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Chapter 1Introdution
Issues related to driver assistane and ative safety are reeiving a lot of at-tention in the automotive industry. They inlude measures taken to improveon the driver's experiene and to help avoid aidents. An example of anative safety system is the anti-lok braking system (ABS) whih redues therisk of skidding during braking. Several systems for ative safety and driverassistane are eletroni and make use of sensors mounted on the vehile. Itis, however, important to keep the number of sensors as low as possible inorder to minimize the prodution osts. The use of state observers is beom-ing widespread sine they make it possible to extrat more information fromthe available sensors. This thesis is a part of an ongoing projet whih aimsat identifying and attenuating side wind ating on a vehile.The e�ets of side wind gusts are easily noted in several driving situations,for instane when passing a large truk or when entering a bridge. A heavyside wind gust an ause the vehile to deviate from its trak and into themeeting lane. When the gusts are modest, so that the driver an ompensatefor them, it will still be tiring to repeatedly perform ompensating maneuverswhih eventually makes the driver less responsive. By helping the driver toompensate for these disturbanes, the safety is inreased. Previous workhas shown how pressure sensors on the vehile may be used to measure theside wind in order to suppress the disturbane using feedforward ontrol.The strategy urrently used is known as a disturbane observer and onlyrequires the sensors available in a vehile equipped with an ESP-system.1.1 Main GoalsThe following points onstitute the main goals of this master's projet.



2 Introdution
• Analyze the robustness to sensor o�set and parameter error in the sidewind estimation.
• Investigate possible ways of reduing the e�ets of sensor o�set.
• Introdue on line identi�ation of ritial parameters to improve theside wind estimation.
• Design a ontroller whih utilizes the side wind estimate.1.2 Thesis OutlineThe �rst part of this thesis deals with vehile modeling. A simple vehilemodel whih overs the lateral dynamis during normal driving is derivedin Chapter 2. The e�ets of side wind and road bank are also onsidered.A model of the steering system is introdued to failitate the design of aontroller later on.The disturbane observer is derived in Chapter 3. An investigation of therobustness towards sensor o�set and parameter error is performed. A fewpossibilities for reduing the e�ets of sensor o�set are also presented.Sine the disturbane observer is found to be sensitive to parameter error,a large part of this thesis is dediated to investigating the possibility ofintroduing on line identi�ation of vehile parameters. The investigationis foused on the use of Reursive Least Squares and Multiple Model Es-timation. An introdution to both methods and experimental results arepresented in Chapter 4.A feedforward ontroller whih uses the side wind estimate is designed andevaluated in Chapter 5.1.3 MethodsMatlab and Simulink have been used extensively throughout this work. Asimulation tool known as CASCaDE (Computer Aided Simulation of Car,Driver and Environment) was also used. It has been developed at Daimler-Chrysler and holds highly detailed models of several vehiles. It was usedto simulate the ontroller when side wind was ating on the vehile. Mea-surements made with test vehiles were used to evaluate the identi�ationtehniques.



1.4 Notations 31.4 NotationsSalar signals and onstants are written in small letters while matries arewritten in apitals. Small, bold, letters denote vetors. An estimate of asignal or onstant c is denoted ĉ and the estimation error c− ĉ is written c̃.The relevant notations used in this thesis are presented in Table 1.1. Notethat the ornering sti�nesses Cr and Cf generally will be presented in N/deg,although they are de�ned in N/rad.Notation Unit De�nition
αf (αr) rad Front (rear) tyre slip angle
ay m/s2 Lateral aeleration
β rad Vehile side slip angle
Cf (Cr) N/rad Cornering sti�ness, front (rear) tyre
CM Nm/rad Sti�ness, steering rod
δ rad Steering angle
δLR rad Steering wheel angle
d2 Nms/rad Turning resistane, steering rod
e m Moment arm, side wind
g m/s2 Aeleration of gravity
iL - Steering transmission ratio
J kgm2 Vehile moment of inertia
J2 kgm2 Moment of inertia, lower part of the steering rod
L m Vehile length
lf (lr) m Distane between front (rear) axle and enter of gravity
m kg Vehile mass
MLR Nm Steering wheel torque
nk m Distane between the wheel axle and the ontat pointbetween tyre and surfae in the longitudinal diretion
ψ̇ rad/s Yaw rate
Ts s Sample time
vx m/s Vehile longitudinal veloity
vy m/s Vehile lateral veloityTable 1.1: Notations
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Chapter 2
Modeling
The vehile will be modeled using a one-trak model (also known as biylemodel) whih is a linear, seond-order, model that provides reasonable �tunder normal driving onditions. The dynamis of the steering system willalso be modeled to failitate the design of a feedforward ontroller. Forfurther reading on modeling of vehiles, see [6℄, [4℄, [10℄.2.1 Vehile ModelVehile modeling requires the use of several oordinate systems. Two ex-amples are the earth-�xed oordinate system (EFCS) and the vehile-�xedoordinate system (VFCS), see Figure 2.1. The EFCS provides the envi-ronment in whih the vehile is moving. It is neessary in order to de�nethe vehile's veloity and aeleration, and the angle ψ, whih is the anglebetween x′ and x in Figure 2.1. The VFCS has its origin in the vehile'senter of gravity. The side slip angle, β, between x and the veloity vetor,is de�ned in this oordinate system and given by β = tan(vy/vx).Figure 2.2 displays the VFCS and the lateral fores and torques ating onthe vehile during a turn. The lateral fores on the tyres must ompensatefor the fore may, whih is due to the lateral aeleration ay, and the torque
Jψ̈, whih is due to the vehile's rotation around the enter of gravity. Thedistanes between the enter of gravity and the front and rear axles aredenoted lf and lr respetively. The veloity vetor for eah tyre, vf and vr,and the orresponding slip angles, αf and αr, are also displayed. A foreequilibrium along the y-axis and a torque equilibrium around the z-axis(direted upwards in Figure 2.2) yield



6 Modeling
x

y v
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Figure 2.1: EFCS (x′, y′), VFCS (x, y) and the side slip angle β.
may = Fr + Ff cos(δ) (2.1)
Jψ̈ = −lrFr + lfFf cos(δ) (2.2)Under the assumption that there is a linear relation between the slip anglesand the lateral fores on the tyres, the tyre fores may be expressed usingthe ornering sti�nesses, Cf and Cr, in the following way.

Ff = Cfαf (2.3)
Fr = Crαr (2.4)In reality, tyre fores are highly non-linear, but sine the model is to beused under normal driving onditions, a linear approximation is possible, seeSetion 2.5. By inserting (2.3) and (2.4), Equations (2.1) and (2.2) beome

may = Crαr + Cfαfcos(δ) (2.5)
Jψ̈ = −lrCrαr + lfCfαfcos(δ) (2.6)The next step is to express ay in its omponents. If the vehile is approxi-mated by a rigid body, the aeleration of the enter of gravity, aCoG, is
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aCoG = v̇CoG +ω×vCoG =




v̇x
v̇y
0



+




0
0

ψ̇



×




vx
vy
0



 =




v̇x − vyψ̇

v̇y + vxψ̇
0



(2.7)where ω is a vetor ontaining the angular veloity of the enter of gravity.It is assumed that only planar motion ours, meaning that ω only has aomponent in the z-diretion and that vz = v̇z = 0. This yields that
ay = v̇y + vxψ̇ (2.8)To rewrite the model further, the slip angles may be expressed in other



8 Modelingvariables. The veloities of the tyres may be expressed in VFCS as follows
vr = (vr cos(αr),−vr sin(αr), 0)

T (2.9)
vf = (vf cos(αf ), vf sin(αf ), 0)

T (2.10)Under the assumption of small angles, the approximations cos(δ) ≈ 1 and
sin(δ) ≈ δ may be used, yielding the following approximate equalities.

vr ≈ (vr,−vrαr, 0)
T (2.11)

vf ≈ (vf , vfαf , 0)
T (2.12)Under the assumption of a rigid body, the veloities an also be expressedthrough vr = vCoG + ω × rr and vf = vCoG + ω × rf , where rr and rf arethe distanes from the enter of gravity to the rear wheel and front wheelrespetively.

vr = (vx, vy, 0)
T + (0, 0, ψ̇)T × (−lr, 0, 0)

T = (vx, vy − lrψ̇, 0)
T(2.13)

vf = (vx, vy, 0)
T + (0, 0, ψ̇)T × (lf , 0, 0)

T = (vx, vx + lf ψ̇, 0)
T (2.14)Setting (2.11) equal to (2.13) and (2.12) equal to (2.14) the following expres-sion for αf and αr are obtained.

αr = −β +
lrψ̇

v
(2.15)

αf = −β −
lf ψ̇

v
+ δ (2.16)If it is assumed that vy << vx, the approximations β = tan

vy

vx
≈

vy

vx
and

v ≈ vx hold. Inserting Equations (2.8), (2.15) and (2.16) into (2.5) and (2.6)yields the following equations.
mv̇y = Cr

lrψ̇ − vy
vx

+ Cf

(
δ −

lf ψ̇ + vy
vx

) (2.17)
Jψ̈ = lfCf

(
δ −

lf ψ̇ + vy
vx

)
− lrCr

lrψ̇ − vy
vx

(2.18)



2.1 Vehile Model 9Introduing the notations
Sf = Cf

(

δ +
−vy − lf ψ̇

vx

) (2.19)
Sr = Cr

lrψ̇ − vy
vx

(2.20)simpli�es the equations of motion to
v̇y = −ψ̇vx +

Sf + Sr
m

(2.21)
ψ̈ =

lfSf − lrSr
J

(2.22)These two equations onstitute the seond-order one-trak model. For veri-�ation purposes, the steering angle and veloity of a test drive with a realvehile were used as inputs. The alulated yaw rate and lateral aelerationwere then ompared to those of the real vehile. The results are presented inFigure 2.3. The most notieable di�erene between the model and the realvehile is the transients whih our in both ψ̇ and ay. To a large extent,these are due to unmodeled dynamis in the vehile but the di�erenes arestill fairly small. The model aptures the lateral dynamis of the vehileunder normal driving onditions.
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(b) Lateral aeleration ay.Figure 2.3: The output of the one-trak model (green- -) and the measured output(blue�).When deriving this model, some assumptions were needed. A few of theseare summarized below.
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• Planar motion, only rotational and translational movement in the xy-plane is onsidered.
• vx >> vy.
• Small angles δ, αr and αf .
• Linear relation between lateral fores and slip angles.2.2 Modeling of Side Wind

vair

vvres

tair

L_
2

S
I
D
E

W
I
N
D(a) The resulting veloity vres and the angleof attak τw.

