
ISSN 0280-5316
ISRN LUTFD2/TFRT--5800--SE

Implementation of an Autotunable
Decoupling TITO Controller

Alfred Theorin

Department of Automatic Control
Lund University

July 2007

Document name
MASTER THESIS
Date of issue
July 2007

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5800--SE
Supervisor
Michael Kwapisz and Mikael Petersson at ABB in Malmö.
Tore Hägglund at Automatic Control in Lund (Examiner)

Author(s)
Alfred Theorin

Sponsoring organization

Title and subtitle
Implementation of an Autotunable Decoupling TITO Controller. (Implementering av en automatinställningsbar
särkopplande TITO-regulator)

Abstract
In the process industry general TITO systems, i.e. systems with two inputs and two outputs, are usually assumed to be two
separate systems. If the system is strongly coupled, the performance is generally poor, but usually nothing is done about
this since there are no automatic means to improve it. The aim of this master's thesis is to develop a module with a
completely automated design procedure which improves the performance of coupled TITO systems. For this to be
possible an automated TITO system identification will be required, as well as automated decouple filter design and PID
tuning for decoupled systems. Finally, to confirm that the developed module really works it is tested on a real process.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
79

Security classification

Recipient’s notes

http://www.control.lth.se/publications/

Contents

1 Background 10

2 Theory 11

2.1 Modelling . 11

2.2 Decouple Filter Design . 13

2.2.1 Static Decouple Filter . 13

2.2.2 FOWDT Decouple Filter 14

2.2.3 Approximate FOWDT Decouple Filter 15

2.2.4 Static Decouple Filter With Dead Times 15

2.2.5 Decouple Filter Simulations 16

2.3 Controller Design . 18

2.3.1 Optimization Criterion . 18

2.3.2 Robustness Condition . 18

2.3.3 PID Design . 19

2.3.4 Simulations . 22

2.3.5 Code Splitting . 25

2.3.6 A Special Case . 25

2.4 The Range Problem . 26

2.4.1 Fixed PID Output Range 27

2.4.2 Dynamic PID Output Range 32

2

2.5 Noise Estimate . 37

2.5.1 Real-time . 39

2.5.2 Real-time - Static Mean 39

2.5.3 Real-time - Variable Mean 40

2.5.4 Real-time - Forgetting Factor 40

2.5.5 Real-time - Moving Average 40

2.5.6 Non Real-Time . 44

3 Implementation 47

3.1 General Strategy . 47

3.2 Control Builder . 48

3.2.1 Introduction . 48

3.2.2 Structured Data Types 49

3.2.3 Function Blocks . 49

3.2.4 Control Modules . 50

3.2.5 Logging . 51

3.3 System Identi�cation - First Approach 53

3.3.1 Identi�cation Parts . 53

3.3.2 Identi�cation Supervision 54

3.3.3 The Steady Test . 54

3.3.4 Quantization . 56

3.3.5 Initial Estimate of Static Gains 56

3.3.6 The Watcher . 57

3.3.7 Stabilization . 57

3.3.8 Maximum Amplitudes for Coupling Identi�cation 58

3.3.9 Relay Identi�cation . 58

3.3.10 Step Identi�cation . 59

3.4 System Identi�cation - Second Approach 59

3

3.5 A First Approach . 61

3.6 A Second Approach . 61

3.7 The Final Approach . 62

3.7.1 SwapCC . 63

3.7.2 Identi�cation22CC . 64

3.7.3 PidX2ToDFCC . 64

4 The Tank Process 65

4.1 The Process . 65

4.2 The Experiment . 66

4.3 SISO Control . 66

4.3.1 Default Parameters . 66

4.3.2 PidAdvancedCC . 66

4.4 TITO Control . 68

4.4.1 TITO Identi�cation . 68

4.4.2 Static Decouple Filter . 69

4.4.3 FOWDT Decouple Filter 69

5 Summary and Future Work 71

5.1 TITO Identi�cation . 71

5.2 Decouple Filter Design . 71

5.3 Controller Tuning . 72

5.4 Bumpless Parameter Changes . 73

A Glossary 74

B Source Code Samples 75

B.1 Controller Gain - Binary Search 75

B.2 Span Noise Estimate . 76

4

List of Figures

2.1 The step responses for a simple TITO system with �rst order
transfer functions. When the setpoint is changed for one process
value, the other starts to vary, thus the system is coupled. 11

2.2 SimuLink model for TITO simulations. 15

2.3 The step responses for the system in equation (2.11) without a
decouple �lter. Typical e�ects of coupling can be seen at the set-
point changes. 16

2.4 Step responses for the system in equation (2.11) with a static
decouple �lter. 17

2.5 Step responses for the process in equation (2.11) with a FOWDT
decouple �lter. Since the process is a �rst order model without
any mismatch the process is completely decoupled. 17

2.6 The Ms-circle to the right and Mt-circle to the left are both en-
circled by the M-circle. Here M = Ms = Mt = 1.4. 19

2.7 Nyquist curve of stable system that satis�es the robustness con-
dition. 20

2.8 Nyquist curve for tested gains with Binary search (left �gures)
and the algorithm used in [1] (right �gures). The upper �gures
are overviews and the lower �gures are zoomed in at the critical
point. The number of steps is decreased with Binary search and
also the obtained K is larger which means that the curve is closer
to the M-circle and that the controller has better performance. . . 21

2.9 Simulated IAE surface for the system in equation (2.16) but with
di�erent Kmax, in the upper left, upper right and the lower plot
Kmax is 10, 100 and 1000 respectively. The higher gain allowed,
the more of the surface is allowed and the smaller is the minimum
IAE. 22

5

2.10 SimuLink model for continuous IAE simulations run for one PID
at a time. The blocks Gi are second order transfer functions with
dead time, see equation (2.5). 23

2.11 SimuLink model for discrete IAE simulations run for one PID
at a time. The blocks Gij are �rst order transfer functions with
dead time, see equation(2.5). 23

2.12 A controller is obtained using the IAE minimization algorithm
with M = 1.4. For Pv1 a load disturbance is applied at t = 10
and a setpoint step is made at t = 30. For Pv2 the times are
t = 60 and t = 90. The load disturbance responses are really good
and the step response are acceptable but the control signals are
quite noisy. 24

2.13 Implementation model with ranges 26

2.14 Transformed input ranges . 28

2.15 Inverse transformed output ranges and valid PID outputs. 33

2.16 Inverse transformed output ranges. 34

2.17 The current value (cross) and the allowed directions for the PIDs
(arrows). When the border is reached the value is inhibited to go
outside of the allowed region. In (d) the control signals get stuck
since there is no allowed direction for either PID. 35

2.18 The current value has ended up in D, which corresponds to a dan-
gerous corner. The given output ranges (left) are inverse trans-
formed (middle) and then transformed back (right) to show which
areas are possible to go to if all inhibits are removed. 36

2.19 Noise estimate method in the relay identi�cation algorithm as a
function of measurement scans with an 80% con�dence interval. . 37

2.20 Common estimation of standard deviation as a function of mea-
surement scans with an 80% and an 99% con�dence interval. . . 38

2.21 Typical process value variations. 39

2.22 Actual mean (solid line) and various moving means using forget-
ting factor (dashed lines). Starting closest to the solid line the
forgetting factors are 0.5, 0.7, 0.9 0.95 0.99 and 0.999. 41

2.23 Erroneously added variance as a function of the forgetting factor,
with a process value moving as in �gure 2.22. 41

2.24 Erroneously added variance as a function of n. 43

6

2.25 Noise estimates with 99% con�dence intervals for various mea-
surement scans and line slopes. X marks the worst case for the
current implementation. 43

2.26 Linear �ts for typical measurements. 44

2.27 Extra standard deviations added as a function of measurement
scans and of the quotient between �lter time and sample time. . . 45

2.28 Fit plots for various polynomial orders. Filter time = 10% of
measurement scans = 100. 46

3.1 Screenshot of a Control Builder working space. 48

3.2 A and C require the output from D, thus D will be executed �rst.
B requires output from both A and C, thus B will be executed last.
The internal execution order between A and C does not matter
so any order is possible. 49

3.3 Screenshot of the developed Decouple Filter's GUI. 50

3.4 Control Module execution order. 51

3.5 Control Builder Online Editor . 52

3.6 With a proper sample rate the condition fails at the 8th point.
With a 10 times higher sample rate the condition is successful
and wouldn't have failed until at the 38th point. 54

3.7 With the correct interval used (dashed) the test would fail at the
8th point. With the previous point used (triangles) the test would
incorrectly be successful. 55

3.8 The Steady Condition with added quantization level support run
on a real process. The process value moves between 4 quantization
levels and as long as it varies between the two latest initial values
the SteadyCounter keeps increasing, otherwise it is reset to 0.
The Steady Conditions is satis�ed when the SteadyCounter is ≥ 10. 56

3.9 The identi�cation algorithm run with a little too high sample fre-
quency. The �rst step is considered complete a little too early but
does not a�ect the estimates considerably. 60

3.10 The identi�cation algorithm run with far too high sample fre-
quency. The �rst step is considered complete way too early, lead-
ing to bad estimates. 60

3.11 Overview of the second implementation approach. 61

3.12 Final approach Control Module overview 62

7

4.1 The tank process consisting of two tanks with a small hole in the
bottom. The water is pumped into the upper tank and then �ows
down into the lower tank, then out of the process. 65

4.2 The experiment run on the tank process with SISO control using
the default controller parameters. 67

4.3 The experiment run on the tank process with SISO control using
the controller parameters from the tuning in PidAdvancedCC. . . 68

4.4 The experiment run on the tank process with a static decouple
�lter and tuned PIDs. 69

4.5 The experiment run on the tank process with a FOWDT decouple
�lter and tuned PIDs. 70

8

Acknowledgements

There are several persons who have helped me with the work on this thesis.
First of all, I would like to thank professor Tore H�gglund for always being
encouraging, knowledgeable and supportive. I would also like to thank Olof
Garpinger for helping me to understand the PID design algorithm and coming
with ideas to improve it. Also, thanks for lending me the water tank process.

For supporting me with everything I needed during development and testing I
would like to thank the ACE division of ABB. Especially I would like to thank
Michael Kwapisz for the many interesting discussions and ideas, and Mikael
Petersson and Bengt Hansson for supporting me with their deep knowledge of
the system.

Finally I would like to thank everyone who provided me with feedback on the
report. Thank you!

9

Chapter 1

Background

Two input two output systems, or TITO systems for short, are systems where
there are two properties to control and both control signals may a�ect both
process values. TITO systems are usually assumed to be two separate single
input single output systems, or SISO systems for short, which are controlled
by separate controllers. This is easy to implement and there are no drawbacks
with this approach when the couplings are relatively small. However for large
couplings the performance may be very poor. The easiest way to check if a
system is coupled is to apply a setpoint change on one process value and see if
this causes variations on the other property. If it does, the system is coupled.

There are many systems in the industry where the couplings are too big for
SISO control to be appropriate, still it is used. For these systems TITO control
should be considered. One TITO control approach is to add a 2x2 �lter be-
tween the controllers and the process. Correctly designed the �lter decreases or
even cancels the couplings, making the TITO system appear as two completely
separate SISO systems to the controllers.

In a factory there usually are thousands of controllers, so manual tuning of
controller parameters and decouple �lters is not an option. This master's thesis
aims to implement a module with automated methods for tuning of both the
2x2 �lter and the controllers.

10

Chapter 2

Theory

2.1 Modelling

A TITO process can be modelled as a 2x2-matrix with transfer functions as
elements, see equation (2.1). If the system is properly connected the larger
gains are in the diagonal and the couplings are described by p12 and p21. If the
coupling gains are much smaller than the diagonal gains there is no need for
decoupling and a SISO approach should be used. Typical step responses for a
coupled TITO system can be seen in �gure 2.1.

