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Chapter 1

Introduction

Except in the centre of Lund, this small and beautiful university city in southern
Sweden where Swedes and Exchange Students use bikes, cars have become the
most popular and easiest way to move and travel. Unfortunately, even with all
the mechanical improvements made by the manufacturers, this way of transport
is still quite dangerous and causes a lot of injuries every day all around the world.
One direction taken by the industry to reduce the number of crashes and their
seriousness is to develop Active Safety systems: embedded electronic systems
that detect critical conditions to warn the driver and/or induce some actions
directly on the brakes, the engine, the steering or any other available actuator.

Some of those systems are already present on the market and well known to
the public.

A first one is the Anti-lock Braking System (ABS) which helps the car to stop
on a shorter distance in case of emergency braking while maintaining steering
capabilities for the driver. The basic idea is to avoid wheel lock by modulating
the brake torque. This idea relies on the fact that the friction between the tire
and the road as well as the steering capabilities are inferior when the wheel
is sliding instead of rolling. The new generation of ABS systems will go a bit
further and optimize the braking by trying to use the maximum of the friction
curve (further details later on).

The Electronic Stability Program (ESP) is another device that adjust brake
forces and driving torque to maintain the vehicle in controllable limits and avoid
under-, oversteer or even spinning.

Roll-over prevention and collision mitigation are other examples currently
under research. Many other systems are going to appear in the next few years,
not to take the control of the vehicle or become the main driver, but to warn
and assist the human driver in case of inattention or critical manoeuvres.

Of course, to be able to do something interesting, any system needs infor-
mation, and the more information it gets, the more accurate and optimal it can
perform. For that purpose, cars are equipped with sensors that measure some
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8 CHAPTER 1. INTRODUCTION

elements of the dynamics of the body. Sensors being expensive, the best is to
use as few as possible and extract all the available information through cheaper
algorithms. Some information that could be very useful is not measurable or
the price for it would be much too high. It is therefore needed to design spe-
cific observers to get an estimate of the unknown variables using measurements
coming from elsewhere.

The friction coefficient between the tire and the road
is exactly the kind of information which is very useful but not directly measur-
able. This thesis focuses on that problem and presents some existing and new
ideas to estimate the friction, or to be more precise, the maximum available
friction µmax.

Most of the time researchers try to classify the road in categories like dry
asphalt, wet asphalt, gravels, snow, ice, etc [7] [8] [11]. The availability of that
information can be very useful both to warn the driver in case of slippery road
and to tune other control systems. For example, it is known that the friction
against the road presents a maximum for a given ratio between the longitudinal
and angular speed of the wheel. This ratio depends on the kind of road. If
the road is known, the ABS controller can use that information to stabilize
the wheel’s speed at that specific ratio and so maximize the braking efficiency.
Another application would be to be able to estimate the braking capabilities we
can expect from the present driving conditions and use them as constraints in
control signals from systems like ESP. The knowledge of the braking capacities
also allow a comparison between the deduced braking distance and the position
of obstacles detected by an embedded radar. As well, if the friction forces are
estimated during the process they can allow the closing of an inner control loop
for other control systems like in roll-over prevention and check that the actual
action agrees with the requested one.

This very promising subject seems unfortunately very difficult to handle.
Many researchers are working on it all around the world and a huge amount
of papers have already been published. However no one has really found yet
a miraculous solution. This thesis does not have the ambition to revolutionize
the area but to learn how to enter and contribute to a very interesting research
topic.

1.1 Purpose and objectives

The objective of this thesis is to discover the research, as well as to apply the
theory learned during the studies, to learn new methods and to develop skills
in the control and estimation field.
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In more details, the main steps are :

• Understand the problem of friction estimation

• Learn advanced methods that seem to be useful

• Look for existing solutions and propositions, try some implementations
and comment approaches

• Propose new ideas and

? Implement them
? Simulate them
? Investigate their robustness
? Conclude on the interest, advantages and drawbacks

1.2 Practical details and software

The entire work has been done at the department of Automatic Control of Lund
University in Sweden within the context of an ERASMUS exchange, under the
supervision of Prof. Anders Rantzer and Brad Schofield.

Simulations have been performed using the Vehicle Dynamics Library de-
veloped by Modelon AB 1. This library uses the Modelica 2 modelling lan-
guage to describe a very detailled model of a complete car. Modelica is an
open-standard object-oriented equation-based modelling language designed for
effective component-oriented modelling of complex systems.

The interpretation and solving of the Modelica models has been done using
Dymola, Dynamic Modeling Laboratory, developed by Dynasim AB 3.

Moreover, Matlab 4 has been used to analyze the simulation results as well
as to implement and develop some filters.

1.3 Outline

The first part of this thesis gives the background of the theory developed in the
next sections. Chapter 2 focuses on the automotive background by introducing
the vehicle’s model, the frames, the parameters, the tire friction model and
the manoeuvres. While Chapter 3 details the Kalman Filter and its nonlinear
extensions.

Chapter 4 presents the state-of-the-art of tire-road friction estimation and
introduces the slip-based methods.

1http://www.modelon.se (Ideon, Lund, Sweden)
2http://www.modelica.org
3http://www.dynasim.se (Ideon, Lund, Sweden)
4http://www.mathworks.com
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Chapter 5 and 6 explain in more details two slip-based methods found in the
literature and show some simulation tests.

The two last chapters describe original ideas investigated during this work
and gives appreciations based on simulations. The first idea is based on hybrid
observers and the second merges and extends the methods of chapters 5 and 6.

Finally, a conclusion and some suggestions relative to further development
are presented.



Chapter 2

Automotive Background

2.1 The vehicle model

A particularity that makes the vehicle model quite complex and complicated
is the multiplicity of references and systems of coordinates called frames. All
frames are based on the ”right hand rule” and oriented so that x is directed
towards the front, y towards the left and z towards the top. The most important
frames are :

• The World frame : a static system of coordinates that does not move
during the experiment. The gravity’s acceleration is in the direction of
−z.

• The Vehicle frame : the system of coordinates is attached and moves
with the vehicle. The x axis points to the front, the y to the left side and
z to the roof.

• The Wheel frame : the system of coordinates is attached at the contact
point between the tire and the road. The z axis is normal to the road and
y follow to the left the rotation axis of the wheel.

A move is said longitudinal along the x axis and lateral along the y axis.
The rotations are called roll around x, pitch around y and yaw around z.

As it is the tradition, different conventions exist in Europe and in the US.
Here the European version is presented and used. To convert the models to the
American standard one just has to keep the x axis and turn over the y and z
axis (y to the right and z to the bottom). That just implies some terms to get
a minus sign ... the game is to know which one :-)

11
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To simplify the understanding of the equations and the juggling between the
frames, I set a convention through this report : the variables that start with a
capital letter are expressed in the wheel frame. The others are related to the
vehicle frame.

The basic equations describing the dynamics of the vehicle are :

ax =
1
m

[((Fxfl + Fxfr) cos(δ))− ((Fyfl + Fyfr) sin(δ)) + (Fxrl + Fxrr)]

ay =
1
m

[((Fxfl + Fxfr) sin(δ)) + ((Fyfl + Fyfr) cos(δ)) + (Fyrl + Fyrr)]

dr

dt
=

1
Izz

[((Fxfl + Fxfr)a sin(δ)) + ((Fyfl + Fyfr)a cos(δ))− (Fyrl + Fyrr)b−

((Fxfl − Fxfr) cos(δ))
tf

2
− ((Fxrl − Fxrr))

tr

2
)

ax = v̇x − vyr

ay = v̇y + vxr

Where

v speed of the car body
V speed of the tire-road contact point
a acceleration
r yaw rate
F force
δ steering angle
ω angular speed

The wheels are referred by the indices

fl front left
fr front right
rl rear left
rr rear right

The parameters describing the vehicle are :

Letter Name Typical value
a distance from CoG to front axel 1 m
b distance from CoG to rear axel 1.5 m
tf front track width 1.5 m
tr rear track width 1.5 m
Izz inertia around z axis for yaw movement 1300 kgm2

m mass of the vehicle 1300 kg
R radius of the wheels 0.28 m

An interested reader can refer to Rill [1] and Gillespie [2] for more detailled
considerations about vehicle dynamics.
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Figure 2.1: Slip curves with exaggerated characteristics extracted from [11].
The maximum available friction, as well as the position of the maximum and
the initial slope, varies depending on the type of road.

2.2 Tire models and slip

There are a lot of ways to model a tire. Some are based on detailed physical
modelling while other are based on characteristic functions. A good summary of
many available models can be found in [5]. Most of the models define the friction
µ, the ratio between the friction forces and the vertical force, as a function of a
quantity λ called slip and defined as

µ =
Fx

Fz
= µ(λ)

λ =
Vx −Rω

Vx

Tire ”slip” occurs whenever pneumatic tires transmit forces. The slip ratio
express the relative difference between the longitudinal speed Vx and the rolling
speed Rω at the contact point. A free rolling wheel has a zero slip while a
sliding wheel has a unity slip.

The curves showing the relation between the friction and the slip for different
kind of roads are shown on figure 2.1. This picture is directly extracted from
[11]. Note that some of the characteristics like the slopes for low slip have been
weakly exaggerated.

We can clearly see a maximum in the curves, at least for not too slippery
roads. The maximum friction available on a given road is called µmax. That’s
the most important value to estimate since it describes how much we can expect
from the present driving condition, for example the maximum braking force.
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In all the cases, the friction for a sliding wheel (λ = 1) is less than the friction
for a rolling one. We have now the justification of the improvement brought by
the ABS system that reduces, if necessary, the brake pressure to avoid a wheel
lock and maintain a higher friction level.

Without entering in the details, we can mention that for low slips, before
the maximum of the curve, the system is stable. An augmentation of the slip
will give a higher friction that will tend to reduce the slip. However, for large
slips, after the maximum, a higher slip will reduce the friction and the slip will
increase again. The system becomes therefore unstable and lead to wheel lock.

