
ISSN 0280-5316
ISRN LUTFD2/TFRT--5741--SE

Cooperative Robots

Chin Yuan Chong

Department of Automatic Control
Lund Institute of Technology

March 2005

Document name
MASTER THESIS
Date of issue
March 2005

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--5741--SE
Supervisor
Rolf Johansson and Anders Robertsson at LTH in Lund

Author(s)
Chin Yuan Chong

Sponsoring organization

Title and subtitle
Cooperative Robots (Samarbetande robotar)

Abstract
The topic of this master thesis is cooperative robots. The master and slave configuration is to be used for cooperative tasks
and the task chosen is to move a flexible beam together. A trajectory is fed to the master robot to move it to the desired
positions. The slave robot then follows the movement of the master robot by force control using force measurements from
a force sensor.
All experiments are performed in the Robotics Laboratory at the Department of Automatic Control at Lund Institute of
Technology. The robots used are an ABB IRB 6 robot and an ABB IRB 2000 robot. The
ABB IRB 6 robot is assigned to be the master robot and the ABB IRB 2000 robot as the slave robot. The ABB IRB 2000
robot is equipped with a force and torque sensor of type JR3 for force control.
The thesis can be divided broadly into three parts. The first part is a background study of the robot systems and
kinematics, on path and trajectory generation and also on the various robot force control schemes.
The second part is about optimal trajectory generation. The desired path is first expressed in terms of path index in
Cartesian space. It is then converted to joint space with variable step size to ensure that the deviation from the original
path is kept within a given limit. The optimal trajectory is then generated using Linear Programming. The third part
consists of the application of parallel force/motion control
schemes to the slave robot to enable it to follow the master robot. The motion controller is simply the built-in controllers
of the IRB 2000 robot. The force controllers used are direct force, impedance and admittance controllers. The schemes are
first tested in Matlab Simulink where the robots are simulated by a first order system for each joint. The force
measurements are generated by a contact model which simulates the contact forces and torques between the gripper of the
IRB 2000 robot and the beam. The resulting joint values are then sent to a Java visualization program written in the
platform Eclipse.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
72

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

Contents

1 Introduction 3
1.1 Problem Formulation . 3
1.2 Experimental Platform . 3

1.2.1 ABB IRB 2000 Robot 4
1.2.2 Robot Control System for IRB 2000 5
1.2.3 Force Sensor JR3 . 6
1.2.4 ABB IRB 6 Robot . 6
1.2.5 Robot Setup . 7

1.3 Simulation Platform . 7

2 The Robot System 9
2.1 ABB IRB 2000 Robot . 9

2.1.1 Forward Kinematics 9
2.1.2 Inverse Kinematics 12
2.1.3 Velocity Kinematics 12
2.1.4 Force Jacobians . 14

2.2 ABB IRB 6 Robot . 14
2.2.1 Forward Kinematics 14
2.2.2 Inverse Kinematics 16

2.3 Actuator Space . 18

3 Trajectory Generation 19
3.1 Path Generation in Cartesian Space 19
3.2 Path Generation in Joint Space 20
3.3 Optimized Trajectory Generation 22

4 Robot Control Schemes 25
4.1 Position-Velocity Control . 25
4.2 Stiffness Control . 25
4.3 Force Control . 26

4.3.1 Direct Force Control 26
4.3.2 Impedance Control 27
4.3.3 Admittance Control 28

1

5 Robot Simulations 30
5.1 Trajectory Planning . 31
5.2 Gravity Calibration . 32
5.3 Gravity Modelling . 33
5.4 Contact Model . 34
5.5 Controllers . 35
5.6 Simulation Results . 36

6 Robot Experiments 46
6.1 Problems . 46
6.2 Experiments . 46

7 Conclusions and Future Work 48
7.1 Conclusions . 48
7.2 Future Work . 48

A Matlab Codes 52
A.1 Codes for Kinematics . 52
A.2 Codes for Trajectory Generation 54

B Robot Force Control Blockset 60

C Simulink Models 61

2

Chapter 1

Introduction

1.1 Problem Formulation

The topic of this master thesis is cooperative robots. The master and
slave configuration is to be used for cooperative tasks and the task cho-
sen is to move a flexible beam together. A trajectory is fed to the master
robot to move it to the desired positions. The slave robot then follows
the movement of the master robot through a force control scheme.

To solve this problem, it is divided into several parts:

• A background study of the robot system and kinematics, Chapter 2
and also of robot control schemes which are suitable for cooperative
tasks, Chapter 4.

• Path and trajectory generation, Chapter 3.

• Implementation of the robot control schemes in Matlab Simulink
and simulations to check the performances of these schemes, Chap-
ter 5.

• Robot experiments to verify the results of the simulations, Chap-
ter 6.

Due to some practical problems which occurred during the thesis work,
robot experiments cannot be done to verify the results of the simulations.
These problems are discussed briefly in Section 6.1.

1.2 Experimental Platform

All experiments are performed in the Robotics Laboratory at the De-
partment of Automatic Control at Lund Institute of Technology. The
industrial robots used are an ABB IRB 2000 robot and an ABB IRB 6

3

Figure 1.1: The ABB IRB 2000 robot.

robot. The IRB 2000 robot is equipped with a wrist mounted force and
torque sensor of type JR3.

1.2.1 ABB IRB 2000 Robot

One of the robots used in the thesis is the 6-DOF (degrees of freedom)
ABB Industrial Robot 2000, IRB 2000. It has seven links connected
by six joints, as shown in Figure 1.1. There is a mechanical coupling
between joint five and six. Joint one, four and six are cylindrical joints
while joint two, three and five are revolute joints. Joint one turns the
robot by the base, joint two moves the lower arm back and forth, joint
three moves the upper arm up and down. Joint four turns the wrist unit,
joint five bends the wrist unit around its centre while joint six turns the
force sensor and the end-effector which are mounted on the tip of the
wrist. Both the force sensor and the end-effector are rotated 230 degrees
relative to the positive direction of joint six.

4

data1− 6 are used for logging signals
with the Excitation handler

Input to Robot System

Output from Robot System

AnalogIn, AnalogOut: [−1,1] −> −10V..+10V

AnalogIn: [−1,1] −> −10V..+10V

In1

Joint angles [rad] q_1
q_2
q_3
q_4
q_5
q_6

Joint velocities [rad/s] dq_1
dq_2
dq_3
dq_4
dq_5
dq_6

q_1r [rad]
q_2r
q_3r
q_4r
q_5r
q_6r

dq_1r
dq_2r
dq_3r
dq_4r
dq_5r
dq_6r
mode

Fx
Fy
Fz
Mx
My
Mz

La1
La2
La3
La4
La5
La6

AnalogIn0
Out39
Out40

Joint angles [rad] q[1..6]
q_r [1..6]

Subsystem1

q_1r [rad]
q_2r
q_3r
q_4r
q_5r
q_6r
dq_1r [rad/s]
dq_2r
dq_3r
dq_4r
dq_5r
dq_6r
tau_1r [Nm]
tau_2r
tau_3r
tau_4r
tau_5r
tau_6r
data_1
data_2
data_3
data_4
data_5
data_6
AnalogOut0

Out1

Subsystem

ArmCtrl_motor_In

Output from robot
and input to Simulink

ArmCtrl_motor_out

Output from Simulink
and input to Robotsystem

Figure 1.2: The Simulink template used for control scheme implementa-
tions

1.2.2 Robot Control System for IRB 2000

All implementations of the control schemes are done in Simulink using
the real-time workshop in Matlab. The Simulink template in Figure 1.2
for arm control is available for this purpose.

The Simulink template has twenty five inputs and forty outputs. When
designing a controller, the inputs torqueref can be used as input for the
control signal and the built-in controllers, as explained in Section 4.1,
will be turned off. The outputs data1 to data6 can be used for logging
signals. The inputs L1 to L6 can be used to change parameters during
run-time. When L5 is set to a value more than 100, the force sensor will
be reset. The blocks Input to Simulink and Output to Simulink are S-
functions written in C that enable the external modules to communicate
with the Simulink inputs and outputs.

A Matlab program, Exc_handler is available to feed in excitation sig-
nals to the IRB 2000 robot. This program can be used to define position
and velocity references to the built-in controllers as well as direct torque
inputs. The excitation signals can be step, ramp, sinusoid, noise (PRBS)
or arbitrary signals from Matlab workspace. Outputs from the excitation

5

Figure 1.3: Force Sensor JR3

like the input torques, position measurements, velocity measurements
(which are differentiated position measurements), force and torque mea-
surements from the force sensor are also recorded. These signals can
then be exported to Matlab workspace for use.

1.2.3 Force Sensor JR3

The force sensor used, see Figure 1.3, is of type 100M40A manufactured
by JR3 Inc. It is a wrist sensor and is a mechanical structure instru-
mented with strain gauges which can measure forces in the x-, y- and
z-directions as well as the corresponding torques. It is mounted on the
wrist of the robot between the end-effector and joint six and results in
a rotation of 230 degrees about the z-axis of joint six. It is DSP-based
and has a sample rate of 8kHz. It can measure forces up to 400N and
torques up to 40Nm. To protect the force sensor, it is connected to the
end-effector via a pneumatic lock linked to the emergency stop.

1.2.4 ABB IRB 6 Robot

The other robot used in the thesis is ABB Industrial Robot IRB 6 as
shown in Figure 1.4. Unlike the IRB 2000 robot, it has only five DOF
and thus unable to reach all points in the workspace. Hence, given a
desired position, the goal pose of the IRB 6 robot might have to be mod-
ified to lie in the robot’s subspace. The function modorient.m is written
for this purpose using the algorithm by Hedenborn and Olsson [6]. On
top of that, the working range of joints are much smaller than that for
the IRB 2000 robot. This results in a much smaller workspace.

Joint one and five are cylindrical joints while joint two, three and four
are revolute joints. There is a mechanical coupling between joint two

6

Figure 1.4: The ABB IRB 6 robot.

and three. Joint one turns the robot round the base, joint two moves
the lower arm back and forth, joint three moves the upper arm up and
down. Joint four turns the wrist unit and joint five bends the wrist unit
around its centre.

1.2.5 Robot Setup

The setup of the robots in the Robotics Laboratory is as shown in Fig-
ure 1.5. The position of the robots relative to each other in the lab has
not been calibrated. Rough measurements show that the base of the
IRB 2000 robot is located at

[
1.15 −2.15 0

]
m according to the IRB

6 robot’s base coordinate system. On top of that, the IRB 2000 robot is
rotated π

4 radians about the z-axis of the same coordinate system.

1.3 Simulation Platform

A Java visualisation program written in the platform Eclipse is avail-
able at the department. Java classes for the kinematics of the IRB 2000
robot are already available. Java classes for the kinematics of the IRB
6 robot are written in order to use the program for the IRB 6 robot as well.

