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Chapter 1

Introduction

The ”Pendubot” is a ABB Kreispendel that have been modified a bit. The
purpose with this project was to implement a cascade controller on the ”Pen-
dubot” using a cascade scheme developed at Laboratoire d’Automatique
(EPFL).

The cascade scheme has two main components: Input-output feedback lin-
earization(IOFL) and a linear controller which form the so called inner-loop
and the outer loop: PD-controller, non-linear controller or MPC.
A linear control is designed to control the φ-angle and to make the inner loop
faster then the outer, this speed difference or this so called time-scale sepa-
ration between the two loops is accomplished artificially by the large gains in
the linear controller. The purpose of the outer-loop is to control the ψ-angle.

1.1 System description

The Pendubot is a robot arm mounted on a electrical motor on one point
and a pendulum mounted at the opposite end. The pendulum, or the φ-
angle is free and cannot be controlled directly, The electrical motor controls
the arm or the ψ-angle and the its velocity ψ̇. The output is φ and can only
be controlled indirectly using ψ and ψ̇. See 1.1 below.
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Figure 1.1: The Pendubot



Chapter 2

The Pendubot model

As in most case it is possible to describe a system mathematically, this is
useful for the design of the controller, therefore the model accuracy is very
important. The dynamics of the Pendubot can be described as follows:

J1ψ̈ + J cos(ψ − φ)φ̈ + J sin(ψ − φ)φ̇2 − g1 sin(ψ) + b1ψ̇ + c1sign(ψ̇) = bū

(2.1)
J2φ̈ + J cos(ψ − φ)ψ̈ − J sin(ψ − φ)ψ̇2 − g2 sin(φ) + c2sign(φ̇− ψ̇) = 0

where J1, J2 and J are the different inertias, g1 = marm
larm

2 + mpendlarm

and g2 = mpend
lpend

2 , where larm is the length of the arm and lpend is the
length of the pendulum. bu is the applied torque (Nm), where b is the gain
between the input u (the voltage) and the torque. The constants are given
in Table 2.1. c1 and c2 are the static friction coefficients and b1 is the viscous
friction coefficient.

From equation set 2.1 we can see that it is possible to eliminate the effects
of friction directly in the first equation by applying following control law:

ū =
1
b
(u + b1ψ̇ + c1sign(ψ̇)) (2.2)

Unfortunately it is not possible to eliminate the friction effects in the second
equation directly, hopefully this should not affect the performance signifi-
cantly. Just by moving around the arm and pendulum we can feel that
the friction force affecting the arm is a lot larger in magnitude than the one
affecting the pendulum, therefore the friction term c2sign(φ̇−ψ̇) is neglected.

5



6 CHAPTER 2. THE PENDUBOT MODEL

J1 0.22 kg m2

J2 0.019 kg m2

J 0.0185 kg m2

g1 1.7 Nm
g2 0.36 Nm
b 3.2 Nm/V

Table 2.1: System parameters

Writing the equations in 2.1 in state-space form yields the following equa-
tions 2.3.

ẋ = f(x) + g(x)bū, x(0) = x0 (2.3)
y = φ

where x = [ φ φ̇ ψ ψ̇ ]T are the states, ū the input, y the output , x0 the
initial conditions, and where f and g are the functions describing the system
dynamics:

f =




φ̇
−J1α− J cos(ψ − φ)β

ψ̇
J cos(ψ − φ)α + J2β


 (2.4)

g =




0
−J cos(ψ−φ)

a
0
J2
a


 (2.5)

with:

a = J1J2 − J2 cos2(ψ − φ)

α =
1
a
(−g2 sinφ− J sin(ψ − φ)ψ̇2)

β =
1
a
(g1 sinψ − J sin(ψ − φ)φ̇2)
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Setting x = 0 and u = 0 in above equation yields f(0) = 0 since α(0) = 0
and β(0) = 0, suggesting that this is an equilibrium point. Since the point
[0 0] is the point were the ”Pendubot” is pointing upwards, the pendulum
is inverted, this intuitively suggests that the equilibrium point is unstable.

2.1 The zero-dynamics

The zero-dynamics are linked with the non-minimum phase behavior of the
pendubot. Non-minimum phase means that the systems zeros are unstable.
In the linear case a plant is non minimum phase when the zeros of the system
are in the right half plane in the frequency domain, szeros > 0.
Investigating the zero-dynamics. Using equation set 2.1 and by setting y =
φ = 0 yields:

J1ψ̈ − g1sin(ψ) = u (2.6)
Jcos(ψ)ψ̈2 − Jsin(ψ)ψ̇2 = 0 (2.7)

Simplifying further yields:

ψ̈ =
1
J1

(g1sin(ψ) + u) (2.8)

ψ̈2 = tan(ψ)ψ̇2 (2.9)

According to equation 2.9 if ψ = ξ, where |ξ| > 0 is a very small number,
then |ψ̈| > 0 this yields that the plant quickly diverges, hence the zero dy-
namics are unstable, the pendubot is therefore non-minimum phase. Please
notice that the speed which the zero dynamics diverges is dependent on ψ̇.

2.2 The relative degree

Another important feature is the systems relative degree. In the linear case
the relative degree of a linear system with input u and output y is the
difference between the number of poles and the number of zeros.

In the nonlinear case the relative degree is, the number of times the
output has to be differentiated with respect to time until the input appears.
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This property can be expressed as follows { LgL
r−1
f h(x) 6= 0, LgL

i
fh(x) =

0, ∀i < r− 1 , ∀x }, where LfN(x) = ∂N
∂x f(x) is the Lie derivative of N and

r is the relative degree.
Calculating the relative degree r:

Lgh(x) = 0 (2.10)

LgLfh(x) =
−J2

(−J1J2 + J2cos(ψ − φ)2)
6= 0 (2.11)

Equation 2.10 and 2.11 suggest that the system has a relative degree r = 2.



Chapter 3

Control theory

This chapter will discuss the approach finding a controller for the Pendubot.
As mentioned before the three main controllers will be described more thor-
oughly in this section.

3.1 The Input-Output Feedback Linearization (IOFL)

The IOFLs purpose is to by feedback making the system behave linear be-
tween input and output, if this is accomplished, linear control strategies can
be applied to control the input-output behavior.
Knowing that the relative degree of the system is r = 2, yields following
control law for the IOFL:

u =
v − Lr

fh(x)
LgLfh(x)

(3.1)

where LfN(x) = ∂N
∂x f(x) is the Lie derivative of N.

Linearizing the system through feedback consists of inverting the system
dynamics. Since it’s not possible to invert the system completely in our
case, it is only possible to partially invert the system, therefore some resid-
ual dynamics called the internal dynamics remains. One important issue
is that the IOFL does not stabilize the internal dynamics. Therefore an
additional controller is needed.

