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1 Background

The main purpose of this chapter is to give a short introduction to the next
generation of telescopes and their need for an adaptive optics system. Fur-
thermore, tools and control systems needed for the adaptive optics to operate
will be discussed. All will be viewed in background to the Euro50 project.

1.1 Extremely Large Telescopes

The largest earth-based mirror telescopes of today are the so-called Very
Large Telescopes (VLTs) with primary mirror1 diameters of about 10 me-
ters. Although their usefulness have been immense to astronomers during
the past decade, there is today a need for even larger telescopes. Science
fields of interest like the early universe, the expansion of the universe and
the evolution of galaxies are all requiring new telescope knowledge to become
available. Another exciting new field of science is the search for earth-like
planets. The number of external planets that are known to us are growing
rapidly, but these planets are all very big, like the gas giants in our own solar
system (e.g. Jupiter and Saturn). Although one may also soon be able to
locate earth-like planets it does not necessarily mean that one will be able to
study them in much detail2.

For studies like those mentioned above to become available, a new gener-
ation of telescopes needs to be developed. This new generation of telescopes
will have primary mirror dimensions of 30 to 100 meters in diameter. These
are the so-called Extremely Large Telescopes (ELTs). For an earth-based
telescope of this size to be efficient it should have an optical system that
includes a fast, adjustable, primary mirror and an adaptive optics system.
The flexible primary mirror enables the telescope to keep an optimal focus
and a steady aim at the target of observation. The reason to have an adap-
tive optics system is to compensate for disturbances that the atmosphere is
adding to incoming radiation from the universe. Since adaptive optics is a
major part of this thesis it will be dealt with in more detail later.

1Most optical telescopes use a primary mirror to gather light and reflect it to a sec-
ondary mirror which focuses it. See the primary mirror in Figure 1 and the beam path in
Figure 2.

2Those interested in Astronomy can for instance see [4], [9]
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Figure 1: The Euro50 Telescope [3]

1.2 The Euro50 project

As there is an obvious interest in developing Extremely Large Telescopes, sev-
eral groups are involved in such projects today. One of these project groups
is the Euro50 group which consists of scientists from Finland, Ireland, Spain,
United Kingdom and Sweden. The Euro50 telescope3 (see Figure 1) will
weigh approximately 3500 tons and measure about 90 meters from top to
bottom. The name of the telescope emanates from the dimension of the
hexagonal primary mirror, which will have an equivalent diameter of 50 me-
ters. The Euro50 primary mirror will consist of 618, 2 meter edge-to-edge,
hexagonal mirror segments. The optical arrangement for the telescope is of
so-called aplanatic Gregorian type with a 4 m edge-to-edge secondary mirror.
This secondary mirror is placed on the top of a tripod structure (see Figure
1) and is used to focus the light reflected by the primary mirror.

3For more information on the Euro50 telescope, see [3], [6]
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The use of an adaptive optics system will increase the angular resolution4

of the telescope to about 2-3 milliarcseconds in visible light and to 10 mil-
liarcseconds in Infrared (IR) light. This is about 200 times better than any of
today’s telescopes, without adaptive optics technology, are capable of. The
adaptive optics system is obviously of great importance, but how does it
work?

1.3 Adaptive Optics

Light waves5, for example from a distant star, traveling through space are
parallel when they reach the atmosphere of the earth. Turbulence in the at-
mospheric layers leads to different refractive indices over the wavefront (see
Figure 2). The effect that this has on the wavefront is called distortion and
it blurs images created by telescopes on Earth. If the distortion could be
compensated for, the only limit in the angular resolution of astronomic im-
ages would be that of diffraction which is always present. One way to solve
this problem is to place a telescope above the atmosphere like the Hubble
Space Telescope (HST). However, building and maintaining a telescope like
the HST is far more expensive than the costs of an Earth-based telescope
like the Euro50. An alternative to a space telescope is a telescope which uses
so-called adaptive optics to compensate for atmospheric distortion.

Adaptive optics is the adaptation of the telescope optical system and works
as follows. Measurements of incoming light from natural and artificial stars6

give information on the nature of the atmosphere at a certain point in time.
The information most often used is the phase of the incoming light over a cer-
tain area, which gives a measure of the distortion. The instruments used for
this purpose are called wavefront sensors. The Shack-Hartmann wavefront
sensor, for instance, uses so-called lenselet arrays to focus different parts
of the wavefront onto several CCD-cameras whose intensity pattern gives a
measure of the phase. A map of the wavefront phase pattern, at a certain
point in time, can then be created. This is called reconstruction.