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

pv
 (

so
lid

),
 s

p
(d

as
he

d)

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

pv
 (

so
lid

),
 s

p
(d

as
he

d)

0 5 10 15 20
−3

−2

−1

0

1

2

3

t

u

0 5 10 15 20
−3

−2

−1

0

1

2

3

t

u

Figure 2.1: The step responses for a simple TITO system with �rst order transfer
functions. When the setpoint is changed for one process value, the other starts
to vary, thus the system is coupled.

11

(
y1

y2

)
= P

(
u1

u2

)
,

P =
(

p11 p12

p21 p22

)
,

pij = Bij(s)
Aij(s)

e−sL

(2.1)

where Aij(s) and Bij(s) are polynomials.

The decouple �lter for a TITO system can also be described by a 2x2-matrix
with transfer functions as elements. With the decouple �lter D added between
the controllers and the process the complete system appears as PD to the
controllers. If D decouples the system perfectly, PD is diagonal, see equation
(2.2).

PD = L (2.2)

where L is diagonal.

From linear algebra we have

A−1 =
1

det(A)
adj(A) (2.3)

From equation (2.2) and (2.3) we get

D = P−1L =
1

detP
adj(P)L = adj(P)Λ (2.4)

where Λ = 1
det(P)L and thus also is diagonal.

In [1] it is suggested to use the adjunct of P and then design the decouple �lter
by altering the diagonal matrix, Λ. Since Λ does not have to be implemented
the only restrictions on Λ is that it must lead to an implementable decouple
�lter.

Since most target processes are well approximated by �rst order transfer func-
tions with dead time, or FOWDT for short, they will be used for elements both
in the process model and in the decouple �lter. With FOWDT transfer functions
the diagonal elements of the decoupled system will be the sum of two second
order �lters with dead time, denoted by Gij in equation (2.5).

12

PD =
(

p11 p12

p21 p22

)(
d11 d12

d21 d22

)

=
(

p11d11 + p12d21 0
0 p21d12 + p22d22

)

=
(

G11 + G12 0
0 G21 + G22

)

(2.5)

2.2 Decouple Filter Design

Various assumptions may be made when designing a decouple �lter, some result
in simpler decouple �lters with limited performance while other result in more
complex decouple �lters with potentially better performance. Common for all
of them is that they require a process model and the better the model is the
better the decoupling will be. A more complex decouple �lter requires more
information about the process, thus a more complex system identi�cation is
needed.

The most simple decouple �lter is the static decouple �lter, which only has static
gains as �lters, see [2]. It has very limited performance but handles inaccurate
models pretty well. Beside the static decouple �lter the two decouple design
methods proposed in [1] and a static decouple �lter with dead time have been
implemented and evaluated.

2.2.1 Static Decouple Filter

The static decouple �lter is a very simple decouple �lter without any dynamics,
i.e. the decouple �lter's elements are simply static gains, see equation (2.6).

D = P−1(0) =
1

det P (0)

(
p22(0) −p21(0)
−p12(0) p11(0)

)
(2.6)

Designing a static decouple �lter for a process only requires the static gains of
the process transfer functions since P−1(0) = P (0)−1.

The performance of a static decouple �lter is limited to static states. This means
that for instance the transients upon setpoint changes will not be improved
noticeably. The big advantage for this kind of decouple �lter is when you manage
the control signals manually, i.e. Manual mode. Without a decouple �lter both
control signals have to be altered if one property is to be changed and the other
is to remain constant. With a static decouple �lter only one control signal has
to be altered to accomplish this, making it easier for the operator to control the
system.

13

2.2.2 FOWDT Decouple Filter

A method for designing a more advanced decouple �lter is proposed in chapter
3.2 in [1] and will be referred to as the FOWDT decouple �lter since the elements
are �rst order �lters with dead time, see equation (2.7). The method chooses Λ
in equation (2.2) to minimize unnecessary dead times and dynamics.

pij =
Kij

Tijs + 1
e−sLij (2.7)

First Λ is chosen to be the identity matrix, which means D = adj(P). By
changing Λii, common dead times, poles and zeroes of Di1 and Di2 are removed.

When poles are removed there is a risk of making the decouple �lter impossible
to implement, i.e. having a non causal �lter with more zeroes than poles. With
a FOWDT model there are no zeroes so this cannot happen.
Example 2.2.1. Consider the process

P =

1
3s+1e−2s 0.5

2s+1e−2s

1
s+1e−s 1

s+1e−3s

Begin with Λ = I,

adj(P)Λ = adj(P) =

1
s+1e−3s − 0.5

2s+1e−2s

− 1
s+1e−s 1

3s+1e−2s

Common dead times are removed with

Λ =
(

es 0
0 e2s

)

adj(P)Λ =

1
s+1e−2s − 0.5

2s+1

− 1
s+1

1
3s+1

Finally the common pole in column 1 is removed with

Λ =
(

(s + 1)es 0
0 e2s

)

D = adj(P)Λ =

e−2s − 0.5
2s+1

−1 1
3s+1

14

2.2.3 Approximate FOWDT Decouple Filter

This decouple �lter was proposed in [1] for reduction of dynamics in a FOWDT
decouple �lter. For each column the time constants T1i and T2i are denoted Tl

and Ts where Tl ≥ Ts. One of the transfer functions will be

K1

Tss + 1
e−sL1 (2.8)

The other transfer function will be approximated by using

K2

Tls + 1
e−sL2 ≈ K2

(Tss + 1)((Tl − Ts)s + 1)
e−sL2 (2.9)

Thus the pole Tss + 1 will be common and can be canceled by modifying Λ.
The approximation results in a decouple �lter which has less dynamics since at
least two elements will be static gains, possibly with dead times.

2.2.4 Static Decouple Filter With Dead Times

One way to extend the static decouple �lter in section 2.2.1 is to add dead
times, see equation (2.10). Unnecessary dead times can then be removed in the
same way as in the FOWDT decouple �lter, see section 2.2.2. By doing this the
decouple �lter will be able to handle di�erences in dead times better than the
ordinary static decouple �lter without adding dynamics to the decouple �lter.

pij = Kije
−sLij (2.10)

Figure 2.2: SimuLink model for TITO simulations.

15

2.2.5 Decouple Filter Simulations

To decide which decouple �lters are worth using and when to use which, sim-
ulations have been done in SimuLink. The processes used are symmetric and
controlled by two identical PI-controllers.

For the process in equation (2.11) simulation results are shown in �gure 2.3, 2.4
and 2.5.

P =

1
s+1

0.5
2s+1

0.5
2s+1

1
s+1

 (2.11)

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

pv
 (

so
lid

),
 s

p
(d

as
he

d)

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

pv
 (

so
lid

),
 s

p
(d

as
he

d)

0 5 10 15 20
−3

−2

−1

0

1

2

3

t

u

0 5 10 15 20
−3

−2

−1

0

1

2

3

t

u

Figure 2.3: The step responses for the system in equation (2.11) without a
decouple �lter. Typical e�ects of coupling can be seen at the setpoint changes.

With a static decouple �lter the coupling at setpoint changes is not a�ected
notably, simply because the setpoint change is not of static nature. What is
more interesting is to look at the control signals. Setpoint changes without a
static decouple �lter causes o�sets in both control signals, see �gure 2.3. With
a static decouple �lter there is only a transient on the other control signal which
is a great advantage when controlling any or both of the values manually, i.e.
Manual mode.

With a FOWDT decouple �lter there are no signs of coupling at all. This
is because the model does not su�er from any mismatches which means that
the process transfer function matrix is completely diagonalized by the decouple
�lter. A disadvantage with this decouple �lter is that it is a lot harder to �nd
controllers which work well, compared to without a decouple �lter or with a
static decouple �lter.

16

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

pv
 (

so
lid

),
 s

p
(d

as
he

d)

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

pv
 (

so
lid

),
 s

p
(d

as
he

d)

0 5 10 15 20
−3

−2

−1

0

1

2

3

t

u

0 5 10 15 20
−3

−2

−1

0

1

2

3

t

u

Figure 2.4: Step responses for the system in equation (2.11) with a static decou-
ple �lter.

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

pv
 (

so
lid

),
 s

p
(d

as
he

d)

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

pv
 (

so
lid

),
 s

p
(d

as
he

d)

0 5 10 15 20
−3

−2

−1

0

1

2

3

t

u

0 5 10 15 20
−3

−2

−1

0

1

2

3

t

u

Figure 2.5: Step responses for the process in equation (2.11) with a FOWDT
decouple �lter. Since the process is a �rst order model without any mismatch
the process is completely decoupled.

17

2.3 Controller Design

Adding a decouple �lter increases the complexity of the system remarkably. An
algorithm for PID design for this kind of systems is proposed in [1]. It is time
consuming and typically takes more than one minute to execute on a 2.66GHz
Intel P4 CPU.

The algorithm is unsuitable for embedded systems with limited resources and
relatively low clock frequency. It is still preferable since it is the only available
automatable design method which is able to handle systems of this complexity.
Careful splitting of the design procedure will be necessary since it cannot be
performed in one single scan, i.e. sample time.

2.3.1 Optimization Criterion

The proposed PID design algorithm minimizes the Integrated Absolute Error,
IAE, for a step load disturbance, see equation (2.12).

IAE =
∫ ∞

0

|e(t)|dt =
∫ ∞

0

|r(t)− y(t)|dt =
∫ ∞

0

|y(t)|dt (2.12)

where e(t) is the control error, r(t) is the reference signal, here set to zero, and
y(t) is the process value.

2.3.2 Robustness Condition

The optimization is performed under a given robustness condition.

There are two separate robustness factors, one for the sensitivity function, Ms,
and one for the complementary sensitivity function, Mt. These limit the max-
imum gain for each function and appear as circles in the Nyquist plot. As
long as the Nyquist curve stays outside these circles the desired robustness is
guaranteed.

Choosing M = Ms = Mt these circles can be replaced by a single circle which
encircles them both, the M-circle, see �gure 2.6.

Mcenter = −2M2 − 2M + 1
2M(M − 1)

(2.13)

Mradius =
2M − 1

2M(M − 1)
(2.14)

M is always greater than 1 and the closer to 1 it is, the more robust the system

18

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.6: The Ms-circle to the right and Mt-circle to the left are both encircled
by the M-circle. Here M = Ms = Mt = 1.4.

is. It can be shown that with M → 1, the M-circle covers the entire left half
plane.

Example 2.3.1. Consider M → ∞. This means that there is no upper limit
on neither the sensitivity function nor the complementary sensitivity function.
Then Mcenter → − 1 and Mradius → 0, which means that the Nyquist curve
may come arbitrarily close to the critical point −1, i.e. there is no robustness
at all.

2.3.3 PID Design

The PID controller can be described by equation (2.15).

C = K(1 +
1

Tis
+

Tds
Td

N s + 1
) (2.15)

The PID design is done by evaluating the performance of many controllers. This
is done systematically by gridding the controller parameters Ti and Td over a
large region. Gridding over a more narrow area can optionally be done any
number of times around the best found combination to �nd better values.

The controller gain, K, for each combination of Ti and Td is determined by the
Nyquist curve. K is chosen to be the largest gain which satis�es the robustness

19

condition and does not make the system unstable. To determine K with an
algorithm, a maximum and a minimum gain have to be chosen, i.e. Kmax and
Kmin.

One way to �nd K is to start by applying the maximum controller gain, Kmax

and then decrease it until the system is stable and satis�es the robustness con-
dition. If there is no such controller with a gain larger than Kmin the current
combination of Ti and Td is discarded.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Figure 2.7: Nyquist curve of stable system that satis�es the robustness condition.

To minimize the number of gains that have to be tested one can take big steps,
halving the gain every time. When a stable controller which satis�ed the robust-
ness condition is found, K is increased slowly until the M-circle is approached
or the system becomes unstable. This is the algorithm used in [1].

A more elegant solution is to do this by means of binary search, halving the
interval every time until the width of the remaining interval is su�ciently small,
see appendix B.1. This reduces the complexity of the algorithm and makes it
easier to split up over several scan since it does not have to remember if it is
currently decreasing or increasing the gain. Also the K found by this algorithm
is typically slightly larger which means that it is closer to the robustness limit,
thus giving better performance.