9



10 CHAPTER 3. CONTROL THEORY

3.1.1 The internal states and dynamics

After applying IOFL internal dynamics (IDs) remains. Using the non-linear
transformation z = T (x), where z = [y ẏ ηT ] and where η are the so called
internal states (ISs), the IDs can be described as follows in a general expres-
sion:

ÿ = v

η̇ = Q(η, y, ẏ, v) (3.2)

The choice of the internal dynamics are free, the internal dynamics are
chosen so that they are independent of the input v.
Assuming that the input-output behavior is much faster than the internal
dynamics an assumption is made that the system is in a quasi-steady state.
Also, we assume that: y = φ chases yref slowly therefore ∆y = ∆yref ,
y = yref and ẏ = ẏref , assuming this yields η̇ = Q(η , yref , 0, 0) =
Q(η , yref )), these are the so called reduced internal dynamics (RID).
The candidate for reduced internal states(RIS) is:

η1 = Jsin(ψ − φ)
η2 = Jψ̇cos(ψ − φ) + J2φ̇ (3.3)

which yields following RIDs:

η̇1 = η2

η̇2 = g2λ (3.4)

where λ = sin(yref ), using this transformation yields completely linear
RIDs. As seen above the RIDs behave as a double integrator and need
to be stabilized. The stabilization of the RIDs is the reason why a cascade
scheme is needed.
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Figure 3.1: The cascade control scheme

3.2 The cascade scheme

The problem with unstable internal dynamics after applying IOFL motivates
the use of a cascade scheme. The cascade scheme will contain of two loops,
an inner loop and an outer loop.

The inner loop will contain an linear controller to control the output (φ-
angle) while the outer loop will stabilize the internal dynamics (effectively
the ψ-angle). A diagram of the cascade scheme is illustrated in figure 3.1.

In figure 3.1 it is written ”predictive control”, however other controllers
can be put in at its place.
The cascade scheme controller is subject to two conditions. Firstly the inner
loop have to be faster than the outer loop meaning that the bandwidth of
the inner loop (ωinner) has to be larger than the bandwidth of the outer loop
(ωouter). This yields the condition: ωinner >> ωouter.
This difference in bandwidth gives a time-scale separation between the inner-
and outer-loop. Having a sufficient difference in bandwidths or time-scale
separation allows control of the φ-angle separately from the ψ-angle.

Secondly, ideally the reference trajectory should be reached within a
sub-sampling period y(t0 + hsub) = yref for best performance. Where the
reference, yref , is the desired output(φ).
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3.3 The inner-loop

The inner-loop contains of the IOFL and a linear controller. The IOFL’s
purpose is to linearize the input-output behavior as mentioned before and
the purpose of the linear controller is to control the output and to artificially
create a time scale separation between the inner- and the outer-loop.

Since the IOFL yields a input-output linear system, it is possible to use
simple linear design methods to control the output.
A PD-structured state-feedback control law is chosen:

v = −Kφ(y − yref )−Kφ̇ẏ (3.5)

Where Kφ and Kφ̇ is chosen by pole placement.

3.4 The outer-loop

The outer-loop will contain of several different types of controllers, the pur-
pose of these controllers will however remain the same: stabilize the internal
dynamics. This is done by the outer-loop controller which computes a ψ-
angle stabilizing control input yref to be passed on as input to the linear
controller in the inner-loop.

3.4.1 The PD-controller

The PD-controller represents the simplest type of controller in the outer-
loop, using linearized internal states in the state-feedback control law.
Linearizing the internal states in equation 3.3 yields:

η∗1 = Jψ

η∗2 = Jψ̇ (3.6)

The outer-loop poles can there after be placed by applying a state-feedback
control law:

yref = −Kη∗1η
∗
1 −Kη∗2η

∗
2 (3.7)

3.4.2 The Non-Linear Controller (NLC)

The only difference between the PD-controller and the NLC is that the
NLC uses the non-linear RISs as in equation 3.3 as states in the following
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state-feedback control law:

λ = −Kη∗1η1 −Kη∗2η2

λ = −Kη∗1Jsin(ψ − φ)−Kη∗2 (Jψ̇ cos(ψ − φ) + J2φ̇) (3.8)

where Kη∗1 and Kη∗2 are the feedback gains chosen by pole placement just as
for the PD-controller and yref = arcsin(λ).

3.4.3 The Model Predictive Controller (MPC)

The idea with the MPC is to simulate the system in the future, over a pre-
defined prediction horizon T . An input signal λ is found to minimize the
cost function J just as stated below in problem specification 3.9. The input
is then applied over a sampling (or sub-sampling) period and then the whole
procedure is repeated.

J(yref ) = min
λ([t,t+T ])

{
1
2
ηT Pη(t + T ) +

1
2

∫ t+T

t
ηT Qη + R λ2(τ)dτ)

}
(3.9)

subject to :
η̇1 = η2

η̇2 = g2λ

λ = sin(yref )

η1(t0) = η0
1

η2(t0) = η0
2

where, P , Q and R are weighting matrices, T is the prediction horizon, J is
the cost function to be minimized and yref is the control input. Solving the
optimization gives λ? and J? which is the optimal input and the minimum
cost. The optimal control input is y?

ref = arcsin(λ?). The problem is non-
autonomous with fixed time T.

Solving the optimization problem analytically having an infinitive pre-
diction horizon (T = ∞) gives an ordinary LQR-control law (see appendix)
with static gains just as in the PD-controller and in the NLC. Assuming
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a non infinitive prediction horizon an online optimization method of prob-
lem 3.9 is chosen to compute yref . The final point weighting matrix P can
however be chosen in such a manner that:

1
2

∫ ∞

t+T
ηT Qη(τ) ≈ 1

2
ηT Pη(t + T ) (3.10)

Hence it will be possible to compare the two different controllers.



Chapter 4

Hardware and software

To this point background theory have been discussed, the next step is to
implement the theory to the actual system, for this we need hardwares and
softwares to establish a connection between the controller and the physical
plant. A hardware map is illustrated in figure 4.1. A more detailed expla-
nation and specification about the hardware can be read reference [3].

Computer

Power-MAC

PCI-1200 card

Electric DC Motor

Sensor A (Arm)

Sensor B (Pendulum)

Communication Hardware 

Amplifier

Pendulum Interface

 Board

DAO(input(u))

PORT A

PORT B

PORT C

The “Pendubot”

 Pendulum

Torque

I_out

psi

phi

Figure 4.1: Hardware map
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State 0 State 1 State 2

State 3State 4State 5

State 6 State 7
Controller

Swing up

Simple swing up

Config ports
A,B,C

Wait
1 sample

time

Move fast

Move slowly
Wait 3 sec

Event 0 Event 1

Event 2 Event 3

Event 4Event 5

Event 5

Event 6

Event 6 Event 7

Event 7

Figure 4.2: Real-time chain

The software used was: LabView 6i, CodeWarrior 1.7.4 and Matlab 5.2
for MAC.

LabView 6i provided the I/O between the plant and the controller(C-code),
graphical interface and the real-time kernel.
Filename: CascadeContWithMPC2.GUI.

Codewarrior 1.7.4 was the C-compiler.
Filename: Task1.c.

Matlab 5.2 was used for calculations and simulations.
The map of the real-time program is illustrated in 4.2 State explanation:

• State 0 : Configuration of the I/O ports A, B and C.
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• State 1: Wait one sample time, this is necessary when calculating the
angular velocity, in State 0 the first measurement is not available due
to the fact that the I/O ports are not defined yet.

• State 2: Move fast clockwise. The speed of the arm is controlled by
a PI-controller.

• State 3: Move slowly clockwise. The speed is PI-controlled as in State
2, but slower. State 2 and 3 is used for calibrations of the sensors.

• State 4: Wait 3 seconds. Manually reseting the sensors here.

• State 5: Swing up using IOFL with ψ as output and destabilize φ.