4The angular resolution of a telescope is a measure of the sharpness of the telescope
images. Low resolution gives blurry pictures. The resolution depends mainly on the
primary mirror diameter which determines the light collecting area.

5It is common to view light as an electromagnetic wave, almost like the waves on the
ocean. The peaks of the incoming light waves are called wavefronts.

6One can create an artificial star by exciting certain atoms in the atmosphere. These
start to glow when lasers are aimed at them.
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Figure 2: The incoming light wavefronts from e.g. a star are parallel when entering
the atmosphere of the earth. Turbulence in the atmospheric layers creates pockets
of air, with different refractive indexes, distorting the light. The distorted light is
compensated for by a deformable mirror and the light focused is parallel (or spherical)
resulting in a sharper image.

According to Figure 2, atmospheric disturbances can also be viewed as differ-
ences in the optical path length for the wavefront. The most common way to
compensate for these path differences is to use a deformable secondary mirror
in the telescope. A deformable mirror is a flexible structure whose surface
can be shaped dynamically into a custom form. This has the advantage that
one can minimize the path length differences in the incoming light, as in
Figure 3. The incoming light falls onto the mirror which in turn is deformed
into the shape producing a straight wavefront leaving the mirror. Finally,
parallel (or spherical) wavefronts, coming from the secondary mirror, will be
focused to create an image of the astronomic object, see Figure 2. This is
how adaptive optics work and the difference in resolution between a telescope
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using an adaptive optics system and one that is not, can be seen in Figure 4.

a) b) c)

wavefront wavefront wavefront

Figure 3: a) A distorted wavefront is approaching the deformable mirror which has
changed its shape accordingly. b) The front part of the wavefront is forced to take a
longer path than the rest, before it reflects off the mirror. c) The mirror has corrected
for the differences in optical path length of the wavefront and a straight wavefront
leaves the deformable mirror, [11]. Note that a wavefront is normally continous. The
shape of the wavefront was used only clarify the purpose of the deformable mirror.

For a deformable mirror to be able to change its shape it has to be influenced
by forces. These forces are created by actuators placed on the back of the
mirror. To achieve a mirror shape with enough resolution a large number
of actuators will have to be used. The resolution that has to be reached is
higher for shorter wavelengths. The Euro50 is planned to use 3168 actuators
for IR-light but will need many more when dealing with visible light. The
studies of this thesis however, are only concerned with the 3168 actuator
problem.

The Euro50 telescope will also need a very large deformable mirror. Large
deformable mirrors have more eigenfrequencies within the band of control
than small ones. Therefore, small mirrors can be approximated as only stat-
ically influenced by the actuators. This, on the other hand, is impossible
for the Euro50 approach and the actuators will therefore need to control the
mirror shape dynamically to compensate for mirror mode vibrations.
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Figure 4: The picture to the left shows two star clusters and is taken by a telescope
without an adaptive optics system. The picture to the right is showing the exact same
clusters, but is taken by a telescope with an active adaptive optics system. It should
be mentioned that the pictures are the result of a simulation [6].

For more information on adaptive optics see [2], [11].

1.4 The Euro50 deformable mirror

The Euro50 secondary mirror is a 2 mm thick mirror with a concave hexago-
nal shape, see Figure 5. The mirror should be as thin as possible to decrease
the total weight and make the actuation more efficient. It will be made of
Carbon Fiber Reinforced Polymer (CFRP) which is a lightweight material
made of a sequence of different fiber layers. The hexagonal mirror shape is
merely a result of the primary mirror form. The deformable secondary has
an equivalent diameter of 4 m making it much larger than any deformable
mirror used in telescopes today.

A finite element model of the secondary mirror, derived at Lund observatory,
determined most of its dynamic properties. An important part of this model
was the eigenmodes7 of the mirror which will have to be handled by the
dynamic control. The CFRP material gives a poor modal damping ratio of

7The eigenmodes are natural mirror shapes formed when triggered by the mirror eigen-
frequencies. The eigenfrequencies are resonance frequencies, i.e. frequencies the system
tend to oscillate with.



