���, 'H���" ��	E �	# ��� ����� �'H
 �
 �� � � �����" ���� �

Reading values from input ports 16

���� �'H��" ���	���� �
1��R
 ���" ��K ���Q
 � �% �� �� �K ����%
# �	�� �

���� �'H���
 ���" ���" ���	���� �
1��R
 ���" ��K ���Q
 � �% �� �� �K ����%
��	�� �

���� �'H�
 �� ��, ��" ���	���� �
1��R
 ���" ��K ���Q
 � �% �� �� �K ����%
$ �	�� �

���� �'H
 �
 �� � <
 0
 ��� �
1��R
 ���" ��K ���Q
 � �% �� �� �K ����%
& �	# � �

���� �'H��" ���	���� �* ���, 'H��" ��	# �	�� �

���� �'H���
 ���" ���" ���	���� �* ���, 'H��" ��	��	�� �

���� �'H�
 �� ��, ��" ���	���� �* ���, 'H��" ��	$ �	�� �

���� �'H
 �
 �� � <
 0
 ��� �* ���, 'H��" ��	& �	# � �

Calculating zero-crossing surface 17

��R
 �8 ���� �" �
 � @ � ��% �	# ��� ����� �'H�
 � �O ���'�
��R
 �9 �% � �

* ���, 'H� 	# ��� ����� �'H�
 � �O ���'��
 �+������+���
 �� �

Table 3 - Porting Input and Output Handling

28

3.2.5 Scicos user interface for TrueTime kernel block
The implementation of Scicos user interface for the TrueTime kernel block is completed even
if it is not part of the scope of work. In Simulink, the TrueTime kernel block is delivered
together with three other blocks in a package of TrueTime library as shown in Figure 1. To
achieve the same feature, a TrueTime library is created in the Scicos environment, which is
accessible from the list of palettes (see Figure 33).

Figure 33 – Scicos list of palettes including the TrueTime library

Figure 34 – The TrueTime library consisting the kernel block

As seen on Figure 34 the Scicos version of TrueTime kernel block can not indicate the names
of the input/output channels like Simulink. The fourth input channel for battery and the fifth
output channel for energy consumption are visible in Scicos TrueTime block, which is not in
the Simulink case. Under the simulation testing, the last three input channels are connected to
constant value 0, 0 and 1 respectively, corresponding respectively to grounded-connections
for Simulink as shown in Figure 43 and battery selected option in Figure 35.

To implement the user setting interface window, the corresponding design in Simulink is used
as reference. There are some deviations made during the implementation but the major
function is covered. The deviation can be observed using Figure 35.

29

The first parameter is simulation function. The definition is the same for Simulink and Scicos,
but a small deviation exists because the user application in Scicos is included in the file
ttkernel.cpp. It means for the current version of implementation in Scicos, the parameter
simulation function should always be truetimekernel, instead of user application function as in
Simulink. Separation work to have the same interaction can be done in future work.

The parameter init function argument is not implemented in Scicos interface since the
corresponding feature does not exist.

The parameter Battery in the Simulink interface is implemented as common input channel in
Scicos. So, it does not exist as a parameter in the Scicos interface.

The last two parameters in Simulink, clock drift and clock offset, are implemented without any
deviation.

Figure 35 – User setting interfaces for TrueTime kernel in Simulink (left) and in Scicos (right)

There are six parameters in Scicos interface (Number of Inputs, Number of Triggers, etc.),
which are not available in Simulink interface. They are used to configure the block input and
output sizes as discussed in chapter 3.1.4. All of them have 1 as default value and 0 is not
acceptable by the simulation engine (same as Simulink). In other words, these values must
match the setting values defined by the user application, if the values are greater than 0. If the
value required by the setting is 0, the corresponding parameter must be set to 1. Simulink does
not requie these since the settings can be done directly from the user application.

In order to help the user to put the expected values, a printout of those setting values from
user application is provided when starting the simulation.

Figure 36 – Printout of input/output sizes set in the user applicatiion

30

Any value that does not match the required setting will generate a message for the user to
change to the expected value. In Figure 36, it is Output[2]: number of scheduler must be 2
instead of 1.

The works performed to develop this TrueTime kernel user interface in Scicos are as follows:

1. It is assumed that only one working directory is used to put all working files. Set this
working directory as the Scicos current directory. The purpose is only to simplify the
work.

2. Program the interface code function based on the Scicos standard and name the program
file as truetimekernel.sci. It is important to have the same name on the file as the name of
the function exposed from the compiled C/C++. The code listing is in chapter 6.3.

3. Make the ttkernel.dll available and link the function truetimekernel in that .dll file from
Scilab. Use the same procedures mentioned in chapter 3.1.2.

4. Give command genlib('scstruetimelib',pwd()); in Scilab to generate the executable library
truetimekernel.bin from the file truetimekernel.sci. The command itself will actually
convert all available .sci files in the current directory. Now, the truetimekernel block is
available as a library object.

5. To make a TrueTime library to collect all TrueTime objects/blocks in the future (in this
case only one available: TrueTime Kernel), a new Scicos diagram is created and the
intended TrueTime blocks are added into it (use pulldown menu Edit->Add new block).
Save the diagram as .cosf file, e. g. truetime.cosf. This will be the TrueTime library.

6. To configure so that the TrueTime library is accessible from Scicos palette list, use
pulldown menu Edit->Pal editor, and update the list with reference to the library complete
with its path. See Figure 37.

Figure 37 – Scilab dialog window for the list of palettes.

7. The TrueTime library must be reloaded everytime Scilab is restarted to make it available
in the Scicos diagram editor. For this purpose, the best alternative is to make Scilab init
file called scilab.ini and include the command load(‘lib’). The path of the library must be
added in case the current directory does not contain the library. The init file must be
located in the startup path of Scilab.

31

3.2.6 Excluded functions
The functions of TrueTime kernel below are excluded when porting to Scilab/Scicos. The
reasons of exclusion are either due to MATLAB specific function or network block related
since the network block is not part of the porting either.

Functions Allocation Description Reason of
Exclusion

������8
 �� ��, ���� initnetwork.cpp

initnetwork2.cpp

Initialize the TrueTime
network interface

Network block
related

��R
 ������ �� ��� getinitarg.cpp Get initial argument from
MATLAB interface

MATLAB
specific function

��� � ��A ���, % � ��
 ��9 O �� callblocksystem.cpp Call a Simulink block
diagram from within a
code function

MATLAB
specific function

��%
 �� : �� �9 O �� sendmsg.cpp Send a message over a
network

Network block
related

��R
 �: �� �9 O �� getmsg.cpp Get a message that has
been received over a
network.

Network block
related

��%
 �� 8
 �� ��, '
K � �� �
 �
 ���9 O ��

setnetwork-
parameter.cpp

Set a specific network
parameter on a per node
basis

Network block
related

��� * ���% ����� �����9 O �� abortsimulation.cpp Stop the current
simulation, causing an
error

MATLAB
specific function

��P ���� �� 7 ��
 ��'
:
 ��� �
 ���9 ��

discardunsent.cpp Delete unset messages in
the network queue

Network block
related

��%
 �P � �� �9 O �� setdata.cpp Update the local memory
data structure associated
with a specific task

MATLAB
specific function

��R
 �P � �� �9 O �� getdata.cpp Retrieve the local memory
data structure associated
with a specific task

MATLAB
specific function

32

3.3 Examples

3.3.1 Simple Timer – Sinus Sampler
This example is intended to give simple test on the TrueTime porting result at the beginning.
There is no task involved in this case since the sampling was done using timer, but the timer
activates an interrupt handler. The user application code is:

Figure 38 – Code listing of Simple Timer (Sinus Sampler)

The function init() initialize the kernel with settings 1 input, 1 output and priority function FP.
It creates a periodic timer called “timer1” with period=1.0 and start time at 0.0, which
activates an interrupt handler called “handler1” with priority=1 to execute the function
mycode.
The user function mycode consists of two segments. The first segment makes a print out of the
given text, reads the input channel 1 and copies its value to the output channel 1. The segment
returns its execution time=0.1. The second segment does nothing and returns negative values
(FINISHED) indicating end of the function.
The Scicos simulation diagram is modeled as follows:

Figure 39 – Simulation diagram for Simple Timer (Sinus Sampler)

double mycode(int seg, void* data) {
 switch(seg) {
 case 1:
 printf("Task MYCODE running at %f\n", ttCurrentTime());
 ttAnalogOut(1,ttAnalogIn(1));
 printf("AnalogIn ch1=%f\n", ttAnalogIn(1));
 return 0.1;
 default:
 return FINISHED;
 }
}

void init() {
 ttInitKernel(1, 1, FP);
 ttCreateInterruptHandler("handler1", 1.0, mycode);
 ttCreatePeriodicTimer("timer1",0.0,1.0,"handler1");
}

void cleanup() {}

33

The displays for input/output signals and for the scheduler are connected to different activator
blocks since they require different frequencies of activation signals. The scheduler needs
higher frequency than the input/output signals.

Figure 40 – The input signal (black color) and the output signal (green color)

Figure 40 shows the graphical result by mapping the output signal on the original sinusoidal
input signal. The result indicates that the input signal is sampled with sampling time = 1. This
is confirmed by the scheduler output showing the activity of the scheduled handler in Figure
41. There is no scheduled task displayed in the scheduler since the sampler was built using
Periodic Timer and Interrupt Handler instead of Periodic Task.

Figure 41 – Scheduler output showing the scheduled interrupt handler

34

3.3.2 SimplePID
This example considers simple PID control of a DC-servo process, and is intended to give a
basic introduction to the TrueTime simulation environment. The process is controlled by a
controller task implemented in a TrueTime kernel block. Three different implementations of
the controller task are provided to show the different ways to implement periodic activities.

