ISSN 0280-5316
ISRN LUTFD2 /TFRT--5803--SE

Obstacle Avoidance
for Mobile Robots

Jan Edhner

Department of Automatic Control
Lund University
September 2007

Lund University

Department of Automatic Control
Box 118

SE-221 00 Lund Sweden

Document name

MASTER THESIS

Date of issue

September 2007

Document Number

ISRNLUTFD2/TFRT--5803--SE

Author(s)
Jan Edhner

Supervisor
Peter Alriksson and Karl-Erik Arzén (Examiner) at
Automatic Control in Lund.

Sponsoring organization

Title and subtitle

Obstacle Avoidance for Mobile Robots (Undvikande av hinder fér mobila robotar)

Abstract

As a part of the RUNES project a robot has been developed and it has as a part of this theses been improved with an
obstacle avoidance component. Work has also been done to make room for additional components on the Tmote sky (one
of the micro controllers mounted on the robot) such as a power control component developed at KTH. Attempts has also
been made to try to enhance the performance of the robot. Finally a program has been created so that an operator can

control the robot from a PC.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 43

Security classification

http://www.control.lth.se/publications/

Preface

I would like to thank Karl-Erik Arzén for giving me the opportunity to do this
interesting thesis and I would also like to thank Peter Alriksson for all the help,
especially for all his invaluable help with Matlab. Thanks also goes out to Rolf
Braun, who has built all the hardware.

Contents

1. INEEOAUCEION. ceeueeeeeeeneeeeeeeeeeeeeeeeeeceeeseeccssssseesssssssssssssssssssssssossasessons -9
L1 Background..........c.oooiiiiiiiieeiieeiee et 9
1.2 Other Control ProDIEIMIS. e iiieeeiiieeeee ettt eeeeetreee e e e e e eveaeeseaeeeens 11
L3 PUIPOSE. ..ceiuiiieeiiiieeiiee ettt ettt ettt e et e ettt e st emmneesnaaeesnbeeeennee 11
| B 31 4 0 L7 15 (o) 1 TR OO P TR OPPPPPPPRP 12
1.5 PIrevIOUS WOTK.....coootieeieeeeeeeeeeeeee ettt e e e e e teeeeeeeseeeeereeaa e seenannas 12
2. Current SYSLeM...uueeccccccsssssnssecssssssssssessssssssssssssssssssssssanssssssssssssssnes 13
2.1 HATAWATE.....cooioiiiieieeeee ettt e e s s e s e s e eeaasaaneeeees 13
2.2 CONILOLLETS. ... eeeeeeeeieeeee ettt ettt e e e e e ettt e e s e s eeetaraeresesennenas 15
2.3 OthEr SOTTWATE.oiiiieiiiieeeee ettt e e e e e et e a s e e s e s eeenes 17
3. Initial Problems......ecicccicnssnneecccsssssnneeccsssssnssescsssssssssssssssssssssssssssnes 19
3.1 EXPEIIMENLS......eiiiiiiiiiiieiiiieeiieeeitee et e et e et eesaeeesteeestaeesasaeenaseeensseesnns 19
3.2 SPACE ISSULS. c.uvvieeiiieeiieeeieeeeteeesiteeesiteeesiteeeateesssaeessteessseeeanseeessseesnsseesnes 21
3.3 The angle eStMAatioN.........cc.eeeruieeriieeriiieeriieeeieeeeieeeeieeesreeesbeeesiaeeeaeeeens 22
4. JAVA PrOSrall..ccccssseeecccscsssssseccsssssssssscsssssssssssmmesssssssssssssssssssssssssnss 23
5. ODStACIE AVOLAAIICE......ceeeeeeeeereeneeereeeeeccsseseecsssessessssmessessssssssssssssee 24
5.1 Different MEtNOAS.ccoovvumeeeee ettt eeeeeeeeeees 24
5.2 Potential field MEthO ..coovveeeeeeeieeeeeieeee ettt eeeeeeees 25
5.3 HATAWATE. ..o e e e e et eee e e s e e e s eeeseeeeneaenaaas 27
5.4 Implementation Details..........ccceovvueieiiieeiiieiiiieeee et 30
. RESUIES ettt e et a e e e e e e et —————aaaaeraan 30
6. Practical EXPerience.......eiicccccssnneiccssssssnsescssenssccsssssssssscssssssssnss 32
6.1 Bridging problems..........c.cevviieiiiieriiiieiiieeeiee ettt 32
6.2 The FINAL DEIMO......ciiiiiiiieeeeee ettt ettt s s seeeeeeeeaeeees 33
7. CONCIUSIONS....covvuueeeereneceeereeeecceseseescesssesssessssssssssssssssssssssssssssssssase w34
8. Bibliography.....ccccceccccserccsssaneccssnnecssssssessssssecsssssscssssssssssssssssssssasses 35
9. APPENUIX A.uuueeeeiiiiinrsnneiccsssssnsseccssnnsasses 36
0.1 ODSLACIE DETECTION. .ceveeeneeee ettt eeeeeeeeeeeeeeeeeem e eeeees 36
0.2 ODStACIE AVOLAANCE. ...eeneeee oot ee e e e e e e eaeraaaeeeeeaeneans 40

1. Introduction

1.1 Background

This thesis is done as a part of the European Integrated Project Reconfigurable
Ubiquitous Networked Embedded Systems (RUNES) [1]. The project is focused
on sensor networks and one of the main goals is to “provide an adaptive
middleware platform and application development tools that allow programmers
the flexibility to interact with the environment where necessary, whilst affording a
level of abstraction that facilitates ease of application construction and use.”

The motivation behind this is that, as networked embedded systems grow
they get more complex and therefor it is necessary to simplify things if the full
potential of such systems are to be realized. This is why RUNES wants to develop
aids to help developers simplify development of such systems.