The robots are placed relative to each other in the same way as they
do in the lab. The view of the camera is changed such that both robots

7

Figure 1.5: Robot Setup in the Robotics Laboratory

can be seen clearly.

As the IRB 2000 robot object available at the department does not have
the sensor and the end-effector, a simple cuboid is added to the flange
of the robot to represent the translation of 391mm and rotation of 230
degrees due to the sensor and the end-effector. A base is also added to
the IRB 6 robot object.

8

Chapter 2

The Robot System

2.1 ABB IRB 2000 Robot

In the master and slave configuration which will be applied later in the
cooperative task, the IRB 2000 robot is assigned to be the slave robot.
This is due to the fact that it is equipped with a force sensor which en-
ables force feedback and that it has a much bigger workspace and has
six DOF.

Since the IRB 2000 robot is the slave robot and has to follow the tra-
jectory of the master robot, more has to be known about its kinematics.
In addition to the forward and inverse kinematics, the velocity kinemat-
ics and force transmission have to be considered.

2.1.1 Forward Kinematics

The position and orientation of the end-effector, a gripper in the case of
the IRB 2000 robot, can be calculated using forward kinematics when
all joint values are known. Using the standard Denavit-Hartenberg con-
vention by Denavit and Hartenberg [5], Figure 2.2, the orientation of the
coordinate systems for the robot are defined as shown in Figure 2.1. The
link parameters ai, α i, di and ϕ i obtained using this definition can be
seen in Table 2.1.1.

The link length, ai, is the offset distance between the zi−1 and zi axes
along the xi axis. The link twist, α i, is the angle from the zi−1 to the zi
axis about the xi axis. The link offset, di, is the distance from the origin
of frame i − 1 to the xi axis along the zi−1 axis. The joint angle, ϕ i, is
the angle between the xi−1 and the xi axes about the zi−1 axis. S refers
to the sensor frame and TCP to the Tool Center Point of the gripper. θ i
are the absolute joint values while ϕ i are the relative joint values.

9

−400 −200 0 200 400 600 800 1000 1200

−1000

−500

0

500

1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

zTCP

yTCP

xTCP

zSxS

yS

z6

x6
y5

z5
y6
x5

X

y4

x4
z4

y2

x0

x1

z3

y3

z0

y1

x2

x3

y0

z1

z2

Y

Z

Figure 2.1: Coordinate Systems for IRB2000

link ai[mm] α i[rad] di[mm] ϕ i[rad]
1 0 −π

2 750 θ1
2 710 0 0 θ2 − π

2
3 125 −π

2 0 θ3 − θ2
4 0 π

2 850 θ4
5 0 −π

2 0 θ5
6 0 0 100 θ6 + π
S 0 0 110 230

180π
TCP 0 0 281 0

Table 2.1: The ai, α i, di and ϕ i parameters for IRB 2000

The transformation matrix i−1
i T of coordinate system i with respect to

coordinate system i− 1 is obtained by:

i−1
i T = Rotz,ϕ i ⋅ Transz,di ⋅ Transx,ai ⋅ Rotx,α i

The resulting transformation matrix can be divided into two parts, the
rotation matrix R which represents the orientation of the ith coordinate
system relative to that of the i− 1th coordinate system and the position
vector p which represents the position of the origin of the ith coordinate

10

Figure 2.2: The Standard Denavit-Hartenberg Convention

system relative to that of the (i− 1)th coordinate system.

i−1
i T =




R11 R12 R13 px
R21 R22 R23 py
R31 R32 R33 pz
0 0 0 1




To change between the various coordinate systems, the transformation
matrices are multiplied. To calculate the forward kinematics, all the
transformation matrices are multiplied.

0
TCPT = 0

1T ⋅ 1
2T ⋅ 2

3T ⋅ 3
4T ⋅ 4

5T ⋅ 5
6T ⋅ 6

ST ⋅ S
TCPT

Sometimes, it is more convenient to express the orientation in terms of
the unit quaternion since only four values are required as opposed to
nine values in a rotation matrix. The unit quaternion is a 4 � 1 vector
which is given by u = cos θ

2 , vx = nx sin θ
2 , vy = ny sin θ

2 and vz = nz sin θ
2 .

The rotation matrix R can be represented by these four values:

R =




2u2 − 1+ 2v2
1 2v1v2 − 2uv3 2v1v3 + 2uv2

2v1v2 + 2uv3 2u2 − 1+ 2v2
2 2v2v3 − 2uv1

2v1v3 − 2uv2 2v2v3 + 2uv1 2u2 − 1+ 2v2
3




To obtain the unit quaternion from the rotation matrix,

u = 0.5 ⋅
√

R11 + R22 + R33 + 1
v1 = 0.5 ⋅

√
R11 − R22 − R33 + 1 sinn(v1) = sinn(R32 − R23)

v2 = 0.5 ⋅
√

R22 − R11 − R33 + 1 sinn(v2) = sinn(R13 − R31)
v3 = 0.5 ⋅

√
R33 − R11 − R22 + 1 sinn(v3) = sinn(−R12)

11

The function forward2400.m is available at the department to calculate
the forward kinematics of the IRB 2000 robot from the base frame to
frame six using ABB convention. A simple function for forward kine-
matics which uses the method described above is used when the forward
kinematics from the base frame to the TCP frame is required.

2.1.2 Inverse Kinematics

Inverse kinematics is used to find the values of the joint variables that
will place the end-effector at a desired location with a desired orientation
relative to the base. The problem of inverse kinematics of the 6-DOF IRB
2000 robot corresponds to solving a set of six nonlinear, transcendental
equations with six unknowns (joint variables). There may be no solution,
an unique solution or multiple solutions.

As the IRB 2000 robot has a spherical wrist, i.e. the last three joint
axes intersect at the same point, WCP (Wrist Center Point), the inverse
kinematics problem can be divided into two parts. Firstly, the WCP is
calculated given the position and orientation of the TCP. From the wrist
position, the first three joint values can be found. Secondly, with the val-
ues of the first three joints, the last three joint values can be computed
to achieve the given orientation.

Two types of singularities can arise in the computation of inverse kine-
matics: arm singularity and wrist singularity. Arm singularity occurs
when both the x- and y-coordinates of the WCP are close to zero. In this
case, joint one can be chosen freely and is set to be zero. Wrist singular-
ity occurs when the rotation of joint five aligns joint four and joint six.
This means that joint four and six can be chosen freely as long as the
sum of these two joints is zero. Joint four and six are set to zero when a
wrist singularity occurs.

The function invkin2400.m is available at the department to calculate
the inverse kinematics of the IRB 2000 robot.

2.1.3 Velocity Kinematics

In addition to the kinematic relationship between the joint values and
the end-effector’s location, the mapping of the joint velocities to the end-
effector’s linear and angular velocities is also useful. This mapping is
specified by the velocity Jacobian of the robot and it changes as the
configuration of the robot changes. At singularities, the Jacobian be-
comes singular and this means that there is some direction in Cartesian

12

space along which it is impossible to move the hand of the robot no mat-
ter which joint rates are selected. There are two types of singularities:
workspace boundary singularities which occur when the end-effector is
near or at the boundary of the workspace and workspace interior sin-
gularities which is the same as the wrist singularity explained in the
Section 2.1.2.

The Jacobian can be divided into two parts:

J =
[

Jv
Jω

]

where Jv relates the velocity of the joint variables, q̇, to the linear ve-
locity, v and Jω relates the velocity of the joint variables to the angular
velocity, ω . This can be expressed as:

[
v
ω

]
= Jq̇

Each column of the Jacobian is obtained from each joint of the robot and
the structure of the column depends on the type of joint.

Revolute joints: Ji =
[
Ozi � (Oo6 − Ooi)

Ozi

]

Prismatic joints: Ji =
[
Ozi
O0

]

oi is the origin of the ith frame in terms of the base frame and zi is
the z-axis of the ith frame in terms of the base frame. Both oi and zi can
be obtained from the transformation matrices from Section 2.1.1. The
velocity jacobian obtained is with respect to relative joint angles. It has
to be with respect to absolute joint angles in some applications. This
is done by replacing column two by the old column two substracted by
column three.

absJ =
[

J1 (J2 − J3) J3 J4 J5 J6
]

Velocity transmission, i.e. the Cartesian transformation of linear and
angular velocities between the different coordinate systems is often nec-
essary in robot control. Given the transformation matrix, i

jT , between
coordinate systems i and j, where

i
jT =

[i
j R Op
O0 1

]

13

the matrix operator which corresponds to taking the cross product with
the vector Op can be obtained

i
j P� =




0 −pz py
pz 0 −px
−py px 0




The Jacobian for velocity transmission can then be obtained by using
this matrix operator and the R matrix according to Craig [4]

i
j Jvel =

[i
j R 0

i
j P � i

j R
i
j R

]

2.1.4 Force Jacobians

The force Jacobian is obtained simply by taking the transpose of the
velocity jacobian. This Jacobian relates the forces and torques at the
end-effector to the joint torques. Similarly, the Jacobian for force trans-
mission between different frames is the transpose of the Jacobian for
velocity transmission.

2.2 ABB IRB 6 Robot

The IRB 6 robot is chosen to be the master robot. The forward and in-
verse kinematics is required for trajectory generation. However, velocity
and force Jacobians are not necessary since the force control scheme is
not applied on this robot.

2.2.1 Forward Kinematics

The parameters for the IRB 6 robot is given in Table 2.2.1. However,
since the IRB 6 robot has only five DOF and has a simpler structure, a
more straightforward method of computing the forward kinematics, ac-
cording to Nilsson [11], will be used. The calculations are based on the
definition of the coordinate system according to ABB Robotics [2] which
is shown in Figure 2.3.

To get the position of the end-effector, Ov5:

Ov1 =




b
0
0




Ov2 = Dz(θ1)




0
0
l1




14

link ai[mm] α i[rad] di[mm] ϕ i[rad]
1 0 0 0 θ1
2 0 π

2 0 θ2
3 450 0 0 θ3
4 670 0 0 θ4
5 0 −π

2 0 θ5

Table 2.2: The ai, α i, di and ϕ i parameters for IRB 6

PSfrag replacements

θ1

θ2

θ3 θ4 θ5

l1

l3

l4

x
y

z

Ov1

Ov2

Ov3 Ov4 Ov5

Figure 2.3: Coordinate System for IRB 6

15

Ov3 = Ov2 + Dz(θ1)Dy(θ2)




0
0
l3




Ov4 = Ov3 + Dz(θ1)Dy(θ3)




l4
0
0




Ov5 = Ov4 + Dz(θ1)C




f + tool
0
0




where b = 157mm, l1 = 700mm, l2 = 450mm, l3 = 670mm and f =
95mm and Dx, Dy and Dz are 3 � 3 rotation matrix about x-, y- and
z-axis respectively. The tool length varies according to the tool that is
attached to the flange.