One of the most famous and used empirical model is the Magic Formula
developed by Pacejka [3]. The main idea is to model the curve by an equation
of the form :

y(x) = D sin[C arctan{Bx− E(Bx− arctan(Bx))}]

With some parameters depending on the wheel load :

D Peak value
C Shape factor
B Stiffness factor
E Curvature factor

For low slip, the model can be seen as a linear one with the longitudinal
stiffness Cx defined as the slope of the curve :

µ = Cxλ

Depending on the authors and the articles it appears or not that this longitu-
dinal stiffness Cx contains information about µmax. Actually, in all the articles
that uses linear regression to estimate Cx from measured data, the researchers
manage to show a direct link between the slope and the maximum of the curve,
for example in Gustafsson [11] and Uchanski [7]. At the converse, while using
physical tire models or doing specific experiments, it clearly seems that the stiff-
ness depends much more on tire parameters like material, temperature, load,
pressure and tread instead of the road property. Numerous tests and results can
be found in Carlson and Gerdes [4].

So a linear model for low slip seems not so obvious to use. Anyway, since
it has been used successfully by some authors, such an approach will stay con-
ceivable as explained in [7].

2.3 Simulations and Manoeuvres

In next sections, the implementations of the observers will be tested on simula-
tions. This section describes how the simulations are made and what manoeu-
vres are used.
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Figure 2.2: Picture of the Double Lane Change and Braking manoeuvre. The
car slaloms between the cones and starts braking just after entering the last set
of cones.

Using the Vehicle Dynamics Library for Modelica, the model of a complete
car is created as well as a road. A driver is added and programmed to execute
a specific manoeuvre. Basically, the vehicle used is close to the one proposed as
an example in the Library. The complete model is then simulated and all the
results (time-varying variables) are stored in a mat file. Once it is done, the
needed variables are loaded in the Matlab workspace and the Matlab algorithm
is run to get and plot the estimated values.

Two manoeuvres with different characteristics will be used in order to demon-
strate different behaviours: Double Lane Change and Braking and Straight Line
Acceleration and Braking.

Both simulations are run for 10 seconds but each time a transient is removed.
Of course in real life the time scale would be much larger but it seems clear than
a few seconds are enough to capture the main behaviour of the filters.

2.3.1 Double Lane Change and Braking

During the Double Lane Change and Braking manoeuvre, the vehicle will first
swerve to the left like a lane change. Then the same movement is made to the
right. When back on the initial lane, a heavy braking is engaged. Figure 2.2
shows a picture of the road where the cones describe the car’s trajectory.

To clarify the ideas, the absolute lateral displacement of the car on the
road and the absolute longitudinal speed are displayed on figure 2.3. Note that
absolute means in a system of coordinate attached to the road with always x to
the front and y to the left.

This manoeuvre can be considered quite extreme, at least it is not usual in
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Figure 2.3: Details of the Double Lane Change and Braking manoeuvre. The
absolute lateral displacement, displayed on the left, shows the slalom between
the two lanes. The absolute longitudinal velocity, plotted on the right, first
decreases slowly because of the drag and rolling resistances, before the heavy
braking.

everyday driving. Moreover it proposes a quite good excitation of the steering
at the beginning and of the braking at the end.

The road friction coefficient available as parameter in the Modelica road
model is always set to 1.

The negative time indicate that the first moments will be removed from the
filtering due to the transient taking place at the beginning of the simulation.

2.3.2 Straight Line Acceleration and Braking

The Straight Line Acceleration and Braking manoeuvre has the particularity
not to excite the steering dynamic at all and to have a road section with lower
friction. This is very close to the driving on highway where a section of the
road is wet. As can be seen on figure 2.4, the vehicle is accelerated using a step
between times 1 and 6 and then slowed down from time 6.5 until the end. The
lower friction spot with a coefficient of 0.7 instead of 1 is reached after 4 seconds
and left 4 seconds later.

When the driver is not pushing the accelerator pedal, the rolling and the
engine resistances induce the deceleration observed at the beginning.

Since the vehicle is driven by 2 front wheels, the traction forces will be
applied on the front wheels only and the rear wheels will only be subject to
rolling resistance during the acceleration period. That non-equal distribution of
the forces allows the analysis of some particular characteristics of the algorithms.

The acceleration and braking applied in this case are quite reasonnable, and
the road friction is not too low, so the slip will keep quite low values which allow



18 CHAPTER 2. AUTOMOTIVE BACKGROUND

Figure 2.4: Details of the Straight Line Acceleration and Braking manoeuvre.
The driver first accelerates before starting braking. The road presents a lower
friction patch between the fourth and eighth second, as shown on the second
picture.
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us to use it to test algorithms with linear friction models.

For simplicity, the first second transient due to the engagement of the gear
has been removed.
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Chapter 3

The Kalman Filter and its
extensions

3.1 The linear Kalman Filter

Let’s consider a general estimation and filtering problem for a linear model
expressed in State Space form :

xk+1 = Axk + Buk + vk (3.1)
yk = Cxk + Duk + ek (3.2)

We assume the noisy input-output data {yk} and {uk} to be the only data
available. The state xk is not available for measurement. The noises vk and
ek should have zero mean. The problem of optimal estimation of xk based on
input-output data and knowledge of the model can be solved by minimizing the
loss function :

J(x̂k) = E{(x̂k+1|k − xk+1)2}, ∀k (3.3)

under the constraint of the measurement equation 3.2.

A recursive estimation for xk can be expressed in the form

x̂k+1 = (x̂−k+1) + Kk(yk − (ŷ−k )) (3.4)

where x̂−k is the prediction of xk, ŷ−k is the prediction of yk and Kk is the
Kalman Gain. Assuming the prior estimate x̂k and the current observation yk

to be Gaussian random variables, the optimal solution to problem 3.3 is given
by the equations :

x̂−k+1 = Ax̂k|k−1 + Buk (3.5)

21
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ŷ−k = Cx̂k|k−1 + Duk (3.6)
(3.7)

Kk = APkCT (R2 + CPkCT )−1 (3.8)
Pk+1 = APkAT + R1 −APkCT (R2 + CPkCT )−1CPkAT (3.9)

R1 = E{vvT } (3.10)
R2 = E{eeT } (3.11)
P0 = E{x0x

T
0 } (3.12)

The computation of the Kalman Gain is one the most important and critical
part of the algorithm. There the assumption that the variables are Gaussian
random variables is important and the equations represent the propagation of
those Gaussian random variables through the dynamic of the system.

3.2 Extension to the non-linear case

In the non-linear case a general state space model has the form

xk+1 = F (xk, uk, vk) (3.13)
yk = H(xk, uk, nk) (3.14)

Of course, the linear Kalman Filter can not been directly applied and many
methods have been presented. Basically, the recursive equation can still be
used since no assumptions were made in its development. However, the optimal
expressions for the predicted state and output now take the more general forms:

x̂−k+1 = E{F (x̂k|k−1, uk, vk)} (3.15)

ŷ−k = E{H(x̂k|k−1, uk, ek)} (3.16)

Kk = Pxkyk
P−1

ỹkỹk
(3.17)

with ỹk = yk − ŷ−k the error of the output prediction and P defining the covari-
ance matrix between its two indices. Those equations are not easy to compute
and most of the time not possible at all to calculate without approximation. The
first approximation possible and now commonly used is to simply take functions
of the prior means to avoid expectations and to linearize the model at each step
around the point computed the step before to propagate the Gaussian random
variables. This is called the Extended Kalman Filter.

The state and output prediction are simply computed using the non-linear
model

x̂−k+1 = F (x̂k|k−1, uk, 0) (3.18)

ŷ−k = H(x̂k|k−1, uk, 0) (3.19)

And the same equations as in the linear case are used to compute Kk where
A, B, C and D now represent the linearized system around x̂k|k−1.
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As such, the Extended Kalman Filter can be viewed as providing ”first-
order” approximations to the optimal terms. These approximations can intro-
duce large errors in the true posterior mean and covariance of the transformed
Gaussian random variables, which may lead to sub-optimal performance and
sometimes divergence of the filter. Versions of the Extended Kalman Filter
approximating the optimal terms to the second order exist but their increased
implementation and computational complexity tend to prohibit their use.

3.3 The Unscented Kalman Filter

In their paper entitled ”A New Extension of the Kalman Filter to Nonlinear
Systems”, Julier and Uhlmann [13] present the Unscented Kalman Filter which
will be described here.

The same recursive equation and the same prior means approximations as
before are used. However, the way the Gaussian random variables are propa-
gated through the nonlinear system is quite different.

The state distribution is again represented by a Gaussian random variable,
but is now specified using a minimal set of carefully chosen sample points.
The statistical properties of these sample points completely capture the true
mean and covariance of the Gaussian random variable; and when propagated
through the true non-linear system, capture the posterior mean and covariance
accurately to the 3rd order (Taylor series expansion) for any nonlinearity. To
elaborate on this, we start by first explaining the unscented transformation.
The Unscented Transformation is a method for calculating the statistics of a
random variable which undergoes a nonlinear transformation [14].

Consider propagating a random variable x (dimension L) through a nonlin-
ear function, y = g(x). Assume x has mean x̄ and covariance Px. To calculate
the statistics of y, we form a matrix X of 2L + 1 sigma vectors Xi (with corre-
sponding weights Wi), according to the following:

X0 = x̄

Xi = x̄ + (
√

(L + λ)Px)i i = 1, ..., L

Xi = x̄− (
√

(L + λ)Px)i−L i = L + 1, ..., 2L

W
(m)
0 = λ/(L + λ)

W
(c)
0 = λ/(L + λ) + (1− α2 + β

W
(m)
i = W

(c)
i = 1/(2(L + λ)) i = 1, ...2L

(3.20)

where λ = α2(L+κ)−L is a scaling parameter. α determines the spread of the
sigma points around x̄ and is usually set to a small positive value (e.g., 1e-3).
κ is a secondary scaling parameter which is usually set to 0, and β is used to
incorporate prior knowledge of the distribution of x (for Gaussian distributions,
β = 2 is optimal). (

√
(L + λ)Px)i is the ith row of the matrix square root.

