
ISSN 0280-5316 
ISRN LUTFD2/TFRT--5778--SE 

Estimation of Side Wind 
Disturbances in  

Automotive Vehicles 

Anders Widd 

Department of Automatic Control 
Lund University 
November 2006 



 



Document name 
MASTER THESIS 
Date of issue 
November 2006 

Department of Automatic Control 
Lund Institute of  Technology 
Box 118 
SE-221 00 Lund Sweden Document Number 

ISRNLUTFD2/TFRT--5778--SE 
Supervisor 
Jens Kalkkuhl at DaimlerChrysler in Sindelfingen, 
Germany 
Karl-Erik Årzén and Brad Schofield at Automatic Control in 
Lund. 

Author(s) 
Anders Widd 
 

Sponsoring organization 

Title and subtitle 
Estimation of Side Wind Disturbances in Automotive Vehicles (Skattning av sidvindsstörningar för fordon) 
 
 

Abstract 
This work is focused on a system which aims at estimating and attenuating side wind acting on a vehicle. The 
side wind disturbance is estimated using a disturbance observer. This thesis investigates the robustness towards 
sensor offset and parameter error. A few possibilities for reducing the effects of sensor offset are presented. A 
large part of the thesis is dedicated to on line identification of tyre parameters. Recursive Least Squares and 
Multiple Model Estimation are implemented in Matlab/Simulink and evaluated using measurement data. Both 
methods are found capable of distinguishing between ordinary tyres and winter tyres. A feedforward controller 
which uses the side wind estimate is also designed and evaluated in simulation. 
 

Keywords 

Classification system and/or index terms (if any) 
 

Supplementary bibliographical information 
 
ISSN and key title 
0280-5316 

ISBN 
 

Language 
English 

Number of pages 
70 

Security classification 

Recipient’s notes 

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 
2224243 
 
 



 



A
knowledgements
This thesis work was 
arried out at one of DaimlerChrysler's resear
h fa
ili-ties, REI/AR, in Sindel�ngen, Germany between Mar
h and O
tober 2006. Iwould like to thank the team in Sindel�ngen for making my stay in Germanyvery pleasant and most of all Dr. Jens Kalkkuhl for his great supervision andsupport. I would also like to thank Prof. Karl-Erik Årzén at the Departmentof Automati
 Control for giving me this opportunity and Brad S
ho�eld whosupervised from Lund.



iv



Contents
1 Introdu
tion 11.1 Main Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Modeling 52.1 Vehi
le Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Modeling of Side Wind . . . . . . . . . . . . . . . . . . . . . . 102.3 Modeling of Road Bank . . . . . . . . . . . . . . . . . . . . . 122.4 Se
ond-Order Vehi
le Model . . . . . . . . . . . . . . . . . . . 122.5 Modeling of Tyres . . . . . . . . . . . . . . . . . . . . . . . . 132.6 Modeling of the Steering System . . . . . . . . . . . . . . . . 153 Disturban
e Observers 173.1 Linear Observer . . . . . . . . . . . . . . . . . . . . . . . . . . 173.2 Linear Disturban
e Observer . . . . . . . . . . . . . . . . . . 183.3 First-Order Disturban
e Observer . . . . . . . . . . . . . . . . 193.4 Robustness of the Side Wind Estimation . . . . . . . . . . . . 213.4.1 Sensitivity to Sensor O�set . . . . . . . . . . . . . . . 213.4.2 A Moment-Based Estimate . . . . . . . . . . . . . . . 223.4.3 Smoothing δLR . . . . . . . . . . . . . . . . . . . . . . 243.4.4 Estimation of Sensor O�set . . . . . . . . . . . . . . . 253.4.5 Sensitivity to Parameter Error . . . . . . . . . . . . . 274 On Line Parameter Estimation 334.1 Least Squares Estimation . . . . . . . . . . . . . . . . . . . . 344.1.1 Persistent Ex
itation . . . . . . . . . . . . . . . . . . . 344.1.2 The Re
ursive Algorithm . . . . . . . . . . . . . . . . 364.1.3 LS1: Estimation of One Parameter . . . . . . . . . . . 374.1.4 LS2: Estimation of Two Parameters . . . . . . . . . . 374.1.5 Introdu
ing a Forgetting Fa
tor in the SVD-test . . . 384.2 Multiple Model Estimation . . . . . . . . . . . . . . . . . . . 39



vi CONTENTS4.2.1 MME 1: Error Equation . . . . . . . . . . . . . . . . . 414.2.2 MME 2: Multiple Model Observer . . . . . . . . . . . 424.2.3 MME 3: Model Error . . . . . . . . . . . . . . . . . . 434.3 Implementation and Experimental Results . . . . . . . . . . . 434.3.1 Comparison of the MME Strategies . . . . . . . . . . . 444.3.2 The Role of the Forgetting Fa
tor in LS2 . . . . . . . 454.3.3 Sensitivity to Sensor O�set . . . . . . . . . . . . . . . 464.3.4 Identi�
ation of Ordinary and Winter Tyres . . . . . . 474.4 Aerodynami
 E�e
ts . . . . . . . . . . . . . . . . . . . . . . . 494.4.1 Aerodynami
 Drag . . . . . . . . . . . . . . . . . . . . 504.4.2 Aerodynami
 Lift . . . . . . . . . . . . . . . . . . . . . 524.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . 525 Closing the Loop 535.1 The EPS-a
tuator . . . . . . . . . . . . . . . . . . . . . . . . 535.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . 545.2.1 Feedforward Compensation . . . . . . . . . . . . . . . 545.2.2 Tuning the Controller . . . . . . . . . . . . . . . . . . 565.2.3 Limiting the Controller . . . . . . . . . . . . . . . . . 566 Con
lusions and Future Work 596.1 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Chapter 1Introdu
tion
Issues related to driver assistan
e and a
tive safety are re
eiving a lot of at-tention in the automotive industry. They in
lude measures taken to improveon the driver's experien
e and to help avoid a

idents. An example of ana
tive safety system is the anti-lo
k braking system (ABS) whi
h redu
es therisk of skidding during braking. Several systems for a
tive safety and driverassistan
e are ele
troni
 and make use of sensors mounted on the vehi
le. Itis, however, important to keep the number of sensors as low as possible inorder to minimize the produ
tion 
osts. The use of state observers is be
om-ing widespread sin
e they make it possible to extra
t more information fromthe available sensors. This thesis is a part of an ongoing proje
t whi
h aimsat identifying and attenuating side wind a
ting on a vehi
le.The e�e
ts of side wind gusts are easily noted in several driving situations,for instan
e when passing a large tru
k or when entering a bridge. A heavyside wind gust 
an 
ause the vehi
le to deviate from its tra
k and into themeeting lane. When the gusts are modest, so that the driver 
an 
ompensatefor them, it will still be tiring to repeatedly perform 
ompensating maneuverswhi
h eventually makes the driver less responsive. By helping the driver to
ompensate for these disturban
es, the safety is in
reased. Previous workhas shown how pressure sensors on the vehi
le may be used to measure theside wind in order to suppress the disturban
e using feedforward 
ontrol.The strategy 
urrently used is known as a disturban
e observer and onlyrequires the sensors available in a vehi
le equipped with an ESP-system.1.1 Main GoalsThe following points 
onstitute the main goals of this master's proje
t.
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• Analyze the robustness to sensor o�set and parameter error in the sidewind estimation.
• Investigate possible ways of redu
ing the e�e
ts of sensor o�set.
• Introdu
e on line identi�
ation of 
riti
al parameters to improve theside wind estimation.
• Design a 
ontroller whi
h utilizes the side wind estimate.1.2 Thesis OutlineThe �rst part of this thesis deals with vehi
le modeling. A simple vehi
lemodel whi
h 
overs the lateral dynami
s during normal driving is derivedin Chapter 2. The e�e
ts of side wind and road bank are also 
onsidered.A model of the steering system is introdu
ed to fa
ilitate the design of a
ontroller later on.The disturban
e observer is derived in Chapter 3. An investigation of therobustness towards sensor o�set and parameter error is performed. A fewpossibilities for redu
ing the e�e
ts of sensor o�set are also presented.Sin
e the disturban
e observer is found to be sensitive to parameter error,a large part of this thesis is dedi
ated to investigating the possibility ofintrodu
ing on line identi�
ation of vehi
le parameters. The investigationis fo
used on the use of Re
ursive Least Squares and Multiple Model Es-timation. An introdu
tion to both methods and experimental results arepresented in Chapter 4.A feedforward 
ontroller whi
h uses the side wind estimate is designed andevaluated in Chapter 5.1.3 MethodsMatlab and Simulink have been used extensively throughout this work. Asimulation tool known as CASCaDE (Computer Aided Simulation of Car,Driver and Environment) was also used. It has been developed at Daimler-Chrysler and holds highly detailed models of several vehi
les. It was usedto simulate the 
ontroller when side wind was a
ting on the vehi
le. Mea-surements made with test vehi
les were used to evaluate the identi�
ationte
hniques.



1.4 Notations 31.4 NotationsS
alar signals and 
onstants are written in small letters while matri
es arewritten in 
apitals. Small, bold, letters denote ve
tors. An estimate of asignal or 
onstant c is denoted ĉ and the estimation error c− ĉ is written c̃.The relevant notations used in this thesis are presented in Table 1.1. Notethat the 
ornering sti�nesses Cr and Cf generally will be presented in N/deg,although they are de�ned in N/rad.Notation Unit De�nition
αf (αr) rad Front (rear) tyre slip angle
ay m/s2 Lateral a

eleration
β rad Vehi
le side slip angle
Cf (Cr) N/rad Cornering sti�ness, front (rear) tyre
CM Nm/rad Sti�ness, steering rod
δ rad Steering angle
δLR rad Steering wheel angle
d2 Nms/rad Turning resistan
e, steering rod
e m Moment arm, side wind
g m/s2 A

eleration of gravity
iL - Steering transmission ratio
J kgm2 Vehi
le moment of inertia
J2 kgm2 Moment of inertia, lower part of the steering rod
L m Vehi
le length
lf (lr) m Distan
e between front (rear) axle and 
enter of gravity
m kg Vehi
le mass
MLR Nm Steering wheel torque
nk m Distan
e between the wheel axle and the 
onta
t pointbetween tyre and surfa
e in the longitudinal dire
tion
ψ̇ rad/s Yaw rate
Ts s Sample time
vx m/s Vehi
le longitudinal velo
ity
vy m/s Vehi
le lateral velo
ityTable 1.1: Notations
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Chapter 2
Modeling
The vehi
le will be modeled using a one-tra
k model (also known as bi
y
lemodel) whi
h is a linear, se
ond-order, model that provides reasonable �tunder normal driving 
onditions. The dynami
s of the steering system willalso be modeled to fa
ilitate the design of a feedforward 
ontroller. Forfurther reading on modeling of vehi
les, see [6℄, [4℄, [10℄.2.1 Vehi
le ModelVehi
le modeling requires the use of several 
oordinate systems. Two ex-amples are the earth-�xed 
oordinate system (EFCS) and the vehi
le-�xed
oordinate system (VFCS), see Figure 2.1. The EFCS provides the envi-ronment in whi
h the vehi
le is moving. It is ne
essary in order to de�nethe vehi
le's velo
ity and a

eleration, and the angle ψ, whi
h is the anglebetween x′ and x in Figure 2.1. The VFCS has its origin in the vehi
le's
enter of gravity. The side slip angle, β, between x and the velo
ity ve
tor,is de�ned in this 
oordinate system and given by β = tan(vy/vx).Figure 2.2 displays the VFCS and the lateral for
es and torques a
ting onthe vehi
le during a turn. The lateral for
es on the tyres must 
ompensatefor the for
e may, whi
h is due to the lateral a

eleration ay, and the torque
Jψ̈, whi
h is due to the vehi
le's rotation around the 
enter of gravity. Thedistan
es between the 
enter of gravity and the front and rear axles aredenoted lf and lr respe
tively. The velo
ity ve
tor for ea
h tyre, vf and vr,and the 
orresponding slip angles, αf and αr, are also displayed. A for
eequilibrium along the y-axis and a torque equilibrium around the z-axis(dire
ted upwards in Figure 2.2) yield
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x

y v

x’

y’

ψ

β

Figure 2.1: EFCS (x′, y′), VFCS (x, y) and the side slip angle β.
may = Fr + Ff cos(δ) (2.1)
Jψ̈ = −lrFr + lfFf cos(δ) (2.2)Under the assumption that there is a linear relation between the slip anglesand the lateral for
es on the tyres, the tyre for
es may be expressed usingthe 
ornering sti�nesses, Cf and Cr, in the following way.