1.4 The Euro50 deformable mirror 13

Figure 5: The Euro50 deformable mirror shape.

about 0.02 which makes it difficult to control. The fast atmospheric changes
place further demands on the mirror control to work with a frequency of
about 500 Hz. Since the highest mode frequencies are much higher than
this, some of the modes can be disregarded. The diagram in Figure 6 shows
the eigenfrequencies of the modes used in a 2002 mode model that will be
described later. Only the first 2002 modes were used to make this model.
Those modes with even higher frequencies were simply truncated. Another
thing to notice is that there are many more eigenfrequencies above 200 Hz
than below. There are two different types of eigenmodes present below 200
Hz, i.e. circumferential and radial modes. The eigenmodes above this fre-
quency are both circumferential and radial. Some of the 2002 eigenmodes
can be viewed in Figure 7. Note that it is the actual shape of the mirror that
is plotted. The dimensions are the same as in Figure 5.

The full mirror model includes many more than 2002 modes, some of which
are more significant than others. This fact will be used in another model
that will focus on the important modes or degrees of freedom. This enables
us to use the model at higher frequencies still having almost the same model
size. The significance of modes will also be considered in the mirror control.
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Figure 6: The eigenfrequencies of the first 2002 modes in the finite element model.
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Figure 7: Four deformable mirror eigenmodes. a) Mode number 11 b) Mode number
81 c) Mode number 131 d) Mode number 1501.
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1.5 Different deformable mirror control approaches

The control of deformable mirrors is a young branch of technology. This
means that it is quite hard to find good sources with hints as to how the
Euro50 mirror can be controlled properly. There are however a few examples
worth mentioning.

1.5.1 Classic control of deformable mirrors

The oldest way to maneuver a deformable mirror is to assume that the de-
formations of the mirror are almost static in the region of control, so-called
quasi-static. The signals from the wavefront sensors are reconstructed into
deformation command signals to the mirror control. Depending on whether
the actuators are stiff or not, the mirror shape will vary when influenced by
forces. The influence function of an actuator is a shape function that the
mirror surface around the actuator will take when subjected to the actua-
tor force. If the neighbour actuators are stiff the influence function will be
narrow, which is due to the actuators’ unwillingness to change shape. For
actuators with low stiffness the opposite holds. They are willing to stretch
and thereby allow the mirror to deform freely.

If the influence functions for all mirror actuators are added, then one will
know exactly what forces are needed to shape the mirror properly. Simple
proportional controllers for each actuator should then be sufficient to control
the entire mirror surface. This control approach, however, is not applicable
for the Euro50 secondary mirror control. As mentioned before, only a mirror
of small enough size can be approximated as quasi-static. These mirrors have
few or no eigenmodes within the range of control. The Euro50 mirror on the
other hand, has many and can not be viewed as quasi-static.

1.5.2 SISO control of a secondary mirror

The Multiple Mirror Telescope (MMT, see Figure 8) is situated on Mount
Hopkins in Arizona, USA ([1]). It has a primary mirror with a diameter of
6.5 m and a deformable secondary mirror with a diameter of 64.2 cm. The
adaptive optics system has been developed by a group of Italian scientists
([7], [8]). Their secondary mirror is controlled by 336 actuators, all fed back
by as many capacitive gap sensors measuring the deformations of the mirror.
The sensors are collocated with the actuators on a reference plate just above
the mirror. The reference plate produces an air gap, damping the mirror
modes. This modal damping simplifies the control of the secondary mirror.
Note the difference between a mirror with damping ratio ζ = 0.02, which
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Figure 8: The Multiple Mirror Telescope (http://www.sao.ru/hq/komarov/tel/
06/big.htm)

is the case for the Euro50, and a well damped system with ζ = 0.7. The
resonance frequencies of the last system are much easier to control, since the
transfer functions are then approximately second order low pass filters. The
high benefit is that Single Input Single Output (SISO) PD controllers can be
designed for each actuator using only the deformation at the same position as
the feedback signal. The exact same controller is then implemented on each
and every actuator in locally closed loops. The first system (with ζ = 0.02)
has transfer functions with high resonance peaks and a fast-changing phase
around the eigenfrequencies. In order to keep a mechanical simplicity, the
Euro50 construction will not use an air gap for damping purposes. Electronic
damping will be employed instead.

Since the number of actuators is very large for the MMT secondary, it is also
important to keep the computer computations to as few as possible with-
out adding any unnecessary time delays to the system. A Multiple Input
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Multiple Output (MIMO) system is much more demanding than the SISO
alternative concerning design and computations.