These sigma vectors are propagated through the nonlinear function g,

Yi = g(Xi), i = 0, ..., 2L (3.21)
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Figure 3.1: Example of the Unscented Transformation for mean and covariance
propagation extracted from [14]. In the UT case, only 5 sigma points, and no
linearization, are needed to propagate accurately the Gaussian random variable.

and the mean and covariance for y are approximated using a weighted sample
mean and covariance of the posterior sigma points,

ȳ ≈
2L∑
i=0

W
(m)
i Yi (3.22)

Py ≈
2L∑
i=0

W
(c)
i (Yi − ȳ)(Yi − ȳ)T (3.23)

Note that this method differs substantially from general ”sampling” meth-
ods (e.g., Monte-Carlo methods such as particle filters) which require orders of
magnitude more sample points in an attempt to propagate an accurate (possibly
non-Gaussian) distribution of the state. The deceptively simple approach taken
with the Unscented Transformation results in approximations that are accurate
to the third order for Gaussian inputs for all nonlinearities. For non-Gaussian
inputs, approximations are accurate to at least the second-order, with the ac-
curacy of third and higher order moments determined by the choice of α and
β. A simple example is shown in figure 3.1 for a 2-dimensional system: the left
plot shows the true mean and covariance propagation using Monte-Carlo sam-
pling; the center plots show the results using a linearization approach as would
be done in the Extended Kalman Filter; the right plots show the performance
of the Unscented Transformation (note only 5 sigma points are required). The
superior performance of the Unscented Transformation is clear.

The Unscented Kalman Filter (UKF) is a straightforward extension of the
Unscented Transformation to the recursive estimation in Equation 3.4, where
the state RV is redefined as the concatenation of the original state and noise
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Initialize with:

x̂0 = E{x0}
P0 = E{(x0 − x̂0)(x0 − x̂0)T }

x̂a
0 = E{xa

0} = [x̂T
0 0 0]T

P a
0 = E{(xa

0 − x̂a
0)(xa

0 − x̂a
0)T } =

 P0 0 0
0 Pv 0
0 0 Pn


For k ∈ {1, ...,∞},
Calculate sigma points:

Xa
k−1 = [x̂a

k−1 x̂a
k−1 ±

√
(L + λ)P a

k−1]

Time update:

Xx
k|k−1 = F (Xx

k−1, X
v
k−1)

x̂−k =
2L∑
i=0

W
(m)
i Xx

i,k|k−1

P−
k =

2L∑
i=0

W
(c)
i [Xx

i,k|k−1 − x̂−k ][Xx
i,k|k−1 − x̂−k ]T

Yk|k−1 = H(Xx
k|k−1, X

n
k−1)

ŷ−k =
2L∑
i=0

W
(m)
i Yi,k|k−1

Measurement update equations:

Pỹkỹk
=

2L∑
i=0

W
(c)
i [Yi,k|k−1 − ŷ−k ][Yi,k|k−1 − ŷ−k ]T

Pxkyk
=

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k ][Yi,k|k−1 − ŷ−k ]T

Kk = Pxkyk
P−1

ỹkỹk

x̂k = x̂−k + K(yk − ŷ−k )
Pk = P−

k −KPỹkỹk
KT

where, xa = [xT vT nT ]T , Xa = [(Xx)T (Xv)T (Xn)T ]T , λ
= composite scaling parameter, L = dimesion of augmented
state, Pv = process noise cov., Pv = measurement noise cov.,
Wi = weights as calculated in equation 3.20.

Figure 3.2: Unscented Kalman Filter Equations and Algorithm, copied from
[14]
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variables: xa
k = [xT

k vT
k nT

k ]T . The Unscented Transformation sigma point se-
lection scheme (Equation 3.20 ) is applied to this new augmented state RV to
calculate the corresponding sigma matrix, Xa

k . The UKF equations, directly
taken from [14], are given in the algorithm of figure 3.2. Note that no explicit
calculation of Jacobians or Hessians are necessary to implement this algorithm.
Furthermore, the overall number of computations are the same order as the
Extended Kalman Filter.

3.4 The ReBEL library

Even if the implementation of a Kalman Filter is quite straightforward, it has
been judged useful to use a library to implement the filters.

The library used is ReBEL : Recursive Bayesian Estimation Library 1

ReBEL is a Matlab toolkit of functions and scripts, designed to facilitate
sequential Bayesian inference (estimation) in general state space models. That
software consolidates research on new methods for recursive Bayesian estimation
and Kalman filtering by Rudolph van der Merwe and Eric A. Wan. The code
is developed and maintained by Rudolph van der Merwe at the OGI School of
Science & Engineering at OHSU (Oregon Health & Science University). That
library is free for academic use.

In order to allow the understanding of how the filters have been implemented
a rapid overview of how the library works will be presented, with focus on the
parts to be defined by the user.

The corner stone on which the library is build is a model structure (called
GSSM for General State Space Model) containing a complete description of the
system through parameters and functions. The first step to use the library is
to define such a model. A small initialisation is required before the filter call.
The last step consists of plotting the results.

3.4.1 The General State Space Model

The model contains a lot of parameters but in our specific case only the most
important are used. For example, since no linearization of the model is needed
in the algorithm, no information about that has to be included in the model.
Complete details about the model can be found in the library documentation
or by looking at some proposed examples. The 3 parts where the user has to
pay the most attention are :

• Size and noise parameters. The size information is necessary just to
let other functions know how many states, inputs and measurements the
system has. The noise definition is a very important part of the model.

1http://choosh.ece.ogi.edu/rebel/
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Both process and measurement noise are defined here. Each time zero
mean Gaussian noise is used and the covariance matrix has to be provided.

• Next state function. The function ffun takes the previous state as well
as the input and the parameters and outputs the predicted state one time
step ahead. This function can be nonlinear. In the case when many states
(sigma points) have to pass through that function, like in the Unscented
Kalman Filter, a loop is created inside and the equations are computed
for each point individually. To make the function more readable, the first
step always consists in extracting the components of the state, input and
parameter into variables with understandable names. The last step is then
obviously the concatenation of the modified variables into the new state
vector. Those 2 steps are skipped in the description of the function in
later chapters. The header of the function looks like :

f unc t i on new state = f fun (model , s ta te , V, U1)

% FFUN State t r a n s i t i o n func t i on ( system dynamics ) .
%
% Generates the next s t a t e o f the system NEW STATE given
% the cur rent STATE, exogenous input U1 and proce s s no i s e term V.
% MODEL i s a GSSM der ived data s t r u c tu r e d e s c r i b i n g the system

• Observation function. The function hfun gives the predicted measure-
ment from the state, inputs and parameters. Again, this function can be
nonlinear and a loop is defined inside to handle the case when many points
should go through. The same considerations about the first and last steps
for readability apply here also. The header is :

f unc t i on observ = hfun (model , s ta te , N, U2)

% HFUN State obse rvat i on func t i on .
%
% Generates the cur rent po s s i b l y non l in ea r obse rvat i on o f the
% system state , OBSERV, given the cur rent STATE, exogenous input U
% and obse rvat i on no i s e term V.
% MODEL i s a GSSM der ived data s t r u c tu r e d e s c r i b i n g the system .

3.4.2 Initialization

This part is not difficult and quite close to the examples given with library.
However the code in itself is quite long. A pseudo version of the code with the
main steps is presented here :

• Import the data from the Dymola result file. For example

Data = dymload ( ’ DoubleLaneChangeAndBraking ’ )
v x = dymget (Data , ’ v e h i c l e . c h a s s i s . summary . v x ’ ) ;

• Create the parameter, input, output, and exact state vectors.
The exact state is only used for the state initialisation in the filter and for
comparison with the estimated results.
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• Interpolate the data. Since the solver used in Dymola works with a time
varying time step, an interpolation is necessary. A specific interpolation
function is needed because of the instantaneous changes in the hybrid
variables.

• Initialization of the GSSM model. By calling the init part of the
model, the full structure will be created and the model will be ready for
simulation.

• Create the noise and integrate it in the model.

• Initialize the state and the covariance matrix. Usually the exact
state at time zero is used for state initialization and a simple unitary
diagonal matrix defines the covariance matrix.

• Define some specific filter parameters. In the case of the UKF, the
parameters and values are α = 1, β = 2 and κ = 0.



Chapter 4

State of the art of tire-road
friction estimation

The tire-road friction estimation is a very large research area and many different
approaches have already been proposed in the literature. Figure 4.1 tries to give
a good overview of the main directions taken by the researchers.

As the top branch of Figure 4.1 shows, tire-road friction estimation research
can roughly be divided into ”cause-based” approaches and ”effect-based” ap-
proaches. ”Cause-based” strategies try to measure factors that lead to changes
in friction and then attempt to predict what µmax will be based on past experi-
ence or friction models. ”Effect-based” approaches, on the other hand, measure
the effects that friction (and especially reduced friction) has on the vehicle or
tires during driving; they then attempt to extrapolate what the limit friction
will be based on this data.

For example, if a human driver sees ice on the road and uses past experience
to conclude that the road will be slippery, he is using a cause-based µmax esti-
mation strategy. If he does not see the ice, spins his tires while accelerating, and
then concludes that the road must be slippery, then he is using an effect-based
estimation strategy.

