
ISSN 0280-5316
ISRN LUTFD2/TFRT--5738--SE

A Spherical Pendelum
Modeling & Control

Marcel Meerstetter

Department of Automatic Control
Lund Institute of Technology

January 2005

Document name
MASTER THESIS
Date of issue
January 2005

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--5738--SE
Supervisor
Karl-Erik Årzén at LTH
Prof. Morari at ETH in Zurich.

Author(s)
Marcel Meerstetter

Sponsoring organization

Title and subtitle
A Spherical Pendulum Modeling & Control (Modellering och reglering av en sfärisk pendel).

Abstract
The goal of this semester project was to set up the mathematical model for the simplified process of
the spherical pendulum, develop a simulation model of the process in Modelica that could then also
be animated in 3D, and finally, design a controller for the process. The simplification is that the
pendulum cannot turn about its own axis. For the Modelica model, a Pendulum Library, with the
essential parts, was created that could then just be selected and connected to assemble the desired
model. Additionally, the parts from the Modelica MultiBody Library were simplified so that the user
does not have to calculate various vectors and inertia tensors. With this Pendulum Library, a two,
three and four wheel variation of the spherical pendulum was built, of which finally the three wheel
model was of greatest interest. To verify the correctness of the Modelica model, it was linearized and
its state-space matrices were compared to the ones resulting from linearizing the equivalent
mathematical model. The comparison yielded only slight deviations between the two models,
allowing the conclusion that the Modelica model is physically correct. For the controller, a state-
feedback controller was implemented. Using Matlab, the L vector for the controller was calculated. A
variety of different L vectors corresponding to different pole placements as well as various reference
signals were tested. The results were as follows. To achieve the most ideal reference tracking with the
least error and actuator effort,
• The poles should have the same frequency as the natural frequency of the spherical pendulum.
• Increasing the damping of the poles beyond 45° decreases the error minimally.
• The frequency of the reference trajectory to track should also be equal to the natural frequency of the
spherical pendulum.
• The amplitude of the reference trajectory should not be too large since the model has been linearized
around the stable equilibrium of the spherical pendulum.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
50

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

Table of Contents
Abstract...5
Introduction...7
Chapter 1 - The Models...9

Pendulum Library ..11
Components of the Pendulum Library..12
The Inertia Tensors...14
Equations for Inertia Tensor Calculations..16
The Parameter Values...16
Linearizing..16
Script file and Simulation with Controller ..17

Chapter 2 - Model Verification...19
Chapter 3 - The Controller..25

Calculating the Controller Parameters..26
Choosing the Parameters..26

Poles...27
Reference Signal ...30

Conclusion...33
Modelica...33
Matlab...33
Results..33
Future..33

Appendix A – Modelica, a Quick Tutorial..35
Text- or Diagram-Based...35
Bottom-up or Top-down...36
Modifiers..37
Multi-Body Library..38
Building a Model..41

Appendix B – Matlab m-files..44
extract_2D.m..44
getPoles.m..44

1

Illustration Index
Illustration 1 Model of the three wheel pendulum with controller.............................9
Illustration 2 Two wheel spherical pendulum hangs at an angle in stable equilibrium

..10
Illustration 3 Torque due to the inertia wheels..10
Illustration 4 Rod icon...12
Illustration 5 Diagram of Joint_2D...12
Illustration 6 Joint_2D icon...12
Illustration 7 MotorPlacebo icon...13
Illustration 8 InertiaWheel icon..13
Illustration 9 The controller..14
Illustration 10 The inertia tensors...15
Illustration 11 Three wheel pendulum from top view...15
Illustration 12 Inverted Pendulum...19
Illustration 13 Top view of spherical pendulum...20
Illustration 14 Torque from inertia wheel z acting about z axis depends on angle

theta x ..20
Illustration 15 Spherical Pendulum near stable equilibrium.....................................25
Illustration 16 Pole frequency: 4.27 Damping: 45 Integral: 0................................27
Illustration 17 Pole frequency: 4.27*2 Damping: 90 Integral: x=100, z=130........28
Illustration 18 Pole frequency: 4.27 Damping: 90 Integral: 75..............................30
Illustration 19 Pole frequency: 4.27 Damping: 90 Integral:x=100, z=75 Ref. Freq.:

5.65/2.83 rad/s..31
Illustration 20 Pole frequency: 4.27 Damping: 45 Integral: 0 Ref. Freq.: 5.65/2.83

rad/s..31
Illustration 21 Screen shot of text-based mode...36
Illustration 22 Screen shot of diagram-based mode..37
Illustration 23 Click on Add Modifiers...37
Illustration 24 Right click on object to open this window..37
Illustration 25 Screen shot of adding modifier..38
Illustration 26 Screen shot of Joints Library...39
Illustration 27 InertialSystem Icon..39
Illustration 28 Diagram of ShapeBody..39
Illustration 29 ShapeBody Icon...39
Illustration 30 Screen shot of parameter window...41
Illustration 31 Even though the two bars in the figure to the right do not appear

connected, they are and behave physically the same as the construction in the
figure to the left..41

Illustration 32 Screen Shot of Simulation mode...42

2

Index of Tables
Table 1 Damping only with default reference signal specified in Table 2...............27
Table 2 Default reference signal...28
Table 3 Effects of doubling pole frequency..28
Table 4 Effects of lowering pole frequency..29
Table 5 Timed period vs. eigenvalue..29
Table 6 Effects of increasing damping and integral action.......................................30
Table 7 Effects of reference signal frequency on tracking error...............................31
Table 8 Effect on control torque due to non-ideal reference signal..........................31
Table 9 Effects of reference signal amplitude on tracking error...............................32

3

4

Abstract

The goal of this semester project was to set up the mathematical model for the
simplified process of the spherical pendulum, develop a simulation model of the
process in Modelica that could then also be animated in 3D, and finally, design a
controller for the process. The simplification is that the pendulum cannot turn about
its own axis. For the Modelica model, a Pendulum Library, with the essential parts,
was created that could then just be selected and connected to assemble the desired
model. Additionally, the parts from the Modelica MultiBody Library were
simplified so that the user does not have to calculate various vectors and inertia
tensors. With this Pendulum Library, a two, three and four wheel variation of the
spherical pendulum was built, of which finally the three wheel model was of
greatest interest. To verify the correctness of the Modelica model, it was linearized
and its state-space matrices were compared to the ones resulting from linearizing
the equivalent mathematical model. The comparison yielded only slight deviations
between the two models, allowing the conclusion that the Modelica model is
physically correct. For the controller, a state-feedback controller was implemented.
Using Matlab, the L vector for the controller was calculated. A variety of different
L vectors corresponding to different pole placements as well as various reference
signals were tested. The results were as follows. To achieve the most ideal
reference tracking with the least error and actuator effort,
• The poles should have the same frequency as the natural frequency of the

spherical pendulum.
• Increasing the damping of the poles beyond 45° decreases the error minimally.
• The frequency of the reference trajectory to track should also be equal to the

natural frequency of the spherical pendulum.
• The amplitude of the reference trajectory should not be too large since the model

has been linearized around the stable equilibrium of the spherical pendulum.

