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Notation

Acronyms

AC Adyn Compare
ACF Adyn Compare Fast
ACS Adyn Compare Slow
ADYN Actuator DYNamics monitoring
AFS Active Front Steering
ARL Average Run Length function
CDA Change Detection Algorithm
CUSUM CUmulative SUM
ELU Electromagnetic Locking Unit
FAR False Alarm Rate
GMA Geometric Moving Average
MTD Mean Time to Detection
MTFA Mean Time between False Alarms
LCUSUM Local CUSUM
LGCUSUM Local and Global CUSUM
VSR Variable Steering Ratio
ZF Zahnrad Fabrik (Cogwheel Factory)

Basic Notation

AFS system

δS steering wheel angle
δM motor angle
δG pinion angle
iS steering wheel angle to pinion angle ratio
iM motor angle to pinion angle ratio
δF average front wheel angle
FSG pinion angle to rack displacement static nonlinearity
δMd desired motor angle
εpos position residual in ADYN
εvel velocity residual in ADYN
εacc acceleration residual in ADYN
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Change Detection

yi independent random variables, assumed to be normal distributed (input)
θ “changing quantity”
pθ probability density
s log-likelihood ratio
Eθi

expectation of the random variables under the distribution pθi

σ2 standard deviance and E(y2
k)

m mean value
m0 mean value before change
m1 mean value after change
εi residuals
Θi expected value of the residuals
vi residual deviation modeled as white noise
Sk integrated log-likelihood ratio
gt drift in change detection algorithms
h threshold (GMA and CUSUM)
ν drift parameter (CUSUM)
µ θ − ν
σ2

0 variance before change
σ2

1 variance after change
nk

yk

σ

σ∗
ln σ2

0−ln σ2
1

σ−2
1 −σ−2

0

z value of the cumulative sum
Lz general ARL function
L0 ARL function when the drift starts in 0
E(T0,h|z) the average number of samples from the current sample that it takes

to reach the lower threshold 0 for the cumulative sum (the drift) when
starting in z

P(0|z) the probability that the cumulative sum (drift) reaches the threshold h
when starting in z

N(z) E(T0,h|z)
P (z) P(0|z)
fθ density function for the squared input sequence
γi GMA weights
α GMA forgetting factor
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Plausibility

v1 or vFL velocity of the front left wheel
v2 or vFR velocity of the front right wheel
v3 or vRL velocity of the rear left wheel
v4 or vRR velocity of the rear right wheel
εij different residuals
δF average front wheel angle
δl left front wheel angle (Ackermann)
δr right front wheel angle (Ackermann)
l distance between rear and front axis
b distance between left and right wheels
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Chapter 1

Introduction

This thesis consists of two different parts. They both concern error/change
detection. The first part is about error detection in the actuator dynamics of
the Active Front Steering system (AFS) and the second part is about plausibility
of the wheel velocities. Here an introduction to them is given.

1.1 Error Detection in the Actuator Dynamics
of the AFS System

1.1.1 The Active Front Steering System

Functionality

The Active Front Steering system is developed and patented by ZF Lenksysteme.
Without loosing the mechanical connection between the steering wheel and the
road wheels i.e. it is not a steer by wire system, it provides an electronically
controlled superposition of an angle to the steering wheel angle. Figure 1.1
shows the essentials of the system and Figure 1.2 shows the effect of the system.
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Figure 1.1: AFS principle: the planetary gearbox enables the superposition of
δM to the steering wheel angle δS without loss of mechanical connection between
the steering wheel and the road wheels.

Figure 1.2: AFS effect: An “extra” angle is added/subtracted to the wheels
with the AFS system.
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The angles are related as:

1
iS

δS +
1

iM
δM = δG (1.1)

where δS is the steering wheel angle, δM is the angle the AFS system superim-
poses to the system, iM and iS are their respective ratios and δG is the pinion
angle.

The relation between the road wheels, δF and the pinion angle is:

δF = FSG(δG) (1.2)

FSG is a static nonlinearity that accounts for the relation between pinion angle
and the rack displacement. Note that δF is an average angle of the two front
wheels, the wheels have different angles according to the Ackermann steering
geometry [1, page 336].

In Figure 1.3 it is seen how δM is generated; the AFS motor and the planetary
gearbox are shown.

Figure 1.3: The AFS motor mechanism.

By controlling the AFS motor the steering behavior of the car can be changed.
The Variable Steering Ratio (VSR) adds an angle depending on the velocity of
the car. At low velocities a large angle is superimposed, increasing the comfort
when e.g. parking or turning. At high velocities a negative angle is added, this
makes the car less sensitive to steering wheel movement and therefore safer.
The AFS system can also be used for vehicle stabilization (active safety) and
for giving a faster response to the driver’s input [2].

Of course it is very important that the AFS system and the AFS motor gives
the correct angle δM . To ensure this many safety features monitor the system.
ADYN is one of these safety features.
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Actuator Dynamics Monitoring - ADYN

ADYN monitors the actuator dynamics in the AFS system. ADYN’s inputs are
the desired motor angle δMd and the real angle captured from a sensor δM . Two
filters form the velocity and the acceleration of these angles.

motor angle δM

motor angular velocity δ̇M

motor angular acceleration δ̈M

desired motor angle δMd

desired motor angular velocity δ̇Md

desired motor angular acceleration δ̈Md

(1.3)

The following residuals are formed:

εpos = δM − δMd (1.4)

εvel = δ̇M − δ̇Md (1.5)
εacc = δ̈M − δ̈Md (1.6)

Different change detection algorithms (CDA) monitor that these residuals do
not become too large. When a change detection algorithm gives an alarm, the
AFS motor is stopped with an electromagnetic locking unit (ELU), see Figure
1.4. The change detection algorithms should be tuned not to give false alarms
when there is no error and to give alarm as fast as possible when there is an
error.

Figure 1.4: The electromagnetic locking unit locks the motor if an error is
detected.

1.1.2 Objectives

The objectives of this part of the thesis are:

• With statistical properties of the residuals and change detection theory
find parameters to the CUSUM change detection algorithm.
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• Find parameters for existing CUSUM and GMA algorithms with trial and
error.

• Optimize the error detection in ADYN.

• Compare results for the different approaches with each other and existing
detectors.

1.1.3 Measurements

Two different sets of measurements were used to tune and test the different
change detection algorithms:

Set A

The measurements used come from ten driving scenarios. These ten driving
scenarios generate the biggest residuals possible.

Set B

For one of the approaches it was not enough to use the largest residuals possible.
This approach operates on different magnitude intervals of the residuals, so
residuals covering all possible magnitudes were needed. Set B covers 50 driving
scenarios, 10 of them are set A.

1.1.4 Outline

In Chapters 2 and 3 basic theory that is used is described. With this theory
different approaches for change detection are tested and the results can be seen
in Chapters 4. Conclusions are made in Chapter 5.

1.2 Plausibility of the Wheel Velocities

1.2.1 Calculation of the Car Velocity

The car velocity is used as input to many functions in the AFS system. It
is calculated with the aid of the velocities of the four wheels of the car which
sensors provide. As it is implemented now, the function that calculates the car
velocity takes into account if any of the sensor’s selfdiagnostics says it is not
working correctly (voltage-check etc) or if the CAN-bus communication is not
working properly. Also the ESP system tells if one wheel velocity is false, in
particular so called sensor errors and outliers (see Section 1.2.2) which are not
detected by the AFS system.

1.2.2 Erroneous Wheel Velocities

Outliers

In some driving scenarios the velocity of the wheels differ a lot. It can be one
wheel that for some reason is skidding, or two wheels skidding. This is possible
if the driver of the car e.g. is driving actively or if two wheels are on a more
slippery surface in the so called “µ-split scenario”.
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1.2.3 Objectives

The objectives of this part of the thesis are:

• With change detectors detect outliers and sensor errors fast enough for
AFS purposes.

• Examine if two erroneous wheel velocities can be detected and how this
should be handled.

1.2.4 Measurements

Data from 58 driving scenarios was used. All data found was used, to cover as
many situations as possible.

1.2.5 Outline

In Section 6.1 different approaches are presented, the results can be seen in
Section 6.2 and conclusions are made in Section 6.3.



Chapter 2

Change Detection
Algorithms

Here the CUSUM and GMA change detection algorithms are described. The
description covers what needs to be known to understand this thesis. If the
reader wants to learn more, [3] and [4] are recommended. These books has been
used as references when writing this.

2.1 Change Detection

2.1.1 Change Detection Fundamentals

The variables where changes should be detected {yi}, are a sequence of indepen-
dent random variables with a probability density pθ(y). The probability density
depends on one parameter θ, typically mean or variance, which changes from θ0

to θ1. This change is what should be detected.
The CUSUM and GMA algorithms use a special property in the log-likelihood

ratio defined as

s(y) = ln
pθ1(y)
pθ0(y)

(2.1)

The property is

Eθ0(s) < 0 and Eθ1(s) > 0 (2.2)

where Eθi
is the expectation of the random variables under the distribution pθi

.
This means that when the parameter θ changes from θ0 to θ1, the sign of

the mean value of the log-likelihood ratio changes. This sign change is what is
used in the detection. See [3, page 25] for more details.