The DC-servo is described by the continuous-time transfer function

)1(
1000

)(
+

=
ss

sG

The PID-controller is implemented according to the following equations

)()()()(

))()1(()1()(

))()(()()1(

))()(()(

kDkIkPku

kykybkDakD

kykr
T
Kh

kIkI

kykrKkP

dd

i

++=
−−+−=

−+=+

−⋅=

d

d
d

d

d
d

TNh
NKT

b

TNh
T

a

+
=

+
=

The controller parameters were chosen to give the system closed-loop bandwidth wc=20rad/s,
and relative damping, �=0.7.

To choose the different implementations is done by uncommenting the desired
implementation code. Those three implementations are:

• PID code 1 uses the TrueTime built-in support for periodic task.

• PID code 2 implements the periodic task by using the TrueTime primitive ttSleepUntil.

• PID code 3 implements the periodic task by using a periodic timer. The associated
interrupt handler samples the process and triggers the task jobs. The handler and the
controller task communicate using a mailbox.

The written code for user application is:
// PID-control of a DC servo process.
//
// This example shows four ways to implement a periodic controller
// activity in TrueTime. The task implements a standard
// PID-controller to control a DC-servo process (2nd order system).

// PID data structure used in Implementations 1a, 2, and 3 below.
class PID_Data {
public:
 struct { // states
 double u, Iold, Dold, yold, t; // t used only in Implementation 2 below
 } s;

 struct { // params
 double K, Ti, Td, N, h;
 int rChan, yChan, uChan;
 } p;
};

// calculate PID control signal and update states
void pidcalc(PID_Data* d, double r, double y) {
 double P = d->p.K*(r-y);
 double I = d->s.Iold;
 double D = d->p.Td/(d->p.N*d->p.h+d->p.Td)*d->s.Dold+d->p.N*d->p.K*d->p.Td/(d->p.N*d->p.h+d-
>p.Td)*(d->s.yold-y);

 d->s.u = P + I + D;
 d->s.Iold = d->s.Iold + d->p.K*d->p.h/d->p.Ti*(r-y);
 d->s.Dold = D;

35

 d->s.yold = y;
};

// ---- PID code function for Implementation 1 ----
double pidcode1(int seg, void* data) {

 double r, y;
 PID_Data* d = (PID_Data*) data;

 switch (seg) {
 case 1:
 r = ttAnalogIn(d->p.rChan);
 y = ttAnalogIn(d->p.yChan);
 pidcalc(d, r, y);
 return 0.002;
 default:
 ttAnalogOut(d->p.uChan, d->s.u);
 return FINISHED;
 }
}

// ---- PID code function for Implementation 2 ----
double pidcode2(int seg, void* data) {

 double r, y;
 PID_Data* d = (PID_Data*) data;

 switch (seg) {
 case 1:
 d->s.t = ttCurrentTime();
 return 0.0;
 case 2:
 r = ttAnalogIn(d->p.rChan);
 y = ttAnalogIn(d->p.yChan);
 pidcalc(d, r, y);
 return 0.002;
 case 3:
 ttAnalogOut(d->p.uChan, d->s.u);
 // Sleep
 d->s.t += d->p.h;
 ttSleepUntil(d->s.t);
 return 0.0;
 case 4:
 ttSetNextSegment(2); // loop
 return 0.0;
 }

 return FINISHED; // to supress compilation warnings
}

// ---- PID code function for Implementation 3 ----
double pidcode3(int seg, void* data) {

 double r;
 double *y;
 PID_Data* d = (PID_Data*) data;

 switch (seg) {
 case 1:
 r = ttAnalogIn(d->p.rChan);
 y = (double*) ttTryFetch("Samples");
 pidcalc(d, r, *y);
 delete y;
 return 0.0018;
 case 2:
 ttAnalogOut(d->p.uChan, d->s.u);
 return FINISHED;
 }

 return FINISHED; // to supress compilation warnings

}

// ---- Sampler code function for Implementation 3 ----
double samplercode(int seg, void* data) {

 double y;

36

 int* d = (int*) data;

 switch (seg) {
 case 1:
 y = ttAnalogIn(*d);
 ttTryPost("Samples", new double(y)); // put sample in mailbox
 ttCreateJob("pid_task"); // trigger task job
 return 0.0002;
 case 2:
 return FINISHED;
 }

 return FINISHED; // to supress compilation warnings
}

#define NBROFINPUTS 2
#define NBROFOUTPUTS 1
#define SCHEDULER prioFP

PID_Data *d;
int *hdl_data = NULL;

void init() {

 // Initialize TrueTime kernel
 ttInitKernel(NBROFINPUTS, NBROFOUTPUTS, SCHEDULER);

 // Task attributes
 double period = 0.006; // original = 0.006;
 double offset = 0.0; // start of first task instance
 double prio = 1.0;
 double deadline = 0.003; // only used by implementation 2 and 3

 // Create task data (local memory)
 d = new PID_Data;
 d->p.K = 0.96;
 d->p.Ti = 0.12;
 d->p.Td = 0.049;
 d->p.N = 10.0;
 d->p.h = period;
 d->s.u = 0.0;
 d->s.t = 0.0; // only used in Implementation 2 below
 d->s.Iold = 0.0;
 d->s.Dold = 0.0;
 d->s.yold = 0.0;
 d->p.rChan = 1;
 d->p.yChan = 2;
 d->p.uChan = 1;

 // IMPLEMENTATION 1: using the built-in support for periodic tasks
 //
 // ttCreatePeriodicTask("pid_task", offset, period, prio, pidcode1, d);

 // IMPLEMENTATION 2: sleepUntil and loop back
 //
 // ttCreateTask("pid_task", deadline, prio, pidcode2, d);
 // ttCreateJob("pid_task");

 // IMPLEMENTATION 3: sampling in timer handler, triggers task job

 hdl_data = new int(2); // y_chan for reading samples
 ttCreateInterruptHandler("timer_handler", prio, samplercode, hdl_data);
 ttCreatePeriodicTimer("timer", offset, period, "timer_handler");

 ttCreateMailbox("Samples", 10);

 ttCreateTask("pid_task", deadline, prio, pidcode3, d);

}

void cleanup() {

 delete d;
 if (hdl_data) delete hdl_data;

}

37

The Simulink simulation diagram is shown in Figure 42 below. The Computer is super block
using TrueTime kernel block as shown in Figure 43 and the results are displayed in Figure 44.

Figure 42 – Simulink simulation diagram for Simple PID

Figure 43 – Simulink computer block designed using TrueTime kernel block

Figure 44 – The result of Simple PID (PID code 1, 2 and 3) displaying reference signal r (left
pink color), measured signal y (left yellow color) and the control signal u (right yellow color)

38

The corresponding simulation diagram for Simple PID in the Scicos environment is shown in
Figure 45.

Figure 45 – Scicos simulation diagram for Simple PID

The diagram is not designed using super block feature as in Simulink, although Scicos has the
feature. The simulated process block in Scicos can not display the actual equations as in
Simulink. Regardless of apparent lack of the graphical features, the simulation diagram above
is configured with the same settings as the Simulink simulation diagram to obtain comparable
results.

Figure 46 – TrueTime kernel settings for Simple PID simulations

39

Figure 46 shows the settings for the TrueTime block to simulate the Simple PID. Number of
inputs is 2 since the block receives a reference signal r and measured signal from the process.
There are no triggers and networks, but the settings have to be 1 as discussed in chapter 3.2.5.
Number of output is only one, the control signal u. The handler is 1 since one task is created
and no interrupt used. No monitor is applied. All these numbers are confirmed by the printout
below in the Scicos console.

Figure 47 – Printout of initial settings for Simple PID

The results on PID code 1 and PID code 2 in Scicos are the same shown in Figure 48,
although they have different implementations. Simulink confirms the correctness of these
results (refer to Figure 44).

Figure 48 – The output results of PID code 1 and 2, reference signal r (black color), measured

signal y (green color) and control signal u (red color)

40

As mentioned before, only one task is introduced here and this is confirmed by the output of
scheduler as shown in Figure 49.

Figure 49 – Output of scheduler when simulating PID code 1 and 2

When simulating PID code 3, the setting of the number of Scheduler must be changed to 2,
because in this case one task and one interrupt are scheduled.

Figure 50 – Output of scheduler when simulating PID code 3 displaying one task (black color)

and one interrupt (green color)

41

3.3.3 ThreeServos
This example extends the simple PID control example from the previous section to the case of
three PID-tasks running concurrently on the same CPU controlling three different DC-servo
systems. The effect of the scheduling policy on the global control performance is
demonstrated. The user application code is:
// Task scheduling and control.
//
// This example extends the simple PID control example (located in
// $DIR/examples/simple_pid) to the case of three PID-tasks running
// concurrently on the same CPU controlling three different servo
// systems. The effect of the scheduling policy on the global control
// performance is demonstrated.

// PID data structure
class PID_Data {
public:
 struct { // states
 double u, Iold, Dold, yold;
 } s;

 struct { // params
 double K, Ti, Td, N, h;
 int rChan, yChan, uChan;
 } p;
};

// calculate PID control signal and update states
void pidcalc(PID_Data* d, double r, double y) {
 double P = d->p.K*(r-y);
 double I = d->s.Iold;
 double D = d->p.Td/(d->p.N*d->p.h+d->p.Td)*d->s.Dold+d->p.N*d->p.K*d->p.Td/(d->p.N*d->p.h+d-
>p.Td)*(d->s.yold-y);

 d->s.u = P + I + D;
 d->s.Iold = d->s.Iold + d->p.K*d->p.h/d->p.Ti*(r-y);
 d->s.Dold = D;
 d->s.yold = y;
};

// --------- Generic code function ----------
double pidcode(int seg, void* data) {

 PID_Data* d = (PID_Data*) data;

 switch (seg) {
 case 1:
 pidcalc(d, ttAnalogIn(d->p.rChan), ttAnalogIn(d->p.yChan));
 return 0.001;
 case 2:
 ttAnalogOut(d->p.uChan, d->s.u);
 return FINISHED;
 }

 return FINISHED; // to supress compilation warnings
}

#define NBROFINPUTS 6
#define NBROFOUTPUTS 3
#define SCHEDULER prioRM

// Task parameters
double periods[] = {0.006, 0.005, 0.004};
char* names[] = {"pid_task1", "pid_task2", "pid_task3"};
int rChans[] = {1, 3, 5};
int yChans[] = {2, 4, 6};
int uChans[] = {1, 2, 3};

PID_Data *d[3];

void init() {

 // Initialize TrueTime kernel
 ttInitKernel(NBROFINPUTS, NBROFOUTPUTS, SCHEDULER);

42

 // Create the three tasks
 for (int i = 0; i < 3; i++) {
 d[i] = new PID_Data;
 d[i]->p.K = 0.96;
 d[i]->p.Ti = 0.12;
 d[i]->p.Td = 0.049;
 d[i]->p.N = 10;
 d[i]->p.h = periods[i];
 d[i]->s.u = 0.0;
 d[i]->s.Iold = 0.0;
 d[i]->s.Dold = 0.0;
 d[i]->s.yold = 0.0;
 d[i]->p.rChan = rChans[i];
 d[i]->p.yChan = yChans[i];
 d[i]->p.uChan = uChans[i];

 // Offset=0 and prio=1 for all tasks
 ttCreatePeriodicTask(names[i], 0.0, periods[i], 1.0, pidcode, d[i]);
 }
}

void cleanup() {

 for (int i = 0; i < 3; i++) {
 delete d[i];
 }
}

The simulation diagram modelled in Simulink is shown in Figure 51 below.