Ff = Cfαf (2.3)
Fr = Crαr (2.4)In reality, tyre for
es are highly non-linear, but sin
e the model is to beused under normal driving 
onditions, a linear approximation is possible, seeSe
tion 2.5. By inserting (2.3) and (2.4), Equations (2.1) and (2.2) be
ome

may = Crαr + Cfαfcos(δ) (2.5)
Jψ̈ = −lrCrαr + lfCfαfcos(δ) (2.6)The next step is to express ay in its 
omponents. If the vehi
le is approxi-mated by a rigid body, the a

eleration of the 
enter of gravity, aCoG, is
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Figure 2.2: The one-tra
k vehi
le model and the relevant for
es and torques.
aCoG = v̇CoG +ω×vCoG =




v̇x
v̇y
0



+




0
0

ψ̇



×




vx
vy
0



 =




v̇x − vyψ̇

v̇y + vxψ̇
0



(2.7)where ω is a ve
tor 
ontaining the angular velo
ity of the 
enter of gravity.It is assumed that only planar motion o

urs, meaning that ω only has a
omponent in the z-dire
tion and that vz = v̇z = 0. This yields that
ay = v̇y + vxψ̇ (2.8)To rewrite the model further, the slip angles may be expressed in other



8 Modelingvariables. The velo
ities of the tyres may be expressed in VFCS as follows
vr = (vr cos(αr),−vr sin(αr), 0)

T (2.9)
vf = (vf cos(αf ), vf sin(αf ), 0)

T (2.10)Under the assumption of small angles, the approximations cos(δ) ≈ 1 and
sin(δ) ≈ δ may be used, yielding the following approximate equalities.

vr ≈ (vr,−vrαr, 0)
T (2.11)

vf ≈ (vf , vfαf , 0)
T (2.12)Under the assumption of a rigid body, the velo
ities 
an also be expressedthrough vr = vCoG + ω × rr and vf = vCoG + ω × rf , where rr and rf arethe distan
es from the 
enter of gravity to the rear wheel and front wheelrespe
tively.

vr = (vx, vy, 0)
T + (0, 0, ψ̇)T × (−lr, 0, 0)

T = (vx, vy − lrψ̇, 0)
T(2.13)

vf = (vx, vy, 0)
T + (0, 0, ψ̇)T × (lf , 0, 0)

T = (vx, vx + lf ψ̇, 0)
T (2.14)Setting (2.11) equal to (2.13) and (2.12) equal to (2.14) the following expres-sion for αf and αr are obtained.

αr = −β +
lrψ̇

v
(2.15)

αf = −β −
lf ψ̇

v
+ δ (2.16)If it is assumed that vy << vx, the approximations β = tan

vy

vx
≈

vy

vx
and

v ≈ vx hold. Inserting Equations (2.8), (2.15) and (2.16) into (2.5) and (2.6)yields the following equations.
mv̇y = Cr

lrψ̇ − vy
vx

+ Cf

(
δ −

lf ψ̇ + vy
vx

) (2.17)
Jψ̈ = lfCf

(
δ −

lf ψ̇ + vy
vx

)
− lrCr

lrψ̇ − vy
vx

(2.18)
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le Model 9Introdu
ing the notations
Sf = Cf

(

δ +
−vy − lf ψ̇

vx

) (2.19)
Sr = Cr

lrψ̇ − vy
vx

(2.20)simpli�es the equations of motion to
v̇y = −ψ̇vx +

Sf + Sr
m

(2.21)
ψ̈ =

lfSf − lrSr
J

(2.22)These two equations 
onstitute the se
ond-order one-tra
k model. For veri-�
ation purposes, the steering angle and velo
ity of a test drive with a realvehi
le were used as inputs. The 
al
ulated yaw rate and lateral a

elerationwere then 
ompared to those of the real vehi
le. The results are presented inFigure 2.3. The most noti
eable di�eren
e between the model and the realvehi
le is the transients whi
h o

ur in both ψ̇ and ay. To a large extent,these are due to unmodeled dynami
s in the vehi
le but the di�eren
es arestill fairly small. The model 
aptures the lateral dynami
s of the vehi
leunder normal driving 
onditions.
0 5 10 15
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(b) Lateral a

eleration ay.Figure 2.3: The output of the one-tra
k model (green- -) and the measured output(blue�).When deriving this model, some assumptions were needed. A few of theseare summarized below.
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• Planar motion, only rotational and translational movement in the xy-plane is 
onsidered.
• vx >> vy.
• Small angles δ, αr and αf .
• Linear relation between lateral for
es and slip angles.2.2 Modeling of Side Wind

vair

vvres

tair

L_
2

S
I
D
E

W
I
N
D(a) The resulting velo
ity vres and the angleof atta
k τw.

Sw

e
e

S. w

(b) Resulting for
e Sw and the moment arm
e.Figure 2.4: Two ways of modeling side wind.The air resistan
e a
ting on a vehi
le yields for
es Fw,x, Fw,y and Fw,z pro-portional to the velo
ity squared, a

ording to the following equation, where

v2 indi
ate the ve
tor produ
t vTv, [4℄.
Fw,ι =

ρair
2
cair,ι(τair)Aairv

2, ι = x, y, z (2.23)The density of air is denoted ρair and Aair is the area of the vehi
les frontsurfa
e. The 
oe�
ients cair,ι are fun
tions of the angle τair between thevelo
ity v and the dire
tion in whi
h the vehi
le is pointing. The moments
Mw,x, Mw,y and Mw,z around ea
h axis is given by a similar expression.

Mw,ι =
ρair
2
cair,ιι(τair)Aairv

2L, ι = x, y, z (2.24)



2.2 Modeling of Side Wind 11Note that aerodynami
 for
es usually are 
al
ulated in a 
oordinate systemsituated in the 
enter of the vehi
le, whi
h does not always 
oin
ide with the
enter of gravity.The for
e generated by side wind 
an be 
al
ulated by adding the windvelo
ity vair to the velo
ity 
orresponding to the vehi
les movement, v, toform the resulting velo
ity ve
tor vres as depi
ted in Figure 2.4 (a). Thelateral for
e Fw,y and the moment Mw,z around the verti
al axis are thengiven by
Fw,y = ρair

2 cair,y(τair)Aairv
2
res

Mw,z = ρair

2 cair,zz(τair)Aairv
2
resLFor the side wind 
ompensation, it is not ne
essary to obtain the a
tual winddire
tion and velo
ity. It is therefore assumed that the wind generates a for
e

Sw = Fw,y in the lateral dire
tion whi
h atta
ks the vehi
le in a point at adistan
e e from the 
enter of gravity, generating a moment eSw as depi
tedin Figure 2.4 (b). This simpli�es the modeling but still 
aptures the e�e
tson the lateral dynami
s. To 
al
ulate e, Mw,z is expressed in Sw a

ordingto
Mw,z =

cair,zz(τair)

cair,y(τair)
LSwSin
e the aerodynami
 
enter is situated in the 
enter of the vehi
le, thedistan
e between this point and the 
enter of gravity is L/2−lr. The moment

eSw around the verti
al axis in the 
enter of gravity is then given by
eSw =

(
L

2
− lr

)
Sw +Mw,z =

(
cair,zz(τair)

cair,y(τair)
−
lr
L

+
1

2

)
LSwwhi
h gives the following expression for e

e =

(
cair,zz(τair)

cair,y(τair)
−
lr
L

+
1

2

)
LIn the modeling, e will be assumed to be 
onstant. The approximation holdsin most 
ases sin
e the angle τair is rather small at high speeds.The for
e Sw and moment eSw are in
luded in the one-tra
k model by addingthe for
e to (2.21) and the moment to (2.22), whi
h results in the followingequations of motion.
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v̇y = −ψ̇vx +

Sf + Sr
m

+
Sw
m

(2.25)
ψ̈ =

lfSf − lrSr
J

+
eSw
J

(2.26)2.3 Modeling of Road Bank

F

mgsin( )F

mgcos( )F
mg

R

R

R

Figure 2.5: The additional for
e
mg sin(ΦR) in the lateral dire
tion whenthe road is banked.

Another disturban
e whi
h 
om-monly a�e
ts vehi
les is road bank.The weight of the vehi
le then has a
omponent in the lateral dire
tion,a

ording to Figure 2.5. Under theassumption of small angles the ap-proximation mg sin(ΦR) ≈ mgΦRholds. The for
e does not in�uen
ethe yaw rate dire
tly, but it a�e
tsthe lateral a

eleration. Equation(2.25) then be
omes
v̇y = −ψ̇vx +

Sf + Sr
m

− gΦR +
Sw
m(2.27)2.4 Se
ond-Order Vehi
le ModelThe equations of motion for the one-tra
k model with the disturban
es Swand ΦR added, (2.26) and (2.27), are repeated below.

v̇y = −ψ̇vx +
Sf + Sr + Sw

m
− gΦR (2.28)

ψ̈ =
lfSf − lrSr + eSw

J
(2.29)The system may also be presented on the state spa
e form of (2.31) by
hoosing

x = (vy ψ̇)T , u = δ, f = (ΦR Sw)T , y = (ay ψ̇)T (2.30)
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ẋ = Ax +Bu+Gf

y = Cx +Du+Hf
(2.31)whi
h yields the following matri
es

A =

(
− σ
mvx

ρ
mvx

− vx
ρ
Jvx

− κ
Jvx

)

B =




Cf

m

lfCf

J



 C =

(
− σ
mvx

ρ
mvx

0 1

)

D =

(
Cf

m

0

)

G =

(
−g 1

m

0 e
J

)

H =

(
0 1

m

0 0

)(2.32)where the notations ρ, σ and κ are de�ned as
ρ = lrCr − lfCf (2.33)
σ = Cf + Cr (2.34)
κ = l2fCf + l2rCr (2.35)The system may also be presented on the following form.
ẋ = Ax +Bu

y = Cx +Du
(2.36)To do this, the output ve
tor is set to y = (ay ψ̇)T and the input ve
tor to

u = (δ ΦR Sw)T whi
h yields the following matri
es, expressed in those of(2.32). The subs
ript 2 indi
ate that they 
onstitute the se
ond-order vehi
lemodel.
A2 = A B2 =

(
B G

)
C2 = C D2 =

(
D H

) (2.37)2.5 Modeling of TyresTo simplify matters, this se
tion will dis
uss modeling of the front tyres only,although the results apply to the rear tyres also.When driving and braking a vehi
le, for
es o

ur between the tyre and theroad due to the relative velo
ity between them. As a measure of the relativevelo
ity, longitudinal and lateral slip, denoted λl and λf , are introdu
ed.
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λl =

ωwrwcos(αf ) − vf
ωwrw

≈
ωwrw − vf
ωwrw

(2.38)
λf = tan(αf ) ≈ αf (2.39)In the equations above vf is the wheel velo
ity, ωw is the wheel's angularvelo
ity, rw is the wheel radius and αf is the slip angle, as de�ned in Figure2.2. The slip angles are assumed to be small during normal driving. Lateralfor
es only o

ur when αf 6= 0, whi
h gives rise to lateral slip λf . The slipangle and the dire
tions in whi
h slip o

urs are depi
ted in Figure 2.6 (a).