It should also be mentioned that this SISO approach is currently used in
the operating system in Arizona.

1.5.3 Global MIMO control of a deformable mirror

Another approach to the same control issue of the MMT secondary has been
developed by Simon C.O. Grocott, PhD student at MIT [11]. Grocott uses
the more time consuming MIMO control method in which he controls a model
including both the deformable mirror dynamics and the dynamics of the
atmosphere. He calls the control ”global” because of the extended system
model. This model has two noise inputs which originates from sensor noise
and atmospheric disturbance. Grocott has used a MIMO version of the so-
called Linear Quadratic Control to control this system. He has also made use
of the fact that the MMT deformable, in contrary to the Euro50, is circular.
This detail makes it possible to transform the model matrices into circulant
matrices, thereby reducing both the order of the system and the number of
computations necessary to perform the control. Throughout his work, Gro-
cott has never presumed any modal damping, like the Italians have. As the
Euro50 has no air gap to rely on either, Grocott’s studies may be of great
interest.

Simon Grocott has also made a thorough comparison between his Global
LQG approach and the PD approach of the Italian group where he compares
the benefits and drawbacks of the different designs. The main disadvantage
of the global control approach is the cumbersome calculations involved in the
determination of the MIMO system control law. The advantage, however,
is that it evades some of the main problems when working with the SISO
method. The problems that Grocott sheds light on are

• The SISO open loop system has no natural roll-off which leads to ro-
bustness problems for the closed loop. Time delays and model errors
could be devastating. The D-part of the controller is also raising the
high frequency gain.

• The same PD controller is used at every location on the mirror. The
controller, on the other hand, is designed for one actuator alone. An-
other actuator location might have completely different dynamics lead-
ing to poor control.
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• The deformable mirror system is highly coupled8 which could lead to
instability for the whole mirror although each SISO system may be
stable individually.

1.5.4 Conclusions for the Euro50 mirror control

Since the Euro50 telescope has an even larger deformable mirror than the
MMT, it seems important to consider Grocott’s work. There is no modal
damping and the larger dimensions of the Euro50 deformable mirror give a
higher modal density within the bandwidth of control. So the mirror will
surely be harder to control. Another issue of importance is the computer
calculations. The Euro50 model will have a system order of more than 4000,
which would lead to immense problems if an entire MIMO approach would
be used i.e., if every position is fed back to every actuator on the mirror.
This contradicts that Grocott’s solution can be used on Euro50. So the
control challenges of the Euro50 deformable mirror seem to be unsolved at the
moment and need another solution. This fact however, does not prevent tests
to see if for example a stable SISO control approach may exist. Although this
thesis does not approach it more closely there may also be a future possibility
to use the symmetric hexagonal shape of the mirror to reduce the system in
almost the same fashion as Grocott did.

8The force of an actuator influences the deformation at a mirror position far away. This
can be compared to the situation of a water drop falling on a calm water surface. The
waves will travel over the surface until the friction makes them disappear. View the mirror
as the water surface and the water drop impact as the stroke of the actuator.
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2 Introduction to the Euro50 Control

The control problem and specifications of this thesis will be given in this
chapter. This will be made in connection to the general control issues of the
Euro50 project.

Mirror cell

Tripod

Deformable
mirror

b)a)

Figure 9: a) The mirror cell placed on top of the tripod (compare with Figure 1) b)
The voice coil actuator, [18].

2.1 The control in general

As the modern telescopes grow bigger and bigger by every decade so does
the need for sufficient control systems. The Euro50 telescope is of course no
exception. Here are a few examples of what need to be controlled

• The form of the primary mirror. The Euro50 primary consists of 618
segments that must all be aligned with respect to one another.

• The shape of the secondary deformable mirror. This is the main topic
of this thesis.

• The secondary mirror cell. The deformable mirror is placed underneath
a rigid body cell (see Figure 9 a) that needs to have a six degree-of-
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freedom control. That is, it must be kept in position when disturbed
by wind loads and structural vibrations9.

• The main servo drives and rotators. They are used to aim the whole
telescope construction towards the object of observation.

• The deformable mirror actuators. Voice Coil actuators (see Figure 9 b)
will be controlled10 in order to influence the deformable mirror with the
right forces, decided by the mirror shape control. They are put inside
the mirror cell, just above the mirror, and will have stroke capacity up
to 40 µm, measured on the mirror surface.