Figure 51 - Simulation diagram for Three Servos in Simulink

As in the diagram of Simple PID (Figure 42), the computer block is a super block using
TrueTime kernel and the diagram is quite similar with differences in the number of inputs and
outputs. The corresponding simulation diagram in the Scicos environment is shown in Figure
52. One display block is provided for each servo to show the involved signals r, y and u. One
more display is used to show the output of shedulers.

43

Figure 52 – Simulation diagram for Three Servos in Scicos

The settings of the kernel block must be adjusted as shown in the figure below.

Figure 53 – Settings of the kernel block to simulate Three Servos

44

In the first test, the user application has the original PID execution time set to 0.002. There are
three tasks created during initialization with periods set to 0.006, 0.005 and 0.004 to execute
Controller 1, Controller 2 and Controller 3 respectively. The priority function is set to
‘prioRM’. With these settings, the results show that Controller 1 has an unstable control, but
the other two controllers work properly. Figure 54 and Figure 55 display the result.

Figure 54 – Controller 1 with instable control

Figure 55 – Controller 2 with stable control, the same figure obtained for Controller 3

To understand the problem in Controller 1, the output of the schedulers need to be observed.
Figure 56 below shows that the task in Controller 3 is working properly as designed and

45

Controller 2 is still working as scheduled even if it sometimes gets disturbances. Controller 1
is hardly possible to have a chance to complete its assignments. The kernel does not have
sufficient time to accomplish all three tasks properly with the given execution times. This first
test proves the capability of TrueTime to analyze problems in automatic control from the
kernel perspective (and off course in the Scicos environment).

Figure 56 – Output of schedulers when simulating Three Servos with PID execution time 0.002,

tasks of Controller 1, 2 and 3 indicated with black, green and red lines respectively

The next test is performed by changing the execution time for each PID to 0.001. The results
show how Controller 1 becomes stable as the other two controllers.

Figure 57 - Controller 1 gives stable control and so do Controller 2 and Controller 3

46

The kernel has enogh time to let each task executes its assignment properly as shown in
Figure 58.

Figure 58 - Output of schedulers when simulating Three Servos with PID execution time 0.001,

tasks of Controller 1, 2 and 3 indicated with black, green and red lines respectively

All results for simulating Three Servos as described above are the same as in Simulink.

47

4 Conclusions

4.1 Good story
The good story from this thesis is that all efforts made in this work yield a positive result at
the end. The shortage of information about Scilab/Scicos in this particular subject is the main
challenge to solve the problems given in this scope of work. Regular meeting with supervisor,
Anton Cervin, is the main important key behind this success.

4.2 Difficulties
Some difficulties were met during accomplishing the project as follows:

• Insufficient Scilab/Scicos documentation for the subject focused in the project

• Product instability occurs sometimes in certain circumstances

• Not user-friendly compilation warning/message, which makes it difficult to trace the
problems that occur.

• Sometime the command does not give any error message even if it is wrong. The error
is identified when Scilab does not give any respond to any given commands.

• The graphics editor in Scicos is not supported by user-friendly tools either for
development or modification.

4.3 Possible future work
Below are the possible future works to extend this porting work:

4.3.1 Improvement on the ported TrueTime kernel block
Improvement on the ported TrueTime kernel block is needed, especially regarding the user-
friendliness aspect. One future work is to split the user application from the file ttkernel.cpp.
The other improvement is to apply super block feature in the examples used above.

4.3.2 Calling PID parameters written in Scicos
The TrueTime original program contains code to read in data written in a MATLAB m-file.
This seems possible to perform in Scicos with its .sce file. Further investigation is required.

4.3.3 Porting of TrueTime network blocks
The TrueTime network blocks are the next challenging works to do. There are two blocks
available for MATLAB: network block and wireless network block.

4.3.4 Completing the network part in TrueTime Kernel block
As mentioned in chapter 3.2.6, there are several TrueTime kernel functions that are not
included when porting the TrueTime kernel block. Completing the porting of those functions
that related to the networking is an interesting future work.

48

5 References
1. Pärt-Enander, Eva, Anders Sjöberg, “Användarhandledning för MATLAB® 6.5”,

Elanders Gotab, Stockholm, 2003, ISBN 91-506-1690-0.

2. Palm III, William J., ”Introduction to MATLAB® for Engineers”, The McGraw-Hill
Companies, Inc., United States of America, 1998, ISBN 0-07-047328-5.

3. Campbell, Stephen L., Jean-Philippe Chancelier, Ramine Nikoukhah, “Modelling and
Simulation in Scilab/Scicos”, Springer Science+Bussiness Media, New York, 2006,
ISBN-10: 0-387-27802-8 and ISBN-13: 978-0387278025.

4. Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén, “How does control
timing affect performance?”, IEEE Control System Magazine, 23:3, pp. 16-30, 2003.

5. Ohlin, Martin, Dan Henriksson, Anton Cervin, “TrueTime 1.4 – Reference Manual”,
Department of Automatic Control, Lund University, September 2006.

6. Åström, K. J. and T. Hägglund, ” PID Controllers: Theory, Design, and Tuning”,
Instrument Society of America, Research Triangle Park, North Carolina, 1995.

7. Bates, Jonathan, Timothy Tompkins, “Using Visual C++ 6”, Que, United States of
America, 1998, ISBN 0-7897-1635-6.

8. Templeman, Julian, Andy Olsen, “Microsoft Visual C++ .NET: Steg för steg”, Elanders
Graphic Systems AB, Göteborg, 2002.

9. Kerninghan, Brian W., Dennis M Ritchie, ”The C Programming Language”, Prentice Hall,
USA, 1988, ISBN 9780131103627.

49

6 Appendices

6.1 Appendix A: Code listing of ttkernel.h
/*
 * TrueTime, Version 1.4
 * Copyright (c) 2006
 * Martin Ohlin, Dan Henriksson and Anton Cervin
 * Department of Automatic Control, LTH
 * Lund University, Sweden
 */

extern "C" {
#include "scicos/scicos_block.h"
}

#ifndef __TT_KERNEL_H__
#define __TT_KERNEL_H__

// old="mex.h"
#include <stdio.h>
#include <string.h>
#include <math.h>

// old=#include "mexhelp.h"
#include "linkedlist.cpp"
#include "datanode.h"

#define EPS 1.0E-5 // Timing precision
#define INF 1.0E+5 // Maximum simulation time
#define FINISHED -1.0

enum { FP, RM, DM, EDF }; // supported scheduling policies
enum { ARRIVAL, RELEASE, START, SUSPEND, RESUME, FINISH }; // hooks
enum { IDLE, READY, RUNNING, WAITING, SLEEPING, SUSPENDED }; // usertask states
enum { UNUSED, OVERRUN, TIMER, NETWORK, EXTERNAL }; // handler types

#define NBRLOGS 10 // Maximum number of log entries for each task
// Log types (5 pre-defined)
enum { RESPONSETIMELOG=1, RELEASELATENCYLOG, STARTLATENCYLOG, EXECTIMELOG, CONTEXTRESTORELOG,
USERLOG };
#define NBRUSERLOGS (NBRLOGS - 5) // Number of user-defined log types

/* temp ===============
#include "ttnetwork.h"
======================= */

#include "task.h"
#include "log.h"
// old=#include "blockdata.h"
#include "usertask.h"

#include "timer.h"
#include "trigger.h"
/* temp ===============
#include "network.h"
======================= */
#include "handler.h"

#include "monitor.h"
#include "event.h"
#include "mailbox.h"
#include "semaphore.h"

void init();
void cleanup();
void truetimekernel(scicos_block *block, int flag);

class RTsys {
 public:
 char* name;

 bool init_phase; // false when the simulation is running

50

 bool initialized; // true if ttInitKernel has been called
 bool error; // true if simulation should stop
 bool started; // true after time zero
 bool mdlzerocalled; // true if mdlZeroCrossings has been called

 int nbrOfInputs;
 int nbrOfOutputs;
 int nbrOfTasks;
 int nbrOfHandlers;
 int nbrOfMonitors;
 int nbrOfTriggers;
 int nbrOfSchedTasks;
 int nbrOfSchedHandlers;
 int nbrOfSchedMonitors;

 double time; // Current time in simulation
 double prevHit; // Previous invocation of kernel
 double nextHit; // Next invocation of kernel

 double *inputs; // Vector of input port (analogin) values
 double *outputs; // Vector of output port (analogout) values
 double *interruptinputs; // External interrupt trigger signals
 double *oldinterruptinputs;

 double *taskSched; // Vector of values for the usertask schedule
 double *handlerSched; // Vector of values for the handler schedule
 double *monitorGraph; // Vector of values for the monitor graph

 Task* running; // Currently running task

 List* readyQ; // usertasks and handlers ready for execution, prio-sorted
 List* timeQ; // usertasks and handlers waiting for release, time-sorted

 List *taskList; // List of datanodes with pointers to created tasks
 List *handlerList; // List of datanodes with pointers to created handlers
 List *timerList; // List of datanodes with pointers to timer handlers
 List *monitorList; // List of datanodes with pointers to created monitors
 List *eventList; // List of datanodes with pointers to created event
 List *triggerList; // List of datanodes with pointers to ext. interrupt handlers
 List *mailboxList; // List of datanodes with pointers to created mailboxes
 List *semaphoreList; // List of datanodes with pointers to created semaphores

 // temp=mxArray *initarg; // Pointer to Kernel block init arg

 double (*prioFcn)(UserTask*); // Priority function (see priofunctions.cpp)

 double contextSwitchTime; // Time for a full context save/restore
 InterruptHandler* kernelHandler; // Handler simulating context switches
 double contextSimTime; // Execution time of handler code function
 UserTask* suspended; // Last suspended usertask (context switch
 // if another task is resumed or started)

 // NETWORK
 int nbrOfNetworks; // Number of TrueTime networks to which the
 // kernel (node) is connected
 double *nwSnd; // Send output
 double *networkinputs; // Network interrupt trigger signals
 double *oldnetworkinputs;
 List *networkList; // List of datanodes with pointers to network interrupt
 // handlers. One handler for each network to which the
 // kernel (node) is connected.