5

6

Introduction

The spherical pendulum is actually the most simple pendulum to build. One only
needs a string and a bob attached to its end and has a simple version of the spherical
pendulum. The pop will swing around as if it is moving on the surface of a sphere
whose center is the opposite endpoint of the string and has a radius equal to the
length of the string. Constructing a pendulum that is only able to swing in one
direction is more complex since it requires eliminating the movement in the other
dimension. However, when viewed from a control point of view, the scenario
changes. Building and controlling a pendulum, that is only able to swing about one
axis with an inertia wheel attached to its end to control its motion, is the simplest to
realize. The situation becomes more complex for the spherical pendulum. In this
setup, there are two categories. One is where the pendulum will be able to turn
about its own axis and the other is where this movement is prohibited. The latter is
the easier of the two to control.
For this project, the goal was to setup a mathematical model for the spherical
pendulum with no rotation about its own axis. Further, a model of this pendulum
was to be created with the modeling language Modelica that could then be
visualized as a 3D animation. Finally, a controller should be developed that will
control the motion of this pendulum to follow a desired trajectory.
The following chapters describe the proceedings and achieved results of the project.
• Chapter 1 – The Models: A description of the Modelica components that were

created and explanations to the models built.
• Chapter 2 – Model Verification: The mathematical verification of the Modelica

Model
• Chapter 3 – The Controller: details how the controller was designed and tuned as

well as presenting the results of the simulations.

7

8

Chapter 1 - The Models

In the beginning stages of the project, several aspects of the spherical pendulum
were still unclear. These included the question of how many inertia wheel the
pendulum should actually have and whether or not it should be able to turn on its
own axis. To accommodate for these unknowns, the Pendulum Library was created.
This custom made library contains all the essential building blocks of the spherical
pendulum, including the controller. The parts are very flexible and easily adjusted
through a few parameters. This way, it becomes quite easy to model virtually any
desired arrangement of the spherical pendulum using the same basic building
blocks. An additional advantage to the Pendulum Library is that if an essential
change has to be made to one of the components, it only needs to be applied in the
library and all models will automatically be updated with this new change.
Using this Pendulum Library, three version of the spherical pendulum were built: a
two, three, and four wheel model. For each variation, there are two versions. One
without the controller where the torques are directly connected to input ports and
the pendulum angles are connected to output ports. This model was used to
linearize the process around the stable equilibrium and then calculate the feedback
gain values in Matlab. Its filename includes the word “input”. The other model is
the one with the controller, where the inputs have been replaced with the reference
signal source and the outputs have been removed. The filename of this model
contains the word “controller”.
Both model variations contain the following components: InertialSystem,
Joint_2D, Rod, MotorPlacebo, Revolute Joint, Torque, InertiaWheel,
AngleSensor and SpeedSensor (angular) (see Ill. 1).

Each variation of the spherical pendulum has its advantages and disadvantages. The

9

Illustration 1 Model of the three wheel pendulum with controller

two wheel arrangement is the easiest of all the arrangements with each inertia wheel
being responsible for one of the oscillation directions. When designing the
controller, there will be one for each wheel and therefore for each direction. The
down side of this arrangement is that the pendulum will not be balanced in the
center instead will be hanging at an angle in its natural position (see Ill. 2).

The three wheel configuration eliminates this offset problem, however, now the
wheels are not all oriented along the intended swing axis. The four wheel
configuration takes care of the balance problem as well as that all the motors are
arranged along one of the two swing axes. However, the use of four motors is not
very efficient. In the end it was decided to continue with the three wheel
arrangement. Two of the motors would just have to be controlled in such a way that
their torque components in the direction of the third motor would cancel each other
while adding up in the perpendicular direction. As a result, the two motors could be
viewed as one single motor, simplifying the task of designing the controller (see Ill.
3).

The mathematical justification is as follows. Assume that the controller gives the
control signal u to motors 1 and 2 but -u to motor 3. Then the torques provided by
inertia wheels will be

∣IW1∣=∣IW2∣=∣IW3∣= u (1)

10

Illustration 2 Two wheel spherical pendulum hangs at an
angle in stable equilibrium

Illustration 3 Torque due to the inertia wheels

and
IW2 _ x=−IW3 _x and IW2 _ z=IW3 _ z (2)

if
2=3 (3)

Further, the torque in x and in z should be equal in magnitude
∣x∣=∣ z∣ (4)

in order that the identical controller can be used for both directions. And since
x=IW1 (5)

then with equation 1
∣x∣=u (6)

and
∣ z∣=u (7)

Totaling the torque in z gives
IW2 _ zIW3 _ z= z (8)

and since
IW2 _ y=IW2 cos2 and IW3 _ y=IW3 cos3 (9)

and with equation 8
2∗IW2 cos= z (10)

Substituting with u
∣2∗IW2 cos∣=u (11)

Solving for IW2 gives

∣IW2∣=
u

2cos (12)

Therefore, dividing the control signal given by the controller by 2cos before
supplying it to motors two and three, will ensure that these two motors will behave
as if there was one motor along the z-axis with the control signal u.
The motors were not modeled but instead a placebo that mimics their physical
properties were used. The reason is that the model of a motor would include and
inductor which adds an undesired fifth state to the whole model. The torque that
would have been provided by the motor is now controlled directly.

Pendulum Library
Below is a description of the Pendulum Library components and their parameters.
Some components are identical copies from the Modelica Standard Library and
ModelicaAdditions Library. These parts have been included in the Pendulum
Library for the comfort of having all essential parts in one place and will only be
mentioned briefly. Some of them have been explained in more detail in the
Modelica Appendix and the remaining are self-explanatory. There is also a
comprehensive online explanation to each non-custom component.

11

All the custom-made components are constructed mostly from components already
existing in the Modelica Standard Library or ModelicaAdditions Library. The only
components that are an exception to this are the ShapeBody2 and Body2. These
two have minor amendments from their original design, ShapeBody and Body
from the ModelicaAdditions MultiBody Parts sub-library. The changes pertain the
six inertia tensors. These will be explained in further detail later.

Components of the Pendulum Library
• Rod (see Ill. 4): This is the main pendulum rod. It contains the parameters

length, mass, and radius. Using these values, all the other parameter values of
ShapeBody2 are calculated. For the center of mass vector, rCM, it is assumed
that the rod has a homogeneous weight distribution and that the center of mass is
located at half the length along the central axis. The width and the height are
the diameter of the rod and therefore, in both cases, two times the radius
(2*radius). Finally, the r vector is along the vector LengthDirection with its
magnitude equal to the parameter length

r= 0,− length ,0

• Joint_2D (see Ill. 5 and 6): This is joint is made from two revolute joints, one
that is able to turn around the x and the other around the z axis. An angle and

angle speed sensor are included for each joint and their reading are outputted at
the top. Dampers are also included to make the component more realistic. Their
values can be entered in the parameter window. This joint was built to be the
fixed point joint of the pendulum.

• Joint_3D: This is the same joint as the Joint_2D only that it has been
extended to include an revolute joint that turns about the y-axis. It can be

12

Illustration 6 Joint_2D
icon

Illustration 4 Rod icon

Illustration 5 Diagram of Joint_2D

implemented as a 2D joint by adding a lot of damping to the y-axis joint.
• MotorPlacebo (see Ill. 7): The actual motor with its dynamics is not modeled

but its physical properties, such as weight and size are. This component makes
use of the customized models BodyShape2 and Body2. Length, Mass,
Radius and Theta are the four parameters that have to be set. Theta is the
angle that the motor makes with the positive x-axis. Its value may range
anywhere between 0 and 6.28 (2*π). The equation section contains several if
clauses to determine which quadrant theta is in and to calculate the proper
values for the inertia tensors I11, I22, and I33. The LengthDirection vector
and r vector are set in the direction of the angle theta with a magnitude equal to
the parameter length. The center of mass is placed half way along these
vectors. The width and height values are the diameter and therefore equal to
twice the radius.