Sw

e
e

S. w

(b) Resulting fore Sw and the moment arm
e.Figure 2.4: Two ways of modeling side wind.The air resistane ating on a vehile yields fores Fw,x, Fw,y and Fw,z pro-portional to the veloity squared, aording to the following equation, where

v2 indiate the vetor produt vTv, [4℄.
Fw,ι =

ρair
2
cair,ι(τair)Aairv

2, ι = x, y, z (2.23)The density of air is denoted ρair and Aair is the area of the vehiles frontsurfae. The oe�ients cair,ι are funtions of the angle τair between theveloity v and the diretion in whih the vehile is pointing. The moments
Mw,x, Mw,y and Mw,z around eah axis is given by a similar expression.

Mw,ι =
ρair
2
cair,ιι(τair)Aairv

2L, ι = x, y, z (2.24)



2.2 Modeling of Side Wind 11Note that aerodynami fores usually are alulated in a oordinate systemsituated in the enter of the vehile, whih does not always oinide with theenter of gravity.The fore generated by side wind an be alulated by adding the windveloity vair to the veloity orresponding to the vehiles movement, v, toform the resulting veloity vetor vres as depited in Figure 2.4 (a). Thelateral fore Fw,y and the moment Mw,z around the vertial axis are thengiven by
Fw,y = ρair

2 cair,y(τair)Aairv
2
res

Mw,z = ρair

2 cair,zz(τair)Aairv
2
resLFor the side wind ompensation, it is not neessary to obtain the atual winddiretion and veloity. It is therefore assumed that the wind generates a fore

Sw = Fw,y in the lateral diretion whih attaks the vehile in a point at adistane e from the enter of gravity, generating a moment eSw as depitedin Figure 2.4 (b). This simpli�es the modeling but still aptures the e�etson the lateral dynamis. To alulate e, Mw,z is expressed in Sw aordingto
Mw,z =

cair,zz(τair)

cair,y(τair)
LSwSine the aerodynami enter is situated in the enter of the vehile, thedistane between this point and the enter of gravity is L/2−lr. The moment

eSw around the vertial axis in the enter of gravity is then given by
eSw =

(
L

2
− lr

)
Sw +Mw,z =

(
cair,zz(τair)

cair,y(τair)
−
lr
L

+
1

2

)
LSwwhih gives the following expression for e

e =

(
cair,zz(τair)

cair,y(τair)
−
lr
L

+
1

2

)
LIn the modeling, e will be assumed to be onstant. The approximation holdsin most ases sine the angle τair is rather small at high speeds.The fore Sw and moment eSw are inluded in the one-trak model by addingthe fore to (2.21) and the moment to (2.22), whih results in the followingequations of motion.
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v̇y = −ψ̇vx +

Sf + Sr
m

+
Sw
m

(2.25)
ψ̈ =

lfSf − lrSr
J

+
eSw
J

(2.26)2.3 Modeling of Road Bank

F

mgsin( )F

mgcos( )F
mg

R

R

R

Figure 2.5: The additional fore
mg sin(ΦR) in the lateral diretion whenthe road is banked.

Another disturbane whih om-monly a�ets vehiles is road bank.The weight of the vehile then has aomponent in the lateral diretion,aording to Figure 2.5. Under theassumption of small angles the ap-proximation mg sin(ΦR) ≈ mgΦRholds. The fore does not in�uenethe yaw rate diretly, but it a�etsthe lateral aeleration. Equation(2.25) then beomes
v̇y = −ψ̇vx +

Sf + Sr
m

− gΦR +
Sw
m(2.27)2.4 Seond-Order Vehile ModelThe equations of motion for the one-trak model with the disturbanes Swand ΦR added, (2.26) and (2.27), are repeated below.

v̇y = −ψ̇vx +
Sf + Sr + Sw

m
− gΦR (2.28)

ψ̈ =
lfSf − lrSr + eSw

J
(2.29)The system may also be presented on the state spae form of (2.31) byhoosing

x = (vy ψ̇)T , u = δ, f = (ΦR Sw)T , y = (ay ψ̇)T (2.30)
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ẋ = Ax +Bu+Gf

y = Cx +Du+Hf
(2.31)whih yields the following matries

A =

(
− σ
mvx

ρ
mvx

− vx
ρ
Jvx

− κ
Jvx

)

B =




Cf

m

lfCf

J



 C =

(
− σ
mvx

ρ
mvx

0 1

)

D =

(
Cf

m

0

)

G =

(
−g 1

m

0 e
J

)

H =

(
0 1

m

0 0

)(2.32)where the notations ρ, σ and κ are de�ned as
ρ = lrCr − lfCf (2.33)
σ = Cf + Cr (2.34)
κ = l2fCf + l2rCr (2.35)The system may also be presented on the following form.
ẋ = Ax +Bu

y = Cx +Du
(2.36)To do this, the output vetor is set to y = (ay ψ̇)T and the input vetor to

u = (δ ΦR Sw)T whih yields the following matries, expressed in those of(2.32). The subsript 2 indiate that they onstitute the seond-order vehilemodel.
A2 = A B2 =

(
B G

)
C2 = C D2 =

(
D H

) (2.37)2.5 Modeling of TyresTo simplify matters, this setion will disuss modeling of the front tyres only,although the results apply to the rear tyres also.When driving and braking a vehile, fores our between the tyre and theroad due to the relative veloity between them. As a measure of the relativeveloity, longitudinal and lateral slip, denoted λl and λf , are introdued.
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λl =

ωwrwcos(αf ) − vf
ωwrw

≈
ωwrw − vf
ωwrw

(2.38)
λf = tan(αf ) ≈ αf (2.39)In the equations above vf is the wheel veloity, ωw is the wheel's angularveloity, rw is the wheel radius and αf is the slip angle, as de�ned in Figure2.2. The slip angles are assumed to be small during normal driving. Lateralfores only our when αf 6= 0, whih gives rise to lateral slip λf . The slipangle and the diretions in whih slip ours are depited in Figure 2.6 (a).

αf vf

x

y

w

w

l

f
l

l

(a) Slip angle.
Ff

af

Cf

(b) Cornering sti�ness, Cf .Figure 2.6: (a) De�nition of slip angles and the diretions in whih slip ours.(b) The ornering sti�ness is the initial slope of the urve.The quotient between the fore between tyre and road, and the vertial foreating on the wheel, Fz,f , is alled frition oe�ient and denoted µ. Thereare several models for alulating µ, one of them is the Burkhardt approahbelow.
µ(λ) = c1(1 − e−c2λ) − c3λwhere λ =

√
λ2
l + λ2

f . The lateral and longitudinal oe�ients are given by
µl = µ

λl
λ

µf = µkf
λf
λThe longitudinal and lateral fores are then given by

Fl = µlFz,f (2.40)
Ff = µfFz,f (2.41)



2.6 Modeling of the Steering System 15Figure 2.6 (b) shows the typial shape of Ff as a funtion of αf . Therelationship between Fl and λl is similar. The ornering sti�ness Cf and thelongitudinal sti�ness Cl are de�ned as the initial slope of these urves. Alinearization around λl = λf = 0 yields
Fl =

∂

∂λl

(
µlFz,f

)∣∣∣∣
λl=λf =0

λl = Clλl ≈ Clλ (2.42)
Ff =

∂

∂λf

(
µfFz,f

)∣∣∣∣
λl=λs=0

λf = Cfλf ≈ Cfαf (2.43)In the following, Cf and Cr, αf and αr will denote the ornering sti�nessand slip angle of the front and rear tyre respetively.2.6 Modeling of the Steering SystemThe steering is onstruted as in Figure 2.7 where CM is the sti�ness of thesteering rod, d2 is the turning resistane and J2 is the moment of inertiaof the lower part of the steering rod. The steering wheel angle δLR is setby the driver and is the translated into steering angle δ. The steering rodis modeled with a spring. The torque MLR is applied via an eletri motorwhile the turning veloity, δ̇, is measured. This is known as Eletroni PowerSteering (EPS). The fore ating on the front wheel yields a torque nkSf dueto the aster whih plaes the ontat point between tyre and surfae behindthe wheel axis.A torque equilibrium around the steering rod yields
J2δ̈ + d2δ̇ + CM iL(δ −

δLR
iL

) = MLRiL − nkCf (δ −
vy
vx

−
lf ψ̇

vx
) (2.44)This model will later be used to design a feedforward ontroller that utilizesa moment atuator on the steering rod.
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Chapter 3Disturbane Observers
An observer is typially used to estimate the states of a system when no, orpoor, measurements are available. The method works for both single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) systems.The estimated states may in turn be used for ontrolling the system. How-ever, the struture of the observer may also be used to estimate disturbanesating on the system, whih will be performed in the following.3.1 Linear ObserverConsider the linear MIMO system below, where A ∈ R

n×n, B ∈ R
n×m and

C ∈ R
p×n. It is assumed that the system is observable, meaning that theobservability matrix, Wo =

(
C CA . . . CAn−1

)T has full rank.
ẋ = Ax +Bu

y = Cx
(3.1)It is assumed that y is measurable while x is not. An observer for this systemis given as follows, with K ∈ R

n×p.
˙̂x = Ax̂ +Bu +K(y − ŷ)
ŷ = Cx̂

(3.2)The state estimation error x̃ = x−x̂ then has the dynamis ˙̃x = (A−KC)x̃.As long as the matrix K is hosen so that A − KC is Hurwitz, the stateestimation error tends to zero. However, an umodeled disturbane atingon the input of the system will generate an error in the estimate. In thefollowing setion it will be demonstrated how this may be exploited in order



18 Disturbane Observersto estimate the disturbane. For further reading on disturbane observers,see [2℄ for a good presentation of the linear ase or [3℄ whih also deals withnonlinear disturbane observers.3.2 Linear Disturbane ObserverAssume that a disturbane f ∈ R
m×1 enters the system aording to (3.3),where the matries A, B and C have the same dimensions as in the previoussetion.