The orientation of the end-effector is given by the rotation matrix

R = Dz(θ1)Dy(θ4)Dx(θ5)

2.2.2 Inverse Kinematics

According to Nilsson [11], the inverse kinematics of the IRB 6 robot can
be calculated as below.

Given the Cartesian position Ov5 =
[

x y z
]T of the end-effector, joint

one can be obtained by θ1 = arctan y
x .

With the value of joint one and the rotation matrix R, matrix C can
be computed by C = Dz(θ1)−1R. From this matrix, joint four and five
can be obtained directly by the equations θ 4 = arctan(−C31

C11
) + nπ and

θ5 = arctan(−C23
C22
) + nπ respectively.

Let Ok = C




f
0
0


 =




k1
k2
k3




To find θ2 and θ3, vr which is the length from the base to joint four
in the x y plane and z4 which is the length from the base to joint four in
z-direction has to be computed.

vr =
√

x2
4 + y2

4 =
√
(x + sinθ1k2 − cosθ1k1)2 + (y− sinθ1k1 − cosθ1k2)2

z4 = z− k3

The length from joint two to joint four in the x y-plane, v′r, is equal to vr
while the length from joint two to joint four in z-direction, z′4, is equal to

16

PSfrag replacements

L
l3

l4

v′r

z′4

θ2

θ3
K0

A0

A1

Figure 2.4:

z4 − 700.

According to Figure 2.4,

L =
√
(v′r)2 + (z′4)2

By cosine theorem,

A0 = arccos
l2
3 + L2 − l2

4
2l3 L

and by Pythagoras Theorem,

A1 = arctan
z′4
v′r

With the values of A1 and A0, θ2 can be obtained by

θ2 = −A1 − A0 +
π
2

Using the cosine theorem again,

K0 = arccos
l2
4 + l2

3 − L2

2l3l4

With the value of K0, θ3 can be obtained by

θ3 = −K0 + θ2 +
π
2

17

2.3 Actuator Space

The joint values obtained from inverse kinematics are in joint space and
they have to be converted to actuator space before they can be used. For
the IRB 2000 robot, given the gear ratios Ni, the conversion is straight-
forward except for joint six due to the mechanical coupling between joint
five and six.

The conversion is given by θ i = ϕ i/Ni for joint one to five and θ6 =
(ϕ6 + ϕ5)/N6 for joint six. θ i are the joint values in joint space and ϕ i
are the joint values in actuator space.

The conversion is more complicated for IRB 6.

θ1 = n1ϕ1

θ2 = a+ b− π − arccos
D2 + E2 − (n2ϕ2

2π + x02)2
2DE

θ3 = d− π
2
− arccos

L2 + M2 − (n3ϕ3
2π + x03)2

2LM
θ4 = n4ϕ4

θ5 = n5(ϕ5 +ϕ4)

where ni are the gear ratios for the IRB 6 robot.

18

Chapter 3

Trajectory Generation

In order to make a robot move from one position to another, a path has to
be generated in order for the motion to be smooth. A path is a geometric
representation in either Cartesian space or joint space.

During the motion, the linear velocity and acceleration of the end-effector
and the angular velocity and acceleration of the joints of the robot have
to stay within certain limits. At the same time, the motion should be
completed in the minimum possible time. Thus, a velocity profile of the
path is necessary. A path with a velocity profile is called a trajectory.

To generate a trajectory, a path in Cartesian space is first generated
and then converted to joint space. Optimization is then done on the path
in joint space to get the velocity profile for the trajectory.

3.1 Path Generation in Cartesian Space

To generate a path from arbitrary points in Cartesian space which the
robot has to go to, the Cartesian path has to be parameterized. For mo-
tion along a straight line from point p1 to point p2, the position along
the path can be expressed as p = p1 + l(p2 − p1), 0 ≤ l ≤ 1.

When considering a three point linear motion, for example moving from
point p1 to point p3 via point p2, in order to prevent discontinuities in
velocities and acceleration, a zone of radius z2 is specified such that the
robot moves from p1 to p2 but starts moving towards p3 when inside a
circle of radius z2 around p2, see Figure 3.1.

A number of requirements can be formulated for the behavior of the path
inside the zone. A fundamental requirement is that the path is contin-
uous with continuous derivative. Another requirement is that when in-

19

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x [m]

y
[m

]

Figure 3.1: Cartesian Path with a zone at point p2.

terconnecting the two linear sections, the path inside the zone must be
symmetric.

The path is represented by sections, Pj(l), l ∈ [−lz1, lz2] and j is the
section number. Since different sections can have different lengths, the
derivative of pj,x(l) with respect to l is not always a continuous function
in the point where we go from section j − 1 to section j. This is why the
sections are grouped according to Figure 3.2.

For the second section, lz1 is the value of l where p2 + l(p3 − p2) in-
tersects the zone and lz2 = 1. Hence the range of l within the zone is
[−lz1, lz1] and [lz1, 1] outside the zone.

A second order polynomial is used to represent the path within the zone.
A more detailed description of path representation can be found in Norr-
löf [13]. Path generation in Cartesian space is done using the Path Gen-
eration Toolbox for Matlab by Nyström and Norrlöf [14].

3.2 Path Generation in Joint Space

After the path representation in Cartesian space is obtained, the next
step is to transform it to joint space. This is in general not possible to
do analytically. Instead, the path must be transformed using the inverse
kinematics of the robot at discrete points. Cubic splines are used to ob-

20

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x [m]

y
[m

]

Figure 3.2: Representation of the path in sections. Solid line is section
1, dashed line is section 2.

tain a path in joint space that approximates the true path.

To ensure that the deviation from the true path stays within a given
limit, variable step size is used. If the error is within limits, the step
size is doubled for the next step to get faster conversion. If not, the step
size is halved and the step repeated.

The iterative algorithm for spline interpolation according to Norrlöf [13]
is as follow:

1. Compute the inverse kinematic solution at P(l) and P(l + δ l), re-
sulting in φ(l) and φ(l + δ l).

2. Find an estimate of dφ(l)
dl and dφ(l+δ l)

dl using difference approxima-
tion.

3. Compute the coefficients in the cubic spline

φ̂(l) = 2(φ k−φ k+1)+δ k(φ ′k+φ ′k+1)
δ 3

k
(l − lk)3 −

3(φ k−φ k+1)+δ k(2φ ′k+φ ′k+1)
δ 2

k
(l − lk)2 +

φ ′k(l − lk)

where lk ≤ l ≤ lk+1

4. Evaluate the resulting spline, φ̂(l), in l + δ l/2

i T(φ̂(l + δ l/2)) − P(l + δ l/2) i< γ

21

where P(⋅) is assumed to be the path representation in Cartesian
space.
a. If the inequality is fulfilled, keep the spline and let

l = l + δ l,δ l = 2δ l

b. else let
δ l = δ l/2

5. Go to 1.

In cooperative tasks, it is sometimes necessary to have a specific orien-
tation for the tool. However, in the toolbox, the function to convert from
Cartesian space to joint space, cart2jsp.m, returns only the 3�1 position
vector.

This function is modified to generate values for all six joints for the
IRB 2000 robot and five joints for the IRB 6 robot with the possibility
to specify the orientation. The orientations of the two robots are cho-
sen depending on the type of task they are performing. However, the
orientations have to be fixed throughout the trajectory.

3.3 Optimized Trajectory Generation

After the geometric path in joint space is obtained, the next step is to
generate a trajectory which enables the robot to move along the path in
minimum amount of time using a limited amount of energy and keeping
limits on the maximum linear velocity and acceleration and angular ve-
locity and acceleration, see Åkerblad [22].

This results in an optimization problem.

maxa a
subject to amin ≤ a ≤ amax

0 ≤ v ≤ vmax
φ̇min ≤ φ̇ ≤ φ̇max
φ̈min ≤ φ̈ ≤ φ̈max

The variables expressed in terms of ai are then substituted into the op-
timization problem given above and the reformulated optimization prob-
lem is obtained.

maxa ai
subject to amin ≤ a ≤ amax

0 ≤ v2
i−1 + 2ai∆li ≤ v2

i,max

22

...
0 ≤ v2

i−1 + 2
∑n

j=i a j ∆l j ≤ v2
n,max

0 ≤ (dΦ
dli
)2(v2

i−1 + 2ai∆li) ≤ v2
i,max

...
0 ≤ (dΦ

dli
)2(v2

i−1 + 2
∑n

j=i a j ∆l j) ≤ v2
n,max

φ̈ i,min ≤ d2Φ
dl2

i
(v2

i−1 + 2ai∆li) + dΦ
dli

ai ≤ φ̈ i,max

...
φ̈n,min ≤ d2Φ

dl2
i
(v2

i−1 + 2
∑n

j=i a j ∆l j) + dΦ
dli

ai ≤ φ̈n,max

Since the reformulated optimization problem has only acceleration ai as
variable and ai is linear in both the cost function and the constraints,
it can be implemented as a linear program and solved using the linear
programming solver in the Optimization Toolbox in Matlab.

However, it is desirable for the linear velocity to go to zero at the end
of the trajectory. One solution is to make the linear velocity go to zero
linearly at the end by decreasing the maximum velocity linearly for the
last five samples. This method results in a slightly slower trajectory.

Another solution is to use a symmetric method. Optimization is done
from the first and last samples towards the sample in the middle. This
results in a faster and symmetrical trajectory. However, this method re-
quires that the whole path is known beforehand and thus not suitable
for online trajectory generation.

For both solutions, the limits for linear velocity, linear acceleration, an-
gular velocity and angular acceleration are fixed for all time samples
except for the linear velocity at the end in the first solution.

These two solutions are tested on a simple trajectory and the limits are
set to be as below throughout the trajectory. The resultant linear veloc-
ity and acceleraton is shown in Figure 3.3 for the first solution and in
Figure 3.4 for the second solution.

−2 ≤ a ≤ 2
0 ≤ v ≤ 0.25
−4 ≤ φ̇ ≤ 4
−2 ≤ φ̈ ≤ 2

n = 10
∆lc = 0.01

23

The trajectory obtained is then converted to actuator space as described
in Section 2.3. To obtain the reference angular velocity for the trajectory,
the joint values are differentiated and low-pass filtered.

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

Time [s]

Li
ne

ar
 V

el
oc

ity
 [m

/s
]

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

Li
ne

ar
 A

cc
el

er
at

io
n

[m
/s

2]

Figure 3.3: The linear velocity and linear acceleration along the test path
when the first solution is used.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

Li
ne

ar
 V

el
oc

ity
 [m

/s
]

Time [s]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2

Time [s]

Li
ne

ar
 A

cc
el

er
at

io
n

[m
/s

2]

Figure 3.4: The linear velocity and linear acceleration along the test path
when the second solution is used.