• InertiaWheel (see Ill. 8): This component is identical to MotorPlacebo only
that is is meant to represent the actual inertia wheel instead of the motor.

• Controller (see Ill. 9): The controller is a full state-feedback capable
controller in which individual components such as the integrator or certain states
can be turned off. Several items have been specifically programmed for the
spherical pendulum model. For example, the expected state for the angle
velocity is the derivative of the reference signal, which at the same time is the
expected state of the actual angle. For models in which the stable equilibrium is
not at θx=0, θz=0, the offset can be used to compensate for the deviation. Also, a
limiter is placed before the output port to contain the control signal within its
allowable bounds. Finally, the component Add6 is a custom made adder that
adds the six input signals together. For the controller implementation, the last
three inputs to the adder are subtracted since they are feedback signals that have
not been negated yet.
To turn off individual components of the controller, the proper gain needs to be
set to zero. The following is a list of the gains and what they influence:
• r_on_off: the gain on the reference signal.
• sp_on_off1: the gain on the set point of state one, the pendulum angle. In

this case, state one is equal to the reference signal.
• L_phi: the feedback gain on xexpected(1) – xactual(1) of the first state.
• sp_on_off2: same as sp_on_off1 only for state two, the angular velocity of

the pendulum angle.
• L_w: the feedback gain on xexpected(2) – xactual(2) of the second state.

13

Illustration 7 MotorPlacebo icon Illustration 8 InertiaWheel icon

• li: the gain for the integrator.
• int.k[1]: switch for integral action. 0=off, 1=on.
• L_phi_IW: feedback gain for inertia wheel angle.
• L_w_IW: feedback gain for inertia wheel velocity.
The values of these gains should not be set by adding modifiers in the parameter
box but by running a script file after the model has been translated. More about
the script file later.

• Other Components copied from the Modelica Standard Library and the
ModelicaAdditions Library: Gain, sin, AngleSensor, SpeedSensor
(angular), InertialSystem, and Revolute (joint)

The Inertia Tensors
In order for the model being build to have any physical and real world meaning, the
inertia tensors values of the building block ShapeBody should approximately be
correct. To remove this responsibility from the user and to increase the flexibility
and ease-of-use of components in the Pendulum Library containing this building
block, the six inertia tensors have been redeclared as regular variables. This
amended version of the ShapeBody component was renamed to ShapeBody2.
The same amendment was also applied to the building block Body and renamed to
Body2. The tensors of the affected library components are now calculated from
four other parameters given by the user. These are: length, radius, mass and
angle, between the component's length direction and the positive x-axis.
When looking at the different tensors, several assumptions can be made about them.
First, the Ixx (I11) and Izz (I33) tensors have their extreme values when the
component lies parallel and perpendicular to these axes (see Ill. 10). In these

14

Illustration 9 The controller

orientations, the values of the tensors are easy to calculate.

The inertia tensor Ixx, when the component lies along the x-axis, is
Ixx= 1

2
mr2 (13)

where m is the mass and r is the radius. Izz for the same component is
Izz= 1

12
mh2 1

4
mr2 (14)

where h is the height, in this case the length. In the case where the component lies
along the z-axis, the two equations switch (see Ill. 10).
However, when the component lies at an angle theta (θ) in between these axes (see
Ill. 11), calculating the exact values of these two tensors becomes more difficult.
To ease the calculation, a linear approximation is made between the two extreme
values. When moving the components along a circular path from the x-axis to the
z-axis, the Ixx and Izz tensors switch values.

This means that in between the two axes, the values Ixx and Izz must lie between
Ixx (eq. 13) and Izz (eq. 14). Assuming a linear change of the values makes it easy
to calculate the values for Ixx and Izz. Even though, the values calculated this way
are not exact, the controller should be robust enough to compensate for this model
uncertainty.

15

Illustration 10 The inertia tensors

Illustration 11 Three wheel pendulum from top view

Equations for Inertia Tensor Calculations
In order to use the linear approximation, the slope between the two extreme values
needs to be calculated. This variable is called increment and is calculated as
follows:

increment= ...

...
 1

12
∗mass∗ length2 1

4
∗mass∗ radius2– 1

2
∗mass∗ radius2

ninety

(15)

ninety is a constant with a value of 1.57, which is the radian equivalent of 90°. The
top of the quotient calculates the difference between the two extreme values.
Dividing by ninety results in the slope.
Now, the two tensors can be calculated.

Ixx= 1
2
∗mass∗ radius2 increment∗ theta2 (16)

Izz= 1
12

∗mass∗ length2 1
4
∗mass∗ radius2− increment∗ theta2 (17)

The user does not actually enter the relative angle theta2 between the two axes, but
rather the absolute angle theta measured from the positive x-axis. The angle is
then automatically reduced to the relative angle theta2 between the positive (or
negative) x-axis and the component.
In regards to the Iyy (I22) tensor, it is always the same regardless how the
component is placed, as long as it is along the horizontal plane. The equation is:

Iyy= 1
12

∗mass∗ length2 1
4
∗mass∗ radius2 (18)

The remaining three elements Ixy (I21), Ixz (I31), and Iyz(I32) are assumed to be
zero.

The Parameter Values
The following are the values used for the various parameters. They correspond to
the values of the components used for the real physical experiment.
Inertia wheel: mass= 0.075kg, radius=0.025m, length=0.006m
Motor: mass=0.040kg, radius=0.015m, length= 0.035m
Rod: mass=0.1kg, radius=0.01m, length=0.5m

Linearizing
After having built and simulated the input model, it was linearized to then develop a
controller for the model using Matlab. When linearizing the model, Modelica
establishes the following states: position and rotational speed for each inertia wheel
and pendulum rod angle and rotational speed around the fixed point for each
oscillation direction. The order of these states in the state-space matrices of the
linearized model dependents on the order of declaration of the respective parts in
the text-based mode of the model. In order to properly use the custom m-files in
Matlab, it was important that these declarations follow a special order. The

16

Revolute joint R1 had to be declared before all of the Revolute joints of the
inertia wheels and these had to be declared in the counterclock order, starting with
the wheel in the direction of the positive x-axis.

Script file and Simulation with Controller
With the L vector from Matlab, the controller was tested in Modelica using the
controller based version of the model. To ease the setting of the values of the
various controller components, a script file was used. The following is a list of all
the controller components that could be set using the script file:
• Sine1.amplitude[1]
• Sine2.amplitude[1]
• Sine1.phase[1]
• Sine2.phase[1]
• Sine1.freqHz[1]
• Sine2.freqHz[1]
• CX.r_on_off.k[1]
• CZ.r_on_off.k[1]
• CX.sp_on_off1.k[1]
• CX.sp_on_off2.k[1]
• CZ.sp_on_off1.k[1]
• CZ.sp_on_off2.k[1]
• CX.li.k[1]
• CZ.li.k[1]
• CX.int.k[1]
• CZ.int.k[1]
• CX.L_phi.k[1]
• CX.L_w.k[1]
• CX.L_phi_IW.k[1]
• CX.L_w_IW.k[1]
• CZ.L_phi.k[1]
• CZ.L_w.k[1]
• CZ.L_phi_IW.k[1]
• CZ.L_w_IW.k[1]
The limiter value cannot be set with a script file. It had to be set in the model itself
before translating it.
Having loaded the script file, the simulation was ready to be initiated. Sometimes
the simulator took a long time and the Linux shell window would display the
message “...a large amount of work has been expected (about 500 steps) in the
integrator...”. The cause for this was that integrator value of the controller was too

17

big. The simulation had to be killed, the integrator value decreased and the
simulation then re-started. When the simulation was completed successfully, the
animation was run to visually observe the performance and effectiveness of the
controller.

