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Chapter 1

Introduction

Issues related to driver assistance and active safety are receiving a lot of at-
tention in the automotive industry. They include measures taken to improve
on the driver’s experience and to help avoid accidents. An example of an
active safety system is the anti-lock braking system (ABS) which reduces the
risk of skidding during braking. Several systems for active safety and driver
assistance are electronic and make use of sensors mounted on the vehicle. It
is, however, important to keep the number of sensors as low as possible in
order to minimize the production costs. The use of state observers is becom-
ing widespread since they make it possible to extract more information from
the available sensors. This thesis is a part of an ongoing project which aims
at identifying and attenuating side wind acting on a vehicle.

The effects of side wind gusts are easily noted in several driving situations,
for instance when passing a large truck or when entering a bridge. A heavy
side wind gust can cause the vehicle to deviate from its track and into the
meeting lane. When the gusts are modest, so that the driver can compensate
for them, it will still be tiring to repeatedly perform compensating maneuvers
which eventually makes the driver less responsive. By helping the driver to
compensate for these disturbances, the safety is increased. Previous work
has shown how pressure sensors on the vehicle may be used to measure the
side wind in order to suppress the disturbance using feedforward control.
The strategy currently used is known as a disturbance observer and only
requires the sensors available in a vehicle equipped with an ESP-system.

1.1 Main Goals

The following points constitute the main goals of this master’s project.
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e Analyze the robustness to sensor offset and parameter error in the side
wind estimation.

e Investigate possible ways of reducing the effects of sensor offset.

e Introduce on line identification of critical parameters to improve the
side wind estimation.

e Design a controller which utilizes the side wind estimate.

1.2 Thesis Outline

The first part of this thesis deals with vehicle modeling. A simple vehicle
model which covers the lateral dynamics during normal driving is derived
in Chapter 2. The effects of side wind and road bank are also considered.
A model of the steering system is introduced to facilitate the design of a
controller later on.

The disturbance observer is derived in Chapter 3. An investigation of the
robustness towards sensor offset and parameter error is performed. A few
possibilities for reducing the effects of sensor offset are also presented.

Since the disturbance observer is found to be sensitive to parameter error,
a large part of this thesis is dedicated to investigating the possibility of
introducing on line identification of vehicle parameters. The investigation
is focused on the use of Recursive Least Squares and Multiple Model Es-
timation. An introduction to both methods and experimental results are
presented in Chapter 4.

A feedforward controller which uses the side wind estimate is designed and
evaluated in Chapter 5.

1.3 Methods

Matlab and Simulink have been used extensively throughout this work. A
simulation tool known as CASCaDE (Computer Aided Simulation of Car,
Driver and Environment) was also used. It has been developed at Daimler-
Chrysler and holds highly detailed models of several vehicles. It was used
to simulate the controller when side wind was acting on the vehicle. Mea-
surements made with test vehicles were used to evaluate the identification
techniques.
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1.4 Notations

Scalar signals and constants are written in small letters while matrices are
written in capitals. Small, bold, letters denote vectors. An estimate of a
signal or constant c is denoted ¢ and the estimation error ¢ — ¢ is written c.

The relevant notations used in this thesis are presented in Table 1.1. Note
that the cornering stiffnesses C, and C generally will be presented in N/deg,
although they are defined in N/rad.

Notation | Unit Definition

ayp (o) | rad Front (rear) tyre slip angle

ay m/s? Lateral acceleration

8 rad Vehicle side slip angle

Cy¢ (Cr) | N/rad Cornering stiffness, front (rear) tyre

Cwmr Nm/rad | Stiffness, steering rod

0 rad Steering angle

OLR rad Steering wheel angle

do Nms/rad | Turning resistance, steering rod

e m Moment arm, side wind

g m /s> Acceleration of gravity

i - Steering transmission ratio

J kgm? Vehicle moment of inertia

Jo kgm? Moment of inertia, lower part of the steering rod

L m Vehicle length

Ly (1) m Distance between front (rear) axle and center of gravity

m kg Vehicle mass

Mrr Nm Steering wheel torque

ng m Distance between the wheel axle and the contact point
between tyre and surface in the longitudinal direction

¥ rad/s Yaw rate

T S Sample time

Vg m/s Vehicle longitudinal velocity

Uy m/s Vehicle lateral velocity

Table 1.1: Notations
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Chapter 2

Modeling

The vehicle will be modeled using a one-track model (also known as bicycle
model) which is a linear, second-order, model that provides reasonable fit
under normal driving conditions. The dynamics of the steering system will
also be modeled to facilitate the design of a feedforward controller. For
further reading on modeling of vehicles, see [6], [4], [10].

2.1 Vehicle Model

Vehicle modeling requires the use of several coordinate systems. Two ex-
amples are the earth-fixed coordinate system (EFCS) and the vehicle-fixed
coordinate system (VFCS), see Figure 2.1. The EFCS provides the envi-
ronment in which the vehicle is moving. It is necessary in order to define
the vehicle’s velocity and acceleration, and the angle 1, which is the angle
between z’ and x in Figure 2.1. The VFCS has its origin in the vehicle’s
center of gravity. The side slip angle, 3, between x and the velocity vector,
is defined in this coordinate system and given by § = tan(v,/v;).

Figure 2.2 displays the VFCS and the lateral forces and torques acting on
the vehicle during a turn. The lateral forces on the tyres must compensate
for the force ma,, which is due to the lateral acceleration a,, and the torque
Jtp, which is due to the vehicle’s rotation around the center of gravity. The
distances between the center of gravity and the front and rear axles are
denoted [y and I, respectively. The velocity vector for each tyre, vy and v,
and the corresponding slip angles, ay and o, are also displayed. A force
equilibrium along the y-axis and a torque equilibrium around the z-axis
(directed upwards in Figure 2.2) yield
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X

Figure 2.1: EFCS (2/,y"), VFCS (z,y) and the side slip angle .

may = F,+ Fycos(0) (2.1)
Jy ~1, F, + 11 Fpcos(5)

Under the assumption that there is a linear relation between the slip angles
and the lateral forces on the tyres, the tyre forces may be expressed using
the cornering stiffnesses, Cy and C,., in the following way.

In reality, tyre forces are highly non-linear, but since the model is to be
used under normal driving conditions, a linear approximation is possible, see
Section 2.5. By inserting (2.3) and (2.4), Equations (2.1) and (2.2) become

ma, = Cra, + Cragcos(d) (2.5)
Jy = —1,Cray + 1y Cragcos(0)

The next step is to express a, in its components. If the vehicle is approxi-
mated by a rigid body, the acceleration of the center of gravity, acoq, is
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Jy

Figure 2.2: The one-track vehicle model and the relevant forces and torques.

Uy 0 Vg Uy — vy¢
ACoG = VCoG T W X Vooa = by + 0 X Vy = Q.Jy + Ux¢
0 b 0 0
(2.7)

where w is a vector containing the angular velocity of the center of gravity.
It is assumed that only planar motion occurs, meaning that w only has a
component in the z-direction and that v, = ¥, = 0. This yields that

ay = Uy + Vgt (2.8)

To rewrite the model further, the slip angles may be expressed in other
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variables. The velocities of the tyres may be expressed in VFCS as follows

v, = (vycos(ay), —v,sin(a,),0)” (2.9)

vi = (vfcos(ay),vysin(ar),0)” (2.10)

Under the assumption of small angles, the approximations cos(d) ~ 1 and
sin(d) ~ § may be used, yielding the following approximate equalities.

v, ~ (v, —vpp,0)T (2.11)

vi ~ (vpvpap0)7 (2.12)

Under the assumption of a rigid body, the velocities can also be expressed
through v, = voog +w X 1y and vy = voog +w X 1y, where r,. and ry are
the distances from the center of gravity to the rear wheel and front wheel
respectively.

Ve = (V05,007 +(0,0,9)T x (=1,0,0)T = (vs, v, — 14, 0)7(2.13)
vy = (’Ux,’l)y,O)T + (O,O,IL)T X (lf,O,O)T = (Uxavx + lfIL,O)T (2-14)

Setting (2.11) equal to (2.13) and (2.12) equal to (2.14) the following expres-
sion for ay and o, are obtained.

Q. = —5+l:jp (2.15)
ay = —ﬁ—#w (2.16)

If it is assumed that v, << v, the approximations 3 = tan Z—Z ~ z—z and
v & vy hold. Inserting Equations (2.8), (2.15) and (2.16) into (2.5) and (2.6)
yields the following equations.

mi, = CTZ'"@Z%%+CJI (5—M> (2.17)

xT
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Introducing the notations

—v — Ll
S; = ¢ (5 + M) (2.19)
s, = oY= (2.20)

(%
simplifies the equations of motion to

. S+ S,

b, = —vpuy 4+ LT (2.21)
- LSy — 1Sy

b % (2.22)

These two equations constitute the second-order one-track model. For veri-
fication purposes, the steering angle and velocity of a test drive with a real
vehicle were used as inputs. The calculated yaw rate and lateral acceleration
were then compared to those of the real vehicle. The results are presented in
Figure 2.3. The most noticeable difference between the model and the real
vehicle is the transients which occur in both 1/) and a,. To a large extent,
these are due to unmodeled dynamics in the vehicle but the differences are
still fairly small. The model captures the lateral dynamics of the vehicle
under normal driving conditions.