4.1 Cause-based friction prediction

Numerous parameters ”cause” the maximum available friction µmax to be a cer-
tain value. In [18], Bachmann classifies them as vehicle parameters like speed,
camber angle, and wheel load; tire parameters like material, tire type, tread
depth, and inflation pressure; road lubricant parameters like type (water, snow,
ice, oil), depth, and temperature; and road parameters like road type, microge-
ometry, macro-geometry, and drainage capacity. A cause-based µmax predictor
must be able to measure the most significant friction parameters and then pro-
duce an estimate of µmax from a database with information about the effects of

29
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Figure 4.1: A sampling of tire-road friction estimation research. Complete
reference information in bibliography or in [7]
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these parameters on friction. Many of the parameters affecting µmax are easily
determined - for example, speed, tire type, approximate wheel load, and camber.
However, measuring two of the parameters that significantly affect friction —
lubricant and road type — requires special sensors. This need for extra sensors
is one of the main disadvantages of cause-based friction estimation approaches.

As the ”Lubricants” branch of Figure 4.1 shows, several researchers have
built special lubricant sensors for friction estimation. The optical sensors de-
scribed in [20] and [19] can detect water films and other lubricants by examining
how the road scatters and absorbs light directed at it. Optical sensors have also
been constructed to detect the road surface roughness characteristics [19].

Once the parameters affecting friction are known, they must be passed into
a friction model of some sort to obtain a µmax prediction. This friction model
could be theoretical or physically based, but many researchers have suggested
using neural networks and other learning algorithms instead. In [20], for exam-
ple, the µmax prediction software uses data interpolation, associative storage,
and system identification techniques. The disadvantage of this type of nonphys-
ical model is that it loses accuracy when conditions deviate from the conditions
under which it was ”trained.” Nevertheless, experimental results have shown
that cause-based µmax estimators can often deliver high accuracy. For example
in [20], a cause-based method using data from a wetness sensor and a surface
roughness sensor gives a µmax estimate that is within 0.1 of the real value of
µmax in 92% of experiments. Since the key sensors were optical, these results
were obtained with zero friction demand. That is, the driver did not need to
achieve high levels of µ to get a useful estimate of µmax.

As we mentioned above, though, these advantages of good accuracy and
zero friction demand come with three main disadvantages: First, cause-based
systems often require extra sensors. Second, they may need extensive ”training”
to work properly. Third, they may have difficulties accurately predicting friction
under exceptional conditions for which they have neither sensors nor training.

4.2 Effect-based friction prediction

As Figure 4.1 shows, researchers have pursued at least three types of ”effect-
based” µmax estimators: acoustic approaches, tire-tread deformation approaches,
and slip-based approaches. We briefly review here the acoustic and tire-tread
approaches before focussing on the slip-based methods.

In an acoustic approach, a microphone is mounted to ”listen” to the tire,
and the sound that the tire makes is used to infer something about µmax. Ac-
cording to [20] and [19], the tire noise correlates with the friction demand and
deformation of the tire tread, so it is an effect of tire-road friction. At the same
time, though, these authors show that the noise is also correlated with parame-
ters that affect friction such as road type, presence of water, and speed. Thus,
tire noise indicates something about both the causes and the effects of tire-road
friction, so it could have just as easily been classified as a cause-based approach.
Regardless of how one classifies this approach, the complex nature of tire noise
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makes it difficult to use for predicting µmax [20].

The tire-tread deformation approach uses sensors embedded into the tire
tread to measure the x, y, and z deformations of the tread as a function of its
position in the road-tire contact patch. These deformations are the direct result
of x, y, and z force transmission in the contact patch and therefore contain
information about the total longitudinal, lateral, and normal forces as well as
their geometric distributions in the contact patch. This is useful for estimating
µmax because individual tire tread elements often exceed the holding power of
the road long before the tire as a whole exceeds µmax and starts sliding. Thus,
we see the effects of the µmax limit on the tire before we see its effect on vehicle
performance. For example, even in a free-rolling tire, the tread deforms in the
longitudinal direction as it flattens to enter the contact patch and then re-takes
its natural shape on exiting. The shear stresses associated with this free-rolling
deformation can be quite large — as much as 100 kPa, compared to normal
pressures on the order of 200 kPa. If the road-tire interface is unable to provide
enough adhesive force because µmax is small, certain parts of the contact patch
may slide slightly, leading to changes in the tread deformation geometry that are
correlated with µmax. When friction demand is non-zero, one might expect even
more local sliding in the contact patch, potentially providing more information
about µmax.

References [20] and [19] describe a tire-tread deformation sensor and give
experimental results for a µmax estimator that uses tread deformation. The
sensor consists of a magnet vulcanized into the tread of a kevlar-belted tire
(to avoid signal distortion from a steel belt) and a detector fixed to the inner
surface of the tire. Experiments using this apparatus show that even with zero
friction demand it is possible to detect very low µmax surfaces from tire-tread
deformation data. Furthermore, the system does not need to know why the
road is slippery to work since it only measures the effects of low µmax. Thus, it
is immune to many of the problems of cause-based µmax identifiers. While very
promising, this approach has the disadvantage that it requires a sophisticated
instrumented tire with a self-powered, wireless data link to the vehicle. Although
such links have been successfully tested, they still appear to be several years in
the future on production vehicles.

It is primarily the desire to avoid this type of new instrumentation that makes
the third effect-based approach — the slip-based approach — so attractive.
Taken together, results from the fairly small number of efforts to use slip to
classify roads indicate that it may be possible to use tire slip to classify roads
into at least two or three friction levels without having to use dedicated sensors.
Most of the algorithms in the literature make use of little more than standard
ABS wheel speed sensors, and possibly some of the sensors found on vehicles
equipped with ”Vehicle Dynamics Control” systems.

4.2.1 Slip methods

The basic idea of the slip methods is to use logged data to estimate the friction
curve or at least interesting portions of it. To get a point on the friction curve,
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many values are needed :

• the present slip

• the normal force on the road

• the friction force.

Those values are not trivial to get. We will come back on the estimation
of the slip and of the vertical force later. However we can already note that in
most cases quite good slip estimation can be obtained if a slow varying bias is
allowed. This comes from the uncertainty on the tire radius.

Concerning the friction forces, different approaches have been proposed. The
most general one is to use an observer to estimate continuously the forces on each
wheel. That idea has been proposed by Ray [8] and followed up by Wilkin [9].
A longer description as well as an implementation and comments are proposed
in a later section.

Another widely used possibility is to restrict the time while the forces are
available to specific manoeuvres like acceleration, braking or cornering. Gustafs-
son [11] proposed to use an engine map to get a value of the driving torque in
case of normal driving. Some other authors have tried the use the brake pressure
to estimate the braking torque but it seems that the measurement does not give
very accurate results [7].

Clearly it seems that it is easier to estimate the friction forces during normal
condition like driving. However the slip during such conditions stays very small
and it is therefore quite difficult to get an accurate idea of the shape of the
friction curve. On the other hand, braking occurs less often but provide much
higher slips which are better for the identification.

Once the friction force is available an algorithm could be defined to shape
the friction force. Most of the proposed approaches use a linear regression to
estimate the longitudinal stiffness as well as the slip bias mentioned above.
Such a method is presented in Gustafsson [11] using a Kalman filter coupled
to a change detector. We will come back to such an algorithm. Other authors
like in [21] propose a polynomial fit of the curve. Such an approach give more
accurate value for µmax provided that large enough slips can be used in the
regression, which is not easy to get in normal conditions.

In the following sections of this report, we look in more detail at some ideas
proposed in the field of slip-based friction estimation. Then new approaches,
still slip-based, are proposed and analysed.
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Chapter 5

Friction force observation
using a Kalman Filter

The purpose of this section is to analyse an observer for the friction forces as
proposed by Ray [8] and followed by Wilkin [9].

In the background section, a vehicle model has been presented and those 3
equations link the total measurable accelerations and yaw rate (consequences)
to the friction forces developed at each tire (causes). The idea is to use a
Kalman Filter to reconstruct the causes from the consequences, the forces from
the movements.

5.1 Model and filter equations

Let’s have a look again at the equations :

ax =
1
m

[((Fxfl + Fxfr) cos(δ))− ((Fyfl + Fyfr) sin(δ)) + (Fxrl + Fxrr)]

ay =
1
m

[((Fxfl + Fxfr) sin(δ)) + ((Fyfl + Fyfr) cos(δ)) + (Fyrl + Fyrr)]

dr

dt
=

1
Izz

[((Fxfl + Fxfr)a sin(δ)) + ((Fyfl + Fyfr)a cos(δ))−

(Fyrl + Fyrr)b− ((Fxfl − Fxfr) cos(δ))
tf

2
− ((Fxrl − Fxrr))

tr

2
)

From this model, a Kalman Filter can be developed using the following form
for the state and measurement equations:

ˆ̇x = f(x̂, F̂ , u) (5.1)

35
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ŷ = h(x̂, F̂ , u) (5.2)

x̂ is the estimated state vector, ŷ is the reconstructed output, u is the input
vector and F̂ are the eight estimated forces. More precisely:

u = [δ] (5.3)
x = [vx, vy, r]T (5.4)
y = [ax, ay, r]T (5.5)

Here the forces are considered as parameters that have to be estimated at
the same time as the state. They will therefore be included directly in the
state vector. As parameters, they have no dynamics and are modelled with a
derivative equal to a random noise.

Since the model is nonlinear a traditional Kalman Filter is not suitable. The
filter proposed in the paper is the Extended Kalman Filter where the basic idea
is to linearize the equations at each step around the present estimated point.
In this thesis another method called the Unscented Kalman Filter, described in
section 3.3 and which do not require the linearization, is used.

5.2 Details of the implementation and results

In the first paper proposing the observer (Ray [8]), 7 equations constitute the
model. The 3 first ones are the basic ones described above and 4 others are
added using the applied torque on each wheel. Since the applied torque is
very difficult to measure in practice and would at least require expensive extra
sensors, Wilkin [9] only uses the 3 general equation. Of course, many other
relations can be found in the car linking the forces to some dynamics and some
addition of new relations will be investigated later.

5.2.1 Using the applied torque

As said before, Ray [8] uses measures of the applied torques as inputs to the
model and that leads to the addition of the following process equation for each
wheel i:

Ẇi = (FxiR− Ti)
1
Iw

(5.6)

Where Ti is the torque applied and Iw is the wheel’s inertia.