3
8

4
0

4430

80

[mm]

Figure 10: The dimensions of the Euro50 secondary mirror when seen from above.

2.2 The control of the deformable mirror

The purpose of this thesis is to find ways to model and control a large de-
formable mirror. The mirror to be used in these studies is the Euro50 sec-

9For more information, see [16].
10More information in [18].
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Figure 11: This is a sketch of the center of the deformable mirror. The actuators
(crosses) are placed in hexagonal rings (dash dotted lines) over the mirror. Capacitive
sensors (stars) are placed hexagonally around the actuators.

ondary mirror. As mentioned before it has a hexagonal shape with an equiv-
alent diameter of four meters, see Figure 10. The mirror will have a central
support with a diameter of 80 mm. The edges however will be free from ad-
ditional support. To match the hexagonal shape of the mirror the voice coil
actuators have been placed in hexagonal rings (see Figure 11) with a spacing
of 69 mm. The first ring has six actuators, the second has twelve, the third
eighteen and so on in a total of 32 rings and 3168 actuators. The center of the
mirror has no actuator since it is supported there. A total of 6144 capacitive
sensors are placed between the actuators like in Figure 11. These are used
to measure the deformations of the mirror which is possible by the change in
plate distance i.e., altering the capacitance. An alternative to this approach
is to collocate the sensors with the actuators like in the MMT solution. Since
this approach gives a considerably lower system order11 it will be used here
for the model and control simulations.

11That is, fewer computer calculations.
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2.3 Thesis goals and control specifications

The first objective of this thesis is to create a state space model (i.e., a sys-
tem with first order differential equations) of the deformable mirror and to
verify it. The second and most important objective is to find a control law
that controls the mirror.

For the Euro50 adaptive optics system to work efficiently, the mirror control
will need to meet certain specifications. The fast atmospheric turbulence de-
mands the closed loop control to have a bandwidth of at least 500 Hz. This
sets a limit to the coarseness that a mirror model can have. It must have
sufficient information in the frequency span of control. This can be made
either by truncating frequencies above the span of control or by considering
only the most important eigenmodes.

To obtain a satisfactory angular resolution of the telescope image, the maxi-
mum RMS (Root Mean Square) value of the deformation deviation allowed is
80 nm for the K-band (IR-light, 2.4 µm). In the future the telescope should
also be able to operate for visual light (the V-band) as well. The maximum
RMS value will then be 16 nm. The RMS-value is defined by

σ =

√√√√ 1

N

N∑

i=1

δ2
i (1)

where N is the number of samples (e.g. time) and δ the variable, e.g. defor-
mation, at sample i.

The RMS and bandwidth specifications are the most important for this the-
sis. In the future however, one will have to consider a few more areas. The
maximum deformation increment from an actuator to its neighbour actuator
is 2 µm. The atmospheric disturbances will not demand more of the incre-
ments. A larger value would also result in larger actuator forces than allowed.

It will also be important to consider some ranges of mirror control. Fig-
ure 12 shows these ranges. If the disturbances demand the mirror shape to
bend by 20 µm then it will not have to work at maximum frequency. Small
changes however mean that the frequencies of the changes may be greater
and demand a control with higher bandwidth. The gray zone, in the Figure,
indicates that the curve position depends on the position on the mirror. The
left end point of the curve is set by

δ(0) = 5 + 15
r

2
(2)
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where δ is the deformation and r is the distance from the center of the mirror.

[Hz]2 50 f/

δ/

0

Figure 12: The dependence between necessary controller bandwidth and maximum
mirror deformations needed.
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3 Modeling a Deformable Mirror

The main concern of this chapter is the modeling of the deformable mirror.
A modal model for the Euro50 deformable mirror will be described, derived
and verified. Furthermore, a local model for a small part of the mirror will
be introduced.

3.1 Theory on modal modeling

The goal of the modeling was to derive a state space model of the deformable
mirror. In order to do so a standard differential equation, for flexible struc-
tures like the deformable mirror, is derived using spatial discretization and
standard mechanical laws

Mq̈ +Dq̇ +Kq = B0u (3)

where M denotes a mass matrix, D is a damping matrix, K is a stiffness
matrix, q is a vector of displacements, u is the system input forces and B0 is
an input coupling matrix. The system can therefore be represented by a set
of masses linked by a number of springs and dampings. The system output
can be viewed as a combination of displacements and displacement velocities

y = Coqq + Cov q̇ (4)

where the two C-matrices are selecting the outputs used.