• State 6: Controllers, outer-loop controllers.

• State 7: Simple swing up, swing arm back and forth until the con-
troller catches it.

Event explaination:

• Event 0 : Next sample period.

• Event 1: Next sample period.

• Event 2: Arm pointing almost straight down.

• Event 3: Arm pointing passed: arm pointing down-area,

• Event 4: Arm pointing downwards pendulums angular velocity is
zero, φ̇ = 0.

• Event 5: After 3 sec go to swing up of choice.

• Event 6: ψ is in upper half(|ψ| < π/2) and |φ| < π/4, also for simple
swing up |φ̇| < 2.5.

• Event 7: |ψ| > π/2.
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Chapter 5

Implementing the cascade
controller

Implementing the cascade controller scheme on the actual system was pretty
much straight forward even though a lot of problems had to be solved on
the way.

The actual core program, the real-time kernel where the controller was
to be implemented already existed from previous work but needed to be
modified. The initialization process defining the I/O ports, the basic com-
mands i.e reading the sensors and converting the sensor values to radians,
had already been implemented. The basic commands are:

short GetA(void)
Reading sensor A, ranging (-8192 . . +8191), 0 when arm is pointing com-
pletely downwards. Corresponding to the ψ angle.

short GetB(void)
Reading sensor B, ranging (-8192 . . +8191), 0 when the angle between the
arm and pendulum is 0 (arm and pendulum are parallel and fully extended).

void DAout(double u)
Converting and applying the control signal u. u ranging (-5 . . +5V) is
converted to binary values ranging (-2048. . 2047). The converted u is sent
to the PCI card by the command Dabin.

void getValues(double *psi, double *psid, double *phi, double *phid, double h)
Calculating the angles ψ and φ in radians as in figure 1.1 as well as filtering

19



20 CHAPTER 5. IMPLEMENTING THE CASCADE CONTROLLER

the angles to obtain the angle velocities ψ̇ and φ̇. The input is h (sampling
time), the outputs are psi(ψ), psid(ψ̇), phi(φ) and phid(φ̇).

5.1 Implementing the inner loop controller - IOFL
and linear controller

The main problems that arose implementing this part were: friction, noise
and actuator limitation.
Without proper friction compensation the controller performed rather poorly,
giving limit cycles. No compensation yielded the system unstable.

Noise caused problems when calculating the angular velocities causing a
very ’nervous’ control signal.

The limitation on the actuator caused that the time-scale separation
wasn’t large enough, yielded decreased tracking performance of the refer-
ence signal.
The function for IOFL and linear controller in Task1.c:
d* FeedBackLinController(d* phi, d* phid, d* psi, d* psid, d* phi_ref, d* t)

where d* means double format: Here are the angles phi = φ and psi = ψ.
The angular velocities phid = φ̇ and psid = ψ̇. The input phi ref = yref is
the reference angle. t is the sampling time.

5.1.1 Implementation of the linear controller

The feedback gains of the linear controller in equation 3.5 was chosen to be:
Kφ = 1

ε2
and Kφ̇ = 2

ε yielding the control law:

v = − 1
ε2

(y − yref )− 2
ε
ẏ (5.1)

which placed the two inner-loop poles at 1/ε. Hence only one parameter
was tuned to place the poles.
As mentioned previously our objective is to have the fastest inner loop as
possible, to guarantee a time scale separation, this wish have however limi-
tations, in our case εmin ≈ 0.05(s/rad), placing the poles of the inner loop
at s = −20(rad/s). A smaller ε made the arm vibrate heavily, a sign of
a limitation. The consequence of choosing ε > 0.05 was that the MPCs
performance decreased. Using a higher ε worked however for the NLC and
the PD-controller.



5.1. IMPLEMENTING THE INNER LOOP CONTROLLER - IOFL AND LINEAR CONTROLLER21

5.1.2 Friction

In our case the frictions were assumed to be static and viscous. The con-
stants b1 and c1 from equation 2.1 were experimentally determined by basic
trail and error method. Table 5.1 below contains the friction constants found
to work best:

b1 0.5 Nm/rads−1

c1 2.41 Nm

Table 5.1: Friction parameters

These values did not correspond to previous paper [3], this might suggest
that the frictions could have changed over time. Changed friction values
over short time was also noticed since constant tuning was required. Dif-
ference could be noticed after the Pendubot had been running for a while,
then the friction seemed to decrease in magnitude.

5.1.3 Noise and actuator limitation

As always when dealing with sensors they are subject to noise, this noise can
decrease the performance of the system gravely if not taken care of. A way
to limit the effects of the noise is to filter the signals, this however introduces
a delay in the feedback loop. A filter with a well defined cut off frequency
is of a higher order yielding greater delay while a filter with a flatter cut off
frequency doesn’t filter as good. Designing a filter is therefore a trade off
problem.

The choice of filter for the Pendubot was a digital Butterworth filter of
order 3 which gave satisfying filtering performance while not delaying the
feedback-loop too much. The choice of cut off frequency was so that the
filter would be at least 5 times faster than the inner loop so that the filter
dynamics doesn’t affect the actual system dynamics.
This filter specification yielded following cut off frequency:

fcut =
5

2πε
(Hz) (5.2)

where 1
ε are the inner loop poles, that means that the filter design is depen-

dent on the inner loop bandwidth and hence on the actuator’s limitations.
According to equation 5.2 above, the cut off frequency was chosen to be
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fcut = 20Hz.

Another limitation was the bounds on the input signal (-5V . . 5V),
meaning that the input quickly got saturated and hence the system was
not controllable. This input saturation affected the performance close to
the singularity area of the IOFL where we need infinitive control input to
maintain control, this inevitably leads to loss of control.

5.2 Implementing the outer-loop - the PD-controller

The first PD-controller was implemented for the verification of the IOFL,
since the ψ angle isn’t controlled using IOFL + linear controller, but φ is,
hence φ ≈ 0. When not controlling the ψ-angle the φ-angle quickly diverged
and when it reaches the singularity point cos(ψ − φ) = 0 or cos(ψ) ≈ 0
when ψ = ±π/2 the control signal saturated and the controllability was
lost. This could be prevented by implementing the PD-controller on ψ in the
outer loop, with the purpose of controlling ψ → 0 by generating a reference
trajectory that was passed to the IOFL and linear controller, hence keeping
the Pendubot in the controllable zone |ψ| < π/2.

Firstly, the tuning of the gains was trial and error just to stabilize ψ.
After verifying that the IOFL + linear controller worked properly the gains
of the PD was revised, this time to satisfy the performance specification of
good tracking of the reference trajectory and relative quick convergence of
ψ → 0. Even though ε can be as low as ε = 0.05 an ε = 0.1 was chosen
because of it’s smoother control input, this placed the inner loop poles at
s = −10 (rad/s). As a rule of thumb the outer-loop was designed to be at
least 5 times slower to separate the two systems, making them independent
of each other. This rule of thumb placed the poles in the range 0 > s > −2.
The feedback gains were then calculated to place the linearized internal
dynamics poles at the specified location.