18

Chapter 2 - Model Verification

Since it is possible to model any process with Modelica, there needs to be some sort
of model verification to ensure that the Modelica model does truly represent the
desired process. The physical parameters especially such as the center of mass
vector rCM and the inertia tensors need to be verified for their correctness since it is
these parameters that determine the physical behavior of the model.
There are a variety of methods to choose among on how to verify the model. The
obvious option would be to build the process and compare the reaction, to certain
inputs, of the physical process to that of the Modelica model. Another possibility is
to manually derive the mathematical model of the process, linearize it, and compare
it to the linearized version of the Modelica model. For the project, this second
option was selected for the verification.
The model of the Inverted Pendulum served as the starting point for the
mathematical model. It consists of a rod oriented along the negative y-axis attached
to a joint that is able to rotate around one axis, say x. At the bottom of the rod, an
inertia wheel along with a motor to turn it is attached. The rotational axis of the
inertia wheel is oriented parallel to the x-axis (see Ill.12).

Basically, this pendulum is quite similar to the spherical pendulum with the only
difference being that the spherical pendulum has an additional degree of freedom
for a total of two.
The mathematical model of the inverted pendulum is

J
. .

xmgl sinx=− (19)

= J IW
. .

IW
 (20)

where the variable and parameters are defined as follows:
• θx is the angle the pendulum rod makes with negative y-axes.
• J is the moment of inertia of the pendulum about the pivot point.

19

Illustration 12 Inverted Pendulum

• τ is the torque supplied by inertia wheel due to motor accelerating it.
• m is the mass of the pendulum.
• l is the distance from the pivot to the center of mass of the pendulum.
• θIW is the angle of rotation of the inertia wheel, relative to the fixed base, not

relative to the pendulum rod. IW =x

• JIW is the moment of inertia of the inertia wheel about its center of mass.

This results in the four states x ,
.

x , IW ,
.

IW
.

However, since Modelica measures the angle θIW relative to the pendulum rod and
not relative to the fixed base, it becomes difficult to verify the second equation and
it will be omitted in the verification.
In the spherical pendulum, the rod is now also able to swing around the z-axes (see
Ill. 13). As a result, the torque provided by an inertia wheels will not be oriented
entirely along its intended direction when swinging about the axis perpendicular to
it.

The torque acting in the intended direction is reduced by the factor cos(θp), where θp

is the angle of the pendulum rod in the perpendicular oscillating plane. In case of
the inertia wheel x it is the angle θz and in case of the inertia wheel z it is the angle
θx (see Ill. 14).

x : J x
. .

xmgl sinx=−IWx cos z
 (21)

z : J z
. .

zmgl sin z=−IWz cosx
 (22)

Therefore, if the pendulum does not swing in the perpendicular direction, the angle
θp will be zero, cos(θp) will be one, and the torque will remain unchanged.
Since the two dimensions are identical to each other, further calculations will be
carried out only in x.

Dividing equation 21 by J results in

. .

x
mgl
J x

sinx=−
IWx

J x

cos z (23)

Further, solving for
. .

x
gives

20

Illustration 13 Top view of spherical
pendulum

Illustration 14 Torque from inertia wheel z
acting about z axis depends on angle theta x

. .

x=− mgl
J x

sinx−
IWx

J x

cos z (24)

 To be able to linearize the model, the stable equilibrium needs to be defined.

. .

x=0 (25)

0=− mgl
J x

sinx−
IWx

J x

cos z (26)

x0 : x0=0, x0=0, z0=0 (27)

The next step is to linearize equation 24 about x0.

. .

x=0− mgl
J x

cosx ∣x0 x−x0
IWx

J x

sin z ∣x0 z− z0 ...

...− 1
J x

cos z ∣x0 IWx−IWx0
 (28)

which gives the final equation

. .

x=− mgl
J x

x−
1
J x

IWx (29)

For
. .

z
 the equation then is

. .

z=− mgl
J z

 z−
1
J z

IWz (30)

To be able to compare this result to the linearized Modelica model, the parameters

− mgl
J x

and − 1
J x

need to be calculated.

For the following calculations, the values of the parameter are those presented in
chapter 1, The Model.

For Jx

J x= J Rod J Mx
x J Mz

x m Mxm Mz l1
2 J IWx

x J IWz
x mIWxmIWz l2

2 (31)

where
• Jrod is the moment of inertia of the rod about its end.

J Rod =
1
3

ml2=8.33∗10−3 kg m2 (32)

• JMx
x is the moment of inertia of motor x about the x-axis going through its center

of mass.
J Mx

x = 1
2

mr2= 4.5∗10−6 kg m2 (33)

• JMz
x is the moment of inertia of motor z about the x-axis going through its center

21

of mass.
J Mz

x = 1
4

mr2 1
12

ml2=6.33∗10−6 kg m2 (34)

• JIWx
x is the moment of inertia of inertia wheel x about the x-axis going through

its center of mass.
J IWx

x = 1
2

mr2=2.34∗10−5 kg m2 (35)

• JIWz
x is the moment of inertia of inertia wheel z about the x-axis going through its

center of mass.
J IWz

x = 1
4

mr2 1
12

ml2=1.19∗10−5 kg m2 (36)

• mMx, mMz, mIWx, and mIWz are the masses of the respective parts.
• l1 is the distance from the center of mass of the motors to the pivot point.

Approximately 0.5 m.
• l2 is the distance from the center of mass of the inertia wheels to the pivot point.

Approximately 0.5 m.
 Jx and Jz are equal due to the symmetry of the pendulum.
For ml

ml=mRod lCMRod m Mxm MzmIWxmIWz lCM (37)

where
• mRod is the mass of the pendulum rod
• lCMRod is the distance from the pivot point to the center of mass of the pendulum

rod. In this case 0.25 m.
• lCM is the distance from the pivot point to the center of mass of the motors and

inertia wheels. Due to their close proximity to each other and relative great
distance to the pivot point, this distance is just assumed to be equal for all four
parts and equal to the length of the pendulum rod, 0.5 m.

These equations result in
J =6.58∗10−2 kg m2 a nd − 1

J
=15.2 kg−1 m−2

− mgl
J

=−20.9
 (38)

When linearizing the Modelica model, the following state-space matrices A and B
are returned

A={
0 1 0 0

−18.2872 −0.0128 0 0
0 0 0 1

18.2872 0.0128 0 0
6 B={

0
−0.0013

0
4.2679

6∗104 (39)

where A2,1 correspondence to − mgl
J x

and B2,1 to − 1
J x

.

22

Even though the values are not exactly the same, they are close enough to conclude
that the Modelica model does adequately represent the real process.