ẋ = Ax +B(u + f)
y = Cx

(3.3)A disretization yields
x[k + 1] = Φdx[k] + Γd(u[k] + f [k])

y[k] = Cx[k]
(3.4)where

Φd = eATs, Γd =

∫ Ts

0
eAτBdτAn observer is designed without taking the disturbane into aount.

x̂[k + 1] = Φdx̂[k] + Γdu[k] +K(y[k] − ŷ[k])
ŷ[k] = Cx̂[k]

(3.5)The dynamis of the estimation error is
x̃[k + 1] = (Φd −KC)x̃[k] + Γdf [k] (3.6)

ỹ[k] = Cx̃[k] (3.7)Choosing K so that the poles of Φd − KC lie in the unit irle makes theestimation error bounded-input-bounded-output stable but it does not ne-essarily tend to zero. To estimate f it is neessary to obtain an expressionontaining only f and ỹ, sine x̃ is not measurable. When C−1 exists, thisis possible through
ỹ[k + 1] −

(
CΦdC

−1 − CK
)
ỹ[k] = CΓdf [k] (3.8)



3.3 First-Order Disturbane Observer 19whih is easily veri�ed by diret alulation and using (3.6) - (3.7). When
(CΓd)

−1 exists, an estimate of f is
f̂ [k] = (CΓd)

−1 (
ỹ[k + 1] −

(
CΦdC

−1 − CK
)
ỹ[k]

) (3.9)In the SISO-ase, CΓd is salar, whih makes estimation possible as long as
CΓd 6= 0.A problem with this estimate is that it uses ỹ[k + 1], whih is not known attime k. The approximation

f̂ [k] ≈ f̂ [k − 1] = (CΓd)
−1 (

ỹ[k] −
(
CΦdC

−1 − CK
)
ỹ[k − 1]

) (3.10)may therefore be used. Delaying the estimate of f by one sample produesthe estimation error f̃ [k] = f [k]−f [k−1]. This error will only be zero whenthe disturbane is onstant, so that f [k] = f [k − 1]. When the disturbaneis hanging between samples, the error will be smaller for a given hange inthe disturbane the shorter the sample time is.3.3 First-Order Disturbane ObserverA �rst-order disturbane observer whih only onsiders the yaw rate will nowbe presented. Sine only side wind is to be estimated, the road bank ΦR isset to zero. By using the expression ay = v̇y + ψ̇vx, whih was derived inChapter 2, the equation for lateral veloity, (2.28), takes the following form.
may = Sf + Sr + Sw (3.11)Solving for Sf and inserting it into (2.29) yields

ψ̈ =
lfmay
Jzz

−
L

Jzz
Sr +

e− lf
Jzz

Sw (3.12)By putting the expression for Sf derived from (3.11) equal to (2.19) thefollowing equation is obtained
may − Sr − Sw = Cf δ − Cf

vy
vx

−
lfCf
vx

ψ̇Inserting the expression for Sr, (2.20), and solving for vy

vx
yields
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vy
vx

=
1

σ

(
ρ

vx
ψ̇ + Cfδ + Sw −may

) (3.13)By inserting this expression into (2.20) an expression for Sr whih does notontain vy is obtained. This may in turn be inserted into (3.12), whih givesthe following expression.
ψ̈ = −

L2CfCr
Jσvx

ψ̇ −
mρ

Jσ
ay +

LCfCr
Jσ

δ +
1

J

(
e+

ρ

σ

)
Sw (3.14)By introduing the notations

Aobs = −
L2CfCr
Jσvx

(3.15)
u =

LCfCr
Jσ

δ −
mρ

Jσ
ay (3.16)

f =
1

J

(
e+

ρ

σ

)
Sw (3.17)the system may be written on the following form

ψ̈ = Aobsψ̇ + u+ f (3.18)A disretization of (3.18) yields
ψ̇[k + 1] = Φobsψ̇[k] + Γobs(u[k] + f [k]) (3.19)where

Φobs = eAobsTs (3.20)
Γobs =

Φobs − 1

Aobs
(3.21)An observer whih does not take the disturbane into aount is given by

˙̂
ψ[k + 1] = Φobs

˙̂
ψ[k] + Γobsu[k] +K(ψ̇[k]) −

˙̂
ψ[k]) (3.22)Choosing K = Φobs− z1 will plae the observer pole in an arbitrary position

z1. The estimation error is then
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˙̃
ψ[k + 1] = z1

˙̃
ψ[k] + Γobsf [k] (3.23)An estimate of the disturbane is now obtained by solving (3.23) for f [k].

f̂ [k] =
1

Γobs

(
˙̃
ψ[k + 1] − z1

˙̃
ψ[k]

) (3.24)A delay is introdued as in Setion 3.2 and an estimate of the side wind
Sw[k] is obtained via (3.17).

Ŝw[k] =
J

e+ ρ
σ

f̂ [k] =
J

Γobs
(
e+ ρ

σ

)
(

˙̃ψ[k] − z1
˙̃ψ[k − 1]

) (3.25)Sine the disturbane observer is �rst-order, it an not distinguish betweena side wind disturbane and other disturbanes, e.g. o�set in a sensor. InSetion 3.4.4 it is shown how the same struture may be used to estimateo�set in the ay-sensor. It is fully possible to design a seond-order observerwhih is able to distinguish between two di�erent disturbanes, e.g. Sw and
ΦR, but it inreases the omplexity.3.4 Robustness of the Side Wind EstimationThe robustness towards sensor o�set and parameter error will be investigatedin the following setions. Both e�ets give rise to falsely estimated side wind.3.4.1 Sensitivity to Sensor O�setTo evaluate the e�et of sensor o�set, equation (3.18) will be used. In sta-tionary, it beomes

0 = Aobsψ̇ + u+ f (3.26)By introduing o�sets ∆ψ̇, ∆δ and ∆ay it is possible to alulate to whihside wind ∆Sw they orrespond. Inserting the o�sets aording to (3.16)-(3.17), the following is obtained.
∆Sw =

1

e+ ρ
σ

(
L2CfCr
σvx

∆ψ̇ −
LCfCr
σ

∆δ −
mρ

σ
∆ay

) (3.27)



22 Disturbane ObserversClearly, the sensitivity to o�sets in lateral aeleration and steering angle isindependent of vx while the sensitivity to o�sets in ψ̇ inreases for smallervalues of vx. For a Meredes A-lass, driving at 120 km/h, an o�set of 1 ◦/sin the yaw rate sensor orresponds to a side wind of approximately 246 Nwhile the same o�sets orresponds to approximately 493 N when driving at60 km/h. An o�set of one degree in the sensored steering wheel angle, δLR,orresponds to approximately 180-190 N.One way of reduing the e�ets of sensor o�set is to introdue a lower limit onthe estimated side wind whih needs to be reahed before any ontrol ationis taken. By swithing the estimation o� when vx is below a ertain limit, thesensitivity to o�set in the ψ̇-sensor is lowered. By passing the estimated sidewind through a high-pass �lter it is possible to redue the e�ets withoutloosing the ability to suppress dynami disturbanes. There is also ongoingwork whih aims at estimating and removing the o�sets themselves.The sensor in the EPS-system whih measures the steering wheel angle hasa resolution of 1.5 degrees. It may therefore be favorable to avoid usingthis signal when estimating side wind. The measurements of the momenton the steering rod, MLR, and of the angular speed of the steering wheel,
δ̇LR, are more reliable. In the following setions a few attempts at using thisinformation in order to improve on the estimation of side wind are presented.3.4.2 A Moment-Based EstimateThe idea of a moment-based estimate is to derive an estimate of the side windusing the measured moment on the steering rod instead of the measuredsteering wheel angle. Consider Figure 2.7 where the fores and momentsating on the steering system are shown. Under the assumptions δ̈ = δ̇ = 0and iLδ = δLR, (2.44) beomes iLMLR = nkSf . Solving for Sf yields

Sf =
iL
nk
MLR (3.28)It is then possible to rewrite (2.29) in the following manner.

Jψ̈ =
lf iL
nk

MLR − lrSr + eSw (3.29)The expression for Sr, as given in (2.20), is repeated here for onveniene.
Sr = Cr

(
−
vy
vx

+
lr
vx
ψ̇

) (3.30)



3.4 Robustness of the Side Wind Estimation 23Sine vy is not measured, (3.30) needs to be rewritten in some way. InSetion 3.3 this was solved by expressing vy

vx
in ψ̇, ay, Sw and δ, see (3.13).In order to rewrite it further, an expression for δ is needed.By putting (3.28) equal to (2.19) and solving for Cfδ the following is obtained

Cfδ =
iL
nk
MLR + Cf

vy
vx

+
lfCf
vx

ψ̇ (3.31)Inserting this expression in (3.13) yields the following equation
vy
vx

=
1

σ

((
ρ

vx
+
lfCf
vx

)
ψ̇ +

iL
nk
MLR +Cf

vy
vx

+ Sw −may

) (3.32)By solving this for vy

vx
an expression whih does not ontain δ or vy is ob-tained. Inserted in (3.30) it produes
Sr = may −

iL
nk
MLR − Sw (3.33)whih may be inserted in (3.29), resulting in

Jψ̈ =
LiL
nk

MLR + (lr + e)Sw − lrmay (3.34)An estimate of Sw is then given by
Ŝw =

1

lr + e

(
Jψ̈ −

LiL
nk

MLR + lrmay

) (3.35)This estimate of Sw does not rely on the measured steering wheel angle.There are, however, drawbaks to this approah. CASCaDE was used tosimulate a Meredes S-lass driving past side wind. As an be seen in Figure3.1 the steady-state estimate does not oinide with that of the �rst-orderobserver. There are several possible explanations for this. For instane, theremay be additional fritions and torques whih have not been inluded in themodel. Also, sine the seond-order system whih onnets the moment andthe steering angle has been disregarded, the estimate will be very sensitivetowards transients in the maneuvers.
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Figure 3.1: Estimated side wind using the �rst-order observer and the moment-based estimate.3.4.3 Smoothing δLRThe quantization of the measured steering wheel angle does not originatefrom round-o� but from how the sensor is onstruted. When the signalfrom the sensor hanges, it outputs the orret angle of the steering wheelat that instant of time. However, between the hanges it does not provideany information about the angle exept that it is in a region of ±1.5 degreesof the urrent value. One way of improving on this is to use other sensoredsignals to estimate δLR in these intervals. This will be done by designing aswithed system whih makes use of the measured angular veloity of thesteering wheel.The de�nition of a hange at time k is given in (3.36). When this is ful�lled
δ m
LR[k] is onsidered to be aurate1.