 // Function pointers
 double (*contextSwitchCode)(int, void*); // Code function for context switch handler
 double (*periodicTaskHandlerCode)(int, void*); // Code function for handler
 // generating periodic task jobs.

 int (*prioSort)(Node* , Node*); // Sorting function for priority-sorted lists
 int (*timeSort)(Node* , Node*); // Sorting function for time-sorted lists
 // (see compfunctions.cpp)

 void (*default_arrival)(UserTask*); // Default kernel hooks
 void (*default_release)(UserTask*); // (see defaulthooks.cpp)
 void (*default_start)(UserTask*);
 void (*default_suspend)(UserTask*);
 void (*default_resume)(UserTask*);
 void (*default_finish)(UserTask*);

51

 double (*prioFP)(UserTask*); // Standard priority functions
 double (*prioRM)(UserTask*); // (see priofunctions.cpp)
 double (*prioEDF)(UserTask*);
 double (*prioDM)(UserTask*);

 double energyLevel; // Input from the battery
 double energyConsumption; // How much we consume
 double cpuScaling; // How fast we run
 double clockDrift; //
 double clockOffset; // Offset from the nominal time

#ifdef KERNEL_MATLAB
 mxArray* rtsysptr; // Pointer to global variable "_rtsys"
#endif

 RTsys(); // constructor
 ~RTsys(); // deconstructor
};

/**
 * RTsys Constructor
 */
RTsys::RTsys() {

 name = "NoName";

 init_phase = true;
 initialized = false;
 error = false;
 started = false;
 mdlzerocalled = false;

 nbrOfInputs = 0;
 nbrOfOutputs = 0;
 nbrOfTasks = 1;
 nbrOfHandlers = 0;
 nbrOfMonitors = 0;
 nbrOfTriggers = 0;
 nbrOfSchedTasks = 0;
 nbrOfSchedHandlers = 0;
 nbrOfSchedMonitors = 0;

 time = 0.0;
 prevHit = 0.0;
 nextHit = 0.0;

 inputs = NULL;
 outputs = NULL;
 interruptinputs = NULL;
 oldinterruptinputs = NULL;

 taskSched = NULL;
 handlerSched = NULL;
 monitorGraph = NULL;

 running = NULL;

 readyQ = NULL;
 timeQ = NULL;

 taskList = NULL;
 handlerList = NULL;
 timerList = NULL;
 monitorList = NULL;
 eventList = NULL;
 triggerList = NULL;
 mailboxList = NULL;
 semaphoreList = NULL;

 // old=initarg = NULL;

 prioFcn = NULL;

 contextSwitchTime = 0.0;
 contextSimTime = 0.0;

52

 kernelHandler = NULL;
 suspended = NULL;

 nbrOfNetworks = 0;
 nwSnd = NULL;
 networkinputs = NULL;
 oldnetworkinputs = NULL;
 networkList = NULL;

 energyLevel = 1; // Energy level from the battery
 energyConsumption = 0; // How much we consume
 cpuScaling = 1; // No scaling as default
 clockDrift = 1; // No drift as default
 clockOffset = 0; // No offset as default

#ifdef KERNEL_MATLAB
 rtsysptr = NULL;
#endif
}

/**
 * RTsys Destructor
 */
RTsys::~RTsys() {
 DataNode *dn, *tmp;

 if (inputs) delete[] inputs;
 if (outputs) delete[] outputs;
 if (interruptinputs) delete[] interruptinputs;
 if (oldinterruptinputs) delete[] oldinterruptinputs;
 if (taskSched) delete[] taskSched;
 if (handlerSched) delete[] handlerSched;
 if (monitorGraph) delete[] monitorGraph;
 if (nwSnd) delete[] nwSnd;
 if (networkinputs) delete[] networkinputs;
 if (oldnetworkinputs) delete[] oldnetworkinputs;

 if (readyQ) delete readyQ;
 if (timeQ) delete timeQ;

 // Delete all tasks and the tasklist
 if (taskList) {
 dn = (DataNode*) taskList->getFirst();
 while (dn != NULL) {
 UserTask* task = (UserTask*) dn->data;
 delete task;
 tmp = dn;
 dn = (DataNode*) dn->getNext();
 delete tmp;
 }
 delete taskList;
 }
 // Delete all handlers and the handlerlist
 if (handlerList) {
 dn = (DataNode*) handlerList->getFirst();
 while (dn != NULL) {
 InterruptHandler* hdl = (InterruptHandler*) dn->data;
 delete hdl;
 tmp = dn;
 dn = (DataNode*) dn->getNext();
 delete tmp;
 }
 delete handlerList;
 }
 // Delete the timerlist
 if (timerList) {
 dn = (DataNode*) timerList->getFirst();
 while (dn != NULL) {
 tmp = dn;
 dn = (DataNode*) dn->getNext();
 delete tmp;
 }
 delete timerList;
 }

 // Delete all monitors and the monitorlist
 if (monitorList) {

53

 dn = (DataNode*) monitorList->getFirst();
 while (dn != NULL) {
 Monitor* mon = (Monitor*) dn->data;
 delete mon;
 tmp = dn;
 dn = (DataNode*) dn->getNext();
 delete tmp;
 }
 delete monitorList;
 }
 // Delete all events and the eventlist
 if (eventList) {
 dn = (DataNode*) eventList->getFirst();
 while (dn != NULL) {
 Event* ev = (Event*) dn->data;
 delete ev;
 tmp = dn;
 dn = (DataNode*) dn->getNext();
 delete tmp;
 }
 delete eventList;
 }
 // Delete triggerlist
 if (triggerList) {
 dn = (DataNode*) triggerList->getFirst();
 while (dn != NULL) {
 tmp = dn;
 dn = (DataNode*) dn->getNext();
 delete tmp;
 }
 delete triggerList;
 }
 // Delete all mailboxes and the mailboxlist
 if (mailboxList) {
 dn = (DataNode*) mailboxList->getFirst();
 while (dn != NULL) {
 Mailbox* mb = (Mailbox*) dn->data;
 delete mb;
 tmp = dn;
 dn = (DataNode*) dn->getNext();
 delete tmp;
 }
 delete mailboxList;
 }
 // Delete all semaphores and the semaphorelist
 if (semaphoreList) {
 dn = (DataNode*) semaphoreList->getFirst();
 while (dn != NULL) {
 Semaphore* sem = (Semaphore*) dn->data;
 delete sem;
 tmp = dn;
 dn = (DataNode*) dn->getNext();
 delete tmp;
 }
 delete semaphoreList;
 }
 // Delete networklist
 /* temp ===============
 if (networkList) {
 dn = (DataNode*) networkList->getFirst();
 while (dn != NULL) {
 tmp = dn;
 dn = (DataNode*) dn->getNext();
 delete tmp;
 }
 delete networkList;
 }
 ======================= */

}

#endif // __TT_KERNEL_H__

54

6.2 Appendix B: Code listing of ttkernel.cpp
/*
 * TrueTime, Version 1.4
 * Copyright (c) 2006
 * Martin Ohlin, Dan Henriksson and Anton Cervin
 * Department of Automatic Control, LTH
 * Lund University, Sweden
 */

#include "ttkernel.h"

// ----- Main data structure ------

RTsys *rtsys; // global variable used by all instances of ttkernel

// ------- Internal functions used by kernel -------

#include "compfunctions.cpp"
#include "codefunctions.cpp"
#include "priofunctions.cpp"
#include "defaulthooks.cpp"
/* temp ===============
#include "initnetwork2.cpp"

#ifndef KERNEL_MATLAB

#define KERNEL_C
======================= */

// --- Initialization and creation ----

#include "initkernel.cpp"
#include "createtask.cpp"
#include "createpertask.cpp"
#include "createhandler.cpp"
#include "createtrigger.cpp"
/* temp ===============
#include "initnetwork.cpp"
======================= */
#include "createmonitor.cpp"
#include "createevent.cpp"
#include "createmailbox.cpp"
#include "createsemaphore.cpp"
#include "createlog.cpp"
#include "attachdlhandler.cpp"
#include "attachwcethandler.cpp"
#include "attachpriofcn.cpp"
#include "attachhook.cpp"
#include "noschedule.cpp"
#include "nonpreemptable.cpp"
/* temp ===============
#include "getinitarg.cpp"
======================= */