24

Chapter 4

Robot Control Schemes

4.1 Position-Velocity Control

In the standard configuration after startup the robot system runs a cas-
caded position- and velocity- PID (Proportional, Integral and Derivative)
controller for each of the six joints, with the velocity loop as the innermost
loop and the position control loop as the outermost loop. The controller
for a single joint is shown in Figure 4.1. The velocity signal used in the
velocity loop is the position signal differentiated and low-pass filtered.

Inner Velocity Control Loop

Outer Position Control Loop

r

y
u

Velocity Control (PID)

u
q

qdot

Robot Joint

r

y
u

Position Control (PID)

2
vel ref

1
pos ref

Figure 4.1: The structure of the built in controller for the control of each
joint.

4.2 Stiffness Control

When the robot is in contact with the environment, the end-effector’s
position and orientation are constrainted along certain task-space di-
rections and a suitable compliant behavior of the robot is required to
accommodate the interaction. Stiffness control, or compliance control,
can be used to achieve this purpose.

25

Stiffness control can be either passive or active. In passive stiffness con-
trol, the end-effector is equipped with a mechanical device composed of
springs and dampers. In active stiffness control, PD control is applied on
the position error. The smaller the gain used in the controller, the more
compliant the robot will be with regard to the environment. The contact
forces are treated as load disturbances and no force measurements are
required for this scheme.

4.3 Force Control

In the execution of certain tasks, for example polishing a window, not
only does the robot have to follow a trajectory, it also has to follow a
force trajectory. This can be achieved by combining a force control scheme
with a motion control scheme. Different force control schemes that will
be discussed in this section are direct force control, impedance control
and admittance control. The built-in position/velocity controllers will be
used for the motion control part.

4.3.1 Direct Force Control

The first force control scheme that will be discussed here is the direct
force control scheme. The force loop consists of a PI-controller acting
on the force error between the desired and the actual contact forces and
torques as shown in Figure 4.2.

q_ref

F

q

Position/Velocity Controlled Robot

F_errorX_mod

Force Control (PI)

X_ref_modifiedq_ref_modified

Cartesian2Joint

X_ref

F_ref

Figure 4.2: The structure of the position-based direct force controller
according to Siciliano and Villani [18].

The controller will then return Xmod which is the modification required
for the trajectory in Cartesian space. The modified trajectory is then
obtained by Xref − Xmod and is converted to joint space and fed to the
position-controlled robot.

26

The parameters for the PI-control should be chosen such that the force
loop dominates over the position loop so that the force error goes to zero
at the expense of the position error.

4.3.2 Impedance Control

The aim of impedance control is to achieve a dynamic relationship be-
tween the motion of the end-effector and the contact forces and torques,
i.e. the mechanical impedance rather than attempting to control either
of these variables alone.

This can be represented as:

F = K (Xref − X) + D ⋅
d
dt
(Xref − X) + M ⋅

d2

dt2 (Xref − X)

where F is the forces and torques at the robot’s end-effector, X and Xref
are the actual and reference Cartesian positions and orientations, respec-
tively. The constant matrices K, D and E represent stiffness, damping
and inertia, respectively.

The structure of the position-based impedance controller according to
Zeng and Hemami [21] is shown in Figure 4.3. Instead of having the po-
sition error as input, contact forces and torques are used as input. The
transfer function used is thus inverse impedance.

Contact Forces and TorquesX_mod

q_ref

F

q

Position/Velocity Controlled Robot

1

M.s +D.s+K2

Inverse Impedance

X_ref_modifiedq_ref_modified

Cartesian2Joint

X_ref

Figure 4.3: The structure of the position-based impedance controller ac-
cording to Zeng and Hemami [21].

The desired impedance behavior is a trade-off between the trajectory er-
ror and force error. If the motion of the robot is not constrained, i.e. there
is no contact force or torque, the robot will move to the reference position.

27

The main drawback of impedance control is that the force is controlled
indirectly by changing the values of the impedance parameters which
makes it hard to follow a force trajectory.

4.3.3 Admittance Control

Mechanical admittance is defined as

Y = vf

F
where vf is the end-effector velocity and F is the contact forces, both
at the point of interaction. A large admittance corresponds to a rapid
motion induced by applied forces; while a small admittance represents a
slow reaction to contact forces.

Taking in account position and acceleration perturbations as well and
converting to the frequency domain the mechanical admittance can also
be expressed as:

X (s)
F(s) =

Ym(s)
s

= (K + Ds+ Ms2)−1

where the constant matrices K, D and M represent stiffness, damping
and inertia as in Section 4.3.2.

The underlying concept of compliant motion control using admittance
is to take a position-controlled robot as a baseline system and to make
the necessary modifications of the admittance to this system in order to
enable the execution of constrained tasks, according to Seraji [17]. The
structure of the position-based admittance controller can be seen in Fig-
ure 4.4.

Force ErrorX_mod

q_ref

F

q

Position/Velocity Controlled Robot

X_ref_modifiedq_ref_modified

Cartesian2Joint

1

M.s +D.s+K2

Admittance

X_ref

F_ref

Figure 4.4: The structure of the position-based admittance controller,
according to Seraji [17].

28

This scheme is very similar to the position-based impedance controller
discussed in Section 4.3.2. The main difference is that the force error
is used as input instead of contact forces. This means that this scheme
focuses more on the force error.

However, the main drawback of this control scheme is that the response
can either be sluggish or even become unstable if the admittance is not
correctly matched.

29

Chapter 5

Robot Simulations

Before running the actual experiments, simulations are done in Matlab
Simulink. In order to do simulations, there are several things which
have to be done first. These include:

• The two robots have to be simulated. As both robots are PID
position-controlled internally, the IRB 2000 robot is modelled as
six decoupled first order systems and the IRB 6 robot is modelled
as five decoupled first order systems.

• The Robot Force Control Blockset which is available at the depart-
ment contains useful Simulink blocks. These blocks have to be
modified and verified before they can be used. The blocks available
are shown in Appendix B.

• The reference trajectories for the IRB 6 robot and the IRB 2000
robot have to be generated, Section 5.1.

• Gravity calibration has to be done to find the sensor offsets, the
Center of Gravity (COG) and weight of the end-effector of the IRB
2000 robot, Section 5.2. With these values, the gravity compensa-
tion block from the Robot Control Blockset can then be used in the
control scheme.

• A gravity model has to be made to compute the resultant gravi-
tational forces in the sensor frame when the robot is in different
configurations, Section 5.3.

• A contact model has to be made to simulate the contact forces and
torques that arise from the cooperative task, Section 5.4.

• Simulated sensor readings can then be generated from the contact
forces, the gravitational forces, the sensor offsets and sensor noise.

30

5.1 Trajectory Planning

The position references for the IRB 6 robot is generated using the method
described in Chapter 3. The path for the IRB 6 robot is shown in Fig-
ure 5.1.

0.1
0.2

0.3
0.4

0.5
0.6

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4
1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

xy

z

Figure 5.1: The Cartesian path of the end-effector of the IRB 6 robot.

To get better performance, position and velocity references of the IRB
2000 robot are also fed into the force control system. However, it is not
possible to get these references directly as in the case of the IRB 6 robot
as the position references for the IRB 2000 robot will depend on the IRB 6
robot and also on the beam in between the end-effectors of the two robots.

Instead, the Cartesian position and orientation of the end-effector of the
IRB 2000 robot are computed assuming that there is a beam of length
1.0m between the two end-effectors and the orientation of the end-effector
of the IRB 2000 robot relative to that of the IRB 6 robot is set to be

R =




0 0 −1
1 0 0
0 −1 0




This is done using a Simulink model as shown in Figure C.1. The trajec-
tory for the IRB 2000 robot is then checked using the Java visualization
program in Eclipse and then tested on the actual robot. It turns out that
the limits on the joints are smaller than what are used to generate the
trajectory. This is due to the mechanical stops placed on the robot.

The second section of the original trajectory for the IRB 6 robot is then

31

removed and the trajectory for the IRB 2000 robot regenerated using
the same model except for the inclusion of a Matlab function, check-
joint, which ensures that the joint values stay within the mechanical
limits. The new trajectory is then checked in Eclipse and then on the
actual robot. The new position references for both robots are shown in
Figure 5.2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time [s]

IR
B

 6
 J

oi
nt

 V
al

ue
s

[ra
d]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

Time [s]

IR
B

 2
00

0
Jo

in
t V

al
ue

s
[ra

d]

Figure 5.2: New reference joint values for the IRB 6 robot above and for
the IRB 2000 robot below.

5.2 Gravity Calibration

Gravity calibration on the IRB 2000 robot has to be done in order to
compensate for the effect of gravitational forces due to the weight of the
end-effector and also to include the effect of gravitational forces in the
simulated force measurements.

To do calibration, the force sensor is first reset when the robot is in
home position, that is, when all the joint values are zero. Joint five is
then set to vary from -90 degrees to 90 degrees in a sinusoidal wave-
form and measurements from the force sensor are recorded using the
Exc_handler.

Joint six is then set to -50 degrees such that the x-axis of the end-effector
is pointing vertically upwards when joint one to joint five are zero and
the experiment is repeated. Lastly, joint six is set to -140 degrees such

32

that the y-axis is now pointing vertically upwards and the experiment is
repeated.

The force sensor returns force measurements Fx, Fy and Fz which are
the forces along x-, y-, and z-axis, respectively and torque measurements
Mx, My and Mz which are the torques about x-, y- and z-axis respectively.

The values of the sensor offsets can be obtained by taking the mean
values of the sensor measurements where the expected force or torque is
zero assuming that the weight of the end-effector is the only force acting
on the sensor. The offsets obtained in N for forces and Nmm for torques
are

[
39.3229 −39.6195 0 6318.82 4388.85 −443.42

]
.

The weight of the end-effector can be obtained directly from the Fz mea-
surements where joint five is about 90 degrees or -90 degrees since the
gravitational force is then acting only along z-axis. The value obtained
is 54.58N. Using n = 9.81, the mass is found to be 5.564kg.

The COG of the end-effector is found by taking the torque measurements
which are non-zero after taking into account the offsets and dividing this
compensated values by the weight of the end-effector. The COG is found
to be

[
10.8151 0 136.3124

]
in mm in sensor frame.

These values are then doubled checked by passing the force and torque
measurements from the experiments through the gravity compensation
block. The resulting forces and torques should be zero if the compensa-
tion is perfect. However, an error of 12% is obtained. This can be due to
the effect of the weight of the wires hanging from the end-effector to the
middle of link five of the robot.