αf vf

x

y

w

w

l

f
l

l

(a) Slip angle.
Ff

af

Cf

(b) Cornering sti�ness, Cf .Figure 2.6: (a) De�nition of slip angles and the dire
tions in whi
h slip o

urs.(b) The 
ornering sti�ness is the initial slope of the 
urve.The quotient between the for
e between tyre and road, and the verti
al for
ea
ting on the wheel, Fz,f , is 
alled fri
tion 
oe�
ient and denoted µ. Thereare several models for 
al
ulating µ, one of them is the Bur
khardt approa
hbelow.
µ(λ) = c1(1 − e−c2λ) − c3λwhere λ =

√
λ2
l + λ2

f . The lateral and longitudinal 
oe�
ients are given by
µl = µ

λl
λ

µf = µkf
λf
λThe longitudinal and lateral for
es are then given by

Fl = µlFz,f (2.40)
Ff = µfFz,f (2.41)



2.6 Modeling of the Steering System 15Figure 2.6 (b) shows the typi
al shape of Ff as a fun
tion of αf . Therelationship between Fl and λl is similar. The 
ornering sti�ness Cf and thelongitudinal sti�ness Cl are de�ned as the initial slope of these 
urves. Alinearization around λl = λf = 0 yields
Fl =

∂

∂λl

(
µlFz,f

)∣∣∣∣
λl=λf =0

λl = Clλl ≈ Clλ (2.42)
Ff =

∂

∂λf

(
µfFz,f

)∣∣∣∣
λl=λs=0

λf = Cfλf ≈ Cfαf (2.43)In the following, Cf and Cr, αf and αr will denote the 
ornering sti�nessand slip angle of the front and rear tyre respe
tively.2.6 Modeling of the Steering SystemThe steering is 
onstru
ted as in Figure 2.7 where CM is the sti�ness of thesteering rod, d2 is the turning resistan
e and J2 is the moment of inertiaof the lower part of the steering rod. The steering wheel angle δLR is setby the driver and is the translated into steering angle δ. The steering rodis modeled with a spring. The torque MLR is applied via an ele
tri
 motorwhile the turning velo
ity, δ̇, is measured. This is known as Ele
troni
 PowerSteering (EPS). The for
e a
ting on the front wheel yields a torque nkSf dueto the 
aster whi
h pla
es the 
onta
t point between tyre and surfa
e behindthe wheel axis.A torque equilibrium around the steering rod yields
J2δ̈ + d2δ̇ + CM iL(δ −

δLR
iL

) = MLRiL − nkCf (δ −
vy
vx

−
lf ψ̇

vx
) (2.44)This model will later be used to design a feedforward 
ontroller that utilizesa moment a
tuator on the steering rod.
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Figure 2.7: Model of the steering system.



Chapter 3Disturban
e Observers
An observer is typi
ally used to estimate the states of a system when no, orpoor, measurements are available. The method works for both single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) systems.The estimated states may in turn be used for 
ontrolling the system. How-ever, the stru
ture of the observer may also be used to estimate disturban
esa
ting on the system, whi
h will be performed in the following.3.1 Linear ObserverConsider the linear MIMO system below, where A ∈ R

n×n, B ∈ R
n×m and

C ∈ R
p×n. It is assumed that the system is observable, meaning that theobservability matrix, Wo =

(
C CA . . . CAn−1

)T has full rank.
ẋ = Ax +Bu

y = Cx
(3.1)It is assumed that y is measurable while x is not. An observer for this systemis given as follows, with K ∈ R

n×p.
˙̂x = Ax̂ +Bu +K(y − ŷ)
ŷ = Cx̂

(3.2)The state estimation error x̃ = x−x̂ then has the dynami
s ˙̃x = (A−KC)x̃.As long as the matrix K is 
hosen so that A − KC is Hurwitz, the stateestimation error tends to zero. However, an umodeled disturban
e a
tingon the input of the system will generate an error in the estimate. In thefollowing se
tion it will be demonstrated how this may be exploited in order



18 Disturban
e Observersto estimate the disturban
e. For further reading on disturban
e observers,see [2℄ for a good presentation of the linear 
ase or [3℄ whi
h also deals withnonlinear disturban
e observers.3.2 Linear Disturban
e ObserverAssume that a disturban
e f ∈ R
m×1 enters the system a

ording to (3.3),where the matri
es A, B and C have the same dimensions as in the previousse
tion.

ẋ = Ax +B(u + f)
y = Cx

(3.3)A dis
retization yields
x[k + 1] = Φdx[k] + Γd(u[k] + f [k])

y[k] = Cx[k]
(3.4)where

Φd = eATs, Γd =

∫ Ts

0
eAτBdτAn observer is designed without taking the disturban
e into a

ount.

x̂[k + 1] = Φdx̂[k] + Γdu[k] +K(y[k] − ŷ[k])
ŷ[k] = Cx̂[k]

(3.5)The dynami
s of the estimation error is
x̃[k + 1] = (Φd −KC)x̃[k] + Γdf [k] (3.6)

ỹ[k] = Cx̃[k] (3.7)Choosing K so that the poles of Φd − KC lie in the unit 
ir
le makes theestimation error bounded-input-bounded-output stable but it does not ne
-essarily tend to zero. To estimate f it is ne
essary to obtain an expression
ontaining only f and ỹ, sin
e x̃ is not measurable. When C−1 exists, thisis possible through
ỹ[k + 1] −

(
CΦdC

−1 − CK
)
ỹ[k] = CΓdf [k] (3.8)



3.3 First-Order Disturban
e Observer 19whi
h is easily veri�ed by dire
t 
al
ulation and using (3.6) - (3.7). When
(CΓd)

−1 exists, an estimate of f is
f̂ [k] = (CΓd)

−1 (
ỹ[k + 1] −

(
CΦdC

−1 − CK
)
ỹ[k]

) (3.9)In the SISO-
ase, CΓd is s
alar, whi
h makes estimation possible as long as
CΓd 6= 0.A problem with this estimate is that it uses ỹ[k + 1], whi
h is not known attime k. The approximation

f̂ [k] ≈ f̂ [k − 1] = (CΓd)
−1 (

ỹ[k] −
(
CΦdC

−1 − CK
)
ỹ[k − 1]

) (3.10)may therefore be used. Delaying the estimate of f by one sample produ
esthe estimation error f̃ [k] = f [k]−f [k−1]. This error will only be zero whenthe disturban
e is 
onstant, so that f [k] = f [k − 1]. When the disturban
eis 
hanging between samples, the error will be smaller for a given 
hange inthe disturban
e the shorter the sample time is.3.3 First-Order Disturban
e ObserverA �rst-order disturban
e observer whi
h only 
onsiders the yaw rate will nowbe presented. Sin
e only side wind is to be estimated, the road bank ΦR isset to zero. By using the expression ay = v̇y + ψ̇vx, whi
h was derived inChapter 2, the equation for lateral velo
ity, (2.28), takes the following form.
may = Sf + Sr + Sw (3.11)Solving for Sf and inserting it into (2.29) yields

ψ̈ =
lfmay
Jzz

−
L

Jzz
Sr +

e− lf
Jzz

Sw (3.12)By putting the expression for Sf derived from (3.11) equal to (2.19) thefollowing equation is obtained
may − Sr − Sw = Cf δ − Cf

vy
vx

−
lfCf
vx

ψ̇Inserting the expression for Sr, (2.20), and solving for vy

vx
yields
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vy
vx

=
1

σ

(
ρ

vx
ψ̇ + Cfδ + Sw −may

) (3.13)By inserting this expression into (2.20) an expression for Sr whi
h does not
ontain vy is obtained. This may in turn be inserted into (3.12), whi
h givesthe following expression.
ψ̈ = −

L2CfCr
Jσvx

ψ̇ −
mρ

Jσ
ay +

LCfCr
Jσ

δ +
1

J

(
e+

ρ

σ

)
Sw (3.14)By introdu
ing the notations

Aobs = −
L2CfCr
Jσvx

(3.15)
u =

LCfCr
Jσ

δ −
mρ

Jσ
ay (3.16)

f =
1

J

(
e+

ρ

σ

)
Sw (3.17)the system may be written on the following form

ψ̈ = Aobsψ̇ + u+ f (3.18)A dis
retization of (3.18) yields
ψ̇[k + 1] = Φobsψ̇[k] + Γobs(u[k] + f [k]) (3.19)where

Φobs = eAobsTs (3.20)
Γobs =

Φobs − 1

Aobs
(3.21)An observer whi
h does not take the disturban
e into a

ount is given by

˙̂
ψ[k + 1] = Φobs

˙̂
ψ[k] + Γobsu[k] +K(ψ̇[k]) −

˙̂
ψ[k]) (3.22)Choosing K = Φobs− z1 will pla
e the observer pole in an arbitrary position

z1. The estimation error is then
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˙̃
ψ[k + 1] = z1

˙̃
ψ[k] + Γobsf [k] (3.23)An estimate of the disturban
e is now obtained by solving (3.23) for f [k].

f̂ [k] =
1

Γobs

(
˙̃
ψ[k + 1] − z1

˙̃
ψ[k]

) (3.24)A delay is introdu
ed as in Se
tion 3.2 and an estimate of the side wind
Sw[k] is obtained via (3.17).