Another great advantage is that the number of gains that have to be tested is
greatly reduced, decreasing the execution time. Also to get a K closer to the
M-circle is not computationally expensive compared to the algorithm used in
[1], where a smaller increasing step is required, greatly increasing the number of
gains to test. A comparison between the methods are illustrated in �gure 2.8.

20

−5 −4 −3 −2 −1 0 1
−5

0

5
Binary search, 17 steps, K = 0.0046997

−5 −4 −3 −2 −1 0 1
−5

0

5
Pontus algorithm, 67 steps, K = 0.0046801

−0.34 −0.32 −0.3 −0.28 −0.26
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.34 −0.32 −0.3 −0.28 −0.26
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

Figure 2.8: Nyquist curve for tested gains with Binary search (left �gures) and
the algorithm used in [1] (right �gures). The upper �gures are overviews and the
lower �gures are zoomed in at the critical point. The number of steps is decreased
with Binary search and also the obtained K is larger which means that the curve
is closer to the M-circle and that the controller has better performance.

Since the Nyquist curve is only evaluated at discrete frequencies it is important
to select a proper frequency range and number of points to use. The cur-
rent implementation evaluates 500 logarithmically spaced points in the interval
[0.001, 100], which might be a little too sparse but saves a lot of time. In [1] the
same interval is used but the Nyquist curve is evaluated in 2000 points.

For large values of K this is more important since then the Nyquist plot is
ampli�ed much. Then one might miss that the robustness condition is not
satis�ed or even that the system in unstable, which in the worst case over�ows
the IAE variable. With Kmax = 100 and 500 points there were a few cases where
simulations were made on unstable systems. This might also be connected to
the discretization, also mentioned in section 2.3.4. The cause in the speci�c
cases has not been analyzed.

It is important to choose Kmax and Kmin properly since they will a�ect the
�nal performance of the PIDs. IAE is normally decreased with higher allowed
gain, Kmax, but also makes the control signal more noisy. IAE surfaces for
simulations on the same system with di�erent Kmax are seen in �gure 2.9.

P =

1
10s+1

0.5
20s+1

0.5
20s+1

1
10s+1

 , D =

1
10s+1 − 0.5

20s+1

− 0.5
20s+1

1
10s+1

 (2.16)

21

−2

−1

0

1

2 −3
−2

−1
0

1

0

10

20

30

40

lg(Td)lg(Ti)

IA
E

−2

−1

0

1

2
−3

−2
−1

0
1

0

10

20

30

40

lg(Td)
lg(Ti)

IA
E

−2

−1

0

1

2
−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

0

10

20

30

40

lg(Td)
lg(Ti)

IA
E

Figure 2.9: Simulated IAE surface for the system in equation (2.16) but with
di�erent Kmax, in the upper left, upper right and the lower plot Kmax is 10,
100 and 1000 respectively. The higher gain allowed, the more of the surface is
allowed and the smaller is the minimum IAE.

2.3.4 Simulations

For every set of controller parameters, IAE simulations have to be done. A step
load disturbance is applied at the time t = 0 and the simulation time is set to
10 times the system's time constant plus dead time.

Continuous IAE Simulations

Compared to running simulations in Control Builder, running them in MAT-
LAB is rather easy. There are many powerful functions available and the array
handling is very easy. Thus the simulation algorithm was �rst implemented in
MATLAB using a continuous SimuLink model, see �gure 2.10.

Discrete IAE Simulations

In Control Builder it is unrealistic to implement a variable time-step algorithm.
Also, if the tuning algorithm uses the actual blocks that will be used when
running the controller, a more accurate simulation will be obtained. However,
only the controller and decouple �lter are discrete and a completely discretized
simulation would also mean discretization of the process.

22

Figure 2.10: SimuLink model for continuous IAE simulations run for one PID
at a time. The blocks Gi are second order transfer functions with dead time, see
equation (2.5).

The ultimate simulation would be a discretized controller using �xed-step, con-
nected to a continuous process using a variable-step algorithm. However, to
decrease execution time the completely discretized simulation using �xed-step
is used. Thus the SimuLink model was discretized to use the actual Control
Builder PID and �lter algorithms, see �gure 2.11.

Figure 2.11: SimuLink model for discrete IAE simulations run for one PID at
a time. The blocks Gij are �rst order transfer functions with dead time, see
equation(2.5).

A few of the simulated IAE controllers were unstable even though they satisfy
the robustness condition. Possible cause were mentioned in section 2.3.3.

Choosing the Simulation Sample Time

A given candidate to use in the IAE simulations is the actual sample time.
However, it is common that operators do not choose the sample time to �t
the bandwidth of the system so the actual sample time might be a lot shorter

23

than appropriate, which means that more simulation steps are required. For
excessively oversampled systems this will lead to an unreasonable amount of
steps. Thus it is appropriate to set an upper limit for the number of simulation
steps. If the upper limit is exceeded a more suitable sample time will be used
in the simulations.

Controller Performance

IAE for a load disturbance is a commonly used optimization criterion in the
process industry where load disturbances are common. For a coupled TITO
system this is even more important since the two control signals themselves
work as load disturbances on each other. However, only minimizing the IAE for
a load disturbance may result in a controller which has other bad properties,
such as noisy control signal or bad setpoint step response, see �gure 2.12.

0 50 100

0

0.5

1

t [s]

P
v 1

0 50 100

0

0.5

1

t [s]

P
v 2

0 50 100
−5

0

5

t [s]

u 1

0 50 100
−5

0

5

t [s]

u 2

Figure 2.12: A controller is obtained using the IAE minimization algorithm with
M = 1.4. For Pv1 a load disturbance is applied at t = 10 and a setpoint step is
made at t = 30. For Pv2 the times are t = 60 and t = 90. The load disturbance
responses are really good and the step response are acceptable but the control
signals are quite noisy.

There are various ways to handle poor setpoint step responses. One is o�ered
by the Control Module PidCC so exchanging the currently used Control Module
PidSimpleCC for PidCC will solve that.

To avoid noisy control signals one could let it pass through a suitable low pass
�lter but this would introduce dynamics which may ruin the decoupling. An-
other way would be to set the limits on Kmax and Tdmax lower but that would

24

limit the performance for other controllers which could use higher values with-
out making the control signal noisy, though this is easier and more preferable
than adding a �lter.

2.3.5 Code Splitting

The calculation of the controller gain, K, and the IAE simulations both take a
long time to execute and thus they need to be split up over several scans and a
maximum CPU utilization needs to be selected. There is no permissible way to
measure the execution time with enough accuracy inside an algorithm in Control
Builder. The only way to measure the execution time at all is not cascadeable
and is used to measure the execution time for entire Control Modules or systems.
However it may be used during development but then the measurement will be
hardware speci�c. Since there are no other options, a variable describing the
Controller's speed will be used with the measured hardware speci�c value as
default value.

2.3.6 A Special Case

A special case where the simulation time can be reduced is when the order
of the process and the decouple �lter is the same and the same amount of
dead time is decreased in both columns, i.e. min(L21, L22) = min(L11, L12) in
equation (2.20).

Then the complete transfer functions for both loops will always be the same,
resulting in the same controller parameters. Thus simulations only have to be
run for one controller, halving the required simulation time.

P =

p11e
−L11s p12e

−L12s

p21e
−L21s p22e

−L22s

 (2.17)

adj(P) =

p22e
−L22s −p12e

−L12s

−p21e
−L21s p11e

−L11s

 (2.18)

D =

p22e
(min(L21,L22)−L22)s −p12e

(min(L11,L12)−L12)s

−p21e
(min(L21,L22)−L21)s p11e

(min(L11,L12)−L11)s

 (2.19)

PD =

p11p22e
(min(L21,L22)−L11−L22)s 0

0 p11p22e
(min(L11,L12)−L11−L22)s

(2.20)

25

2.4 The Range Problem

In a SISO system the range problem is solved by normalizing the span of the
input range with the span of the output range. Then calculations in the con-
troller are done independent on the ranges. For TITO control with a decouple
�lter there is a new pair of ranges added, the PID output ranges, which have to
be carefully chosen, see �gure 2.13.

Input ranges PID output ranges Output ranges

PID

PID Decouple Unit

Figure 2.13: Implementation model with ranges

Let us �rst consider only the decouple �lter with given input- and output ranges.
The input ranges are weighted with the decouple �lter's static gains which gives
output ranges depending on input ranges and the gains. A naive approach
would be to simply take all four combinations of minimum and maximum input
values and calculate all possible output ranges using the gains and then normal-
ize the extremes to �t the actual output ranges. This is equivalent to scaling
the static gains in the decouple �lter's rows and this ruins the decoupling, see
example 2.4.1.

The only case when normalization is OK is when both ranges are ampli�ed
with the same factor, but then the ranges generally do not �t. An attempt
to transform the decouple matrix to make the ranges �t without ruining the
decoupling is presented in section 2.4.1. The developed method proves to only
work in speci�c cases so another approach is developed, see section 2.4.2. Here
the decouple �lter's input ranges are dynamically calculated from the decouple
�lter's static gains and the output ranges.
Example 2.4.1. Consider the process

P =
(

3 1
−1 1

)

26

Using the inverse of P as decouple �lter we have

D = P−1 =

3
4

1
4

− 1
4

1
4

The process is decoupled since PD = I.

If both the inranges and the outranges are 0− 100, the calculated output ranges
using the decouple �lter's gains are

Out1: 0 - 100
Out2: -25 - 25

To �t these to the actual output ranges, a gain of 2 has to be applied to Out2.
A gain on the output is equivalent to applying the same gain to the second row
in the decouple matrix and results in

PD =

3
4

1
4

− 1
2

1
2

(
3 1
−1 1

)
=

7
4

5
4

− 5
4

1
4

The process is no longer decoupled.

2.4.1 Fixed PID Output Range

Applying a gain on a row in the decouple �lter is allowed if and only if the same
gain is applied to the other row, i.e. multiplying all decouple matrix elements
with the same constant. But this operation does not a�ect the relative range,
just the ranges' sizes. A more useful operation which is allowed is to apply a
gain to either input instead. This is equivalent to right hand multiplication with
a diagonal matrix, which does not a�ect the decouple �lter's performance. This
is also equivalent to multiplying either column by a constant.

We now begin developing a transformation for an arbitrary decouple �lter. For
simplicity the input values are normalized to the range 0− 100 before any cal-
culations. The reachable values after the decouple �lter depend on the gains of
the decouple matrix's elements. To visualize these values we start by represent-
ing the possible normalized input values as a square. Transforming this square
with the decouple �lter gains matrix we get a new quadrilateral which contains
all possible values after the decouple �lter, see �gure 2.14. The maximum and
minimum values for each output can be set to the smallest rectangle to envelope
the transformed quadrilateral.

Here we have to be careful since di�erent lengths of the rectangle's sides will
cause the outputs to be normalized by di�erent values, just like in example 2.4.1.
It is preferable to �nd input gains which make the range spans equal, see the-
orem 2.4.1. For most real systems it is possible to �nd such a transformation

27

−60 −40 −20 0 20 40 60 80 100 120 140

−100

−80

−60

−40

−20

0

20

40

60

80

100

Visualized input ranges

input1

in
p

u
t2

−→ −60 −40 −20 0 20 40 60 80 100 120 140

−100

−80

−60

−40

−20

0

20

40

60

80

100

Visualized transformed input ranges = output ranges

output1

o
u

tp
u

t2

Figure 2.14: Transformed input ranges

for the decouple �lter, but for the cases where it is not possible there are two
options. Either we can pretend that the big range is as big as the small range,
forcing a max/min reached state when it tries to go beyond that, or we could
expand the small range with unreachable values. These operations are not un-
equivocal, in the �rst case one has to decide which parts to forbid and in the
second case we need to choose what o�set to add on to the original small range.

Theorem 2.4.1. We want to �nd the input gains, x1 and x2, which make
the output ranges' spans match. There are a few cases depending on if some
elements in the decouple �lter are zero.