A state space model can be derived directly from the formulas above. It
is however often an advantage if one transforms the differential equations
first. The set of eigenfrequencies for the system ω : {ω1, ω2, ..., ωn} and the
eigenmodes φ : {φ1, φ2, ..., φn} corresponding to each of the frequencies can
readily be obtained using for instance the Finite Element Method (FEM). In
order to transform the system equations, the following matrices are defined

Ω =




ω1 0 . . . 0
0 ω2 . . . 0
...

...
. . .

...
0 0 . . . ωn



, Φ = [φ1, φ2, ..., φn]

The Φ-matrix is the transformation matrix and initiates the new, modal,
variables qm as

q = Φqm (5)
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This transformation alters the system in the following way

ΦTMΦq̈m + ΦTDΦq̇m + ΦTKΦqm = ΦTB0u (6)

y = CoqΦqm + CovΦq̇m (7)

where ΦT has been multiplied from the left in equation (6). It can be shown
that

ΦTKΦ = Ω2 (8)

ΦTDΦ = 2ZΩ (9)

where Z is a diagonal matrix filled with the damping coefficients (ζ : {ζ1, ζ2, ..., ζn},
known from control theory) for all modes. If the Φ-matrix is mass normalized
(i.e., ΦTMΦ = I) it holds that

q̈m + 2ZΩq̇m + Ω2qm = ΦTB0u (10)

This is the modal model of flexible structures which can be applied to the de-
formable mirror. The modal state space form can be derived by transforming
the second order equations into a set of first order equations, introducing the
new state variables x = (x1, x2)T = (qm, q̇m)T . This gives

ẋ = Ax+Bu =

(
0 I
−Ω2 −2ZΩ

)
x+

(
0

ΦTB0

)
u (11)

y = Cx+Du =
(
CoqΦ CovΦ

)
x (12)

The system is a combination of n second order systems whose characteristics
are well known from control theory. The main advantage of this system in
comparison to the one containing the M -, D- and K-matrices is that the in-
dividual modes are decoupled so the model matrices hold many zeros. This
enables the use of sparse matrices in Matlab and Simulink, decreasing the
number of calculations needed.

For those who would like to know more about modal models, read for in-
stance [10] and [11].
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3.1.1 The 2002 modal model

The 2002 lowest Euro50 deformable mirror eigenfrequencies (up to 1165 Hz)
and their respective modes were collected from a FEM model, developed at
Lund Observatory. Since the CFRP material has low damping, all ζ-values
were set to 0.02, which is an approximate number. This means that the
modal damping matrix becomes Z = 0.02I and the system matrix is then
completely determined (I is the identity matrix). Since the input vector u
corresponds to all actuators, the B-matrix has as many rows as there are
actuators (i.e., 3168). Given that all actuators are used B0 is a 3168× 3168
identity matrix. This gives the following B-matrix

B =

(
0

ΦT

)
(13)

The C-matrix is derived in almost the same fashion. Since the displacement
velocities stay unmeasured and all displacements are measured by capacitive
sensors, Cov = 0 and Coq = I. Therefore the C-matrix becomes

C =
(

Φ 0
)

(14)

Since it has not yet been decided where to place the displacement sensors
for the Euro50 mirror, a few different models have been derived for the cases
when

1. 6144 sensors are placed between the actuators as in Figure 11,

2. 3168 sensors are collocated with the actuators,

3. 6144 plus 3168 sensors are placed between and on the actuators,

4. 6144 plus 3168 sensors are placed between and on the actuators plus
192 extra sensors which are put on the edge of the mirror.

Each case gives a different C-matrix. The other matrices, however, remain
unaltered. Since the bandwidth of the controlled mirror needs to be at a
frequency of about 500 Hz, each of the models above were truncated. Case
number two was the model used for control purposes in this thesis. The other
cases give models of very high order which are cumbersome to simulate and
they were therefore not used.
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3.2 Verification of the mirror model

In order to verify the modal model it was compared with the full FEM model.
Since the modal model is basically a truncated version of the FEM model,
the hope was that the two models would give almost the same outputs when
disrupted by forces. To ensure that this was the case, two scenarios were
tested. The first scenario has three isolated forces (each of −10N) placed in
a symmetric pattern around the center of the mirror, see Figure 13. In the
second test case, four forces are influencing the mirror surface. One actuator
(+3N) and three of its nearest neighbour actuators (each −1N) are operat-
ing, see Figure 14.