RUNES Participants

The RUNES consortium includes the following 21 partners from 9 different
countries
e Australia
o National ICT Australia
o University of Queensland
o Victoria University
e Canada
o Communications Research Centre Canada
e Germany
o Industrieanlagen-Betriebsgesellschaft mbH
o LiPPERT Automationstechnik GmbH
o Rheinisch-Westfaelische Technische Hochschule Aachen

e Greece
o University of Patras
o ltaly

o Politecnico di Milano
o Universita di Pisa

e Hungary
o Ericsson
e Sweden
o ConnectBlue AB
o Ericsson AB
o Swedish Institute of Computer Science AB
o Kungliga Tekniska Hogskolan
o Lund Institute of Technology

e United Kingdom
o Kodak Ltd.
o Lancaster University
o University College London
e United States of America
o University of California, Berkeley
o University of California, San Diego

RUNES demonstrator

To illustrate one potential application of the RUNES middleware in greater detail a
number of different scenarios where evaluated [2]. The one that was selected was
a disaster relief scenario. This scenario takes place in a road tunnel where fire has
broken out due to a car accident similar to what happened in the Mont Blanc
tunnel in 1999. The result of the Mont Blanc accident was a fire that lasted for two
days trapping around 40 vehicles in poisonous smoke, with a death toll of 37
people. The firefighters in such a situation want to know as much as possible
about the status inside the tunnel such as exactly where and how big the fire is,
how many people that are trapped, if there are any toxic gases and so on. In the
Mont Blanc case the fire fighters did not have this information and as a result they
went in so late that they did not make any difference and as a result they got
trapped themselves.

In the RUNES scenario information mentioned above (temperature, toxic
gases etc) are transferred through a wired network in the normal case but has a
wireless network as a backup in case the cables burn in the fire (much like what
actually happened in the Mont Blanc accident mentioned above). If the fire is
serious enough it might also be possible that a part of the wireless sensors might
get damaged as well. If that occurs the following might happen; one group of
sensors (those that are close to the control room) are intact, one group (close to the
fire) are damaged and can therefor not send data back and finally a third group
that rely on the broken part of the network to send data to a control room. This
means that we are missing parts of vital information that might possibly save lives.
This is where a robot is sent in to act as a mobile sensor node so that the third
group of sensors just mentioned can use the robot to route messages back to the
control room. The robot can also send back data directly from the area that was
covered by the now damaged nodes. Now the fire fighters can get complete
information about the situation again and act according to that information.

10

1.2 Other Control Problems

Aside from the problem with localization (that is knowing where the robot is) and
obstacle avoidance there are a number of control problems associated with the
RUNES demonstrator; first you need to know where the robot is supposed go, this
is solved with the network reconfiguration component (NetReC) [13] that uses the
position of the nodes (that is, the software knows what nodes that report and those
that does not) to calculate the optimal position of the robot.

An other component that is required is the Collision avoidance component
[14]. It makes sure that robots will not collide with each other. The collision
avoidance component is based on a reserved disk associated with each robot
(meaning that the other robots knows the position of the other robots and the
radius of the reserved disk for each robot).

The final component is the power control component [8]. It uses the
received signal strength indicator (RSSI) to control the power level of the sensor
nodes so the sensor nodes does not always send with maximum transmission
power thus preserving essential battery power.

1.3 Purpose

The demonstrator (see above) was implemented and shown in a lab at Ericsson at
two occasions. On the first occasion for reviewers and at a second time for the
public (Ericsson staff, a few firefighters for example). The goal of this thesis is to
improve the mobile robot that was developed as a part of [3] so that the robot can
perform the tasks that are described in the RUNES demonstrator at the two
demonstrations just mentioned.

The improvements include obstacle avoidance so that the robot can avoid
cars, lorries and other material that is in its way due to the accident. It also
involved writing a program that enables an operator to give the robot commands
from a PC. Another thing that needs to be done is freeing up space on the sensor
node so that different components developed by other RUNES partners (this
includes for instance a power control component [8]) fits on the Tmote.

Another purpose of this thesis is to try to improve on the performance of the
robot by replacing the angle estimation with a compass as was suggested as future
work in [3].

11

1.4 Limitations

This thesis is limited to software since all the hardware needed was built by Rolf
Braun, who works at the department as a research engineer.

1.5 Previous work

This is the second master thesis done at LTH as a part of RUNES. The first thesis
focused on localization with ultrasound and the result from that work was a robot
that could navigate with stationary ultrasound nodes positioned along its path.
There was however only a very basic navigator and the only way to tell it where to
go was to hard code the desired position.

12

2. Current System

This section describes both the hardware and software that was the basic of this
thesis.

2.1 Hardware

Tmote Sky

The wireless sensor nodes are from a company called Moteiv [4] and are called
Tmote Sky. The Tmote is equipped with a Texas Instruments MSP-430
microcontroller (with 48kbyte flash and 10kbyte RAM). It also features an
onboard IEEE 802.15.4 Chipcon Wireless Transceiver.

The robot

There are two robots available that are basically the same. One big difference is
that one of the robots can not only carry an extra mote on the back but can also
drop it on the ground with a tipping mechanism (useing a servo to make it go
up/down). Other than that one robot is slightly wider and higher than the other.

The robots are of dual-drive unicycle type and have two independently
driven wheels and an AVR ATmegal6 is connected to each wheel. The AVR's that
are connected to the wheels measure and control (with a PI-controller) the speed
of each wheel. There is also an additional ATmegal6 that controls an ultrasound
transmitter. That transmitter has a cone mounted on top of it to allow the
ultrasound to spread 360° around the robot.

An ATmegal28 was later included as a computation engine because of the
limited capacity of the MSP-430 (both in terms of memory and cpu power).

Finally there is a Tmote that among other things is used for radio
communication. It also contained the Extended Kalman filter (the filter was
however later moved, see below for details) that is used to calculate the position
and the angle of the robot. A navigator was also included on the Tmote that
outputs a speed and an angle that is used as input to a PD-controller that sends a
reference speed to the wheel controllers. Since the navigator was updated to
include obstacle avoidance it was moved to the Atmegal28 (for more information
on different controllers and other software see below). Figure 2.1 below shows
what one of the robots looks like.