Yaw Rate [deg/s]
Lateral Acceleration [m/s]

0 5 10 15 0 5 10 15
Time [s] Time [s]

(a) Yaw rate ). (b) Lateral acceleration a,.

Figure 2.3: The output of the one-track model (green- -) and the measured output
(blue-).

When deriving this model, some assumptions were needed. A few of these
are summarized below.
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e Planar motion, only rotational and translational movement in the xy-
plane is considered.

Uy >> vy
e Small angles J, o, and ay.

e Linear relation between lateral forces and slip angles.

2.2 Modeling of Side Wind

a2
g /v\;;_l__;__,:

(a) The resulting velocity vres and the angle (b) Resulting force S, and the moment arm
of attack 7. e.

Figure 2.4: Two ways of modeling side wind.

The air resistance acting on a vehicle yields forces F, ;, F, , and F,, . pro-
portional to the velocity squared, according to the following equation, where
v? indicate the vector product v7v, [4].

Dai

FUM = %Cair,L(Tair)Aair'UZa L=x,Y, %z (2'23)
The density of air is denoted pyi- and Agg, is the area of the vehicles front
surface. The coefficients ¢y, are functions of the angle 74, between the
velocity v and the direction in which the vehicle is pointing. The moments

My &y My and M, . around each axis is given by a similar expression.

M’LU,L = %Cair,u(Tair)AairUZLa L=T,Y,% (224)
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Note that aerodynamic forces usually are calculated in a coordinate system
situated in the center of the vehicle, which does not always coincide with the
center of gravity.

The force generated by side wind can be calculated by adding the wind
velocity vg;- to the velocity corresponding to the vehicles movement, v, to
form the resulting velocity vector v,.s as depicted in Figure 2.4 (a). The
lateral force F,, and the moment M, . around the vertical axis are then
given by

_ Pai 2
Foy = %lrcair,y(Tair)Aair’vres

—  Pair. . ) 2
My, = 5" Cazr,zz(Tazr)AmrvresL

For the side wind compensation, it is not necessary to obtain the actual wind
direction and velocity. It is therefore assumed that the wind generates a force
Sw = Fyy in the lateral direction which attacks the vehicle in a point at a
distance e from the center of gravity, generating a moment eS,, as depicted
in Figure 2.4 (b). This simplifies the modeling but still captures the effects
on the lateral dynamics. To calculate e, M, . is expressed in S, according
to

Cair,zz (Tair)

M. —
s Cair,y (Tair)

LS,

Since the aerodynamic center is situated in the center of the vehicle, the
distance between this point and the center of gravity is L/2—1,. The moment
eSy around the vertical axis in the center of gravity is then given by

L Cair,zz (Tair) lr 1
So=|==-0 ]Sy +My,=|—"—>——+=]LS,
‘ <2 > * ’ < Cair,y(Tair) L * 2>

which gives the following expression for e

o — (Cair,zz(Tair) _ l_r + 1) I

Cair,y (Tair ) L 2

In the modeling, e will be assumed to be constant. The approximation holds
in most cases since the angle 7. is rather small at high speeds.

The force S, and moment €S, are included in the one-track model by adding
the force to (2.21) and the moment to (2.22), which results in the following
equations of motion.
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548, Sy
by = —zbvgﬂr%JrE (2.25)
. 10S; — 1,5, €S,
b ! fJ + = (2.26)

2.3 Modeling of Road Bank

Another disturbance which com-
monly affects vehicles is road bank.
The weight of the vehicle then has a
component in the lateral direction,
according to Figure 2.5. Under the
assumption of small angles the ap-
proximation mgsin(®r) ~ mg®Pr
holds. The force does not influence
the yaw rate directly, but it affects
the lateral acceleration. Equation
(2.25) then becomes

Figure 2.5: The additional force

) mgsin(®pr) in the lateral direction when
Uy = —Yvz + Sf + S —g®r + & the road is banked.
m
(2.27)

2.4 Second-Order Vehicle Model

The equations of motion for the one-track model with the disturbances S,
and ®p added, (2.26) and (2.27), are repeated below.

. Si+ S+ Se
by = —wvx—i—%—g@}{ (2.28)
. 1:S; — 1,5, + €Sy
) = L2 . (2.29)

The system may also be presented on the state space form of (2.31) by
choosing

x= (v, P)7, u=0, f£=(®g Su)’, y=(ay )" (2.30)
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x = Ax+ Bu+Gf

y = Cx+ Du+ Hf (2.31)
which yields the following matrices
A= mug Mg T B = m C — mug mug
Jf},c o JT),C Cach 0 1
0 9 5 0
0 0 5 0 O
(2.32)
where the notations p, o and k are defined as
p = L,C.—1;Cy (2.33)
o = Cr+C, (2.34)
= [3Cr+12C, (2.35)
The system may also be presented on the following form.
%X = Ax+ Bu (2.36)

y = Cx+ Du

To do this, the output vector is set to y = (ay w)T and the input vector to
u= (6§ &g S,)T which yields the following matrices, expressed in those of
(2.32). The subscript 5 indicate that they constitute the second-order vehicle
model.

Ay=A By=(B G) Co=C Dy=(D H) (2.37)

2.5 Modeling of Tyres

To simplify matters, this section will discuss modeling of the front tyres only,
although the results apply to the rear tyres also.

When driving and braking a vehicle, forces occur between the tyre and the
road due to the relative velocity between them. As a measure of the relative
velocity, longitudinal and lateral slip, denoted A; and Ay, are introduced.
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wyTrwcos(ayf) — vy _ WuTy — Uy
WwTw - WwTw
tan(oyf) = af (2.39)

A=

Af

In the equations above vy is the wheel velocity, w,, is the wheel’s angular
velocity, 7, is the wheel radius and ay is the slip angle, as defined in Figure
2.2. The slip angles are assumed to be small during normal driving. Lateral
forces only occur when ay # 0, which gives rise to lateral slip Ay. The slip
angle and the directions in which slip occurs are depicted in Figure 2.6 (a).

/
}/W .
Ol
N /
(a) Slip angle. (b) Cornering stiffness, C.

Figure 2.6: (a) Definition of slip angles and the directions in which slip occurs.
(b) The cornering stiffness is the initial slope of the curve.

The quotient between the force between tyre and road, and the vertical force
acting on the wheel, F ¢, is called friction coefficient and denoted p. There
are several models for calculating u, one of them is the Burckhardt approach
below.

p(A) = e1(1 — e ) — e3\

where \ = , /)‘12 + )\?c. The lateral and longitudinal coefficients are given by

The longitudinal and lateral forces are then given by

B = wF.; (2.40)
Ff = ppF.g (241
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Figure 2.6 (b) shows the typical shape of F; as a function of ay. The
relationship between F; and ); is similar. The cornering stiffness C'y and the
longitudinal stiffness C; are defined as the initial slope of these curves. A
linearization around \; = Ay = 0 yields

)
B o= o= (MFZJ> A = C\ ~ O (2.42)
l Ai=A;=0
9
Fr o= o= \nfey Ap = CpAy = Cpag (2.43)
oy WoPea)|

In the following, Cy and C,, a; and o, will denote the cornering stiffness
and slip angle of the front and rear tyre respectively.

2.6 Modeling of the Steering System

The steering is constructed as in Figure 2.7 where C'); is the stiffness of the
steering rod, dz is the turning resistance and Jy is the moment of inertia
of the lower part of the steering rod. The steering wheel angle dpr is set
by the driver and is the translated into steering angle §. The steering rod
is modeled with a spring. The torque Mg is applied via an electric motor
while the turning velocity, § , is measured. This is known as Electronic Power
Steering (EPS). The force acting on the front wheel yields a torque n,Sy due
to the caster which places the contact point between tyre and surface behind
the wheel axis.

A torque equilibrium around the steering rod yields

. : 141}
J25+d25+CMiL(5—i,L—R):MLRiL—nka((S—E —f—w) (2.44)

L Vg (%7

This model will later be used to design a feedforward controller that utilizes
a moment actuator on the steering rod.
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Steering wheel

Figure 2.7: Model of the steering system.



Chapter 3

Disturbance Observers

An observer is typically used to estimate the states of a system when no, or
poor, measurements are available. The method works for both single-input-
single-output (SISO) and multiple-input-multiple-output (MIMO) systems.
The estimated states may in turn be used for controlling the system. How-
ever, the structure of the observer may also be used to estimate disturbances
acting on the system, which will be performed in the following.

3.1 Linear Observer

Consider the linear MIMO system below, where A € R™*" B € R™™ and
C € RP*™ Tt is assumed that the system is observable, meaning that the

observability matrix, W, = (C' CA ... CA"1)" has full rank.

© = Axz+ Bu

1
y = Cz (3.1)
It is assumed that y is measurable while « is not. An observer for this system
is given as follows, with K € R™*P.