Ŝw[k] =
J

e+ ρ
σ

f̂ [k] =
J

Γobs
(
e+ ρ

σ

)
(

˙̃ψ[k] − z1
˙̃ψ[k − 1]

) (3.25)Sin
e the disturban
e observer is �rst-order, it 
an not distinguish betweena side wind disturban
e and other disturban
es, e.g. o�set in a sensor. InSe
tion 3.4.4 it is shown how the same stru
ture may be used to estimateo�set in the ay-sensor. It is fully possible to design a se
ond-order observerwhi
h is able to distinguish between two di�erent disturban
es, e.g. Sw and
ΦR, but it in
reases the 
omplexity.3.4 Robustness of the Side Wind EstimationThe robustness towards sensor o�set and parameter error will be investigatedin the following se
tions. Both e�e
ts give rise to falsely estimated side wind.3.4.1 Sensitivity to Sensor O�setTo evaluate the e�e
t of sensor o�set, equation (3.18) will be used. In sta-tionary, it be
omes

0 = Aobsψ̇ + u+ f (3.26)By introdu
ing o�sets ∆ψ̇, ∆δ and ∆ay it is possible to 
al
ulate to whi
hside wind ∆Sw they 
orrespond. Inserting the o�sets a

ording to (3.16)-(3.17), the following is obtained.
∆Sw =

1

e+ ρ
σ

(
L2CfCr
σvx

∆ψ̇ −
LCfCr
σ

∆δ −
mρ

σ
∆ay

) (3.27)



22 Disturban
e ObserversClearly, the sensitivity to o�sets in lateral a

eleration and steering angle isindependent of vx while the sensitivity to o�sets in ψ̇ in
reases for smallervalues of vx. For a Mer
edes A-
lass, driving at 120 km/h, an o�set of 1 ◦/sin the yaw rate sensor 
orresponds to a side wind of approximately 246 Nwhile the same o�sets 
orresponds to approximately 493 N when driving at60 km/h. An o�set of one degree in the sensored steering wheel angle, δLR,
orresponds to approximately 180-190 N.One way of redu
ing the e�e
ts of sensor o�set is to introdu
e a lower limit onthe estimated side wind whi
h needs to be rea
hed before any 
ontrol a
tionis taken. By swit
hing the estimation o� when vx is below a 
ertain limit, thesensitivity to o�set in the ψ̇-sensor is lowered. By passing the estimated sidewind through a high-pass �lter it is possible to redu
e the e�e
ts withoutloosing the ability to suppress dynami
 disturban
es. There is also ongoingwork whi
h aims at estimating and removing the o�sets themselves.The sensor in the EPS-system whi
h measures the steering wheel angle hasa resolution of 1.5 degrees. It may therefore be favorable to avoid usingthis signal when estimating side wind. The measurements of the momenton the steering rod, MLR, and of the angular speed of the steering wheel,
δ̇LR, are more reliable. In the following se
tions a few attempts at using thisinformation in order to improve on the estimation of side wind are presented.3.4.2 A Moment-Based EstimateThe idea of a moment-based estimate is to derive an estimate of the side windusing the measured moment on the steering rod instead of the measuredsteering wheel angle. Consider Figure 2.7 where the for
es and momentsa
ting on the steering system are shown. Under the assumptions δ̈ = δ̇ = 0and iLδ = δLR, (2.44) be
omes iLMLR = nkSf . Solving for Sf yields

Sf =
iL
nk
MLR (3.28)It is then possible to rewrite (2.29) in the following manner.

Jψ̈ =
lf iL
nk

MLR − lrSr + eSw (3.29)The expression for Sr, as given in (2.20), is repeated here for 
onvenien
e.
Sr = Cr

(
−
vy
vx

+
lr
vx
ψ̇

) (3.30)



3.4 Robustness of the Side Wind Estimation 23Sin
e vy is not measured, (3.30) needs to be rewritten in some way. InSe
tion 3.3 this was solved by expressing vy

vx
in ψ̇, ay, Sw and δ, see (3.13).In order to rewrite it further, an expression for δ is needed.By putting (3.28) equal to (2.19) and solving for Cfδ the following is obtained

Cfδ =
iL
nk
MLR + Cf

vy
vx

+
lfCf
vx

ψ̇ (3.31)Inserting this expression in (3.13) yields the following equation
vy
vx

=
1

σ

((
ρ

vx
+
lfCf
vx

)
ψ̇ +

iL
nk
MLR +Cf

vy
vx

+ Sw −may

) (3.32)By solving this for vy

vx
an expression whi
h does not 
ontain δ or vy is ob-tained. Inserted in (3.30) it produ
es
Sr = may −

iL
nk
MLR − Sw (3.33)whi
h may be inserted in (3.29), resulting in

Jψ̈ =
LiL
nk

MLR + (lr + e)Sw − lrmay (3.34)An estimate of Sw is then given by
Ŝw =

1

lr + e

(
Jψ̈ −

LiL
nk

MLR + lrmay

) (3.35)This estimate of Sw does not rely on the measured steering wheel angle.There are, however, drawba
ks to this approa
h. CASCaDE was used tosimulate a Mer
edes S-
lass driving past side wind. As 
an be seen in Figure3.1 the steady-state estimate does not 
oin
ide with that of the �rst-orderobserver. There are several possible explanations for this. For instan
e, theremay be additional fri
tions and torques whi
h have not been in
luded in themodel. Also, sin
e the se
ond-order system whi
h 
onne
ts the moment andthe steering angle has been disregarded, the estimate will be very sensitivetowards transients in the maneuvers.
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Figure 3.1: Estimated side wind using the �rst-order observer and the moment-based estimate.3.4.3 Smoothing δLRThe quantization of the measured steering wheel angle does not originatefrom round-o� but from how the sensor is 
onstru
ted. When the signalfrom the sensor 
hanges, it outputs the 
orre
t angle of the steering wheelat that instant of time. However, between the 
hanges it does not provideany information about the angle ex
ept that it is in a region of ±1.5 degreesof the 
urrent value. One way of improving on this is to use other sensoredsignals to estimate δLR in these intervals. This will be done by designing aswit
hed system whi
h makes use of the measured angular velo
ity of thesteering wheel.The de�nition of a 
hange at time k is given in (3.36). When this is ful�lled
δ m
LR[k] is 
onsidered to be a

urate1.

δ m
LR[k] − δ m

LR[k − 1] 6= 0 (3.36)Instead of setting δ̂LR[k] = δ m
LR[k] at the instants where the measurementis a

urate δ̂LR will approa
h this value as a dynami
al system. Setting a�xed value for the estimated angle would 
ountera
t the goal of obtaininga smoother signal. Therefore, the following dynami
s for δ̂LR is used when(3.36) is ful�lled.1The supers
ript m will be used to denote measured signals throughout this se
tion inorder to distinguish them from the estimated, and real, ones.



3.4 Robustness of the Side Wind Estimation 25
δ̂LR[k + 1] = (1 −KTs)δ̂LR[k] +KTsδ

m
LR[k] (3.37)The system pole is pla
ed in 1 −KTs whi
h makes it asymptoti
ally stableas long as K ∈ (0, 2

Ts
). If the system was to remain in this state, and K was
hosen in the spe
i�ed interval, the estimate would 
onverge to the measuredvalue. The rate of 
onvergen
e is determined by the value of K. A large Kwill provide a good �t to the measured values but also a rather messy signal.A small value will 
onversely produ
e a smooth signal but less �tting.During these intervals the fa
t that the derivative of the estimated steeringwheel angle should be equal to the measured angular velo
ity of the steeringwheel will be used. By the approximation ˙̂

δLR[k] ≈ 1
Ts

(
δ̂LR[k] − δ̂LR[k − 1]

)the following dynami
s for this state are obtained.
δ̂LR[k + 1] = δ̂LR[k] + Tsδ̇

m
LR[k] (3.38)To sum things up, the system may be presented in the following manner.

δ̂LR[k + 1] =

{
(1 −KTs)δ̂LR[k] +KTsδ

m
LR[k] when (3.36) is ful�lled

δ̂LR[k] + Tsδ̇
m
LR[k] otherwise (3.39)Finally, a pragmati
 solution to the 
hoi
e of K is applied. By 
hoosing Klarge and passing the estimated signal through a low-pass �lter good �ttingto the measured values is a
hieved while keeping the signal relatively smooth.In Figure 3.2 the sensored signal and the estimate are plotted. The use of themeasured angular velo
ity evidently provides reasonable transitions betweenthe measured points. Initially, the estimate is in
orre
t, sin
e no 
hangeso

ur and the angular velo
ity is zero.3.4.4 Estimation of Sensor O�setThe �rst-order disturban
e observer, whi
h was derived in Chapter 3.3, onlyrequires small variations to yield an estimate of the o�set in the ay-sensor.It is assumed that the sensored lateral a

eleration, asensy is the sum of thea
tual a

eleration and an o�set.
asensy = ay + aoy (3.40)Solving for ay and inserting the expression into (3.14) yields an equation foryaw rate whi
h has side wind and aoy as disturban
es. Sin
e only one of these
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Figure 3.2: Steering wheel angle from sensor before and after smoothing.may be identi�ed by the �rst-order observer, the term 
ontaining side windis dis
arded, whi
h leaves the following equation.
ψ̈ = −

L2CfCr
Jσvx

ψ̇ −
mρ

Jσ

(
asy − aoy

)
+
LCfCr
Jσ

δ (3.41)By introdu
ing the following notations,
Aobs = −

L2CfCr
Jσvx

, u = −
mρ

Jσ
asy +

LCfCr
Jσ

δ, f =
mρ

Jσ
aoy (3.42)the system has the same form as (3.18), whi
h is repeated here.

ψ̈ = Aobsψ̇ + u+ f (3.43)After dis
retization, an estimate of f is obtained in the same way as inSe
tion 3.3, resulting in
f̂ [k] ≈ f̂ [k − 1] ≈

1

Γobs

(
˙̃
ψ[k] − z1

˙̃
ψ[k − 1]

) (3.44)The di�eren
e this time lies only in that the disturban
e is interpreted assensor o�set instead of side wind. An estimate of the o�set is given by thefollowing expression.
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aoy[k] =

Jσ

mρ
f̂ [k] ≈

Jσ

mρΓobs

(
˙̃ψ[k] − z1

˙̃ψ[k − 1]
) (3.45)3.4.5 Sensitivity to Parameter ErrorWhen the parameters of the side wind observer are in
orre
t, ea
h turnwill generate an error in the observer whi
h is interpreted as side wind.To determine how large this e�e
t is, the 
ontinuous time transfer fun
tionbetween δ and Ŝw will be 
al
ulated. The obtained transfer fun
tion isnot realizable, whi
h makes it interesting to 
ompare the results to thoseobtained from simulation in Simulink.The 
ontinuous time one-tra
k model from Se
tion 2.4 will be used as `real'vehi
le and be 
ombined with a 
ontinuous-time version of the �rst orderobserver a

ording to Figure 3.3.
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(b)Figure 3.3: (a) A sket
h of how the sensitivity to model error is investigated and(b) the 
orresponding blo
k diagram with the relevant transfer fun
tions.The transfer fun
tions from δ to ψ̇ and ay are 
al
ulated using the matri
esin (2.32) and the equality G(s) = C(sI −A)−1B +D. The matri
es G and
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H are disregarded sin
e δ is the interesting input for this investigation.

G
δ→ψ̇

=
(lfCfs+ LCfCr/mvx)/J

s2 + (Jσ +mκ) s/Jmvx + (L2CfCr + ρmv2
x)/Jmv

2
x

(3.46)
Gδ→ay

=
(Cf/m)s2 + (LlrCfCr/Jmvx)s + LCfCr/Jm

s2 + (Jσ +mκ) s/Jmvx + (L2CfCr + ρmv2
x)/Jmv

2
x

(3.47)The 
ontinuous disturban
e observer will be based on Equation (3.14), whi
hyields the following observer equation.
¨̂
ψ = −

L2CfCr
Jσvx

˙̂
ψ −

mρ

Jσ
ay +

LCfCr
Jσ

δ +K(ψ̇ −
˙̂
ψ) (3.48)The de�nition of Aobs is repeated here, and two new notations are introdu
ed.