23

24

Chapter 3 - The Controller

A variety of possible controller designs exist to be implemented in the spherical
pendulum. There is the choice between linear and non-linear controller, and within
each of these categories, there is another range of possibilities. Each one has its
advantages and disadvantages, the key is to find the controller that will meet the job
requirements as efficiently as possible.
Before deciding what type of controller to use some simplifications were made.
First, the spherical pendulum would operate close to the stable equilibrium allowing
the model to be linearized around this point (see Ill. 15). This decision assured the
use of a linear controller. Further, the pendulum would be unable to rotate around

its own axis. This permits the two direction of oscillation to be viewed independent
of each other and allows the use of two identical decoupled controllers, one for each
direction. With these simplifications, the state-feedback controller seemed to be the
best choice.
The strength of the state-feedback controller is that it can move the poles of the
closed-loop system. If the open-loop system has unstable right-hand-plane poles, a
state-feedback controller is able to move these poles into the left-hand-plane. The
only requirement for the controller to achieve this is that it needs measurements or
estimations of all the values of the states of the process. This is no problem when
working with Modelica since any state can easily be measured by just connecting
the proper sensor to the appropriate joint. Therefore, caution is required when
working with Modelica since it is possible to measure variables that in the actual
process are not accessible to be tracked with a sensor. Of course, it is possible to
build an observer for the application that will estimate the desired states from other
measured states. For example, if in the spherical pendulum the motors do not have
any optical sensors to relay how much and how fast each inertia wheel has turned,
this information could be deduced knowing the applied voltage and motor
characteristics.
Combined with the Matlab Control Systems Toolbox, the task of calculating the
state-feedback controller parameters for a Modelica model was eased. When
linearizing the model about the operating point in Modelica, the state-space

25

Illustration 15 Spherical Pendulum near stable equilibrium

matrices of the linearized model were saved in a mat file. This mat-file was then
loaded into Matlab. Using a series of m-files provided by Dymola, the state-space
matrices A, B, C and D were extracted from the mat file. With these matrices, using
some self-written m-files and Matlab functions, the optimal L vector was calculated
for the state-feedback controller. This procedure is elaborated below.

Calculating the Controller Parameters
The results of the linearization in Modelica are saved in the file called
dslin.mat. There are two ways to load this file into Matlab. One option is to
just use the function load('dslin.mat') which will load one huge matrix that
includes the state-space matrices A, B, C, and D. The other command
tloadlin('dslin.mat') returns the four state-space matrices separately. In
order to use the commands that follow, it was important to use the latter.
Since the two oscillation directions are viewed independent of each other, it became
necessary to decouple the two directions in the state-space matrices. In other
words, the proper elements of the state-space matrices, loaded with one of the above
commands, had to be extracted and saved as their own matrices. The loaded
matrices either had the eight or twelve states depending on the Modelica model.
The extracted matrices, however, should only have the following four states: angle
in swing direction x, angular speed in swing direction x, angle of inertia wheel x,
and angular speed of inertia wheel x. Due to model symmetry, the state-space
matrices for z would be the same and did not have to be extracted separately. Also,
there would be no model with ten states as might be expected from the three wheel
model. This is since two of the wheels will be controlled such that they act as one;
see chapter 1 The Models for an explanation. Therefore, when designing a
controller for the three wheel model, the linearization of the two wheel model was
used.
To ease the task of extracting the proper elements of the state-space matrices, the m-
files extract_2D.m was written. The inputs to this file are the four state space
matrices loaded earlier, and the outputs are the reduced decoupled state-space
matrices. As an example, the command is applied as follows:
[A_dc,B_dc,C_dc,D_dc]=extract_2D(A,B,C,D)
The next step was to calculate the desired poles of the closed-loop system. This
was achieved using the m-file getPoles. The input arguments to the function
are: number of poles (states), frequency, and damping. The frequency is given as
rad/s, and the damping is given as the angle between the positive y-axis and the
pole. The poles are returned as a vector.
P=getPoles[states, frequency, damping];
How to choose the proper frequency and damping is explained below.
The final step was to compute the state-feedback gain vector L to get the desired
closed-loop poles. This was accomplished with the Matlab command place. The
input arguments are the decoupled matrices A and B and the pole vector P.
L=place(A_dc, B_dc, P);
The components of the L vector were then entered into the Modelica script file and
tested.

26

Choosing the Parameters
The effectiveness of the controller is dependent on various factors. These include
frequency and damping of the chosen poles, frequency and amplitude of the
reference signal and actuator strength. The focus of the following sections will be
on how to choose the right poles and what reference signals are feasible to track.

Poles
The elements of the feedback vector L are dependent on the chosen poles. The
placement of these poles determine the frequency and damping characteristics of the
controller. Traditionally, increased damping reduces the overshoot and increased
frequency decreases the rise time of the step response. However, for the spherical
pendulum, the step response has little meaning. Instead, it is tracking the reference
trajectory with minimal error that is of interest. Therefore, the objective is to find
the poles that will reduce this error the most.
Further, tests have shown that the pole placement has a significant influence when
working with integral action, an essential factor when trying to minimize the error.
When just using a regular state-feedback controller without integral action, solely
changing the frequency and damping has little influence on the error (see Table 1).

Frequency Damping Direction Integral Error

4.27
45 (see Ill.2)

x
z

90
x
z

0

0.003
0.104
0.003
0.097

4.27x2=8.54
45

x
z

90
x
z

0

0.004
0.091
0.004
0.093

Table 1 Damping only with default reference signal specified in Table 2

The effects of the frequency and damping are clearly seen when using an integrator
to decrease the tracking error. For a given controller, a certain maximum amount of

27

Illustration 16 Pole frequency: 4.27 Damping: 45
Integral: 0

integral action can be added before the error cannot be reduce any further and the
system becomes unstable. Increasing the frequency and or damping of the
controller allows more integral action to be added.
To start with, the poles where chosen so that the frequency was equal the natural
frequency of the pendulum (4.27 rad/s) and the damping was 45°.
The reference signals for the tests in this section were the following (see Table 2)

Controller Signal form Amplitude Frequency Phase
x sine 0.1 rad 4.33 rad/s 0
z sine 0.1 rad 2.17 rad/s 0

Table 2 Default reference signal

Proper tracking of these reference signals results in a figure eight when the motion
is projected onto the the x-z plane.
Focusing on the frequency, tests have shown that while increasing the frequency
allows for more integral action, it also increases the error. Even increasing the
damping and integral action to their maximum at the increased frequency is not
enough to reduce the error to what it was before. Table 3 below summarizes the
results when doubling the frequency from 4.27 to 8.57 rad/s and then increasing the
damping and integral action.

Frequency Damping Direction Integral Error

4.27 45
x 25
z 40

0.001
0.028

4.27x2=8.57 45
x 25
z 40

0.003
0.080

4.27x2=8.57 90
x 100
z 130

0.002
0.061

Table 3 Effects of doubling pole frequency

Even with the increased damping and integral action, the error at the higher
frequency was more than twice that at the lower frequency (see Ill. 16 and 17).
Lowering the frequency below the natural frequency results in only a slight increase
in error but makes the system much more sensible to integral action forcing integral
action to be drastically lowered in order for the system to stay stable. For example,
when lowering the frequency to half the natural frequency, the integral action in z
had to be lowered from 40 to 9. The table 4 shows this.