13

Figure 2.1: One of the robots
Ultrasound nodes

The Ultrasound nodes are basically Tmote Sky cards with a custom casing built at
LTH. There is also an ultrasound receiver mounted on the Tmote. The card that
holds the receiver is also custom built at LTH. There are currently eleven of these
nodes available and they are placed at known positions throwout the course where
the robot drives (more on how the robot determines its position from these nodes
below). The image shows how one of the ultrasound nodes looks like

Figure 2.2: An ultrasound node

14

2.2 Controllers

The following image is an overview of the different controllers and how they
interact in order for the robot to move to the desired destination.

Range measurement (update step)
Measured wheel speed (predict step)

X,Y,Angle

Angle reference
Velocity

Wheel speed Wheel speed

Motor

Figure 2.3: This image shows how
the controllers are connected

The range measurements are gathered in the following manner; the robot sends out
a radio broadcast and an ultrasound pulse at the same time' and when the nodes
receive the radio (which happens immediately) it starts to count and when the
ultrasound is detected it stops. Since the speed of sound is known we now have a
distance between the robot and the stationary node. When a distance has been
calculated the node sends the data back together with it is own (hard coded)
position. That data is then used as an input to the Kalman Filter (see below).

The Extended Kalman Filter (EKF)

The model for the robot that the Kalman Filter uses is

1 Actually it's not at the exact same time, there is a 2ms delay between the radio and the
ultrasound pulse.

15

%cos(@)(uamb)

dl*|_|1.
o (y@ = Esm(@)(ua+ub)

1
E (ua+uh)

where x and y are coordinates, © is the angle (where 0° means right, 90° is
straight ahead and so on), d is the width of the robot and u,,u, are the velocities of
the two wheels. Because of the low sample rate Tustin approximation is used in
order to ensure correctness.
The model used in for the update step of the Extended Kalman Filter
(originally defined in [3]) looks like this.
yk:Zk_h(jck\k—l .0)
Sk:HkPk|k—1Hz+Rk
Kk:Pk|k71H:S;]
xk\k:&klk—l +K Y,
Pk|k:(1_Kka)Pk\k—1
One of the challenges with this model is when calculating the Kalman gain
(the K-matrix). This step involves calculating S™ and when you get n
measurements (in this case n range measures) you need to invert an n X n matrix
(in this case that can easily mean that you need to invert a 5x5 matrix). In order to
avoid that you can instead do the update step n times. By doing so you only need
to invert a scalar each time you do update instead. This is the solution used on the
robot.

The Robot Controller (PD-Controller)

The speed of the robot can be viewed as the average velocity of the two wheels
and the angle velocity is proportional to the difference in velocity of the two
wheels . It is therefore natural to design two controllers, one for the velocity and
another for the angle where the output of the angle controller is added and
subtracted from the two wheels respectively.

Pl-controller

The last step is a PI-controller that given the velocity for that wheel controls the
motor accordingly.

16

2.3 Other Software

Contiki

The RTOS that is used on the Tmote Sky is called Contiki [5] and is developed by
SICS (Swedish Institute of Computer Science). Contiki is a light weight OS that
contains protocols for upd/tcp communication.

It also features a special kind of processes called Protothreads [6]. The
reason for using Protothreads is because of the small overhead that they require.
Another feature of the protothreads is that there is no preemption which means
that you have to manually define when the thread can be preempted. This ensures
that the needed timing constraints are met. It is not always an advantage as it
requires an higher level of discipline from the programmer as the thread will not
release the processor unless it is explicitly told to by the programmer.

I’C

The Tmote acts as a Master on the I>C [7] bus while all the other micro controllers
are slaves. The I°C protocol allows multiple masters but due to the fact that the I*C
shares pins with the radio the Tmote has to initiate all [*C communication so it
does not confuse I’C with radio communication. This causes a few problems; the
main one is that since only the master can initiate communication over the bus it
has to, for instance, periodically ask one of the slaves for a new direction (since
the navigator which calculates the angle and the speed is on not on the Tmote)
instead of being told when there is any change.

17

Timing
A very important part of any embedded system is the timing. On the robot one

cycle is 1.2 seconds long and is divided into three subsections as shown by the
figure below.

v

v o v oow v oo
. EKF Predict Collectrange response
. Execute robot controller (do_control) EKF Update
Range request (send radio and . Send position
u.s.messages)

. Update navigator . Poll obstacle detection

Receive position

Figure 2.4: Image describing timing. Taken from [3]

The first thing that happens is a Predict followed by an ultrasound pulse. As
those come back as range measurements (see Chapter 2.2 for details) Update is
done with that measurement (together with the information about the position of
the node). Note that the last update is left for the second subsection. This is
because there are a lot of spare CPU power here whereas there is almost none to
spare in the first subsection. This motivation is not true now with the ATmegal28
introduced as a computation engine but that is the original motivation to keep one
update for the second subsection.

18

3. Initial problems

3.1 Experiments

One of the first concerns was that if there is a lot of other traffic on the network
the performance of the localization would be unacceptable. Therefor two
experiments where done; one to check how many responses the robot got from the
ultrasound sensors without any noise and a second to see how the robot behaved
with background background traffic.

Updates

The first experiment that was done counted the number of responses that the robot
got from the ultrasound nodes after sending out a radio/ultrasound pulse. The
histogram shows the number of responses each time cycle.

60 T T T T T

Figure 3.1: Histogram showing number of replies each time cycle

19

The results can be explained by the fact that the ultrasound nodes do not
reply at the same time but delays the response according to the formula

delay =8(ID mod 5)

where ID is between 1 and 7 (since there are seven nodes). The delay is
therefore between 0 and 32 which mean the maximum delay is 32/256 = 125 ms
(this since in Contiki a second is divided into steps that are 1/256 in size). This
should make 5 the maximum number of responses but since there are a lot of
random factors involved such as the fact that it is impossible for two nodes to start
the delay at the exact same time, so sometimes we see more than five. Another
reason is that the radio might not reach the ultrasound nodes due to for example
fading. Therefore we might not always get 5 updates even in the best conditions.