The model implementation follow the sketch presented in section 3.4. The
main part of the functions ffun and hfun are given below. The dots represent
skipped code; in this case the extraction of the variables from the state, input
and parameter vector. The first lines present the forming of the data vectors.
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params = [m a b t f I z z Rw Iw ] ; % Parameters
U1 = [ s t e e r , T f l , T fr , T rl , T rr ] ’ ; % Input
y = [ a x , a y , r , w f l , w fr , w rl , w rr ] ’ ; % Output
Xexact = [ v x v y r f x f l f x f r f x r l f x r r f y f l f y f r f y r l

f y r r w f l w f r w r l w rr ] ’ ; % Exact s t a t e

func t i on new state = f fun (model , s ta te , V, U1)
f o r i = 1 : s i z e ( s ta te , 2)

. . .
v xD = v y .∗ r + 1/m∗ ( ( ( f x f l+f x f r ) . ∗ cos ( s t e e r ) ) −

( ( f y f l+f y f r ) . ∗ s i n ( s t e e r ) ) + ( f x r l + f x r r ) ) ;
v yD = −v x .∗ r + 1/m∗ ( ( ( f x f l+f x f r ) . ∗ s i n ( s t e e r ) ) +

( ( f y f l+f y f r ) . ∗ cos ( s t e e r ) ) + ( f y r l + f y r r ) ) ;
rD = ( ( ( f x f l+f x f r )∗ a .∗ s i n ( s t e e r ))+(( f y f l+f y f r )∗ a .∗ cos ( s t e e r ))−

( f y r l+f y r r )∗b−(( f x f l − f x f r ) . ∗ cos ( s t e e r ) )∗ t f /2−
( ( f x r l −f x r r ) )∗ t r /2)/ I z z ;

w flD = −( f x f l ∗Rw + T f l )/ Iw ;
w frD = −( f x f r ∗Rw + T fr )/ Iw ;
w rlD = −( f x r l ∗Rw + T r l )/ Iw ;
w rrD = −( f x r r ∗Rw + T rr )/ Iw ;

new state ( 1 : 3 , i ) = s t a t e ( 1 : 3 , i ) + h ∗ [ v xD ; v yD ; rD ] ;
new state ( 4 : 1 1 , i ) = s t a t e ( 4 : 1 1 , i ) ;
new state ( 12 : 15 , i ) = s t a t e ( 12 : 15 , i ) + h ∗ [ w flD ; w frD ; w rlD ; w rrD ] ;

end
new state = new state + V; % add proce s s no i s e

func t i on observ = hfun (model , s ta te , N, U2)
f o r i = 1 : s i z e ( s ta te , 2)

. . .
a x = 1/m∗ ( ( ( f x f l+f x f r ) . ∗ cos ( s t e e r ) ) − ( ( f y f l+f y f r )

.∗ s i n ( s t e e r ) ) + ( f x r l + f x r r ) ) ;
a y = 1/m∗ ( ( ( f x f l+f x f r ) . ∗ s i n ( s t e e r ) ) + ( ( f y f l+f y f r )

.∗ cos ( s t e e r ) ) + ( f y r l + f y r r ) ) ;
observ ( : , i ) = [ a x ; a y ; r ; w f l ; w f r ; w r l ; w rr ] ;

end
observ = observ + N; % add measurement no i s e

By running the filter on a Double Lane Change and Braking manoeuvre, we
get the results shown on figure 5.1. The two first pictures show the longitudinal
forces on the front left and rear right wheels. The two others wheels present
a very similar behaviour and are not of interest. Then the sums of the lateral
forces for the front and the back are shown. Since the equations always uses
the groups (Fyfl + Fyfr) and (Fyrl + Fyrr) there is no way to reconstruct the
individual forces using this model.

Here we can see that the estimate is quite close from the exact force computed
by the simulation. The small negative bias present in the longitudinal forces is
caused by the other forces not taken into account in this work : the drag force,
the rolling resistance, etc.
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Figure 5.1: Estimated forces for a Double Lane Change and Braking manoeuvre
using the applied torque. The results are accurate but require the measurement
of the applyed torque, which is not cheap to get in practice.
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Analysing closer the equations we notice that the longitudinal friction forces
are computed individually using the torque equations. Thus obviously the ac-
curacy of the estimation results from the accuracy of the torque measurement.
Since our simulation is noise-free, the estimation is optimal. Then the general
equations are used to estimate the two lateral groups. The speeds, not displayed
here due to the relatively marginal character, basically come from an integration
of the acceleration signal, here again noise-free.

5.2.2 Without the applied torque

Since the torque is difficult to get in practice, we can look at what happen if we
only keep the 3 basic equations for which we have all the needed measurements
as proposed by Wilkin [9].

The implementation is very similar to the one presented in the previous part.

Running the filter on the same Double Lane Change and Braking manoeu-
vre, we get the less encouraging results presented on figure 5.2. Again the
longitudinal forces for the front left and rear right wheels as well as the groups
of lateral forces are displayed.

At the level of the lateral forces, the results from both methods are quite
similar since the available equations to observe those forces are identical. How-
ever, concerning the longitudinal forces, it really seems that the filter has no
way to estimate them properly. Of course the relations used before have been
removed at the same time as the torque measurement.

From the beginning, we can question whether the number of equations is
enough to estimate so many variables. And unfortunately the answer is close to
no. In the worse case, we can imagine what would happen for a manoeuvre in
straight line. Since the steering angle, the lateral acceleration and the yaw rate
are reduced to zero, only one equation is left to estimate the distribution of the
total force on the 4 wheels. Even for Tom Cruise this is an Impossible Mission.

A confirmation of our intuition comes from the simulation of the Straight
Line Acceleration and Braking manoeuvre as shown on figure 5.3. The observer
has no other possibility than divide equally the total force between the 4 wheels
even if we know that the distribution is completely asymmetric. So for the
braking part where the brake pressure is equally distributed the results looks
acceptable; but for the acceleration part this is completely wrong.

So it seems that this approach is clearly too simple and can not give accurate
results with a low excitation of the lateral motion. In the paper published on
this method, all the tests presented are made using quite extreme manoeuvres
on a F1 car. Probably in those cases, do they manage to get enough excitation
to improve the estimation? However I have to voice some reservations about
the possibility to apply it for everyday driving.
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Figure 5.2: Estimated forces for a Double Lane Change and Braking manoeuvre
without using the applied torque. Because of the lack of equations, the filter has
no way to give an accurate estimate of the longitudinal forces and the chaotic
behaviour has no easy explanation.
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Figure 5.3: Estimated forces for a Straight Line Acceleration and Braking ma-
noeuvre without using the applied torque. Because of the lack of equations, the
estimated force on each wheel is simply one quarter of the total force.
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5.2.3 Covariance of the noises

The computation of the Kalman gain is a subtle mix between process and ob-
servation noise. The less noise in the operation compared to the uncertainty in
the model, the more the variables will be adapted to follow the measurements.

Since the forces are not modelled at all, the uncertainty is very high and is
represented by a high noise level. On the other hand, since the simulation is
noise free, the noise on the observations is said to be quite small. Of course,
in a real car, those characteristics could change depending on the specifications
of the sensors. The other states modelled using the car’s equations or using an
integration of the measurements are said to have an average noise.



Chapter 6

Friction estimation for low
slip manoeuvre

From the friction forces, assuming we have them, it becomes necessary to develop
an algorithm that can give an estimation of the maximum available friction
µmax. The method most used in the literature consists of estimation of the
slope of the friction curve for low slip.

A lot of articles assure that the slope allows a good classification of the
type of road. However, we can note that for the tyre model used in the Vehicle
Dynamic Library, this is far from being obvious. The slope of the friction curves
at low slip are so close, even for values of the road friction coefficient from 1
down to 0.2, that it is extremely difficult, if not impossible, to determine on
what friction we drive. A plot of the friction curves directly extracted from the
Bakker Tire Model of the Vehicle Dynamics Library is proposed on figure 6.1.
The curves for road friction coefficients of 1, 0.7, 0.5 and 0.2 are displayed.

Without raising doubts about the accuracy of the proposed model, it seems
that it is not very suitable for slope change detection. The best way to solve
this problem would be to have access to a test vehicle which is absolutely not
conceivable in the scope of this work.

Nearly ten years ago, Gustafsson [11] proposed a way to estimate the friction
from low slip manoeuvres. This idea has been developed, confirmed by practical
test and is now proposed as a functional product sold by the company NIRA
Dynamics AB 1.

1http://www.niradynamics.se
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Figure 6.1: Slip Curves extracted from the Bakker Model in the Vehicle Dynam-
ics Library. For various roads, presenting large differences in maximum friction,
the longitudinal stiffness (initial slope) are very similar.

6.1 Principle

6.1.1 Friction Forces acquisition

The main idea of this method is to run the algorithm only when it is easy to get
the needed information. If we restrict the working time to moments when we
are only driving straight (no braking, no too large steering ), the longitudinal
friction forces on the driving wheels can be estimated using the half of the
engine torque, while the forces on the non-driving wheels can be assumed to be
negligible. I normal condition, when the engine is not in a transient, the engine
torque can be estimated using an engine map stored in the system.

So with such restrictions, friction forces can be acquired quite easily and
accurately. Quiet conditions also have the advantage that vertical forces do not
vary too much and are therefore easier to model; as well the low lateral forces
do not disturb too much the longitudinal friction model.

6.1.2 Linear regression

Using the following relation for low slip

λ = µ
1

Cx
+ ∆ (6.1)

a Kalman filter can be developed to estimate both 1
Cx

and ∆. Here ∆ is the
offset of the slip curve which appears if the value of the slip is biased, like when
the effective radius of the wheel is not perfectly known.

The design goal is to get an accurate values on Cx while keeping the possi-
bility to track slow variations in both Cx and δ as well as detect abrupt changes
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in Cx rapidly. The Kalman Filter is perfect for the slow tracking. However,
to overcome the drawback of slow convergence after abrupt changes, a specific
CUSUM change detector has been added.