Aobs = −
L2CfCr
Jσvx

(3.49)
B1,obs = −

mρ

Jσ
(3.50)

B2,obs =
LCfCr
Jσ

(3.51)With K = Aobs − z1, the following equality holds.
˙̂
ψ =

B1,obsay +B2,obsδ + (Aobs − z1)ψ̇

s− z1
(3.52)The transfer fun
tion from δ, ay and ψ̇ to the observer error ˙̃ψ is then

G
δ→

˙̃
ψ

= −
B2,obs

s− z1
(3.53)

G
ay→

˙̃
ψ

= −
B1,obs

s− z1
(3.54)

G
ψ̇→

˙̃
ψ

=
s−Aobs
s− z1

(3.55)The transfer fun
tion from ˙̃ψ to Ŝw is now needed. The observer error isgiven by
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¨̃ψ = (Aobs −K) ˙̃ψ + f = z1

˙̃ψ + f (3.56)An estimate of Sw is then obtained via (3.17) and solving (3.56) for f .
Ŝw =

J

e+ ρ/σ
f̂ =

J

e+ ρ/σ
(s− z1)

˙̃ψ (3.57)whi
h provides the last required transfer fun
tion
G ˙̃
ψ→bSw

=
J

e+ ρ/σ
(s− z1) (3.58)The transfer fun
tion from δ to Sw is given by

G
δ→bSw

=

(
G
δ→

˙̃
ψ

+G
δ→ay

G
ay→

˙̃
ψ

+G
δ→ψ̇

G
ψ̇→

˙̃
ψ

)
G ˙̃
ψ→bSw

(3.59)Parameter error may then be modeled by repla
ing Cf and Cr with Ĉf and
Ĉr in the transfer fun
tions 
onne
ted to the observer while leaving (3.46)and (3.47) unaltered. Note that the observer pole in s = z1 will be 
an
eledregardless of parameter error. When the parameters in the observer are
orre
t, the transfer fun
tion from Sw to Ŝw is one and the one from δ to Ŝwis zero. However, when the parameters are in
orre
t, ea
h degree steeringangle will generate a 
ertain estimated side wind. To investigate this, Matlabwas used to draw bode diagrams. In order to make the results easier to relateto, the amplitude diagram is s
aled so that it represents the transfer fun
tionfrom steering wheel angle δLR instead of δ.In Figure 3.4 the bode diagrams are displayed when varying ea
h of theparameters independently. The parameters where 
hosen a

ording to Ĉf =

k · Cf and Ĉr = k · Cr where k ∈ {0.7 0.95 1 1.05 1.3}. The phase diagramindi
ates that the sign is reversed when Ĉf is in
reased or Ĉr is de
reased. Italso seems that the most sensitive parameter is Ĉf , whi
h produ
es almost80 N of estimated side wind per degree steering wheel angle when it is 
hosen30% higher than Cf .To investigate the e�e
ts of dis
retization, the 
ontinuous-time vehi
le modelwas implemented in Simulink. The outputs ψ̇ and ay were sampled us-ing zero order hold and used as inputs to the dis
rete-time observer de-rived in Se
tion 3.3. The velo
ity was kept 
onstant and the steering in-put 
onsisted of sinusoids with varying frequen
y. Figure 3.5 displays thegain diagram from steering wheel angle to estimated side wind for three
hoi
es of sample time when there was no parameter error in the observer.
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Figure 3.5: Amplitude diagram between δLR and
Ŝw with Ts=0.01, 0.02 and 0.005.

Apparently, a larger value of
Ts generates more falsely es-timated side wind. The er-ror is also in
reasing withthe frequen
y. These e�e
tsare intuitively explained bythe fa
t that the estimationerror is equal to the 
hangein disturban
e over the lasttwo samples. In
reasing thefrequen
y for a given sampletime then has the same ef-fe
t as in
reasing the sampletime for a given frequen
y.Figure 3.6 displays the am-plitude diagrams from δLRto Ŝw when Cf and Cr arevaried and the sample time was set to 0.01. The results are fairly similar tothose of the analyti
al 
al
ulations. Clearly, in
orre
t parameters in the ob-server a�e
ts the performan
e rather heavily. In order to avoid this, on lineestimation of a few parameters will be attempted in the following 
hapter.
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(b) Variations in bCr.Figure 3.4: Bode diagram of the 
ontinuous-time transfer fun
tion from δLR to Ŝwwith Ĉf = k · Cf and Ĉr = k · Cr for k = 1.05, 1.3, 0.7, and 0.95. The magnitudeis given in N estimated side wind per degree steering wheel angle.
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Chapter 4
On Line Parameter Estimation

Side Wind Observer
Sensor Signals Sw

^

v>v
v<v

Identification
of C and Cf r

0

0

Figure 4.1: A possible way of swit
hing betweenparameter identi�
ation and side wind estimation.
As was shown in Se
tion3.4.5, the e�e
ts of ina

u-rate parameters in the one-tra
k vehi
le model are quitelarge and it is therefore ne
-essary to make the modeladaptive in order to improveperforman
e. Some parame-ters, su
h as the length ofthe vehi
le, will not be sub-je
t to 
hange while others,su
h as the mass and the po-sition of the 
enter of gravity, will �u
tuate between di�erent driving sessions.One possible implementation is to perform identi�
ation of a few 
riti
al pa-rameters at low speed and then use the estimated values at higher speeds,when the side wind 
ompensation is a
tually needed, see Figure 4.1.The following se
tions present attempts at identifying the 
ornering sti�nessof the front and rear tyre. Choosing these parameters for identi�
ation is rea-sonable sin
e they are very likely to 
hange between di�erent driving sessionsdepending on the weather and the 
hoi
e of tyres. Note that the identi�
a-tion is performed under the assumption that there are no disturban
es a
tingon the vehi
le. A previous investigation of on line identi�
ation in vehi
lesis presented in [14℄.



34 On Line Parameter Estimation4.1 Least Squares EstimationThe main idea of least squares estimation is to �t input data and outputdata in a linear fashion. The following introdu
tion is based on [8℄ and [9℄.Assume that a system is governed by the following equation.
y[t] = φT [t]θ = φ1[t]θ1 + φ2[t]θ2 + . . .+ φN [t]θN (4.1)The ve
tor θ 
ontains the parameters whi
h are to be identi�ed, φi areknown fun
tions and y is some known output. The least squares estimate of

θ, denoted θ̂, is then 
hosen su
h that it minimizes the 
ost fun
tion
Q(θ, t) =

1

2

t∑

k=1

(y[k] − φT [k]θ)2 (4.2)This means that the error will be penalized quadrati
ally. It 
an be provedthat the 
ost fun
tion is minimized by estimates θ̂ whi
h ful�ll
ΦTΦθ̂ = ΦTY (4.3)where

Φ =
(
φT [1] φT [2] . . . φT [t]

)T (4.4)
Y = (y[1] y[2] . . . y[t])T (4.5)Equation (4.3) is known as the normal equation and when the inverse of

ΦTΦ exists it has the unique solution
θ̂ =

(
ΦTΦ

)−1
ΦTY (4.6)The requirement that the inverse of ΦTΦ exists may prove hard to ful�llunder 
ertain 
ir
umstan
es. It is 
onne
ted with the notion of persistentex
itation.4.1.1 Persistent Ex
itationPersistent ex
itation is a measure of how many parameters that may beestimated using, for instan
e, least squares estimation. If the input to theleast squares estimation is persistently ex
iting of order n, n parameters may



4.1 Least Squares Estimation 35be identi�ed uniquely. In [9℄, persistent ex
itation is de�ned in the followingway.De�nition 1. A signal u ful�ls the 
ondition of persistent ex
itation (PE)of order n if the following limits exist.
ū = limN→∞

1

N

N∑

k=1

uk (4.7)
Ĉuu(τ) = limN→∞

1

N

N∑

k=1

uku
T
k−τ (4.8)and if the 
orrelation matrix

Ruu(n) =





Ĉuu(0) Ĉuu(1) . . . Ĉuu(n− 1)

Ĉuu(−1) Ĉuu(0) . . . Ĉuu(n− 2)... ... . . . ...
Ĉuu(1 − n) Ĉuu(2 − n)

... Ĉuu(0)




(4.9)is positive de�nite.Sin
e this is di�
ult to verify on line, a method involving singular values willbe used. It suggests a singular value de
omposition of ΦTΦ. The numberof uniquely identi�able parameters is then equal to the number of non-zerosingular values. An indi
ation as to why this holds will now be presented.Singular Values and Least Squares EstimationFor further reading on the singular value de
omposition, see [12℄. Assumethat ΦTΦ ∈ R

n×n and that it has the following singular value de
omposition
ΦTΦ = USV T (4.10)where U, V ∈ R

n×n are orthonormal and S ∈ R
n×n is a matrix with thesingular values of ΦTΦ along its diagonal and all other elements zero. Thismeans that UT = U−1, V T = V −1 and that ST = S. Equation (4.6) maythen be rewritten as follows.

θ̂ =
(
ΦTΦ

)−1
ΦTY =

(
USV T

)−1
ΦTY = V S−1UTΦTY (4.11)



36 On Line Parameter EstimationIt is 
lear that the estimate will diverge if any of the diagonal elements of Sare zero, sin
e the determinant of S is
det(S) = σ1σ2σ3 . . . σn (4.12)where σi denote the singular values of ΦTΦ. However, it also indi
ates thatproblems may arise when any of the singular values of ΦTΦ are 
lose to zero.One of the few ways of dealing with this is to avoid using singular valueswhi
h are (almost) zero. This, in turn, means that fewer parameters may beidenti�ed.4.1.2 The Re
ursive AlgorithmWhen used on line, least squares is usually applied via a re
ursive algorithm.One of the main advantages is that relatively few data points need to bestored, and it also fa
ilitates estimation of time varying parameters. Thefollowing equations 
onstitute a re
ursive least squares algorithm.

θ̂[k] = θ̂[k − 1] + P [k]φ[k]ǫ[k] (4.13)
ǫ[k] = y[k] − φT [k]θ̂[k − 1] (4.14)
P [k] =

1

λ

(
P [k − 1] −

P [k − 1]φ[k]φT [k]P [k − 1]

λ+ φT [k]P [k − 1]φ[k]

) (4.15)The error between 
al
ulated and measured output at time k is denoted ǫ[k]and P [k] is the 
ovarian
e matrix at this instant. This version of re
ursiveleast squares in
ludes a forgetting fa
tor, 0 < λ ≤ 1, whi
h attenuates theimpa
t of older measurement data. This is espe
ially useful when attemptingto estimate time-varying parameters. The disadvantage of using a smallvalue of λ is that the estimation be
omes more sensitive to noise and otherdisturban
es sin
e the averaging e�e
t is redu
ed. Another possible e�e
t ofsetting λ to low is estimator windup, whi
h is dis
ussed in [8℄. The problemo

urs when there is insu�
ient ex
itation in the system and λ < 1. The
ovarian
e matrix P will then grow more or less exponentially, dependingon how severe the shortage of ex
itation is. This makes the estimationperform rather poorly and also produ
es large transients in the estimatewhen the input is persistently ex
iting again. One way of avoiding this isto use 
onditional updating. This means that the least squares algorithm ismodi�ed so that the estimate and 
ovarian
e matrix only are updated whenthere is enough ex
itation. Otherwise, the previous values are held. It isvital to 
hoose a suitable 
riterion for when to allow updates as a trade-o�



4.1 Least Squares Estimation 37between risking estimator windup and using too few of the samples in theidenti�
ation. A typi
al 
hoi
e of 
riterion is one that as
ertains that themagnitude of φT [k]P [k − 1]φ[k] is large enough.When using re
ursive least squares, initial values for θ̂ and P must be spe
-i�ed. With a bit of knowledge about the system it is possible to 
hoose θ̂[0]in a region around it's a
tual value. When this is not the 
ase, an alterna-tive is to perform regular least squares over an initial set of data and usethis estimate as initial value for the re
ursive algorithm. This te
hnique alsoprovides an initial value for P . Otherwise, it is fairly 
ommon to 
hoose
P [0] = kP0