By trying different options of pole placement, the one considered sat-
isfying the specifications best was then picked. The different option are
illustrated below:

for best overall performance the poles was chosen to be [−1 − 1.5] for
ε = 0.1 and [-1 -1] for ε = 0.05. These poles will later work as a guideline
when designing the NLC and the MPC. in C-code yref was expressed ac-
cordingly (poles at [-1 -1.5]):
yref = -0.0771*psi - 0.1285*psid
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ε Poles Convergence Tracking disturbance rejec-
tion/recovery

0.1 [-1 -1] too slow good good
0.1 [-2 -2] fast bad , yref too ag-

gressive
bad, very sensitive

0.1 [-1.5 -1.5] fast poor , yref quite
aggressive

not so good, sensitive

0.1 [-1 -1.5] fast acceptable quite robust, quite
good recovery from
disturbances

0.05 [-1-1] fast good acceptable
0.05 [-2 -2] overshoots poor, very aggres-

sive
very poor/unstable,
oscillating when
disturbed lightly

0.05 [-1.5 -1.5 ] overshoots not so good poor, oscillating when
disturbed

0.05 [-1 -1.5] fast acceptable sensitive to distur-
bance

Table 5.2: Choosing inner loop poles - performance table

5.3 Implementing the outer-loop - The NLC

The only difference between the PD-controller and NLC is that in the PD-
controller the internal dynamics are linearized, in the NLC the internal
dynamic are just as stated in 3.3 giving the control law as in 3.8.
Note that yref = arcsin(λ):

λ = −Kη∗1Jsin(ψ − φ)−Kη∗2 (Jψ̇ cos(ψ − φ) + J2φ̇) (5.3)

In the actual implementation the underlined part was neglected because of
phid’s (φ̇) sensitivity to noise. Neglecting this part yielded a smother control
signal without loss in performance.

The big advantage over the linear PD is that the NLC act less aggres-
sive when ψ is far from 0, therefore giving smoother control input and a
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calmer behavior hence only the NLC will be discussed from now on. This
can be explained as follows: Rewriting the control law 5.4 after neglecting
the phid-part gives as follows:

λ = −Kη∗1Jsin(ψ)−Kη∗2Jψ̇ cos(ψ) (5.4)

Rewriting once more by introducing the new non-static, non-linear gains
Kψ(ψ, φ) and Kψ̇(ψ, φ):

λ = −Kψ(ψ, φ)ψ −Kψ̇(ψ, φ)ψ̇ (5.5)

where:

Kψ(ψ, φ) = Kη∗1J
sin(ψ − φ)

ψ

Kψ̇(ψ, φ) = Kη∗2Jcos(ψ − φ) (5.6)

Revealing the state feedback structure with dynamic gains. Note that:

lim
ψ,φ→0

sin(ψ − φ)
ψ

= 1. (5.7)

Since the φ is controlled to zero faster than ψ we can assume that φ ≈ 0
and to simplify, let say sin(ψ) ≈ ψ. this leaves the control law:

Kψ(ψ, φ) = Kη∗1J

Kψ̇(ψ, φ) = Kη∗2Jcos(ψ) (5.8)

Above equation shows that for larger ψ:s the gain on the angular velocity
psid (ψ̇) is decreased, hence resulting in smoother control signal for larger
ψ-angles.

In C-code the NLC control law is written as follows (poles at [-1 -1.5]):

yref = asin(-0.0771*sin(psi-phi) - 0.1285*psid*cos(psi-phi))

Note that the phid (φ̇) part is missing. yref is passed on to the command
FeedBackLinController as phi_ref. The feedback gains are for ε = 0.1.
The feedback gains on the internal dynamics are the gains illustrated above
divided by the inertia J , Ki/J .
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5.3.1 NLC under sub-sampling

If the MPCs wouldn’t finish the optimization within a sampling period (5
ms), then sub-sampling was useful, allowing the optimization more time to
finish. A NLC under sub-sampling was therefore introduced so that the
NLC and MPCs could be compared. subNLC is the C-function name for the
NLC subject to sub-sampling.

5.4 Implementing the outer-loop - The MPCs

Several issues arose when implementing the MPCs, numerical optimization
and integration methods had to be chosen, parameters of the optimization
methods had to be tuned. Therefore several MPCs were implemented and
the ones that seemed the most appropriate were chosen.

5.4.1 Optimization method

Solving problem 3.9 with a fixed non-infinitive prediction horizon was done
by an online solver. The solver of choice was the so called ”Quasi-Newton
method”.

In Newton’s method, J(λ(k)+δ) ≈ q(k)(δ) = Jk + g(k)T
δ + 1

2δT G(k)δ,
where δ = λ − λ(k) and q(k)(δ) is the resulting quadratic approximation
for iteration k. then the iterate λ(k+1) = λ(k) + δ(k), where the correction
minimizes q(k)(δ). This method requires zero, first and second derivatives.

The Quasi-Newton method on the other hand only requires the zero and
first derivative. The Quasi-Newton method works like Newton’s method
with line search, the only exception that G(k)−1 is approximated by using a
symmetric positive definite matrix H(k), which is corrected or updated after
every iteration, hence the second derivative doesn’t need to be calculated
analytically.
The Quasi-Newton is described in pseudo-code below:
-Initialize algorithm-
step 0: H is initialized as I and initial conditions are set, a system integra-
tion takes place to estimate what the initial conditions will be when the input
(λ) will be applied

-Algorithm-
step 1: Initial conditions are set (have to be done before every iteration)
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step 2: run quasi-newton algorithm
(a) -integrate system- subject to λ(k)
(b) s(k) = −H(k)g(k)
(c) line search along s(k) giving λ(k + 1) = λ(k) + α(k)s(k) (α is the
tuning parameter usually set to 1)
(d) calculate δ(k) = α(k)s(k) = λ(k + 1)− λ(k)
(e) -integrate system- subject to λ(k + 1)
(f) calculate γ(k) = g(k + 1)− g(k)
(g) update H(k) giving H(k + 1) using:

H(k + 1) = H(k) +
(δ(k)−H(k)γ(k))(δ(k)−H(k)γ(k))T

(δ(k)−H(k)γ(k))Tγ(k)
(5.9)

Integrating forward the system using Euler integration method from t = t0
to t = T , where T is the prediction horizon, gives as follows:
For-loop from k = 0 to k = T/h, where h is the sampling period. Integrating
forward the reduced internal dynamics:

η1(k + 1) = η1(k) + hη2(k)

η2(k + 1) = η2(k) + hg2λ(k)

Integrating the sensitivities

∂η1

∂λ
(k + 1) =

∂η1

∂λ
(k) + h

∂η2

∂λ
(k)

∂η2

∂λ
(k + 1) =

∂η2

∂λ
(k) + hg2

Integrating the gradient g:

g(k + 1) = g(k) + h(q11η1(k + 1)
∂η1

∂λ
(k + 1) +

(q12 + q21)(η1(k + 1)
∂η2

∂λ
(k + 1) + η2(k + 1)

∂η1

∂λ
(k + 1)) +

q22η2(k + 1)
∂η2

∂λ
(k + 1) + Rλ(k))
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End for-loop. Penalizing the final position.

g(N) = g(N) + (p11η1(N)
∂η1

∂λ
(N) +

(p12 + p21)(η1(N)
∂η2

∂λ
(N) + η2(N)

∂η1

∂λ
(N)) +

q22η2(N)
∂η2

∂λ
(N) + Rλ(N − 1))

where P,Q and R are the weighting matrices from 3.9 and N is the final
time:

P =

[
p11 p12

p21 p22

]
, Q =

[
q11 q12

q21 q22

]
, R = R (5.10)

As seen above the sensitivities dx
du are computed and integrated instead of

integrating the system with an input λ + ∆λ and λ

g(λ) =
J(λ + ∆λ) + J(λ)

∆λ
(5.11)

Using the sensitivities proved to be less time demanding and therefore cho-
sen.