For a diagonal matrix it is always possible and the input gains are

|x1| = 1

|d11|

|x2| = 1
|d22|

For an upper triangular matrix it is possible if |d12| < |d22|, then the input gains
are

|x1| = 1−
∣∣∣∣

d12

d11d22

∣∣∣∣

|x2| = 1
|d22|

For a lower triangular matrix it is possible if |d21| < |d11|, then the input gains
are

|x1| = 1
|d11|

|x2| = 1−
∣∣∣∣

d21

d11d22

∣∣∣∣

28

For a full matrix it is possible if exactly one of the inequalities is valid in both
|d11| > |d21|

∨ |d12| > |d22| and |d11| < |d21|
∨ |d12| < |d22|. Then the relation

between the input gains is

|x1| = β|x2|
α

where α = |d11 − d21|, β = |d22 − d12|.

Proof. Start by applying input gains to the original decouple �lter

DΛ =
(

d11 d12

d21 d22

)(
x1 0
0 x2

)
=

(
d11x1 d12x2

d21x1 d22x2

)

Without loss of generality we say that we want both ranges to have span 1

|x1d11|+ |x2d12| = 1

|x1d12|+ |x2d22| = 1

We now have 3 cases

1. Diagonal matrix

2. Triangular matrix

3. Full matrix

For a diagonal matrix one element on each row is zero, we have

|x1d11| = 1

|x2d22| = 1

|x1| = 1

|d11|

|x2| = 1
|d22|

For a triangular matrix one element is zero, we have

|x1d11| + |x2d12| = 1

|x2d22| = 1

29

|x2| = 1
|d22|

|x1d11| < 1

|x2d12| =
∣∣∣∣
d12

d22

∣∣∣∣ < 1 ⇒ |d12| < |d22|

If the condition is satis�ed then

|x1| = 1−
∣∣∣∣

d12

d11d22

∣∣∣∣

If d12 would have been the element which is zero instead of d21 then symmetry
gives

|x1| = 1
|d11|

|x2| = 1−
∣∣∣∣

d21

d11d22

∣∣∣∣

Finally we have the case of a full matrix where none of the elements are zero.

|x1d11|+ |x2d12| = 1

|x1d12|+ |x2d22| = 1

|x1d11| < 1

|x2d12| < 1

|x1d21| < 1

|x2d22| < 1

|x1| < 1
max(|d11|, |d21|)

|x2| < 1
max(|d12|, |d22|)

|x1d11|+ |x2d12| = |x1||d11|+ |x2||d12| < 1
max(|d11|,|d21|) |d11|+ 1

max(|d12|,|d22|) |d12|

The last expression has to be at least one. This is guaranteed if |d11| >
|d21|

∨ |d12| > |d22|. In the same way we get |d11| < |d21|
∨ |d12| < |d22| for

the second equation. To satisfy both conditions exactly one inequality is valid
in each case and we can rewrite the original matrix as

30

(|d1| ± |α|)|x1| |d2||x2|

|d1||x1| (|d2| ± |β|)|x2|

where α > 0, β > 0 and the ±-signs are equal.

With equal ranges we get

(|d1| ± α)|x1|+ |d2||x2| = |d1||x1|+ (|d2| ± β)|x2|

(|d1| ± α)|x1|+ |d2||x2| − |d1||x1| − (|d2| ± β)|x2| = 0

|d1||x1| ± α|x1|+ |d2||x2| − |d1||x1| − |d2||x2| ∓ β|x2| = 0

±α|x1| ∓ β|x2| = 0

±α|x1| = ±β|x2|

α|x1| = β|x2|

|x1| = β|x2|
α

Thus it is always possible to �nd the values x1 and x2 when the condition is
satis�ed. If it is not, there are symmetric cases, consider |d11| ≥ |d12|

∧ |d21| ≥
|d22|. In the case of equalities the ranges are the same to start with so in that
speci�c case it is still possible. In any other case there is no solution since the
�rst row will always have a greater value in each column regardless of xi.

There also are a few disadvantages with input gains. The remaining coupling
will get ampli�ed with the same gain, see example 2.4.2. Also the inverse gain
indirectly is applied to the controller, making it more noise sensitive. The
example shows that even when it is possible to match the ranges' spans it is not
always reasonable to do so, i.e. never use the transformation with big gains.

Example 2.4.2. Start with

P =
(

11 1
1 1

)

and suppose that after decouple �lter design we get

D =
(

0.101 −0.102
−0.098 1.101

)

PD =
(

1.013 −0.021
0.003 0.999

)

To match the ranges' spans the gain 333 is applied to column one in D

31

D =
(

33.633 −0.102
−32.634 1.101

)

PD =
(

337.329 −0.021
0.999 0.999

)

Due to the range manipulation the second coupling is as big as it was without
any decouple �lter.

Conclusion

It has been shown that there is no good way to manipulate the decouple matrix
statically to avoid the range problem. The only possible transformation does
not work on all matrices and even when it works there are many cases where it is
not reasonable to apply it. Some other way of handling the ranges is required.
If one would decide to use this method anyway it should also be mentioned
that the calculated decouple �lter is only valid if the ranges remain unchanged.
If the ranges were to change, the decouple �lter would have to be altered to
rematch the output ranges' spans. This is rather easy since a modi�cation in an
input range is compensated by the same change in the corresponding column,
a modi�cation in an output range by modifying the corresponding row.

2.4.2 Dynamic PID Output Range

The approach in section 2.4.1 is based on the assumption that the ranges before
and after the decouple �lter are �xed. That approach was discarded meaning
that a way to calculate dynamic PID output ranges is needed, see �gure 2.13.
In this section a way to choose these ranges is derived to completely handle the
range problem.

From linear algebra it is well known that a transformation, T , is bijective i�
det(T) 6= 0. This means that there exists an inverse transformation, T−1. Here
the transformation matrix is the decouple �lter's static gain matrix, D, and
we can represent the PID output ranges' extremes with four points which are
unambiguously mapped to the output ranges' extremes. Taking the extreme
values of the transformed points gives the output ranges.

We would like to do this the other way around, i.e. starting with the output
ranges calculating the input ranges. This is not possible since both the points
and their transformations are unknown, only the extreme values for each output
range are known and this is not su�cient.

Hence the given output ranges' extremes are inverse transformed instead. Tak-
ing the minimum and maximum value in each direction gives the PID output
ranges. This normally means including PID output combinations which are
outside of the allowed output ranges, see �gure 2.15.

32

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

D-1

(m1,m2) (M1,m2)

(m1,M2) (M1,M2)

m1: Minimum for output range 1
M1: Maximum for output range 1
m2: Minimum for output range 2
M2: Maximum for output range 2

�����������
�����������
�����������
�����������
�����������
�����������

Allowed value

Forbidden value

(p1,p2) (P1,p2)

(p1,P2) (P1,P2)

p1: PID 1 minimum output
P1: PID 1 maximum output
p2: PID 2 minimum output
P2: PID 2 maximum output

Figure 2.15: Inverse transformed output ranges and valid PID outputs.

Example 2.4.3. Consider the decouple gain matrix

D =
(

2 1
1 1

)

D−1 =
(

1 −1
−1 2

)

The output ranges are -50 - 100 and 20 - 150. The four extreme points are
gathered in a 2x4-matrix,

E =
(−50 −50 100 100

20 150 20 150

)

Then E is inverse transformed

P = D−1E =
(−70 −200 80 −50

90 350 −60 200

)

Taking maximum and minimum values for each row gives the PID output ranges,
[p1, P1] and [p2, P2]

33

p1

P1

p2

P2

 =

−200
80
−60
350

The only valid output value combinations are the ones inside the quadrilateral
with vertices de�ned by the columns in P , see �gure 2.16

−200 −150 −100 −50 0 50

−50

0

50

100

150

200

250

300

350

Figure 2.16: Inverse transformed output ranges.

One way to handle a forbidden PID output combination is to look at the output
values. If any of them has reached its limit, one uses the signs in the decouple �l-
ter gain matrix to determine if this corresponds to a minimum or a maximum for
each PID. Then one can send this information to the PIDs to inhibit them from
increasing/decreasing further. If an output reached a maximum and is related
to the PID through a positive gain then the PID has also reached a maximum.
If the gain would have been negative the PID had reached a minimum and so
on, see example 2.4.4. If the gain is zero, the PID state is una�ected.
Example 2.4.4. Consider the decouple gain matrix,

D =
(

2 1
1 3

)

It has an inverse transformed range which can been seen in �gure 2.17.

a) The out values have not reached any limits which corresponds to the PID
outputs being inside the allowed region. They are both free to either increase or
decrease their control signals.

34

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

�
�
���������
�
�
�

�
�
�
�����

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����
�
�

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

a b

c d

Figure 2.17: The current value (cross) and the allowed directions for the PIDs
(arrows). When the border is reached the value is inhibited to go outside of the
allowed region. In (d) the control signals get stuck since there is no allowed
direction for either PID.

b) and c) One of the out values have reached a limit which corresponds to the
PID outputs being on the border of the allowed region. The control signals are
then inhibited to go out of the region.

d) Two output limits are reached at the same time which corresponds to the PID
outputs being in one of the inverse transformed corners. In this case a corner
which inhibits both increment and decrement of both control signals, the PIDs
are stuck forever in this corner unless this is handled in some way.

In example 2.4.4 we see that limiting the PIDs in this way may lead to getting
stuck in a corner. Simply by checking if both PIDs are inhibited to both increase
and decrease tells if the signals are stuck. This however can only occur if two
output limits are reached simultaneously, which means that the output signal
cannot go any further out of the PID output region. The only way that the PIDs
can move the output signals is then towards the allowed area so all inhibits may
be removed. This has the great advantage that we do not have to check which
corner has been transformed to which corner in order to keep track on how to
inhibit the PIDs to go further out of the region.

Example 2.4.5. The current value is located in the point D, see �gure 2.18,
which corresponds to the dangerous corner D'.

Here a fundamental property of linear transformations is used, i.e. straight lines
are transformed at straight lines, intersections are transformed at intersections
and inner points are transformed at inner points.

By removing all inhibits it is possible for the PIDs to move into either of the
regions denoted a', b' or c'. In the right �gure it is seen that these regions are

35

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
���

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

D-1

a'

A

B C

D

B'

C'

A'

D'F'

E'

D

a

A

B C

D

b'

c'
a

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

G'

H'

F

G

H

E

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

b

c

Figure 2.18: The current value has ended up in D, which corresponds to a dan-
gerous corner. The given output ranges (left) are inverse transformed (middle)
and then transformed back (right) to show which areas are possible to go to if
all inhibits are removed.

transformed at regions along the sides of the original range which always is the
case for regions with dangerous corners. Going into either of these regions would
mean leaving the dangerous point. What happens the next sample depends on
which region the control signals move into. If they move into region a, there are
no inhibits on the PIDs. If they move to either region b or c the PIDs will be
inhibited as usual by that single border.

Tests have shown that the dangerous corners not only exists theoretically but
are possible to reach for real systems. Mostly you end up in a dangerous corner
when setting unreasonable combinations of setpoints. With the addition to
release the inhibits it is always possible to leave a dangerous corner.

Conclusions

There exists an easy way to determine the dynamic output ranges for the PIDs
by calculating the inverse transformation of the decouple �lter's output ranges'
extremes. Also inhibiting the PIDs' output values from going outside the trans-
formed region is solved by simply looking at the decouple �lter's gain matrix
with an additional �x for dangerous corners.

This method is not restricted to the TITO case and is applicable for any number
of inputs and outputs as long as the determinant of the decouple �lter's gain
matrix is not equal to 0.

Note that simply releasing all the inhibits may cause wind-up problems in the
dangerous corners. This can only happen if the backward range sent by the
decouple �lter is not accepted by the previous Control Modules, i.e. the PIDs.

36

Then the assumption that the previous Control Module cannot go any further
out of the allowed region might not be valid. In this implementation the PIDs
are internally set to always accept the backward range automatically so for this
implementation it is a simple yet good �x.