I where kP0
is a positive 
onstant. A large value of kP0

makes the�rst few steps larger, whi
h may be 
onvenient when the initial estimate of θis a rough guess, but may also lead to large initial variations in the estimate.4.1.3 LS1: Estimation of One ParameterA least squares estimator whi
h attempts to identify only one parameterwill now be presented. The identi�
ation will be based on equation (3.18).Sin
e it is assumed that no side wind is a
ting on the vehi
le during theidenti�
ation, the last term is ex
luded. This yields the following, 
ontinuoustime, equation for yaw rate.
ψ̈ = −

L2CfCr
Jσvx

ψ̇ −
mρ

Jσ
ay +

LCfCr
Jσ

δ (4.16)By 
hoosing
y1 = CrJψ̈ + lrCrmay θ1 = Cf φ1 = −CrL

2

vx
ψ̇ + lfmay + CrLδ (4.17)equation (4.16) may be written y1 = φT1 θ1. Sin
e ψ̈ 
an not be measured,the Euler approximation ψ̈[t] ≈

(
ψ̇[t] − ψ̇[t− 1]

)
/Ts may be used.4.1.4 LS2: Estimation of Two ParametersIdentifying both Cr and Cf is not entirely straight forward. This is dueto the fa
t that they enter the equations of the one tra
k model in a non-linear fashion. Sin
e linearity in parameters is a ne
essity for least squaresestimation, an indire
t approa
h will be attempted. By 
hoosing

y2 = ψ̈ θT2 =
(

CfCr

σ
ρ
σ

)
φT2 =

(
− L2

Jvx
ψ̇ + L

J
δ −m

J
ay

) (4.18)



38 On Line Parameter Estimationequation (4.16) may be written y2 = φT2 θ2. The parameters Ĉf and Ĉr maythen be 
al
ulated from θ̂2 at ea
h step a

ording to
Ĉr[k] =

θ̂2,1[k]L

lr − θ̂2,2[k]
, Ĉf [k] =

θ̂2,1[k]L

lf + θ̂2,2[k]
(4.19)where θ̂2,1 and θ̂2,2 denote the �rst and se
ond element of θ̂2.To make use of the strategy proposed in Chapter 4.1.1 the regressor matrix

ΦN is formed a

ording to
ΦN =





φ2,1[1] φ2,2[1]

φ2,1[2] φ2,2[2]... ...
φ2,1[N ] φ2,2[N ]




(4.20)

where φ2,1 and φ2,2 denote the �rst and se
ond row of φ2. The produ
t
ΦT
NΦN is then

ΦT
NΦN =

( ∑N
k=1 φ

2
2,1[k]

∑N
k=1 φ2,1[k]φ2,2[k]

∑N
k=1 φ2,1[k]φ2,2[k]

∑N
k=1 φ

2
2,2[k]

) (4.21)One might hold an obje
tion against the singular value-
riterion when aforgetting fa
tor is used. When λ < 1, older input values will have lessimpa
t on the result. The singular value de
omposition, however, will takeall past input values into a

ount. This means that if the �rst j samples arepersistently ex
iting of order n and φ[k] = 0 for k > j, the singular value testwould still 
onsider the input persistently ex
iting of order n for all futuresamples. Two suggestions on how to 
ompensate for this will be presentedin the following se
tion.4.1.5 Introdu
ing a Forgetting Fa
tor in the SVD-testSin
e older input values to the RLS-estimation will be weighted with λ, itseems reasonable to do the same when evaluating the number of identi�ableparameters. One way of doing this is to introdu
e ΦN (λ) a

ording to thefollowing
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ΦN (λ) =





λN−1φ2,1[1] λN−1φ2,2[1]

λN−2φ2,1[2] λN−2φ2,2[2]... ...
λ0φ2,1[N ] λ0φ2,2[N ]




(4.22)AsN → ∞ older data points tend to zero, and thus do not a�e
t ΦT

N (λ)ΦN (λ).When λ = 1, the results are the same as when using the original test. Themodi�
ation yields the following produ
t ΦT
N (λ)ΦN (λ), for whi
h the singu-lar values 
an be 
al
ulated.

ΦT
N (λ)ΦN (λ) =




∑N

k=1

(
λN−kφ2,1[k]

)2 ∑N
k=1

(
λN−k

)2
φ2,1[k]φ2,2[k]

∑N
k=1

(
λN−k

)2
φ2,1[k]φ2,2[k]

∑N
k=1

(
λN−kφ2,2[k]

)2



(4.23)Another option is to use the following approximate expression for the numberof samples whi
h are used at ea
h step, [9℄.
Nλ =

1

1 − λ
(4.24)It is then possible to perform the singular value de
omposition using onlythe last Nλ samples, whi
h might give more realisti
 information regardingthe input at a spe
i�
 time. This modi�
ation is also 
onsistent with theoriginal test for λ = 1 sin
e the number of samples tends to in�nity as λ→ 1.Both suggestions will be applied to measurement data in Se
tion 4.3.2, butneed to be investigated further.4.2 Multiple Model EstimationThe main idea in Multiple Model Estimation (MME) is to run several modelsin parallel and determine whi
h of the models that produ
es the best �t tomeasured data a

ording to some 
riterion. In this 
ase it will be used toidentify parameters in a parametri
 model, but it may also be used to 
hoosebetween di�erent model stru
tures. One advantage with this method is thatit 
hooses its estimate from a pre-de�ned library whi
h makes it possible toavoid estimates that are unrealisti
. It is also fast and does not require amodel whi
h is linear in the parameters. The following, brief, introdu
tionis based on [5℄.
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Figure 4.2: Sket
h of how ei are obtained using Multiple Model EstimationConsider the following, linear, system where φ ∈ R
m is the input, y ∈ R

p isthe output and θ ∈ R
n 
ontains the unknown parameters. Note that f maybe nonlinear.

y[k] = f(θ,φ[k − 1]), f : R
m × R

n ⇒ R
p (4.25)Initially, N separate parameter sets θ1,θ2, . . . ,θN are 
hosen to form a li-brary from whi
h the estimator makes its 
hoi
e. With a bit of knowledgeabout the system they may be 
hosen from the set of feasible parametervalues, denoted Θ. One model for ea
h parameter set is 
reated and the 
al-
ulated outputs ŷi[k] = f(θi,φ[k−1]) are 
ompared to the measured output

y[k] to obtain the errors ei. A sket
h of this step is presented in Figure 4.2.
ei[k] = y[k] − ŷi[k], i = 1 . . . N (4.26)Some weight fun
tion Q(e) may then be applied to the error signals and theparameter estimate is 
hosen a

ording to

θ̂ = θj, j =

{
1 ≤ j ≤ N

∣∣∣∣ Q(ej) = min
i∈[1,N ]

Q(ei)

} (4.27)This means that, even when the identi�
ation fails, the parameter estimatewill produ
e a stable and realisti
 model of the system as long as θi ∈ Θfor all i. There are three design parameters in this approa
h to MME; the
hoi
e of parameter library, error fun
tion, and weight fun
tion.



4.2 Multiple Model Estimation 41Swit
hing HysteresisIf two estimates in the library, θp and θq, produ
e almost the same weightederror, so 
alled 
hattering may o

ur. This means that the algorithm swit
hesbetween the two in�nitely. One way of avoiding, or at least redu
ing, thise�e
t is to introdu
e a swit
hing hysteresis.The hysteresis is introdu
ed a

ording to [13℄ su
h that swit
hing only takespla
e when Q(eq)(1 + h) ≤ Q(ep) (or the other way around), where h is adesign parameter. This as
ertains that the new estimate is su�
iently betterthan the 
urrent.Three attempts at multiple model estimation will now be presented, with
θ = (Cr Cf )

T .4.2.1 MME 1: Error EquationA �rst approa
h is to determine how a

urately ea
h parameter set ful�lls(3.18) under the assumption that no side wind is a
ting on the 
ar. Thenotations de�ned in (4.18) are used, so that equation (3.18) may be writtenon the following form.
y2(t) = φT2 (t)θ2Ea
h parameter set θ2i

then yields the following output
ŷ2i

(t) = φT2 (t)θ2iThe 
orresponding errors ei(t) = y2(t) − ŷ2i
(t) are given by

ei(t) = φT2 (t) (θ2 − θ2i
) (4.28)The weight fun
tion is 
hosen a

ording to

Q(ei(t)) =

∫ t

0
H(τ)e2i (t− τ)dτ (4.29)where H(τ) is a �rst-order low pass �lter on the following form.

H(s) =
1

s+ Tf
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hoi
e of Q(e) introdu
es a 
ertain degree of integration depending onthe 
hoi
e of Tf . When Tf = 0, H(s) is a pure integrator whi
h 
orrespondsto weighting all time steps equally. As Tf in
reases, older time steps willbe less and less important. This weight fun
tion will be used in all threeversions of MME presented in this thesis, the di�eren
e lies in how the errorsignals ei are obtained.Lapla
e transformation of Equation (4.29) yields
Q(ei(s)) = H(s)e2i (s) (4.30)By inserting (4.28), the following is obtained

Q(ei(s)) = H(s)φT2 (s)(θ2 − θ2i
)Multipli
ation with φ2(s) yields

φ2(s)Q(ei(s)) = H(s)φ2(s)φ
T
2 (s)(θ2 − θ2i

)The parameter error θ̃2 = θ2 − θ2i
is then given by

θ̃2 = H−1
(
φ2(s)φ

T
2 (s)

)−1
φ2(s)Q(ei(s)) =

(
φ2(s)φ

T
2 (s)

)−1
φ2(s)e

2
i (s)(4.31)As long as φ2(s)φ

T
2 (s) is invertible the parameter set θ2i

that minimizes
Q(ei(t)) has the least parameter error.4.2.2 MME 2: Multiple Model ObserverA possible drawba
k of MME 1 is that the errors are obtained without usingthe dynami
s of the model. The estimated output of ea
h model, ŷi, areobtained from measured signals. This implies that the error at time k onlydepends on the parameters and the input signals at that time. If a dynami
almodel was used, the error would a�e
t future errors and therefore make thedi�eren
es between the models more apparent.A step in this dire
tion is running several observers in parallel and 
hoosethe parameter set that generates the least observer error1. This yields theerrors1This is referred to as Multiple Model Observer parameter estimation in [5℄.
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ei[k] = ψ̇[k] −

˙̂
ψ[k] (4.32)where ˙̂

ψ is the yaw rate 
al
ulated by the observer in (3.22). Intuitively, thisapproa
h makes sense in 
ombination with the disturban
e observer sin
ethe side wind estimate is based on the observer error. Therefore, parametersthat minimize this when there is no side wind should provide a good sidewind estimate. Figure 4.3 presents how the errors are obtained.
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Figure 4.3: Sket
h of how ei are obtained using Multiple Model Observer parame-ter estimation4.2.3 MME 3: Model ErrorThe third and �nal variation on how to obtain the error signals is to removethe observer term in MME2 and thus run N one-tra
k models in parallel. Ifthe initial 
onditions are 
orre
t, this MME should augment parameter errorwell sin
e there is no 
orre
tive term. The errors are obtained a

ording tothe following equation.
ei[k+1] = ψ̇[k+1]−

̂̇
ψ[k+1] = ψ̇[k+1]−Φd(θi)

̂̇
ψ[k]−Γd(θi)u(θi)[k] (4.33)where ̂̇ψ indi
ates the yaw rate 
al
ulated by a vehi
le model without ob-server term.4.3 Implementation and Experimental ResultsThe proposed strategies for estimating Cr and Cf were implemented in Mat-lab/Simulink so that it was possible to apply them to measurement data.Di�erent measurement sets were then used to evaluate the performan
e ofthe estimators.