= Aé+Bu+K(y—9)

o (3.2)

S 8-
|

The state estimation error & = 2 —& then has the dynamics & = (A— KC).
As long as the matrix K is chosen so that A — KC' is Hurwitz, the state
estimation error tends to zero. However, an umodeled disturbance acting
on the input of the system will generate an error in the estimate. In the
following section it will be demonstrated how this may be exploited in order
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to estimate the disturbance. For further reading on disturbance observers,
see [2] for a good presentation of the linear case or [3] which also deals with
nonlinear disturbance observers.

3.2 Linear Disturbance Observer

Assume that a disturbance f € R™*! enters the system according to (3.3),
where the matrices A, B and C have the same dimensions as in the previous
section.

z = Ax+ B(u+ f)

y = Cax (3.3)
A discretization yields
wlk+1] = @qu[k] + Ta(ulk] + f[k]) (3.4)
ylk] = Calk]
where
Ts
oy =TS, Ty :/ e’ Bdr
0
An observer is designed without taking the disturbance into account.
ik 41 = Duilk] + Toulk] + K (ylk] - 9[k) 53
ylk] = Calk]
The dynamics of the estimation error is
Bk+1] = (Bg— KC)E[K] + Taf[K] (3.6)

ylk] = Ca[k]

Choosing K so that the poles of ®; — K C' lie in the unit circle makes the
estimation error bounded-input-bounded-output stable but it does not nec-
essarily tend to zero. To estimate f it is necessary to obtain an expression
containing only f and ¢, since & is not measurable. When C'~! exists, this
is possible through

glk + 1] — (C®,C~" — CK) g[k] = CTy f[¥] (3.8)
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which is easily verified by direct calculation and using (3.6) - (3.7). When
(CTy) ! exists, an estimate of f is

FIK = (CTa)™" (glk + 1] — (C®aC~" — COK) glk]) (3.9)

In the SISO-case, CT'y is scalar, which makes estimation possible as long as
CTy #0.

A problem with this estimate is that it uses g[k + 1], which is not known at
time k. The approximation

~

flk] = flk —1] = (CTy) " (glk] — (CP4,0~ — CK) gk —1])  (3.10)

may therefore be used. Delaying the estimate of f by one sample produces
the estimation error f[k] = f[k]— f[k—1]. This error will only be zero when
the disturbance is constant, so that f[k] = f[k — 1]. When the disturbance
is changing between samples, the error will be smaller for a given change in
the disturbance the shorter the sample time is.

3.3 First-Order Disturbance Observer

A first-order disturbance observer which only considers the yaw rate will now
be presented. Since only side wind is to be estimated, the road bank ®p is
set to zero. By using the expression a, = ¥, + @Z}vx, which was derived in
Chapter 2, the equation for lateral velocity, (2.28), takes the following form.

may =S¢+ Sy + Sw (3.11)
Solving for Sy and inserting it into (2.29) yields

. lyma, L

(8

e—ly
12
Jzz Jzer_i_ Jzz S (3.12)

By putting the expression for Sy derived from (3.11) equal to (2.19) the
following equation is obtained

1,Cy -
may — Sy — Sy = Cpd — Cp—L — 2Ly

Vg Vg

Inserting the expression for S, (2.20), and solving for Z—y yields

x
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1 .
2 <ﬁw+cf5+sw —may) (3.13)
vy O \ Uy
By inserting this expression into (2.20) an expression for S, which does not
contain v, is obtained. This may in turn be inserted into (3.12), which gives

the following expression.

- L*C:C, . mp LCyC, 1 p
- _ _oF - = 14
v Jov, Jaay+ Jo 5+J(e+0>5w (3.14)
By introducing the notations
L2CyC,
Aops = ———— 3.15
b Tou, (3.15)
LC:C, mp
= - — 1
u o 0 7 0 (3.16)
1 P
r= = (e+ ;) S (3.17)
the system may be written on the following form
= Apsth +u+ f (3.18)
A discretization of (3.18) yields
Glk + 1] = Popsp[k] + Top(ulk] + f[K]) (3.19)
where
q)obs = eAObsTs (320)
(I)obs -1
Fops = —— 21
obs Aobs (3 )

An observer which does not take the disturbance into account is given by

D[k + 1) = ©opthlk] + Topsulk] + K ([k]) — D[k]) (3.22)

Choosing K = &, — 21 will place the observer pole in an arbitrary position
z1. The estimation error is then
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Vlk + 1] = 219 (] + Tops K] (3.23)
An estimate of the disturbance is now obtained by solving (3.23) for f[k|.

~ ~

FIk] = o (9l 1] = 210 (k) (3.24)

A delay is introduced as in Section 3.2 and an estimate of the side wind
Swlk] is obtained via (3.17).

Sulk] = Ik =

J J 2 3
e+ g ) (¢[k] - le[k - 1]) (325)

I‘obs (6 + §

Since the disturbance observer is first-order, it can not distinguish between
a side wind disturbance and other disturbances, e.g. offset in a sensor. In
Section 3.4.4 it is shown how the same structure may be used to estimate
offset in the ay-sensor. It is fully possible to design a second-order observer
which is able to distinguish between two different disturbances, e.g. S, and
® R, but it increases the complexity.

3.4 Robustness of the Side Wind Estimation

The robustness towards sensor offset and parameter error will be investigated
in the following sections. Both effects give rise to falsely estimated side wind.

3.4.1 Sensitivity to Sensor Offset

To evaluate the effect of sensor offset, equation (3.18) will be used. In sta-
tionary, it becomes

0= Aobsqb +u+ f (326)

By introducing offsets A, A§ and Aa, it is possible to calculate to which
side wind AS,, they correspond. Inserting the offsets according to (3.16)-
(3.17), the following is obtained.

AS,, A —

1 (LQCfCr

B LCyC,
- e+§ o

AS — @Aay) (3.27)
g

OV



22 Disturbance Observers

Clearly, the sensitivity to offsets in lateral acceleration and steering angle is
independent of v, while the sensitivity to offsets in 1/) increases for smaller
values of v,. For a Mercedes A-class, driving at 120 km/h, an offset of 1 °/s
in the yaw rate sensor corresponds to a side wind of approximately 246 N
while the same offsets corresponds to approximately 493 N when driving at
60 km/h. An offset of one degree in the sensored steering wheel angle, i g,
corresponds to approximately 180-190 N.

One way of reducing the effects of sensor offset is to introduce a lower limit on
the estimated side wind which needs to be reached before any control action
is taken. By switching the estimation off when v, is below a certain limit, the
sensitivity to offset in the y-sensor is lowered. By passing the estimated side
wind through a high-pass filter it is possible to reduce the effects without
loosing the ability to suppress dynamic disturbances. There is also ongoing
work which aims at estimating and removing the offsets themselves.

The sensor in the EPS-system which measures the steering wheel angle has
a resolution of 1.5 degrees. It may therefore be favorable to avoid using
this signal when estimating side wind. The measurements of the moment
on the steering rod, Mg, and of the angular speed of the steering wheel,
1R, are more reliable. In the following sections a few attempts at using this
information in order to improve on the estimation of side wind are presented.

3.4.2 A Moment-Based Estimate

The idea of a moment-based estimate is to derive an estimate of the side wind
using the measured moment on the steering rod instead of the measured
steering wheel angle. Consider Figure 2.7 where the forces and moments
acting on the steering system are shown. Under the assumptions 6=6=0
and i,0 = 0rR, (2.44) becomes if Mg = nySy. Solving for Sy yields

Sp=-EMp (3.28)
ng
It is then possible to rewrite (2.29) in the following manner.

lyiL
ng

Jp = L=Mpg — 1,5, + eS,, (3.29)

The expression for S,., as given in (2.20), is repeated here for convenience.

S, = Cr (—v—y + l—%) (3.30)
(%% (%%
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Since v, is not measured, (3.30) needs to be rewritten in some way. In
Section 3.3 this was solved by expressing % in 9, a,, Sy, and §, see (3.13).

Vg
In order to rewrite it further, an expression for ¢ is needed.

By putting (3.28) equal to (2.19) and solving for C't6 the following is obtained

: 1;Cy -
Cy6 = LM+ 02 + I214), (3.31)
Nk v Uy

xT

Inserting this expression in (3.13) yields the following equation

1 1C <1
k i

Ve O Vg Vg

By solving this for z—z an expression which does not contain ¢ or v, is ob-
tained. Inserted in (3.30) it produces

Sy = may — :L_LkMLR — Sw (3.33)

which may be inserted in (3.29), resulting in

o Li
T = #MLH + (I + €)Sy — lymay, (3.34)
k

An estimate of .S, is then given by

~ 1 . Lig,
Sw = lr Te <<]1,Z) — TL—kMLR + lrmay) (335)

This estimate of S, does not rely on the measured steering wheel angle.
There are, however, drawbacks to this approach. CASCaDE was used to
simulate a Mercedes S-class driving past side wind. As can be seen in Figure
3.1 the steady-state estimate does not coincide with that of the first-order
observer. There are several possible explanations for this. For instance, there
may be additional frictions and torques which have not been included in the
model. Also, since the second-order system which connects the moment and
the steering angle has been disregarded, the estimate will be very sensitive
towards transients in the maneuvers.
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Figure 3.1: Estimated side wind using the first-order observer and the moment-
based estimate.