2.5 Noise Estimate

A good initial estimate of the noise is important since a poor estimate may stall
the identi�cation. Additive white noise is assumed. A real-time algorithm is
preferable to avoid peak utilization. The algorithm must be reliable and robust
so that it works in any possible case.

In the available relay identi�cation algorithm a noise estimate is done to be able
to decide the hysteresis for the relay identi�cation. The implementation takes
the minimum and maximum process value during some scan and uses the span
as noise estimate, see appendix B.2.

The method has been analyzed with the conclusion that the con�dence interval
for the estimate increases with longer measurement, see �gure 2.19. Also, the
estimate varies with the number of scan used to measure it, which is unsuitable.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25
Current NoiseEstimate methods span mean in an 80% confidence interval

Measure scans

N
oi

se
 E

st
im

at
e

Figure 2.19: Noise estimate method in the relay identi�cation algorithm as a
function of measurement scans with an 80% con�dence interval.

A method with overall smaller con�dence intervals and speci�cally smaller con-
�dence interval with longer measurements is required. An ordinary variance
estimate, see equation (2.21), has all these properties, see �gure 2.20. How-
ever it cannot be implemented as a real-time algorithm since the mean value is

37

unknown during the measurement.

σ2
est =

1
n− 1

n∑

i=1

(xi − x̄)2 (2.21)

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3
Ordinary variance calculation with 80% and 99% confidence intervals

Measure scans

V
ar

ia
nc

e

Figure 2.20: Common estimation of standard deviation as a function of mea-
surement scans with an 80% and an 99% con�dence interval.

Since the noise estimation is the �rst phase of the entire identi�cation the de-
couple �lter has just been set to through mode. Without a proper way to make
sure that the process values do not vary transiently because of this, or since the
operator may start the identi�cation when the process values are changing, the
process values cannot be assumed to be steady.

A typical measurement with a process value movement dominating the noise can
be seen in �gure 2.21. To obtain good noise estimates a moving process value
must not a�ect the estimate. To completely distinguish the process movement
from the noise is impossible but some algorithms do it better than others.

One way to limit the in�uence is to check the di�erence between the initial and
the end value, or mean values for these. If it is large compared to the estimated
noise level, the estimate is probably poor. With a real-time method this can be
tested at each scan, which means that the algorithm can be restarted as soon
as the condition fails, decreasing unnecessary measurement time.

For non real-time approaches all measurement points are saved and the variance
calculation is done when the measurement is completed. Since more information
is available this can potentially give better estimates. A disadvantage is that
the algorithm will have a peak utilization when the measurement completes.

38

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.21: Typical process value variations.

For systems with very small noise levels, or during simulation without any noise,
the process values will have to be practically absolutely steady. For small noise
levels this takes a very long time so there should be a speci�ed minimum noise
level.

2.5.1 Real-time

For all real-time algorithms the estimation is restarted as long as at least one
process value is not steady enough. Equation (2.22) describes the steady con-
dition. The closer to equality, the worse the estimate is.

|x̄final − x̄0| ≤ kσest (2.22)

Simulations have been done in MATLAB to determine how much the estimate is
a�ected because of moving process values for each algorithm. A mean movement
will increase the estimate which in turn will allow larger mean movements and
so on. Thus one has to be careful when deciding the constant k not to get an
algorithm which accepts just any estimate.

2.5.2 Real-time - Static Mean

The static mean algorithm uses the initial value as the mean value during the
entire estimate, in �gure 2.21 that would be 0.

Suppose that the noise can be neglected due to a large process value movement.
Then σest will be about the same size as the mean movement. Choosing k larger
than 1 will mean that this estimate will be accepted even if it has nothing to

39

do with the noise level. With k less than 1 however, a moving mean alone will
not be enough to accept the estimate.

Now suppose that the process value is completely steady and that only pure
noise is measured. Then choosing k too small will cause problems since a valid
estimate may be rejected. For example, having a good estimate of the �rst
point, only using the last point as end mean and having k = 0.5 will only accept
38% of the estimates. With k = 1 only 68% of the valid measurements will
be accepted. How small k may be depends on how many points are used to
estimate the means but if the end mean is calculated during the end of the
measurement, many points should not be used since that will give an old mean
which can also cause problems.

Simulations show that k = 0.5, using the 4 last points of the measurement
is an appropriate combination. With these parameters only 16% of the valid
estimates are rejected and 4% of the estimates are accepted when the mean is
moving twice the noise level, the worst accepted σest was 2.5σ.

2.5.3 Real-time - Variable Mean

The real-time method in section 2.5.2 uses a constant mean during the estima-
tion. Another approach is to use a variable mean. Two such methods have been
analyzed, namely moving average and forgetting factor.

2.5.4 Real-time - Forgetting Factor

The forgetting factor method weights the measured values so that older values
a�ect the current mean less than newer values, see equation (2.23).

x̄i = λx̄i−1 + (1− λ)xi (2.23)

How good the estimate is with this method depends heavily on the forgetting
factor, the larger the less noisy x̄i is but the longer it takes for new values to
dominate over old ones, see �gure 2.22. This is similar to the moving average
method when having n big, see section 2.5.5. The estimate error for a moving
mean depends on the forgetting factor as seen in �gure 2.23.

When calculating the variance it is important to use (xi − x̄i−1) and not
(xi − x̄i) since xi and x̄i are correlated. This method was not analyzed further
since the moving average method was found to work very well.

2.5.5 Real-time - Moving Average

The moving average method uses the arithmetic mean of a �xed number, n, of
the last measured values as the current mean. The variance estimate is then

40

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.22: Actual mean (solid line) and various moving means using forgetting
factor (dashed lines). Starting closest to the solid line the forgetting factors are
0.5, 0.7, 0.9 0.95 0.99 and 0.999.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2.23: Erroneously added variance as a function of the forgetting factor,
with a process value moving as in �gure 2.22.

41

σ2
est =

1
n− 1

n∑

k=1

(x(k)− x̄(k))2 (2.24)

where

x̄(k) =

x(k−1)+x(k−2)+···+x(k−i)
i , k = i < n

x(k−1)+x(k−2)+···+x(k−n)
n , k ≥ n

The moving average method also requires a normalization since many measure-
ment points are added, with that their variance. Due to this the estimate will
also have to be normalized, see equation (2.25).

σest = E((ei − 1
n

n∑

k=1

ei−k)2) =

E(e2
i −

2
n

n∑

k=1

(ei−k)ei +
1
n2

n∑

k=1

(ei−k)2) =

E(e2
i)−

2
n

E(
n∑

k=1

ei−kei) +
1
n2

E(
n∑

k=1

(ei−k)2) =

σ2 +
σ2

n
=

n + 1
n

σ2

σnorm = σest

√
n

n + 1
(2.25)

Having n small will make the moving average noisy, which is not necessarily bad,
while having n larger means that the actual mean is followed slower, decreasing
the quality of the estimate, see �gure 2.24

A disadvantage with this method is that it requires bu�ering of the measurement
points and an average calculation for each scan. The larger n is, the more
utilization is required and the worse the estimate is since the mean is followed
slowly. From this we draw the conclusion that there are actually no advantages
with having n larger, so let us choose it as small as possible, i.e. n = 1. Then
the normalization factor is 1√

2
and the mean value used each scan is simply the

last measured value. This is the method used in the actual implementation.

The speci�c case n = 1 has been analyzed further to see how much the estimate
is a�ected by moving process values. Comparing this to the static mean in
section 2.5.2, it is the previous value which is used as current mean instead
of the beginning value. It seems reasonable that the process value would be

42

2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 2.24: Erroneously added variance as a function of n.

20 40 60 80 100
−1

0

1

2

3

Scans, line slope = 0

V
ar

ia
nc

e

20 40 60 80 100
−1

0

1

2

3

Scans, line slope = 10

V
ar

ia
nc

e

20 40 60 80 100
−1

0

1

2

3

Scans, line slope = 40

V
ar

ia
nc

e

20 40 60 80 100
−1

0

1

2

3

Scans, line slope = 100

V
ar

ia
nc

e

Figure 2.25: Noise estimates with 99% con�dence intervals for various measure-
ment scans and line slopes. X marks the worst case for the current implemen-
tation.

43

allowed to move up to the maximum for the static mean method, but once each
measurement scan instead, i.e. m times k = 1 ⇒ k = m.

With k < m a moving mean alone will not be accepted. How much error
there is in the estimate for various slopes has been simulated, see �gure 2.25.
A decent estimate is obtained even when having m close to k, but keeping it
smaller will give better estimates. I have chosen to use 80 measurement scans
and k = 10 in the implementation. This would correspond to k = 0.125 in the
static mean case which means a risk of approximately 4% that a poor estimate
is accepted in the case when the process value movement is of the same order
as the noise level. Here the mean of the accepted estimates was σ̄est = 1.35σ
and the worst accepted in 100 000 simulations was σest = 1.7σ and. For process
value movements of more than twice the noise level the risk can be neglected,
not a single estimate was accepted in 100 000 simulations. Also the acceptable
span is increased 10 times which practically nulli�es the risk of rejecting good
estimates.

2.5.6 Non Real-Time

With a non real-time approach it is possible to �t curves to the measurement
data using regression methods to get better estimates. In the typical case a
process value moves toward a steady value exponentially, see �gure 2.26.

0 50 100 150
0

0.5

1

1.5

0.05
0 50 100 150

0

0.2

0.4

0.6

0.8

1

0.5

0 50 100 150
0

0.2

0.4

0.6

0.8

1
0 50 100 150

0

0.1

0.2

0.3

0.4

0.5

2

Figure 2.26: Linear �ts for typical measurements.

How good the �ts are depends on the quotient between the �lter time and the
sample time. It also depends on the number of measurement points, how much

44

a process value is moving and the order of the �tted polynomial. With linear
regression, see �gure 2.27, it is concluded that at least 40 measurement points
should be used, preferably 80. Using more than 80 points will not improve the
estimate considerably.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10

20

40
80

160

FilterTime expressed in parts of measurment scans

C
on

tr
ib

ut
io

n
to

 s
ta

nd
ar

d
de

vi
at

io
n

Figure 2.27: Extra standard deviations added as a function of measurement
scans and of the quotient between �lter time and sample time.

How much error is introduced due to moving process values increases linearly
with how much a process value moves. Using 80 measurement points the worst
case is about 15% of how much the process value moves. For 40 and 80 scan the
peak is at 3.2 and 8 scan respectively. With a well chosen sample frequency, i.e.
2 − 20 times the process's speed, both are probable. Better estimates can be
obtained by limiting the process value movement, like for the real-time methods.

A way to further decrease the estimation error is to �t a polynomial of higher
order using multiple linear regression. It would be better to �t an exponential
curve, or even better an exponential curve with an initial dead time. Then all
cases for �rst-order systems with dead times are handled well. Since all these
cases would increase the computation time considerably, this kind of �tting has
not been analyzed. See table 2.1 and �gure 2.28 for polynomial �ts and their
respective errors added depending on the polynomial order.

45

Order Error
0 0.1910
1 0.1377
2 0.0814
3 0.0403
4 0.0170
5 0.0063
6 0.0020
7 0.0006

Table 2.1: Maximum estimation error per unit process value movement due to
�t error for various polynomial orders. The time constant for the movement is
10 and the number of measurement scans = 100.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Fit order 0
0 20 40 60 80 100

0

0.5

1

1.5

Fit order 1

0 20 40 60 80 100
0

0.5

1

1.5

Fit order 2
0 20 40 60 80 100

0

0.5

1

1.5

Fit order 3

0 20 40 60 80 100
0

0.5

1

1.5

Fit order 4
0 20 40 60 80 100

0

0.5

1

1.5

Fit order 5

Figure 2.28: Fit plots for various polynomial orders. Filter time = 10% of
measurement scans = 100.

46

Chapter 3

Implementation

3.1 General Strategy

In the process industry processes are often modelled as FOWDT transfer func-
tion. Since the process is not known a priori a suitable method of system
identi�cation has to be used. During the identi�cation the decouple �lter and
the controllers must be passive, i.e. the decouple �lter is the identity matrix
and the controllers are tracking the identi�cation outputs.