6.2 Limitations and Appreciation

This system really has advantages and drawbacks.

By restricting the sphere of operation of the observer, the estimator is made
much easier. This is of course an advantage. As well only a few sensors already
available in normal cars are needed. The friction forces obtained are most
probably accurate and the points on the slip curves also. This should allow
quite good estimation of the low slip behaviour.

Unfortunately, we have seen that low slip behaviour does not always give
accurate information about higher slip behaviour; especially since the estimated
longitudinal stiffness, used classification, vary a lot because of other parameters
not linked to the road. By being unable to use information coming from more
exciting manoeuvre, the observer reduces the reachable accuracy and makes
large mistakes in specific situations.

It is proved that higher slip is reached while braking than while driving since
the decelerations are often faster than the accelerations. Using friction informa-
tion when braking will clearly improve the µmax estimation. Furthermore an
emergency braking with the ABS system turned on will provide very high slip
information that could be used to refine the position of the maximum.

Moreover, some applications would benefit from having an estimate of the
friction forces, especially in the case of extreme manoeuvres.

However this method gives precious information about the beginning of the
curve that could be used to adapt more complicated friction models. As well the
ability to estimate the slip bias and therefore the effective wheel radius of the
driven wheels while driving can clearly be of first importance for other systems.

So this implementation, already giving interesting results and on which many
papers have already been published, has room for further improvements and
could be completed by other methods.
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Chapter 7

Hybrid observer

An original idea I had and implemented is to use the principle of hybrid observers
to choose the best friction coefficient out of a discrete number of possibilities.
This approache seems to be very interesting and solving a number of limitations
never solved before.

7.1 Principle

In the literature it is very common to try to classify the kind of road we are
driving on into a few number of categories like ”dry asphalt”, ”wet asphalt” or
”ice” [7] [8] [11]. This tendency leads directly to use hybrid observers instead
of continuous ones.

A hybrid system is a system where some parameters are discrete, with a
limited number of values. Most of the time, the values influence the general
continuous dynamics of the all system. As an example we can look at a gear
box where the gear is 1, 2, 3, 4 or 5 but not 2.4. Depending on the engaged gear,
the ratio will change and the dynamics of the box will change too. An observer
for such a system has been developed by Balluci [15]. Another example is an
electronic circuit where the state defines the actions and outputs of the circuit
as well as the possible transitions through the state machine.

Many new theories appear to observe such systems. From quite simple to
very complex, they try to use as much as possible the available information
about the system like the possible transitions of the hybrid variables. One
interesting method proposed by Balluci [15] and used in this thesis is to run
in parallel a continuous observer for each possible value of the hybrid variable
and then select the observer that gives the smallest residual, i.e. the one that
explain the best the behaviour of the system.

In our case, the hybrid variable is the road and possible values are the usual
categories (or friction coefficients) defined in the literature. The main idea is
to compute what should be the friction forces for each type of road defined in
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the observer, compute what should be the behaviour of the car because of those
forces and compare it to the measured behaviour to select the most probable
road.

From the beginning, some new functionalities and advantages can be ex-
pected from such an idea :

• Non-linear models can be used to describe the friction curves that are
obviously non-linear. This allows the estimator to be active in all the
situations, even for large slip. The use of nonlinear models is not novel
but is really not common in the literature.

• Moreover, the ability to use the information provided by large slip manoeu-
vres improves the knowledge of the friction coefficient and the maximum
of the curve.

• Rapid variations in the friction could be easily detected since the hybrid
observers are dedicated to abrupt parameter changes.

• Until now, the steering was considered as a complexity to be moved away
since it modifies the friction model. With a non-linear model, the steering
does not need to be rejected any more and can even become a good source
of excitation for the system.

By looking at the implementation, we will be able to notice that a lot of new
problems appear in this approach.

7.2 Implementation

The system has been implemented in Modelica. This kind of implementation is
perfect to divide the algorithm in small blocs having a particular function. The
general diagram from Dymola is shown on figure 7.1.

On the left the sensors get the information from the car and store them in the
main variables used by the algorithm. On the next level, interesting quantities
are computed from the raw data. Then an estimate of the forces and of the car’s
behaviour is done for each possible road. In this case, the different roads are
tuned with the friction coefficients 1, 0.7, 0.5 and 0.2. At the end a comparison
between the residuals allows the selection of the most probable road.

7.2.1 The sensors

The wheel sensors provide a measurement of the angular speed of each wheel.
This information is already available in every car equipped with an ABS system.

The speed sensor provides an estimate of the longitudinal and lateral speed
of the vehicle. A complete description of how to get those speeds is out of the
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Figure 7.1: Modelica diagram of the Hybrid Observer. The sensors are displayed
on the left: wheel speed, car speed, car acceleration, driver instructions, vertical
forces, road grade and car parameters. The next level process the data: slip
computation, effective tire radius determination and acceleration correction. A
car model is simulated for each road condition: sun, rain, snow and ice. Finally,
analysis of the residuals allows the selection of the most probable road.

scope of this thesis. However, many works on the subject seems to come close
to very nice solutions. One possibility proposed by a team from Stanford [17]
is to use the GSP signal received by the car to compute the absolute speed. A
measurement of the yaw rate is also included in this bloc. Note that this value
is directly available from the ESP system.

The acceleration sensor get the values of the longitudinal and lateral accel-
erations either from an Inertial Measurement Unit (IMU) or from differentiation
of the GSP speed signal as proposed by Uchanski [7].

The driver’s instructions sensor gives a precise measurement of the steering
angle as well as qualitative measurements (like on-off) of the clutch, brake and
accelerator positions.

The vertical forces bloc should provide a good estimate of the load on each
wheel. Using information like the accelerations or the pitch and roll movements,
a load transfer model can be derived from basic equations of rigid body mechan-
ics. Unfortunately, such a model depends on the mass and the position of the
centre of gravity which are quite uncertain. Another source of information that
could be investigated is ”active suspension” which arrives slowly in the new
models and features a deflection measurement of the suspension.

The road grade sensor is not directly used in this implementation. However,
an empty object appears in the model to keep in mind that such a parameter
has to be integrated before implementation in a real car.
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Finally, the vehicle parameters gives a value to the main parameters describ-
ing the behaviour of the vehicle. Some of the parameters like the size of the
car are fixed and can therefore be stored forever at the factory. Some others,
like the mass, varying along the time, should be estimated. However, a such
estimation is out of the scope of this thesis.

7.2.2 Slip computation and wheel radius

A very critical part of the algorithm is the computation of the slip. Assuming the
longitudinal and angular speeds are quite well known, the biggest uncertainty
lies in the wheel radius.

To be complete it should be noted that the speeds used to compute the slips
are those of the contact point and not those of the car body. A correction is
necessary as soon as the car is turning. The necessary equations can be found
in the Modelica model.

The wheel radius, actually the effective and deformed one, is not known at
the beginning and can change depending on the type of tire, the wheel load,
the pressure, etc. If an offset is allowed in the slip, like in Gustafsson [11], the
radius can be estimated at the same time as the friction curve. Unfortunately
the proposed implementation does not really allow such latitude.

The solution proposed to this problem is composed of two parts.

When no torque is applied on the wheel, the slip is very close to zero and
therefore the wheel radius can be estimated using

R =
V

ω

if the speeds are not too small. Such situations happen quite often for the non-
driven wheels and happen for the driven wheels while the driver change gears
and open the clutch. Those short periods can give a reference for the radius.

Since long periods can occur with always a torque applied, it is necessary to
model what should be the variation of the radius around the reference, mainly
caused by the change in the load. Using the vertical forces, supposed here to
be available (see section 7.2.1), and a standard value for tire vertical stiffness,
a good correction can be computed.

In the scope of a project in System Identification 1, dynamic deformations of
the radius linked to the internal dynamic of the tire has been investigated. The
conclusion is that the best results are obtained if the load and the derivative of
the load are taken into consideration for the computation. Higher order models
are not better and require much more parameters. However, the introduction
of the dynamics does not lead to incredible improvements. Moreover, it has
been seen that the dynamics of the tire is non-linear and the coefficients of the
dynamics depends on the operating point.

1Course taught by Prof Rolf Johansson at the Department of Automatic Control, LTH
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Figure 7.2: Modelica diagram of the Car Model of the Hybrid Observer. The
arrows indicate the computed quantities: for each wheel the longitudinal and
lateral friction forces, and at the centre the longitudinal, lateral and yaw motion.

Because the stiffness of the tire is very large, a huge load transfer is needed
to make a significant change in the radius. Therefore, it has been judged not
really worth implementing tire deformations in the details for this first experi-
mentation.

7.2.3 Acceleration Correction

The acceleration of the car body is used to estimate the total force acting on the
car. However, this force has other components than only the friction with the
road. We can think about the drag force, the gravitation if the grade of the road
is not zero, the rolling resistance, etc. Therefore, if possible, a correction of the
acceleration to only keep the part due to friction would improve the observer.

To simplify the test in a first time, a perfect correction is applied.

7.2.4 Car model with friction and movements

For each possible road, four in this case, a car model is simulated. The road
is set using the road friction parameter. A schematic picture of the model is
shown on figure 7.2.

The four wheel models implement a full complex friction model for each
wheel based on Pacejka’s Magic Formula. Using the slips as input they compute
what should be the friction force on the given kind of road. Maybe here the
friction model is even too complex and too parameterized. The way the model
is implemented will influence a lot the accuracy but also the robustness of the
observer. For example the camber property of the tire is present in the model
and set to zero since we don’t know how to estimate it. The use of a more
robust model without camber or the prediction of the camber to be injected in
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the model would probably improve the observer. Anyway, the idea is more to
show that any kind of nonlinear model can be used.