Background traffic

A program was created that sent out background traffic via the radio to see what
sort of impact this has on performance. The program was installed on each
ultrasound node and was configured to broadcast two (empty) packets each second
(with 7 motes this makes 14 packets/second in total). This was done since there
will be a lot of unrelated (of no concern for the robot) traffic in the final demo and
if the performance turned out unacceptable with the amount of background traffic
that was expected something might have to be done. The resulting histogram
looked like this (as above it is the number of range responses each time cycle).

45 T T T T T T T T

351 —

25 1

0 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Figure 3.2: Number of updates each time cycle with background
noise

20

The amount of traffic generated by the test program is quite a bit more than
the unrelated traffic in the final demo but it is quite clear that the performance is
such that something needs to be done in order to reduce unnecessary traffic. The
solution to this problem is to use separate channels; one for the localization and
another for the rest of the traffic. This ensures that all vital information reaches it's
destination and that the localization performance is adequate.

3.2 Space issues

As already mentioned there is only 48 kbyte flash memory on a Tmote. The initial
code that was used as a base for this thesis took 46 kbyte(including Contiki). Since
there are a lot of other components that are supposed to fit on the Tmote (such as a
power control component [8]) this obviously is a major issue that needs to be
resolved. The solution was to mount an ATmegal28 on the robot and move some
of the code to it. The first part that was moved was the Kalman filter. Later the
navigator was moved from the Tmote as well since it had to be rewritten to also
include obstacle avoidance (see below for details). After the components
mentioned was moved, 10kbyte was removed from the Tmote, more than enough
to fit the rest of the components.

12C protocol

When moving the Kalman filter to the ATmegal28 an I°C protocol had to be
created in order to move data back and forth between the two micro processors.
The data that had to be sent included the range measurements from the ultrasound
nodes, the wheel velocities and obviously the result (x,y and the angle) has to be
sent back. The protocol has the following structure.

1. The command that is to be performed or what type of data that is expected.
The number of bytes

3. The data (if the command is for example predict then the data is the wheel
velocities)

21

3.3 The angle estimation

One of the conclusions of [3] was that the angle estimation had an accuracy of
approximately 15°. To improve that a compass was mounted on top of the robot.
Since the compass uses the magnetic field to get the compass direction this causes
a problem due to the fact that the robot is mainly driving indoors and that means a
lot of iron in the walls (radiators for example) etc. that interfere with the magnetic
field. As a result, the compass has a systematic error of 20° or more in the lab, that
is far worse than the estimation meaning that the compass is basically useless. A
possible solution could be to replace the compass with a gyrocompass since it
doesn't rely on a magnetic field but instead “uses an (electrically powered) fast
spinning wheel and friction forces in order to exploit the rotation of the earth”
(according to [11]).

22

4. Java program

A small command based java program was created so that an operator can control
the robot from a PC. The commands was sent as udp-packets to the robot. This
can be done if you configure a Tmote as a gateway and running a program called
Tunslip (developed as a part of Contiki). What Tunslip does is to create a network
device (much like eth0O) and then Linux will use that to send data if the destination
is one of the motes.
A protocol for this exists as a part of RUNES but considering the small amount of
data being sent plus the fact that the program is not going to be integrated into any
larger system this protocol was not used.

The features of the program include the following

Sending the robot to a specific position

Changing the radio channel that the robot sends/receives data on
Rotating the robot (only when it is stopped)

Dropping the “extra mote” from the tipping mechanism (see above for
more information)

Set the position on the ultrasound nodes.

e Emergency stop.

23

5. Obstacle avoidance

This chapter will present different obstacle avoidance methods and a brief
motivation for the reason behind the choice of method. A more thorough
description of the chosen method follows as well as a description of the used
hardware and finally some implementation details followed by results.

5.1 Different methods

This section will describe different approaches to obstacle avoidance, such as the
bug algorithm, a (simple) potential field method and the vector field histogram
method. For more details on the different methods see [12]

The bug method

The bug method [9] does a full contour around the obstacle trying to find the point
of minimum distance to the target. The robot then goes around the obstacle again
until it reaches that point where it again moves towards the goal. This is a very
slow method but it ensures that the robot will reach the goal.

There is an improved version on this method that starts by drawing a line
between the starting point and the goal. When it detects an obstacle the robot goes
around the obstacle until it reaches the line again. Then it continues towards the
goal.

The vector histogram method

The vector histogram method [10] can be summarized in these three steps:
1. Create a 2D Cartesian histogram grid from each range sensor measurement
2. From the histogram created in step 1, consider a window around the robot
and filter that grid onto a 1D polar histogram
3. Calculate the angle and velocity from the 1D polar histogram, as a result of
an optimization procedure

Potential field method

One can see the robot as a particle that moves in a potential field generated by the
goal and the obstacles. The goal generates an attractive potential and the obstacles
generates a repulsive potential. A potential field can be viewed as an energy field
so the gradients at each point is a force. The robot driving in the field is subject to
a force driving it to the goal and at the same time forces that keeps it away from
the obstacles.

24

Using The Dijkstra Algorithm

Together with a map (see Chapter 5.4 for an example) the Dijkstra algorithm can
be used in the following manner; when the robot starts the algorithm runs and
since no obstacles has been detected the result is go straight towards the goal. But
when an obstacle is detected the corresponding vertexes are removed and Dijkstra
runs again. If the obstacle detected is in the way of the goal the algorithm will get
a path around it and the robot will avoid the obstacle.

Choosing a method

The obstacle avoidance algorithm that was implemented is a potential field
method, meaning the robot sees the obstacles as a repulsive potential fields and
the goal as an attractive field. The reason for choosing this algorithm are for two
reasons; first because of the simplicity of the algorithm but also because it is the
choice of the other universities that are developing robots as a part of RUNES.