// ------- Real-time primitives -------

#include "createjob.cpp"
#include "killjob.cpp"
#include "createtimer.cpp"
#include "removetimer.cpp"
#include "analogin.cpp"
#include "analogout.cpp"
#include "sleep.cpp"
#include "entermonitor.cpp"
#include "exitmonitor.cpp"
#include "wait.cpp"
#include "notify.cpp"
#include "tryfetch.cpp"
#include "trypost.cpp"
#include "fetch.cpp"
#include "post.cpp"
#include "retrieve.cpp"
#include "take.cpp"
#include "give.cpp"

55

#include "lognow.cpp"
#include "logstart.cpp"
#include "logstop.cpp"
#include "currenttime.cpp"
#include "invokingtask.cpp"
#include "setnextsegment.cpp"
/* temp ===============
#include "callblocksystem.cpp"
#include "sendmsg.cpp"
#include "getmsg.cpp"
#include "setnetworkparameter.cpp"
#include "abortsimulation.cpp"
#include "discardunsent.cpp"
======================= */

// ---------- Sets and Gets ------------

#include "setdeadline.cpp"
#include "setabsdeadline.cpp"
#include "setpriority.cpp"
#include "setperiod.cpp"
#include "setbudget.cpp"
#include "setwcet.cpp"
/* temp ===============
#include "setdata.cpp"
======================= */
#include "getrelease.cpp"
#include "getdeadline.cpp"
#include "getabsdeadline.cpp"
#include "getpriority.cpp"
#include "getperiod.cpp"
#include "getbudget.cpp"
#include "getwcet.cpp"
/* temp ===============
#include "getdata.cpp"

#endif
======================= */

// temp=#ifdef KERNEL_MATLAB

// --
// ------ Executes an m-file code function ------
// --

// mxArray used to pass the segment to the code function
/* temp ===============
mxArray *segArray;
bool destroyed;

double executeCode(char *codeName, int seg, char* dataName) {
 double retval;
 mxArray *lhs[2];
 mxArray *rhs[2];

 *mxGetPr(segArray) = (double) seg;

 rhs[0] = segArray;
 if (dataName) {
 rhs[1] = mexGetVariable("global", dataName);
 } else {
 rhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
 *mxGetPr(rhs[1]) = 0.0;
 }

 mexSetTrapFlag(1); // return control to the MEX file after an error
 lhs[0] = NULL; // needed not to crash Matlab after an error
 lhs[1] = NULL; // needed not to crash Matlab after an error
 if (mexCallMATLAB(2, lhs, 2, rhs, codeName) != 0) {
 rtsys->error = true;
 return 0.0;
 }

 if (mxGetClassID(lhs[0]) == mxUNKNOWN_CLASS) {
 printf("??? executeCode: execution time not assigned\n\n");
 printf("Error in ==> code function '%s', segment %d\n", codeName, seg);
 rtsys->error = true;

56

 return 0.0;
 }

 if (!mxIsDoubleScalar(lhs[0])) {
 printf("??? executeCode: illegal execution time\n\n");
 printf("Error in ==> code function '%s', segment %d\n", codeName, seg);
 rtsys->error = true;
 return 0.0;
 }

 if (mxGetClassID(lhs[1]) == mxUNKNOWN_CLASS) {
 printf("??? executeCode: data not assigned\n\n");
 printf("Error in ==> code function '%s', segment %d\n", codeName, seg);
 rtsys->error = true;
 return 0.0;
 }

 if (dataName) {
 mexPutVariable("global", dataName, lhs[1]);
 }

 retval = *mxGetPr(lhs[0]);

 mxDestroyArray(rhs[1]);
 mxDestroyArray(lhs[0]);
 mxDestroyArray(lhs[1]);

 return retval;
}
#endif
======================= */

// --
// -- Determines time for next clock interrupt --
// ----- used in the kernel function below ------
// --

double getNextInvocation() {

 double compTime;
 double nextHit = INF;

 // Next release from timeQ
 if (rtsys->timeQ->getFirst() != NULL) {
 Task* t = (Task*) rtsys->timeQ->getFirst();
 nextHit = t->wakeupTime() - rtsys->time;
 }

 // Remaining execution time of running task
 if (rtsys->running != NULL) {
 compTime = rtsys->running->execTime / rtsys->cpuScaling;
 nextHit = (nextHit < compTime) ? nextHit : compTime;
 }

 return nextHit;
}

// ---
// --------------------- Kernel Function -----------------------
// ---- Called from the Simulink callback functions during ----
// -- simulation and returns the time for its next invocation --
// ---

double runKernel(double externalTime) {

 double nextHit, timeElapsed;

 Task *task, *temp, *oldrunning, *newrunning;
 UserTask *usertask;
 InterruptHandler *hdl;
 DataNode* dn;

 // If no energy, then we can not run
 if (rtsys->energyLevel <= 0) {
 printf("Energy is out at time: %f\n", rtsys->time);
 return INF;

57

 }

 timeElapsed = externalTime - rtsys->prevHit; // time since last invocation
 rtsys->prevHit = externalTime; // update previous invocation time
 nextHit = 0.0;

 //printf("runkernel at %f\n", rtsys->time);

#ifdef KERNEL_MATLAB
 /* Write rtsys pointer to global workspace */
 *((int *)mxGetPr(rtsys->rtsysptr)) = (int)rtsys;
#endif

 while (nextHit < EPS) {

 // Count down execution time for current task (usertask or handler)
 // and check if it has finished its execution

 task = rtsys->running;
 if (task != NULL) {
 // Count down execution time
 task->execTime -= timeElapsed * rtsys->cpuScaling;
 if (task->execTime < EPS) {
 // Execute next segment
 task->segment++;

 if (task->isUserTask()) {
 usertask = (UserTask*) task;
 // Update budget and lastStart variable at segment change
 usertask->budget -= (rtsys->time - usertask->lastStart);
 usertask->lastStart = rtsys->time;
 }

 // Execute next segment of the code function

#ifndef KERNEL_MATLAB
 task->execTime = task->codeFcn(task->segment, task->data);
 if (rtsys->error) {
 printf("Error in ==> task '%s', segment %d\n", task->name, task->segment);
 return 0.0;
 }
#else
 if (task->codeFcnMATLAB == NULL) {
 task->execTime = task->codeFcn(task->segment, task->data);
 } else {
 task->execTime = executeCode(task->codeFcnMATLAB, task->segment, task->dataMATLAB);
 }
 if (rtsys->error) {
 printf("Error in ==> task '%s', segment %d\n", task->name, task->segment);
 return 0.0;
 }
#endif

 if (task->execTime < 0.0) {
 // Negative execution time = task finished
 task->execTime = 0.0;
 task->segment = 0;

 if (task->myList == rtsys->readyQ) {
 // Remove task from readyQ
 task->remove();
 }

 if (!(task->isUserTask())) {
 hdl = (InterruptHandler*) task;

 if (hdl->type == TIMER) {
 if (hdl->timer->isPeriodic) {
 // if periodic timer put back in timeQ
 hdl->timer->time += hdl->timer->period;
 hdl->moveToList(rtsys->timeQ);
 } else {
 // Remove timer and free up handler
 dn = getNode(hdl->timer->name, rtsys->timerList);
 rtsys->timerList->deleteNode(dn);
 delete hdl->timer;
 hdl->timer = NULL;

58

 hdl->type = UNUSED;
 }
 }
 if (hdl->type == EXTERNAL) {
 if (hdl->pending > 0) {
 // new external interrupt occured before handler finished
 hdl->pending--;
 hdl->moveToList(rtsys->readyQ);
 }
 }

 } else { // the finished task is a usertask
 usertask = (UserTask*) task;

 // Execute finish-hook
 usertask->finish_hook(usertask);
 usertask->state = IDLE;

 // Release next job if any
 usertask->nbrJobs--;
 if (usertask->nbrJobs > 0) {
 // next pending release
 dn = (DataNode*) usertask->pending->getFirst();
 double* release = (double*) dn->data;
 usertask->release = *release;
 usertask->absDeadline = *release + usertask->deadline;
 usertask->moveToList(rtsys->timeQ);
 usertask->pending->deleteNode(dn);
 delete release;
 // Execute release-hook
 usertask->release_hook(usertask);
 usertask->state = SLEEPING;

 }
 }
 }
 }
 } // end: counting down execution time of running task

 // Check time queue for possible releases

 task = (Task*) rtsys->timeQ->getFirst();
 while (task != NULL) {
 if ((task->wakeupTime() - rtsys->time) < EPS) {

 // Task to be released
 temp = task;
 task = (Task*) task->getNext();
 temp->moveToList(rtsys->readyQ);

 if (temp->isUserTask()) {
 usertask = (UserTask*) temp;
 usertask->state = READY;

 }
 } else {
 break;
 }
 } // end: checking timeQ for releases

 // Determine task with highest priority and make it running task

 newrunning = (Task*) rtsys->readyQ->getFirst();
 oldrunning = rtsys->running;

 if (newrunning != NULL) {

 // Check for suspend- and resume-hooks

 if (oldrunning != NULL) {

 // Is oldrunning being suspended?
 if (oldrunning->isUserTask()) {
 if (newrunning != oldrunning && ((UserTask*) oldrunning)->state == RUNNING) {
 usertask = (UserTask*) oldrunning;

59

 usertask->state = SUSPENDED;
 usertask->suspend_hook(usertask);
 }
 }
 }

 // invocation of hooks may have triggered kernelHandler
 newrunning = (Task*) rtsys->readyQ->getFirst();

 // Is newrunning being resumed?
 if (newrunning->isUserTask()) {
 if ((((UserTask*) newrunning)->state == READY) ||
 (((UserTask*) newrunning)->state == SUSPENDED)) {
 // newrunning is being resumed or started
 usertask = (UserTask*) newrunning;
 usertask->state = RUNNING;
 if (usertask->segment == 0) {
 usertask->start_hook(usertask);
 } else {
 usertask->resume_hook(usertask);
 }
 }
 }

 // invocation of hooks may have triggered kernelHandler
 rtsys->running = (Task*) rtsys->readyQ->getFirst();

 } else { // No tasks in readyQ

 rtsys->running = NULL;

 } // end: task dispatching

 // Determine next invocation of kernel
 nextHit = getNextInvocation();
 timeElapsed = 0.0;