The data element defines all the tire’s parameters. Nothing has been in-
vestigated in this direction but we could imagine simulating a car with normal
tires and another with winter tires since the difference in parameters between
the two is quite large. It could be possible to detect both the kind of road and
the kind of tire.

The motion model at the centre takes the estimated forces from every wheel
and computes the expected accelerations and yaw rate on the given road. By
comparing them to the observed values, residuals are generated.

To introduce the Modelica language and give more details about the im-
plementation, the Modelica code of the car model and its components is given
below.

model CarModel
parameter In t eg e r j=1 ”model ’ s number” ;
parameter Real f r i c t i o n = 1 ” f r i c t i o n ” ;
parameter Real a=1 ” d i s t mass c ent e r − f r on t ax l e ” ;
parameter Real b=1.5 ” d i s t mass c ent e r − r ea r ax l e ” ;
parameter Real t f =1.5 ” f r on t v e h i c l e t rack width” ;
parameter Real t r =1.5 ” r ea r v e h i c l e t rack width” ;
parameter Real I z z =1300 ” I n e r t i a l moment around z ax i s ” ;

Var i ab l e s v a r i a b l e s ;
FricModel1Wheel fr icModel1Wheel1 ( f r i c t i o n=f r i c t i o n , i =1, j=j , data=data ) ;
FricModel1Wheel fr icModel1Wheel2 ( f r i c t i o n=f r i c t i o n , i =2, j=j , data=data ) ;
FricModel1Wheel fr icModel1Wheel3 ( f r i c t i o n=f r i c t i o n , i =3, j=j , data=data ) ;
FricModel1Wheel fr icModel1Wheel4 ( f r i c t i o n=f r i c t i o n , i =4, j=j , data=data ) ;
CarsEquations carsEquat ions ( j=j , a=a , b=b , t f=t f , t r=tr , I z z=Iz z ) ;
VehicleDynamics . Veh i c l e s . Chass i s . Wheels . ContactForces . MFTyre52 . Data .

Data 205 50 R15 data ;

equat ion
connect ( fr icModel1Wheel1 . va r i ab l e s , v a r i a b l e s ) ;
connect ( fr icModel1Wheel2 . va r i ab l e s , v a r i a b l e s ) ;
connect ( fr icModel1Wheel3 . va r i ab l e s , v a r i a b l e s ) ;
connect ( fr icModel1Wheel4 . va r i ab l e s , v a r i a b l e s ) ;
connect ( carsEquat ions . va r i ab l e s , v a r i a b l e s ) ;

end CarModel ;

model FricModel1Wheel
parameter Real f r i c t i o n=1 ” f r i c t i o n ” ;
parameter In t eg e r i=1 ”wheel ’ s number” ;
parameter In t eg e r j=1 ”model ’ s number” ;
parameter VehicleDynamics . Veh i c l e s . Chass i s . Wheels . ContactForces . MFTyre52 .

Data . Base data ”base f o r t i r e data” ;
parameter Boolean le f tWhee l = i f ( i == 1 or i == 3) then true e l s e f a l s e

” l e f t mounted ?” ;

VehicleDynamics . Veh i c l e s . Chass i s . Wheels . ContactForces . MFTyre52 . Equations
equationsMFTyre52 ( data=data ) ”Magic Formula equat ions ” ’ ;

Var i ab l e s v a r i a b l e s ;

p ro tec t ed
Modelica . Blocks . Math . Gain mirror1 (k = i f l e f tWhee l then 1 e l s e −1);
Modelica . Blocks . Math . Gain mirror2 (k = i f l e f tWhee l then 1 e l s e −1);
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Modelica . Blocks . Sources . Constant ConstantGamma(k=0);
Modelica . Blocks . Sources . Constant ConstantFr i c t ion (k=f r i c t i o n ) ;

equat ion
connect ( mirror1 . y , equationsMFTyre52 . vy ) ;
connect ( ConstantFr i c t ion . y , equationsMFTyre52 .mue ) ;
connect (ConstantGamma . y , equationsMFTyre52 . gamma) ;
connect ( v a r i a b l e s . V x [ i ] , equationsMFTyre52 . vx ) ;
connect ( v a r i a b l e s . V y [ i ] , mirror1 . u ) ;
connect ( v a r i a b l e s .w[ i ] , equationsMFTyre52 . omega ) ;
connect ( v a r i a b l e s .R[ i ] , equationsMFTyre52 . Re ) ;
connect ( v a r i a b l e s . Fz [ i ] , equationsMFTyre52 . f z ) ;
connect ( equationsMFTyre52 . fx , v a r i a b l e s . Fx [ j , i ] ) ;
connect ( equationsMFTyre52 . fy , mirror2 . u ) ;
connect ( mirror2 . y , v a r i a b l e s . Fy [ j , i ] ) ;

end FricModel1Wheel ;

model CarsEquations
parameter In t eg e r j=1 ”model ’ s number” ;
parameter Real a=1 ” d i s t mass c ent e r − f r on t ax l e ” ;
parameter Real b=1.5 ” d i s t mass c ent e r − r ea r ax l e ” ;
parameter Real t f =1.5 ” f r on t v e h i c l e t rack width” ;
parameter Real t r =1.5 ” r ea r v e h i c l e t rack width” ;
parameter Real I z z =1300 ” I n e r t i a l moment around z ax i s ” ;

Var i ab l e s v a r i a b l e s ;
SI . Mass m = va r i a b l e s .M ”body mass” ;
SI . Force f x f l = va r i a b l e s . Fx [ j , 1 ] ;
SI . Force f x f r = va r i a b l e s . Fx [ j , 2 ] ;
SI . Force f x r l = va r i a b l e s . Fx [ j , 3 ] ;
SI . Force f x r r = va r i a b l e s . Fx [ j , 4 ] ;
SI . Force f y f l = va r i a b l e s . Fy [ j , 1 ] ;
SI . Force f y f r = va r i a b l e s . Fy [ j , 2 ] ;
SI . Force f y r l = va r i a b l e s . Fy [ j , 3 ] ;
SI . Force f y r r = va r i a b l e s . Fy [ j , 4 ] ;
SI . Angle s t e e r = va r i a b l e s . s t e e r ;
SI . Acc e l e r a t i on A xE ” expected l o n g i t ud i n a l a c c e l e r a t i o n f o r t h i s f r i c t i o n l e v e l ” ;
SI . Acc e l e r a t i on A yE ” expected l a t e r a l a c c e l e r a t i o n ” ’ ;
SI . Angu larAcce l e rat ion DRE ” expected yaw ra t e ” ;

equat ion
A xE = 1/m∗ ( ( ( f x f l+f x f r )∗ cos ( s t e e r ))−(( f y f l+f y f r )∗ s i n ( s t e e r ))+( f x r l + f x r r ) ) ;
A yE = 1/m∗ ( ( ( f x f l+f x f r )∗ s i n ( s t e e r ))+(( f y f l+f y f r )∗ cos ( s t e e r ))+( f y r l + f y r r ) ) ;
DRE = ( ( ( f x f l+f x f r )∗ a∗ s i n ( s t e e r ))+(( f y f l+f y f r )∗ a∗ cos ( s t e e r ))−( f y r l+f y r r )∗b−

( ( f x f l − f x f r )∗ cos ( s t e e r ) )∗ t f /2−(( f x r l −f x r r ) )∗ t r /2)/ I z z ;

v a r i a b l e s . r e s i d [ j , 1 ] = A xE − va r i a b l e s . A x ” l o n g i t ud i n a l r e s i d u a l ” ;
v a r i a b l e s . r e s i d [ j , 2 ] = A yE − va r i a b l e s . A y ” l a t e r a l r e s i d u a l ” ;
v a r i a b l e s . r e s i d [ j , 3 ] = DRE − va r i a b l e s .DR ”yaw r e s i d u a l ” ;

end CarsEquations ;

7.3 Results

Placing ourselves in perfect conditions, the system works perfectly fine !

The observer is tested with the Straight Line Acceleration and Braking ma-
noeuvre and the results are plotted on figure 7.3.
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Figure 7.3: Filtering results of the Straight Line Acceleration and Braking ma-
noeuvre using the Hybrid Observer. Between the fourth and eighth second, i.e.
during the low friction patch, the residual of the wet road is closer to zero, which
indicates a higher probability for that case. The very low excitation, between
the sixth and seventh second, explains the chaotic behaviour of the estimator.

It is wonderful to see how, at the change in road friction, the first residual
tuned on µroad = 1 will increase and let the second one tuned on µroad = 0.7
come towards zero. This is exactly the expected behaviour of such a system.

Of course, when the excitation is too low, the residuals are superposed and
it is not possible to distinguish with one is best. Here also a kind of off function
should be applied in such situations.

Unfortunately, the variation of some parameters can make the system com-
pletely miss the right answer. Without perfect correction of the acceleration, use
of the same tire model, right value for the mass, perfect slip, etc, the observer
can gives incorrect estimation.

7.4 Possible improvements

So the system is working but is not robust enough. Unfortunately, in this topic
where most of the parameters are really uncertain, this needs to be improved.

First, the variation of the tire parameters, because of the type of tire and
the present conditions, has always been a difficult problem to handle in this
research area. This is one of the most important sources of wrong estimation.
So we can not expect to solve it perfectly. Two ideas in that field could be:

• To take a much simpler tire model with fewer parameters. That way we
could expect less sensitivity to uncertainties.

• To adapt the parameters of the model by monitoring some specific values.
One possibility would be to look at the maximum and range of longitudinal
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stiffness on a long time scale. We could then expect to have some high-grip
road during that period.

Furthermore this method is clearly more suitable for high-slip manoeuvres.
First because the estimation at low slip is less accurate than some other specific
methods; but mainly because this is probably one of the first attempts to use
the fully nonlinear friction model. By restricting the estimation to when large
enough slip is available, we will certainly reduces the mistakes.