Due to time consuming calculations, the FEM model was not used for a
dynamic verification. The static mirror deformations, for each case, using
the FEM model were available however. So the model verification was based
on the static case alone. The static gain of the modal model was derived
using the transfer function when s = 0, i.e.

G(0) = −CA−1B (15)

Now, the static gain multiplied by the force vector becomes the static dis-
placements of the mirror. That is

y(t =∞) = −CA−1BF (16)

Where F is a constant force vector, corresponding to the actuators. This
makes a comparison of the models possible.

The static deformations of the first test case, using the 2002 modes modal
model, is shown in Figure 15. Note that for the deformations to be visible,
the scalings of the axes are not equal. In order to compare these results with
the deformations of the finite element model the residuals were inspected, see
Figure 16 and the code in Appendix A.2. The Figure shows that the residu-
als are greater at three isolated points, corresponding to the three operating
actuators. The largest error is 9.38 µm while the average error is 88 nm.
Therefore the residuals outside the neighbourhood of an operating actuator
are neglected. To further confirm this line of reasoning a contour plot was
made, see Figure 17. As expected, the residuals seem to be correlated in the
local areas of the operating actuators alone. In Figure 18, the position for
one of the three test actuators has been zoomed upon. The valleys in Fig-
ure 16 are right above the three force giving actuators and the small peaks
around the top correspond to the six neighbour actuator positions, i.e. about
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Figure 15: Static mirror deformations for test case 1 using the 2002 mode model.

6 cm away from the operating actuator. So the modal model is obviously at
its worst up close to the force giving actuators, at least when the forces are
isolated as in case 1. To see the relative error of the modal model compared
to the FEM model, a slice of the deformed mirror was plotted in Figure 19.
This is a good measure of the model reliability and it shows that the error
ratio is about 1.18, i.e. the difference is about 18 %. So even though the
model error residuals are rather large compared to the specifications of the
mirror control, the model may still be rather reliable statically.

The second test scenario shows a case where the coupling between neigh-
bouring actuators becomes evident. The same plots as for test case 1 could
have been reviewed, but the most interesting part is the analysis of the model
residuals as can be viewed in Figures 17-19. The case 2 contour plot and a
zoom in on the operating actuators can be viewed in Figures 20 and 21. The
largest errors seem once again to be located at the four operating actuators
and they are all at about 1 µm as in test case 1. The slice plot in Figure
22, that covers two actuators (one up and one down), shows that the relative
errors are greater in this case than in the previous. The relative error at
the +3N actuator is for example 39 %, while it is even greater at the other
three actuators. This is the result of the static coupling between the four
actuators. The coupling of the local actuators have thus made the relative
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case 1.
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Contour plot of the differences between the first deformations
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Contour plot of the differences between the second deformations
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Figure 20: Contour plot of the residuals, between the modal and FEM models, in
test case 2.

errors more significant.

Why are the two mirror models not identical? The modal model is derived
directly from the FEM model, but the complete FEM model many more than
2002 modes. All the necessary information is therefore not available. The
modal model is also based only on the modal values at the sensors and the
actuators and this does also contribute to the total error.

The question now is whether the modal model is relevant and if so, can
one reduce the model even further in some fashion, through direct trunca-
tion or something else?

Although a dynamical verification was impossible, the 2002 modes modal
model was still simulated to see if the models behaved as expected. The final
values seemed to be correct for all values looked upon.
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Contour plot of the differences between the second deformations
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3.3 Other mirror models

3.3.1 A Guyan reduced mirror model

Since the full finite element model was too big to be used in Matlab simu-
lations, a truncated 2002 mode version was used. This model however had
quite large static errors as was described in the past section. To improve the
model used, one can start over and reduce the full FEM model using another
principle than modal truncation. This was done by Torben Andersen and
Holger Riewaldt [5] at Lund Observatory. The reduction method used was
the so-called Guyan reduction. This approach allows a selection of the most
important degrees of freedom (dof) in the full mirror model. The idea is that
these dofs have larger influence on the dynamic behaviour of the mirror. The
full model had 445696 dofs and the reduced one has 3354 dofs.