With a model of the system, a decouple �lter can be designed. The �nal part
is designing the controllers, which could prove di�cult since the current tuning
algorithms assume simple processes. The decoupled systems are usually very
complex so the extensive search approach in [1] will be used.

1. System Identi�cation

2. Design Decouple Filter

3. Controller Design

During development the aim will be to reuse as much of the existing Control
Modules and Function Blocks as possible. Reusing existing code has many
advantages. Less time will be required during development, the code will be
easier to maintain and also the reused parts are more well tested than new ones.
However, one has to be careful only to reuse code which actually does what you
want it to, and nothing else.

A bottom-up approach for software development will be used, designing smaller
parts, putting them together to build up more complex systems. This way
the separate parts are easier to test and it is easy to change one part without
a�ecting others.

47

Note that in this chapter input refers to the decouple �lter's inputs, i.e. the
process values, and output refers to the decouple �lter's outputs, i.e. the control
signals.

3.2 Control Builder

3.2.1 Introduction

The Decouple Filter will be developed in the engineering tool called Control
Builder, or CB for short. It is developed by ABB and follows the IEC
61131-3 standard. There are �ve programming languages de�ned by
61131-3 but only Structured Text will be used since it is the most powerful
of the languages, and also the only one to resemble ordinary programming lan-
guages.

Figure 3.1: Screenshot of a Control Builder working space.

Targets for the CB applications are controllers, either hardware or software. For
development the software controller is the most suitable since it is easier to set
up and does not require more than a common desktop computer. Also the clock
frequency and the amount of available memory is higher on a desktop than on
a hardware controller, which means better performance. For all critical systems
and most other real systems a hardware controller is preferable since it is much
more reliable. Other advantages are that it has lower power consumption, it
is easily replaced if it breaks, it takes less space and it can be placed almost
anywhere, reducing the wiring costs.

48

Developing applications in the CB environment is somewhat di�erent from or-
dinary software development. A great advantage is that the application can be
altered while it is running, keeping all the current variable values.

Another advantage is that the execution order is determined automatically by
sorting the code topologically, see �gure 3.2. There are certain common cases
where some variables cannot be topologically sorted and then one can tell the
compiler not to sort these variables. This means that one has to consider the
execution order when programming the parts containing these variables.

C

B

A
Read x
Write y

Read x
Write z

Read y
Read z
Write a

Code blocks

D
Read w
Write x

Topologically sorted

A

C

BDw x

x

x

y

z

y

z
a

Figure 3.2: A and C require the output from D, thus D will be executed �rst. B
requires output from both A and C, thus B will be executed last. The internal
execution order between A and C does not matter so any order is possible.

A disadvantage is that ordinary functions have to be pre-de�ned in the con-
troller's �rmware so one cannot simply write small, simple functions to obtain
clean and tidy code without writing altering the controller's �rmware.

3.2.2 Structured Data Types

For variables with data that belong together, Structured Data Types can be
de�ned. They simply are collections of variables of various Data Types and/or
Structured Data Types. For instance the Data Type Complex would suitably
contain the variables Re and Im, both of the Data Type real.

3.2.3 Function Blocks

Function Blocks are much like ordinary functions except that they do not return
any values, which means they cannot be used in expressions. Results from
a Function Block are received only through the Function Block's parameters.
What makes them more powerful than ordinary functions is that they can have
static variables which are separate for each instance of the Function Block. This
makes them very useful when splitting up the code. One can place anything from
smaller functionalities to complex sequential algorithms in a Function Block.

49

3.2.4 Control Modules

Control Modules may contain several code blocks, Function Blocks and even
other Control Modules and they have their own graphical interface, see �g-
ure 3.3. They may be interconnected with other Control Modules, preferably
graphically with the Structured Data Type Control Connection to form the
complete control system. To denote that a Control Module uses Control Con-
nections, by convention CC is appended to its name.

Figure 3.3: Screenshot of the developed Decouple Filter's GUI.

A Control Connection contains information like values, ranges and signal status.
The Control Connection is split up into two separate parts, namely Forward
and Backward. The Forward part contains information that is sent to the
following Control Module and the Backward part contains information sent to
the previous Control Module.

A Control Module which is connected to other Control Modules with Control
Connections should also be split up into at least two code blocks, usually named
Forward and Backward. Here the Forward block handles the Forward part of
the Control Connection and the Backward block handles the Backward part of
the Control Connection.

If properly written, all Forward blocks will be sorted to execute before all Back-
ward blocks, making it possible to send information from any Control Module
to any other Control Module within the same scan, assuming of course that
they are connected and that the speci�c information is included in the Control
Connection, see �gure 3.4.

50

F

B

CM1

F

B

CM2

F

B

CM3

F

B

CM4

CC

IO1 IO2

Figure 3.4: Control Module execution order.

This means that it is possible to know what happens any number of Control
Modules ahead in the same scan as they happen, compared to the common case
where information is only propagated one module backward each sample. For
instance it is possible to avoid windup in the same scan as the IO reaches its
limit, and it is possible to start controlling again in the same scan as the IO
leaves the limit. Also this makes programming easier as one does not have to
worry about how long time it will take for the information to reach a speci�c
module, and one can write more independent code of lower complexity.

Of course not all information that is needed for any desired interaction with
a Control Module is included in the Control Connection. Usually a Control
Module also has its own speci�c interaction parameters, usually bundled in a
Structured Data Type, which can be accessed by other Control Modules.

3.2.5 Logging

When running a Control Builder application on a controller there are a few ways
to debug the application. In the GUI one can either view the current values or
a history graph. One can also use the Online Editor, see �gure 3.5.

The Online Editor shows the running code with all the �nal variable values for
the current scan shown together with the variables. Most times this is su�cient
but the refresh rate in the GUI and in the Online Editor is about once a second,
so faster events are impossible to debug without adding latch variables to the
code. Also, if deeper analysis or a higher quality plot is required, one needs
to extract the raw data for each scan. Unfortunately there is no built-in log
functionality so one has to resort to other means of extracting the data.

To read the current values from the controller one can connect to it with an
OPC server. The server works as a bridge between OPC client applications
and the controller. With the right client one can both read, view and log any
speci�c data from the controller at pretty high refresh rates. It is not uncommon
though that some value are missed either by the server or by the client so it
is appropriate to store each variable set together with a time stamp. In this
master's thesis the application OPC Data Logger from www.opclogger.com has
been used.

51

Figure 3.5: Control Builder Online Editor

52

3.3 System Identi�cation - First Approach

The process will be modelled by a 2x2-matrix with FOWDT transfer functions
as elements. A FOWDT is often su�cient in the process industry and the
identi�cation algorithm for SISO systems of this kind is both available and well-
tried. However, implementing an identi�cation algorithm for a TITO system is
not as simple as running one SISO identi�cation for each element.

The standard PID uses a relay identi�cation which is su�cient to tune a SISO
controller, but the information obtained from the relay identi�cation is not
su�cient to design the decouple �lter. The available step response identi�cation
gives a FOWDTmodel and requires the results from a relay identi�cation. Using
the available algorithms means that for all four elements, both a relay and a
step identi�cation have to be run.

The relative gain between a coupling element and its corresponding diagonal
element has to be known before starting the identi�cation of the coupling ele-
ment. It needs to be used to determine the maximum amplitudes for both the
relay and the step identi�cation algorithm, otherwise the diagonal process value
will typically go far beyond its speci�ed limits. No coupling at all can also cause
problems, since then there is nothing to identify. The SISO identi�cation also
assumes that the process value is steady when it starts, but does not leave it
steady as it completes. This means trouble when we run several consecutive
identi�cations. Extra supervision will be needed to be able to handle all this.

3.3.1 Identi�cation Parts

To integrate the available algorithms the system identi�cation is split up into
steps. The �rst three steps are supervision preparations and the last four steps
each identify one transfer function. As mentioned in the introduction, the rel-
ative gain between the diagonals their corresponding couplings must be known
before running an identi�cation on the coupling element. With the watcher
approach, see section 3.3.6, this means that the diagonal elements must be
identi�ed before their corresponding coupling element.

The identi�cation steps are

1. Estimate noise

2. Estimate static gains (optional)

3. Decide which output shall control which input (optional)

4. Identify �rst diagonal element

5. Identify �rst coupling element (if possible)

6. Identify second diagonal element

7. Identify second coupling element (if possible)

53

The identi�cation steps are in turn split up into phases

1. Stabilize inputs

2. Relay identi�cation

3. Design temporary controller from relay identi�cation

4. Step identi�cation with temporary controller

3.3.2 Identi�cation Supervision

The supervision algorithm is put into a separate Function Block. It tells the
other algorithms what to do, and collects and manages their results. The al-
gorithm also decides which values to consider during an identi�cation, such as
input, output and maximum amplitude. This reduces the complexity of the
algorithm and also the number of required Function Block instances since only
one set of identi�cation algorithms is needed. Otherwise one set for each transfer
function would be required.

3.3.3 The Steady Test

0 2 4 6 8 10
−4

−2

0

2

4

6

8

Time [s]

P
v

Pv, Ts = 1.0s
Condition Upper Limit
Condition Lower Limit
Pv, Ts = 0.1s

Figure 3.6: With a proper sample rate the condition fails at the 8th point. With
a 10 times higher sample rate the condition is successful and wouldn't have failed
until at the 38th point.

In many parts of the identi�cation algorithm one has to await steady process
values, for example in the stabilization phase before a relay identi�cation, see

54

section 3.3.7, and in the initial estimate of static gains, see section 3.3.5. To
determine whether the process values are steady the noise estimates are used.
The steady condition is that a process value lies within 3 standard deviations
10 scan in a row.

For a steady process value there is a 99.7% chance that it lies within the 3
standard deviations. For 10 consecutive scans the chance is 0.99710 ≈ 97.0%
and since there are two process values the total chance is (0.99710)2 ≈ 94.2%.
The risk that this happens by chance when the process values are not steady is
negligible. Of course the process values will not have to be absolutely steady
but the steady condition will only be satis�ed when they are both moving very
slowly compared to the noise level.

Here the condition has a weakness. If the sample frequency is chosen poorly and
set too high by the operator, the process will still be moving at the same speed
in the time domain but a lot slower in the sample domain, causing a larger
movement to be accepted by the condition, see �gure 3.6. Having a sample
frequency of more than 100 times the process's bandwidth will cause problems
in the application that uses the steady test algorithm.

Within 3 standard deviations could use some clari�cation. What is meant is the
deviation from the initial point, not from the previous point, see �gure 3.7. By
using the previous point one would allow larger movement of the process value.
For the test to fail, a process value would then have to move more than one to
two standard deviations each scan, compared to one or two standard deviations
in 10 scans.

0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

Time [s]

P
v

Pv
Previous Point Lower Limit
Previous Point Upper Limit
Initial Point Upper Limit
Initial Point Lower Limit

Figure 3.7: With the correct interval used (dashed) the test would fail at the
8th point. With the previous point used (triangles) the test would incorrectly be
successful.

For most uses the Steady Test is a required but often not a su�cient condition.
This will be discussed in detail where it is used.

55

3.3.4 Quantization

For process values with quantized levels, i.e. for all real processes, the steady
condition has a �aw. If the process is steady when estimating the noise level
the value will jump one quantization level up or down every now and then.
The noise level will then completely be determined by how many jumps it does
during the estimation. If the estimated noise level is less than a third of the
distance between the quantization levels, every jump between two quantization
levels will consider the process value non steady which may stall the steady test.

To handle this, the last initial process value can be saved, and as long as the
process value jumps between the current and the previous initial process value
it is still considered steady. In �gure 3.8 the steady test has been run on a
real process. The estimated noise level from the noise estimate algorithm was
0.010 and the step between two quantization levels was 0.032. To �t all values
in the same �gure the process value has been ampli�ed with a factor of 6 and
the counter with a factor of 0.1. Some consecutive values are missing in the log
before t = 50, otherwise no signi�cant measurement point was missed.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time [s]

Pv
Steady, 0 = false, 1 = true
SteadyCounter

Figure 3.8: The Steady Condition with added quantization level support run on
a real process. The process value moves between 4 quantization levels and as
long as it varies between the two latest initial values the SteadyCounter keeps
increasing, otherwise it is reset to 0. The Steady Conditions is satis�ed when
the SteadyCounter is ≥ 10.