3.4.3 Smoothing ;5

The quantization of the measured steering wheel angle does not originate
from round-off but from how the sensor is constructed. When the signal
from the sensor changes, it outputs the correct angle of the steering wheel
at that instant of time. However, between the changes it does not provide
any information about the angle except that it is in a region of +1.5 degrees
of the current value. One way of improving on this is to use other sensored
signals to estimate drr in these intervals. This will be done by designing a
switched system which makes use of the measured angular velocity of the
steering wheel.

The definition of a change at time k is given in (3.36). When this is fulfilled
6,n[k] is considered to be accurate’.

S r[k] —0pplk —1] #0 (3.36)

Instead of setting dpz[k] = 0 k] at the instants where the measurement
is accurate 0pp will approach this value as a dynamical system. Setting a
fixed value for the estimated angle would counteract the goal of obtaining

a smoother signal. Therefore, the following dynamics for drr is used when
(3.36) is fulfilled.

!The superscript ™ will be used to denote measured signals throughout this section in
order to distinguish them from the estimated, and real, ones.
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Sprlk +1] = (1 — KT)oLr[k] + KT, 2 [k] (3.37)

The system pole is placed in 1 — KT which makes it asymptotically stable
as long as K € (0, T%) If the system was to remain in this state, and K was
chosen in the specified interval, the estimate would converge to the measured
value. The rate of convergence is determined by the value of K. A large K
will provide a good fit to the measured values but also a rather messy signal.
A small value will conversely produce a smooth signal but less fitting.

During these intervals the fact that the derivative of the estimated steering
wheel angle should be equal to the measured angular velocity of the steering

wheel will be used. By the approximation SLR[k] ~ Tis <5LR[]€] — bprlk — 1])
the following dynamics for this state are obtained.

opr[k + 1] = Opr[k] + Tub B[] (3.38)

To sum things up, the system may be presented in the following manner.

(1 — KT.)orr[k] + KTso,2[k] when (3.36) is fulfilled

orrlk+1] =1 . :
drrlk] + Tsd, R K] otherwise

(3.39)

Finally, a pragmatic solution to the choice of K is applied. By choosing K
large and passing the estimated signal through a low-pass filter good fitting
to the measured values is achieved while keeping the signal relatively smooth.
In Figure 3.2 the sensored signal and the estimate are plotted. The use of the
measured angular velocity evidently provides reasonable transitions between
the measured points. Initially, the estimate is incorrect, since no changes
occur and the angular velocity is zero.

3.4.4 Estimation of Sensor Offset

The first-order disturbance observer, which was derived in Chapter 3.3, only
requires small variations to yield an estimate of the offset in the a,-sensor.
It is assumed that the sensored lateral acceleration, a;“"* is the sum of the
actual acceleration and an offset.

a;ens — ay + CLZ (340)
Solving for a, and inserting the expression into (3.14) yields an equation for

yaw rate which has side wind and ag as disturbances. Since only one of these
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Figure 3.2: Steering wheel angle from sensor before and after smoothing.

may be identified by the first-order observer, the term containing side wind
is discarded, which leaves the following equation.

- L2CfC'T . mp LCyC,
= = T B (g8 — O ) 3.41
¥ Jov, v Jo (ay ay) + Jo ( )
By introducing the following notations,
L2C4C, mp LCyC, mp
A — [ S (5 = — o 42
obs Jovy Y Jaay+ Jo 7 ! Jo (3-42)

the system has the same form as (3.18), which is repeated here.

= Agpst) +u+ f (3.43)

After discretization, an estimate of f is obtained in the same way as in
Section 3.3, resulting in

Fl) = flbs = 1] ~ — (Wlk] - 2190k — 1]) (3.44)

Fobs
The difference this time lies only in that the disturbance is interpreted as
sensor offset instead of side wind. An estimate of the offset is given by the
following expression.
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(1] - 211k - 1) (3.45)

3.4.5 Sensitivity to Parameter Error

When the parameters of the side wind observer are incorrect, each turn
will generate an error in the observer which is interpreted as side wind.
To determine how large this effect is, the continuous time transfer function
between 6 and §w will be calculated. The obtained transfer function is
not realizable, which makes it interesting to compare the results to those
obtained from simulation in Simulink.

The continuous time one-track model from Section 2.4 will be used as ‘real’
vehicle and be combined with a continuous-time version of the first order
observer according to Figure 3.3.

s

One-Track |y
C. C,
5 _ + | Output fen. |S.
o S ee |7
r f
L Obieyer P
C. C
(a)
GB*‘P GLI'J-VL
0 Gé‘)*ay —DIGay*q'j Gi.s, _SV;
Gy T

(b)

Figure 3.3: (a) A sketch of how the sensitivity to model error is investigated and
(b) the corresponding block diagram with the relevant transfer functions.

The transfer functions from & to ¢ and ay are calculated using the matrices
in (2.32) and the equality G(s) = C(sI — A)"'B + D. The matrices G and
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H are disregarded since ¢ is the interesting input for this investigation.

a. - (lfoS—i-LCfCr/mvx)/J (3 46)
=% s2 4 (Jo +mk) s/Jmuy + (L2C¢Cy + pmu?) / Jmv? '
C 2 4 (L1,.C+C) Imu, LC:C,/J
G = (Cf/m)s” + (LL.CyCy [ Jmug)s + LCyCy [ Jm (3.47)

5?2 4+ (Jo + mk) s/Jmu, + (L2CCy 4+ pmu2)/ Jmv?

The continuous disturbance observer will be based on Equation (3.14), which
yields the following observer equation.

% LQC'fCr Somp LCyC, . 2
o b-ZPa,+ =L KW -Y) (349)

The definition of A, is repeated here, and two new notations are introduced.

L2CsC,

Agys = ——dr 3.49
b Tou, (3.49)
Bl,obs = _?p (350)

g

LCC,
B _— bl
2,0bs Jo (3 5 )

With K = Agps — 21, the following equality holds.

Bl,obsay + B2,ob55 + (Aobs - zl)w
S— 2z

b= (3.52)

The transfer function from 4, a, and 1 to the observer error 1) is then

B2 obs

io= - 3.53

6—1p s— 21 ( )
Bl obs

. _Dlobs 3.54

ay—1p S — 21 ( )
s — Aobs

S = — 9 3.55

Gwﬂw s— 2 ( )

The transfer function from v to §w is now needed. The observer error is
given by
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= (Agps — K)o+ f =200+ f (3.56)

An estimate of S, is then obtained via (3.17) and solving (3.56) for f.

N J .
Sw: =
e—l—p/af

J K
s (s —z1)0 (3.57)

which provides the last required transfer function

J
quﬂgw =7 p/g(s —21) (3.58)

The transfer function from § to S, is given by

G6—>§w = <G5HJJ + G6—>ay Gayﬂqz + G6—>¢ waﬂ> Gz/?ﬂ@,j (3.59)

Parameter error may then be modeled by replacing Cy and C with C + and
C, in the transfer functions connected to the observer while leaving (3.46)
and (3.47) unaltered. Note that the observer pole in s = z; will be canceled
regardless of parameter error. When the parameters in the observer are
correct, the transfer function from S,, to §w is one and the one from ¢ to §w
is zero. However, when the parameters are incorrect, each degree steering
angle will generate a certain estimated side wind. To investigate this, Matlab
was used to draw bode diagrams. In order to make the results easier to relate
to, the amplitude diagram is scaled so that it represents the transfer function
from steering wheel angle é;r instead of 9.

In Figure 3.4 the bode diagrams are displayed when varying each ofA the
parameters independently. The parameters where chosen according to Cy =
k-Cy and & = k- C, where k € {0.70.95 1 1.05 1.3}. The phase diagram
indicates that the sign is reversed when C t is increased or C, is decreased. Tt
also seems that the most sensitive parameter is éf, which produces almost

80 N of estimated side wind per degree steering wheel angle when it is chosen
30% higher than Cf.

To investigate the effects of discretization, the continuous-time vehicle model
was implemented in Simulink. The outputs w and a, were sampled us-
ing zero order hold and used as inputs to the discrete-time observer de-
rived in Section 3.3. The velocity was kept constant and the steering in-
put consisted of sinusoids with varying frequency. Figure 3.5 displays the
gain diagram from steering wheel angle to estimated side wind for three
choices of sample time when there was no parameter error in the observer.
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Apparently, a larger value of
Ts generates more falsely es-
timated side wind. The er-
ror is also increasing with
the frequency. These effects
are intuitively explained by
the fact that the estimation
error is equal to the change
in disturbance over the last
two samples. Increasing the
frequency for a given sample
time then has the same ef-
fect as increasing the sample
time for a given frequency.