5.2 Potential field method

Let ¢g=(x,y) represent the position of the robot, then the field where the robot
moves is a scalar function U(q), where

Ulq)=U,(q)+U,,(q)

that can also be written as

Ulg)=U,(q)+2.U,,(q)

That is the total repulsive potential is the sum of the individual repulsive
potentials. The force that drives the robot is the negative gradient of the potential,
that is

F (CI):_ V Uatt(Q)_v Urep(q)
where F(q) is a vector that points in the direction that the robot should have.

The attractive potential

The attractive potential is proportional to d zoa, , where d,,, isthe euclidean

distance from the robot to the goal. The function is as follows:

Ul @) =5k d:

goal

From that a gradient pointing from the goal to the robot can be calculated. The
result is

25

V Uatt(q):kart

q - q goal

The direction that the robot wants to go in can be viewed as a force Fy=-U,,
that is

F,m(CI):_V Ualt(Q):_katt

q— qgoal

The repulsive potential

The repulsive potential is stronger when the robot is closer to the obstacle and will
decrease as the distance between the robot and the obstacle increases. In this
implementation the repulsive potential is the mean value of the repulsive effect of
all the obstacles, i.e.,

Upld)= 2 U il

Obstacles that are far away from the robot will not likely effect how the
robot should move and as the robot gets closer the repulsive potential should
increase. A possible repulsive potential for the obstacle i that takes this into
account 1s

1 1 1V

~k — = ifd,.<d
Uepi(q)=12 0”~“(d0bm do) F domi<do

0 l:fdobsti>d0

where d,;,; 1s the euclidean distance between the robot and the obstacle i, k., 1S a
constant and d, is the influence threshold.

The negative gradient of the repulsive potential, F ,(_,p,»(q)Z—V U ,epl-(q) is
given by

k 1 _ L 1 _ qd 4 obst
Frepi(q): obst d dO d2 d

obsti obsti obsti

0 !f dobsti>d0

l:f dohsli < dO

Drawbacks

The main drawback with this method is the sensitivity to local minima, usually
caused by symmetry in the environment or concave obstacles. Another problem is
oscillatory behavior in narrow spaces.

26

5.3 Hardware

The sensor used is an IR-sensor from Sharp (GP2D12) that is mounted on a
Futaba FP-S17 servo. In order to find obstacles the servo moves approximately
1.6°. Then the sensor takes three measures and sends the median of those to the
obstacle avoidance. The reason for doing this is to reduce the variance of the
measures. After sending the measured value (if any) there is a delay of 17 ms (see
below for details on the delay). After that the servo moves another step where the
process is repeated. The servo has a 140° field of view meaning it takes
approximately 1.5 sec for the servo to go from one endpoint to the other.

The servo

The servo is controlled by generating a 50Hz square wave and then in order to
move it to a specific position you simply manipulate the duty cycle accordingly
(see below). On the AVR this is done by first setting a register to a value according
to the formula (where f,. is the frequency of the external oscillator and f is the
desired frequency).

Foe 4 _14,7456-10°

—1=36863
8t (8-50)

This will create a S0Hz pulse. If you then want, for example, a 10% duty
cycle you simply set a second register to 10% of the value from the first one (in
this case 3686).The servo used has the following relation between angle and duty
cycle.

180

160

140

120

100

Angle

80

60 -

40t

20

Duty Cycle (%)

Figure 5.1: Relation between Angle and duty cycle

27

The sensor

The relation between the voltage (that is the output from the sensor) and the
distance to the obstacle is exponential and has the following shape.

650

600

550

500

450

400

350

300

250

200

150
0

Figure 5.2: Relation between voltage and distance. The x-axis is
represents range in meters and the y-axis is Output from the
A/D converter

Notice that when you get closer than approximately 0.2m the voltage goes down
again meaning that the sensor can mistake obstacles that are really close as further
away than they really are.

When approximating a function the data closer than 0.2 m was disregarded,
and then linear regression was applied with help of the fact that

y=Ce™ =In(y)=In(Ce™)=In(C)+In(e™)=In(C)+ Ax

Drawbacks with the hardware

There is one major drawback with the servo; you can only tell it where to go, not
measure where it actually is. The effect of this is shown in the two images below
where the first one shows how the robot thinks a box looks like when the servo
sweeps back and forth with a frequency of 0,5 Hz and in the second image the
servo sweeps with 0,05 Hz.

28

Figure 5.3: An obstacle when servo sweeps with 0,5 Hz

11 12 13 14 15 16 17 18 19 20 21

Figure 5.4: An obstacle when servo sweeps with 0,05Hz

What is clear by these images is that when you do not wait long enough the
servo hasn't reached the desired position and the image of the box (the actual
measurements of the box is 30cm x 20cm) 1s wrong and will result in odd
behavior when navigating past the obstacles. On the other hand one can not move
the servo too slow since then you have to compensate that by slowing down the
robot (otherwise there is no chance to detect the obstacles) so there is a trade off
there; accuracy of the map versus the speed of the robot.

29

5.4 Implementation Details

The map

There 1s a need to remember the obstacles so the robot will not forget them when
it turns in such a manner that the sensor can not see the obstacle any more. This
has been solved by implementing a simple map of the area that the robot drives in.
The implementation uses a matrix where every entry is a flag that is 0 if no
obstacle has been detected in that position and 1 if it has. If an obstacle is detected
at position x,y the entry 1,j in the matrix is set to 1, where i and j are defined by

x-100 . y-100

"~ Resolution ° Resolution

then you simply round off i and j to an integer in order to get the correct values.
Experimental results determined that a 10 cm resolution gave adequate results. It
was also determined that there were enough memory left on the AVR to fit the
entire map with a 10cm resolution.

The advantages of a matrix are many. First there is the simplicity, then there
is the fact that it takes O(1) to read and write. Locating all obstacles on the map
takes O(wl) where w is the width and 1 the length. This can however be improved
by not searching for obstacles on the entire map but instead only search a window
on both sides of the robot (the entire width has to be searched however).
Experiments was done to determine that a window of 1,2 m (that is 0,6 m in front
and 0,6 m behind the robot) was sufficient. The drawback is mainly the fact that it
requires quite a lot of memory. This is however reduced by the fact that every
entry only requires 1 bit. Also the fact that the robot will only drive in a very
limited space (about 2x10 metes) helps reduce the required memory.