Assume Gaussian distribution y ∈ N(m,σ), the probability density function
is:

pθ(y) =
1

σ
√

2π
e−(y−m)2/2σ2

(−∞ < y < ∞) (2.3)

12
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2.1.2 Change in Mean Value

Consider a change in the mean value from m0 to m1 i.e θ is m . The variance
σ2 is assumed to be constant. (2.1) will be:

si = ln

(
1

σ
√

2π
e−(yi−m1)

2/2σ2

1
σ
√

2π
e−(yi−m0)2/2σ2

)
=

m1 −m0

σ2

(
yi −

m0 + m1

2

)
(2.4)

Assume σ and m1 to be known and m0 = 0 then

si = yi (2.5)

is appropriate to be used to detect the change in the mean. See [3, page 27] for
more details.

2.1.3 Change in Variance

In this case θ is σ2 and changes from σ2
0 to σ2

1 . The mean m is assumed to be
constant and (2.1) becomes:

si = ln

(
1

σ1
√

2π
e−(yi−m)2/2σ2

1

1
σ0
√

2π
e−(yi−m)2/2σ2

0

)
= ln

σ0

σ1
+

(
1
σ2

0

− 1
σ2

1

)
(yi −m)2

2
(2.6)

If σ0 and σ1 are assumed to be known and m = 0 then

si = y2
i (2.7)

should be used to detect the change. See [3, page 31] for more details.

2.1.4 Residual Generation

In this thesis the variables {yi} are residuals. Figure 2.1 shows how they are
generated in general. In the ideal case the residuals are zero before a change

Model/Observer

-
input

-

System

��
��

+
−

?

6

-
residual, εi

Figure 2.1: Generation of residuals.

and nonzero after a change. Of course this is not the case in general due to e.g.
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not perfect model, sensor disturbances and measurement noise. The residuals
are modeled as:

εi = Θi + vi (2.8)

where Θi = 0 and vi is white noise with Gaussian distribution, N ∈ (0, σ2).
From Equation 2.8 it can be seen that when the model is correct and no

change has occurred, the residuals are white noise. When a change occurs in
either the mean or the variance, the residuals change and as written above it is
εi and ε2i that should be used to detect these changes. Because of the white noise
and the disturbances, some kind of function that averages intuitively seems like
a good change detector [4, page 18]. The CUSUM and GMA algorithms are two
well known detectors which do exactly this.

The residuals that are used in this thesis differ from the residuals in Figure
2.1. The residuals are written in Equations 1.4, 1.5 and 1.6. They are the
difference between desired and actual values in a regulator loop. The values
of the residuals highly depend on how good the controller of the AFS motor
manages to follow the desired values. To the above written behavior of the
residuals the performance of the AFS motor controller has to be added as a
disturbance.

2.1.5 Performance Measures

Change detection algorithms should preferably be fast and only alarm when a
change has occurred. Different change detectors do this differently well. To be
able to compare change detectors the following performance measures exist [4,
page 28-29]:

• Mean Time between False Alarms (MTFA). Tells how long time there
is between two alarms (in average) when no change has occurred. This
should of course be as large as possible. 1

MTFA is called the False Alarm
Rate (FAR).

• Mean Time to Detection (MTD). Tells how long time it takes to detect a
change. This should be as small as possible.

• Average Run Length function, ARL(θ). Tells how long time it takes until
an alarm is given after a change of size θ has occurred. ARL(θ) generalizes
MTFA and MTD:

ARL(0) = MTFA = 1
FAR

ARL(θ) = MTD(θ)
(2.9)

2.2 The CUSUM Algorithm

2.2.1 Intuitive Derivation

The cumulative sum (CUSUM) algorithm uses the sign change in Equation 2.1
when a change occurs. The log-likelihood ratios are sum up and form:

Sk =
k∑

i=0

si (2.10)
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Because of the sign change, {Sk} will show a negative drift before a change and
a positive drift after. Figure 2.2 shows an example when a change at time 15
occurs.

To detect the change, the difference between the minimum value of {Sk} and
the current value is in focus. When the difference is larger than a threshold h a
change is said to have occurred.

Instead of letting {Sk} drift and get a negative value, it is convenient to let
it be zero when it is drifting negatively. Then when a change occurs the drift
will rise from zero and be positive. We get the following equation which is based
on Equation 2.10:

gt = max (gt−1 + st, 0)
g0 = 0 (2.11)

There is one problem still; in Figure 2.2 it can be seen that the drift in
average has a negative drift before the change. This causes that when Sk is
positive for many time instants following each other before a change, equation
(2.11) will get a positive drift. To avoid this a drift parameter ν is introduced:

gt = max (gt−1 + st − ν, 0)
g0 = 0 (2.12)

And with the threshold, the CUSUM algorithm looks as follows [3, chapter
2.2.1]:

gt = max(gt−1 + st − ν, 0)
g0 = 0
alarm if gt > h

(2.13)

In Figure 2.3 the typical behavior of the CUSUM algorithm can be seen.

2.2.2 Choosing the Parameters

Trial and Error

There are two parameters that has to be chosen: ν and h. How they are chosen
depends on how the input to the CUSUM algorithm looks like i.e. the log-
likelihood ratio which in Equation 2.13 is {st}. If it has a big variance, ν has
to be bigger than if the variance is small. One rule of thumb is that ν should
be chosen so that the drift before a change is zero more than 50 percent of the
time [4, page 70].

Now assume a mean change should be detected. From Equation 2.5 it is
seen that in this case st is εk. A very important aspect worth considering when
choosing ν is that a change smaller than ν can not1 be detected. So when
choosing ν, also how small changes that can be detected is chosen.

The threshold h depends on both the input to the CUSUM algorithm and
on how ν has been chosen. If ν is chosen big, the random positive drift will
be small making it possible to choose h small to detect changes faster. If ν is
chosen small, the random positive drift will be larger which forces the threshold
to be bigger. h affects the FAR and the MTD and should be chosen so that both
of them are as small as possible, this is always a compromise. In Figure 2.4 it
can be seen how the CUSUM detector acts with different parameter settings.

1In some cases when the random positive drift is quite large and the threshold is small it
can be detected.
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Figure 2.2: A Gaussian sequence with mean change at time 15 (top). The
negative and positive drift can clearly be seen (bottom).

Figure 2.3: Typical behavior of the CUSUM algorithm. The threshold h is 20.
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Figure 2.4: Parameters for the CUSUM algorithm. Different ν are chosen and
affects how h can be chosen. From the top ν is 0.5, 1.5, 2.0 and 2.5. Note how
the magnitude of the drift changes as ν is changed, as ν gets closer to the mean
change which is of the magnitude 2 the change gets more difficult to detect.
Also note that this input sequence (bottom) is perfectly Gaussian and therefore
very easy to handle.
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CUSUM Parameters with Statistics, Mean Change

The parameters can be chosen in a more systematic way. This is done with
the aid of the ARL function for the CUSUM algorithm. The “exact” ARL
function is complex [3, page 168], and given by an equation which consists of
two Fredholm integral equations. The equation can be seen in (2.20). But
in the case of Gaussian distribution for the residuals and mean change two
approximations exist: Wald’s approximation and Siegmund’s approximation [3,
page 171-175] [4, page 442]. Wald’s approximation:

ARL =
e−2 hµ

σ2 − 1 + 2hµ
σ2

2µ2

σ2

(2.14)

Siegmund’s approximation:

ARL =

{
e−2(h/σ+1.166)µ/σ−1+2(h/σ+1.166)µ/σ

2µ2/σ2 if µ 6= 0
(h/σ + 1.166)2 if µ = 0

(2.15)

In both equations µ = θ − ν. The Siegmund approximation is more accurate
than Wald’s [4, page 443] and therefore the Siegmund approximation is used.

The idea is to first conform the residuals to a normal distribution, this will
give σ in (2.15). Then h(ν), the threshold as a function of drift can be formed
from the following equation:

ARL(0, h, ν) =
1

FAR
(2.16)

where an appropriate FAR is chosen. Assuming the change θ to be known, this
gives:

ARL(θ, h(ν), ν) = MTD(θ) (2.17)

This is an equation that only depends on ν. The value of ν that minimizes
(2.17) is found, and with this ν, h is found from (2.16). Both the parameters in
the CUSUM algorithm have now been determined in a systematic way.