Figure 3.6 displays the am-
plitude diagrams from drr
to Sw when Cy and C, are

147
2r | __T1=001
S
ol [ T =0.02
- - - T.=0.005
S
S 8
[0}
k)
Z 6t
4+
2,
0
107 107

[HZ]

Figure 3.5: Amplitude diagram between 1,z and
S,, with T,=0.01, 0.02 and 0.005.

varied and the sample time was set to 0.01. The results are fairly similar to
those of the analytical calculations. Clearly, incorrect parameters in the ob-
server affects the performance rather heavily. In order to avoid this, on line
estimation of a few parameters will be attempted in the following chapter.
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Figure 3.4: Bode diagram of the continuous-time transfer function from 1 g to §w
with éf =k-Cy and @ =k-C, for k = 1.05, 1.3, 0.7, and 0.95. The magnitude
is given in N estimated side wind per degree steering wheel angle.
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Figure 3.6: Amplitude diagram between 6,z and §w from simulation with @c =
k-Cy and @ =k-C, for k = 1.05, 1.3, 0.7, and 0.95. The magnitude is given in
N estimated side wind per degree steering wheel angle.



Chapter 4

On Line Parameter Estimation

As was shown in Section
3.4.5, the effects of inaccu- .

/\
rate parameters in the one- i ) . Sw
Sensor Signak, Side Wind Observer }—»

track vehicle model are quite

large and it is therefore nec- V>V, N

essary to make the model V<V, |
adaptive in order to improve Identification
performance. Some parame- of Cf and C,

ters, such as the length of
the vehicle, will not be sub-
ject to change while others,
such as the mass and the po-
sition of the center of gravity, will fluctuate between different driving sessions.
One possible implementation is to perform identification of a few critical pa-
rameters at low speed and then use the estimated values at higher speeds,
when the side wind compensation is actually needed, see Figure 4.1.

Figure 4.1: A possible way of switching between
parameter identification and side wind estimation.

The following sections present attempts at identifying the cornering stiffness
of the front and rear tyre. Choosing these parameters for identification is rea-
sonable since they are very likely to change between different driving sessions
depending on the weather and the choice of tyres. Note that the identifica-
tion is performed under the assumption that there are no disturbances acting
on the vehicle. A previous investigation of on line identification in vehicles
is presented in [14].
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4.1 Least Squares Estimation

The main idea of least squares estimation is to fit input data and output
data in a linear fashion. The following introduction is based on [8] and [9].
Assume that a system is governed by the following equation.

ylt] = @7 [t10 = $1[t]01 + Palt]f2 + ... + N [t0N (4.1)

The vector @ contains the parameters which are to be identified, ¢; are
known functions and y is some known output. The least squares estimate of
0, denoted 0, is then chosen such that it minimizes the cost function

Q(0,1) = 5 > (ylk] — ¢ [k]6)* (4.2)

k=1

(NN

This means that the error will be penalized quadratically. It can be proved
that the cost function is minimized by estimates @ which fulfill

@T(I)é _ (I)TY (4.3)
where
o = (6701 o"12) ... ¢"i)" (44
Y = @ o2 ... )"

Equation (4.3) is known as the normal equation and when the inverse of
®T'd exists it has the unique solution

6= (270) a7y (4.6)

The requirement that the inverse of ®7® exists may prove hard to fulfill
under certain circumstances. It is connected with the notion of persistent
excitation.

4.1.1 Persistent Excitation

Persistent excitation is a measure of how many parameters that may be
estimated using, for instance, least squares estimation. If the input to the
least squares estimation is persistently exciting of order n, n parameters may
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be identified uniquely. In [9], persistent excitation is defined in the following
way.

Definition 1. A signal u fulfils the condition of persistent excitation (PE)
of order n if the following limits exist.

| N
u = lszHOON Z U (4 7)

k=1

N 1 Y
Cuu(T) = thHOON ,; upul (4.8)

Cou(0) Cou(1) Cou(n —1)
Cou(—1) Cou(0) ... Cuuln—2
Ruy(n) = - (4.9)
Cou(1=n) Cuu(2—n) Cou(0)

18 positive definite.

Since this is difficult to verify on line, a method involving singular values will
be used. It suggests a singular value decomposition of ®7'®. The number
of uniquely identifiable parameters is then equal to the number of non-zero
singular values. An indication as to why this holds will now be presented.

Singular Values and Least Squares Estimation

For further reading on the singular value decomposition, see [12]. Assume
that ®7'® € R™*™ and that it has the following singular value decomposition

oTe =vUsv? (4.10)

where U,V € R™ "™ are orthonormal and S € R"™ ™ is a matrix with the
singular values of ®® along its diagonal and all other elements zero. This
means that U7 = U™, VT = V~! and that ST = S. Equation (4.6) may
then be rewritten as follows.

6= (370) " o7y = (USVT) " oTy = Vs 'uTeTY (4.11)
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It is clear that the estimate will diverge if any of the diagonal elements of S
are zero, since the determinant of .S is

det(S) = 010203 ...0p (4.12)

where o; denote the singular values of ®7®. However, it also indicates that
problems may arise when any of the singular values of ®'® are close to zero.
One of the few ways of dealing with this is to avoid using singular values
which are (almost) zero. This, in turn, means that fewer parameters may be
identified.

4.1.2 The Recursive Algorithm

When used on line, least squares is usually applied via a recursive algorithm.
One of the main advantages is that relatively few data points need to be
stored, and it also facilitates estimation of time varying parameters. The
following equations constitute a recursive least squares algorithm.

0[k] = O[k — 1]+ Plk]o[k]e[k] (4.13)

elk] = ylk]— ¢ [K]6[k — 1] (4.14)
1 Plk —1]¢[k|¢" [K]P[k — 1]

A = 5 (- - S ) 49

The error between calculated and measured output at time k is denoted €[k]
and P[k] is the covariance matrix at this instant. This version of recursive
least squares includes a forgetting factor, 0 < A < 1, which attenuates the
impact of older measurement data. This is especially useful when attempting
to estimate time-varying parameters. The disadvantage of using a small
value of A is that the estimation becomes more sensitive to noise and other
disturbances since the averaging effect is reduced. Another possible effect of
setting A to low is estimator windup, which is discussed in [8]. The problem
occurs when there is insufficient excitation in the system and A < 1. The
covariance matrix P will then grow more or less exponentially, depending
on how severe the shortage of excitation is. This makes the estimation
perform rather poorly and also produces large transients in the estimate
when the input is persistently exciting again. One way of avoiding this is
to use conditional updating. This means that the least squares algorithm is
modified so that the estimate and covariance matrix only are updated when
there is enough excitation. Otherwise, the previous values are held. It is
vital to choose a suitable criterion for when to allow updates as a trade-off
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between risking estimator windup and using too few of the samples in the
identification. A typical choice of criterion is one that ascertains that the
magnitude of ¢ [k]P[k — 1]¢[k] is large enough.

When using recursive least squares, initial values for 6 and P must be spec-
ified. With a bit of knowledge about the system it is possible to choose é[O]
in a region around it’s actual value. When this is not the case, an alterna-
tive is to perform regular least squares over an initial set of data and use
this estimate as initial value for the recursive algorithm. This technique also
provides an initial value for P. Otherwise, it is fairly common to choose
P[0] = kp,I where kp, is a positive constant. A large value of kp, makes the
first few steps larger, which may be convenient when the initial estimate of 6
is a rough guess, but may also lead to large initial variations in the estimate.

4.1.3 LS1: Estimation of One Parameter

A least squares estimator which attempts to identify only one parameter
will now be presented. The identification will be based on equation (3.18).
Since it is assumed that no side wind is acting on the vehicle during the
identification, the last term is excluded. This yields the following, continuous
time, equation for yaw rate.

_LQC'fCT o @a n LCyC,
Jov, Jo Y Jo

)= b (4.16)

By choosing

y1 = Co P+ 1,Comay 01 =Cp ¢y = =L + lpmay, + C,L6 (4.17)
equation (4.16) may be written y; = ¢1T61. Since w can not be measured,
the Euler approximation 9[t] ~ (@Z)[t] — [t — 1]) /Ts may be used.

4.1.4 LS2: Estimation of Two Parameters

Identifying both C, and Cy is not entirely straight forward. This is due
to the fact that they enter the equations of the one track model in a non-
linear fashion. Since linearity in parameters is a necessity for least squares
estimation, an indirect approach will be attempted. By choosing

Y2 =1 02T=(% g) ¢2T=(—JL—;¢+§6 —%ay) (4.18)

[
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equation (4.16) may be written ys = @3 0. The parameters éf and ér may
then be calculated from 6, at each step according to

. 0.1 [k L ~ oo Oaa[K]L

Colk] = —2L0= Cylk] = Rl (4.19)

where ég,l and é272 denote the first and second element of ég.

To make use of the strategy proposed in Chapter 4.1.1 the regressor matrix
® is formed according to

$21[1]  22[1]
$21[2]  P22[2]

on=| | (4.20)
$2,1[N]  ¢2,2[N]

where ¢21 and ¢2 2 denote the first and second row of ¢2. The product
®1 @y is then

Ty — ( PO 03 4[] Sy d2,1 k]2, (K] ) (4.21)

St 21 lklg22lk] il 9300k

One might hold an objection against the singular value-criterion when a
forgetting factor is used. When A < 1, older input values will have less
impact on the result. The singular value decomposition, however, will take
all past input values into account. This means that if the first j samples are
persistently exciting of order n and ¢[k] = 0 for k > j, the singular value test
would still consider the input persistently exciting of order n for all future
samples. Two suggestions on how to compensate for this will be presented
in the following section.