δ m
LR[k] − δ m

LR[k − 1] 6= 0 (3.36)Instead of setting δ̂LR[k] = δ m
LR[k] at the instants where the measurementis aurate δ̂LR will approah this value as a dynamial system. Setting a�xed value for the estimated angle would ounterat the goal of obtaininga smoother signal. Therefore, the following dynamis for δ̂LR is used when(3.36) is ful�lled.1The supersript m will be used to denote measured signals throughout this setion inorder to distinguish them from the estimated, and real, ones.
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δ̂LR[k + 1] = (1 −KTs)δ̂LR[k] +KTsδ

m
LR[k] (3.37)The system pole is plaed in 1 −KTs whih makes it asymptotially stableas long as K ∈ (0, 2

Ts
). If the system was to remain in this state, and K washosen in the spei�ed interval, the estimate would onverge to the measuredvalue. The rate of onvergene is determined by the value of K. A large Kwill provide a good �t to the measured values but also a rather messy signal.A small value will onversely produe a smooth signal but less �tting.During these intervals the fat that the derivative of the estimated steeringwheel angle should be equal to the measured angular veloity of the steeringwheel will be used. By the approximation ˙̂

δLR[k] ≈ 1
Ts

(
δ̂LR[k] − δ̂LR[k − 1]

)the following dynamis for this state are obtained.
δ̂LR[k + 1] = δ̂LR[k] + Tsδ̇

m
LR[k] (3.38)To sum things up, the system may be presented in the following manner.

δ̂LR[k + 1] =

{
(1 −KTs)δ̂LR[k] +KTsδ

m
LR[k] when (3.36) is ful�lled

δ̂LR[k] + Tsδ̇
m
LR[k] otherwise (3.39)Finally, a pragmati solution to the hoie of K is applied. By hoosing Klarge and passing the estimated signal through a low-pass �lter good �ttingto the measured values is ahieved while keeping the signal relatively smooth.In Figure 3.2 the sensored signal and the estimate are plotted. The use of themeasured angular veloity evidently provides reasonable transitions betweenthe measured points. Initially, the estimate is inorret, sine no hangesour and the angular veloity is zero.3.4.4 Estimation of Sensor O�setThe �rst-order disturbane observer, whih was derived in Chapter 3.3, onlyrequires small variations to yield an estimate of the o�set in the ay-sensor.It is assumed that the sensored lateral aeleration, asensy is the sum of theatual aeleration and an o�set.
asensy = ay + aoy (3.40)Solving for ay and inserting the expression into (3.14) yields an equation foryaw rate whih has side wind and aoy as disturbanes. Sine only one of these
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Figure 3.2: Steering wheel angle from sensor before and after smoothing.may be identi�ed by the �rst-order observer, the term ontaining side windis disarded, whih leaves the following equation.
ψ̈ = −

L2CfCr
Jσvx

ψ̇ −
mρ

Jσ

(
asy − aoy

)
+
LCfCr
Jσ

δ (3.41)By introduing the following notations,
Aobs = −

L2CfCr
Jσvx

, u = −
mρ

Jσ
asy +

LCfCr
Jσ

δ, f =
mρ

Jσ
aoy (3.42)the system has the same form as (3.18), whih is repeated here.

ψ̈ = Aobsψ̇ + u+ f (3.43)After disretization, an estimate of f is obtained in the same way as inSetion 3.3, resulting in
f̂ [k] ≈ f̂ [k − 1] ≈

1

Γobs

(
˙̃
ψ[k] − z1

˙̃
ψ[k − 1]

) (3.44)The di�erene this time lies only in that the disturbane is interpreted assensor o�set instead of side wind. An estimate of the o�set is given by thefollowing expression.
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aoy[k] =

Jσ

mρ
f̂ [k] ≈

Jσ

mρΓobs

(
˙̃ψ[k] − z1

˙̃ψ[k − 1]
) (3.45)3.4.5 Sensitivity to Parameter ErrorWhen the parameters of the side wind observer are inorret, eah turnwill generate an error in the observer whih is interpreted as side wind.To determine how large this e�et is, the ontinuous time transfer funtionbetween δ and Ŝw will be alulated. The obtained transfer funtion isnot realizable, whih makes it interesting to ompare the results to thoseobtained from simulation in Simulink.The ontinuous time one-trak model from Setion 2.4 will be used as `real'vehile and be ombined with a ontinuous-time version of the �rst orderobserver aording to Figure 3.3.
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H are disregarded sine δ is the interesting input for this investigation.

G
δ→ψ̇

=
(lfCfs+ LCfCr/mvx)/J

s2 + (Jσ +mκ) s/Jmvx + (L2CfCr + ρmv2
x)/Jmv

2
x

(3.46)
Gδ→ay

=
(Cf/m)s2 + (LlrCfCr/Jmvx)s + LCfCr/Jm

s2 + (Jσ +mκ) s/Jmvx + (L2CfCr + ρmv2
x)/Jmv

2
x

(3.47)The ontinuous disturbane observer will be based on Equation (3.14), whihyields the following observer equation.
¨̂
ψ = −

L2CfCr
Jσvx

˙̂
ψ −

mρ

Jσ
ay +

LCfCr
Jσ

δ +K(ψ̇ −
˙̂
ψ) (3.48)The de�nition of Aobs is repeated here, and two new notations are introdued.

Aobs = −
L2CfCr
Jσvx

(3.49)
B1,obs = −

mρ

Jσ
(3.50)

B2,obs =
LCfCr
Jσ

(3.51)With K = Aobs − z1, the following equality holds.
˙̂
ψ =

B1,obsay +B2,obsδ + (Aobs − z1)ψ̇

s− z1
(3.52)The transfer funtion from δ, ay and ψ̇ to the observer error ˙̃ψ is then

G
δ→

˙̃
ψ

= −
B2,obs

s− z1
(3.53)

G
ay→

˙̃
ψ

= −
B1,obs

s− z1
(3.54)

G
ψ̇→

˙̃
ψ

=
s−Aobs
s− z1

(3.55)The transfer funtion from ˙̃ψ to Ŝw is now needed. The observer error isgiven by
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¨̃ψ = (Aobs −K) ˙̃ψ + f = z1

˙̃ψ + f (3.56)An estimate of Sw is then obtained via (3.17) and solving (3.56) for f .
Ŝw =

J

e+ ρ/σ
f̂ =

J

e+ ρ/σ
(s− z1)

˙̃ψ (3.57)whih provides the last required transfer funtion
G ˙̃
ψ→bSw

=
J

e+ ρ/σ
(s− z1) (3.58)The transfer funtion from δ to Sw is given by

G
δ→bSw

=

(
G
δ→

˙̃
ψ

+G
δ→ay

G
ay→

˙̃
ψ

+G
δ→ψ̇

G
ψ̇→

˙̃
ψ

)
G ˙̃
ψ→bSw

(3.59)Parameter error may then be modeled by replaing Cf and Cr with Ĉf and
Ĉr in the transfer funtions onneted to the observer while leaving (3.46)and (3.47) unaltered. Note that the observer pole in s = z1 will be aneledregardless of parameter error. When the parameters in the observer areorret, the transfer funtion from Sw to Ŝw is one and the one from δ to Ŝwis zero. However, when the parameters are inorret, eah degree steeringangle will generate a ertain estimated side wind. To investigate this, Matlabwas used to draw bode diagrams. In order to make the results easier to relateto, the amplitude diagram is saled so that it represents the transfer funtionfrom steering wheel angle δLR instead of δ.In Figure 3.4 the bode diagrams are displayed when varying eah of theparameters independently. The parameters where hosen aording to Ĉf =

k · Cf and Ĉr = k · Cr where k ∈ {0.7 0.95 1 1.05 1.3}. The phase diagramindiates that the sign is reversed when Ĉf is inreased or Ĉr is dereased. Italso seems that the most sensitive parameter is Ĉf , whih produes almost80 N of estimated side wind per degree steering wheel angle when it is hosen30% higher than Cf .To investigate the e�ets of disretization, the ontinuous-time vehile modelwas implemented in Simulink. The outputs ψ̇ and ay were sampled us-ing zero order hold and used as inputs to the disrete-time observer de-rived in Setion 3.3. The veloity was kept onstant and the steering in-put onsisted of sinusoids with varying frequeny. Figure 3.5 displays thegain diagram from steering wheel angle to estimated side wind for threehoies of sample time when there was no parameter error in the observer.



30 Disturbane Observers

10
−2

10
−1

10
0

10
1

0

2

4

6

8

10

12

14

[Hz]
[N

/d
eg

]
 

 

T
s
=0.01

T
s
=0.02

T
s
=0.005

Figure 3.5: Amplitude diagram between δLR and
Ŝw with Ts=0.01, 0.02 and 0.005.