5.3 Gravity Modelling

The effect of the weight of the end-effector has to be taken into account
in the simulation of sensor readings. To do that, a gravity model, as
shown in Figure C.2, is made using values from the gravity calibration.

The orientation of the coordinate frame of COG is defined to be the same
as that of the base coordinate frame. The position of the COG in the base
coordinate frame is found by multiplying the transformation matrices of
the various frames. The transformation matrix from the sensor frame to
the COG frame is computed and and the weight acting at the COG can
then be converted to the sensor frame by force transmission.

33

To verify that the gravity model is correct, sensor offsets are added to
the generated values for the gravitational forces at the sensor frame and
compared to the actual readings from the sensor. Figure 5.3 shows the
simulated forces and torques and the actual sensor readings.

0 5 10 15 20 25 30 35 40
−60

−40

−20

0

20

40

60

80

Time [s]

Fo
rc

es
 [N

] a
nd

 T
or

qu
es

 [N
dm

]

0 5 10 15 20 25 30 35 40
−60

−40

−20

0

20

40

60

80

Time [s]

Fo
rc

es
 [N

] a
nd

 T
or

qu
es

 [N
dm

]

Figure 5.3: The simulated gravitational forces and torques above and
the actual sensor readings (filtered) below

5.4 Contact Model

The contact model is implemented in Matlab Simulink as shown in Fig-
ure C.3 to simulate the contact forces and torques that can arise from
the cooperative task.

The position and orientation of the end-effector of the IRB 6 robot is
expressed in terms of the coordinate frame of the end-effector of the IRB
2000 robot. To do that, the transformation matrices of the various frames
are multiplied together.

The beam is considered to have the same orientation as the end-effector
of the IRB 6 robot and extends along the x-axis of the coordinate frame
of the end-effector of the IRB 6 robot. Thus, the transformation matrix
from the end-effector of the IRB 2000 robot to the end of the beam at the
IRB 2000 robot can be found.

34

The contact forces and torques are modelled as follows:

Fx = Kx ⋅ ∆x + Dx ⋅ ∆ ẋ
Fy = K y ⋅ ∆ y+ Dy ⋅ ∆ ẏ
Fz = Kz ⋅ ∆z+ Dz ⋅ ∆ ż

Mx = Kγ ⋅ ∆γ
My = Kβ ⋅ ∆β
Mz = Kα ⋅ ∆α

The spring and damping constants depend on the flexible beam. For the
simulations, these values are set to be:

Kx, K y, Kz = 4 N/mm
Dx, Dy, Dz = 0.1 Ns/mm

Kγ , Kβ , Kα = 106 Nmm/rad

These contact forces and torques are then converted to be in the sensor
frame by force transmission.

5.5 Controllers

The various force control schemes discussed in Section 4.3 are imple-
mented in Matlab Simulink. The models can be found in the Appendix C.
The activation of the force control scheme is done via a set of six param-
eters which represent the x-, y- and z-translation and the α -, β - and
γ -rotation of the TCP.

If force control is not activated, the position and the velocity references
will not change. This corresponds to not having external control on the
robot. Position and velocity control is done only by the built-in controllers
of the robot which are discussed in Section 4.1.

The sensor readings are first gravity-compensated and then transformed
to the contact frame to get the contact forces and torques. These values
are then used as input to the impedance controller. In the case of the
direct force and admittance controller, the force error which is the force
reference minus the contact forces and torques is used as input.

For the direct force controller, the parameters for the PI-controller are
as follows:

Kc =
[

0.5 0.5 0.5 10−5 10−5 10−5]

Ti =
[

0.3 0.3 0.3 0.5 0.5 0.5
]

35

The tracking time for the antiwindup part is set to be the same as Ti.

For impedance control, the inertia matrix M is set to be null matrix
while the damping matrix D and the stiffness matrix K are set to be
diagonal with the diagonal elements as follows:

Ddian =
[

0.01 0.01 0.01 5 ⋅ 102 5 ⋅ 102 5 ⋅ 102]

Kdian =
[

0.7 0.7 0.7 105 105 105]

The stiffness parameters are chosen such that the stiffness of the system
is lower than that of the flexible beam so that the end-effector of the IRB
2000 robot will comply to the movement of the flexible beam. The damp-
ing parameters are chosen such that the system will be well-damped and
yet not too slow.

For admittance control, both M and K are set to be null matrix while
D is set to be diagonal with the diagonal elements as follows:

Ddian =
[

0.7 0.7 0.7 5 ⋅ 104 5 ⋅ 104 5 ⋅ 104]

The effect of the stiffness, damping and inertia parameters are different
from the previous case since the input is now the force error and not the
contact forces and torques. It is sufficient to have only the damping term.
The smaller the damping term is, the greater the effect of external forces
on the end-effector is. The choice of the damping terms is a compromise
between stability and performance.

The output of the force controllers are then the necessary modifications to
the Cartesian position and orientation which is converted to joint space
using the model as shown in Figure C.8 and inverse kinematics. The
position and velocity references are then modified accordingly and the
new references are fed to the position-controlled robot.

5.6 Simulation Results

A java plotter block is included in the Simulink model such that the
joint values from the Matlab simulations are sent to Eclipse as soon as
they are generated. The start position of the simulation is shown in Fig-
ure 5.4.

First, simulation is run with force reference Fref = O0 using pure position
control, direct force control, impedance control and admittance control.
The results of the simulations can be seen in Figure 5.5 to 5.8.

36

Figure 5.4: The start position of the robots for simulation.

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−5

0

5

10

15

20

25

30
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.05

0

0.05

0.1

0.15

0.2
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.5: Simulation results for position control and Fref = O0.

37

0 1 2 3 4 5
−0.1

−0.05

0

0.05

0.1
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.02

−0.01

0

0.01

0.02

0.03
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.6: Simulation results for direct force control and Fref = O0.

0 1 2 3 4 5
−0.02

0

0.02

0.04

0.06

0.08

0.1
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.005

0

0.005

0.01

0.015

0.02

0.025
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.7: Simulation results for impedance control and Fref = O0.

38

0 1 2 3 4 5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−15

−10

−5

0

5

10

15
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.04

−0.02

0

0.02

0.04

0.06
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.8: Simulation results for admittance control and Fref = O0.

The contact forces and torques for pure position control and impedance
control display characteristics of a first order system while that for direct
force control and admittance control display characteristics of a second
order system. The simulation of the robot joints by first order systems
probably causes the first order behavior while the second order behavior
is due to the integrator in the force control schemes.

All the force control schemes show an improvement over pure position
control. Among the force control schemes, direct force control is most
able to keep the forces and torques near to zero while admittance control
is least able to do so. A bigger admittance will improve the steady state
performance greatly but it will also cause oscillations in the transient.

To investigate how well these schemes can handle disturbances, a force
of 10N is added to the contact force in the z-axis at 2.5 s for a duration
of 0.05s. The same force reference is used. The results of the simulation
can be seen in Figures 5.9 to 5.12.

The presence of the disturbance does not change the results for pure po-
sition control since there is no feedback of forces and torques. However,
this can result in damages to the end-effector if the robot is made very
stiff with respect to the environment.

39

0 1 2 3 4 5
−2

0

2

4

6

8

10

12
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−5

0

5

10

15

20

25

30
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.05

0

0.05

0.1

0.15

0.2
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.9: Simulation results for position control, Fref = O0 and with
disturbance.

0 1 2 3 4 5
−10

−5

0

5

10
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.10: Simulation results for direct force control, Fref = O0 and with
disturbance.

40

0 1 2 3 4 5
−10

−5

0

5

10

15
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−2

−1

0

1

2

3
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.11: Simulation results for impedance control, Fref = O0 and with
disturbance.

0 1 2 3 4 5
−2

0

2

4

6

8

10
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−15

−10

−5

0

5

10

15
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.12: Simulation results for admittance control, Fref = O0 and with
disturbance.

41

As for the force controllers, the sudden increase in Fz results in a bigger
error in the Cartesian position of the end-effector but the additional error
is quickly removed by the controllers. The admittance controller is able
to keep the additional error smallest although it is also the slowest to
remove it. The impedance controller gives the largest error and oscilla-
tions also appear due to the disturbance.

The force reference is then changed to be
(

1 2 3
)

N for the forces
and

(
200 100 50

)
Nmm for the torques. Simulations are run with

and without disturbances to check the ability of the direct force controller
and admittance controller to follow a force reference and handle distur-
bances at the same time.

The results of the simulations without disturbances are shown in Fig-
ures 5.13 and Figure 5.14. Both control schemes are able to track the
force reference very well. The admittance controller reacts slower to the
force reference. A bigger admittance will decrease response time but it
also results in oscillations in the transient.

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−50

0

50

100

150

200
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.13: Simulation results for direct force control with non-zero
Fref .

42

0 1 2 3 4 5
−1

0

1

2

3

4
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−50

0

50

100

150

200

250
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.14: Simulation results for admittance control with non-zero
Fref .

The results of the simulations with disturbances are shown in Figures 5.15
and Figure 5.16. With the presence of disturbances, the performance of
the controllers are not affected. They are able to remove the effect of the
disturbance as in earlier simulations.

Simulations are then run for the direct force and admittance controller
with a varying force reference. The results of the simulations are shown
in Figures 5.17 and Figure 5.18. The direct force controller responds
quickly to the change in force reference while the admittance controller
is a little slower.

From the results of the simulations, direct force control seems to be the
best for force tracking and has the fastest response. Admittance control
is the most robust to disturbances. The response of impedance control
has no second order behavior.

43

0 1 2 3 4 5
−5

0

5

10

15
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−50

0

50

100

150

200
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.15: Simulation results for direct force control with non-zero Fref
and disturbance.

0 1 2 3 4 5
−5

0

5

10

15
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−50

0

50

100

150

200

250
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.16: Simulation results for admittance control with non-zero Fref
and with disturbance.

44

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−50

0

50

100

150

200
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.17: Simulation results for direct force control with varying Fref .

0 1 2 3 4 5
−1

0

1

2

3

4
Simulated Contact Forces

Time [s]

Fx
, F

y
an

d
Fz

 [N
]

0 1 2 3 4 5
−50

0

50

100

150

200
Simulated Contact Torques

Time [s]

M
x,

 M
y

an
d

M
z

[N
m

m
]

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2
Joint Error IRB 2000

Time [s]

Jo
in

t E
rr

or
 [d

eg
re

es
]

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8
Error in Cartesian Position of IRB 2000

dX
, d

Y
 a

nd
 d

Z
[m

m
]

Time [s]

Figure 5.18: Simulation results for admittance control with varying Fref .