4.1.5 Introducing a Forgetting Factor in the SVD-test

Since older input values to the RLS-estimation will be weighted with A, it
seems reasonable to do the same when evaluating the number of identifiable
parameters. One way of doing this is to introduce ®x(\) according to the
following
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MV =1go1[1] AN g o[1]
)\N—Q )\N—2
Dy() = %2,1[2] %2,2[2] (4.22)
Ngau[N] ApoalN]

As N — oo older data points tend to zero, and thus do not affect @4 (A\)®x (N).
When A\ = 1, the results are the same as when using the original test. The

modification yields the following product ®% (\)®x (), for which the singu-

lar values can be calculated.

il ()‘N_kébz,l[k?])Z PO ()‘N_k)Z P21 [k]d2,2[k]

SN N g [Kldoalk] A (AN Fnalk])
(4.23)

oL (NON(N) =

Another option is to use the following approximate expression for the number
of samples which are used at each step, [9].

Ny=—— (4.24)

It is then possible to perform the singular value decomposition using only
the last N, samples, which might give more realistic information regarding
the input at a specific time. This modification is also consistent with the
original test for A = 1 since the number of samples tends to infinity as A — 1.
Both suggestions will be applied to measurement data in Section 4.3.2, but
need to be investigated further.

4.2 Multiple Model Estimation

The main idea in Multiple Model Estimation (MME) is to run several models
in parallel and determine which of the models that produces the best fit to
measured data according to some criterion. In this case it will be used to
identify parameters in a parametric model, but it may also be used to choose
between different model structures. One advantage with this method is that
it chooses its estimate from a pre-defined library which makes it possible to
avoid estimates that are unrealistic. It is also fast and does not require a
model which is linear in the parameters. The following, brief, introduction
is based on [5].
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Figure 4.2: Sketch of how e; are obtained using Multiple Model Estimation

Consider the following, linear, system where ¢ € R™ is the input, y € R? is
the output and 8 € R™ contains the unknown parameters. Note that f may
be nonlinear.

ylk] = £(8, ¢k — 1)), f:R™xR" = RP (4.25)

Initially, N separate parameter sets 01,0s,...,0y are chosen to form a li-
brary from which the estimator makes its choice. With a bit of knowledge
about the system they may be chosen from the set of feasible parameter
values, denoted ©. One model for each parameter set is created and the cal-
culated outputs g;[k] = f(6;, ¢[k —1]) are compared to the measured output
y[k] to obtain the errors e;. A sketch of this step is presented in Figure 4.2.

eilk] = ylk] — gi[k], i=1...N (4.26)

Some weight function @(e) may then be applied to the error signals and the
parameter estimate is chosen according to

6-0, jz{lgjgzv ‘ Qle;) = min, Q(e»} (427)

This means that, even when the identification fails, the parameter estimate
will produce a stable and realistic model of the system as long as 6, € ©
for all ¢. There are three design parameters in this approach to MME; the
choice of parameter library, error function, and weight function.



4.2 Multiple Model Estimation 41

Switching Hysteresis

If two estimates in the library, 6, and 6,, produce almost the same weighted
error, so called chattering may occur. This means that the algorithm switches
between the two infinitely. One way of avoiding, or at least reducing, this
effect is to introduce a switching hysteresis.

The hysteresis is introduced according to [13] such that switching only takes
place when Q(eq)(1+ h) < Q(ep) (or the other way around), where h is a
design parameter. This ascertains that the new estimate is sufficiently better
than the current.

Three attempts at multiple model estimation will now be presented, with
T
0=(C, Cp).

4.2.1 MME 1: Error Equation

A first approach is to determine how accurately each parameter set fulfills
(3.18) under the assumption that no side wind is acting on the car. The
notations defined in (4.18) are used, so that equation (3.18) may be written
on the following form.

y2(t) = ¢3 (£)82

Each parameter set 65, then yields the following output

?921- (t) - d)g(t)e%

The corresponding errors e;(t) = ya(t) — yo, (t) are given by

ei(t) = ¢35 (1) (62 — 65,) (4.28)

The weight function is chosen according to
t
Qei(t)) = / H(r)e2(t — 7)dr (4.29)
0

where H(7) is a first-order low pass filter on the following form.

1
S+Tf

H(s) =
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This choice of Q(e) introduces a certain degree of integration depending on
the choice of Ty. When Ty = 0, H(s) is a pure integrator which corresponds
to weighting all time steps equally. As T increases, older time steps will
be less and less important. This weight function will be used in all three
versions of MME presented in this thesis, the difference lies in how the error
signals e; are obtained.

Laplace transformation of Equation (4.29) yields

Qei(s)) = H(s)ej (s) (4.30)

By inserting (4.28), the following is obtained

Qeils)) = H(s)¢3 (5)(62 — 62,)

Multiplication with ¢o(s) yields

¢2(5)Q(ei(s)) = H(s)¢2(s)d3 (5)(02 — 02,)

The parameter error 92 = 0y — 0y, is then given by

02 = H™' (¢2(s)95 (5)) " da(5)Q(ei(s)) = (p2(s)93 () " dbals)eE(s)
(4.31)

As long as ¢o(s)pd(s) is invertible the parameter set @5, that minimizes
Q(ei(t)) has the least parameter error.

4.2.2 MME 2: Multiple Model Observer

A possible drawback of MME 1 is that the errors are obtained without using
the dynamics of the model. The estimated output of each model, g;, are
obtained from measured signals. This implies that the error at time k only
depends on the parameters and the input signals at that time. If a dynamical
model was used, the error would affect future errors and therefore make the
differences between the models more apparent.

A step in this direction is running several observers in parallel and choose
the parameter set that generates the least observer error'. This yields the
errors

'This is referred to as Multiple Model Observer parameter estimation in [5].
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ci[k] = (k] — P[K] (4.32)

where 1) is the yaw rate calculated by the observer in (3.22). Intuitively, this
approach makes sense in combination with the disturbance observer since
the side wind estimate is based on the observer error. Therefore, parameters
that minimize this when there is no side wind should provide a good side
wind estimate. Figure 4.3 presents how the errors are obtained.

N g;N en
Observer N +
'y
R A e
» Observer 2
»1Observer 1 Y e1
g *{Vehicle v

Figure 4.3: Sketch of how e; are obtained using Multiple Model Observer parame-
ter estimation

4.2.3 MDME 3: Model Error

The third and final variation on how to obtain the error signals is to remove
the observer term in MME2 and thus run N one-track models in parallel. If
the initial conditions are correct, this MME should augment parameter error
well since there is no corrective term. The errors are obtained according to
the following equation.

~ o~

eilk+1] = Y[k + 1] =Pk +1] = [k +1] = q(0:) ¢ [k] —Ta(0s)u(0;)[k] (4.33)

~

where w indicates the yaw rate calculated by a vehicle model without ob-
server term.

4.3 Implementation and Experimental Results

The proposed strategies for estimating C. and C'y were implemented in Mat-
lab/Simulink so that it was possible to apply them to measurement data.
Different measurement sets were then used to evaluate the performance of
the estimators.
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4.3.1 Comparison of the MME Strategies

The three MME strategies were compared in terms of how well they con-
verged. One topic which might be confusing regarding MME is how to
decide if the algorithm has converged or not. Since the algorithm chooses
from a pre-defined library, it can not be expected that the returned estimate
is optimal among all possible values. When the algorithm returns the lowest
(or the highest) value from the library it is likely that this is the case. It is
then impossible to be certain if an even lower (or higher) value would yield
a smaller error. In the experiments presented in this section, the lower (or
upper) limit was adjusted whenever this occurred. In some cases, however,
the limits had to be adjusted far beyond what is physically plausible and it
was then decided that the estimation had failed.

Five different values of C; and Cy were chosen, generating 25 combinations.
Of the three estimators, MME1 performed the poorest since it only converged
for a few measurements. The choice between MME2 and MMES3 is dependent
on the input to the estimators. When it consisted of large steering angles
yielding large yaw rates, MME2 performed better, while MME3 was more
suitable for more modest maneuvers. It is therefore likely that MME3 would
be the best choice for normal driving.

The switching hysteresis also proved useful. Figure 4.4 displays the output
of MME2 with and without hysteresis. The hysteresis removes the chatter-
ing and it may therefore be concluded that the errors connected with the
parameter estimates in the region [1.4,1.55] - 10° are fairly equal.
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Figure 4.4: The estimate of MME2 with and without switching hysteresis.

To make MME more convenient to use in different models and vehicles,
MME2 and MME3 were implemented as Simulink libraries. The libraries
accept up to 25 combinations of 'y and C, and also have an input which
pauses the estimation when its value is negative or zero. This input may
typically be used to avoid estimating during heavy acceleration or deceler-
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ation, since the vehicle model produces poor fit under these circumstances.
The outputs are C, and C, the yaw rate of each model and their respective
errors.