5.5 Resulis

The result of the obstacle avoidance is shown in the two images below (the blue
dots represent obstacles and the green lines are repulsive gradients at each point)

30

350 -

300

250 -

150 -

100

f.

1 I 1 I 1
-150 -100 -50 0 50 100 150 200 250 300

Figure 5.5: Problems with some oscillatory behavior

400 -

350 -

300

250 -

200

150 |

1 .
-100 -50 0 200 250

Figure 5.6: Good result when the obstacle is slightly to the
side

Figure 5.5 shows one problem that still remains. As can be seen there is a lot
of oscillatory behavior before the robot get passed the obstacle. The exact reason
for this is unknown but a guess is that when there is an obstacle placed right in
front of the goal like that the resulting gradient will point backwards and the robot
will simply turn around until it reaches a point when the obstacle no longer has
any impact and it will turn back towards the goal etc. On the other hand when the
goal is slightly to the side, as is shown in Figure 5.6, the performance is a lot
better.

31

6. Practical Experience

6.1 Bridging problems

A part of the scenario (see Chapter 1.1) is to use the robot to bridge two isolated
islands of a sensor network. The first few attempts to do so was however
unsuccessful. The first thought was that there where some problems with the fact
that there is a plastic casing built around the mote that is mounted on the robot but
that was ruled out when we tried remove the casing on the mote. Since the
network was successfully bridged with a separate node and since the casing did
not seem to make a difference the conclusion was that there was some sort of
software problem. After some testing a bug was found in the i2¢ protocol; on the
ATmegal28 the number of bytes that was about to be sent was stored as an uint8_t
but on the tmote stored as an int. Because of this (for reasons still not known)
sometimes the data was interpreted wrong and was set to 127 instead of 12 (it was
always supposed to be 12 since the problem was isolated to one function). This
caused a memory leak (since the buffer the data was stored in was not 127 bytes
long). When changing the data type on the mote from an int to an uint8_t that
problem was solved but the problems with the bridging still remained.

A hardware problem with the mote that was mounted on the robot was found
doing the following experiment; a mote was placed 1 m away from the robot
acting as a gateway, then ICMP ping messages was sent from the PC through the
gateway mote. After that the RSSI value for the last package was measured on the
robot. The result was an RSSI value around -40. Since the uAODV
implementation considers a route to poor (and therefor discards it) at -41 there was
clearly a problem with the radio on the mote mounted on the robot. This was
confirmed again when doing the same experiment with a different Tmote mounted
on the robot. The RSSI value then changed to about -10.

For this reason a new Tmote was fitted on the robot and with that together
with the memory leak fixed the problem with the bridging. There was however
one problem remaining; “the tower” on the robot seemed to have some sort of
impact on the radio performance. This was solved by first including a possibility
to rotate the robot with a command sent from the Java program. The second part
of the solution was to add a second mote on the back of the robot and have a
tipping mechanism controlled with a servo connected to the ATmegal28. Just
before stopping the robot then dropped the extra mote. This gave the sensors on
the other side of the damaged part of the network a backup route back to the
control room in case the robot stopped in such a way that “the tower” was in a bad
position.

32

6.2 The Final Demo

At the final demonstration an obstacle course was set up for the robot to navigate
through. This was done as a part of the RUNES demonstrator (see Chapter 1.1)
and therefore the obstacles were model cars and a lorry. This obstacle course was
to represent rubble caused by the accident. Apart from the obstacle course the
entire lab was transformed into a mini tunnel (including a road made from carpet
with white a tape marking the middle).

The obstacle course had to be laid out in such a way so the robot could
navigate it despite the flaws in the implementation (see Chapter 5.5 for details).
Therefor no obstacles were placed in such a way that oscillatory behavior as
shown in Figure 5.1 occurred.

There were still some problems where the biggest one was that sometimes
the robot just drove in the direction it was headed to (as if it stopped asking the
obstacle avoidance component for new directions). The reason for this is still
unknown but it is most likely a software bug (possibly another memory leak).
Another problem we had when the demo was shown to the public was that a lot of
people had cameras with them and cameras use infrared technology to determine
distance to an object. This infrared light was mistaken as an obstacle so the robot
had to be “manually reset” (that is carried to it starting position again).

33

7. Conclusions

The performance of the obstacle avoidance is far from perfect for a number of
reasons. First the hardware; since you can not measure the position of the servo it
is very hard to get any accuracy, second the shortcomings of the algorithm makes
it hard to navigate through complex obstacles. However the robot made it through
the rather simple obstacle course that was used at the RUNES final demo and the
robot managed to bridge the two isolated islands created in the network
successfully so in that regard the result was a success. This, since the RUNES
project is not focused on control and robotics but rather on sensor networks.

The problems with the obstacle avoidance could be solved using a more
advanced algorithm like maybe something based on the Dijkstra algorithm.

Due to the fact that the compass did not work in any of the labs we tested
there was not any improvement in localization performance of the robot.

34

8. Bibliography

[1] RUNES, Reconfigurable Ubiquitous Networked Embedded Systems.
Webpage, http://www.ist-runes.org

[2] RUNES Deliverable 2.1 "Application scenario building/definition".
Webpage, http://www.ist-runes.org/docs/deliverables/D2 0Ol.pdf

[3] Jerker Nordh, Ultrasound-based Navigation for Mobile Robots. Master
thesis, Dept of Control, Lund Institute of Technology, Lund university,
2006

[4] Moteiv corporation. Webpage, http://www.moteiv.com/

[5] Adam Dunkels, Bjorn Gronvall, Thiemo Voight. Contiki — a Lightweight
and Flexible Operating System for Tiny Networked Senors. In Proceedings
of the First IEEE Workshop on Embedded Networked Sensors, Tampa,
Florida, USA, November 2004

[6] Adam Dunkels, Oliver Schmidt, Themio Voigt, Muneeb Ali.
“Protothreads: Simplifying Event-Driven Programming of Memory-
Constrained Embedded Systems.”