44 On Line Parameter Estimation4.3.1 Comparison of the MME StrategiesThe three MME strategies were 
ompared in terms of how well they 
on-verged. One topi
 whi
h might be 
onfusing regarding MME is how tode
ide if the algorithm has 
onverged or not. Sin
e the algorithm 
hoosesfrom a pre-de�ned library, it 
an not be expe
ted that the returned estimateis optimal among all possible values. When the algorithm returns the lowest(or the highest) value from the library it is likely that this is the 
ase. It isthen impossible to be 
ertain if an even lower (or higher) value would yielda smaller error. In the experiments presented in this se
tion, the lower (orupper) limit was adjusted whenever this o

urred. In some 
ases, however,the limits had to be adjusted far beyond what is physi
ally plausible and itwas then de
ided that the estimation had failed.Five di�erent values of Cr and Cf were 
hosen, generating 25 
ombinations.Of the three estimators, MME1 performed the poorest sin
e it only 
onvergedfor a few measurements. The 
hoi
e between MME2 and MME3 is dependenton the input to the estimators. When it 
onsisted of large steering anglesyielding large yaw rates, MME2 performed better, while MME3 was moresuitable for more modest maneuvers. It is therefore likely that MME3 wouldbe the best 
hoi
e for normal driving.The swit
hing hysteresis also proved useful. Figure 4.4 displays the outputof MME2 with and without hysteresis. The hysteresis removes the 
hatter-ing and it may therefore be 
on
luded that the errors 
onne
ted with theparameter estimates in the region [1.4, 1.55] · 105 are fairly equal.
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(b) With a hysteresis of 0.03Figure 4.4: The estimate of MME2 with and without swit
hing hysteresis.To make MME more 
onvenient to use in di�erent models and vehi
les,MME2 and MME3 were implemented as Simulink libraries. The librariesa

ept up to 25 
ombinations of Cf and Cr and also have an input whi
hpauses the estimation when its value is negative or zero. This input maytypi
ally be used to avoid estimating during heavy a

eleration or de
eler-
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e the vehi
le model produ
es poor �t under these 
ir
umstan
es.The outputs are Ĉr and Ĉf , the yaw rate of ea
h model and their respe
tiveerrors.4.3.2 The Role of the Forgetting Fa
tor in LS2The 
hoi
e of forgetting fa
tor for re
ursive least squares plays an importantrole. In the following, LS2 will be applied to measurement data re
orded at80 km/h using a Mer
edes S-
lass. The input signal 
onsisted of steps in thesteering wheel angle with a period of approximately 4 se
onds. In Figure 4.5the output of LS2 with λ = 0.995 and λ = 0.999 is presented. These values
orrespond to Nλ=200 and Nλ=1000 respe
tively. With a sample time of0.005 se
onds, this means that data re
orded during the last se
ond is usedfor the smaller value and data from the last �ve se
onds for the larger.For the smaller value of λ, the algorithm pla
es the estimates in their 
orre
tregions but they are rather messy. A likely explanation for this is that the �tof the one-tra
k model is poor during heavy turning. For instan
e, 
ertaintransients in the tyre for
es have been disregarded yielding a small mismat
hat ea
h turn. When using the larger value, the estimates behave smoothly,sin
e the averaging e�e
t of a higher forgetting fa
tor makes the estimatesless sensitive to disturban
es.
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Figure 4.5: LS2 with λ = 0.995 and λ = 0.999.The results of the original SVD-test and the two modi�
ations proposedin Se
tion 4.1.5 are displayed in Figure 4.6. As previously mentioned, theoriginal svd-test states that two parameters may be identi�ed regardless ofthe value of the forgetting fa
tor. The modi�ed tests are very restri
tive



46 On Line Parameter Estimationwhen the smaller value of λ is used. The se
ond modi�
ation allows twoparameters to be identi�ed on two, very brief, o

asions while the �rst mod-i�
ation remains at 1 through the whole measurement. When in
reasing theforgetting fa
tor to 0.999, the �rst modi�
ation swit
hes between one andtwo parameters but most of the time it states that two parameters may beidenti�ed. The estimation was not a 
omplete failure for λ = 0.995 whi
hindi
ates that the modi�
ations produ
e somewhat 
onservative statements.
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Nλ(b) λ = 0.999Figure 4.6: The number of identi�able parameters for two values of λ using theoriginal svd-test and the two modi�
ations proposed in Se
tion 4.1.5.4.3.3 Sensitivity to Sensor O�setBoth estimation methods are highly sensitive to sensor o�set. Figure 4.7 (a)displays the measured lateral a

eleration and the produ
t vxψ̇. A

ordingto Equation (2.8) these should be equal in stationary, i.e. when v̇y = 0.Figure 4.7 (b) shows the 
orresponding outputs of LS1 and MME3. Bothmethods fail to �nd the 
orre
t value of approximately 150 kN/deg.Figure 4.8 displays the same plots as Figure 4.7 but the o�set has beenremoved by requiring ay = vxψ̇ in stationary. This time, both methods
onverge to a value reasonably 
lose to the a
tual. The di�eren
e betweenthe two estimates is also mu
h smaller than in Figure 4.7.Clearly, it is ne
essary to remove any o�sets present in the measured signalsbefore attempting to estimate parameters. When doing this, one must be
areful not to a�e
t the results of the estimation. The 
riterion ay = vxψ̇is not based on any assumption about the magnitudes of Cf and Cr. Ifthe driving maneuver is symmetri
 around zero, it is sometimes possible toremove o�sets by requiring that the mean value of the steering angle, yawrate and lateral a

eleration is zero. However, when 
onsidering the �t to aone-tra
k model, values for Cr and Cf need to be spe
i�ed. This may for
ethe estimation into �nding a spe
i�
 value.
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(b) Estimated CfFigure 4.7: Measured ay versus vxψ̇ and the estimates of LS1 and MME3.
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(b) Estimated CfFigure 4.8: Measured ay versus vxψ̇ and the estimates of LS1 and MME3.4.3.4 Identi�
ation of Ordinary and Winter Tyres
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Figure 4.9: Steering input.

In order to test the performan
e of theestimation strategies, Multiple ModelEstimation and Re
ursive Least Squareswere applied to measurements made withan S-
lass. The goal of this experimentwas to investigate if it is possible todistinguish between ordinary tyres andwinter tyres. Measurements were madewith both tyre types at speeds around 80km/h and 120 km/h. The steering input
onsisted of steps with somewhat vary-ing period time and amplitude, a typi
alexample is displayed in Figure 4.9.



48 On Line Parameter EstimationThree estimators were used; MME2, LS2, and LS2 with 
onditional updat-ing, whi
h will be referred to as LS2∗ in the following. The initial valueswhere set to zero for the two least squares methods and P [0] was set to 108times the identity matrix. The forgetting fa
tor was set to 0.999 for LS2and to 0.996, whi
h is substantially lower, for LS2∗. It may then be inves-tigated if the lower forgetting fa
tor 
an yield a faster 
onvergen
e withoutestimator windup. The estimate and 
ovarian
e matrix were updated whenthe following 
ondition was ful�lled, whi
h allowed approximately half of thesamples to be used.
φT [t]P [t− 1]φ[t] > 1 − λ (4.34)The estimators were applied to four measurements for ea
h tyre type. Theresults of the experiments are presented in Figures 4.11 and 4.12. Generally,the estimates of MME2 are somewhat higher than those of the least squaresalgorithms. The least squares estimates also vary more between the di�erentmeasurements.The use of 
onditional updating did not provide any major advantage overLS2. An example of the estimates of LS2 and LS2∗ is displayed in Figure4.10. The �gure displays the estimate θ̂ and element (1,1) of the P-matrix.For LS2 with λ = 0.996, the rather large peaks in the lower plot indi
atethat estimator windup o

urred. The peaks are attenuated when using LS2∗and the estimates behave more smoothly. In
reasing the forgetting fa
torfor LS2 de
reases the peaks even further with a only a small in
rease in 
on-vergen
e time. All three estimators are fairly 
onsistent after approximately15 se
onds.When studying the spread of the estimates in Figure 4.11 it is 
lear thatthe estimate of Cf varies more for ordinary tyres than for winter tyres.
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Figure 4.13: Falsely esti-mated 
ornering sti�ness.

A plausible explanation for this is that the ma-neuvers performed with the ordinary tyres var-ied more. In some of the measurements ratherlarge steering angles were applied, violating theassumption of small slip angles and thus a�e
t-ing the estimated 
ornering sti�ness. The prin-
iple of this e�e
t is presented in Figure 4.13,where the initial slope of the 
urve is the a
tualvalue of Cf . When the slip angles are large, the
urve turns nonlinear. The estimators, however,are designed under the assumption of a linearrelation between slip angle and tyre for
e, whi
hresults in an estimate that is too small.Taking the mean value of all estimates for ea
h tyre type yields that Cr is
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Figure 4.10: The estimate and element (1,1) of the 
ovarian
e matrix P for LS2with λ = 0.996, LS2 with λ = 0.999, and LS2∗ with λ = 0.996 (denoted Cond.upd.).178 kN/deg for normal tyres and approximately 141 kN/deg for winter tyres.The 
orresponding values for Cf are approximately 123 and 117 kN/deg. Forordinary tyres, Cr and Cf have been found to be approximately 170 and 120kN/deg respe
tively. The results of the estimation are 
onsistent with thisand the magnitude of the de
rease in 
ornering sti�ness when using wintertyres is plausible. This experiment is therefore a strong indi
ation that
ornering sti�ness 
an be identi�ed by the use of MME or LS. However, aspreviously mentioned, sensor o�set needs to be removed from the signalsbefore any su

essful parameter identi�
ations 
an be made. In order touse MME it is also ne
essary to have some a priori information regarding inwhi
h regions Cr and Cf 
an be expe
ted to lie.
4.4 Aerodynami
 E�e
tsIn this Se
tion, the e�e
ts of aerodynami
 drag and aerodynami
 lift onthe 
ornering sti�ness will be investigated, using a few results from Se
tions2.2 and 2.5. It should be noted that no systemati
 di�eren
e between theestimates at 80 km/h and 120 km/h was distinguishable in Se
tion 4.3.4. Aprevious investigation of aerodynami
 e�e
ts is presented in [11℄. For furtherreading on the aerodynami
s of vehi
les, see [4℄.
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Figure 4.11: Estimation results for the measurements with ordinary (blue ∗) andwinter (red +) tyres. The mean value for ea
h tyre type is marked with a square.4.4.1 Aerodynami
 DragConsider Figure 4.14 where aerodynami
 drag Fw,x, aerodynami
s lift Fw,zand the longitudinal tyre for
e, Fl,r, are presented. The aerodynami
 dragwhen driving straight ahead is given by Equation (2.23) with τair = 0.
Fw,x =

1

2
ρaircair,x(0)Aairv

2 (4.35)The longitudinal tyre for
e must 
ompensate for Fw,x and the rolling resis-tan
e of the tyre, FR, whi
h gives the following expression.
Fl,r =

1

2
ρaircair(0)Aairv

2 + FR (4.36)By making use of Equation (2.42), whi
h states that Fl ≈ Clλ, the slip isobtained as a fun
tion of velo
ity.
λ ≈

1

Cl

(
1

2
ρaircairAairv

2 + FR

) (4.37)The lateral for
e on the rear tyre Fr is then given by
Fr = Fz,rµ(λ) (4.38)
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fFigure 4.12: Estimation results for ea
h measurement. The upper row 
orrespondto ordinary tyres while the lower 
orresponds to winter tyres. MME is marked with
⋄, LS2 with + and LS2∗ with ∗. The values are plotted in fa
tors of 105 N/deg.The load for
e on the rear tyre, Fz,r, is given by a moment equation aroundthe front wheel.