Finally, many researchers are currently working on the estimation of specific
quantities intervening in this algorithm. We can expect that with the improve-
ment of those methods, the necessity of robustness will decrease in other ap-
plications like this one. This should be the case with values like mass, speed,
wheel load, age of the driver, etc.
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Chapter 8

Improvement of the Tire
Forces Observer

The observer proposed in section 5.2.2 clearly needs the addition of some equa-
tions to improve the estimation of the distribution of the friction forces. As well
the main topic of this work is the estimation of µmax and therefore the use of a
friction model will be somehow needed. In the first section, the introduction of
a slip-based friction model directly in the forces observer will be investigated.

As it is always the case in control theory, a feedback loop allows the reduction
of the output error while a feedforward speeds up the process. In the second
section, an implementation of a feedforward, or a prediction of the dynamics of
the variables to be estimated, will be proposed and tested.

8.1 Forces Observer with Linear Friction Model

A general slip-based friction model for the tire can be expressed using the fol-
lowing equation

µ =
Fx

Fz
= f(λ, θ)

Where f is any function, linear or not, of course as close as possible to the
exact slip curve and θ is a set of parameters. For example f can have the form
of the Magic Formula or more simply be linear with slope Cx.

Using one equation for each wheel and introducing θ in the state to be
estimated, we now have enlarged our filter and we can expect improvements.

To be able to use this concept, two assumptions should be made :

All 4 wheels run with the same set of parameters θ. Actually, if this
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assumption is not made, the number of parameters is so large that an infinite
number of possible combinations will satisfy all the equations; the system will
be underdetermined. Such assumption is not always valid in everyday driving
but moments when it’s not satisfied are quite rare.

The slip and the normal forces should be known accurately. In
this case, a bias on the wheel’s effective radius is not really allowed since the
correction would require one parameter for each wheel which is too much as
explained in the previous paragraph. More details about this can be found in
section 7.2.1.

Looking at Gustafsson’s idea presented in previous chapter, I choose to sim-
ply implement this idea using a linear friction model described by a single pa-
rameter Cx. Practically Cx, or more precisely 1

Cx
, is added in the state vector

as a parameter to be estimated. Since the value is quite small and not varying
so much — we leave the jump detection to other devices added to the Kalman
Filter — the variance of the process noise associated with this parameter is
quite low. Four new observation equation are introduced as well — one for each
wheel — with the form :

λ =
1

Cx

Fx

Fz

Since the chosen friction model is linear, it is only valid for low slip and
the observer will only be tested on the Straight Line Acceleration and Braking
manoeuvre. The results of the test are given on figure 8.1.

Right now the results do not look very impressive. However many nice things
can be noticed :

• The estimation of the forces is slightly better now than in the previous
case without the friction model.

• More importantly, the estimation of the forces now seems to converge
towards the right value which was not the case before. We can expect
much better results by speeding up the filter.

• The slope of the friction curve is directly computed. Visibly, the estimation
is not perfect. At least it is possible to see a small jump when the road
friction change which is encouraging.

A very important remark is that the estimation of Cx becomes completely
mad when there is not enough excitation, i.e. when the slips are too low, i.e.
when the driver does not request any action. In a practical implementation,
the observer should integrate a devise detecting such too low excitation and
shutting off the filter.

Since the estimation seems to converge but rather slowly, so, as it is usually
done in control theory, a feedforward is integrated.
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Figure 8.1: Forces and Friction estimation for the Straight Line Acceleration and
Braking manoeuvre using a Kalman Filter with linear friction model. The rather
slow convergence of the estimated forces can be observed on the first two plots.
Between the sixth and seventh second, a very low excitation explains the chaotic
behaviour of the estimator. On the last picture, the first curve represents the
road friction coefficient and the second curve the estimated longitudinal stiffness.
Those two quantities should not be equal but have a similar behaviour.
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8.2 Feedforward

Until now no information was directly used to predict the variation of the forces.
So they were modelled as static parameters without any specific dynamic. Of
course this approach can be improved.

We know that an action on the brakes will induce negative longitudinal forces
on each wheel while an acceleration induce positive longitudinal forces on the
front wheels only. By looking at some data, it is really easy to identify a simple
feedforward.

A good thing about the feedforward is that it is very robust. In other words,
since the purpose is only to speed up the convergence at a fast change, it doesn’t
really matter if the guessed change for one force is really good or not. Of course
the better the guess the better the filter will follow the right value. However, a
wrong parameter will not destroy the filter. As for every feedforward, a too low
guess will require some more time for the filter to adapt while a too high guess
will lead to an overshoot.

The results from a test of the improved observer is displayed on figure 8.2.

I really think those results can be said to be really good. The tracking of
the forces is very close to the real value for both the acceleration and braking
phase. Moreover, the behaviour of the estimated friction slope Cx seems very
promising. Jumps occurs exactly when the road friction changes and the slope
converge towards similar values on similar roads.

8.3 Appreciation

• Will the slip and the vertical forces really be accurately measurable ?

• Will the cases of too low excitation be possible of handle ?

• Will the jumps in the friction slope be larger in real conditions as suggested
by Gustafsson [11] ?

• Is the maximum friction µmax really possible to get from Cx ?

I think that the answers to all those questions are Yes. However much more
investigations in this direction, coupled with some practical test, are needed
to guarantee this positive answer. Unfortunately time and means are always
missing.

Clearly, since the friction model used is linear, the filter is restricted to law
slip manoeuvres and the same appreciation as for Gustafsson’s method applies.

This technique allows the estimation of the friction forces but, on the other
hand, less correction parameters can be identified; and it is unlikely that a
nonlinear model could be fitted.
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Figure 8.2: Forces and Friction estimation for the Straight Line Acceleration
and Braking manoeuvre using a Kalman Filter with linear friction model and
feedforward. The convergence towards an accurate value is a lot improved by
the feedforward. Between the sixth and seventh second, a very low excitation
explains the chaotic behaviour of the estimator. The small difference between
the estimated and the exact forces, as well as the slight slope in Cx, is mainly
due to the non-modelled drag force.
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Chapter 9

Conclusion

Tire-road friction estimation is like a road with icy spots. Many difficulties
appear on the way towards the solution and each slippery spot is a challenge
to detect and overcome. Unfortunately the problems are not always possible
to detect before seeing that the method starts spinning and leading us in a
wrong direction. It is therefore necessary to drive carefully which means that
the research is not running so fast.

In this thesis, I have focused both on the detection of icy spots on the road
and on the detection of slippery points in estimation methods. Published and
self-made techniques have been implemented and investigated in the field of
slip-based methods.

On the road leading to our final destination, i.e. the estimation of the
maximum available friction µmax, three lanes have been traced in this thesis.
The first one is simply taken from [11], the second one is an improvement of [9]
and the third one is totally home-made.

On the right lane, we find a friction estimator for low-slip manoeuvres. This
method works well thanks to its simple principle and can clearly provide ex-
tremely useful information. Of course the road classification is already very
interesting but the by-products can be as important. By looking at the bias
present in the slip calculation, a very good correction can be brought to the
tire radius and a rectified value of the slip can be sent to other devices. Un-
fortunately, obstacles appear on the way as soon as the driver starts braking or
steering. Moreover the linearity of the model restricts the use to low-slip ma-
noeuvres. Since the longitudinal stiffness changes because of conditions external
to the road, the estimation of the friction peak can easily be wrong.

The centre lane contains a force observer including a linear friction model.
Thanks to the ability to estimate directly friction forces, this method has a
larger scope than the previous one and can be used, for example, while braking.
On the other hand, fewer correction parameters can be estimated at the same
time and, among others, an unbiased value of the slip is required. Because of
the linearity of the friction model, the same obstacles as in the previous case
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appear.

The left lane is dedicated to a completely new kind of estimator: a hybrid
observer. The main advantage of this method is to feature a nonlinear friction
model to classify road in a few categories. This allows a use in any situation,
and particularly when high-slip is available. Moreover the peak estimation will
be greatly improved since the peak is included in the model. Unfortunately,
the weak robustness of such a system to tire characteristics calls for further
improvements and probably online adaptation.

When there is an obstacle on the road, you can either stop before it or crash.
None of the solutions is really good if someone is waiting for you. Neither an
undefined nor a wrong value is good if the driver or another embedded system
is waiting for friction estimation. However, when the road is constituted of
many lanes, the natural reaction is to overtake. With that analogy I think
that a good direction to take in the future would be to combine a linear and a
nonlinear observer.

From my position, the combination of a linear observer for low-slip manoeu-
vres with a hybrid nonlinear observer for high-slip and braking manoeuvres
seems very interesting and promising. The nonlinear system could take over
when the linear one is out of its depth. As well the low-slip information can
provide correction and adaptation to the less robust system. Of course, a switch-
ing strategy should be developed and new difficulties could show up.

Clearly a lot of work is still to be done in this research area. Probably
new techniques will be created within the next few years. Focussing on the
proposed methods, future work should take the following directions. A critical
part is to increase the robustness of the tire model and investigate how it could
be adapted by monitoring some measurable or estimable quantities. Another
interesting topic is the investigation of the precision we can expect on the slip
computation.

From a personal point of view, this thesis has been fantastic. I had the
opportunity to discover a very interesting and motivating topic in automotive
control and active safety. All the time I have been free to find and choose
the directions of the project. This does not imply that results come faster
but it develops research, organisation, synthesis, anticipation and imagination
skills. As well, it has been a perfect occasion to apply theoretical knowledge,
to deeper understand control and estimation concepts, to familiarize myself
with vehicle dynamics and to learn new advanced techniques; all of it in a
renowned department and an international environment. To me this thesis
really represents the highlight of five years of technical training and personal
development.
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[21] St. Germann, M. Würtenberger, & A. Daiß. Monitoring of the friction
coefficient between tyre and road surface. Proceedings of the third IEEE
Conference on Control Applications (August 24-26, 1994), 1:613618, 1994.

[22] N. Petersson & M. Santesson. Experimental Slip-based Road Condition
Estimation. Master Thesis, Automatic Control department, Lund Institute
of Technology, 2000.