[7] I2C. Webpage, http://en.wikipedia.org/wiki/I2¢c

[8] Benigno Zurita Ares, Carlo Fischione, Alberto Speranzon, Karl Henrik
Johansson, “On Power Control for Wireless Sensor Networks: System
Model, Middleware Component and Experimental Evaluation”

[9] V. Lumelsky and T. Skewis, “Incorporating range sensing in the robot
navigation function,” IEEE Transactions on Systems Man and Cybernetics,
vol. 20, pp. 1058 — 1068, 1990.

[10]J. Borenstein and Y. Koren, “The vector field histogram - fast obstacle
avoidance for mobile robots,” IEEE Transaction on Robotics and
Automation, vol. 7, no. 3, pp. 278 — 288, 1991.

[11]Gyrocompass. Webpage, http://en.wikipedia.org/wiki/Gyrocompass

[12]Roble. Website,
http://www.roble.info/robotics/motionplanning/html/Obstacle Avoidance-
1.html

[13]A. Panousopoulou and A. Tzes, “Utilization of Mobile Agents for
Voronoi-based Heterogeneous Wireless Sensor Network Reconfiguration”

[14]P. Alriksson, J. Nordh, K.-E. Arzén A. Bicchi, A. Danesi, R. Schiavi, L.
Pallottino, “A Component-Based Approach to Localization and Collision
Avoidance for Mobile Multi-Agent Systems”

35

http://www.ist-runes.org/docs/deliverables/D2_01.pdf
http://www.roble.info/robotics/motionplanning/html/ObstacleAvoidance-1.html
http://www.roble.info/robotics/motionplanning/html/ObstacleAvoidance-1.html
http://en.wikipedia.org/wiki/Gyrocompass
http://www.add-something-here.com/
http://www.moteiv.com/

9. Appendix A

9.1 Obstacle Detection

volatile int dir_value=2400;
volatile int dir=1;

volatile int distBuff[3];
volatile int conv = 0;

volatile int ivar = O;

//To make things easier change angle so: O<angle<360
void adjust_angle(float *angle){
while ((*angle)<0){
(*angle)+=(2*PI);
}
while ((*angle)>=(2*PI)){
(*angle)-=(2*PI);
}
}

//Move the servo
void move_servo(){
if (dir<0){
dir_value-=SERVO_STEP_SIZE;
if (dir_value<=SERVO_MAX_RIGHT){
dir_value=SERVO_MAX RIGHT;
dir=1;
}

}
else if (dir>0){

dir_value+=SERVO_STEP_SIZE;
if (dir_value>=SERVO_MAX_LEFT){
dir_value=SERVO_MAX LEFT;
dir=-1;
}
}
OCRI1A=dir_value;

}

//add an obstacle (if the distance is less than ~0.64)

36

void add_obstacle(int distance){
float angle = (dir_value*SERVO_STEP_ANGLE)-51.0424;
angle*=(P1/180); //convert to radians

/*¥*#* CONVERT RESULT FROM A/D INTO A DISTANCE IN
METERS *3**
float dist_m =(log(distance)-C2)/C1;

//**#%¥ CONVERT TO A GLOBAL COORDINATE SYSTEM *%*#*
angle+= (X[2] - (P1/2));

adjust_angle(&angle); /0 < angle <= 2pi to make things easy
float x =0;

float y = 0;

/[#¥* COMBINE angle AND dist_m TO GET x,y ***
if (angle == 0){
x=X[0]+dist_m;
y=X[1];
}
else if (angle<(P1/2)){
x=X[0]+(dist_m*sin((PI/2)-angle));
y=X[1]+(dist_m*cos((PI/2)-angle));
}
else if (angle==(P1/2)){
x=X[0];
y=X[1]+dist_m:;
}
else if (angle>(P1/2) && angle<PI){
x=X[0]-(dist_m*sin(angle-(P1/2)));
y=X[1]+(dist_m*cos(angle-(P1/2)));
}
else if (angle == PI){
x=X[0]-dist_m:;
y=X[1];
}
else if (angle>PI && angle<(1.5*PI)){
x=X[0]-(dist_m*sin((1.5*PI)-angle));
y=X[1]-(dist_m*cos((1.5*PI)-angle));
}
else if (angle==(1.5*PI)){
x=X[0];
y=X[1]-dist_m;
}
else if (angle>(1.5*PI)){
x=X[0]+(dist_m*sin(angle-(1.5%P1)));

37

y=X[1]-(dist_m*cos(angle-(1.5*PI)));
}
add_to_map(x,y);
}

// a/d conversion complete interrupt
SIGNAL(SIG_ADC){
int distance;
unsigned char Ibyte,hbyte;
Ibyte = inp(ADCL);
hbyte = inp(ADCH);

distBuff[conv] = (hbyte<<8) | Ibyte;

++conv;
if (conv<3){
outp(BV(ADEN)IBV(ADSC)IBV(ADIE)IBV(ADPS2)IBV(ADPS1)I
BV(ADPS0),ADCSRA);
}

else if (conv==3){
/% FIND THE MEDIAN OF THE VALUES *3*%*
distance = MIN(MIN(
MAX(distBuff[0],distBuff[1]),
MAX(distBuff[0], distBuff[2])),
MAX(distBuff[1],distBuff[2]));

/*
* Notice the semi-hack (last bit of if-statement)!
* I'ts there cuz of the poor angle estimation
* when the robot is turning fast, so what the hack
* does is it forces the robot not to update the
* map when the robot is turning faster than
* pi/4 radians/second!
*/

if (distance >= MAX_DIST && mode==

&& (ABS(u[0]-u[1])/L_BOT)<(P1/4)){
add_obstacle(distance);

}

move_servo();