3.3.5 Initial Estimate of Static Gains

As mentioned in the introduction the relative gains between the main and the
coupling elements are required. They can be obtained by running two consec-

56

utive control signal steps, one on each output. After each control signal step,
steady process values are awaited.

Here the steady condition is a necessary but not a su�cient condition. With
dead times in the system, the process values may be steady simply because they
have not started moving yet. To make sure that this is not the case another
condition is added to test if any of the process values has moved from the initial
value. A way to do this is to check if it has remained within a certain amount
of standard deviations. Taking in account that the process values may still be
moving slowly after the noise estimate step, 5 standard deviations should be
enough. 4.26 standard deviations include all but 1 out of 105 values, meaning
that if the dead time is 100 scans it still would trigger incorrectly only once in
1000 times. Checking the condition two scans in a row, the risk of incorrect
triggering is negligible.

With the static gain estimates it is possible to handle incorrectly connected
systems, i.e. systems which do not have larger gains in the diagonal. Calculating
the RGA, Relative Gain Array [4], for the estimate will tell if the system is
properly connected. If not, the input channels can be swapped internally to
compensate for this. It is also possible to detect and compensate for negative
gains.

Since the steady test condition is sensitive to oversampling, the initial estimate
of static gains will only be an optional feature.

3.3.6 The Watcher

Since the initial estimate of static gains, see section 3.3.5, is not yet fully reliable
a supervisional watcher for the other input is used instead. The watcher is active
when identifying a diagonal element and estimates the gain by checking how
much the coupling process value and the output signal have changed respectively
during the setpoint step. If the coupling is relatively small or if there is no
coupling at all the coupling identi�cation is skipped and the element's gain is
set to zero.

3.3.7 Stabilization

The stabilization phase is needed since the relay identi�cation algorithm requires
the process values to be steady when it is started. For all except the �rst
identi�cation a previous identi�cation has just been run and the process values
are typically not steady without having a phase between that stabilizes them.
The stabilization algorithm uses the steady test, see section 3.3.3, which here is a
necessary but not a su�cient condition due to possible dead times and sensitivity
to oversampling. An additional condition is used, requiring the process values
to be su�ciently close to their respective setpoints.

Thus it can be determined if the process values are steady at the setpoints

57

or if they are incorrectly considered steady somewhere else. Since it is more
important for the relay identi�cation that the process values are steady than
that they are really close to the setpoints one could allow a pretty wide range
around the setpoints to decrease the stabilization time.

The stabilization phase uses the temporary controllers designed by using the
results of the relay identi�cations. When identifying the �rst diagonal element
there are no results available so the controllers entered by the operator are
used. This also applies when identifying the �rst coupling element and the
second diagonal element but then only for the second controller.

With a too high sample frequency the process will be considered steady as soon
as the setpoint is approached, which may be a problem if the system is close
to instability due to poor choice of controller parameters by the operator. In
a robustness perspective this is not acceptable, thus it is important to improve
the steady test, to avoid using the controllers de�ned by the operator.

3.3.8 Maximum Amplitudes for Coupling Identi�cation

The relative gain between the diagonal and the coupling element is needed
before starting the coupling identi�cation to be able to set a proper maximum
amplitude during both the relay and the step identi�cation of the coupling. A
small setpoint step on the couple input will mean a larger step on diagonal
input.

Example 3.3.1. Say that the relative gain is 1
10 and that the operator has

limited the diagonal element's step amplitude to 10. Then the setpoint step
during the coupling identi�cation must not be larger than 10 ∗ 1

10 = 1.

If the calculated step amplitude is not considerably larger than the noise level
then the coupling element is set to have a zero gain and the identi�cation of the
coupling is skipped.

3.3.9 Relay Identi�cation

In the available PID Control Modules the �rst and usually only identi�cation is a
relay identi�cation. The relay identi�cation requires a noise estimate and in the
current implementation it cannot be entered through the parameter list and has
to be run internally. As always a noise estimation is sensitive to moving process
values and this is not handled properly by the current implementation. This can
be defended since the implementation is developed for SISO systems and then
this is no big deal. If the process value was not steady and the identi�cation
stalls, the identi�cation can simply be aborted and restarted again when the
process value has stabilized.

When implementing an automatic TITO identi�cation algorithm this causes
big problems since another part of the identi�cation just has been completed

58

and the process values are most likely not steady. This is solved by having a
stabilization phase, see section 3.3.7, before the relay identi�cation phase.

When the relay identi�cation is completed, a controller to be used during the
rest of the identi�cation is designed based on the results from the identi�cation.
This is done because the results from the step identi�cation, see section 3.3.10,
depend on the controller performance. Also the stabilization time between the
steps is reduced by using a more suitable controller.

3.3.10 Step Identi�cation

The available step identi�cation algorithm starts by choosing a setpoint and
then it waits for the controller to stabilize the process value to that setpoint.
Then a step is made on the setpoint and the controller controls the signal to the
new setpoint. Using the information from these two steps the algorithm makes
a control signal step without any controller active and it is during this step
that a FOWDT model is estimated. The step identi�cation algorithm requires
an already working controller which is designed with the results from a relay
identi�cation, see section 3.3.9.

3.4 System Identi�cation - Second Approach

The supervision algorithm in section 3.3.2 become pretty complex, just to be
able to use the existing identi�cation algorithms. Also the identi�cation took a
very long time. An attempt to decrease the complexity and identi�cation time
was made by extending the initial gain estimate algorithm in section 3.3.5.

It still has the same weakness as the initial gain estimate, i.e. sensitivity to
oversampling, with no means to determine whether or not the system actually
is oversampled. It can however be detected after a completed identi�cation
by comparing the sample frequency and the estimated time constant, but this
requires that the system is not too oversampled to get a reasonable estimate.
Two identi�cations run on a real process with di�erent grades of oversampling
can be seen in �gure 3.9 and 3.10.

In �gure 3.9 the system is oversampled by at least a factor of 2 and in that case
the estimate is still OK. In �gure 3.10 the system is oversampled by at least a
factor of 8 and it can be seen in the �gure that the estimate has lost accuracy.
In both cases it is possible to detect that the system is oversampled.

The algorithm does two steps on each one of the out values. First, steady process
values are awaited using the steady test. Then the �rst step occurs and the gain
and dead time is estimated. The step is considered complete when both process
values are considered steady, by the steady test.

To know for how long to wait at most a maximum dead time has to be speci�ed.
If the process value does not move during this time, a gain of zero is assumed.

59

0 200 400 600 800 1000 1200
5

10

15

20

25

30

Figure 3.9: The identi�cation algorithm run with a little too high sample fre-
quency. The �rst step is considered complete a little too early but does not a�ect
the estimates considerably.

0 50 100 150 200 250 300 350 400
5

10

15

20

25

30

Figure 3.10: The identi�cation algorithm run with far too high sample frequency.
The �rst step is considered complete way too early, leading to bad estimates.

60

Then the second step is applied and the time constant for the system is estimated
by measuring how long it takes between passing two given levels, the �rst at
5% and the second one at 65% of the estimated gain. The step is considered
complete when both process values have passed the second limit.

The results from identi�cation of simulated FOWDT processes have all been
very good. The results from identi�cation of the quadruple tank were close
to the values estimated values by PidAdvancedCC, so aside the sensitivity to
oversampling and perhaps worse accuracy for approximating processes of higher
orders, the identi�cation algorithm has no obvious �aws.

For systems with properties that have time constants of di�erent orders, an
identi�cation algorithm sensitive to oversampling will never be able to get a
good estimate of the slower system. The sampling rate has to be higher than
the fast system which will be too fast for the slow system.

3.5 A First Approach

An initial attempt was to use two instances of the existing PidAdvancedCC
Controller, which already has all the required identi�cation algorithms imple-
mented. The existing decouple �lter would be extended to remotely manage
the system identi�cation in the PidAdvancedCCs and extract the identi�cation
results. Based on the results the decouple �lter and the PIDs would be tuned.

Unfortunately the possibilities of remote interaction with the PIDs was too
limited, there was no way to access the identi�cation results or even see if the
identi�cation was completed. Thus this approach had to be discarded.

3.6 A Second Approach

PID

PID

Decouple Unit

Identification Tuning Swap

Figure 3.11: Overview of the second implementation approach.

61

Instead of trying to interact with existing Control Modules, this approach em-
beds the Function Blocks containing the PID, identi�cation and tuning algo-
rithms. All information and results are then available to all the other parts.
The existing decouple �lter was used as a base, see �gure 3.11.

Note that with this approach the parts are just split up in thought as they all
coexist in the same code block. The same applies to the data �ow.

This approach seemed good at �rst but when the Forward part was pretty much
completed and the Backward part was about to be written it was obvious that
with all the Function Block calls and with all variables available in the entire
Forward code it was very hard to keep track on in which order all variables were
allowed to be manipulated. Especially it was pretty much impossible to keep
track on all the ranges and where in the code to use which. The module had
become too complex to be able to write the Backward block correctly. Even if
one would succeed, one would need to duplicate a lot of code from the existing
PID modules. All in all the code would be completely unmaintainable. Some
way to split up the module into smaller, more overviewable and maintainable
blocks had to be considered and this approach was discarded.

3.7 The Final Approach

Even though the big and complex Control Module from the second approach,
see section 3.6, was completely discarded, the main idea was preserved and many
parts from it were reused. However, instead of trying to integrate everything
in the code blocks of one Control Module, this approach aims to encapsulate
smaller, less complex Control Modules within another Control Module, inter-
nally interconnecting them with Control Connections, see �gure 3.12. This has
a great maintainability advantage since each block can easily be overviewed, de-
bugged, altered or replaced. Also, if there are su�cient interaction parameters
included, Control Modules such as the existing PIDs and the Decouple Filter
can be used.

PID

DecoupleFilter

Swap
Ident
 &
Tune

Sp

PID
Sp

in1

in2

sp1

sp2

out1

out2

Figure 3.12: Final approach Control Module overview

62

The complex execution order from the second approach which was determined
by the code order in the code block and only split up into parts in thought was
now split up for real. This means that one easily can make sure that the parts
are executed in the correct order and that they do not accidentally alter or use
each others' ranges, values etc.

Another advantage is that the existing GUIs for the separate Control Modules
may be imported if they do not allow modi�cation of values which must remain
unchanged or otherwise coordinated in order to work together as a complete
module.

The only disadvantages with this approach is that the data is harder to access,
and one depends on that the encapsulated Control Modules have su�cient in-
teraction parameters to be able to coordinate them. Each Control Module's
interaction parameters are connected to the encapsulating Control Module and
then connected to the other parts that need access to them.

The requirements for the PID Control Modules due to the remote identi�cation
are remote setpoint setting and remotely requested forward value tracking. Also
it has to accept the backward range automatically, i.e. the recommended range
sent backward from the following Control Module. In chapter 2.4 it is explained
why a dynamic range is required and why the range has to be accepted. Al-
ready the simplest of the PID Control Modules, PidSimpleCC, satis�es all these
requirements and thus it has been chosen for the implementation.

The decouple �lter is required to set limits on the control signals remotely,
inhibiting them from increasing/decreasing further if a limit is reached after the
decouple �lter. The remote tuning also requires that the decouple �lter transfer
function can be set remotely. Also it must be able to set a proper backward
range. The current decouple �lter calculates an overly pessimistic backward
range which only guarantees that all possible output values can be reached,
resulting in an unnecessarily big backward range, containing lots of forbidden
value combinations. Also it lacks proper backward limitations which will cause
wind up problems. Since this is the only decouple �lter Control Module available
it had to be extended.

The other Control Modules in �gure 3.12 will have to be implemented, but
they are either very simple or have most of the code available from the second
approach.