CUSUM Parameters with Statistics, Variance Change

When detecting variance changes, the CUSUM algorithm can be rewritten. As-
sume a variance change from σ2

0 to σ2
1 in the Gaussian sequence {yk} with mean

E(yk)=0. The CUSUM algorithm can be written as:

gk = max(gk−1 + n2
k−1 − θ, 0)

g0 = 0
alarm if gk > h

(2.18)

where
nk = yk

σ

θ = (σ∗

σ )2

σ∗ = ln σ2
0−ln σ2

1

σ−2
1 −σ−2

0

σ2 = E(y2
k)

(2.19)

In this CUSUM algorithm [3, page 170] there is only one parameter to be de-
termined: h. The other parameters are determined from {yk} and are assumed
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to be known. h is determined with the aid of the ARL function. However in
this case an approximation of the ARL function does not exist so the work was
done with the “exact” function [3, page 168]:

Lz = E(T0,h|z) + P(0|z)L0 = N(z) + P(z)L0 (2.20)

E(T0,h|z) is the average number of samples from the current sample that it
takes to reach the lower threshold 0 for the cumulative sum i.e. the drift, when
starting in z. P(0|z) is the probability that the cumulative sum reaches the
threshold h when starting in z. So the ARL function is weighted with measures
for reaching either h or zero when starting in z in the cumulative sum. Now
assume z = 0, (2.20) turns into:

L0 =
N(0)

1− P (0)
(2.21)

N(0) and P (0) are found from the following equations:

P(z) =
∫ −z

−∞
fθ(x)dx +

∫ h

0

P(x)fθ(x− z)dx (2.22)

N(z) = 1 +
∫ h

0

N(x)fθ(x− z)dx (2.23)

fθ is the density function for the squared sequence {y2
k} which when {yk} is

Gaussian is a χ2(1) distribution.

fθ(x) =

{
e−

x+θ
2√

2Γ( 1
2 )
√

x+θ
if x + θ > 0

0 if x + θ ≤ 0
(2.24)

Equations 2.22 and 2.23 are Fredholm integral equations of the second kind
which must be solved numerically. Several different methods exist, e.g. the
Nystrom method [6] or with the integral equation Neumann series [7]. The
method in [3, page 170-171] with some simplifications was used. Also the Nys-
trom method was implemented but did not work since the kernel was separable
[6, page 4].

In Equations 2.21, 2.22 and 2.23 it is seen that the ARL is a function of h
and θ. Finding h for different values of θ and ARL is what is of interest and an
algorithm that does this has been implemented.

2.2.3 Double Sided CUSUM

In Equation 2.13 only positive changes are detected. To detect negative changes
as well, the absolute value of the residuals can be used in case of mean change.
In the case of variance change this does not matter since the squared residuals
always are positive, making it impossible to detect a decrease in variance with
this algorithm:

gt = abs(εt) (2.25)

There is a better way though; form two CUSUM detectors, one as (2.13) which
detects positive changes, and one where the drift parameter is positive and the
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threshold is negative detecting negative changes:

gt = min(gt−1 + st + ν, 0)
g0 = 0
alarm if gt < h

(2.26)

This will give better results since the random drift in both the detectors indi-
vidually will be less than if (2.13) was used with (2.25). This makes it possible
to choose smaller drift parameters and smaller thresholds making the detectors
more sensitive and faster. When using two CUSUM detectors as described, the
algorithm is called “double-sided CUSUM” [4, page 67].

2.3 GMA

2.3.1 Derivation

GMA stands for Geometric Moving Average. The idea behind this change
detector is to form a weighted sum:

gt =
∞∑

i=0

γist−i (2.27)

where {si} is the log-likelihood ratio in Equation 2.1 and the weights are:

γi = α(1− α)i, 0 ≤ α < 1 (2.28)

The weights are exponential and act as a forgetting factor. In Figure 2.5 two
different set of weights can be seen.

Figure 2.5: Two examples of the exponential weights, α = 0.90 in the solid
curve and α = 0.99 in the dashed.

When the weighted sum exceeds a threshold h a change is detected. The
GMA detector looks as follows, where Equation 2.27 has been rewritten to be
recursive:

gk = (1− α)gk−1 + αsk

g0 = 0
alarm if gk > h

(2.29)



CHAPTER 2. CHANGE DETECTION ALGORITHMS 21

Recent data are more important and therefore get weighted higher. Depend-
ing on how α is chosen the “memory” of the GMA will have different sizes. This
“memory” is also called the sliding window. See [3, page 28-31] for more details.

2.3.2 Choosing the Parameters

The parameters to be chosen in the GMA detector are the forgetting factor α
and the threshold h. α is in the range 0 ≤ α < 1. In Figure 2.5 it shows that if
α is chosen small the exponential function will become small fast and the sliding
window will be smaller, i.e. the old inputs are relatively fast forgotten. When α
is chosen large (close to one), then it is the opposite: The exponential function
becomes small slower and the sliding window is larger, i.e. the inputs will be
remembered longer. This gives the following behavior:

The smaller α is, the faster the GMA will be. But the detector will also be
more affected by disturbances causing smaller margins and possibly larger FAR.
The detector will also not be so sensitive and not able to detect small changes.

If α is chosen bigger, the GMA will be slower, more resistent to disturbances
and able to detect smaller changes. So dependent on how α is chosen the
GMA detector will either be slow with low FAR or fast with larger FAR. The
importance of these properties chooses how α is chosen, a compromise between
FAR and fastness has to be made.

The threshold depends on how α is chosen. Generally a larger α gives a
smaller threshold and vice versa. See Figure 2.6 for an example of what is
written above.

2.3.3 Double sided GMA

The same idea as in the case with the CUSUM detector; a negative GMA is
implemented for the negative changes [4, page 67]. The only parameter that
changes is the threshold h that will be negative instead if positive. The negative
GMA looks as follows:

gk = (1− α)gk−1 + αsk

g0 = 0
alarm if gk < h

(2.30)
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Figure 2.6: The input sequence is Gaussian with variance 5, at time 25 a mean
change from 0 to 4 occurs. In the graph in the middle α = 0.95 and in the lower
graph α = 0.995, these graphs show the drift for the GMA (2.29). Thresholds
has also been chosen. Note that the threshold in the lower case is smaller than
in the middle but the change is despite this detected slower in the lower case.
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Local CUSUM

The residuals in 1.4, 1.5 and 1.6 turned out to most often be relatively small but
in some driving scenarios very large. In Figure 3.1 the difference in magnitude
for εpos is seen, the difference for εvel and εacc is larger. Since these “few”
large residuals worsen the performance of the change detectors significantly an
approach that circumvents this has been implemented and is presented here.

Figure 3.1: Difference between residuals (εpos) in two scenarios. The small
residuals (left) are from a normal driving scenario and the large (right) from a
actively driven driving scenario (rapid steering wheel movements).

The distribution of the position residuals (set A) can be seen in Figure 3.2,
note that most of the residuals are very small despite that this is data with many
actively driven scenarios (rapid steering wheel movements) which generates large
residuals. A filter that simply discarded the residuals over a certain value was
implemented and the CUSUM algorithm was used on these residuals.

23



CHAPTER 3. LOCAL CUSUM 24

Figure 3.2: The graph shows how many percent of the pos residuals that are in
the region −x < pos < x.

The filters looked like this:

if(residual>value)
out=0
else
out=residual
end

One problem with this filter is that when the residuals are larger than value,
no change can be detected. Because of this many filters with different sizes
on the value parameter were implemented and attached to different CUSUM
detectors working in parallel. This way the range where the CUSUM algorithms
can detect changes increases to what is needed.
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Results

4.1 Results - Statistical Approach

The results obtained with the statistical approach are from set A. The figures
show residuals and results from εpos (1.4).

4.1.1 CUSUM Parameters with Statistics - Mean Change

Finding ν

In Figures 4.1, 4.2 and 4.3 Equation 2.17 has been plotted for different θ, σ
and FAR. From the figures it can be seen that the suggested ν is always θ/2
regardless of how big the variance is, the value of θ and the FAR.

Now compare figures with same θ and FAR and different σ e.g. top diagram
in Figures 4.1 and 4.2. On the y-axis the MTD is shown and it is seen that when
the variance increases the MTD increases. This agrees with what one intuitively
would think; when the variance increases, the detection of a change gets more
difficult, which makes the mean time to detection larger.

25
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Figure 4.1: MTD(ν). σ = 1, θ = 5, 10 and 15, 1
FAR = 200

Figure 4.2: MTD(ν). σ = 5, θ = 5, 10 and 15, 1
FAR = 200
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Figure 4.3: MTD(ν). σ = 1, θ = 5, 10 and 15, 1
FAR = 2000000
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Finding h

Since ν always is θ/2, h is always h(θ/2). But h depends on more than ν. In
Equations 2.16 and 2.15 it is seen that the threshold also depends on σ and
the FAR. In Figure 4.4 the σ dependence can be seen and in Figure 4.5 the
dependence of the FAR.

The curves look reasonable: In (4.4) it is seen that h is an increasing function
of σ, intuitively this is correct since a larger variance forces the threshold to be
larger to avoid false alarms. In (4.5) it is seen that h is an increasing function
of 1/FAR. Also this intuitively seems to be correct; when less false alarms are
desired, the threshold is increased.

Another property of h that must be fulfilled is h > 0. In Figure 4.4 this is
not fulfilled for small σ and in Figure 4.5 this is not fulfilled for large FAR. It
is concluded that this algorithm not always gives a threshold that can be used,
particularly when σ is small and the FAR is large.

In Figure 4.6 it can be seen that h decreases as ν is increased, also this
intuitively seems correct because when the drift variable is increased the random
drift is decreased making it possible to choose the threshold smaller. This
does not really matter since ν is always chosen as θ/2, but it is seen that the
implemented algorithm is working properly.