}

38

/%% TIMER INTETRRUPT ***
SIGNAL(SIG_OVERFLOWO){
/[*¥**% RESTART TIMER *%*%*
outp(0x01,TCNTO); //6F <=> 10 ms

#if BOT_ID==2
if (drop_mote==1){
if (ivar==0)
OCR1B=1100;
else if (ivar==150){
OCR1B=3700;
ivar=-1;
drop_mote=0;
}
++ivar;
}
#endif
if (mode==1){
conv=0;
outp(BV(ADEN)IBV(ADSC)IBV(ADIE)IBV(ADPS2)IBV(ADPS1)|
BV(ADPS0),ADCSRA);

39

9.2 Obstacle avoidance

/1#¥**% GLOBAL VARIABLES ***

volatile struct point goal = {0,8};

volatile int nbr_ref = 0;

volatile uint8_t obstacles[matrix_x][matrix_y];

/I*#*% FILE-LOCAL VARIABLES ***

float k_att = 0.17; //attractive force constant

float max_speed = 0.2; // maximum speed for the robot
float dO = 0.7; // max distance that the sensor can reach
float k_obst = 0.10; //repulsive force constant

float k_speed = 0.1; //constant for the speed

int map_test = 1;

//calculate the euclidian distance of the vector v
float get_distance(struct point v){

return sqrt(SQR(v.x)+SQR(v.y));
}

/lcalculate the attractive force gradient
struct point get_f_att(){
struct point ret_gradient;
ret_gradient.x = -(X[0] - goal.x);
ret_gradient.y = -(X[1] - goal.y);

ret_gradient.x=ret_gradient.x/get_distance(ret_gradient)*8.0f;
ret_gradient.y=ret_gradient.y/get_distance(ret_gradient)*8.0f;

return ret_gradient;

}

//calculate the repulsive force gradient
struct point get_f_rep(){

int 1,j;

int t=1;

int start = get_start_index();
int stop = get_stop_index();

struct point ret_gradient;
struct point obst_pos;

40

obst_pos.x = 0;
obst_pos.y = 0;

ret_gradient.x = 0;
ret_gradient.y = 0;

/[calculate an avrage of all the obstacle gradients
for (i=start;i<stop;++i){
for (j=0;j<25;++j){
if (obstacles[j][i]>=1){
obst_pos.x = index_to_coordinate(j);
obst_pos.y = index_to_coordinate(i);

ret_gradient.x =

(((t- D)*ret_gradient.x)/t)+(obst_pos.x/t);
ret_gradient.y =

(((t-1)*ret_gradient.y)/t)+(obst_pos.y/t);
++t;

}

}
}

//if no obstacles where found return O
if (t==1) {
ret_gradient.x=0;
ret_gradient.y=0;

else{
ret_gradient.x=X[0]-ret_gradient.x;
ret_gradient.y=X[1]-ret_gradient.y;
}

return ret_gradient;

}

/[calculate the heading and the speed for the robot

void get_references(float *speed, float *heading){
struct point heading_att_grad = get_f_att();
struct point heading_rep_grad = get_{ rep();
struct point heading_grad;
float dist_m = get_distance(heading_rep_grad);

// make the resulting gradient prop. to 1/distance”2 (that is // distance to
the obstacle)
if (dist_m<d0 && dist_m>0) {
heading_grad.x = k_att*heading_att_grad.x +

41

k_obst*((1/dist_m)-(1/d0))*
(1/(SQR(dist_m)))*
((heading_rep_grad.x)/dist_m);

heading_grad.y = k_att*heading_att_grad.y +
k_obst*((1/dist_m)-(1/d0))*
(1/(SQR(dist_m)))*
((heading_rep_grad.y)/dist_m);

//if the obstacle is to far away ignore it

} else {
heading_grad.x=k_att*heading_att_grad.x;
heading_grad.y=k_att*heading_att_grad.y;

}

*speed = get_distance(heading_grad);

*heading = atan2(heading_grad.y,heading_grad.x);

(*speed)*=k_speed;

if ((*speed) > max_speed){
*speed=max_speed;
}

++nbr_ref;

}

//couldn't find a round function so I made my own with ceil and //floor
int round (float x){
float temp = x;
temp-=(int)x;
if (temp>=0.5)
return (int) ceil(x);
else
return (int) floor(x);

}

void print_map(){
int i,j;
for (i=0;i<matrix_y;++1i){
for (j=0;j<matrix_x;++j){
put_int(obstacles[j][i]);
}

}

void add_to_map(float x, float y){
int xIndex = round((x*100)/Resolution);
int yIndex = round((y*100)/Resolution);

42

if (xIndex<matrix_x && yIndex<matrix_y){
obstacles[xIndex][yIndex]=nbr_ref;

}
}

/[returns a coordinate (in meters) given an array index
float index_to_coordinate(int index){

float val;

val=index*Resolution;

val/=100;

return val;

}

/[returns the start index, that is an index corresponding to 0,2m beihnd the robot.

int get_start_index(){
int index;
float y;
if (X[1]>0)
y = X[1] * 100;
else
y=0; //simpler if the map starts at y=0

index = round(y/Resolution);
index-= 2;

if (index<0){
index=0;

}

return index;

}

/[returns the stop index, that is an index corresponding to 0,6m in front of the

/[robot.
int get_stop_index(){
int index = get_start_index();

index+=8;
if (index>matrix_y){

index=matrix_y;

}

return index;

43

	1.Introduction
	1.1Background
	1.2Other Control Problems
	1.3Purpose
	1.4Limitations
	1.5Previous work

	2.Current System
	2.1Hardware
	2.2Controllers
	2.3Other Software

	3.Initial problems
	3.1Experiments
	3.2Space issues
	3.3The angle estimation

	4.Java program
	5.Obstacle avoidance
	5.1Different methods
	5.2Potential field method
	5.3Hardware
	5.4Implementation Details
	5.5Results

	6.Practical Experience
	6.1Bridging problems
	6.2The Final Demo

	7.Conclusions
	8.Bibliography
	9.Appendix A
	9.1Obstacle Detection
	9.2Obstacle avoidance