The dimension of λ was chosen to be 1 or 2. According to simulations a
2-dimensional λ performed better then a 1-dimensional λ. A 3-dimensional
λ was never considered since it was too time demanding. A 1-dimensional
λ gives a H of dimension 1 and g of dimension 1. Having a 2-dimensional λ
yields a 2x2 H and a 1x2 g.
When using a 2-dimensional λ, λ1 is applied in the simulated system from
t0 → T

2 while λ2 is applied from T
2 + h → T . However λ2 will never be

applied on the actual system.

5.4.2 Integration method

Four integration methods were considered, two of these were rejected before
even implemented. RK45 was rejected because it was too complicated to
implement together with fixed step sized Euler’s method, the optimization
integration uses Euler’s method. RK2 was rejected because it didn’t increase
the integration precision enough.

1. Euler, fixed step size, order 1, (Euler)
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2. Runge-Kutta, fixed step size, order 2, (RK2).

3. Runge-Kutta, fixed step size, order 4, (RK4).

4. Runge-Kutta, adaptive step size, order 4, (RK45).

Euler’s method proved to be sufficient since the RIDs were quite simple in
nature, a double integrator. RK4 was tested but the improvement in preci-
sion didn’t affect the performance. However the higher precision in RK4 was
needed when a MPC using non-linear internal dynamics was implemented
(see appendix). RK4 was also slower than Euler’s method. Execution time
comparison:

• RK4, took 2.7ms for 10 optimization iterations.

• Euler,took 1.6ms for 10 optimization iterations

5.4.3 The MPC parameters

α, the first parameter to be set, since the Quasi-Newton method have a
theoretical ability to converge after only 2N + 1 iterations when having the
right α, where N is the order of the system. α = 1 worked best and was
therefore chosen when λ was of 2-dimensions. When λ was of 1-dimension
an α = 0.5 was chosen, a smaller α:s yielded that the Quasi-Newton opti-
mization converged slower but on the other hand it was more stable.
The prediction horizon, was the second parameter to be set. If we would
simulate the whole system then the prediction horizon must be longer than
the ”dip” caused by the non-minimum phase feature of the system. Since
our set of RIDs is only a double integrator, no restriction of how short the
prediction horizon exists.
Since λ have the dimension Nλ = 1 or 2: hsub ≤ Tpred

Nλ
. Leading to the choice

of prediction horizon:
Tpred ≥ Nλ · hsub (5.12)

This condition states that the prediction horizon have to be longer than
time the reference input yref acts on the system.

Other factors affecting the choice of prediction horizon is that the refer-
ence have to be reached within a sub-sampling period i.e y(t0 +hsub) ≈ yref

and ideally also that ẏ(t0 + hsub) ≈ 0.
Calculating the settling time for condition y(t0 + hsub) ≈ yref . Firstly we
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need an expression for the inner-loop transfer function which determines the
settling time:

H(s) =
1
ε2

s2 + 2
ε s + 1

ε2
(5.13)

To be able to calculate the settling time we need the systems step response.
This is done by subjecting the system to a step input, i.e Θ(t) L−→ 1

s
and transforming the resulting transferfunction*step-input back to the time-
plane:

H(s)
1
s
L−1−→ −(1 +

t

ε
)e(−t/ε) + 1 (5.14)

Solving in the time-plane the settling time (98%):

−(1 +
Ts

ε
)e(−Ts/ε) + 1 = 0.98 (5.15)

Gives that Ts ≈ 5.8339ε, this yields the expression: Tpred ≥ N · 5.8339ε.
Equation 5.15 have to be solved numerically. This condition is not neces-
sary however, the MPC will work even if this condition is not satisfied.

The feedforward gain If the condition,y(t0 + hsub) ≈ yref isn’t ful-
filled, what happens then?, Actually there is a way to maintain the MPC
performance even if the condition is not satisfied, the trick is to apply a
feedforward gain on yref , to decrease the error, error = yref − y(t0 + hsub).
Using equation 5.14 the feedforward gain (ffgain) is calculated accordingly:

ffgain =
1

−(1 + hsub
ε )e(−hsub/ε) + 1

≥ 1 (5.16)

This ffgain can also be tuned by trail and error, Table 5.3 should work as
a guideline when implementing a feedforward gain. Simulated result using
ε = 0.05, h = 5ms(sec), hsub = 0.2(sec) with ffgain = 1.1008 5.1):
Practically the ffgain was only implemented on the MPC-2 for short sub-
sampling periods hence it can be seen as an Ad-hoc solution.

5.4.4 Weighting matrices and feedback gains

Choosing the weighting matrices in optimization problem 3.9, was quite
tricky when fixing the poles and calculating backwards to get Q, P and R.
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ε hsub(sec) Tpred ffgain

0.1 0.2 0.8 ≥ 0.2 1.6835
0.1 0.3 0.8 ≥ 0.6 1.2487
0.1 0.4 0.8 ≥ 0.8 1.1008
0.05 0.2 0.8 ≥ 0.4 1.1008
0.05 0.3 0.8 ≥ 0.6 1.0177
0.05 0.4 0.8 ≥ 0.8 1.0030

Table 5.3: Examples of ffgains

hsub s-poles s-feedback gains z-poles z-feedback gains
0.2 [−1 − 1.5] [4.17 6.94] [0.82 0.74] [3.26 5.79]
0.3 [−1 − 1.5] [4.17 6.94] [0.74 0.64] [2.90 5.32]
0.4 [−1 − 1.5] [4.17 6.94] [0.67 0.55] [2.58 4.91]
0.2 [−1 − 1] [2.78 5.56] [0.82 0.82] [2.28 4.81]
0.3 [−1 − 1] [2.78 5.56] [0.74 0.74] [2.07 4.49]
0.4 [−1 − 1] [2.78 5.56] [0.67 0.67] [1.89 4.20]

Table 5.4: Examples of when feedback-gains changes after discretizing

This was simple calculations for a continuos time system but when using
a sub-sampling time hsub which is 0.2 → 0.8 seconds it’s hard to motivate
that we still can consider the system as continuos.

According to the rule of thumb choosing sampling frequency ωnh =
0.2 → 0.6 since we know that h = hsub and ωn ∼ 1, this from pole-placement
in the section discussing the PD-controller, we can see that the system should
be considered as a discrete time system and therefore converted. Below is
a table (Table 5.4) of continuos time poles and feedback gains (denoted as
s-) and corresponding discrete time poles and feedback gains (denoted as z-)
when sub-sampling at a period hsub. All are for ε = 0.05. the system as in
equation 3.4.

As seen in the table above the feedback gains are changing when dis-
cretizing and because we are interested in the weighting matrices the idea of
have the poles fixed and calculate the weighting matrices was discontinued
instead feedback gains were calculated using matlab’s LQR, the advantage in
our case is using the same weighting matrices in a continuous LQR and in
a discrete LQR (dLQR) will produce equivalent poles, hence it will make the
calculations and comparisons easier.
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Figure 5.1: Comparing MPCs with and without feedforward gain, ffgain.