Figure 4.4: h is an increasing function of σ. In the top diagram 1
FAR = 200 and

in the bottom 1
FAR = 2000000. In both diagrams ν = 5.
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Figure 4.5: h;s dependance of the FAR. In the top diagram σ = 5, in the middle
diagram σ = 3 and in the bottom diagram σ = 1. In all diagrams ν = 5.

Figure 4.6: h is a decreasing function of ν.
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Test on Gaussian Sequences

The algorithm above intuitively seems to work, here it will be tested on Gaussian
sequences to see if the calculated parameters are working. In the figures the
parameters that are called “suggested” have been calculated. Sample time is
always 0.01.

Figure 4.7: Input with θ = 5 at time 45 sec and σ2 = 1. ν = 2.5 is suggested
and for 1

FAR = 200 h = 0.3995 is suggested, for 1
FAR = 2000000 h = 2.2409 is

suggested. When h = 0.3995 there are 8 false alarms. Sample time is 0.01.

Figure 4.8: The input is a step at time 45 sec where θ = 5 and σ2 = 5. ν = 2.5 is
suggested and for 1

FAR = 200 h = 17.4711 is suggested, for 1
FAR = 2000000 h =

63.2476 is suggested.
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Figure 4.9: The input is a step at time 45 sec where θ = 10 and σ2 = 1.
ν = 5 is suggested and for 1

FAR = 200 h = −0.2449 is suggested, for 1
FAR =

2000000 h = 0.6761 is suggested.

Figure 4.10: The input is a step at time 45 sec where θ = 10 and σ2 = 5.
ν = 5 is suggested and for 1

FAR = 200 h = 9.1921 is suggested, for 1
FAR =

2000000 h = 32.1745 is suggested.
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Figure 4.11: The input is a step at time 45 sec where θ = 15 and σ2 = 1.
ν = 7.5 is suggested and for 1

FAR = 200 h = −0.4979 is suggested, for 1
FAR =

2000000 h = 0.1161 is suggested.

Figure 4.12: The input is a step at time 45 sec where θ = 15 and σ2 = 5.
ν = 7.5 is suggested and for 1

FAR = 200 h = 5.5217 is suggested, for 1
FAR =

2000000 h = 20.8579 is suggested.
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Test of Calculated Parameters on Real Residuals

Conform the Residuals to Gaussian Distribution

The distribution of the residuals can be seen in Figure 4.13. In Figures 4.14,
4.15, 4.16 and 4.17 the residuals in different ways have been modified to fit to
a Gaussian distribution curve. Sigma = σ = standard deviation.

Figure 4.13: All the residuals have been normalized so that the integral is one.

Figure 4.14: All the residuals have been normalized so that the integral is one.
All residuals abs(res)>50 have been removed. The solid curve is a Gaussian
curve with σ = 15.7 and mean=0. The calculated σ is 15.7.

Figure 4.15: All the residuals have been normalized so that the integral is one.
All residuals abs(res)>100 have been removed. The solid curve is a Gaussian
curve with σ = 20.7 and mean=0. The calculated σ is 20.7.
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Figure 4.16: All the residuals have been normalized so that the integral is one.
All residuals abs(res)>200 have been removed. The solid curve is a Gaussian
curve with σ = 33.1 and mean=0. The calculated σ is 33.1. The dashed curve
is a Gaussian curve with σ = 15 and mean=0.

Figure 4.17: All the residuals have been normalized so that the integral is one.
All residuals abs(res)>100 or =0 have been removed. The solid curve is a
Gaussian curve with σ = 21.9 and mean=0. The calculated σ is 21.9. The
dashed curve is a Gaussian curve with σ = 15 and mean=0.
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Results with Conformed Residuals

First parameters that worked was searched for, but since no such parameters
existed parameters that minimized θ were found, i.e. a drift parameter that is
as “sensitive” as possible. In the figures there has not been any changes added
i.e. no change should be detected.

Figure 4.18: abs(res)≤50 and ≥0. θ = 40, σ = 15.7 and 1
FAR = 20000000. The

suggested parameters are: ν = 20 and h = 92.5.

Figure 4.19: abs(res)≤100 and ≥0. θ = 40, σ = 20.7 and 1
FAR = 20000000.

The suggested parameters are: ν = 20 and h = 162.6.
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Figure 4.20: abs(res)≤200 and ≥0. θ = 70, σ = 33.1 and 1
FAR = 20000000.

The suggested parameters are: ν = 35 and h = 237.1.

Figure 4.21: abs(res)≤100 and >0. θ = 40, σ = 21.9 and 1
FAR = 20000000.

The suggested parameters are: ν = 20 and h = 182.2 (σ = 15 gives h = 84.2).
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4.1.2 CUSUM Parameters with Statistics - Variance Change

Finding θ

As seen in (2.19), (2.21), (2.22), (2.23) and (2.24), θ depends on the variance
change, the mean value of the squared input sequence and the ARL value. In
Figure 4.22 it is seen that θ is an increasing function of the variance change.
This agrees with Equation 2.19.

In Figure 4.23 it is seen that θ is a decreasing function of the mean value of
the squared input sequence, σ. This agrees with Equation 2.19 and intuitively
seems correct since a small starting variance should lead to a smaller θ.

In Figure 4.24 θ is plotted as a function of the ARL. As the ARL is chosen
larger, θ increases, this agrees with what one would expect. A larger θ decreases
the random drift and causes longer detection times for changes = larger ARL.

Actually, none of the above written dependencies are used to determine θ.
In Equation 2.19 it is seen that θ is defined by the input sequence’s statistical
properties. But it is seen that the functions seem to be correct and that the
implemented algorithm works.

Figure 4.22: θ is an increasing function of the variance change.

Figure 4.23: θ is a decreasing function of σ.
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Figure 4.24: θ is an increasing function of the ARL.
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Finding h

How h depends on the ARL and θ can be seen in Figures 4.25 and 4.26. That
h increases as the ARL increases was expected since a larger ARL value means
that it should take longer time to detect a change and this is exactly what
happens when the threshold is chosen bigger.

That h decreases as θ increases also seems correct; when θ increases the
random positive drift in the cumulative sum decreases. This makes it possible
to choose the threshold smaller which is what Figure 4.26 shows.

Figure 4.25: h is an increasing function of the ARL.

Figure 4.26: h is a decreasing function of θ.
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4.1.3 Test of Parameters on Gaussian Sequences

The implemented algorithm that finds h in Equation 2.18 are here tested on
Gaussian sequences.

As can be seen from the figures the variance changes tested are detected
most of the time. The parameter θ is obviously not optimal but the suggested
value is in most cases good and could be used as a good starting value.

The parameter h depends on how the ARL is chosen. In Figure 4.32 it can
be seen that the threshold is calculated as negative. Increasing the ARL will
make the suggested h positive and give it a more reasonable value.

Figure 4.27: At time 40 sec the Gaussian input changes its variance from 1 to
3. ARL = 0.5 gives h = 51 and ARL = 1 gives h = 98. θ is 2.7177. Sample
time is 0.01.
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Figure 4.28: At time 40 sec the Gaussian input changes its variance from 1 to
5. ARL = 0.5 gives h = 33 and ARL = 1 gives h = 65. θ is 4.0503. Sample
time is 0.01.

Figure 4.29: At time 40 sec the Gaussian input changes its variance from 3 to
5. ARL = 0.5 gives h = 24 and ARL = 1 gives h = 47. θ is 4.8963. Sample
time is 0.01.
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Figure 4.30: At time 40 sec the Gaussian input changes its variance from 3 to
10. ARL = 0.5 gives h = 5 and ARL = 1 gives h = 9. θ is 8.8814. Sample time
is 0.01.

Figure 4.31: At time 40 sec the Gaussian input changes its variance from 5 to
10. ARL = 0.5 gives h = 4 and ARL = 1 gives h = 6. θ is 9.6261. Sample time
is 0.01.



CHAPTER 4. RESULTS 43

Figure 4.32: At time 40 sec the Gaussian input changes its variance from 5 to
20. ARL = 0.5 gives h < 0 and ARL = 1 gives h < 0. θ is 17.0955. Sample
time is 0.01.
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Test on Residuals - Variance Change

The conformed residuals in Figures 4.14, 4.15, 4.16 and 4.17 was tested. The
parameters (σ1 and ARL) have been chosen to get as good CUSUM parameters
as possible. No working parameters were found.

residuals σ σ0 σ1 θ ARL h

(4.14) 15.7 15.7 15.71 247.75

6.44e50
4.83e50
3.22e50
1.61e50

4
3
2
1

(4.15) 20.7 20.7 20.71 748.45 - -
(4.16) 33.1 33.1 33.11 4.89e3 - -
(4.17) 21.9 21.9 21.91 937.64 - -

In the three lower cases the the ARL values were to big for matlab to handle. No
scaling was necessary since in Figure 4.24 it is seen that the ARL will increase
and this will give worse results than in the first case.

4.2 Results - Trial and Error

Results from simulated errors and from a development vehicle are documented
here.

4.2.1 Explanation of the Tests

The tests have been done in two different environments:

1. Made in an old ADYN where the residuals are set to zero the first second.

2. Made in the current ADYN environment, the only difference of importance
is that the residuals are not set to zero the first second.