45

Chapter 6

Robot Experiments

6.1 Problems

Some practical problems are encountered during the thesis work:

• The gripper cannot be activated due to some hardware problems.
When the grippern is activated, it applies a suction force on the
object the robot is gripping by compressed air such that the object
is held rigidly.

• A new Java-based RTAI-Linux platform for the basic level motor
control of the IRB 6 robot is developed during the Fall Semester
2004. Due to unforeseen circumstances, the completion of the plat-
form is delayed. Thus, the IRB 6 robot cannot be run for the ex-
periments.

• Platforms and compilers are changed at the department at the end
of 2004 and this results in some problems with the compilation and
download of the arm-control models to the robot system.

Due to the fact that the IRB 6 robot cannot be run, experiments cannot
be done to verify the results of the simulation in Section 5.6.

6.2 Experiments

Although experiments cannot be run at the moment, the Simulink model
for running the experiments is prepared for further use. The controller
is first put into the arm control template in Figure 1.2.

The continuous time integrator in the direct force and admittance con-
troller is replaced by a discrete time integrator with reset, see Figure C.9.
This is to enable the reset of the integrator at the start of the experiment.

46

The force measurements are converted to be right-hand oriented and
the values for torques are converted to be in Nmm instead of Ndm. The
modified force measurements are then filtered to remove noise. A dead-
zone is added to the force measurements to prevent drift. The resulting
model is shown in Figure C.10.

47

Chapter 7

Conclusions and Future
Work

7.1 Conclusions

The aim of the thesis has been to control a pair of robots in a cooperative
task using a master and slave configuration. A parallel force/motion con-
trol scheme is used. The force controllers used are direct force, impedance
and admittance controllers while motion control is done by the built-in
controllers of the robot.

From the simulations, it is found that the direct force controller tracks
the force reference best and gives the quickest response. The admittance
controller is the most robust to external disturbances. The impedance
controller is the simplest but it cannot be used to track a specific force
reference.

7.2 Future Work

One obvious area of future work is to run robot experiments to verify the
results of the simulations. The contact model in the simulations does not
take into account friction and other non-linearities. Modifications might
be necessary for the controllers to work on the real robots.

Another possible area of future work is the improvement of the optimal
trajectory generation. The Matlab function for conversion of the path
from Cartesian space to joint space can be generalized such that it can
be used for different robot models as long as the inverse and kinematics
of the robot are defined.

Currently, the orientation of the robot’s end-effector can be set but it

48

has to be fixed throughout the trajectory. Modification can be made such
that orientation can be changed during the trajectory as well.

Limits in linear and angular velocity and linear and angular acceler-
ation are fixed throughout the optimization. The implementation of the
Linear Programming solution can be improved such that the limits can
be changed throughout the trajectory.

49

Bibliography

[1] Product Manual IRB 2000 ABB Robotics, 1991

[2] Product Manual IRB 6 ABB Robotics, 1983

[3] S. Chiaverini, B. Siciliano and L. Villani A Survey of Robot Interac-
tion Control Schemes with Experimental Comparison IEEE/ASME
Transactions on Mechatronics, Vol. 4, No. 3, Sept 1999

[4] J. J. Craig Introduction to Robotics, Mechanics & Control Addison
Wesley, 1986

[5] J. Denavit, R.S. Hartenberg A Kinematic Notation for Lower Pair
Mechanisms Based On Matrices Journal of Applied Mechanics, pp.
215-221, 1955

[6] P. Hedenborn and M. Olsson Simulation Based Improvements of a
Service Robot for Disabled People In Proceedings of Robotikdagar.
pp. 117-126, Linköping, Sweden, 1997

[7] D. Henriksson Observer-based Impedance Control in Robotics Mas-
ter Thesis, Department of Automatic Control, Lund Institute of
Technology, Nov 2000

[8] S. Liljenborg, A. Olsson Identify a Surface with Robot Force Control
Master Thesis, Department of Automatic Control, Lund Institute of
Technology, Nov 2000

[9] Mathworks, Inc. Mathworks http://www.mathworks.com/, 2005

[10] R. M. Murray, Z. Li, S. S. Sastry A Mathematical Introduction to
Robotic Manipulation CRC Press, 1994

[11] K. Nilsson Personal Correspondence 2004

[12] S. Y. Nof Handbook of Industrial Robotics John Wiley& Sons, 1999

[13] M. Norrlöf On Path Planning and Optimization Using Splines Tech-
nical Report LiTH-ISY-R-2490, Department of Electrical Engineer-
ing, Linköping University, 2003

50

[14] M. Nyström, M. Norrlöf PGT-A Path Generation Toolbox for Matlab
Technical Report LiTH-ISY-R-2542, Department of Electrical Engi-
neering, Linköping University, 2003

[15] T. Olsson Feedback Control and Sensor Fusion of Vision and Force
Licentiate Thesis, Department of Automatic Control, Lund Institute
of Technology, 2004

[16] J. Rix Controlling IRB6 with Java Instruction paper, Department
of Automatic Control, Lund Institute of Technology, 2005

[17] H. Seraji Adaptive Admittance Control: An Approach to Explicit
Force Control in Compliant Motion IEEE International Conference
on Robotics and Automation, Vol. 4, pp 2705-2712, 1994

[18] B. Siciliano, L. Villani Robot Force Control Kluwer Academic Pub-
lishers, 1999

[19] M. W. Spong and M. Vidyasagar Robot Dynamics and Control John
Wiley& Sons, 1989

[20] Sun Microsystems, Inc. Java Sun Technology http://java.sun.com/,
2005

[21] G. Zeng and A. Hemami An Overview of Robot Force Control Robot-
ica, Vol. 15, pp 473-482, 1997

[22] M. Åkerblad Optimized Path Following Technical Report, Never
Published, Department of Electrical Engineering, Linköping Uni-
versity, 2004

51

Appendix A

Matlab Codes

A.1 Codes for Kinematics
% FORWARD6

%

% Computes the forward kinematics of IRB6 given the joint values

% and tool-length.

%

% T44 = FORWARD6(JOINTS,TOOL_LENGTH)

%

% The transformation matrix T44 is returned.

function T44 = forward6(joints,tool_length)

if nargin < 2,

tool_length = 0;

end

% Check whether joint values are within limits

if joints(1) > 170*pi/180,

error(’Joint One out of range’); return;

elseif joints(1) < -170*pi/180,

error(’Joint One out of range’); return;

end

if joints(2) > 40*pi/180,

error(’Joint Two out of range’); return;

elseif joints(2) < -40*pi/180,

error(’Joint Two out of range’); return;

end

if joints(3) > 40*pi/180,

error(’Joint Three out of range’); return;

elseif joints(3) < -25*pi/180,

error(’Joint Three out of range’); return;

end

if joints(4) > 90*pi/180,

error(’Joint Four out of range’); return;

elseif joints(4) < -90*pi/180,

error(’Joint Four out of range’); return;

end

if joints(2)-joints(3) > 40*pi/180,

error(’Joint TwoThree out of range’); return;

elseif joints(2)-joints(3) < -40*pi/180,

error(’Joint TwoThree out of range’); return;

52

end

L1 = 700; L3 = 450; L4 = 670; wrist2Flange = 95;

xi = [wrist2Flange+tool_length 0 0]’;

v1 = [0 0 157]’;

v2 = v1+rotzm(joints(1))*[0 0 L1]’;

v3 = v2+rotzm(joints(1))*rotym(joints(2))*[0 0 L3]’;

v4 = v3+rotzm(joints(1))*rotym(joints(3))*[L4 0 0]’;

C = rotym(joints(4))*rotxm(joints(5));

v5 = v4+rotzm(joints(1))*C*xi;

R = rotzm(joints(1))*C; % Rotation matrix

T44 = [R,v5;0 0 0 1];

% INVKIN6

%

% Calculates the inverse kinematics of IRB6.

%

% JOINTS = INVKIN6(T44,TOOL_LENGTH)

%

function joints = invkin6(T44,tool_length)

if nargin < 2,

tool_length = 0;

end

wrist2Flange = 95;

v5 = T44(1:3,4);

B = 157; L1 = 700; L3 = 450; L4 = 670;

xi = [tool_length+wrist2Flange 0 0]’;

x = v5(1); y = v5(2); z = v5(3);

j1 = atan2(y,x);

if j1 > 170*pi/180,

error(’Joint One is out of range’); return;

elseif j1 < -170*pi/180,

error(’Joint One is out of range’); return;

end

C = inv(rotzm(j1))*T44(1:3,1:3);

k = C*xi; k1 = k(1); k2 = k(2); k3 = k(3);

vr = sqrt((x+sin(j1)*k2-cos(j1)*k1)^2+(y-sin(j1)*k1-cos(j1)*k2)^2);

v_r = vr; % L2 = 0;

z_4 = z-k3-L1-B;

L = sqrt(v_r^2+z_4^2);

A0 = acos((L3^2+L^2-L4^2)/(2*L3*L));

A1 = atan2(z_4,v_r);

j2 = -A1-A0+pi/2;

if j2 > 40*pi/180,

error(’Joint Two is out of range’); return;

elseif j2 < -40*pi/180,

error(’Joint Two is out of range’); return;

end

K0 = acos((L4^2+L3^2-L^2)/(2*L3*L4));

j3 = -K0+j2+pi/2;

if j3 > 40*pi/180,

error(’Joint Three is out of range’); return;

elseif j3 < -25*pi/180,

error(’Joint Three is out of range’); return;

53

end

if j2-j3 > 40*pi/180,

error(’Joint TwoThree is out of range’); return;

elseif j2-j3 < -40*pi/180,

error(’Joint TwoThree is out of range’); return;

end

j4 = atan2(-C(3,1),C(1,1));

j5 = atan2(-C(2,3),C(2,2));

if j4 > 90*pi/180,

error(’Joint Four is out of range’); return;

elseif j4 < -90*pi/180,

error(’Joint Four is out of range’); return;

end

joints(1) = j1;

joints(2) = j2;

joints(3) = j3;

joints(4) = j4;

joints(5) = j5;

%

% DERJOINTS

%

% Gives the angular velocities of the joints given the sampling time h.

% If no sampling time is given, h = 5e-3;

%

% DJOINTS = DERJOINTS(JOINTS,H)

%

function djoints = derjoints(joints,h)

[A,B,C,D] = tf2ss([1 0],[0.01 1]);

Gss = ss(A,B,C,D);

t = 0:h:(length(joints(1,:))-1)*h;

for i = 1:length(joints(:,1)),

y0 = (joints(i,1)-joints(i,2))/h;

x0 = (10*joints(i,1)-y0)/100;

djoints(i,:) = lsim(Gss,joints(i,:),t,x0)’;

end

A.2 Codes for Trajectory Generation
% CART2JSP6

%

% Transforms the Cartesian path or section RPATH to cubic

% spline functions in joint space. The path or section NRPATH,

% which is equal to RPATH but with a description of the path

% in joint space attached, is returned. Two breakpoints are used.