The poles in the outer loop have constraints however, firstly the outer
loop have to be at least 5 times slower than the inner loop so that the dy-
namic will not not interfere with each other, this gives us the first condition.

poles ≤ 1
5ε

(5.17)

Since ε = 0.05, poles ≤ 4(rad/s).
A second condition which comes from Nyquist’s theorem when discretizing
continuous systems:

ωnhsub = 0.2 → 0.6 (5.18)

where ω is the outer loops bandwidth. Below is a table of how ωnmax varies
depending on hsub, ωnmin have to be chosen in such manner so that the
pendubot remain in the area |ψ| < |π/2|.
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hsub(sec) ωnmax

0.2 1 → 3
0.3 0.67 → 2
0.4 0.5 → 1.5
0.5 0.4 → 1.2
0.6 0.33 → 1

Table 5.5: Table of were we can expect to encounter ωnmax when sub-
sampling

For the actual NLC and MPC design several control laws, Table 5.6,
with different weighting matrices were calculated. These were later used if
they fulfilled above mentioned conditions, R is always R = 1:

To be able to use table 5.6 controllers on the NLC , the feedback gains have
to be calculated for the specific hsub, this is done quickly in Matlab using:

Kz = dlqr(Az,Bz,Q,R)

where Az and Bz are the discretized system matrices using sampling time
hsub.

[Az, Bz, Cz, Dz] = ssdata(c2d(ss(A,B,C,D),hsub))

5.4.5 The resulting MPCs

Two main MPCs were implemented, MPC-1 and MPC-2. MPC-1 uses a
1-dimensional λ and MPC-2 uses 2-dimensional λ, because of good results
when simulating the system with this dimension.

The MPCs uses the same optimization method - the Quasi-Newton
method, with integrations of the sensitivities. MPC-1 will therefore have
a H of dimension 1x1 and a g of dimension 1x1. MPC-2 however will use
a H of dimension 2x2 and a g of dimension 1x2, hence more complex. the
convergence parameter α was chosen α = 1 for MPC-2 and α = 0.5 for
MPC-1.

The integration method is Euler’s method through out for both system
integrations and optimization integrations. Using Euler’s method was suffi-
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Controller : Q-matrix P-matrix poles (in s)

(1)

[
0.5 0
0 0.5

] [
1.49 1.96
1.96 5.85

]
[−0.38± 0.33i]

(2)

[
1.0 0
0 1.0

] [
2.56 2.78
2.78 7.11

]
[−0.46± 0.38i]

(3)

[
2.0 0
0 2.0

] [
4.44 3.93
3.93 8.72

]
[−0.57± 0.44i]

(4)

[
5.0 0
0 5.0

] [
9.33 6.21
6.21 11.6

]
[−0.75± 0.49i]

(5)

[
10 0
0 10

] [
16.6 8.79
8.79 14.6

]
[−0.95± 0.50i]

(6)

[
25 0
0 25

] [
36.3 13.9
13.9 20.2

]
[−1.31± 0.30i]

(7)

[
50 0
0 50

] [
66.8 19.6
19.6 26.2

]
[−1.11 , −2.29]

(8)

[
75 0
0 75

] [
96.1 24.1
24.1 30.8

]
[−1.06 , −2.93]

(9)

[
100 0
0 100

] [
125 27.8
27.8 34.6

]
[−1.05 , −3.45]

Table 5.6: Controllers candidates
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ciently accurate for the double integrator system as well as it was fast.

The prediction horizon was chosen to T = hsub for MPC-1 and T = 2 · hsub

for MPC-2.

The feedforward gain was only implemented on MPC-2.
In the actual C-program MPC-1 and MPC-2 are named MPC_1 respectively
MPC_2.



Chapter 6

Results and conclusions

In this chapter results and issues related to performance and limitations of
the different controllers will be discussed.

Since there exist numerous different controller candidates, illustrated
in Table 5.6, and since there also exists numerous of sub-sampling period
choices only a few candidates for comparison will be picked and plotted.

Firstly, no sub-sampling was chosen, the controllers tested were NLC
and MPC-1. The minimal sub-sampling period for MPC-2 was hsub = 0.025
(sec), which is 5 times longer than h. Choosing a prediction horizon of
0.5 sec made it possible to do 175 optimization iterations per sub-sampling
period. Choosing a shorter prediction than 0.5 wasn’t possible due to bad
results for the MPC-2. After this try, sub-sampling periods of 0.2, 0.4 and
0.6 seconds were tried.

The disturbance applied was a simple ’touch’ with the finger on the
pendulum, this ’touch’ differed in force, for long sub-sampling periods even
a light touch could destabilize the process.

One obvious problem when starting the trails was the sensitivity to cal-
ibration error, therefore a lot of effort was put in to calibrate the sensors
correctly before any trail yielding a just comparison base for all the con-
trollers tried.

6.1 No sub-sampling - results

In this section only results with no sub-sampling will be discussed.
Having set the poles, the controllers were tested and the performance was
recorded. Here are the results presented:

35
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Figure 6.1: Plot of y = φ, yref and ψ ε = 0.05 using the NLC controller
number 5.
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Figure 6.2: Plot of y = φ, yref and ψ ε = 0.05 using MPC controller number
5.
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Figure 6.3: NLC under sub-sampling = 0.025 sec using weighting matrices
as in controller 5

Notice the ”dip” when tracking the reference, φ is going the other way
before it follows the reference, this is a typical feature for non-minimum
phase systems.
Here we can see that the controllers perform almost equally good with very
good disturbance rejection and good recovery.

6.2 hsub = 0.025 - results

Using hsub five times longer than the inner loop sampling period allows the
optimization sequence to have longer time to finish and therefore hopefully
a more exact solution. Using a longer sub-sampling period also allows us to
evaluate MPC-2 which have been discussed previously.

For the controllers in this section ε = 0.05 is used and for the MPCs
a prediction horizon Tpred = 0.5 is used. Even though Tpred seems quite
long compared to the sub-sampling period it is necessary due to the non-
minimum phase features of the dynamics.

Once again the controllers seem to work similar. The extra time to solve
the the optimization doesn’t seem to do any significant difference.
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Figure 6.4: MPC-1 under sub-sampling = 0.025 sec using weighting matrices
as in controller 5
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Figure 6.5: MPC-2 under sub-sampling = 0.025 sec using weighting matrices
as in controller 5
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Figure 6.6: NLC under sub-sampling = 0.2 sec (controller 5)

The only reason to go further increasing the sub-sampling period is to inves-
tigate how the system will behave when the time-scale separation have been
augmented i.e the outer loop will generate steps that will be reached by the
inner loop in time.

6.3 hsub = 0.2 sec - results

Here the discretization is more evident, using the same weighting matrices
as for hsub = 0.025 yields different gains in this case. Controller 5 from table
5.6 was never used for the MPC-2 due to it was to slow, the arm reached
the singularity area and was therefore not controllable. This made it hard
to compare MPC-2 with the NLC and MPC-1.

The results show that NLC produces oscillations with higher frequency
and amplitude than MPC-1. The delay between the feedback and the actual
application of the control input is the reason for this behavior, the controller
simply lags behind the system. Here the MPC-1 seems to be able to manage
these delays fairly well.
The MPC-2 is hard to compare with any other controller due to it’s totally
different weighting matrices.