Explanation of the tests:

• CUSUM, normal CUSUM test, environment 1, tuned after measurement
set A.

• double CUSUM, normal double sided CUSUM, environment 1, tuned after
measurement set A.

• ACS, Adyn Compare Slow, integrates the residuals and sets the sum to
zero periodically, if the sum exceeds a threshold an alarm is given, envi-
ronment 1, tuned after measurement set A.

• ACF, Adyn Compare Fast, same as ACS with other parameter settings,
environment 1, tuned after measurement set A.

• AC, Adyn Compare, if(abs(residual)>threshold) an alarm is given, envi-
ronment 1, tuned after measurement set A.

• GMA, normal GMA test, environment 1, tuned after measurement set A.
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• LCUSUM, local CUSUM tests acting in different intervals, environment
1, tuned after measurement set A.

• double LCUSUM, double sided LCUSUM, each CUSUM in every interval
in LCUSUM is double sided, environment 1, tuned after measurement set
A.

• double LGCUSUM, double sided local and global CUSUM, double LCUSUM
combined with a normal double sided CUSUM, environment 2, tuned after
measurement set B.

• ADYN, current ADYN, consists of GMA detectors with low α values.

The numbers tell when the change was detected, in time units. No change
detected is noted with x. * means that there was a very short alarm in the
beginning of the test, * is always combined with a number or a x.

4.2.2 Simulated Errors

No error

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM x x x x x x x x x x
ACS x x 2.9 1.8 x 1.8 x x 2.0 x
ACF x x 3.0 1.9 x x x x x x
AC x x x x x x x x x x
GMA x x x x x x x x x x
LCUSUM x x x x x x x x x x
double LCUSUM x x x x x x x x x x
double CUSUM x x x x x x x x x x
double LGCUSUM x x x x x x x x x x
ADYN x x x* x x* x x* x x x

Constant 20

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM x x 7.3 x x x x x x x
ACS x x 2.9 1.8 x 1.8 x x 2.0 x
ACF x x 3.1 1.9 x x x x x x
AC x x x x x x x x x x
GMA x x x x x x x x x x
LCUSUM x 9.3p x x 8.9p 5.5p 4.8p x x x
double LCUSUM x 8.8 x x x 5.3p 5.2p x x x
double CUSUM x x 6.2 x x x x x x x
double LGCUSUM x x x x x x 8.0 x x x
ADYN x x* x* x x* x* x x x x
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Constant 30

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
LCUSUM 3.7p 3.2p x 7.8p 4.0p 4.9p 4.3p 3.4p 5.8p 3.6p

Constant 50

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM x x 6.1 x x x x x x x
ACS x x 2.9 1.8 x 1.8 x x 2.0 x
ACF x x 3.1 1.9 x x x x x x
AC x x x x x x x x x x
GMA x x 7.4 x x x x x x x
LCUSUM 2.0p 2.3p 2.6p 3.8p 2.5p 3.0p 3.5p 2.2p 3.2p 2.8p
double LCUSUM 2.8p 2.7p 3.5p 4.1p 3.6p 2.6p 3.7p 2.7p 3.7p 3.2p
double CUSUM x x 6.1 x x x x x x x
double LGCUSUM 7.3 6.3 6.1 x x x 5.6 6.7 8.4 7.1
ADYN x x* x* x x* x* x x x x

Constant 100

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM x x 5.1 2.7 x x x x x x
ACS x x 2.0 1.8 x 1.8 x x 1.9 x
ACF x x 3.1 1.9 x x x x x x
AC x x x x x x x x x x
GMA x x 6.1 x x x x x x x
LCUSUM 2.0p 1.6p 2.3p 2.5p 2.5p 1.6p 1.5p 1.6p 2.6p 1.8p
double LCUSUM 1.7p 1.9p 1.8p 2.4p 1.8p 2.1p 1.9p 1.8p 2.3p 2.0p
double CUSUM x x 4.0 4.3 x 4.9 8.4 x 8.7 x
double LGCUSUM 3.5 3.1 4.0 4.2 4.0 5.0 2.9 3.1 4.6 3.2
ADYN x x* x* x x* x* x x x x

Constant 500

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
double LGCUSUM 0.5 0.6 0.6 0.8 0.4 0.7 0.5 0.6 0.7 0.6
ADYN x x* 4.0* x x* x* x x x x

Constant 1000

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
double LGCUSUM 0.2 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2
ADYN x x* 1.9* 1.0 x* 1.6* x x 0.9 x
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Constant 1500

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
double LGCUSUM 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
ADYN 0.2 0.2 0.2 0.2 0.0 0.2 0.2 0.2 0.2 0.2

Band limited white noise, noise power 50

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM x x 7.3 x x x x x x x
ACS x x 2.9 1.8 x 1.8 x x 2.0 x
ACF x x 3.0 1.9 x x x x x x
AC x x 6.3 x x x x x x x
GMA x x 9.5 x x x x x x x
LCUSUM x x x x 2.3v 5.3p 6.2p x x 5.2p
double LCUSUM x 5.7v 6.6a x 2.2v 4.0p 2.0a x 4.1v 5.2p
double CUSUM x x 8.2 x x x x x x x
double LGCUSUM 4.7 2.7 2.6 3.8 3.7 3.8 4.8 5.3 5.2 5.4
ADYN x x* x* x x* x* x x x x

Band limited white noise, noise power 100

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM x x 7.3 x x x x x x x
ACS x x 2.9 1.8 x 1.8 x x x x
ACF x x 3.0 1.9 x x x x x x
AC x x 6.3 x x x x x x x
GMA x x 7.4 x x x x x x x
LCUSUM 7.4v 6.2p 7.0v x 2.3v 2.5v 4.6p 7.7p 7.5p 2.9p
double LCUSUM x 5.8v 3.7a 5.7v 2.3v 2.5v 2.0a 2.1a x 5.0p
double CUSUM x x 7.3 x x x x x x x
double LGCUSUM 2.7 1.6 1.6 2.4 2.1 2.2 2.7 3.0 3.0 3.0
ADYN x x* x* x x* x* x x x x

Sine wave, amp: 40. freq 20 Hz

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM 7.1a 9.6a 2.9a 2.2a 6.3a 5.5a x x 8.3a x
ACS x x 2.9 1.8 x 1.8 x x 2.0 x
ACF x x 3.0 1.9 x x x x x x
AC x x 1.0 2.1 x 7.7 x x 2.1 x
GMA 7.1a 7.8a 4.1a 4.3a 6.4a 6.2a 7.8a 8.7a 8.3a 8.4a
LCUSUM 1.4v 1.2v 1.4v 1.5v 1.2v 1.3v 1.3v 1.2v 1.7v 1.2v
double LCUSUM 1.6v 1.6v 1.6v 4.1v 1.5v 1.6v 1.5v 1.7v 1.4v 2.8v
double CUSUM x x 3.1 2.7 x x x x x x
double LGCUSUM 1.9 1.8 5.9 7.8 2.7 3.2 1.6 1.8 3.3 1.5
ADYN x x* x* x* x* x* x x x x
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Slope: 20 start 5

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM x x 7.4 x x x x x x x
ACS x x 2.9 1.8 x 1.8 x x 2.0 x
ACF x x 3.0 1.9 x x x x x x
AC x x x x x x x x x x
GMA x x x x x x x x x x
LCUSUM 8.1 8.0 8.7 8.5 7.9 8.0 6.4 8.3 7.8 7.6
double LCUSUM 8.5p 8.2p 9.1p 8.7p 6.1v 6.3v 6.7p 8.3p 8.1p 8.2p
double CUSUM x x 8.2 x x x x x x x
double LGCUSUM x x 8.2 x x x 8.9 x x x
ADYN x x* x* x x* x* x x x x

Slope: 50 start 5

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM x x 7.3 x x x x x x x
ACS 9.7 9.2 2.9 1.8 9.2 1.8 9.2 9.2 2.0 9.2
ACF x x 3.0 1.9 x x x x x x
AC x x x x x x x x x x
GMA x x 8.2 x x x x x x x
LCUSUM 6.7 6.4 6.8 6.7 6.1 6.0 5.8 6.7 6.6 6.4
double LCUSUM 7.0p 6.7p 7.7p 7.3p 5.9v 7.1p 6.0p 6.9p 6.8p 6.8p
double CUSUM 9.6 9.5 7.3 8.0 9.5 8.2 9.1 9.6 9.5 9.6
double LGCUSUM 8.7 8.5 8.0 8.6 8.8 9.4 8.0 8.6 8.4 8.6
ADYN x x* x* x x* x* x x x x

Slope: 500 start 5

Method Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10
CUSUM 6.3 6.3 5.7 6.1 6.3 6.4 6.3 6.3 6.3 6.3
ACS 5.9 5.8 2.9 1.8 5.9 1.8 5.8 5.8 2.0 5.8
ACF 7.0 7.0 3.0 1.8 7.1 7.1 7.0 7.0 7.0 7.0
AC 8.0 8.0 6.1 7.8 7.9 7.5 8.0 8.1 8.0 8.1
GMA 6.7 6.7 6.0 6.2 6.6 6.7 6.7 6.7 6.7 6.7
LCUSUM 5.4 5.4 5.5 5.8 5.2 5.4 5.2 5.2 5.2 5.2
double LCUSUM 5.5v 5.4v 5.7v 5.7v 5.3v 5.2v 5.2v 5.2v 5.2v 5.0a
double CUSUM 6.0 6.0 5.9 6.0 6.0 6.0 6.0 6.0 6.0 6.0
double LGCUSUM 5.8 5.6 6.0 5.9 5.9 6.2 5.4 5.3 5.3 5.3
ADYN 7.2 7.4* 6.1* 7.4 7.3* 7.3* 7.2 7.3 7.3 7.3



Chapter 5

Conclusions

5.1 Obtaining CUSUM Parameters with Statis-
tics - Mean Change

5.1.1 Gaussian Sequences

It is clear that in most cases the algorithm works and parameters that work are
suggested. In some cases when σ is small and 1

FAR is small a negative value of
the threshold is suggested e.g. in Figure 4.11. It is concluded that when σ is
small, 1

FAR is small or θ is big (making ν big), h can be suggested as to small.
This agrees with how h depends on these variables. A solution is to choose 1

FAR
larger.