28

Frequency Damping Direction Integral Error

4.27 45
x 25
z 40

0.001
0.028

4.27x0.5=2.135 45
x 0
z 9

0.002
0.037

Table 4 Effects of lowering pole frequency

In respect to the settling time, there seemed to be minimal influence from the
frequency. Irregardless of the controller frequency, the settling time swayed
between 1.5 to 2 seconds.
In conclusion, the ideal frequency to place the poles at is the natural frequency of
the pendulum.
The natural frequency can be obtained in two ways. One method is to time the
period of pendulum by just letting it swing free in space. The other method is to use
the Matlab command eig(A_dc) to get the eigenvalues of the decoupled A matrix
and use the eigenvalues to calculate the period of the pendulum. As seen in table 5,
both methods give very similar results.

Method Frequency
Timing the period 4.33

Eigenvalue 4.27

Table 5 Timed period vs. eigenvalue

In regard to the controller however, the difference in periods is negligible and the
same results are achieved irregardless of which value is used.
Alternating the damping has shown to be much more effective in decreasing the
error. Setting the damping to 90° allows for the maximum possible integral action.
This is especially useful when trying to decrease a larger error. For example, when
the frequency is equal to the natural frequency and the damping is 45°, the error in z
without integral action is 0.104. With a maximum integral action of 40 at 45°, the
error is reduced to 0.028, a reduction of 76%. Increasing the damping to 90°,

29

Illustration 17 Pole frequency: 4.27*2 Damping: 90 Integral: x=100,
z=130

permits increasing the integral action to 75 and reduces the error to 0.020, 8% more
for a total of 84% error reduction. The error in x for the same controllers changed
from 0.003 to only 0.001, a change of only 2%. The results also show that, even
though increasing damping from 45° to 90° allows for much greater integral action,
the end effect on minimizing tracking error is minimal. Table 6 summarizes the
results. Illustration 18 shows the best possible tracking that was achieved of the
figure eight reference trajectory.

Frequency Damping Direction Integral Error % Error

4.27 45
x 0
z 0

0.003
0.104

3
104

4.27 45
x 25
z 40

0.001
0.028

1
28

4.27 90
x 75
z 75

0.001
0.020

1
20

Table 6 Effects of increasing damping and integral action

Additionally, unlike what the case was when increasing the frequency, solely
increasing damping does not result in a greater error.

Reference Signal
Comparable to the poles, the reference signal also has a substantial influence on
how effective the controller is. The easiest trajectory to follow is one with a
frequency equal to the natural frequency of the pendulum. Trying to follow a
trajectory that has a frequency other than the natural frequency leads to tracking
errors that cannot be reduced to zero or even close to zero. This is clearly
demonstrated in the above results, where the error in z at its best is still 20%.
Trying to track a reference signal where the frequencies were 5.65 and 2.83 rad/s
produced comparable minimal errors (see Table 7 and Ill. 20 and 19). Even though,
it does not appear as if there is an error in illustration 19, the amplitude in x is too
big and too small in z.

30

Illustration 18 Pole frequency: 4.27 Damping: 90 Integral: 75

Controller Frequency=4.27 and Damping=90
Ref. Amp. Ref. Freq. Direction Integral Error % Error

0.1
4.33 rad/s
2.17 rad/s

x 100
z 75

0.001
0.020

1
20

0.1
5.65 rad/s
2.83 rad/s

x 100
z 75

0.027
0.016

27
16

Table 7 Effects of reference signal frequency on tracking error

Aside from not only leading to an increased error, the control signal to achieve
these “minimal yet high” errors is also larger when compared to tracking a reference
signal with its frequency equal to the natural frequency of the pendulum (see
Table8). This means that stronger actuators and more energy is necessary to
achieve these results.

Controller Frequency=4.27 and Damping=90
Ref. Amp. Ref. Freq. Direction Integral Error Torque (Nm)

0.1
4.33 rad/s
2.17 rad/s

x 100
z 75

0.001
0.020

0.006-0.01
0.07

0.1
5.65 rad/s
2.83 rad/s

x 100
z 75

0.027
0.016

0.17
0.07

Table 8 Effect on control torque due to non-ideal reference signal

The amplitude of the reference signal, in addition to the frequency, also plays a role
in the effectiveness of the controller. Since the controller was designed based on a
model linearized around the stable equilibrium of the pendulum, large amplitudes
will lead to large deviations between the model and the actual process. When the
controller was tested with a amplitude of 0.2 radians (11.5°), a slight increase in
percent error was already observed (see Table 9).

Controller Frequency=4.27 and Damping=90
Ref. Amp. Ref. Freq. Direction Integral Error % Error

31

Illustration 19 Pole frequency: 4.27 Damping:
90 Integral:x=100, z=75 Ref. Freq.: 5.65/2.83
rad/s

Illustration 20 Pole frequency: 4.27 Damping:
45 Integral: 0 Ref. Freq.: 5.65/2.83 rad/s

Controller Frequency=4.27 and Damping=90

0.1
4.33 rad/s
2.17 rad/s

x 100
z 75

0.001
0.020

1
20

0.2
4.33 rad/s
2.17 rad/s

x 100
z 75

0.005
0.045

2.5
22.5

Table 9 Effects of reference signal amplitude on tracking error

Due to non-linearities, greater amplitudes will induce unproportionally greater
errors.
The ideal reference signal to track is therefore one with its frequency equal to the
natural frequency of the pendulum and its amplitude held small.

32

Conclusion

Modelica
Modelica is a comfortable modeling language to work with, especially for persons
with some programming knowledge. There is an extensive library that virtually
allows anything to be modeled by simply selecting the proper elements and
connecting them in the workspace. Alternatively, it is possible to also program in
the underlying text layer. The challenging part is to properly implement the various
parts when working with the MultiBody Library. Setting the proper values for
numerous vectors and inertia tensors is essential for a legitimate real world
simulation.
When working with complex models, it is wise to keep them uncluttered from
numerous components in order to maintain a clear overview. One way to achieve
this is to create subcomponents that contain components that are related to each
other, either functionally or spatially. Additionally, creating a library of custom
components greatly facilitates the task of creating various versions of ones model.

Matlab
Designing the state-feedback controller with the aid of Matlab is mostly an
untroublesome process. The only complication was the inability for the place
function to place the poles for the steady-space matrices that were extended for
integral action. The reason for this is still unknown. It was therefore rather
cumbersome trying to find the optimal integral action by just trial and error
simulations. A personal recommendation is to always check the Matlab results to
see if it needs to be multiplied with a factor. For example, failing to notice that the
resulting matrix was scaled by 10,000 may lead to unnecessary hours of error
searching.

Results
In terms of the controller, there are several things to consider. First of all, the poles
of the system should be chosen such that their frequency is equal to the natural
frequency of the spherical pendulum. Second, the frequency of the reference signal
should also be equal to the natural frequency of the pendulum. This will keep
control error and actuator effort at a minimum. If the reference frequency needs to
be something other than the natural frequency, then it becomes essential to use
integral action to minimize the error. Depending on the deviation between the two
frequencies, the error may or may not be reduced to its optimal minimum. Further,
damping beyond 45° has little influence anymore on the error. Finally, keeping the
amplitude of the reference trajectory small, will also keep the error smaller.

Future
The next step would be to expand the model to a spherical pendulum that is able to
turn about its own axis and develop a controller for this version. The main problem
here is to compensate for the spin of the pendulum about its own axis. Otherwise
the two main swing directions cannot be viewed as decoupled from each other
anymore since each inertia wheels will then influence both swing directions. Not

33

only that, but to be then able to properly measure the orientation of the inertia wheel
relative to the origin and to split up the torque into its correct x, y, and z
components is greatly complicated.