Apparently, a larger value of
Ts generates more falsely es-timated side wind. The er-ror is also inreasing withthe frequeny. These e�etsare intuitively explained bythe fat that the estimationerror is equal to the hangein disturbane over the lasttwo samples. Inreasing thefrequeny for a given sampletime then has the same ef-fet as inreasing the sampletime for a given frequeny.Figure 3.6 displays the am-plitude diagrams from δLRto Ŝw when Cf and Cr arevaried and the sample time was set to 0.01. The results are fairly similar tothose of the analytial alulations. Clearly, inorret parameters in the ob-server a�ets the performane rather heavily. In order to avoid this, on lineestimation of a few parameters will be attempted in the following hapter.
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(b) Variations in bCr.Figure 3.4: Bode diagram of the ontinuous-time transfer funtion from δLR to Ŝwwith Ĉf = k · Cf and Ĉr = k · Cr for k = 1.05, 1.3, 0.7, and 0.95. The magnitudeis given in N estimated side wind per degree steering wheel angle.
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(a) Variations in bCf .
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(b) Variations in bCr.Figure 3.6: Amplitude diagram between δLR and Ŝw from simulation with Ĉf =

k · Cf and Ĉr = k · Cr for k = 1.05, 1.3, 0.7, and 0.95. The magnitude is given inN estimated side wind per degree steering wheel angle.



Chapter 4
On Line Parameter Estimation

Side Wind Observer
Sensor Signals Sw
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Figure 4.1: A possible way of swithing betweenparameter identi�ation and side wind estimation.
As was shown in Setion3.4.5, the e�ets of inau-rate parameters in the one-trak vehile model are quitelarge and it is therefore ne-essary to make the modeladaptive in order to improveperformane. Some parame-ters, suh as the length ofthe vehile, will not be sub-jet to hange while others,suh as the mass and the po-sition of the enter of gravity, will �utuate between di�erent driving sessions.One possible implementation is to perform identi�ation of a few ritial pa-rameters at low speed and then use the estimated values at higher speeds,when the side wind ompensation is atually needed, see Figure 4.1.The following setions present attempts at identifying the ornering sti�nessof the front and rear tyre. Choosing these parameters for identi�ation is rea-sonable sine they are very likely to hange between di�erent driving sessionsdepending on the weather and the hoie of tyres. Note that the identi�a-tion is performed under the assumption that there are no disturbanes atingon the vehile. A previous investigation of on line identi�ation in vehilesis presented in [14℄.



34 On Line Parameter Estimation4.1 Least Squares EstimationThe main idea of least squares estimation is to �t input data and outputdata in a linear fashion. The following introdution is based on [8℄ and [9℄.Assume that a system is governed by the following equation.
y[t] = φT [t]θ = φ1[t]θ1 + φ2[t]θ2 + . . .+ φN [t]θN (4.1)The vetor θ ontains the parameters whih are to be identi�ed, φi areknown funtions and y is some known output. The least squares estimate of

θ, denoted θ̂, is then hosen suh that it minimizes the ost funtion
Q(θ, t) =

1

2

t∑

k=1

(y[k] − φT [k]θ)2 (4.2)This means that the error will be penalized quadratially. It an be provedthat the ost funtion is minimized by estimates θ̂ whih ful�ll
ΦTΦθ̂ = ΦTY (4.3)where

Φ =
(
φT [1] φT [2] . . . φT [t]

)T (4.4)
Y = (y[1] y[2] . . . y[t])T (4.5)Equation (4.3) is known as the normal equation and when the inverse of

ΦTΦ exists it has the unique solution
θ̂ =

(
ΦTΦ

)−1
ΦTY (4.6)The requirement that the inverse of ΦTΦ exists may prove hard to ful�llunder ertain irumstanes. It is onneted with the notion of persistentexitation.4.1.1 Persistent ExitationPersistent exitation is a measure of how many parameters that may beestimated using, for instane, least squares estimation. If the input to theleast squares estimation is persistently exiting of order n, n parameters may



4.1 Least Squares Estimation 35be identi�ed uniquely. In [9℄, persistent exitation is de�ned in the followingway.De�nition 1. A signal u ful�ls the ondition of persistent exitation (PE)of order n if the following limits exist.
ū = limN→∞

1

N

N∑

k=1

uk (4.7)
Ĉuu(τ) = limN→∞

1

N

N∑

k=1

uku
T
k−τ (4.8)and if the orrelation matrix

Ruu(n) =





Ĉuu(0) Ĉuu(1) . . . Ĉuu(n− 1)

Ĉuu(−1) Ĉuu(0) . . . Ĉuu(n− 2)... ... . . . ...
Ĉuu(1 − n) Ĉuu(2 − n)

... Ĉuu(0)




(4.9)is positive de�nite.Sine this is di�ult to verify on line, a method involving singular values willbe used. It suggests a singular value deomposition of ΦTΦ. The numberof uniquely identi�able parameters is then equal to the number of non-zerosingular values. An indiation as to why this holds will now be presented.Singular Values and Least Squares EstimationFor further reading on the singular value deomposition, see [12℄. Assumethat ΦTΦ ∈ R

n×n and that it has the following singular value deomposition
ΦTΦ = USV T (4.10)where U, V ∈ R

n×n are orthonormal and S ∈ R
n×n is a matrix with thesingular values of ΦTΦ along its diagonal and all other elements zero. Thismeans that UT = U−1, V T = V −1 and that ST = S. Equation (4.6) maythen be rewritten as follows.

θ̂ =
(
ΦTΦ

)−1
ΦTY =

(
USV T

)−1
ΦTY = V S−1UTΦTY (4.11)



36 On Line Parameter EstimationIt is lear that the estimate will diverge if any of the diagonal elements of Sare zero, sine the determinant of S is
det(S) = σ1σ2σ3 . . . σn (4.12)where σi denote the singular values of ΦTΦ. However, it also indiates thatproblems may arise when any of the singular values of ΦTΦ are lose to zero.One of the few ways of dealing with this is to avoid using singular valueswhih are (almost) zero. This, in turn, means that fewer parameters may beidenti�ed.4.1.2 The Reursive AlgorithmWhen used on line, least squares is usually applied via a reursive algorithm.One of the main advantages is that relatively few data points need to bestored, and it also failitates estimation of time varying parameters. Thefollowing equations onstitute a reursive least squares algorithm.

θ̂[k] = θ̂[k − 1] + P [k]φ[k]ǫ[k] (4.13)
ǫ[k] = y[k] − φT [k]θ̂[k − 1] (4.14)
P [k] =

1

λ

(
P [k − 1] −

P [k − 1]φ[k]φT [k]P [k − 1]

λ+ φT [k]P [k − 1]φ[k]

) (4.15)The error between alulated and measured output at time k is denoted ǫ[k]and P [k] is the ovariane matrix at this instant. This version of reursiveleast squares inludes a forgetting fator, 0 < λ ≤ 1, whih attenuates theimpat of older measurement data. This is espeially useful when attemptingto estimate time-varying parameters. The disadvantage of using a smallvalue of λ is that the estimation beomes more sensitive to noise and otherdisturbanes sine the averaging e�et is redued. Another possible e�et ofsetting λ to low is estimator windup, whih is disussed in [8℄. The problemours when there is insu�ient exitation in the system and λ < 1. Theovariane matrix P will then grow more or less exponentially, dependingon how severe the shortage of exitation is. This makes the estimationperform rather poorly and also produes large transients in the estimatewhen the input is persistently exiting again. One way of avoiding this isto use onditional updating. This means that the least squares algorithm ismodi�ed so that the estimate and ovariane matrix only are updated whenthere is enough exitation. Otherwise, the previous values are held. It isvital to hoose a suitable riterion for when to allow updates as a trade-o�



4.1 Least Squares Estimation 37between risking estimator windup and using too few of the samples in theidenti�ation. A typial hoie of riterion is one that asertains that themagnitude of φT [k]P [k − 1]φ[k] is large enough.When using reursive least squares, initial values for θ̂ and P must be spe-i�ed. With a bit of knowledge about the system it is possible to hoose θ̂[0]in a region around it's atual value. When this is not the ase, an alterna-tive is to perform regular least squares over an initial set of data and usethis estimate as initial value for the reursive algorithm. This tehnique alsoprovides an initial value for P . Otherwise, it is fairly ommon to hoose
P [0] = kP0

I where kP0
is a positive onstant. A large value of kP0

makes the�rst few steps larger, whih may be onvenient when the initial estimate of θis a rough guess, but may also lead to large initial variations in the estimate.4.1.3 LS1: Estimation of One ParameterA least squares estimator whih attempts to identify only one parameterwill now be presented. The identi�ation will be based on equation (3.18).Sine it is assumed that no side wind is ating on the vehile during theidenti�ation, the last term is exluded. This yields the following, ontinuoustime, equation for yaw rate.
ψ̈ = −

L2CfCr
Jσvx

ψ̇ −
mρ

Jσ
ay +

LCfCr
Jσ

δ (4.16)By hoosing
y1 = CrJψ̈ + lrCrmay θ1 = Cf φ1 = −CrL

2

vx
ψ̇ + lfmay + CrLδ (4.17)equation (4.16) may be written y1 = φT1 θ1. Sine ψ̈ an not be measured,the Euler approximation ψ̈[t] ≈

(
ψ̇[t] − ψ̇[t− 1]

)
/Ts may be used.4.1.4 LS2: Estimation of Two ParametersIdentifying both Cr and Cf is not entirely straight forward. This is dueto the fat that they enter the equations of the one trak model in a non-linear fashion. Sine linearity in parameters is a neessity for least squaresestimation, an indiret approah will be attempted. By hoosing

y2 = ψ̈ θT2 =
(

CfCr

σ
ρ
σ

)
φT2 =

(
− L2

Jvx
ψ̇ + L

J
δ −m

J
ay

) (4.18)



38 On Line Parameter Estimationequation (4.16) may be written y2 = φT2 θ2. The parameters Ĉf and Ĉr maythen be alulated from θ̂2 at eah step aording to
Ĉr[k] =