 } // end: loop while nextHit < EPS

 return nextHit;
}

// ------- Scicos callback functions -------

void truetimekernel(scicos_block *block, int flag) {

 static int printed; // original printed = 0 and located before if (!printed)
 // double externTime; // original under mdlOutputs double externTime = ...
 int i, j, k, detected; //original i under << mdlInitializeConditions >>
 double dTime; // original others under output calculation
 DataNode *dn;
 Task* task;
 UserTask* t;
 InterruptHandler* hdl;
 Monitor *mon;

 // printf("%d at %f\n", flag, get_scicos_time()); // only for debugging

 switch (flag) {

 case 4: // ***** Initalialization *****

 /* << mdlInitializeSizes >> */
 printed = 0;
 if (!printed) {
 printed = 1;
 printf("---\n");
 printf(" TrueTime, Version 1.4\n");
 printf(" Copyright (c) 2006\n");
 printf(" Martin Ohlin, Dan Henriksson and Anton Cervin\n");
 printf(" Department of Automatic Control, LTH\n");
 printf(" Lund University, Sweden\n");
 printf("---\n");
 }

 rtsys = new RTsys;

60

 /* Assign function pointers */
 rtsys->contextSwitchCode = contextSwitchCode;
 rtsys->periodicTaskHandlerCode = periodicTaskHandlerCode;

 rtsys->timeSort = timeSort;
 rtsys->prioSort = prioSort;

 rtsys->default_arrival = default_arrival;
 rtsys->default_release = default_release;
 rtsys->default_start = default_start;
 rtsys->default_suspend = default_suspend;
 rtsys->default_resume = default_resume;
 rtsys->default_finish = default_finish;

 rtsys->prioFP = prioFP;
 rtsys->prioRM = prioRM;
 rtsys->prioEDF = prioEDF;
 rtsys->prioDM = prioDM;

 rtsys->nbrOfTasks = 0;

 /* Save pointer to init args */
 // rtsys->initarg = (mxArray *)ssGetSFcnParam(S, 1);
 /* Evaluating user-defined init function (C++) */
 init();
 rtsys->init_phase = false;

 if (!rtsys->initialized) {
 printf("ttInitKernel was not called in init function!\n");
 set_block_error(-1);
 return;
 }

 // Clock drift parameters
 rtsys->clockDrift = 1.0; // originally = *mxGetPr(arg) + 1;
 rtsys->clockOffset = 0.0; // originally = *mxGetPr(arg);
 // printf("drift: %f, offset:%f\n", rtsys->clockDrift, rtsys->clockOffset);

 /* Input Ports */

 printf("Number of inputs: %d\n", block->nin);
 if (block->nin==4) {
 printf("Inputs=%d Triggers=%d Networks=%d EnergyLevel=%d\n", rtsys->nbrOfInputs, rtsys-
>nbrOfTriggers, rtsys->nbrOfNetworks, rtsys->energyLevel);
 if (rtsys->nbrOfInputs > 0) {
 // ssSetInputPortWidth(S, 0, rtsys->nbrOfInputs);
 if (block->insz[0] != rtsys->nbrOfInputs) {
 printf("Input[0] size must equal to %d\n", rtsys->nbrOfInputs);
 rtsys->error = true;
 set_block_error(-1);
 return;
 }}
 else {
 // ssSetInputPortWidth(S, 0, 1);
 if (block->insz[0] != 1) {
 printf("Input[0] size must be 1!\n");
 set_block_error(-1);
 return;
 }}

 if (rtsys->nbrOfTriggers > 0) {
 // ssSetInputPortWidth(S, 1, rtsys->nbrOfTriggers);
 if (block->insz[1] != rtsys->nbrOfTriggers) {
 printf("Input[1] size must equal to %d\n", rtsys->nbrOfTriggers);
 set_block_error(-1);
 return;
 }}
 else {
 // ssSetInputPortWidth(S, 1, 1);
 if (block->insz[1] != 1) {
 printf("Input[1] size must be 1!\n");
 set_block_error(-1);
 return;
 }}

 if (rtsys->nbrOfNetworks > 0) {

61

 // ssSetInputPortWidth(S, 2, rtsys->nbrOfNetworks); // Network received
 if (block->insz[2] != rtsys->nbrOfNetworks) {
 printf("Input[2] size must equal to %d\n", rtsys->nbrOfNetworks);
 set_block_error(-1);
 return;
 }}
 else {
 // ssSetInputPortWidth(S, 2, 1);
 if (block->insz[2] != 1) {
 printf("Input[2] size must be 1!\n");
 set_block_error(-1);
 return;
 }}

 // ssSetInputPortWidth(S, 3, 1); //battery
 if (block->insz[3] != 1) {
 printf("Input[3] size must be 1!\n");
 set_block_error(-1);
 return;
 }
 }
 else {
 printf("ttInitKernel input number must be 4!\n");
 set_block_error(-1);
 return;
 }

 /* Output Ports */

 printf("Number of outputs: %d\n", block->nout);
 if (block->nout==5) {
 printf("Outputs=%d Handlers=%d+%d=%d Monitors=%d*%d=%d EnergyConsumption=%d\n",
rtsys->nbrOfOutputs, rtsys->nbrOfSchedTasks, rtsys->nbrOfSchedHandlers, rtsys-
>nbrOfSchedTasks+rtsys->nbrOfSchedHandlers, rtsys->nbrOfSchedMonitors, rtsys->nbrOfTasks,
rtsys->nbrOfSchedMonitors*rtsys->nbrOfTasks, rtsys->energyConsumption);
 if (rtsys->nbrOfOutputs > 0) {
 // ssSetOutputPortWidth(S, 0, rtsys->nbrOfOutputs);
 if (block->outsz[0] != rtsys->nbrOfOutputs) {
 printf("Output[0] size must equal to %d\n", rtsys->nbrOfOutputs);
 set_block_error(-1);
 return;
 }}
 else {
 // ssSetOutputPortWidth(S, 0, 1);
 if (block->outsz[0] != 1) {
 printf("Output[0] size must be 1!\n");
 set_block_error(-1);
 return;
 }}
 if (rtsys->nbrOfNetworks > 0) {
 // ssSetOutputPortWidth(S, 1, (rtsys->nbrOfNetworks)); // Network send
 if (block->outsz[1] != rtsys->nbrOfNetworks) {
 printf("Output[1] size must equal to %d\n", rtsys->nbrOfNetworks);
 set_block_error(-1);
 return;
 }}
 else {
 // ssSetOutputPortWidth(S, 1, 1);
 if (block->outsz[1] != 1) {
 printf("Output[1] size must be 1!\n");
 set_block_error(-1);
 return;
 }}

 if (rtsys->nbrOfSchedTasks+rtsys->nbrOfSchedHandlers > 0) {
 // ssSetOutputPortWidth(S, 2, rtsys->nbrOfSchedTasks+rtsys->nbrOfSchedHandlers);
 if (block->outsz[2] != rtsys->nbrOfSchedTasks+rtsys->nbrOfSchedHandlers) {
 printf("Output[2] size must equal to %d\n", rtsys->nbrOfSchedTasks+rtsys-
>nbrOfSchedHandlers);
 set_block_error(-1);
 return;
 }}
 else {
 // ssSetOutputPortWidth(S, 2, 1);
 if (block->outsz[2] != 1) {
 printf("Output[2] size must be 1!\n");
 set_block_error(-1);

62

 return;
 }}

 if (rtsys->nbrOfSchedMonitors > 0) {
 // ssSetOutputPortWidth(S, 3, rtsys->nbrOfSchedMonitors*rtsys->nbrOfTasks);
 if (block->outsz[3] != rtsys->nbrOfSchedMonitors*rtsys->nbrOfTasks) {
 printf("Output[3] size must equal to %d\n", rtsys->nbrOfSchedMonitors*rtsys-
>nbrOfTasks);
 set_block_error(-1);
 return;
 }}
 else {
 // ssSetOutputPortWidth(S, 3, 1);
 if (block->outsz[3] != 1) {
 printf("Output[3] size must be 1!\n");
 set_block_error(-1);
 return;
 }}

 //ssSetOutputPortWidth(S, 4, 1); //Energy consumption
 if (block->outsz[4] != 1) {
 printf("Output[4] size must be 1!\n");
 set_block_error(-1);
 return;
 }
 }
 else {
 printf("ttInitKernel output number must be 5!\n");
 set_block_error(-1);
 return;
 }

 // ssSetNumContStates(S, 0);
 if (block->nx != 0) {
 printf("Number of Continuous States must be 0!\n");
 set_block_error(-1);
 return;
 }

 // ssSetNumDiscStates(S, 0);
 if (block->nz != 0) {
 printf("Number of Discrete States must be 0!\n");
 set_block_error(-1);
 return;
 }

 // ?? ssSetNumSampleTimes(S, 1);

 // ssSetNumRWork(S, 0);
 if (block->nrpar != 0) {
 printf("Number of Real Parameters must be 0!\n");
 set_block_error(-1);
 return;
 }

 block->nipar = 0; // equal to ssSetNumIWork(S, 0);
 if (block->nipar != 0) {
 printf("Number of Integer Parameters must be 0!\n");
 set_block_error(-1);
 return;
 }

 // ?? ssSetNumPWork(S, 0);

 block->nmode = 0; // equal to ssSetNumModes(S, 0);
 if (block->nmode != 0) {
 printf("Number of Modes must be 0!\n");
 set_block_error(-1);
 return;
 }

 block->ng = 1; // equal to ssSetNumNonsampledZCs(S, 1);
 if (block->ng != 1) {
 printf("Number of Zero Crossings must be 1!\n");
 set_block_error(-1);
 return;
 }

63

 *block->work = rtsys; // equal to ssSetUserData(S, rtsys);

 // ?? ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE | SS_OPTION_CALL_TERMINATE_ON_EXIT);

 /* << mdlInitializeSampleTimes >> */
 // ?? ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
 // ?? ssSetOffsetTime(S, 0, FIXED_IN_MINOR_STEP_OFFSET);