34

Appendix A – Modelica, a Quick Tutorial

To model the spherical pendulum on the computer, it was decided to use Modelica
due to its many advantages. First of all, Modelica is a domain neutral modeling
language. This means that it is not restricted to only one modeling domain such as
electrical or mechanical as many other modeling languages. Secondly, Modelica
has the advantage of allowing the user to solve problems that are expressed in terms
of differential-algebraic equations (DAEs) rather than ordinary differential
equations (ODEs). A further advantage is that Modelica allows for the
simultaneous simulation of both continuous and discrete behavior in a model.
Additionally, Modelica provides several extensive libraries one of which is the
Modelica Standard Library (MLS). This library offers all the fundamental
mechanical, electrical, thermal, and mathematical elements to model almost any
desired process. There is even the possibility to establish ones own custom library
of self-built components. Finally, the processes modeled with the MultiBody
library can be animated in 3-D. Modelica is only the programing language and
there are several vendors that offer easy-to-use software packages. For this project
the Dymola version from Dynasim was chosen. The following is a quick tutorial on
how to use Modelica in relevance to this project

Text- or Diagram-Based
There are three ways to build a model in Modelica, either text-, diagram-based, or a
combination of the two. The text-based programming is similar to programming in
a regular language such as Java or C++. Variables, constants, and parameters have
to be declared and defined in the first half of the model and then be used below in
the equation or algorithm section (see Ill. 21). In the diagram-based modeling,
components from the various libraries can just be selected, be dragged onto the
workspace, and be connected to create the desired model (see Ill. 22). The available
libraries are quite extensive and allow practically anything to be modeled.
The library components are actually models of their own with input and/or output
connectors. When connecting components, it is important to be aware that different
types of interfaces exist and that an interface of one type cannot be connected to
that of another. For example, it would make little sense to connect a translational
speed sensor to a rotational joint. While programming in the diagram-based mode,
Dymola generates the proper lines of code in the text layer. Later on, if it is
necessary to exchange one component with another, it is easy to do so in the text
layer. Especially, if the two parts have identical inputs and outputs, since then all
the connection lines in the diagram-based mode will not have to be manually re-
drawn.

35

Bottom-up or Top-down
Modelica provides for bottom-up and top-down programming. For bottom-up,
models can be saved and incorporated as components of another larger model.
Models can even be saved as components of a custom library. Whenever a library
component is modified, all models that incorporate this part are updated
automatically. It is also possible to change the parameters of a single instance of a
library components by adding the proper modifier in the model where it is used.
The bottom-up approach is very helpful when working with complex models in
order to keep a good overview. For top-down programming Modelica offers such
constructors as partial block, extends, replaceable and redeclare.

36

Illustration 21 Screen shot of text-based mode

Modifiers
Modifiers to a component can be added in both the diagram- and text-based view.
In the diagram-based view, right click on the component and select Parameters...
or just double click on the icon (see Ill. 23). Then, in the new window that appears,
click on the Add Modifiers tab (see Ill. 24). There will be an input text field to
enter the parameter name with its new desired value. If the desired parameter is
part of a subcomponent, then the name of the subcomponent has to be entered first,

followed by a parenthesis, "(", and then the parameter name and its new value. For
example, the component Joint_2D from the Pendulum Library contains two
revolute joints (Rx and Rz) from the MultiBody Library. Each of these contains a
parameter q that determines the initial starting angle of the joint for the simulation.
By default, this value is zero. To change it to some non-zero value (e.g. 0.2 radians)

37

Illustration 22 Screen shot of diagram-based mode

Illustration 24 Right click on object to open this window Illustration 23 Click on Add Modifiers

for one of the joints (e.g. Rx) the modifier Rx(q(start=0.2)) has to be entered. If
more than one parameter of a component has to be changed, then all parameters
have to be added to the same modifier but separated by commas, for example:
Rx(q(start=0.2), startValueFixed=true) (see Ill.25).

In the text-based mode, the modifiers can be entered directly after the main
component declaration. Taking the previous example, it would look as follows in
the text-based mode:
 Pendulum.Joint_2D R1(Rz(q(start=0.2)), Rx(q(start=0.2))).

Multi-Body Library
The MultiBody Library, part of the ModelicaAdditions Library, contains the main
building block that were used to construct the spherical pendulum. As already
mentioned, processes modeled with this library may be animated in 3-D. Below is a
description of some of the important and essential parts of this library, specifically
in respect to the spherical pendulum. Even though, a quite comprehensive HTML-
based documentation with a description of each Modelica library part and its
parameters is provided with Dymola.
• InertialSystem - location: Parts sub-library- This component defines the

absolute origin of the modeling room (see Ill. 26).
• Joints sub-library: This sub-library contains all possible joints to connect any

two pieces from the MultiBody Library and define their movement relative to
each other. Joints may also be connected together to increase their degree of
freedom. The names of the individual joints are self-explanatory that an
individual description of each one is superfluous (see Ill.27).

38

Illustration 25 Screen shot of adding modifier

• ShapeBody - location: Parts sub-library - This block is used to represent the
physical shape and characteristics of the modeled process. Many standard
shapes are already defined and further custom shapes can be imported as dxf
files. It consists of the two parts Shape and Body that are also found in the
Parts sub-library. Shape contains all the visual parameters while Body defines
all the physical characteristics of the ShapeBody (see Ill. 28 and 29).

The visual parameters are those that determine how the 3D animation will
appear. In order for the model to have any practical meaning, the physical
parameters have to be set as properly as possible. If the meaning of these
parameters are correctly understood and calculated, building a complicated
model becomes quite easy since Modelica takes care of all the complex
calculations. The various parameters are explained in more detail below (see Ill.
29). All parameters have SI units.

39

Illustration 26 Screen shot of Joints Library

Illustration 27 InertialSystem
Icon

Illustration 28 Diagram of ShapeBody

Illustration 29 ShapeBody
Icon

• Frame A. The origin of this frame is one of the two places where the
ShapeBody connects to other parts. It can be viewed as the "head" of the
body.

• Frame B. The origin of this frame is the other place where the ShapeBody
connects to other parts. It can be viewed as the "tail" of the body.

• r: This is the vector from the origin of Frame A to the origin of Frame B. It
therefore determines where other parts attached to the "tail" of the
ShapeBody would connect relative to Frame A. The magnitude as well as
the direction of this vector are relevant.

• rCM: This vector determines the position of the center of mass of the
ShapeBody relative to the origin of Frame A. The magnitude as well as
the direction of this vector are relevant.

• m: This is the mass of the ShapeBody.
• I11: This is the element (1,1) of the inertia tensor. Assume that the inertial

system underwent a translation and is now located at the center of mass of the
ShapeBody. This component is then the moment of inertia of the
ShapeBody around the x-axis going through the center of mass.

• I22: This is the element (2,2) of the inertia tensor. The same assumption as
above is valid only that now it is the moment of inertia around the y-axis.

• I33: This is the element (3,3) of the inertia tensor. The same assumption as
above is valid only that now it is the moment of inertia around the z-axis.

• I21, I31, I32: These are the non-diagonal elements of the inertia tensor and
are called products of inertia. For parts in which the center of mass has a
symmetrical position within the body, these components of the inertia tensor
are zero.

• Shape: The following shapes can be assigned to a ShapeBody: box,
sphere, cylinder, cone, pipe, beam, gearwheel and wirebox. It is also possible
to assign externally created shapes.