% Only joint four and five are used to represent the orientation.

% They can be chosen but it will be fixed throughout the

% path. If no orientation is specified, they will be set to zero.

%

% NRPATH = CART2JSP6(RPATH,MAXERROR,DELTA,J4,J5)

%

function nrpath = cart2jsp6(rpath,maxerror,delta,j4,j5)

54

if nargin < 4,

j4 = 0;

j5 = 0;

elseif nargin == 4,

j5 = 0;

end

if isfield(rpath,’descr’)

k = length(rpath.descr);

sec = rpath.descr;

else

k = 1;

sec = rpath;

end;

DELTA = delta;

C = rotym(j4)*rotxm(j5);

for j = 1:k % each section is transformed

clear evalzone

lc(1) = 0;

first = 1;

lc(2) = lc(1)+delta;

if lc(end) > sec(j).range(end) %length between the breakpoints too large

lc(end) = sec(j).range(end);

DELTA = lc(end)-lc(1);

lc(2) = lc(1)+DELTA;

end;

h = 10e-7;

pg = evalsec(sec(j),lc(1),[],1);

q(:,1) = invkin6C(1000*pg,C)’; % Modified invkin fcn for irb 6

pg = evalsec(sec(j),lc(1)+h,[],1);

q1 = invkin6C(1000*pg,C)’;

dq(:,1) = (q1-q(:,1))/h;

while lc(1) < (sec(j).range(end)-10*eps)

pg = evalsec(sec(j),lc(2),[],1);

q(:,2) = invkin6C(1000*pg,C)’;

pg = evalsec(sec(j),lc(end)-h);

q2 = invkin6C(1000*pg,C)’;

dq(:,2) = (q(:,end)-q2)/h;

tmp_jsp = completesp(lc,q,dq);

%the path error is calculated for the spline tmp_jsp

sp = evalsp(tmp_jsp,lc(1)+DELTA/2);

[a,b] = forward6C(sp’); % Modified forward kin fcn for irb 6

P = evalsec(sec(j),lc(1)+DELTA/2);

er = norm(a/1000-P);

if er > maxerror %path error too large

DELTA = DELTA/2;

lc(2) = lc(1)+DELTA;

else

if first

jsp = tmp_jsp;

first = 0;

else

jsp=appendsp(jsp,tmp_jsp);

end

DELTA = 2*DELTA;

lc(1) = lc(end);

q(:,1) = q(:,end);

55

dq(:,1)= dq(:,2);

if lc(1) < sec(j).range(end)

if lc(1)+DELTA > sec(j).range(end)

DELTA = sec(j).range(end)-lc(1);

end

lc(2) = lc(1)+DELTA;

end

end

end

if isfield(rpath,’descr’)

rpath.descr(j).jsp = jsp;

else

rpath.jsp = jsp;

end

end

nrpath = rpath;

% LINEARPROG5

%

% Find the optimal linear acceleration given constraints in maximum

% and minimum linear accelerations, maximum linear velocity,

% maximum and minimum angular accelerations and maximum and minimum

% angular velocities. For the IRB6 robot.

% Limits = [vmax amin amax qdotlim qddotmin qddotmax]

%

% X = LINEARPROG5(N,VPREV,QLC,Q2LC,LIMITS,DLC)

%

function x = linearprog5(n,vprev,qlc,q2lc,limits,dlc)

qddotmin = limits(5);

qddotmax = limits(6);

amin = limits(2)*ones(n,1);

amax = limits(3)*ones(n,1);

vmax = limits(1); qdotlim = limits(4);

f = zeros(n,1); f(1) = -1;

A1 = eye(n);

for j =1:n-1,

A1 = A1+diag(ones(n-j,1),-j);

end

A1 = -2*dlc*A1;

b1 = (vprev^2)*ones(n,1);

A2 = -A1;

b2 = (vmax^2)*ones(n,1)-b1;

A3 = (qlc(1)^2)*A2;

b3 = (qdotlim^2)*ones(n,1)-(qlc(1)^2)*b1;

A4 = (qlc(2)^2)*A2;

b4 = (qdotlim^2)*ones(n,1)-(qlc(2)^2)*b1;

A5 = (qlc(3)^2)*A2;

b5 = (qdotlim^2)*ones(n,1)-(qlc(3)^2)*b1;

A6 = (qlc(4)^2)*A2;

b6 = (qdotlim^2)*ones(n,1)-(qlc(4)^2)*b1;

A7 = (qlc(5)^2)*A2;

b7 = (qdotlim^2)*ones(n,1)-(qlc(5)^2)*b1;

56

A9 = q2lc(1)*A1;

A9(:,1) = A9(:,1)-qlc(1);

b9 = -(qddotmin)*ones(n,1)+q2lc(1)*b1;

A10 = -A9;

b10 = (qddotmax)*ones(n,1)-q2lc(1)*b1;

A11 = q2lc(2)*A1;

A11(:,1) = A11(:,1)-qlc(2);

b11 = -(qddotmin)*ones(n,1)+q2lc(2)*b1;

A12 = -A11;

b12 = (qddotmax)*ones(n,1)-q2lc(2)*b1;

A13 = q2lc(3)*A1;

A13(:,1) = A13(:,1)-qlc(3);

b13 = -(qddotmin)*ones(n,1)+q2lc(3)*b1;

A14 = -A13;

b14 = (qddotmax)*ones(n,1)-q2lc(3)*b1;

A15 = q2lc(4)*A1;

A15(:,1) = A15(:,1)-qlc(4);

b15 = -(qddotmin)*ones(n,1)+q2lc(4)*b1;

A16 = -A15;

b16 = (qddotmax)*ones(n,1)-q2lc(4)*b1;

A17 = q2lc(5)*A1;

A17(:,1) = A17(:,1)-qlc(5);

b17 = -(qddotmin)*ones(n,1)+q2lc(5)*b1;

A18 = -A17;

b18 = (qddotmax)*ones(n,1)-q2lc(5)*b1;

A = [A1;A2;A3;A4;A5;A6;A7;A9;A10;A11;A12;A13;A14;A15;A16;A17;A18];

b = [b1;b2;b3;b4;b5;b6;b7;b9;b10;b11;b12;b13;b14;b15;b16;b17;b18];

x = linprog(f,A,b,[],[],amin,amax);

% PATH2TRAJ

%

% Transforms the joint space path or section NRPATH to TRAJ which

% is equal to NRPATH but with a velocity profile attached in the

% field TDI.

% limits give the limitations on the linear velocity, linear

% acceleration, angular velocity and angular acceleration.

% Default values: limits = [0.25 -2 2 4 -2 2]; n = 10; dlc = 0.02;

%

% TRAJ = PATH2TRAJ(NRPATH,LIMITS,N,DLC)

%

function traj = path2traj(nrpath,limits,n,dlc)

if nargin < 2,

limits = [0.25 -2 2 4 -2 2];

n = 10; dlc = 0.02;

elseif nargin == 3,

dlc = 0.02;

elseif nargin == 2,

dlc = 0.02; n = 10;

end

57

if isfield(nrpath,’descr’)

k = length(nrpath.descr);

sec = nrpath.descr;

if sec(1).jsp.dim == 6,

irb2000 = 1;

else

irb2000 = 0;

end

else

k = 1;

sec = nrpath;

if sec.jsp.dim == 6,

irb2000 = 1;

else

irb2000 = 0;

end

end

for j = 1:k,

i_end = floor(sec(j).range(end)/dlc)+1;

pos = evalsp(sec(j).jsp,0:dlc:(i_end-1)*dlc);

djsp = dersp(sec(j).jsp);

dpos = evalsp(djsp,0:dlc:(i_end-1)*dlc);

ddjsp = dersp(djsp);

ddpos = evalsp(ddjsp,0:dlc:(i_end-1)*dlc);

if j == 1,

v(1) = 0;

dt(1) = 0;

else

if irb2000 == 1,

x = linearprog6(n,v_end,dpos(:,1),ddpos(:,1),limits,dlc);

else

x = linearprog5(n,v_end,dpos(:,1),ddpos(:,1),limits,dlc);

end

a(1) = x(1);

v(1) = sqrt(v_end^2+2*a(1)*dlc);

if a(1) == 0,

dt(1) = dlc/v(1);

else

dt(1) = -v_end/a(1)+sign(a(1))*sqrt((v_end/a(1))^2+2*dlc/a(1));

end

end

for i = 2:i_end,

if irb2000 == 1,

x = linearprog6(n,v(i-1),dpos(:,i),ddpos(:,i),limits,dlc);

else

x = linearprog5(n,v(i-1),dpos(:,i),ddpos(:,i),limits,dlc);

end

a(i) = x(1);

v(i) = sqrt(v(i-1)^2+2*a(i)*dlc);

if a(i) == 0,

dt(i) = dlc/v(i);

else

dt(i) = -v(i-1)/a(i)+sign(a(i))*sqrt((v(i-1)/a(i))^2+2*dlc/a(i));

end

end

if j == k,

vmax = limits(1);

for i = 1:5,

limits(1) = (5-i)*vmax/5;

if irb2000 == 1,

58

x = linearprog6(n,v(i_end-6+i),dpos(:,i_end-5+i),ddpos(:,i_end-5+i),limits,dlc);

else

x = linearprog5(n,v(i_end-6+i),dpos(:,i_end-5+i),ddpos(:,i_end-5+i),limits,dlc);

end

a(i_end-5+i) = x(1);

v(i_end-5+i) = sqrt(v(i_end-6+i)^2+2*a(i_end-5+i)*dlc);

if a(i_end-5+i) == 0,

dt(i_end-5+i) = dlc/v(i_end-6+i);

else

dt(i_end-5+i) = -v(i_end-6+i)/a(i_end-5+i)+ sign(a(i_end-5+i))*

sqrt((v(i_end-6+i)/a(i_end-5+i))^2+2*dlc/a(i_end-5+i));

end

end

end

t = cumsum(dt);

% Resampling

time = 0; m = 2; h = 0.005;

tdi(1) = 0;

for i = 1:i_end-1,

while time < t(i+1),

tdi(m) = dlc/(t(i+1)-t(i))*h+tdi(m-1);

m = m+1;

time = time+h;

end

end

if isfield(nrpath,’descr’)

nrpath.descr(j).tdi = tdi;

else

nrpath.tdi = tdi;

end

v_end = v(end);

clear v; clear tdi;

clear a; clear dt; clear t;

clear pos; clear dpos; clear ddpos;

end

traj = nrpath;