 /* << mdlStart >> */

 // not necessary - rtsys = (RTsys*) ssGetUserData(S);

 if (rtsys->init_phase) {
 /* Failure during initialization */
 return;
 }

 /* DATA ALLOCATION */

 if (rtsys->nbrOfTriggers > 0) {
 rtsys->interruptinputs = new double[rtsys->nbrOfTriggers];
 rtsys->oldinterruptinputs = new double[rtsys->nbrOfTriggers];
 }

 if (rtsys->nbrOfTasks > 0) {
 rtsys->taskSched = new double[rtsys->nbrOfTasks];
 }

 if (rtsys->nbrOfHandlers > 0) {
 rtsys->handlerSched = new double[rtsys->nbrOfHandlers];
 }

 if (rtsys->nbrOfMonitors > 0) {
 rtsys->monitorGraph = new double[rtsys->nbrOfTasks];
 }
 if (rtsys->nbrOfNetworks > 0) {
 rtsys->nwSnd = new double[rtsys->nbrOfNetworks];
 rtsys->networkinputs = new double[rtsys->nbrOfNetworks];
 rtsys->oldnetworkinputs = new double[rtsys->nbrOfNetworks];
 }

 /* << mdlInitializeConditions >> */

 //printf("mdlInit\n");
 //int i; collected in the beginning of scicos block
 // repeated - rtsys = (RTsys*) ssGetUserData(S);

 if (rtsys->init_phase) {
 /* Failure during initialization */
 return;
 }

 for (i=0; i<rtsys->nbrOfInputs; i++)
 rtsys->inputs[i] = block->inptr[0][i]; // originally =
*ssGetInputPortRealSignalPtrs(S,0)[i];

 for (i=0; i<rtsys->nbrOfTriggers; i++) {
 rtsys->interruptinputs[i] = 0.0;
 rtsys->oldinterruptinputs[i] = 0.0;
 }

 /* NETWORK */
 for (i=0; i<rtsys->nbrOfNetworks; i++) {
 rtsys->nwSnd[i] = 0.0;
 rtsys->networkinputs[i] = 0.0;
 rtsys->oldnetworkinputs[i] = 0.0;
 }
 if (rtsys->nbrOfNetworks > 0) {
 //temp=ttInitNetwork2(); /* do the rest of the network initialization */
 }
 break;

 case 1: // ***** Output Calculation *****

 if (get_phase_simulation()==1) {

64

 rtsys = (RTsys*) *block->work;

 if (rtsys->init_phase) {
 /* Failure during initialization */
 return;
 }

 // directly connect to block->outptr[0] real_T *y = ssGetOutputPortRealSignal(S,0);
 // directly connect to block->outptr[1] real_T *n = ssGetOutputPortRealSignal(S,1);
 // directly connect to block->outptr[2] real_T *s = ssGetOutputPortRealSignal(S,2);
 // directly connect to block->outptr[3] real_T *m = ssGetOutputPortRealSignal(S,3);
 // directly connect to block->outptr[4] real_T *energyConsumption =
ssGetOutputPortRealSignal(S,4);
 /* ====================== collected in the beginning of scicos block
 int i, j, k, detected;
 double dTime;

 DataNode *dn;
 Task* task;
 UserTask* t;
 InterruptHandler* hdl;
 Monitor *mon;
 ======================= */

 //rtsys = (RTsys*) *block->work; // equal to rtsys = (RTsys*) ssGetUserData(S);

 // if (rtsys->init_phase) { // duplicated code
 /* Failure during initialization */
 // return;
 // }

 if (!rtsys->started && get_scicos_time() == 0.0) {
 rtsys->started = true;
 return;
 }

 /*if (!rtsys->mdlzerocalled) {
 printf("Zero crossing detection must be turned on in order to run TrueTime!\n");
 return;
 }
 */

 /* Storing the time */
 /* ========= Contents in between are moved to case 9 ========== */

 detected = 0;

 /* Check interrupts */

 i = 0;
 dn = (DataNode*) rtsys->triggerList->getFirst();
 while (dn != NULL) {
 if (fabs(rtsys->interruptinputs[i]-rtsys->oldinterruptinputs[i]) > 0.1) {
 hdl = (InterruptHandler*) dn->data;
 Trigger* trig = hdl->trigger;
 if (rtsys->time - trig->prevHit > trig->latency) {
 // Trigger interrupt handler
 if (hdl->myList == rtsys->readyQ) {
 // handler serving older interrupts
 hdl->pending++;
 } else {
 hdl->moveToList(rtsys->readyQ);
 detected = 1;
 }
 trig->prevHit = rtsys->time;
 } else {
 //printf("Call to interrupt handler %s ignored at time %f. Within interrupt
latency!\n", hdl->name, rtsys->time);
 }
 rtsys->oldinterruptinputs[i] = rtsys->interruptinputs[i];
 }
 i++;
 dn = (DataNode*) dn->getNext();
 }

65

 /* Check network */

 dn = (DataNode*) rtsys->networkList->getFirst();
 while (dn != NULL) {
 hdl = (InterruptHandler*) dn->data;
 /* temp ===============
 Network* network = hdl->network;
 i = network->networkID - 1;
 //printf("mdlOutputs: checking network #%d inp: %d oldinp: %d\n",i,rtsys-
>networkinputs[i],rtsys->oldnetworkinputs[i]);
 if (fabs(rtsys->networkinputs[i] - rtsys->oldnetworkinputs[i]) > 0.1) {
 hdl->moveToList(rtsys->readyQ);
 detected = 1;
 rtsys->oldnetworkinputs[i] = rtsys->networkinputs[i];
 }
 ==================== */
 dn = (DataNode*) dn->getNext();
 }

 /* Run kernel? */
 /* ========= Contents in between are moved to case 9 ========== */

 /* Outputs */

 for (i=0; i<rtsys->nbrOfOutputs; i++) {
 block->outptr[0][i] = rtsys->outputs[i];
 }

 /* Network send */

 for (i=0; i<rtsys->nbrOfNetworks; i++) {
 block->outptr[1][i] = rtsys->nwSnd[i];
 }

 /* Task schedule */

 i = 0;
 j = 0;
 dn = (DataNode*) rtsys->taskList->getFirst();
 while (dn != NULL) {
 t = (UserTask*) dn->data;
 rtsys->taskSched[i] = (double) (j+1);
 if (t->display) j++;
 dn = (DataNode*) dn->getNext();
 i++;
 }

 task = (Task*) rtsys->readyQ->getFirst();
 while (task != NULL) {
 if (task->isUserTask()) {
 t = (UserTask*) task;
 rtsys->taskSched[t->taskID - 1] += 0.25;
 }
 task = (Task*) task->getNext();
 }

 if ((rtsys->running != NULL) && (rtsys->running->isUserTask())) {
 t = (UserTask*) rtsys->running;
 rtsys->taskSched[t->taskID - 1] += 0.25;
 }

 i = 0;
 j = 0;
 dn = (DataNode*) rtsys->taskList->getFirst();
 while (dn != NULL) {
 t = (UserTask*) dn->data;
 if (t->display) {
 block->outptr[2][j] = rtsys->taskSched[i];
 j++;
 }
 dn = (DataNode*) dn->getNext();
 i++;
 }

 /* Handler schedule */

66

 i = 0;
 j = 0;
 dn = (DataNode*) rtsys->handlerList->getFirst();
 while (dn != NULL) {
 rtsys->handlerSched[i] = (double) (j+rtsys->nbrOfSchedTasks+2);
 if (i==0 && rtsys->contextSwitchTime > EPS) {
 // Context switch schedule, move graph down to task level
 rtsys->handlerSched[i] = rtsys->handlerSched[i] - 1;
 }
 hdl = (InterruptHandler*) dn->data;
 if (hdl->display) j++;
 dn = (DataNode*) dn->getNext();
 i++;
 }

 task = (Task*) rtsys->readyQ->getFirst();
 while (task != NULL) {
 if (!(task->isUserTask())) {
 hdl = (InterruptHandler*) task;
 rtsys->handlerSched[hdl->handlerID - 1] += 0.25;
 }
 task = (Task*) task->getNext();
 }

 if ((rtsys->running != NULL) && (!(rtsys->running->isUserTask()))) {
 hdl = (InterruptHandler*) rtsys->running;
 rtsys->handlerSched[hdl->handlerID - 1] += 0.25;
 }

 i = 0;
 j = 0;
 dn = (DataNode*) rtsys->handlerList->getFirst();
 while (dn != NULL) {
 hdl = (InterruptHandler*) dn->data;
 if (hdl->display) {
 block->outptr[2][j+rtsys->nbrOfSchedTasks] = rtsys->handlerSched[i];
 j++;
 }
 dn = (DataNode*) dn->getNext();
 i++;
 }

 /* Monitor graph */

 k = 0;
 dn = (DataNode*) rtsys->monitorList->getFirst();
 while (dn != NULL) {
 mon = (Monitor*) dn->data;

 for (j=0; j<rtsys->nbrOfTasks; j++)
 rtsys->monitorGraph[j] = (double) (j+1+k*(1+rtsys->nbrOfTasks));

 t = (UserTask*) mon->waitingQ->getFirst();
 while (t != NULL) {
 i = t->taskID;
 rtsys->monitorGraph[i-1] += 0.25;
 t = (UserTask*) t->getNext();
 }
 if (mon->heldBy != NULL) {
 i = mon->heldBy->taskID;
 rtsys->monitorGraph[i-1] += 0.5;
 }
 if (mon->display) {
 for (j=0; j<rtsys->nbrOfTasks; j++)
 block->outptr[3][j+k*rtsys->nbrOfTasks] = rtsys->monitorGraph[j];
 k++;
 }
 dn = (DataNode*) dn->getNext();
 }

 /* Energy consumption */
 block->outptr[4][0] = rtsys->energyConsumption;

 /* Copy analog inputs */
 for (i=0; i<rtsys->nbrOfInputs; i++) {

67

 rtsys->inputs[i] = block->inptr[0][i]; //
original=*ssGetInputPortRealSignalPtrs(S,0)[i];
 }