But the threshold should never be chosen negative unless FAR is chosen as
∞ which was not the case, and if it was, h = 0 would be more appropriate.
The main problem with the suggested parameters is exactly this; they do not
coincide with the FAR that has been chosen. If one chooses FAR to be one, then
there should in average be one false alarm per sample and nothing else. This
is not the case with the implemented algorithm. The reason for this might be
the approximations made in the equations used and that the change detection
theory is not accurate enough.

Looking at the results it is seen that the FAR in some cases agrees better
with the chosen one than in other cases. In general it seems to agree better the
smaller θ is.

That ν always is chosen as θ/2 is not good. The first problem is that in most
cases θ is not known and the other problem is that ν can be chosen better. But
if instead of calling θ the change to be detected it is called the minimum change
to be detected there will be a big improvement. This would lead to ν not being
suggested as very big making the CUSUM detector unsensitive to small changes
when a big change should be detected.

Looking at the performance of the whole CUSUM algorithm with the chosen
parameters there is much to be wished for; someone who has found parameters
for numerous CUSUM detectors with trial and error will see that the parameters
that has been suggested in the results are not very good. They work, but they
are not optimal. With trial and error anyone who knows the CUSUM algorithm
can find parameters that are more sensitive to disturbances and that are faster

49
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and it does not take long time to find them, in particular since the sequences
are Gaussian.

Now the question is if this theoretically systematic way of finding the param-
eters can be used. It can: as can be seen in section 4.1.1 changing the FAR and
θ will change the threshold, h and the drift parameter, ν in the right direction.
It is known that the FAR value is not correct in most cases but θ agrees pretty
good with the correct value. Having this in mind the FAR and θ can be changed
to come closer to the desired CUSUM settings. Imagine two sliding bars where
the FAR and θ can be chosen, the markings for the values on the sliding bar of
the FAR are not very precise and more precise for θ.

One might wonder why it is better to “play” with the FAR and θ instead
of “playing” with h and ν directly which is exactly what trial and error is. For
someone who knows how the CUSUM algorithm works there is no reason, all the
theory and all the equations is useless, finding h and ν using trial and error on
the FAR and θ is just a detour through theory, approximations and calculations.
But for someone who do not know how the CUSUM algorithm works it can be
a very helpful tool. Simply drag the FAR and θ in the desired direction and the
CUSUM parameters will adjust after the specifications.

5.1.2 Test on Residuals

Even though 1
FAR and θ were chosen in a way to get good parameters, no

working parameters could be found. The suggested ν’s gave a good looking
random drift. But since ν always is θ/2 and this was known there was no
problem to find a good θ. It is also clear that the value of FAR that was
inserted to the algorithm and the observed FAR differ a lot.

This algorithm can not be used to find good parameters, it can be used
to find starting values for the parameters that then has to be changed and
optimized.

The reason for why it does not work on the real residuals are: the conformed
residuals are not Gaussian enough and the algorithm does not work so good for
large θ and σ.

5.2 CUSUM Parameters with Statistics - Vari-
ance Change

5.2.1 Gaussian Sequences

In the results it is seen that the suggested parameters in most of the tested
cases work. When σ0 is small the suggested θ works very good. But when σ0

increases, θ increases to fast. This is also the case when σ1 increases, look at
the graphs in Figures 4.22 and 5.1. The result is that finding parameters for
the following cases do not work well:

1. the difference between σ1 and σ0 is large

2. σ0 or σ1 is large

The fact that θ grows so fast is the reason for why h is calculated to be to
small or even negative in the same cases as θ is to big. The graph in Figure
4.26 drops below zero at θ ≈ 15.
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Can this implemented algorithm that uses the ARL function to find the
parameters be used? When σ0 and σ1 are small it works well and the calculated
parameters are good. But when σ1 grows the calculated parameters are not
good and the detector works poorly, if at all. Since θ in a way is static and
only depends on the statistical properties of the input sequence not much can
be done to change θ. h on the other hand can be changed by changing the ARL
value. But just as in the case with mean change discussed in (5.1.1), the ARL
value is not correct in magnitude. If ARL is chosen as three for a certain θ then
the change should be detected after three samples. This is not the case, but if
the ARL value is increased h will increase and this will lead to what is desired:
that it takes longer time to detect a change. So the ARL value can be used
to change h in the correct direction. It would be easier to change h directly
though, and it would work just as good.

Figure 5.1: θ strongly increases as σ0 and σ1 increase.

5.2.2 Test on Residuals

In all cases θ is chosen too big. This because σ0 and σ1 are big. This phe-
nomenon was discussed in the case with Gaussian sequences. σ2 was chosen to
minimize θ. A θ that is bigger than the limit where the residuals have been cut
off does not work.

To get a positive threshold the ARL value has to be chosen absurdly big.
The reason for this is that θ is big, see Figures 4.25 and 4.26.

The results show that it does not work even though the ARL value is chosen
absurdly big. The parameters are not Gaussian “enough” and the standard
deviation is too large. And this algorithm does not work with too large standard
deviations.

5.3 Change Detectors Tuned with Trial and Er-
ror

5.3.1 CUSUM and GMA

The differences between the CUSUM and GMA detectors are very small. The
CUSUM detector is slightly better overall. What limit them are the residuals
with the largest magnitudes. The CDAs are tuned never to give false alarms,
of course errors smaller than the largest residuals can not be detected if the
CDAs are tuned with big margins. To get around this problem it has been
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Scenario ν h
scenario 01 200 20000
scenario 02 25 1000

Table 5.1: CUSUM parameters for two different driving scenarios.

suggested having different parameter settings for different driving scenarios.
Different scenarios give different residuals. The problem is to decide which
driving scenario the driver currently is in, how should this decision be taken?
This is a complex problem which is difficult to solve. One idea is to study how
the variance of the residuals depend on the time derivative of the desired motor
angle δMd.

5.3.2 Local CUSUM

To get around this the residuals can be split up in magnitude, i.e. different
CDAs act in different intervals, see the ”filter” in chapter 3. Consider the
following example: in one of the driving scenarios used, called ”scenario 01” the
residuals are in the interval -1080 < res < 1266. In another driving scenario
called ”scenario 02” the residuals are in the interval -36 < res < 31, see Figure
3.1. Using a CUSUM detector, the parameters in Table 5.1 would work.

To not give false alarms when covering both these scenarios the parameters
in scenario 01 has to be used. These parameters are far from optimal for the
scenario 02 scenario and prevent small errors to be detected in this scenario. But
if the residuals are split up and different CDAs are used in different magnitude
intervals this limitation will be circumvented.

It is not the same thing as having different CDAs for different driving sce-
narios but the difference is not big if the intervals are well chosen. The results
also show that this approach can detect much smaller errors and there is a big
improvement in detection speed.

One big problem is that there is a chance for false alarms. If the maximum
residual is of the magnitude 1266, residuals can have any value between 0 and
1266 (absolute value for ease). This means that if a local CUSUM acts in
the interval 0 < res < 100 and one particular driving scenario which generates
residuals of magnitude 99 is driven, it would generate a false alarm regardless
of how big the margin is. The thing is that the drift parameter must be smaller
than 100 to make any sense. Because of this the intervals the local CUSUM’s
act in must be very carefully chosen.

Other drawbacks with this approach is that is uses more computational
power and that it needs more data to tune the parameters correctly.

5.3.3 Double Sided

The double sided change detectors do not show a big improvement compared
to the one sided. When the double sided CDAs were tuned, the parameters in
the CUSUM detectors often were decreased to half which possibly could lead to
that errors that were half the size could be detected. That this is not the case in
the simulations with constant errors we can not explain, one explanation could
be how the parameters have been chosen but this should not affect the results as
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much as observed. That no improvement at all can be expected when testing on
real data can be explained with the fact that if the double sided detectors have
parameters half the size of the one sided, then there are equally many residuals
that are positive and negative. And since the double sided detectors only get
half the residuals, the performance will be the same as for the one sided.

5.3.4 AC, ACS, ACF

Presumably ACF/ACS can give results similar to CUSUM and GMA if they
are tuned not to give false alarms.