θ̂2,1[k]L

lr − θ̂2,2[k]
, Ĉf [k] =

θ̂2,1[k]L

lf + θ̂2,2[k]
(4.19)where θ̂2,1 and θ̂2,2 denote the �rst and seond element of θ̂2.To make use of the strategy proposed in Chapter 4.1.1 the regressor matrix

ΦN is formed aording to
ΦN =





φ2,1[1] φ2,2[1]

φ2,1[2] φ2,2[2]... ...
φ2,1[N ] φ2,2[N ]




(4.20)

where φ2,1 and φ2,2 denote the �rst and seond row of φ2. The produt
ΦT
NΦN is then

ΦT
NΦN =

( ∑N
k=1 φ

2
2,1[k]

∑N
k=1 φ2,1[k]φ2,2[k]

∑N
k=1 φ2,1[k]φ2,2[k]

∑N
k=1 φ

2
2,2[k]

) (4.21)One might hold an objetion against the singular value-riterion when aforgetting fator is used. When λ < 1, older input values will have lessimpat on the result. The singular value deomposition, however, will takeall past input values into aount. This means that if the �rst j samples arepersistently exiting of order n and φ[k] = 0 for k > j, the singular value testwould still onsider the input persistently exiting of order n for all futuresamples. Two suggestions on how to ompensate for this will be presentedin the following setion.4.1.5 Introduing a Forgetting Fator in the SVD-testSine older input values to the RLS-estimation will be weighted with λ, itseems reasonable to do the same when evaluating the number of identi�ableparameters. One way of doing this is to introdue ΦN (λ) aording to thefollowing
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ΦN (λ) =





λN−1φ2,1[1] λN−1φ2,2[1]

λN−2φ2,1[2] λN−2φ2,2[2]... ...
λ0φ2,1[N ] λ0φ2,2[N ]




(4.22)AsN → ∞ older data points tend to zero, and thus do not a�et ΦT

N (λ)ΦN (λ).When λ = 1, the results are the same as when using the original test. Themodi�ation yields the following produt ΦT
N (λ)ΦN (λ), for whih the singu-lar values an be alulated.

ΦT
N (λ)ΦN (λ) =




∑N

k=1

(
λN−kφ2,1[k]

)2 ∑N
k=1

(
λN−k

)2
φ2,1[k]φ2,2[k]

∑N
k=1

(
λN−k

)2
φ2,1[k]φ2,2[k]

∑N
k=1

(
λN−kφ2,2[k]

)2



(4.23)Another option is to use the following approximate expression for the numberof samples whih are used at eah step, [9℄.
Nλ =

1

1 − λ
(4.24)It is then possible to perform the singular value deomposition using onlythe last Nλ samples, whih might give more realisti information regardingthe input at a spei� time. This modi�ation is also onsistent with theoriginal test for λ = 1 sine the number of samples tends to in�nity as λ→ 1.Both suggestions will be applied to measurement data in Setion 4.3.2, butneed to be investigated further.4.2 Multiple Model EstimationThe main idea in Multiple Model Estimation (MME) is to run several modelsin parallel and determine whih of the models that produes the best �t tomeasured data aording to some riterion. In this ase it will be used toidentify parameters in a parametri model, but it may also be used to hoosebetween di�erent model strutures. One advantage with this method is thatit hooses its estimate from a pre-de�ned library whih makes it possible toavoid estimates that are unrealisti. It is also fast and does not require amodel whih is linear in the parameters. The following, brief, introdutionis based on [5℄.
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Figure 4.2: Sketh of how ei are obtained using Multiple Model EstimationConsider the following, linear, system where φ ∈ R
m is the input, y ∈ R

p isthe output and θ ∈ R
n ontains the unknown parameters. Note that f maybe nonlinear.

y[k] = f(θ,φ[k − 1]), f : R
m × R

n ⇒ R
p (4.25)Initially, N separate parameter sets θ1,θ2, . . . ,θN are hosen to form a li-brary from whih the estimator makes its hoie. With a bit of knowledgeabout the system they may be hosen from the set of feasible parametervalues, denoted Θ. One model for eah parameter set is reated and the al-ulated outputs ŷi[k] = f(θi,φ[k−1]) are ompared to the measured output

y[k] to obtain the errors ei. A sketh of this step is presented in Figure 4.2.
ei[k] = y[k] − ŷi[k], i = 1 . . . N (4.26)Some weight funtion Q(e) may then be applied to the error signals and theparameter estimate is hosen aording to

θ̂ = θj, j =

{
1 ≤ j ≤ N

∣∣∣∣ Q(ej) = min
i∈[1,N ]

Q(ei)

} (4.27)This means that, even when the identi�ation fails, the parameter estimatewill produe a stable and realisti model of the system as long as θi ∈ Θfor all i. There are three design parameters in this approah to MME; thehoie of parameter library, error funtion, and weight funtion.



4.2 Multiple Model Estimation 41Swithing HysteresisIf two estimates in the library, θp and θq, produe almost the same weightederror, so alled hattering may our. This means that the algorithm swithesbetween the two in�nitely. One way of avoiding, or at least reduing, thise�et is to introdue a swithing hysteresis.The hysteresis is introdued aording to [13℄ suh that swithing only takesplae when Q(eq)(1 + h) ≤ Q(ep) (or the other way around), where h is adesign parameter. This asertains that the new estimate is su�iently betterthan the urrent.Three attempts at multiple model estimation will now be presented, with
θ = (Cr Cf )

T .4.2.1 MME 1: Error EquationA �rst approah is to determine how aurately eah parameter set ful�lls(3.18) under the assumption that no side wind is ating on the ar. Thenotations de�ned in (4.18) are used, so that equation (3.18) may be writtenon the following form.
y2(t) = φT2 (t)θ2Eah parameter set θ2i

then yields the following output
ŷ2i

(t) = φT2 (t)θ2iThe orresponding errors ei(t) = y2(t) − ŷ2i
(t) are given by

ei(t) = φT2 (t) (θ2 − θ2i
) (4.28)The weight funtion is hosen aording to

Q(ei(t)) =

∫ t

0
H(τ)e2i (t− τ)dτ (4.29)where H(τ) is a �rst-order low pass �lter on the following form.

H(s) =
1

s+ Tf



42 On Line Parameter EstimationThis hoie of Q(e) introdues a ertain degree of integration depending onthe hoie of Tf . When Tf = 0, H(s) is a pure integrator whih orrespondsto weighting all time steps equally. As Tf inreases, older time steps willbe less and less important. This weight funtion will be used in all threeversions of MME presented in this thesis, the di�erene lies in how the errorsignals ei are obtained.Laplae transformation of Equation (4.29) yields
Q(ei(s)) = H(s)e2i (s) (4.30)By inserting (4.28), the following is obtained

Q(ei(s)) = H(s)φT2 (s)(θ2 − θ2i
)Multipliation with φ2(s) yields

φ2(s)Q(ei(s)) = H(s)φ2(s)φ
T
2 (s)(θ2 − θ2i

)The parameter error θ̃2 = θ2 − θ2i
is then given by

θ̃2 = H−1
(
φ2(s)φ

T
2 (s)

)−1
φ2(s)Q(ei(s)) =

(
φ2(s)φ

T
2 (s)

)−1
φ2(s)e

2
i (s)(4.31)As long as φ2(s)φ

T
2 (s) is invertible the parameter set θ2i

that minimizes
Q(ei(t)) has the least parameter error.4.2.2 MME 2: Multiple Model ObserverA possible drawbak of MME 1 is that the errors are obtained without usingthe dynamis of the model. The estimated output of eah model, ŷi, areobtained from measured signals. This implies that the error at time k onlydepends on the parameters and the input signals at that time. If a dynamialmodel was used, the error would a�et future errors and therefore make thedi�erenes between the models more apparent.A step in this diretion is running several observers in parallel and hoosethe parameter set that generates the least observer error1. This yields theerrors1This is referred to as Multiple Model Observer parameter estimation in [5℄.
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ei[k] = ψ̇[k] −

˙̂
ψ[k] (4.32)where ˙̂

ψ is the yaw rate alulated by the observer in (3.22). Intuitively, thisapproah makes sense in ombination with the disturbane observer sinethe side wind estimate is based on the observer error. Therefore, parametersthat minimize this when there is no side wind should provide a good sidewind estimate. Figure 4.3 presents how the errors are obtained.
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Figure 4.3: Sketh of how ei are obtained using Multiple Model Observer parame-ter estimation4.2.3 MME 3: Model ErrorThe third and �nal variation on how to obtain the error signals is to removethe observer term in MME2 and thus run N one-trak models in parallel. Ifthe initial onditions are orret, this MME should augment parameter errorwell sine there is no orretive term. The errors are obtained aording tothe following equation.
ei[k+1] = ψ̇[k+1]−

̂̇
ψ[k+1] = ψ̇[k+1]−Φd(θi)

̂̇
ψ[k]−Γd(θi)u(θi)[k] (4.33)where ̂̇ψ indiates the yaw rate alulated by a vehile model without ob-server term.4.3 Implementation and Experimental ResultsThe proposed strategies for estimating Cr and Cf were implemented in Mat-lab/Simulink so that it was possible to apply them to measurement data.Di�erent measurement sets were then used to evaluate the performane ofthe estimators.