 /* Copy interrupt inputs, check for events */
 for (i=0; i<rtsys->nbrOfTriggers; i++) {
 if (fabs(block->inptr[1][i]-rtsys->interruptinputs[i]) > 0.1) {
 if (get_scicos_time() < rtsys->nextHit) {
 rtsys->nextHit = get_scicos_time();
 printf("Next hit at copy interrupt %f\n", rtsys->nextHit);

 }
 //printf("mdlZeroCrossings: interrupt detected at %2.20g\n", get_scicos_time());
 }
 rtsys->interruptinputs[i] = block->inptr[1][i]; //
original=*ssGetInputPortRealSignalPtrs(S,1)[i];
 }

 /* Copy network input, check for event */
 for (i=0; i<rtsys->nbrOfNetworks; i++) {
 if (fabs(block->inptr[2][i]-rtsys->networkinputs[i]) > 0.1) {
 if (get_scicos_time() < rtsys->nextHit) {
 rtsys->nextHit = get_scicos_time();
 printf("Next hit at copy network input %f\n", rtsys->nextHit);
 }
 }
 rtsys->networkinputs[i] = block->inptr[2][i]; //
original=*ssGetInputPortRealSignalPtrs(S,2)[i];
 }

 /* Check the energy level */
 rtsys->energyLevel = block->inptr[3][0]; //
original=*ssGetInputPortRealSignalPtrs(S,3)[0];

 }

 break;

 case 9: // ***** Calculate zero crossing surface *****

 rtsys = (RTsys*) *block->work;

 /* Updating zero-crossing surface */

 block->g[0] = rtsys->nextHit - get_scicos_time();
 // equal to ssGetNonsampledZCs(S)[0] = rtsys->nextHit - ssGetT(S);

 /* Storing the time */

 rtsys->time = get_scicos_time() * rtsys->clockDrift + rtsys->clockOffset;

 /* Run kernel? */

 // externTime = (rtsys->time- rtsys->clockOffset) / rtsys->clockDrift; //originally
declared here
 if ((get_scicos_time() >= rtsys->nextHit) || (detected > 0)) { // replaced externTime with
get_scicos_time()
 if (!rtsys->mdlzerocalled) {
 rtsys->mdlzerocalled = true;
 }
 dTime = runKernel(get_scicos_time());
 if (rtsys->error) {
 // Something went wrong executing a code function
 /* temp ===============
 mxArray *bn[1];
 mexCallMATLAB(1, bn, 0, 0, "gcs"); // get current system
 char buf[200];
 mxGetString(bn[0], buf, 200);
 for (unsigned int i=0; i<strlen(buf); i++) if (buf[i]=='\n') buf[i]=' ';
 ==================== */
 printf("In block ==> '%s'\nSimulation aborted!\n");
 //ssSetStopRequested(S, 1);
 } else {
 rtsys->nextHit = (rtsys->time + dTime - rtsys->clockOffset) / rtsys->clockDrift;
 printf("Next hit after run kernel: %f\n", rtsys->nextHit);
 }
 }

68

 break;

 case 5: // ***** Termination *****

 /* << mdlTerminate >> */

 rtsys = (RTsys*) *block->work; // equal to rtsys = ssGetUserData(S);

 if (rtsys == NULL) {
 return;
 }

 if (rtsys->taskList != NULL) {
 // write logs to the MATLAB workspace
 DataNode *dn = (DataNode*) rtsys->taskList->getFirst();
 while (dn != NULL) {
 UserTask *task = (UserTask*) dn->data;
 for (int j=0; j<NBRLOGS; j++) {
 Log *log = task->logs[j];
 if (log) {
 // printf("Dumping log %d for task %s\n", j, task->name);
 /* temp ===============
 mxArray *ptr = mxCreateDoubleMatrix(log->entries, 1, mxREAL);
 for (int n=0; n<log->entries; n++) {
 mxGetPr(ptr)[n] = log->vals[n];
 }
 mexMakeArrayPersistent(ptr);
 mexPutVariable("base",log->variable,ptr);
 ==================== */
 }
 }
 dn = (DataNode*) dn->getNext();
 }
 }

 // Cleanup
 delete *block->work;
 cleanup();

 // Delete rtsys and all data structures within
 delete rtsys;
 }
}

/* >>>>>>>>>>>>>>>>>>>>> Write the applications below this line <<<<<<<<<<<<<<<<<<<<< */

// Task scheduling and control.
//
// This example extends the simple PID control example (located in
// $DIR/examples/simple_pid) to the case of three PID-tasks running
// concurrently on the same CPU controlling three different servo
// systems. The effect of the scheduling policy on the global control
// performance is demonstrated.

// PID data structure
class PID_Data {
public:
 struct { // states
 double u, Iold, Dold, yold;
 } s;

 struct { // params
 double K, Ti, Td, N, h;
 int rChan, yChan, uChan;
 } p;
};

// calculate PID control signal and update states
void pidcalc(PID_Data* d, double r, double y) {
 double P = d->p.K*(r-y);
 double I = d->s.Iold;
 double D = d->p.Td/(d->p.N*d->p.h+d->p.Td)*d->s.Dold+d->p.N*d->p.K*d->p.Td/(d->p.N*d->p.h+d-
>p.Td)*(d->s.yold-y);

 d->s.u = P + I + D;
 d->s.Iold = d->s.Iold + d->p.K*d->p.h/d->p.Ti*(r-y);

69

 d->s.Dold = D;
 d->s.yold = y;
};

// --------- Generic code function ----------
double pidcode(int seg, void* data) {

 PID_Data* d = (PID_Data*) data;

 switch (seg) {
 case 1:
 pidcalc(d, ttAnalogIn(d->p.rChan), ttAnalogIn(d->p.yChan));
 return 0.001;
 case 2:
 ttAnalogOut(d->p.uChan, d->s.u);
 return FINISHED;
 }

 return FINISHED; // to supress compilation warnings
}

#define NBROFINPUTS 6
#define NBROFOUTPUTS 3
#define SCHEDULER prioRM

// Task parameters
double periods[] = {0.006, 0.005, 0.004};
char* names[] = {"pid_task1", "pid_task2", "pid_task3"};
int rChans[] = {1, 3, 5};
int yChans[] = {2, 4, 6};
int uChans[] = {1, 2, 3};

PID_Data *d[3];

void init() {

 // Initialize TrueTime kernel
 ttInitKernel(NBROFINPUTS, NBROFOUTPUTS, SCHEDULER);

 // Create the three tasks
 for (int i = 0; i < 3; i++) {
 d[i] = new PID_Data;
 d[i]->p.K = 0.96;
 d[i]->p.Ti = 0.12;
 d[i]->p.Td = 0.049;
 d[i]->p.N = 10;
 d[i]->p.h = periods[i];
 d[i]->s.u = 0.0;
 d[i]->s.Iold = 0.0;
 d[i]->s.Dold = 0.0;
 d[i]->s.yold = 0.0;
 d[i]->p.rChan = rChans[i];
 d[i]->p.yChan = yChans[i];
 d[i]->p.uChan = uChans[i];

 // Offset=0 and prio=1 for all tasks
 ttCreatePeriodicTask(names[i], 0.0, periods[i], 1.0, pidcode, d[i]);
 }
}

void cleanup() {

 for (int i = 0; i < 3; i++) {
 delete d[i];
 }
}

70

6.3 Appendix C: Code listing of truetimekernel.sci
function [x,y,typ]=truetimekernel(job,arg1,arg2)
//
 x=[];y=[];typ=[]
 select job
 case 'plot' then
 standard_draw(arg1)
 case 'getinputs' then
 [x,y,typ]=standard_inputs(arg1)
 case 'getoutputs' then
 [x,y,typ]=standard_outputs(arg1)
 case 'getorigin' then
 [x,y]=standard_origin(arg1)
 case 'set' then
 x=arg1;
 graphics=arg1.graphics;exprs=graphics.exprs;
 model=arg1.model;
 while %t do
 [ok,junction_name,ni,nt,nn,no,ns,nm,clkd,clko,exprs]=..
 getvalue('Set TRUETIMEKERNEL block parameters',..
 ['Simulation Function';
 'Number Of Inputs';
 'Number Of Triggers';
 'Number Of Networks';
 'Number Of Outputs';
 'Number Of Schedulers';
 'Number Of Monitors';
 'CLOCK DRIFT';
 'CLOCK OFFSET'],..

list('str',1,'vec',1,'vec',1,'vec',1,'vec',1,'vec',1,'vec',1,'vec',1,'vec',1),exprs)
 if ~ok then break,end
 junction_name=stripblanks(junction_name)
 if ok then
 graphics.exprs=exprs
 model.sim=list(junction_name,4)
 model.in=[ni;nt;nn;1]
 model.out=[no;nn;ns;nm;1]
 model.rpar=[clkd;clko]
 x.model=model
 x.graphics=graphics
 break
 end
 end
 case 'define' then
 model=scicos_model()
 junction_name='truetimekernel';
 //ni=1,nt=1,nn=1,no=1,ns=1,nm=1;
 model.sim=list(junction_name,4)
 model.in=[1;1;1;1]
 model.out=[1;1;1;1;1]
 model.evtin=[]
 model.evtout=[]
 model.state=[]
 model.dstate=[]
 model.rpar=[0.0;0.0]
 model.ipar=[]
 model.nmode=0
 model.nzcross=1
 model.blocktype='c'
 model.firing=[]
 model.dep_ut=[%f %t] //no direct feedthrough, time dependence
 exprs=[junction_name;sci2exp(1);sci2exp(1);sci2exp(1);
 sci2exp(1);sci2exp(1);sci2exp(1);
 sci2exp(0.0);sci2exp(0.0)]
 gr_i=['txt=['' TrueTime '';'' Kernel ''];';
 'xstringb(orig(1),orig(2),txt,sz(1),sz(2),''fill'')']
 x=standard_define([4 3],model,exprs,gr_i)
 end
endfunction