4.3.2 The Role of the Forgetting Factor in LS2

The choice of forgetting factor for recursive least squares plays an important
role. In the following, 1.S2 will be applied to measurement data recorded at
80 km/h using a Mercedes S-class. The input signal consisted of steps in the
steering wheel angle with a period of approximately 4 seconds. In Figure 4.5
the output of LS2 with A = 0.995 and A = 0.999 is presented. These values
correspond to Ny=200 and N»=1000 respectively. With a sample time of
0.005 seconds, this means that data recorded during the last second is used
for the smaller value and data from the last five seconds for the larger.

For the smaller value of A, the algorithm places the estimates in their correct
regions but they are rather messy. A likely explanation for this is that the fit
of the one-track model is poor during heavy turning. For instance, certain
transients in the tyre forces have been disregarded yielding a small mismatch
at each turn. When using the larger value, the estimates behave smoothly,
since the averaging effect of a higher forgetting factor makes the estimates
less sensitive to disturbances.

x 10°
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== A=0.999
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0.2

0 5 10 15 20 25
Time [s]

Figure 4.5: LS2 with A = 0.995 and A = 0.999.

The results of the original SVD-test and the two modifications proposed
in Section 4.1.5 are displayed in Figure 4.6. As previously mentioned, the
original svd-test states that two parameters may be identified regardless of
the value of the forgetting factor. The modified tests are very restrictive
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when the smaller value of A is used. The second modification allows two
parameters to be identified on two, very brief, occasions while the first mod-
ification remains at 1 through the whole measurement. When increasing the
forgetting factor to 0.999, the first modification switches between one and
two parameters but most of the time it states that two parameters may be
identified. The estimation was not a complete failure for A = 0.995 which
indicates that the modifications produce somewhat conservative statements.
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> o ®

=
N

-

®

1 | — Original test —— Original test
T o o

Number of identifiable parameters
Number of identifiable parameters

° o o
o

~

1.2f oo Ny __N

A

-
o
N

o

0 5 10 15 20 25 10 15 20 25
Time [s] Time [s]

(a) A = 0.995 (b) A =0.999

[S)
o

Figure 4.6: The number of identifiable parameters for two values of A using the
original svd-test and the two modifications proposed in Section 4.1.5.

4.3.3 Sensitivity to Sensor Offset

Both estimation methods are highly sensitive to sensor offset. Figure 4.7 (a)
displays the measured lateral acceleration and the product vy1). According
to Equation (2.8) these should be equal in stationary, i.e. when v, = 0.
Figure 4.7 (b) shows the corresponding outputs of LS1 and MME3. Both
methods fail to find the correct value of approximately 150 kN /deg.

Figure 4.8 displays the same plots as Figure 4.7 but the offset has been
removed by requiring a, = vxi/} in stationary. This time, both methods
converge to a value reasonably close to the actual. The difference between
the two estimates is also much smaller than in Figure 4.7.

Clearly, it is necessary to remove any offsets present in the measured signals
before attempting to estimate parameters. When doing this, one must be
careful not to affect the results of the estimation. The criterion a, = vy
is not based on any assumption about the magnitudes of Cy and C,. If
the driving maneuver is symmetric around zero, it is sometimes possible to
remove offsets by requiring that the mean value of the steering angle, yaw
rate and lateral acceleration is zero. However, when considering the fit to a
one-track model, values for C;. and Uy need to be specified. This may force
the estimation into finding a specific value.
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Figure 4.8: Measured a,, versus v,7) and the estimates of LS1 and MMES3.

4.3.4 Identification of Ordinary and Winter Tyres

In order to test the performance of the
estimation strategies, Multiple Model
Estimation and Recursive Least Squares
were applied to measurements made with
an S-class. The goal of this experiment
was to investigate if it is possible to
distinguish between ordinary tyres and
winter tyres. Measurements were made
with both tyre types at speeds around 80

Steering wheel angle [deg]

km/h and 120 km/h. The steering input
consisted of steps with somewhat vary-
ing period time and amplitude, a typical
example is displayed in Figure 4.9.

Time [s]

Figure 4.9: Steering input.
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Three estimators were used; MME2, LS2, and LS2 with conditional updat-
ing, which will be referred to as LS2* in the following. The initial values
where set to zero for the two least squares methods and P[0] was set to 108
times the identity matrix. The forgetting factor was set to 0.999 for LS2
and to 0.996, which is substantially lower, for LS2*. It may then be inves-
tigated if the lower forgetting factor can yield a faster convergence without
estimator windup. The estimate and covariance matrix were updated when
the following condition was fulfilled, which allowed approximately half of the
samples to be used.

Tt P[t — 1]¢[t] > 1 — A (4.34)

The estimators were applied to four measurements for each tyre type. The
results of the experiments are presented in Figures 4.11 and 4.12. Generally,
the estimates of MME2 are somewhat higher than those of the least squares
algorithms. The least squares estimates also vary more between the different
measurements.

The use of conditional updating did not provide any major advantage over
LS2. An example of the estimates of LS2 and LS2* is displayed in Figure
4.10. The figure displays the estimate 6 and element (1,1) of the P-matrix.
For L.S2 with A = 0.996, the rather large peaks in the lower plot indicate
that estimator windup occurred. The peaks are attenuated when using LS2*
and the estimates behave more smoothly. Increasing the forgetting factor
for LS2 decreases the peaks even further with a only a small increase in con-
vergence time. All three estimators are fairly consistent after approximately
15 seconds.

When studying the spread of the estimates in Figure 4.11 it is clear that
the estimate of Cy varies more for ordinary tyres than for winter tyres.
A plausible explanation for this is that the ma-

neuvers performed with the ordinary tyres var- F]c 4 C.

ied more. In some of the measurements rather '
large steering angles were applied, violating the v
assumption of small slip angles and thus affect- / ,C\f
ing the estimated cornering stiffness. The prin- /
ciple of this effect is presented in Figure 4.13, /
where the initial slope of the curve is the actual /
value of C'y. When the slip angles are large, the ) Ol
curve turns nonlinear. The estimators, however, 7
are designed under the assumption of a linear
relation between slip angle and tyre force, which
results in an estimate that is too small.

Figure 4.13: Falsely esti-
mated cornering stiffness.

Taking the mean value of all estimates for each tyre type yields that C, is



4.4 Aerodynamic Effects 49

=

s 2

o 1.5+ S "'f ‘

z TN e -

[ 1 D N Tl v Cond. upd

o | d___ =7 — A=0.996

g 05 b - - 2=0.999

R i ‘ ‘ ‘ ‘
0 5 10 15 20 25

Time [s]

Figure 4.10: The estimate and element (1,1) of the covariance matrix P for LS2
with A = 0.996, LS2 with A = 0.999, and LS2* with A = 0.996 (denoted Cond.
upd.).

178 kN/deg for normal tyres and approximately 141 kN /deg for winter tyres.
The corresponding values for C'y are approximately 123 and 117 kN/deg. For
ordinary tyres, C; and Cy have been found to be approximately 170 and 120
kN /deg respectively. The results of the estimation are consistent with this
and the magnitude of the decrease in cornering stiffness when using winter
tyres is plausible. This experiment is therefore a strong indication that
cornering stiffness can be identified by the use of MME or LS. However, as
previously mentioned, sensor offset needs to be removed from the signals
before any successful parameter identifications can be made. In order to
use MME it is also necessary to have some a priori information regarding in
which regions (. and Cy can be expected to lie.

4.4 Aerodynamic Effects

In this Section, the effects of aerodynamic drag and aerodynamic lift on
the cornering stiffness will be investigated, using a few results from Sections
2.2 and 2.5. It should be noted that no systematic difference between the
estimates at 80 km/h and 120 km/h was distinguishable in Section 4.3.4. A
previous investigation of aerodynamic effects is presented in [11]. For further
reading on the aerodynamics of vehicles, see [4].
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Figure 4.11: Estimation results for the measurements with ordinary (blue x) and
winter (red +) tyres. The mean value for each tyre type is marked with a square.

4.4.1 Aerodynamic Drag

Consider Figure 4.14 where aerodynamic drag Fi, ., aerodynamics lift F, .
and the longitudinal tyre force, Fj,, are presented. The aerodynamic drag
when driving straight ahead is given by Equation (2.23) with 74, = 0.

1
Fw,x = Epaircair,x(o)Aairv2 (435)

The longitudinal tyre force must compensate for F, ; and the rolling resis-
tance of the tyre, Fr, which gives the following expression.

1
ﬂ,r = §paircair(O)Aair'v2 + FR (436)

By making use of Equation (2.42), which states that F; ~ CjA, the slip is

obtained as a function of velocity.

1 /1
AN — | 5 air airAair 2 F 4.
& (3puircar Auiro® + ) (437)

The lateral force on the rear tyre F, is then given by

Fr=F, (M) (4.38)
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Figure 4.12: Estimation results for each measurement. The upper row correspond
to ordinary tyres while the lower corresponds to winter tyres. MME is marked with
o, LS2 with + and LS2* with *. The values are plotted in factors of 10°> N/deg.