44 On Line Parameter Estimation4.3.1 Comparison of the MME StrategiesThe three MME strategies were ompared in terms of how well they on-verged. One topi whih might be onfusing regarding MME is how todeide if the algorithm has onverged or not. Sine the algorithm hoosesfrom a pre-de�ned library, it an not be expeted that the returned estimateis optimal among all possible values. When the algorithm returns the lowest(or the highest) value from the library it is likely that this is the ase. It isthen impossible to be ertain if an even lower (or higher) value would yielda smaller error. In the experiments presented in this setion, the lower (orupper) limit was adjusted whenever this ourred. In some ases, however,the limits had to be adjusted far beyond what is physially plausible and itwas then deided that the estimation had failed.Five di�erent values of Cr and Cf were hosen, generating 25 ombinations.Of the three estimators, MME1 performed the poorest sine it only onvergedfor a few measurements. The hoie between MME2 and MME3 is dependenton the input to the estimators. When it onsisted of large steering anglesyielding large yaw rates, MME2 performed better, while MME3 was moresuitable for more modest maneuvers. It is therefore likely that MME3 wouldbe the best hoie for normal driving.The swithing hysteresis also proved useful. Figure 4.4 displays the outputof MME2 with and without hysteresis. The hysteresis removes the hatter-ing and it may therefore be onluded that the errors onneted with theparameter estimates in the region [1.4, 1.55] · 105 are fairly equal.
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(b) With a hysteresis of 0.03Figure 4.4: The estimate of MME2 with and without swithing hysteresis.To make MME more onvenient to use in di�erent models and vehiles,MME2 and MME3 were implemented as Simulink libraries. The librariesaept up to 25 ombinations of Cf and Cr and also have an input whihpauses the estimation when its value is negative or zero. This input maytypially be used to avoid estimating during heavy aeleration or deeler-



4.3 Implementation and Experimental Results 45ation, sine the vehile model produes poor �t under these irumstanes.The outputs are Ĉr and Ĉf , the yaw rate of eah model and their respetiveerrors.4.3.2 The Role of the Forgetting Fator in LS2The hoie of forgetting fator for reursive least squares plays an importantrole. In the following, LS2 will be applied to measurement data reorded at80 km/h using a Meredes S-lass. The input signal onsisted of steps in thesteering wheel angle with a period of approximately 4 seonds. In Figure 4.5the output of LS2 with λ = 0.995 and λ = 0.999 is presented. These valuesorrespond to Nλ=200 and Nλ=1000 respetively. With a sample time of0.005 seonds, this means that data reorded during the last seond is usedfor the smaller value and data from the last �ve seonds for the larger.For the smaller value of λ, the algorithm plaes the estimates in their orretregions but they are rather messy. A likely explanation for this is that the �tof the one-trak model is poor during heavy turning. For instane, ertaintransients in the tyre fores have been disregarded yielding a small mismathat eah turn. When using the larger value, the estimates behave smoothly,sine the averaging e�et of a higher forgetting fator makes the estimatesless sensitive to disturbanes.
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Figure 4.5: LS2 with λ = 0.995 and λ = 0.999.The results of the original SVD-test and the two modi�ations proposedin Setion 4.1.5 are displayed in Figure 4.6. As previously mentioned, theoriginal svd-test states that two parameters may be identi�ed regardless ofthe value of the forgetting fator. The modi�ed tests are very restritive



46 On Line Parameter Estimationwhen the smaller value of λ is used. The seond modi�ation allows twoparameters to be identi�ed on two, very brief, oasions while the �rst mod-i�ation remains at 1 through the whole measurement. When inreasing theforgetting fator to 0.999, the �rst modi�ation swithes between one andtwo parameters but most of the time it states that two parameters may beidenti�ed. The estimation was not a omplete failure for λ = 0.995 whihindiates that the modi�ations produe somewhat onservative statements.
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Nλ(b) λ = 0.999Figure 4.6: The number of identi�able parameters for two values of λ using theoriginal svd-test and the two modi�ations proposed in Setion 4.1.5.4.3.3 Sensitivity to Sensor O�setBoth estimation methods are highly sensitive to sensor o�set. Figure 4.7 (a)displays the measured lateral aeleration and the produt vxψ̇. Aordingto Equation (2.8) these should be equal in stationary, i.e. when v̇y = 0.Figure 4.7 (b) shows the orresponding outputs of LS1 and MME3. Bothmethods fail to �nd the orret value of approximately 150 kN/deg.Figure 4.8 displays the same plots as Figure 4.7 but the o�set has beenremoved by requiring ay = vxψ̇ in stationary. This time, both methodsonverge to a value reasonably lose to the atual. The di�erene betweenthe two estimates is also muh smaller than in Figure 4.7.Clearly, it is neessary to remove any o�sets present in the measured signalsbefore attempting to estimate parameters. When doing this, one must beareful not to a�et the results of the estimation. The riterion ay = vxψ̇is not based on any assumption about the magnitudes of Cf and Cr. Ifthe driving maneuver is symmetri around zero, it is sometimes possible toremove o�sets by requiring that the mean value of the steering angle, yawrate and lateral aeleration is zero. However, when onsidering the �t to aone-trak model, values for Cr and Cf need to be spei�ed. This may forethe estimation into �nding a spei� value.



4.3 Implementation and Experimental Results 47

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

La
te

ra
l A

cc
el

er
at

io
n 

[m
/s

2 ]

a
y
−sensor

Calc. from sensored yaw rate

(a) ay versus vxψ̇

0 5 10 15 20 25
−2

−1

0

1

2

3
x 10

5

Time [s]

E
st

im
at

ed
 C

f [N
/d

eg
]

LS1
MME3

(b) Estimated CfFigure 4.7: Measured ay versus vxψ̇ and the estimates of LS1 and MME3.
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(b) Estimated CfFigure 4.8: Measured ay versus vxψ̇ and the estimates of LS1 and MME3.4.3.4 Identi�ation of Ordinary and Winter Tyres
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Figure 4.9: Steering input.

In order to test the performane of theestimation strategies, Multiple ModelEstimation and Reursive Least Squareswere applied to measurements made withan S-lass. The goal of this experimentwas to investigate if it is possible todistinguish between ordinary tyres andwinter tyres. Measurements were madewith both tyre types at speeds around 80km/h and 120 km/h. The steering inputonsisted of steps with somewhat vary-ing period time and amplitude, a typialexample is displayed in Figure 4.9.



48 On Line Parameter EstimationThree estimators were used; MME2, LS2, and LS2 with onditional updat-ing, whih will be referred to as LS2∗ in the following. The initial valueswhere set to zero for the two least squares methods and P [0] was set to 108times the identity matrix. The forgetting fator was set to 0.999 for LS2and to 0.996, whih is substantially lower, for LS2∗. It may then be inves-tigated if the lower forgetting fator an yield a faster onvergene withoutestimator windup. The estimate and ovariane matrix were updated whenthe following ondition was ful�lled, whih allowed approximately half of thesamples to be used.
φT [t]P [t− 1]φ[t] > 1 − λ (4.34)The estimators were applied to four measurements for eah tyre type. Theresults of the experiments are presented in Figures 4.11 and 4.12. Generally,the estimates of MME2 are somewhat higher than those of the least squaresalgorithms. The least squares estimates also vary more between the di�erentmeasurements.The use of onditional updating did not provide any major advantage overLS2. An example of the estimates of LS2 and LS2∗ is displayed in Figure4.10. The �gure displays the estimate θ̂ and element (1,1) of the P-matrix.For LS2 with λ = 0.996, the rather large peaks in the lower plot indiatethat estimator windup ourred. The peaks are attenuated when using LS2∗and the estimates behave more smoothly. Inreasing the forgetting fatorfor LS2 dereases the peaks even further with a only a small inrease in on-vergene time. All three estimators are fairly onsistent after approximately15 seonds.When studying the spread of the estimates in Figure 4.11 it is lear thatthe estimate of Cf varies more for ordinary tyres than for winter tyres.
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Figure 4.13: Falsely esti-mated ornering sti�ness.

A plausible explanation for this is that the ma-neuvers performed with the ordinary tyres var-ied more. In some of the measurements ratherlarge steering angles were applied, violating theassumption of small slip angles and thus a�et-ing the estimated ornering sti�ness. The prin-iple of this e�et is presented in Figure 4.13,where the initial slope of the urve is the atualvalue of Cf . When the slip angles are large, theurve turns nonlinear. The estimators, however,are designed under the assumption of a linearrelation between slip angle and tyre fore, whihresults in an estimate that is too small.Taking the mean value of all estimates for eah tyre type yields that Cr is
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Figure 4.10: The estimate and element (1,1) of the ovariane matrix P for LS2with λ = 0.996, LS2 with λ = 0.999, and LS2∗ with λ = 0.996 (denoted Cond.upd.).178 kN/deg for normal tyres and approximately 141 kN/deg for winter tyres.The orresponding values for Cf are approximately 123 and 117 kN/deg. Forordinary tyres, Cr and Cf have been found to be approximately 170 and 120kN/deg respetively. The results of the estimation are onsistent with thisand the magnitude of the derease in ornering sti�ness when using wintertyres is plausible. This experiment is therefore a strong indiation thatornering sti�ness an be identi�ed by the use of MME or LS. However, aspreviously mentioned, sensor o�set needs to be removed from the signalsbefore any suessful parameter identi�ations an be made. In order touse MME it is also neessary to have some a priori information regarding inwhih regions Cr and Cf an be expeted to lie.
4.4 Aerodynami E�etsIn this Setion, the e�ets of aerodynami drag and aerodynami lift onthe ornering sti�ness will be investigated, using a few results from Setions2.2 and 2.5. It should be noted that no systemati di�erene between theestimates at 80 km/h and 120 km/h was distinguishable in Setion 4.3.4. Aprevious investigation of aerodynami e�ets is presented in [11℄. For furtherreading on the aerodynamis of vehiles, see [4℄.
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Figure 4.11: Estimation results for the measurements with ordinary (blue ∗) andwinter (red +) tyres. The mean value for eah tyre type is marked with a square.4.4.1 Aerodynami DragConsider Figure 4.14 where aerodynami drag Fw,x, aerodynamis lift Fw,zand the longitudinal tyre fore, Fl,r, are presented. The aerodynami dragwhen driving straight ahead is given by Equation (2.23) with τair = 0.
Fw,x =

1

2
ρaircair,x(0)Aairv

2 (4.35)The longitudinal tyre fore must ompensate for Fw,x and the rolling resis-tane of the tyre, FR, whih gives the following expression.
Fl,r =

1

2
ρaircair(0)Aairv

2 + FR (4.36)By making use of Equation (2.42), whih states that Fl ≈ Clλ, the slip isobtained as a funtion of veloity.
λ ≈