The disturbance rejection and recovery was bad for the NLC which was
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Figure 6.7: MPC-1 under sub-sampling = 0.2 sec (controller 5)
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Figure 6.8: MPC-2 under sub-sampling = 0.2 sec (controller 8)
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Figure 6.9: NLC -controller under sub-sampling = 0.4 sec (controller 3)

already suffering from heavy oscillations. However the MPCs could still deal
with some disturbance quite good.

6.4 hsub = 0.4 sec - results

Using this sub-sampling frequency should allow the inner loop to reach
the desired output within one sub-sampling period, hence the time-scaling
should be enough.

As perhaps expected from the previous results using hsub = 0.2 the NLC-
controlled system oscillated heavily. The NLC showed some ability to reject
or recover from disturbances even though this ability was quite small.

MPC-1 showed compared to the NLC better disturbance rejection and recov-
ery abilities even though it’s clear that long sub-sampling periods decreases
this ability. MPC-2 was basically incomparable with the other controllers.
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Figure 6.10: MPC-1 -controller under sub-sampling = 0.4 sec (controller 3)
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Figure 6.11: MPC-2 under sub-sampling = 0.4 (controller 8)
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Figure 6.12: MPC-2 under sub-sampling = 0.6 sec (controller 8)

6.5 hsub = 0.6 - results

Having increased the sub-sampling period even further a stable NLC was
simply not found. A sometime stable MPC-1 was found but the oscillations
were of that magnitude that it can basically be considered as unstable.
Here the MPC-1 and MPC-2 showed different features, while MPC-1 only
worked when choosing lower than before weighting matrix, MPC-2 seems to
work better when augmenting the weighting matrix. Because of the poor
performance of the NLC and MPC-1 only the results from MPC-2 will be
presented.

The disturbance rejection and recovery is very weak at this sub-sampling
rate but is nevertheless still existent.
As observed in the figure, the system oscillates quite heavily but is still sta-
ble.
Even though these result are quite useless when only examine the perfor-
mance, one interesting fact can be found: using MPC-2 which has a two
dimensional λ seems still be stable for long sampling periods as 0.6 seconds.
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Figure 6.13: MPC-2 under sub-sampling = 0.6 sec (controller 9)

6.6 Estimating the feedback gains using least square
method.

One alternative method to analyze the different results from the controllers
used is to compute the estimate of the feedback gains using least square
method. Assuming that the system is totally linear we can write the follow-
ing equations:

yref = −K ·
[

η̄1

η2

]
(6.1)

this illustrates an ordinary feedback control law u = −Kx. Having the
measured values of yref = [yref (1) yref (2) . . . yref (N−1) yref (N)] and η̄1 =
[η̄1(1) η̄1(2) . . . η̄1(N−1) η̄1(N)] and η2 = [η2(1) η2(2) . . . η2(N−1) η2(N)],
N is in our case 5000 measuring points. Using this we can estimate the
feedback gain K̂.

K̂ = −yref ·
[

η̄1

η2

]T

·



[
η̄1

η2

]
·
[

η̄1

η2

]T


−1

(6.2)

How can these estimates be interpreted?, well these are the feedback gains
when applied on a system without sub-sampling the system will show the
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same features as if it was sub-sampled, not exactly however.

Estimate feedback gains when not sub-sampling, Table 6.1

hsub(sec) Cont.nbr KNLC KMPC−1 KMPC−2

0.005 5 [ 3.18 5.33 ] [ 3.18 5.11 ]
0.025 5 [ 3.65 3.30 ] [ 3.41 2.43 ] [ 3.95 3.55 ]
0.2 5 [ 3.70 2.52 ] [ 3.29 2.29 ]

8 [ 1.94 2.73 ]
0.4 3 [ 2.49 1.10 ] [ 1.87 1.49 ]

8 [ 2.02 1.77 ]
0.6 8 [ 1.58 1.49 ]

9 [ 2.29 2.02 ]

Table 6.1: Estimate feedback gains with no sub-sampling

Judging from the table above, we can actually compare the MPCs with
the NLCs when it comes to comparing the ’average’ feedback gains. This
suggest that using Quasi-Newton in a way as it is done in MPC-2 is not
completely valid due to the missing endpoint penalization, it’s not really
missing but rather never affected by the input we are using.

This discovery also lead us back to the use of the feedforward gain used
in the MPC-2’s, this feedforward gains is not needed in MPC-1. The feed-
forward gain can therefore also be used as a mean of compensation for not
penalizing the endpoint in MPC-2.

6.7 Discussing the overall results

It might seem strange to include the results from the long sub-sampling
periods when the using short sub-sampling periods clearly was superior.
The reason doing this was to somehow grasp the features of the MPC that
couldn’t be noticed using shorter sub-sampling periods. According to previ-
ous simulations the use of a sub-sampling period of 0.4 seconds should have
yielded a sufficient time-scale separation for the MPC to work correctly.
The NLC proved perfect functioning despite the lack of ability to reach the
setpoint after each sup-sampling period.

Comparing the NLCs and MPC-1s is quite easy, both show the same
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features just as expected. Comparing the results with that of MPC-2 can
however be more difficult because in some cases seemingly totally different
controllers have to be compared with each other, despite of this, some general
conclusions can be made.

Firstly even though it isn’t totally clear in the plots but the NLC works
smoother for short sub-sampling periods than the MPC-1s. this difference
is so small that it is almost negligible. But for longer sub-sampling periods
the delay is acting destabilizing yielding oscillations for the NLC while the
MPC-1 seemingly still performed quite well even for longer sub-sampling
periods. As seen in the results making a comparison between the NLC and
the MPC-2 was almost impossible for longer sampling periods, although it
can be said that MPC-2 showed interesting stability features after evaluat-
ing the results when using longer sub-sampling periods (0.4 and 0.6).

Another rather obvious difference between the NLCs and the MPCs is
the time required to calculate an input signal, here when the NLC is used, it
takes approximately 150µs to get a control signal, while compared the MPC-
2 which have to optimize, it took up to 30000µs to compute an input signal.
MPC-1 showed impressive speeds when optimizing, it took approximately
500µs to get a control signal, due to the rather simple optimization hence a
solution was found rather quickly.

This difference in computing time pretty much defines where we can use
the NLCs and the MPCs.
Hence we can generally say that if the dynamics seem fast or the sub-
sampling frequency is fast it might be better to use a NLC or State-feedback
structured controllers with fixed gains, since it doesn’t require a online op-
timization which takes time. On the other hand if the dynamics are quite
slow and the delay is long or the sub-sampling frequency is low for some
reason, which mean longer computation time is available, maybe one of the
MPCs will perform better. Also even though it haven’t been implemented in
this project, a MPC, according to theory deals better with constraints than
the NLC since it’s possible to include these in the optimization. Non-linear
functions can also be optimized using online optimization just as shown in
appendix A.2.

One difference that can be considered rather peculiar is that MPC-1
and MPC-2 differs so much in practice. This is due to the way they have
been implemented, MPC-2 optimizes using 2 λ:s but only the first will be
applied on the system. The applied λ is not affected by the final point
penalization matrix, hence only the Q-matrix affect λ. MPC-1 on the other
hand is affected by the final point penalization matrix and therefore it yields
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another control signal, making it very hard to compare even the two MPCs.
The only, rather blunt, comparison that can be made is that MPC-1

shows average performance for the whole range, it work for when using no
sub-sampling and it also works for when using rather long sub-sampling.
An impressive result is that the MPC-1 performs equally good as the NLC
when not sub-sampling.
MPC-2 is not able to work good with no sub-sampling but shows the best
performance for long sub-sampling periods.