The load force on the rear tyre, F. ,, is given by a moment equation around
the front wheel.

mgl
P;m ::_"_zji

The function p(A) may now be calculated with a tyre model which has been
implemented in Matlab at DaimlerChrysler. It takes F ., A and «, as inputs
and outputs F,. By evaluating the initial slope when F; is plotted against
a, a value for C). is found. Repeating the procedure with different values of

Figure 4.14: The aerodynamic forces Fy, , and F,, ..
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v [km/b] 50 100 | 150 | 200
C, (drag) | 8.7563 | 8.7569 | 8.7608 | 8.7207
C, (drag & lift) | 8.7353 | 8.6727 | 8.5712 | 8.3866

Table 4.1: Calculated C,. from aerodynamic effects for various speeds. The values
of C, are given in factors of 10* N/deg.

v gives an indication on how lateral drag affects the cornering stiffness at
high speeds.

4.4.2 Aerodynamic Lift
The aerodynamic forces also create a lift force acting according to

1
Fw,z = §paircair(0)Aairv2 (439)

This will reduce the resulting force on the rear tyre in the following way.

mgl F,
Fz,r:_ Ig/f z;,z

With an altered F7, , the quotient between F). and c, is altered and therefore
correspond to a different value of C)., which may be calculated in the same
way as in the previous section.

4.4.3 Simulation Results

The calculated stiffness of the rear tyre for various speeds is presented in
Table 4.1. The calculations based on aerodynamic drag yield a decrease of
C, of 0.41 % as the speed increases from 50 km/h to 200 km/h. When also
considering aerodynamic lift the decrease is 3.99 % for the same speeds. The
simulations imply that aerodynamic lift has a larger impact on tyre stiffness
than aerodynamic drag. Both effects are, however, rather small.



Chapter 5

Closing the Loop

The main objective with estimating side wind is to attenuate it in order to
assist the driver. A controller will be designed and evaluated in terms of how
well it keeps the yaw rate down during side wind.

s

Mel Vehicle

Y, a, Output fcn.

Observer

Controller

Figure 5.1: Principle of the side wind attenuation.

5.1 The EPS-actuator

The side wind is to be suppressed using Electric Power Steering (EPS). EPS
applies a torque on the steering rod, and thus turns the steering wheel. This
means that it is possible for the driver to counteract the controller by holding
the steering wheel straight. It also means that the applied torque can not be
too strong, as it most likely would be frightening for the driver if the steering
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wheel turned too fast on its own.

5.2 Controller Design

To attenuate side wind acting on the vehicle, the estimate is passed to a
controller which acts on the moment actuator on the steering rod, see Figure
5.1. A fairly common way of canceling the effects of known disturbances is
feedforward compensation, which is described in [7].

5.2.1 Feedforward Compensation

Assume that a system with transfer
function G(s), input u, and output y
is affected by a disturbance v, and that Y Gy
this disturbance may be measured. A
controller is implemented according to y
Figure 5.2, where Gy is to be chosen. fo
If the transfer function from v to y,
Gy (s), is known and G(s) has a stable NI
and realizable inverse, the disturbance
is canceled by use of the control signal

u(s) = Grr(s)u(s) = =G~ H(s)Gu(s)v(s).

Figure 5.2: Feedforward control.

When this is impossible, a pragmatic solution is to calculate, or approx-
imate, the steady state gain, which might perform well enough in many
cases. Another reason for choosing to disregard the dynamics is that the
model generally produces better fit at lower frequencies. In the following, a
stationary feedforward gain will be calculated.

To calculate the torque needed to compensate for a certain, stationary, side
wind, the second-order vehicle model derived in Chapter 2, i.e. the matrices
in (2.32), will be used. However, the G-matrix will be modified into Gy by
discarding the first column so that side wind is the only disturbance entering
the system. In stationary, the state vector is

o Yy | 41 -1
Too = ; = —A" "Boo — A "GetriSw., (5.1)
Yoo
The inverse of A is

A1 Jmug_ —
N L2CtC, + mpuy

Too

|

3o |
3k

N———

(5.2)

Sl
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The products A~'B and A~'G\,; may then be calculated

1:Crmv2  — LI,.C+C,
AT'B = Fes SE e = D f 5.3
LQCfCr + mpv%oo ( —LCfCr ( )

_ x —Kk + emv:  — pe
A 1Gcr - v = : Too 54
trl L2CCy + mpv?_ ( —p—oe (54)

This yields the following equations for the stationary lateral velocity and
yaw rate.

Yyoo = ¢l < (l;Cpmv2 _ — LI,CyC) oo + (—k + emu?_ — pe) Swoo)
(5.5)

VYoo = Uy E71 ( — LC¢Crds — (p + O'G)Swoo) (5.6)

where £ = L2C;C, + mpvZ_.

Setting 1o = 0 and solving (5.6) for 6 yields the following control law for
Joo-

p+oe

o = L T7°
LC;C,

Swe (5.7)

By inserting this expression into (5.5) an expression for lateral velocity as a
function of longitudinal velocity and side wind is obtained.

p+oe

m —k+emv2_ — pe> Sw.., (5.8)

Vg

(% _
oo _ g1 ( (1yCymus_ — LI, CyC,)
To calculate the stationary moment needed to obtain a certain steering angle,
(2.44) is used. In stationary, it becomes

1 . Vyoo ly .
Mg, = (CM (iLd0o — OLR.,) + 1kCy (500 — Uy— S ¢oo>> (5.9)

iL Too Uxoo

Since 1o has been set to zero, (5.7) and (5.8) may be inserted into (5.9)
which yields the following stationary moment.
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L

Mip., =+ ( — CMOLR, + ( = (eariz + n’fcf)Lpgfaér B

nka§—1< (L;Cpmv?_ — LI, CC,) L”g‘f"& — Kk +emv?_ — pe>)5woo
(5.10)

To obtain a faster response to changes in side wind, a derivative part will be
added, which yields the following, dynamical, control law.

0
Myr(t) = KpMrpr. (8) + Kam MiR (1) (5.11)

where Mg (t) denotes the moment calculated according to (5.10) with
5.r(t), Su(t) and vy(t) as inputs. The design parameters are the two gains
K, and K,. Since Mpr_ (t) should provide all the stationary gain needed
to suppress the disturbance, K, is set to one and only K, needs to be tuned
using simulations or real life tests.

5.2.2 Tuning the Controller

CASCaDE was used to simulate a vehicle driving past side wind in order to
tune Ky. Since a few dynamics of the steering system were left out when
deriving the model, it was also necessary to tune K, somewhat.

Figure 5.3 displays the yaw rate and applied moment for a few values of
K,. The results when K; = K}, = 0 is also displayed. In this case, the yaw
rate has a negative slope during the side wind. This is caused by the vehicles
rotation away from the side wind, which makes the lateral force smaller. The
vehicle velocity was set to 130 km/h and the wind velocity to 54 km/h. As
expected, the controller keeps the yaw rate close to zero for all values of K.
The initial peaks are reduced by choosing a higher value, but the applied
moment is almost doubled when K is increased from 0.1 to 0.5. The choice
of K, therefore needs to be made in a real vehicle where the comfort of the
driver and passengers may be evaluated for the different values.

5.2.3 Limiting the Controller

The fact that the controller is to be used in a car introduces a few special
issues. One situation which may result in an unpleasant experience for the
driver is if the moment suddenly disappears. One possible solution to this is
to let the applied moment disappear slowly once the side wind is stationary
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and then leave the compensation to the driver. When a side wind hits the
vehicle, the controller turns the steering wheel to an appropriate angle and
then lets the driver take over. There are several ways of obtaining this. One
is to pass the estimated side wind through a high-pass filter and thus remove
any stationary control action. A positive side effect of this strategy is that
it also removes the effects of sensor offset.
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Figure 5.3: The yaw rate and the applied moment with v = 130 km/h and a side
wind of 15 m/s.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work was focused on the estimation of side wind using a first-order
disturbance observer. The robustness towards sensor offset and parameter
error have been investigated. A few possibilities for reducing the effects of
sensor offset have been presented. To improve on the sensitivity to parameter
error, Recursive Least Squares and Multiple Model Estimation were applied
in order to identify the cornering stiffness of the tyres. Both methods were
found capable of distinguishing between ordinary tyres and winter tyres. A
feedforward controller was designed which uses the side wind estimate to
assist the driver during wind gusts.

6.2 Future Work

Several issues remain regarding the on line identification. A major issue
is that of deciding when to perform identification. One criterion is to run
the identification at lower speeds and estimate side wind at higher. At
winter time, however, it is not unlikely that the driver starts on snow or
ice and then enters a snow-free motorway. The estimated parameters will
then be inaccurate. It would also be desirable to develop further criteria
for determining if the identification was successful or not. Two procedures
which uses singular value decomposition of the regressor matrix have been
proposed, which need to be investigated further. It might also be possible to
improve the identification by using a more complex vehicle model, e.g. by
introducing the dynamics of the steering system and those of the tyre forces.
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