AC is very fast when it detects an error, but often it does not. The changes
detected by AC are so big that any of the other detectors also will detect it fast,
it is redundant.

5.3.5 LGCUSUM and ADYN

LGCUSUM is slower than LCUSUM+CUSUM and can not detect as small
errors. This is expected since LGCUSUM is tuned after more data where
LCUSUM gives false alarms.

LGCUSUM can detect smaller errors and is almost always faster than the
existing ADYN change detectors. ADYN is very fast when it detects errors, the
parameters in ADYN are chosen not to be sensitive to small changes but to be
very fast for larger errors. For large errors ADYN is the fastest of all of the
detectors, the difference is small though. Sometimes ADYN gives false alarms
and short alarms in the beginning of the simulations.

5.3.6 Final Conclusion

The change detectors tuned here are tuned after specific data and most of the
simulations are also made on these data. One could argue and say that of course
they will work the best on these data, but not on other. Measurements from
a development vehicle show that this is not the case, but yes, as written above
it is possible that LCUSUM give false alarms in other driving scenarios. The
measurements have been chosen so that this will not happen.

It is clear that the approach with split up residuals is the best. It is almost
always the fastest and it can detect much smaller errors than the others. It
would be interesting to test this approach with GMA detectors. If the residuals
are not split up the change detectors has to be tuned in one of the following
ways:

• To be able to detect small changes with low MTD in normal driving sce-
narios. Always give false alarms in extreme maneuvers (large residuals).

• Larger MTD and not able to detect small changes in normal driving sce-
narios. Never give false alarms in extreme maneuvers.

But with the technique LGCUSUM uses, a good compromise is made because
it is fast, able to detect small changes and the possibility for false alarms in
extreme maneuvers is small.

From what is written above the following change detector seems to be the
best: LGCUSUM without the double sided detectors, these clearly do not help
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and only use computational power. Also choose the thresholds and drift param-
eters a little bit larger making the margins larger to prevent possible false alarms
from other driving scenarios, and finally test on a large number of scenarios.

Compared to the existing ADYN which do not detect constant actual-desired
angle differences that are as big as 1000 degrees LGCUSUM is a big improve-
ment. 1000 degrees in the motor correspond to the car turning with a radius
of 80 meters (compare to a curve on autobahn). Maybe constant errors of size
1000 is not common, but it should preferably be detected.



Chapter 6

Plausibility of the Wheel
Velocities

As written in the introduction it is important that the calculated car velocity is
correct. The car velocity is computed with the aid of the four weighted wheel
velocities. How should erroneous wheel velocities be detected? The idea was to
let CUSUM detectors act on different residuals generated from the four different
wheel velocities.

6.1 Approaches

The velocities of the four wheels were first low-pass filtered, then residuals were
formed using two different strategies. In Table 6.1 the notation used can be
seen.

wheel notation
Front Left vFL or v1

Front Right vFR or v2

Rear Left vRL or v3

Rear Right vRR or v4

Table 6.1: Notation used.
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6.1.1 Compare Wheel to Wheel

Wheel to Wheel A

Every wheel is compared to all other wheels and the following residuals are
formed:

ε12 = |v1 − v2|
ε13 = |v1 − v3|
ε14 = |v1 − v4|
ε23 = |v2 − v3|
ε24 = |v2 − v4|
ε34 = |v3 − v4|

(6.1)

CUSUM detectors act on these residuals and generate the corresponding alarmij .
These can be used in different ways to detect different errors. Here they have
been used to as safe as possible detect as many different kinds of errors as pos-
sible i.e. different combinations of wheel velocity errors among the wheels. The
implemented function recognizes 13 combinations of errors among the wheels:

0. No error.

1. vFL is erroneous.

2. vFR is erroneous.

3. vRL is erroneous.

4. vRR is erroneous.

5. vFL and vFR differ from vRL and vRR. Either vFL and vFR are erroneous
or vRL and vRR are erroneous.

6. vFL and vRL differ from vFR and vRR.

7. vFL and vRR differ from vFR and vRL.

8. vRL and vRR correct, vFL differ from all other wheels, vFR differ from all
other wheels: vFL erroneous, vFR erroneous.

9. vFL erroneous, vRL erroneous.

10. vFL erroneous, vRR erroneous.

11. vFR erroneous, vRL erroneous.

12. vFR erroneous, vRR erroneous.

13. vRL erroneous, vRR erroneous.

Note: In 5, 6 and 7 the velocities within the pairs are not different. In 8, 9,
10, 11, 12 and 13 two wheels has erroneous values, these erroneous values differ
from each other, why it is likely that they are not correct.

Wheel to Wheel B

The residuals in Equations 6.1 are also used here. They are combined to only
detect errors on single wheels and hopefully faster.
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6.1.2 Compare Wheel to Average

Average values are formed and compared in the following way:

ε1 = |v1 − (v2 + v3 + v4)/3|
ε2 = |v2 − (v1 + v3 + v4)/3|
ε3 = |v3 − (v1 + v2 + v4)/3|
ε4 = |v4 − (v1 + v2 + v3)/3|
εfront back = |(v1 + v2)/2− (v3 + v4)/2|
εsides = |(v1 + v3)/2− (v2 + v4)/2|
εdiag = |(v1 + v4)/2− (v2 + v3)/2|

(6.2)

CUSUM detectors act on these residuals and form the corresponding alarms.
When the residuals are averaged information is lost. This method turned out
to not be able to detect as many different errors as when using (6.1). Assume
vFL = v1 is erroneous and look at the residuals in (6.2). It is seen that all
CUSUM detectors will give an alarm. If this method should be used the alarm
time has to be checked i.e. which detector gives an alarm first.

6.1.3 Taking Wheel Placement into Consideration

The fact that the wheels on a car have different positions cause that the wheels
have different velocities when turning. It was tested if the residuals would be
smaller if the wheel placement was taken into consideration.

Simplified Wheel Geometry

Consider the simplified wheel geometry to the left in Figure 6.1. When turning,
the front wheel will have a larger velocity than the wheel in the back e.g. if
δF = π/2 the back wheel will not move at all. Assume a left-turn and consider
the simplified wheel geometry to the right in Figure 6.1. The outer wheel (right)
will move faster than the inner wheel. The relations between the wheels using
this simple approach are derived below.

Back-front relation, see Figure 6.1:

vf = front wheel velocity, vr = rear wheel velocity
ω = angular velocity of the car, δF = average front wheel angle
ω ∗ r1 = vf

ω ∗ r2 = vr

r2 = r1 ∗ cos δF

⇒
vf ∗ cos δF = vr

(6.3)

Inside-outside relation, left turn, see Figure 6.1:

b = distance between left-right wheels, r = turning radius
l = distance between front-back wheels, vi = inner wheel velocity
vo = outer wheel velocity
ω ∗ r = vi

ω ∗ (r + b) = vo

r = l
δF

[1, page 340]
⇒
vo ∗ l

l+b∗δF
= vi

(6.4)
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Figure 6.1: Simple wheel geometry: The left part is used to find the back-front
relation and the right part is used to find the inside-outside relation. Picture
from [8] modified.

Exact Geometry

Here the exact relations between the wheels are derived, the car has Ackermann
steering geometry, see Figure 6.2.
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Figure 6.2: Car with Ackermann steering geometry. Picture from [8] slightly
modified.

l
r = tan δl

l
b+r = tan δr

vRL = ω ∗ r
vRR = ω ∗ (r + b)
vFL = ω ∗ r

cos δl
= ω ∗ l

sin δl

vFR = ω ∗ r+b
cos δr

= ω ∗ l
sin δr

⇒
vRL

vRR
= l

l+b tan δl
vRL

vF L
= cos δl

vRL

vF R
= sin δr

tan δl

(6.5)

Note that these relations are only valid in a left turn, when turning right these
variables has to be swapped:

vRR ↔ vRL

vFL ↔ vFR

δl ↔ δr

(6.6)
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6.2 Results

6.2.1 Simulated Errors

Wheel to Wheel A

Error Type & wheel detection time/sec
Constant 4, RR 56.24(alarm status=4)
Constant 6, RL 15.42(alarm status=3)
Constant 13, RL 6.38(alarm status=3)
Constant 20, RL 3.51(alarm status=3)
Constant 50, RL 1.11(alarm status=3)
Constant 13, RL. Constant 20, RR 3.01(alarm status=4) and 6.38(alarm status=13)
Constant 15, RL. Constant 13, RR 6.63(alarm status=5)

Table 6.2: Method: Wheel to Wheel A, simulated errors.