1

Cl

(
1

2
ρaircairAairv

2 + FR

) (4.37)The lateral fore on the rear tyre Fr is then given by
Fr = Fz,rµ(λ) (4.38)
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Fz,r = −
mglf
LThe funtion µ(λ) may now be alulated with a tyre model whih has beenimplemented in Matlab at DaimlerChrysler. It takes Fz,r, λ and αr as inputsand outputs Fr. By evaluating the initial slope when Fr is plotted against

αr a value for Cr is found. Repeating the proedure with di�erent values of
Fw,x

Fw,z

Fl,r

z,rF

Figure 4.14: The aerodynami fores Fw,x and Fw,z.
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v [km/h℄ 50 100 150 200
Cr (drag) 8.7563 8.7569 8.7608 8.7207

Cr (drag & lift) 8.7353 8.6727 8.5712 8.3866Table 4.1: Calulated Cr from aerodynami e�ets for various speeds. The valuesof Cr are given in fators of 104 N/deg.
v gives an indiation on how lateral drag a�ets the ornering sti�ness athigh speeds.4.4.2 Aerodynami LiftThe aerodynami fores also reate a lift fore ating aording to

Fw,z =
1

2
ρaircair(0)Aairv

2 (4.39)This will redue the resulting fore on the rear tyre in the following way.
Fz,r = −

mglf
L

+
Fw,z

2With an altered Fz,r the quotient between Fr and αr is altered and thereforeorrespond to a di�erent value of Cr, whih may be alulated in the sameway as in the previous setion.4.4.3 Simulation ResultsThe alulated sti�ness of the rear tyre for various speeds is presented inTable 4.1. The alulations based on aerodynami drag yield a derease of
Cr of 0.41 % as the speed inreases from 50 km/h to 200 km/h. When alsoonsidering aerodynami lift the derease is 3.99 % for the same speeds. Thesimulations imply that aerodynami lift has a larger impat on tyre sti�nessthan aerodynami drag. Both e�ets are, however, rather small.



Chapter 5Closing the Loop
The main objetive with estimating side wind is to attenuate it in order toassist the driver. A ontroller will be designed and evaluated in terms of howwell it keeps the yaw rate down during side wind.
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Figure 5.1: Priniple of the side wind attenuation.5.1 The EPS-atuatorThe side wind is to be suppressed using Eletri Power Steering (EPS). EPSapplies a torque on the steering rod, and thus turns the steering wheel. Thismeans that it is possible for the driver to ounterat the ontroller by holdingthe steering wheel straight. It also means that the applied torque an not betoo strong, as it most likely would be frightening for the driver if the steering



54 Closing the Loopwheel turned too fast on its own.5.2 Controller DesignTo attenuate side wind ating on the vehile, the estimate is passed to aontroller whih ats on the moment atuator on the steering rod, see Figure5.1. A fairly ommon way of aneling the e�ets of known disturbanes isfeedforward ompensation, whih is desribed in [7℄.5.2.1 Feedforward Compensation
G

G

Σ

v

Gff

y

v

uFigure 5.2: Feedforward ontrol.
Assume that a system with transferfuntion G(s), input u, and output yis a�eted by a disturbane v, and thatthis disturbane may be measured. Aontroller is implemented aording toFigure 5.2, where Gff is to be hosen.If the transfer funtion from v to y,
Gv(s), is known and G(s) has a stableand realizable inverse, the disturbaneis aneled by use of the ontrol signal
u(s) = Gff (s)v(s) = −G−1(s)Gv(s)v(s).When this is impossible, a pragmati solution is to alulate, or approx-imate, the steady state gain, whih might perform well enough in manyases. Another reason for hoosing to disregard the dynamis is that themodel generally produes better �t at lower frequenies. In the following, astationary feedforward gain will be alulated.To alulate the torque needed to ompensate for a ertain, stationary, sidewind, the seond-order vehile model derived in Chapter 2, i.e. the matriesin (2.32), will be used. However, the G-matrix will be modi�ed into Gctrl bydisarding the �rst olumn so that side wind is the only disturbane enteringthe system. In stationary, the state vetor is

x∞ =

(
vy∞

ψ̇∞

)
= −A−1Bδ∞ −A−1GctrlSw∞

(5.1)The inverse of A is
A−1 =

Jmvx∞
L2CfCr +mρvx∞

(
− κ
J

v2
x∞ − ρ

m

− ρ
J

− σ
m

) (5.2)



5.2 Controller Design 55The produts A−1B and A−1Gctrl may then be alulated
A−1B =

vx∞
L2CfCr +mρv2

x∞

(
lfCfmv

2
x∞ − LlrCfCr

−LCfCr

) (5.3)
A−1Gctrl =

vx∞
L2CfCr +mρv2

x∞

(
−κ+ emv2

x∞
− ρe

−ρ− σe

) (5.4)This yields the following equations for the stationary lateral veloity andyaw rate.
vy∞

vx∞
= ξ−1

((
lfCfmv

2
x∞

− LlrCfCr
)
δ∞ +

(
−κ+ emv2

x∞
− ρe

)
Sw∞

)(5.5)
ψ̇∞ = vx∞ξ

−1

(
− LCfCrδ∞ − (ρ+ σe)Sw∞

) (5.6)where ξ = L2CfCr +mρv2
x∞.Setting ψ̇∞ = 0 and solving (5.6) for δ∞ yields the following ontrol law for

δ∞.
δ∞ = −

ρ+ σe

LCfCr
Sw∞

(5.7)By inserting this expression into (5.5) an expression for lateral veloity as afuntion of longitudinal veloity and side wind is obtained.
vy∞
vx∞

= ξ−1

((
lfCfmv

2
x∞ − LlrCfCr

) ρ+ σe

LCfCr
−κ+emv2

x∞ −ρe

)
Sw∞

(5.8)To alulate the stationary moment needed to obtain a ertain steering angle,(2.44) is used. In stationary, it beomes
MLR∞

=
1

iL

(
CM (iLδ∞ − δLR∞

) + nkCf

(
δ∞ −

vy∞
vx∞

−
lf
vx∞

ψ̇∞

)) (5.9)Sine ψ̇∞ has been set to zero, (5.7) and (5.8) may be inserted into (5.9)whih yields the following stationary moment.
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MLR∞

= 1
iL

(
− cMδLR∞

+

(
− (cM iL + nkCf )

ρ+σe
LCfCr

−

nkCfξ
−1

((
lfCfmv

2
x∞ − LlrCfCr

)
ρ+σe
LCfCr

− κ+ emv2
x∞ − ρe

))
Sw∞

)(5.10)To obtain a faster response to hanges in side wind, a derivative part will beadded, whih yields the following, dynamial, ontrol law.
MLR(t) = KpMLR∞

(t) +Kd
∂

∂t
MLR∞

(t) (5.11)where MLR∞
(t) denotes the moment alulated aording to (5.10) with

δLR(t), Ŝw(t) and vx(t) as inputs. The design parameters are the two gains
Kp and Kd. Sine MLR∞

(t) should provide all the stationary gain neededto suppress the disturbane, Kp is set to one and only Kd needs to be tunedusing simulations or real life tests.5.2.2 Tuning the ControllerCASCaDE was used to simulate a vehile driving past side wind in order totune Kd. Sine a few dynamis of the steering system were left out whenderiving the model, it was also neessary to tune Kp somewhat.Figure 5.3 displays the yaw rate and applied moment for a few values of
Kp. The results when Kd = Kp = 0 is also displayed. In this ase, the yawrate has a negative slope during the side wind. This is aused by the vehilesrotation away from the side wind, whih makes the lateral fore smaller. Thevehile veloity was set to 130 km/h and the wind veloity to 54 km/h. Asexpeted, the ontroller keeps the yaw rate lose to zero for all values of Kd.The initial peaks are redued by hoosing a higher value, but the appliedmoment is almost doubled when Kd is inreased from 0.1 to 0.5. The hoieof Kd therefore needs to be made in a real vehile where the omfort of thedriver and passengers may be evaluated for the di�erent values.5.2.3 Limiting the ControllerThe fat that the ontroller is to be used in a ar introdues a few speialissues. One situation whih may result in an unpleasant experiene for thedriver is if the moment suddenly disappears. One possible solution to this isto let the applied moment disappear slowly one the side wind is stationary



5.2 Controller Design 57and then leave the ompensation to the driver. When a side wind hits thevehile, the ontroller turns the steering wheel to an appropriate angle andthen lets the driver take over. There are several ways of obtaining this. Oneis to pass the estimated side wind through a high-pass �lter and thus removeany stationary ontrol ation. A positive side e�et of this strategy is thatit also removes the e�ets of sensor o�set.
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(b) MLRFigure 5.3: The yaw rate and the applied moment with v = 130 km/h and a sidewind of 15 m/s.



Chapter 6Conlusions and Future Work
6.1 ConlusionsThis work was foused on the estimation of side wind using a �rst-orderdisturbane observer. The robustness towards sensor o�set and parametererror have been investigated. A few possibilities for reduing the e�ets ofsensor o�set have been presented. To improve on the sensitivity to parametererror, Reursive Least Squares and Multiple Model Estimation were appliedin order to identify the ornering sti�ness of the tyres. Both methods werefound apable of distinguishing between ordinary tyres and winter tyres. Afeedforward ontroller was designed whih uses the side wind estimate toassist the driver during wind gusts.6.2 Future WorkSeveral issues remain regarding the on line identi�ation. A major issueis that of deiding when to perform identi�ation. One riterion is to runthe identi�ation at lower speeds and estimate side wind at higher. Atwinter time, however, it is not unlikely that the driver starts on snow orie and then enters a snow-free motorway. The estimated parameters willthen be inaurate. It would also be desirable to develop further riteriafor determining if the identi�ation was suessful or not. Two proedureswhih uses singular value deomposition of the regressor matrix have beenproposed, whih need to be investigated further. It might also be possible toimprove the identi�ation by using a more omplex vehile model, e.g. byintroduing the dynamis of the steering system and those of the tyre fores.
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