3.7.1 SwapCC

The SwapCC Control Module adds the feature to handle incorrectly connected
systems. SwapCC makes it possible to swap the input channels if the coupling
elements are larger than the diagonal elements and is essential for the identi�-
cation algorithm that was used in the second approach. Since the connection
status suitably is determined by the identi�cation algorithm, the swap state
must be in the module's interaction parameters.

63

SwapCC is required for the �rst identi�cation approach but not for the second,
which is used in the �nal implementation approach. However, without it, a
less logical �x is needed instead as to make it easier to go back to the �rst
identi�cation approach it seemed quite rational to keep this part.

3.7.2 Identi�cation22CC

The Identi�cation22CC Control Module supervises the identi�cation and needs
to interact with both the PIDs and the decouple �lter. The identi�cation ap-
proach in section 3.4 was used.

3.7.3 PidX2ToDFCC

A Control Module, PidX2ToDFCC, had to be added between the PIDs and the
Decouple Filter to get the control signals and the output ranges to the GUI.
This is the sole purpose for this Control Module.

64

Chapter 4

The Tank Process

4.1 The Process

This master's thesis wouldn't feel complete without testing the implemented
module on a real coupled process. An ABB hardware controller, PM864, was
connected to the tank process from the department of automatic control in
Lund, see �gure 4.1.

Figure 4.1: The tank process consisting of two tanks with a small hole in the
bottom. The water is pumped into the upper tank and then �ows down into the
lower tank, then out of the process.

One tank process consists of two water tanks and a pump. The water tanks
have a small hole in the bottom where the water �ows out and are placed so

65

that the water which is pumped into the upper tank then �ows down into the
lower tank. The water levels can be measured for both tanks and it is the level
in either tank that is controlled.

To get a coupled TITO process, two tank processes were used, splitting the water
from both pumps into both of the upper tanks, about 70% into the primary tank
and about 30% into the secondary tank.

4.2 The Experiment

Since the process is non linear it is important that the water level in the tanks are
the same in all experiments and here 40% have been chosen. For the experiments
it is the water levels in the upper tanks that are considered for control. For the
upper tank there is a valve which can be opened manually to lead water directly
out of the process. This is used to simulate load disturbances. Much care have
been taken to open the valve the same amount and in the same manner in all
experiments.

After the identi�cation and tuning was complete, a setpoint step was applied.
When the process values had stabilized a load disturbance was applied.

4.3 SISO Control

For reference SISO Control will be evaluated, testing both the default parame-
ters and the tuned parameters in PidAdvancedCC.

4.3.1 Default Parameters

The tanks were connected to one PID controller each, using the default values.
See �gure 4.2.

4.3.2 PidAdvancedCC

The tanks were connected to one PidAdvancedCC each, using the included
identi�cation and tuning algorithms to tune the PIDs one at a time, see table 4.1.

The proposed controller was applied and the experiments were performed, see
�gure 4.3.

Compared to the default settings the controller is a little more aggressive but
has almost the same control performance. That the di�erence is not bigger is
because the default parameters happen to �t this particular process pretty well.

66

0 100 200 300 400

40

42

44

46

48

50

P
v

an
d

S
p

0 100 200 300 400

25

30

35

40

C
on

tr
ol

 s
ig

na
l

Loop 1

0 100 200 300 400

40

40.5

41

41.5

42

0 100 200 300 400

14

16

18

20

Loop 2

Figure 4.2: The experiment run on the tank process with SISO control using the
default controller parameters.

Tank 1 Tank 2
Gain 1.65 3.23

Filter time 41.98 69.30
Dead time 0 0

K 1.33 1.10
Ti 12.87 14.80
Td 5.41 6.25

Table 4.1: Identi�cation and tuning results from PidAdvancedCC.

67

0 100 200 300 400

40

42

44

46

48

50

P
v

an
d

S
p

0 100 200 300 400

25

30

35

40

C
on

tr
ol

 s
ig

na
l

Loop 1

0 100 200 300 400

39.5

40

40.5

41

41.5

0 100 200 300 400

12

14

16

18

20

Loop 2

Figure 4.3: The experiment run on the tank process with SISO control using the
controller parameters from the tuning in PidAdvancedCC.

4.4 TITO Control

Using the implemented decouple �lter the system was identi�ed and then tuned
for two decouple �lter types, i.e. static and FOWDT.

4.4.1 TITO Identi�cation

The identi�cation was run with a slight oversampling, see �gure 3.9. The iden-
ti�cation results are shown in table 4.2.

x1 x2
Gain 1.91 1.12

1x Filter time 44.00 63.00
Dead time 0 0

Gain 1.7 2.86
2x Filter time 76.00 63.00

Dead time 0 0

Table 4.2: Identi�cation results from the TITO identi�cation.

68

Tank 1 Tank 2
K 5.66 4.32
Ti 29.03 46.71
Td 0.02 0.02

Table 4.3: Tuning results using a static decouple �lter.

4.4.2 Static Decouple Filter

The TITO identi�cation results were used to design the static decouple �lter and
tune the PIDs. The tuning results are shown in table 4.3 and the experiment
results in �gure 4.4, note that in this speci�c experiment there are two load
disturbances.

0 50 100 150

40

42

44

46

48

50

P
v

an
d

S
p

0 50 100 150
20

40

60

80

100

C
on

tr
ol

 s
ig

na
l

Loop 1

0 50 100 150

40

41

42

43

0 50 100 150

0

5

10

15

20

25

Loop 2

Figure 4.4: The experiment run on the tank process with a static decouple �lter
and tuned PIDs.

The control performance here is good, especially the setpoint step speed and
the load disturbance attenuation which is barely noticed. On the other hand,
the control signal is really noisy and there are big overshoots at the setpoint
step which is really bad and is a sign of poor robustness.

4.4.3 FOWDT Decouple Filter

The TITO identi�cation results were used to design the FOWDT decouple �lter
and tune the PIDs. The tuning results are shown in table 4.4 and the experiment

69

Tank 1 Tank 2
K 37.15 37.15
Ti 90.92 90.92
Td 6.33 6.33

Table 4.4: Tuning results using a static decouple �lter.

results in �gure 4.5.

Note that the controller parameters are the same due to the process model
satisfying the conditions for the special case in section 2.3.6.

0 100 200 300 400

40

42

44

46

48

50

P
v

an
d

S
p

0 100 200 300 400

25

30

35

40

C
on

tr
ol

 s
ig

na
l

Loop 1

0 100 200 300 400

39.8

39.9

40

40.1

0 100 200 300 400

12

14

16

18

20

Loop 2

Figure 4.5: The experiment run on the tank process with a FOWDT decouple
�lter and tuned PIDs.

The control performance increases considerably with the FOWDT decouple �l-
ter. The setpoint step response is slower but the load disturbance attenuation
is very good. The control signal on the other hand is really noisy compared to
the other controllers.

70

Chapter 5

Summary and Future Work

A Decoupling TITO Controller module with all essential functionality has been
implemented. It has been run on a real process and it was con�rmed that it
really works. Most parts of the module work really well but there are a few
things which need further improvements to increase the module's robustness
and performance.

5.1 TITO Identi�cation

The new identi�cation algorithm that was introduced in section 3.4 is faster
and less complex than even the supervision part in section 3.3.2. Also it is
easier to extend to MIMO systems with more inputs and outputs. However its
sensitivity to oversampling makes it less suitable since the sample time often is
chosen without considering the speed of the system.

A way to make the identi�cation algorithm more robust would be to initially run
relay identi�cations which would give the speed of the system. Knowing this,
the identi�cation algorithm can be developed to handle oversampled systems
and systems with time constants of di�erent order by discarding samples at a
suitable rate in each steady test algorithm.

5.2 Decouple Filter Design

Decouple Filter Tuning

In chapter 5 in [1] a tuning of the decouple �lter after it has been applied is
proposed but has not received any attention at all in this master's thesis. It
requires some additional identi�cations of the system with the decouple �lter ap-
plied but it will results in a better process model, resulting in better decoupling.

71

It should be analyzed whether or not it is worth implementing.

Decouple Filter Normalization

The decouple �lter design methods use the adjunct instead of the inverse. A
problem with this is that the gain of the system will vary much between di�erent
systems. A process with small gains will result in a decouple �lter with small
gains. The total gain that the controller will see will approximately be the
process gain squared. This means that the controller gain needs to be very
big if the process gain is small and very small if the process gain is big. Thus
constant limits in the controller design, Kmax and Kmin, should also vary with
the system's gain.

An easier and more suitable way to solve this is to use the inverse instead of the
adjunct when designing the decouple �lter. Analysis of whether or not this has
any disadvantages, or if there are more suitable ways to normalize the decouple
�lter is needed.

Need of Decouple Filter

There are certain types of systems which do not need a decouple �lter and
adding one anyway only introduces unnecessary dynamics. If the time constants
di�er much between the two properties, there is typically no need to reduce the
coupling from the slower to the faster property since it will be compensated well
by the other, faster controller anyway. In such cases a triangular decouple �lter
is preferred.

5.3 Controller Tuning

Tuning Time

There is need for improvements and optimization of the controller tuning algo-
rithm. Currently it takes about one hour to execute the tuning algorithm. With
other means than exhaustive search, the time it takes to design the controllers
can be reduced.

Controller Robustness

The controller is designed to meet a speci�c robustness condition but testing
the controller's robustness has not been done. How well the decoupled system
handles process variations or higher order should be analyzed.

As mentioned in section 2.3.4, some controllers make the discretized system

72

unstable even though they satisfy the robustness condition for the continuous
system. Some possible causes are the stability test algorithm, too few Nyquist
curve evaluation points or the actual discretization which might be solved by
using the discrete Nyquist curve instead. This should be analyzed further.

5.4 Bumpless Parameter Changes

When the decouple �lter's parameters are altered there are really nasty tran-
sients. There is functionality to ramp when changing parameters but it should
be possible to use backtracking to avoid the transients without ramping.

73

Appendix A

Glossary

CB Control Builder
FOWDT First order with dead time

IAE Integrated absolute error
scan A controller sample, during which all associated applications are executed once
SISO Single input single output
TITO Two inputs two outputs

74

Appendix B

Source Code Samples

B.1 Controller Gain - Binary Search

(* A Binary search algorithm *)

(* Initialization *)
LastBadK := KMax; (* Last failed gain test *)
LastGoodK := 0; (* Last successful gain test *)
CurrK := KMax; (* First gain to test *)

(* The quotient LastGoodK / LastBadK will start at 0 and
approach 1 as the remaining interval becomes smaller *)

WHILE (LastGoodK / LastBadK < 0.99) AND (CurrK > KMin) DO

...
(* Test if the controller with gain CurrK is stable and

satisfies the robustness condition *)

IF ControllerOk THEN
LastGoodK := CurrK;

ELSE
LastBadK := CurrK;

END_IF;

(* Next K to test is in the middle between LastGoodK and LastBadK *)
CurrK := (LastBadK + LastGoodK) / 2.0;

END_WHILE;

(* LastGoodK is used as controller gain in simulation *)
(* If LastGoodK = 0 then no stable controller was found with K in [KMin, KMax] *)

75

B.2 Span Noise Estimate

IF ScanCounter = 0 THEN
(* Initialization *)
PvHigh := PvMin; (* Lowest possible Pv *)
PvLow := PvMax; (* Highest possible Pv *)

END_IF;

IF ScanCounter <= EstimateScan THEN
(* Store extremes *)
PvHigh := max(PvHigh,Pv);
PvLow := min(PvLow,Pv);

ELSE
(* Calculate estimate *)
NoiseLevel := 0.5 * (PvHigh - PvLow);

END_IF;

ScanCounter := ScanCounter + 1;

76

Bibliography

[1] Pontus Nordfeldt, PID Control of TITO Systems

[2] Karl J. Åström & Tore Hägglund, Advanced PID Control

[3] Gunnar Blom & Björn Holmquist, Statistikteori med tillämpningar

[4] Karl J. Åström & Björn Wittenmark, Computer-Controlled Systems

77