Fz,r = −
mglf
LThe fun
tion µ(λ) may now be 
al
ulated with a tyre model whi
h has beenimplemented in Matlab at DaimlerChrysler. It takes Fz,r, λ and αr as inputsand outputs Fr. By evaluating the initial slope when Fr is plotted against

αr a value for Cr is found. Repeating the pro
edure with di�erent values of
Fw,x

Fw,z

Fl,r

z,rF

Figure 4.14: The aerodynami
 for
es Fw,x and Fw,z.
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v [km/h℄ 50 100 150 200
Cr (drag) 8.7563 8.7569 8.7608 8.7207

Cr (drag & lift) 8.7353 8.6727 8.5712 8.3866Table 4.1: Cal
ulated Cr from aerodynami
 e�e
ts for various speeds. The valuesof Cr are given in fa
tors of 104 N/deg.
v gives an indi
ation on how lateral drag a�e
ts the 
ornering sti�ness athigh speeds.4.4.2 Aerodynami
 LiftThe aerodynami
 for
es also 
reate a lift for
e a
ting a

ording to

Fw,z =
1

2
ρaircair(0)Aairv

2 (4.39)This will redu
e the resulting for
e on the rear tyre in the following way.
Fz,r = −

mglf
L

+
Fw,z

2With an altered Fz,r the quotient between Fr and αr is altered and therefore
orrespond to a di�erent value of Cr, whi
h may be 
al
ulated in the sameway as in the previous se
tion.4.4.3 Simulation ResultsThe 
al
ulated sti�ness of the rear tyre for various speeds is presented inTable 4.1. The 
al
ulations based on aerodynami
 drag yield a de
rease of
Cr of 0.41 % as the speed in
reases from 50 km/h to 200 km/h. When also
onsidering aerodynami
 lift the de
rease is 3.99 % for the same speeds. Thesimulations imply that aerodynami
 lift has a larger impa
t on tyre sti�nessthan aerodynami
 drag. Both e�e
ts are, however, rather small.



Chapter 5Closing the Loop
The main obje
tive with estimating side wind is to attenuate it in order toassist the driver. A 
ontroller will be designed and evaluated in terms of howwell it keeps the yaw rate down during side wind.
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Figure 5.1: Prin
iple of the side wind attenuation.5.1 The EPS-a
tuatorThe side wind is to be suppressed using Ele
tri
 Power Steering (EPS). EPSapplies a torque on the steering rod, and thus turns the steering wheel. Thismeans that it is possible for the driver to 
ountera
t the 
ontroller by holdingthe steering wheel straight. It also means that the applied torque 
an not betoo strong, as it most likely would be frightening for the driver if the steering



54 Closing the Loopwheel turned too fast on its own.5.2 Controller DesignTo attenuate side wind a
ting on the vehi
le, the estimate is passed to a
ontroller whi
h a
ts on the moment a
tuator on the steering rod, see Figure5.1. A fairly 
ommon way of 
an
eling the e�e
ts of known disturban
es isfeedforward 
ompensation, whi
h is des
ribed in [7℄.5.2.1 Feedforward Compensation
G

G

Σ

v

Gff

y

v

uFigure 5.2: Feedforward 
ontrol.
Assume that a system with transferfun
tion G(s), input u, and output yis a�e
ted by a disturban
e v, and thatthis disturban
e may be measured. A
ontroller is implemented a

ording toFigure 5.2, where Gff is to be 
hosen.If the transfer fun
tion from v to y,
Gv(s), is known and G(s) has a stableand realizable inverse, the disturban
eis 
an
eled by use of the 
ontrol signal
u(s) = Gff (s)v(s) = −G−1(s)Gv(s)v(s).When this is impossible, a pragmati
 solution is to 
al
ulate, or approx-imate, the steady state gain, whi
h might perform well enough in many
ases. Another reason for 
hoosing to disregard the dynami
s is that themodel generally produ
es better �t at lower frequen
ies. In the following, astationary feedforward gain will be 
al
ulated.To 
al
ulate the torque needed to 
ompensate for a 
ertain, stationary, sidewind, the se
ond-order vehi
le model derived in Chapter 2, i.e. the matri
esin (2.32), will be used. However, the G-matrix will be modi�ed into Gctrl bydis
arding the �rst 
olumn so that side wind is the only disturban
e enteringthe system. In stationary, the state ve
tor is

x∞ =

(
vy∞

ψ̇∞

)
= −A−1Bδ∞ −A−1GctrlSw∞

(5.1)The inverse of A is
A−1 =

Jmvx∞
L2CfCr +mρvx∞

(
− κ
J

v2
x∞ − ρ

m

− ρ
J

− σ
m

) (5.2)
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ts A−1B and A−1Gctrl may then be 
al
ulated
A−1B =

vx∞
L2CfCr +mρv2

x∞

(
lfCfmv

2
x∞ − LlrCfCr

−LCfCr

) (5.3)
A−1Gctrl =

vx∞
L2CfCr +mρv2

x∞

(
−κ+ emv2

x∞
− ρe

−ρ− σe

) (5.4)This yields the following equations for the stationary lateral velo
ity andyaw rate.
vy∞

vx∞
= ξ−1

((
lfCfmv

2
x∞

− LlrCfCr
)
δ∞ +

(
−κ+ emv2

x∞
− ρe

)
Sw∞

)(5.5)
ψ̇∞ = vx∞ξ

−1

(
− LCfCrδ∞ − (ρ+ σe)Sw∞

) (5.6)where ξ = L2CfCr +mρv2
x∞.Setting ψ̇∞ = 0 and solving (5.6) for δ∞ yields the following 
ontrol law for

δ∞.
δ∞ = −

ρ+ σe

LCfCr
Sw∞

(5.7)By inserting this expression into (5.5) an expression for lateral velo
ity as afun
tion of longitudinal velo
ity and side wind is obtained.
vy∞
vx∞

= ξ−1

((
lfCfmv

2
x∞ − LlrCfCr

) ρ+ σe

LCfCr
−κ+emv2

x∞ −ρe

)
Sw∞

(5.8)To 
al
ulate the stationary moment needed to obtain a 
ertain steering angle,(2.44) is used. In stationary, it be
omes
MLR∞

=
1

iL

(
CM (iLδ∞ − δLR∞

) + nkCf

(
δ∞ −

vy∞
vx∞

−
lf
vx∞

ψ̇∞

)) (5.9)Sin
e ψ̇∞ has been set to zero, (5.7) and (5.8) may be inserted into (5.9)whi
h yields the following stationary moment.
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MLR∞

= 1
iL

(
− cMδLR∞

+

(
− (cM iL + nkCf )

ρ+σe
LCfCr

−

nkCfξ
−1

((
lfCfmv

2
x∞ − LlrCfCr

)
ρ+σe
LCfCr

− κ+ emv2
x∞ − ρe

))
Sw∞

)(5.10)To obtain a faster response to 
hanges in side wind, a derivative part will beadded, whi
h yields the following, dynami
al, 
ontrol law.
MLR(t) = KpMLR∞

(t) +Kd
∂

∂t
MLR∞

(t) (5.11)where MLR∞
(t) denotes the moment 
al
ulated a

ording to (5.10) with

δLR(t), Ŝw(t) and vx(t) as inputs. The design parameters are the two gains
Kp and Kd. Sin
e MLR∞

(t) should provide all the stationary gain neededto suppress the disturban
e, Kp is set to one and only Kd needs to be tunedusing simulations or real life tests.5.2.2 Tuning the ControllerCASCaDE was used to simulate a vehi
le driving past side wind in order totune Kd. Sin
e a few dynami
s of the steering system were left out whenderiving the model, it was also ne
essary to tune Kp somewhat.Figure 5.3 displays the yaw rate and applied moment for a few values of
Kp. The results when Kd = Kp = 0 is also displayed. In this 
ase, the yawrate has a negative slope during the side wind. This is 
aused by the vehi
lesrotation away from the side wind, whi
h makes the lateral for
e smaller. Thevehi
le velo
ity was set to 130 km/h and the wind velo
ity to 54 km/h. Asexpe
ted, the 
ontroller keeps the yaw rate 
lose to zero for all values of Kd.The initial peaks are redu
ed by 
hoosing a higher value, but the appliedmoment is almost doubled when Kd is in
reased from 0.1 to 0.5. The 
hoi
eof Kd therefore needs to be made in a real vehi
le where the 
omfort of thedriver and passengers may be evaluated for the di�erent values.5.2.3 Limiting the ControllerThe fa
t that the 
ontroller is to be used in a 
ar introdu
es a few spe
ialissues. One situation whi
h may result in an unpleasant experien
e for thedriver is if the moment suddenly disappears. One possible solution to this isto let the applied moment disappear slowly on
e the side wind is stationary



5.2 Controller Design 57and then leave the 
ompensation to the driver. When a side wind hits thevehi
le, the 
ontroller turns the steering wheel to an appropriate angle andthen lets the driver take over. There are several ways of obtaining this. Oneis to pass the estimated side wind through a high-pass �lter and thus removeany stationary 
ontrol a
tion. A positive side e�e
t of this strategy is thatit also removes the e�e
ts of sensor o�set.
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(b) MLRFigure 5.3: The yaw rate and the applied moment with v = 130 km/h and a sidewind of 15 m/s.



Chapter 6Con
lusions and Future Work
6.1 Con
lusionsThis work was fo
used on the estimation of side wind using a �rst-orderdisturban
e observer. The robustness towards sensor o�set and parametererror have been investigated. A few possibilities for redu
ing the e�e
ts ofsensor o�set have been presented. To improve on the sensitivity to parametererror, Re
ursive Least Squares and Multiple Model Estimation were appliedin order to identify the 
ornering sti�ness of the tyres. Both methods werefound 
apable of distinguishing between ordinary tyres and winter tyres. Afeedforward 
ontroller was designed whi
h uses the side wind estimate toassist the driver during wind gusts.6.2 Future WorkSeveral issues remain regarding the on line identi�
ation. A major issueis that of de
iding when to perform identi�
ation. One 
riterion is to runthe identi�
ation at lower speeds and estimate side wind at higher. Atwinter time, however, it is not unlikely that the driver starts on snow ori
e and then enters a snow-free motorway. The estimated parameters willthen be ina

urate. It would also be desirable to develop further 
riteriafor determining if the identi�
ation was su

essful or not. Two pro
edureswhi
h uses singular value de
omposition of the regressor matrix have beenproposed, whi
h need to be investigated further. It might also be possible toimprove the identi�
ation by using a more 
omplex vehi
le model, e.g. byintrodu
ing the dynami
s of the steering system and those of the tyre for
es.
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