59

Appendix B

Robot Force Control
Blockset

v0 v1

v0

T44
v1

velocity transmission

q1*q2=q
q1

q2
q

quaternion multiply

q^(−1)

quaternion inversion

Motor2Arm

motor2arm

dataA

dataB

dataC

dataD

Out1

logdata_mux

f1=f0−gravity
f0

T44
f1

gravity compensation

f0 f1

f0

T44
f1

force transmission

Arm2Motor

arm2motor

T44 to D66

T44toD66

T44*T44

T44Multiply

Invert T44

T44Inv

T44*D4
T44

D4
D4

T44D4

T44 to Quat

T442Quat

Reshape

Reshape

Quat to T44

Quat2T44

parKp

parKv

parKi

posRef

velRef

trqRef

trqFfw

trqDis

extMode

Ext2IrbVect

Mux−Ext2Irb

J^(−1)

IRB inverse Jacobian

JACOBIAN in basejoints 36*1 J

IRB Jacobian2

JACOBIAN in flangejoints 36*1 J

IRB Jacobian 1

FORWARD
joints−>flangejoints T44

IRB Forward Kinematics

Irb2Ext

Force Sensor

Force Ref

Ext2Irb

Force Controller

Irb2ExtVect

parKp

parKv

parKi

parTrqMin

parTrqMax

posRaw

posFlt

velRaw

velFlt

velOut

trqRaw

trqFlt

trqOut

posRef

velRef

trqRef

trqqFfw

trqDis

rPs

uPs

Demux−Irb2Ext

D66*D66

D66D66

D66*D6
D66

D6
D6

D66D6

60

Appendix C

Simulink Models

c2f

b2c

b2c

MATLAB
Function

reshape2vector.m

MATLAB
Function

forward6.m

Transport
Delay

posref.mat

To File

−C−

TCP6 to TCP2000 −C−

T44vect_f2c

−C−

T44vect_2000_6

T44*T44

T44Multiply3

T44*T44

T44Multiply1

T44*T44

T44Multiply

Invert T44

T44Inv

INVERSE
flange−>joints

T44

prev
joints

IRB Inverse Kinematics

posref6.mat

From File

f2c

Figure C.1: Simulink model to generate reference trajectory for IRB2000

b2f

s2COG

s2b

b2s

b2COG

T44_s2COG

b2s

1
Gravitational Force

in sensor frame

MATLAB
Function

reshape2vector
MATLAB
Function

reshape2matrix

f0 f1

f0

T44
f1

force transmission

−C−

T44vect_f2s −C−

T44*T44

T44Multiply3

T44*T44

T44Multiply2

T44*T44

T44Multiply1

Invert T44

T44Inv1

[4x3]

Orientation of COG Horiz Cat

Matrix
Concatenation

−C−

Gravity

UU(R,C)

Cartesian Position
of COG

1
T44IRB2000

Figure C.2: Model to find the effect of gravity at the force sensor.

61

[N]

[N]

[N]

[Nmm]

[Nmm]

[Nmm]

b2cc2b
b2f

dz

dy

dx

1
Contact forces

in
sensor frame

MATLAB
Function

tr2rpy.m

MATLAB
Function

reshape2vector

MATLAB
Function

reshape2matrix
f0 f1

f0

T44
f1

force transmission

s

0.01s+1

Transfer Fcn2

s

0.01s+1

Transfer Fcn1

s

0.01s+1

Transfer Fcn

−C−

T44vect_tool6_tool2000

−C−

T44vect_s2c
−C−

T44vect_f2c

−C−

T44vect_b2000_b6

T44*T44

T44Multiply4

T44*T44

T44Multiply3

T44*T44

T44Multiply1

T44*T44

T44Multiply

Invert T44

T44Inv1

Kz

Kz[N/mm]

Ky

Ky[N/mm]

Kx

Kx[N/mm]

−K−

Kgamma
−K−

Kbeta
−K−

Kalpha

Dz

Dz

Dy

Dy

Dx

Dx

Demux

DemuxUU(R,C)

Cartesian Error

2
T44IRB2000

1
T44 IRB6

s2c

F
igure

C
.3:

Sim
ulink

m
odel

to
sim

ulate
the

contact
forces

62

MATLAB
Function

forward6.m

q_out

To Workspace

Terminator1

T44 IRB 6

T44vect IRB 2000

Simulated Sensor Readings

Simulating Sensor Readings

q_ref IRB 6 q_out IRB 6

Position Controlled IRB 6

q_ref IRB 2000 q_out IRB 2000

Position Controlled IRB 2000

JointsIRB2000

JointsIRB6

Java Plotter

posref6.mat

IRB6 posref

velref.mat

IRB2000 velref

posref.mat

IRB2000 posref

FORWARD
joints−>flangejoints T44

IRB Forward

−C−

Force ref

pos

posref

velref

Force Sensor

Force Ref

activate

q_ref

dq_ref

Force Control
1

Activate

F
igure

C
.4:

Sim
ulink

m
odel

for
sim

ulations.

63

b2f
b2c

1
q_ref_modified

−C−

ones

f1=f0−gravity
f0

T44
f1

gravity compensation

f0 f1

f0

T44
f1

force transmission
T44vect_f2s

force sensor frame
in flange frame

T44vect_f2c

contact frame
 in flange frame

−K−

activation

T44*T44

T44Multiply5

T44*T44

T44Multiply4

T44*T44

T44Multiply3

T44*T44

T44Multiply2

T44*T44

T44Multiply1

Invert T44

T44Inv

F_errorposChange

PI−Controller with antiwindup

INVERSE
flange−>joints

T44

prev
joints

IRB Inverse Kinematics

FORWARD
joints−>flangejoints T44

IRB Forward Kinematics

FORWARD
joints−>flangejoints T44

IRB Forward

posChangedT44

Cartesian2T44
Activation

4
q_ref

3
force ref in contact frame

2
force measurement

1
q

f2s

f2c

b2s

b2f

c2f
c2S

dfC

F
igure

C
.5:

Sim
ulink

m
odel

for
D

irect
F

orce
C

ontrol.

64

b2c

b2f

contact forces

1
q_ref_modified

−C−

ones

f1=f0−gravity
f0

T44
f1

gravity compensation

f0 f1

f0

T44
f1

force transmission
T44vect_f2s

force sensor frame
in flange frame

T44vect_f2c

contact frame in flange frame

posChange dT44

cartesian2T44

−K−

activation

T44*T44

T44Multiply5

T44*T44

T44Multiply4

T44*T44

T44Multiply3

T44*T44

T44Multiply2

T44*T44

T44Multiply1

Invert T44

T44Inv

FposChange

Impedance

INVERSE
flange−>joints

T44

prev
joints

IRB Inverse Kinematics

FORWARD
joints−>flangejoints T44

IRB Forward Kinematics

FORWARD
joints−>flangejoints T44

IRB Forward

Activation

3
q_ref

2
force measurement

1
q

c2S
c2f

b2f

b2sf2c

f2s

F
igure

C
.6:

Sim
ulink

m
odel

for
Im

pedance
C

ontrol.

65

f2c

2
dq_ref_modified

1
q_ref_modified

v0 v1

v0

T44
v1

velocity transmission

−C−

ones

f1=f0−gravity
f0

T44
f1

gravity compensation

f0 f1

f0

T44
f1

force transmission
T44vect_f2s

force sensor frame
in flange frame

T44vect_f2c

contact frame in
flange frame

posChange dT44

cartesian2T44

−K−

activation

T44*T44

T44Multiply3

T44*T44

T44Multiply2

T44*T44

T44Multiply1

Invert T44

T44Inv

Saturation

J^(−1)

IRB inverse Jacobian

JACOBIAN in flangejoints 36*1 J

IRB Jacobian in Flange

INVERSE
flange−>joints

T44

prev
joints

IRB Inverse Kinematics

FORWARD
joints−>flangejoints T44

IRB Forward Kinematics

FORWARD
joints−>flangejoints T44

IRB Forward

velChange

reset
posChange

Discrete time saturated
integrator with anti−windup

D66*D6
D66

D6D6

D66D6

D66*D6
D66
D6 D6

D66D1

F_errordpTCP

Admittance Activation

6
reset

5
dq_ref

4
q_ref

3
force ref in contact frame

2
force measurement

1
q

dArmSat

dpFlange

dfC
c2S

c2f

b2f

dArm

b2s

f2c

f2s

F
igure

C
.7:

Sim
ulink

m
odel

for
A

dm
ittance

C
ontrol.

66

1
dT44U U(E)

total rotation

sin

sin

U U(E)

position vector

f(u)

norm

cos

cos

1e−8

avoid div w. 0

Quat to T44

Quat2T44

Product1

Product

max

MinMax

1

u

Math
Function

1/2

Gain

1
posChange

Figure C.8: Simulink model for conversion from Cartesian position
change to transformation matrix from [15].

1
outz

1

Unit Delay

Sign

Product

h

Gain

|u|

Abs

2
u

1
reset at 0

Figure C.9: Simulink model for discrete time integrator with reset.

67

data1− 6 are used for logging signals
with the Excitation handler

Input to Robot System

Output from Robot System

AnalogIn, AnalogOut: [−1,1] −> −10V..+10V

AnalogIn: [−1,1] −> −10V..+10V

torque in Ndm torque in Nmm

In1

Joint angles [rad] q_1
q_2
q_3
q_4
q_5
q_6

Joint velocities [rad/s] dq_1
dq_2
dq_3
dq_4
dq_5
dq_6

q_1r [rad]
q_2r
q_3r
q_4r
q_5r
q_6r

dq_1r
dq_2r
dq_3r
dq_4r
dq_5r
dq_6r
mode

Fx
Fy
Fz
Mx
My
Mz

La1
La2
La3
La4
La5
La6

AnalogIn0
Out39
Out40

Joint angles [rad] q[1..6]
q_r [1..6]

Subsystem1

q_1r [rad]
q_2r
q_3r
q_4r
q_5r
q_6r
dq_1r [rad/s]
dq_2r
dq_3r
dq_4r
dq_5r
dq_6r
tau_1r [Nm]
tau_2r
tau_3r
tau_4r
tau_5r
tau_6r
data_1
data_2
data_3
data_4
data_5
data_6
AnalogOut0

Out1

Subsystem

ArmCtrl_motor_In

Output from robot
and input to Simulink

ArmCtrl_motor_out

Output from Simulink
and input to Robotsystem

F
o

rc
e

sF
ilt

e
re

d
 F

o
rc

e

LP−filter

F_lhs F_rhs

LHS2RHS

−C−

Force Ref

pos

posref

velref

Force Sensor

Force Ref

reset

q_ref

dq_ref

Force Control

Demux

Demux

Demux

F
igure

C
.10:

A
rm

control
tem

plate
w

ith
force

controller.

68