• r0: This is the vector from the origin of Frame A to the origin of the
visualization. So it is basically possible to connect two parts that visually do
not appear to be connected at all (see Ill.31).

• LengthDirection: This vector specifies in which direction the length of the
object is oriented relative to Frame A. Here the magnitude of the vector has
no relevance but the direction does.

• WidthDirection: This vector specifies in which direction the width of the
object is oriented relative to Frame A. Here the magnitude of the vector has
no relevance but the direction does.

40

• Length: This number specifies how long the visual length of the object is in
direction of the LengthDirection starting at the origin of the visualization as
determined by r0.

• Width: This number specifies the width of the visual representation. The
width is distributed equally in both width directions starting from the origin of
the visualization. In case of a cylinder or sphere, it may be viewed as the
diameter.

• Height: This specifies the height of the visual representation. The direction
of the height is perpendicular to both the length and the width directions.

41

Illustration 30 Screen shot of parameter window

Illustration 31 Even though the two bars in the figure to the right do not appear connected, they are and
behave physically the same as the construction in the figure to the left.

• Material: With this four element vector, the color and specular of the
ShapeBody can be determined. The first three values are the RGB values and
the fourth is the specular value. Specular =1 gives a metallic appearance.

• Additional: There are additional parameters for the pipe and cone shapes.

Building a Model
The easiest way to build the model of the desired process is to connect the
necessary library components in the diagram-based view. This procedure could
almost be compared to building a Lego model. Of course, there might be instances
when it is necessary to change to the text-based view, for example when a loop
structure is required. Also, when adding library components that have parameters

that need to be set, such as the k value of a gain, it is wiser to do so later with the
use of a script file (see following section).
Once the model has been completed, it is ready to be translated. This is done by
changing to the simulation mode of Dymola by clicking on the simulation tab on the
lower right of the screen (see Ill. 22). To translate the model, press the translate icon
(see Ill. 32). If the translation was successful, true will appear in the terminal
window (see Ill. 32) on the bottom and all the components will be listed on the left
hand side of the Dymola window (see Ill. 32).
The next step is to create and run the script file mentioned earlier. This is basically
a text file that lists all the parameters of the different components with their desired
values. For example, if there is a gain component Negate that should be set to
negative one, the entry in the script file would be as follows:

42

Illustration 32 Screen Shot of Simulation mode

Negate.k[1]=-1;
It is important to save this text file with an .mos extension so that Dymola
recognizes it. To execute the script file, click on the script icon (see Ill. 32) and
select the script file in the dialog box. If there were no problems with executing the
script file, true will again appear in the terminal window on the bottom. Otherwise,
false will be displayed which means that one of the declared parameters in the
script file was either misspelled or does not exist and Dymola could not find it.
Subcomponents are separated by a period from their supercomponent.
The advantage of a script file is that it eases the changing of parameter values
between simulations. Instead of always going back to the model-mode of Dymola,
changing the parameter value at its source, returning to the simulation-mode and re-
translating the entire model, one can just change the parameter value in the script
file and re-load it.
Finally, when the translations was successful and the script file was loaded without
any errors, the model can be simulated by clicking on the simulate icon (see Ill. 32).
Depending on the complexity of the model, the simulation time will vary.
Sometimes the simulator will say “...a large amount of work has been expected
(about 500 steps) in the integrator...”. This is most likely the result of non-ideal
values for some of the parameters. For example, when simulating the spherical
pendulum with the controller, this message would occur if some of the feedback
gains were too large. In this case the simulator does not stop calculating but just
slows down drastically. The wise thing is to kill the dymosin simulator in the Linux
shell window, re-tune the parameter values in the script file, and retry simulating
the model in hopes that it will work fine this time.
If the model was built using the MultiBody Library, then the 3D animation model
will appear in the animation window once the simulation is complete. By pressing
on the green play button (see Ill. 32), the animation of the process will start.
Clicking on a body part, the path it takes in space is drawn. Additionally, the view
position of the animation can be rotated and translated in any desired way making it
possible to view animation from any position and angle. At the same time, by
selecting the variables that appear on the left hand side of the window, their
progression during the simulation can visually be observed on a graph. For
example, when tuning a controller, one could check the performance of the
controller, when trying different values for the controller parameters, by plotting the
error between the reference and actual signal.
After having simulated the model, it is also possible to linearize the model around
its initial starting position. This is especially useful when working with a non-linear
model, such as the spherical pendulum, and wanting to create a linear controller for
a specific operating point. Modelica calculates the state-space matrices of the
linearized model and saves the results in the file dslin.mat. This gives the added
advantage that the linearized model may then be loaded into Matlab for further
calculations, as will be shown later in chapter 3, The Controller. To linearize the
model, go to menu heading Simulation and select Linearize.

43

Appendix B – Matlab m-files

extract_2D.m
%extracts the proper matrices

function [A2,B2,C2,D2]=extract_2D(A,B,C,D)

A2=zeros(4);
A2(1,1)=A(1,1);
A2(1,2)=A(1,2);
A2(1,3)=A(1,5);
A2(1,4)=A(1,6);

A2(2,1)=A(2,1);
A2(2,2)=A(2,2);
A2(2,3)=A(2,5);
A2(2,4)=A(2,6);

A2(3,1)=A(5,1);
A2(3,2)=A(5,2);
A2(3,3)=A(5,5);
A2(3,4)=A(5,6);

A2(4,1)=A(6,1);
A2(4,2)=A(6,2);
A2(4,3)=A(6,5);
A2(4,4)=A(6,6);

B2=[B(1,1);B(2,1);B(5,1);B(6,1)];

C2=[C(1,1),C(1,2),C(1,5),C(1,6)];

D2=D(1,1);

getPoles.m
% inputs: radius is actually the desired frequency
% damping is the desired damping (between 0 and 1)
% states is the number of states (poles) of the system
% output: P is the vector with the desired poles. They
% all have the same frequency and are spaced equiangle

function [P]=getPoles(radius, damping, states);

%angle in first quadrant
theta=asin(damping);

%angle in second quadrant

44

theta=theta+(pi/2);

%first pole
p1x=radius*cos(theta);
p1y=radius*sin(theta);
p1=complex(p1x,p1y);

p2=conj(p1);

%angle between outer most poles
difference=2*pi+angle(p2)-angle(p1);

theta2=theta;

P=[p1,p2];

if states>2

 %divide space between outer most poles intoequiangle regions
 delta=difference/(states-2+1);

 %even number of poles desired
 if mod(states,2)==0
 disp('even number of states');

 %since poles come in pairs, only need to calculate one of them
 stop=(3+((states-4)/2));
 for i=3:stop,

 theta2=theta2+delta;

 tempX=radius*cos(theta2);
 tempY=radius*sin(theta2);
 temp=complex(tempX,tempY);
 temp2=conj(temp);

 P=[P,temp, temp2];
 end;
 end;

 %odd number of poles desired
 if mod(states,2)~=0
 disp('odd number of states');

 %since poles come in pairs, only need to calculate one of them
 stop=(3+(floor((states-2)/2)));
 for i=3:stop,

 theta2=theta2+delta;

45

 tempX=radius*cos(theta2);
 tempY=radius*sin(theta2);
 temp=complex(tempX,tempY);

 if i<stop
 temp2=conj(temp);
 P=[P,temp, temp2];

 else
 %no conjugate because on real axis

 P=[P,tempX];

 end;
 end;
 end;
end;

46