Even though the outer-loop controllers weren’t truly global, no con-
straints was implemented in the optimization making the controller avoiding
singularity areas, the NLC still showed that it can control better than a lin-
ear controller especially when the angular velocities ψ̇ and φ̇ were not equal
to zero. This became clear when using a swing up controller on the pen-
dulum, the NLC could ’catch’ the pendulum at a higher angular velocity of
the pendulum (φ̇) than any linear controller. The ’best’ LQR managed to
catch the pendulum at φ̇ = 4.9 (rad/s), the NLC could catch the pendulum
at φ̇ = 6.2 (rad/s).

Another advantage with the cascade scheme is the use of non-linear
techniques for control design. Using non-linear techniques allows us to im-
plement a global controller. The advantage of having a global controller
arises when compared with an ordinary linear controller for example a LQR-
controller, The linear controller is not performing well when far from the
linearized point where it is designed around.

6.7.1 Future work suggestions

Suggestions for future work is to implement the cascade scheme on a in-
verted pendulum without singularity points, yielding that no or quite easy
constraints in the optimization have to be considered, making it easier to
implement a global controller.
Another suggestion is to improve the already existing MPC to include con-
straints.
Also developing the MPC to compute a sequence of control inputs (yref )
instead of as now that the input (yref ) is piecewise constant during the sub-
sampling period.
Future work dealing with robustness analysis of the Pendubot using NLC
and MPC is welcome as well.
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Appendix A

A.1 the LQR-controller

Solving problem 3.9 analytically with an infinitive prediction horizon i.e
T = ∞ , yields an ordinary LQR-problem with a constant state-feedback
gain matrix KLQR, where:

KLQR =
[

KLQR1 KLQR2

]
(A.1)

Giving the control law:

λ = −KLQR · η (A.2)

Solving problem 3.9 analytically gives us:
Introducing extra state variables η0 and η3, since this is a non-autonomous
problem, satisfying the state equation

η̇0 = ηTPη̇ +
1
2

ηTQη +
1
2
Rλ2, η0(t0) =

1
2

η0TPη0 (A.3)

and
η̇3 = 1, η3(t0) = t0 (A.4)

The Hamiltonian:

H =
1
2
z0(ηTQη + Rλ2) + zT(Aη + Bλ) + z3 (A.5)

The co-state equations are:

ż0 = 0, ż = −z0Qη −ATz, ż3 = −∂H

∂η3
= −∂H

∂t
(A.6)

49
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The find the minimum we set ∂H
∂λ = 0, using z0 = −1. Giving us the

supremum −Rλ + BTz = 0 giving us the control law λ = R−1BTz. The
dynamics of the states and co-states are now:

η̇ = Aη + BR−1BTz, ż = Qη −ATz (A.7)

For a fixed time problem, as in our case the conditions for H vanishes along
the optimal trajectory, but since the target is free the transversality con-
dition z1 + Pη1 have to be satisfied letting us assume that z = −K(t, t1)η
, the transversality condition then becomes K(t1, t1) = P differentiating
z = −K(t, t1)η and manipulating the result gives us:

K̇ = KBR−1BTK−KA−ATK−Q (A.8)

and since the prediction horizon T = ∞ we can assume that K will converge
this gives us K̇ = 0. Solving equation A.8 with K̇ = 0 gives us the con-
trol law λ = −R−1BTKη where the feedback gains are KLQR = R−1BTK,
where yref = arcsin(λ). This is all done quickly in MATLAB using the com-
mand LQR.m. The LQR feedback gains can be used for the PD-controller as
well as for the NLS.

A.2 The non-linear MPC

A MPC using non-linear reduced internal dynamics instead of linear ones
was called the non-linear MPC. The non-linear dynamics caused a more
time demanding optimization than linear ones and the effort was therefore
concentrated on the linear set of reduced internal dynamics instead. The
non-linear MPC used a 2-dimensional λ and RK4 as integration method.
RK4 was needed to improve the prediction precision.
The reduced internal states used by the non-linear MPC:

η̄1 = ψ

(A.9)
η2 = Jψ̇ cos(ψ − φ) + J2φ̇

The reduced internal dynamics used by the non-linear MPC:

φ̈ = v
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˙̄η1 =
η2

J cos(η1 − yref )
(A.10)

η̇2 = g2 sin(yref )

The results of the non-linear MPC are presented below.
The interesting point about using the non-linear dynamics was to see if the
Quasi-Newton optimization algorithm could deal with non-linear dynamics.
One constraint was significant for when this MPC could actually be used,
this constraint was the number of optimization iterations per sampling pe-
riod. The non-linear MPC could only do 2 iterations per sampling period
which is quite slow compared to 20 for the other MPCs using linear RIS’s,
hence nlMPC, which is the name of the C-function for non-linear MPC, could
only be used when hsub was sufficiently large, the non-linear MPC had to
be able to do around 200 iterations per sub-sampling period (160 when
hsub = 0.4sec and 240 when hsub = 0.6sec).

By linearizing the internal states for the linear reduced internal dynamics
as in ?? we can see that there is a factor difference of J (in table 2.1) between
the reduced internal states η1 and η1 yielding that the weighting matrices in
table 5.6 still can be used just by changing the linearized system matrices
and the weighting matrices accordingly: Linearizing dynamics in 3.4 gives:

η̇1 =
η2

J
(A.11)

η̇2 = g2λ

knowing that η1 ≈ Jη̄1 when linearizing η̄1, yields the weighting matrices
for the non-linear MPC:

Qnonlin =

[
J2 0
0 1

]
·Qlin (A.12)

Using dynamics A.11, equation A.12 and controller 8 from table 5.6 a con-
troller was designed and tested for two different sub-sampling periods: 0.4
and 0.6 seconds, the prediction horizon was 0.8 respective 1.2 seconds. Fig-
ures A.1 and A.2 illustrates the plotted results. As figure A.1 and A.2
suggests, that the non-linear MPC (nlMPC) have equivalent performance as
the linear MPC-2 (MPC-2), just as expected.

A.3 Swing up

Even though the swing up wasn’t necessary in this project it was imple-
mented for demonstration purposes. Also the swing up could be used when
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Figure A.1: non-linear MPC under sub-sampling = 0.4 sec
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Figure A.2: non-linear MPC under sub-sampling = 0.6 sec
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investigating were the limitation were for catching the pendulum.

Two swing ups were implemented, a simple swing up (simple swing up)
and a more advanced one using IOFL, named SwingUpController.

The simple-swing up worked accordingly: Swing the arm back and forth
until enough energy is in the system for the pendulum to turn around full
circles. When the pendulum is turning around full circles the swing up waits
until the pendulum have a speed at which it is possible to catch it.

The IOFL-swing up used IOFL techniques to yield the system linear
using the ψ-angle as output instead of the φ-angle. A φ-angle destabiliz-
ing control input was calculated to pump in energy into the system. When
the φ-angle was pointing upwards the controller made an attempt to catch it.

The swing ups were mainly used when no sub-sampling was used and when
using the NLC. When sub-sampling the controllers had rather poor ’catch-
ing’ abilities.
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