Error Type & wheel detection time/sec
Constant 4, RR RR:30.61
Constant 6, RL RL:15.42
Constant 13, RL RL:5.80
Constant 20, RL RL:2.51
Constant 50, RL RL:0.84
Constant 13, RL. Constant 20, RR RR:2.18, FR:5.8, FL:6.38
Constant 15, RL. Constant 13, RR FL:5.74

Table 6.3: Method: Wheel to Wheel B, simulated errors.
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Average

Error Type & wheel ε1/sec ε2 ε3 ε4 εfront back εsides εdiag

Const 1, RR - - - 965.28 - - 25.39
Const 4, RR 363.57 249.22 209.98 20.52 63.94 628.81 3.05
Const 6, RL 113.57 82.85 14.35 77.96 36.82 69.77 1.95
Const 13, RL 17.63 27.37 4.85 17.63 15.32 5.39 0.98
Const 20, RL 8.98 16.23 2.87 8.98 8.98 2.45 0.71
Const 50, RL 3.07 4.33 1.19 3.07 3.07 0.91 0.38
Const 13, RL. Const 20, RR 4.80 7.58 13.48 3.27 4.80 58.76 1.68
Const 15, RL. Const 13, RR 5.83 9.84 6.44 7.05 5.83 - 8.51

Table 6.4: Method: Average, simulated errors. The grey marked times are the
alarms that are used.

6.2.2 Data from Development Vehicle

Scenario error type error time/sec and wheel(s)
fr 3 2 muesplit outlier FR:4.33-7.44, 7.92-9.01, 11.93-22.29
fr 3 2 muehigh outlier FL:2.05-2.77, 3.43-5.55, 6.27-6.45, FR:4.21-7.01
fr 3 3 muehigh outlier FL:3.35-5.05, FR:2.45-6.87
fr 3 5 muesplit outlier FL:2.64-9.17
fr 3 6 outlier FL:4.91-6.86, 17.68-19.48, 22.39-28.57

FR:1.65-6.86, 17.21-28.45
fr 3 6 b outlier FL: 15.08-23.48, FR:15.08-23.24
f020 m129 r021 s001 001 sensor error RR:7.06-22.06
f020 m129 r020 s001 002 sensor error RL:5.78-20.78

Table 6.5: Exact times for outliers and sensor errors, see Figures 6.3 and 6.4.
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Figure 6.3: Dotted = v1, dashed dotted = v2, dashed = v3, solid = v4.
Top: fr 3 2 muesplit, second: fr 3 2 muehigh, third: fr 3 3 muehigh, bottom:
fr 3 5 muesplit. See Table 6.5 for details.
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Figure 6.4: Dotted = v1, dashed dotted = v2, dashed = v3, solid =
v4. Top: fr 3 6, second: fr 3 6 b, third: f020 m129 r021 s001 001, bottom:
f020 m129 r020 s001 002. See Table 6.5 for details.
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Wheel to Wheel

Scenario detection time/sec, alarm status (a s)
fr 3 2 muesplit 13.66 (alarm status=2)
fr 3 2 muehigh -
fr 3 3 muehigh -
fr 3 5 muesplit 3.78 (alarm status=1)
fr 3 6 3.97:a s=2, 5.91:a s=8, 9.29:a s=2, 16.71:a s=0

17.54:a s=2, 18.94:a s=8
fr 3 6 b 16.97:alarm status=1, 18.50:alarm status=8
f020 m129 r021 s001 001 7.36:alarm status=4
f020 m129 r020 s001 002 6.13:alarm status=3

Table 6.6: Method: Wheel to Wheel A. Detection times for errors from devel-
opment vehicle.

Scenario detection time/sec
fr 3 2 muesplit FR:13.22
fr 3 2 muehigh -
fr 3 3 muehigh FR:6.93-7.09
fr 3 5 muesplit FL:3.64
fr 3 6 FR:3.75 FL:5.75 FR:9.78 FL:18.88
fr 3 6 b FL:16.76
f020 m129 r021 s001 001 RR:7.29
f020 m129 r020 s001 002 RL:6.06

Table 6.7: Method: Wheel to Wheel B. Detection times for errors from devel-
opment vehicle.
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Average

Scenario detection time/sec εdiag/sec
fr 3 2 muesplit FR:13.19 5.14
fr 3 2 muehigh - 4.30
fr 3 3 muehigh - 3.27
fr 3 5 muesplit FL:4.07 3.27
fr 3 6 FL:4.21 2.39
fr 3 6 b FL:17.50 16.13
f020 m129 r021 s001 001 RR:7.44 7.21
f020 m129 r020 s001 002 RL:6.18 5.94

Table 6.8: Method Average. Detection times for errors from development vehi-
cle.
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6.2.3 Decreasing the Residuals

The top row show the average size of the residuals when the geometry of the
wheel placement is not taken into consideration, the middle when the “simplified
geometry” is taken into consideration and the lower row show when the “exact
geometry” is applied.

All Scenarios

Residual ε12 ε13 ε14 ε23 ε24 ε34
No geometry 0.6422 0.1733 0.6974 0.6816 0.1777 0.6215
Simple geometry 0.5924 0.3389 0.7319 0.7422 0.3677 0.5902
Exact geometry 0.7852 0.4342 0.6675 0.7052 0.4586 0.5937

Table 6.9: Average values of the residuals for all scenarios.

Residual ε1 ε2 ε3 ε4 εfront back εsides εdiag

No geometry 0.4700 0.4627 0.4476 0.4602 0.1622 0.6301 0.0347
Simple geometry 0.4800 0.4998 0.4916 0.4974 0.3501 0.5887 0.0460
Exact geometry 0.5479 0.5624 0.4939 0.4906 0.3412 0.6447 0.3888

Table 6.10: Average values of the residuals for all scenarios.

Driving in a Circle

Residual ε12 ε13 ε14 ε23 ε24 ε34
No geometry 2.7121 0.2842 2.9927 2.4280 0.2805 2.7085
Simple geometry 0.2058 0.8225 0.6443 1.0284 0.8502 0.1782
Exact geometry 1.1607 1.2354 0.9323 0.0747 0.2283 0.3030

Table 6.11: Average values of the residuals for one scenario: driving in a circle
on asphalt, 30 km/h, radius 10 m, (f020 m051 r001 s001 001).

Residual ε1 ε2 ε3 ε4 εfront back εsides εdiag

No geometry 1.9963 1.6199 1.6174 1.9939 0.2824 2.7103 0.0081
Simple geometry 0.4203 0.6948 0.6764 0.4388 0.8364 0.1920 0.0146
Exact geometry 1.1095 0.4381 0.5377 0.1337 0.5035 0.4288 0.7318

Table 6.12: Average values of the residuals for one scenario: driving in a circle
on asphalt, 30 km/h, radius 10 m, (f020 m051 r001 s001 001).
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6.3 Conclusions

6.3.1 Detecting Erroneous Wheel Velocities

The Average approach (AV) can detect the smallest errors, for errors smaller
than 13 km/h it is also the fastest. For larger errors Wheel to Wheel B (WB)
is the fastest. Both these approaches can only detect errors on single wheels,
when more than one wheel is erroneous they both will report the wheel with
the largest error as erroneous. Wheel to Wheel A (WA) can also detect when
two wheels are erroneous but is slower than the other two almost always. For
small errors the difference is large but decreases the larger the errors get and
for large errors WA is faster than AV.

Detecting sensor errors is not a problem for any of the approaches, it is done
very fast. In the measurements the sensor errors lead to very large residuals,
but if the velocity of the car was very high (close to 300 km/h) the residuals
would not be that large leading to longer detection time. Most drivers do not
drive at that speed.

How good outliers are detected depends on how large the outliers are and
for how long they exist. It has been wished for outliers larger than 13 km/h
to be detected in maximum one second. This can not be done with any of the
approaches presented here, WB can detect constant errors of size 20 in 2.51
seconds and of size 50 in 0.84 seconds.

When an erroneous wheel velocity is detected the wheel is set to erroneous for a
predefined time t, then the detectors will be checked again. One problem with
AV is that when a wheel is erroneous and this is detected all residuals will give
an alarm after sufficiently long time. Looking at Equations 6.2 shows that this
will happen. In Table 6.4 this is also seen. The implemented algorithm checks
all the residuals and looks which alarm is given first. This could lead to that
when after an erroneous wheel velocity is detected and the detectors are checked
again after time t all alarms will set to high. To avoid this the alarms can be
reset, this would lead to detection delay. It would be better to combine AV with
WB, where WB can be checked after time t, for small errors WB would help in
the case written above.

Another interesting property of the AV is the εdiag residual/alarm. In all
the results it can be seen that this alarm is given very fast and it even detects
outliers larger than 13 km/h in less then one second. Unfortunately this alarm
does not give any information regarding which wheel is erroneous, just that
something is wrong.
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To sum up:

• AV: Can detect very small errors, is the fastest for small errors.

• WA: Never the fastest, can detect combinations of errors.

• WB: Detects large errors fastest.

6.3.2 Decreasing the Residuals

In Tables 6.9 and 6.10 it is seen that the residuals for all the scenarios do not
decrease when the wheel placement is taken into consideration. After having
looked at the data it was discovered that in most of the scenarios the steering
wheel movement is very rapid. This gives a very “nonlinear” behavior of the
car and to reduce the residuals in this case a very complex model of the car has
to be made.

In Tables 6.11 and 6.12 a simple scenario with “easy” steering wheel move-
ment is tested and the residuals are at most reduced to as little 6.6 percent of
the original value. In normal driving scenarios this could be used to significantly
decrease the detection times and the error size that can be detected. To get the
same result in extreme maneuvers such as many in the measurement data used,
as written above a complex car model can be used.
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