The new model was implemented as a modal model, with order 6708, sim-
ilar to the 2002 mode model. A static verification between this model and
the FEM model, i.e. test cases 1 and 2, showed a much better match than
the 2002 mode model. The eigenfrequencies of the new model are however
somewhat higher. The first 800 eigenfrequencies are approximately 1 percent
higher than for the full model. The relationship grows to 2 percents for the
next 100 eigenmodes and increases further. The accuracy however, seems to
be sufficient within the range of control (i.e. up to 500 Hz).

Figure 23: Two local mirror eigenmodes.

3.3.2 A local mirror model

The full models have several thousand states which make them difficult to
use when designing a control system. Cumbersome calculations and numeri-
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cal problems tend to put limits to the analysis of the process. A solution to
this problem is to divide the full model into many small models. The idea is
to create sections of the mirror with 19 actuators in each local model. The
local models are derived using the Guyan reduction method once again on
the previous Guyan reduced model12. This was done by Torben Andersen13

at Lund Observatory in connection to this thesis. Just like the full model,
the local model will have a number of eigenmodes. The model contains 19
eigenmodes and is of modal state space type. Two of the eigenmodes can be
viewed in Figure 23. Since the mirror dynamics change depending on where
on the mirror surface the local model is placed, many local models will have
to be considered overlapping each other.

The local model is of order 38 and is much easier to work with than the
full mirror model. This simplifies the control design a great deal and opens
up for a MIMO controller approach.

12For more information on how to create local models please read [17].
13In a text about the reductions, Torben Andersen explains why Guyan reduction can

be applied once again: ”Although use of Guyan reduction to go from a system with 6708
degrees of freedom to 38 degrees of freedom is somewhat questionable, it seems acceptable
in this case because the higher frequency modes that characterize the local system are
likely to be correctly modeled. The low frequency modes that are not modeled adequately
are not likely to play a large role for the local control system because they largely mimic
rigid body motion.”
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4 The Control of a Large Deformable Mirror

In the process of this master thesis several different control strategies have
been investigated. Single Input Single Output (SISO) control was the first
technique to be used and is described in this section. In the modeling verifi-
cation section, 3.2, difficulties with heavy cross couplings between controlling
actuators was brought to surface and may make SISO control inadequate in
reality. The control is therefore expanded trying to handle this predicament
where the force of an actuator generates waves on the surface of the mir-
ror. At first, however, basic control theory and ways to ensure sufficient
robustness are discussed.

4.1 Stability and robustness

4.1.1 Phase margin

It is often not enough that stability is ascertained, but it is also important
that certain margins to stability are met. Analysing the phase margin is one
method developed for identification of system robustness.

Stability margins are important since they permit the process to vary within
certain limits. This is significant when taking model deviations and time
delays into account. The margins are also putting limits to the performance
of the control loop. Too large stability margins may result in slow control,
while undersized margins give poorly damped and uneasy control.

The phase margin is often denoted φm and is a measurement of how much
the phase can decrease before the system becomes unstable. The phase mar-
gin can be displayed in a Bode diagram, Figure 24, where it is the value
between -180 degrees and the phase curve at the cut-off frequency, ωc, which
is determined by

|G0(iωc)| = 1 (17)

The phase margin is then

φm = π + argG0(iωc) (18)

A phase margin within the region of 45o to 60o is a rule of thumb for good
control ([13]).
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Figure 24: Bode diagram displaying the phase margin which is 41 degrees.

4.2 System compensations

In order to define the closed loop characteristics for a system, the open loop
is often analysed and modified using e.g. Bode diagrams ([13]). Three differ-
ent compensation filters are discussed in this section, all of which manipulate
the system in either giving it a higher bandwidth, higher static gain or ascer-
taining its robustness, i.e. making stability margins large enough. The three
filters are phase lag, phase lead and band pass filters.

4.2.1 Lag filters

Lag filters are designed with the purpose of increasing the low frequency
gain. The phase however, is decreased in a certain frequency range. These
two effects can be seen in Figure 25. The main benefit of the filter is that
the increased low frequency gain results in a smaller stationary error. The
drawback is that the phase decrease might lead to a smaller bandwidth. The
lag filter has the transfer function

G(s) =
s+ a

s+ a/M
M > 1 (19)
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Figure 25: Bode plot of a lag filter. The dashed line displays the asymptotes.

Since the parameter M is greater than one, the first break frequency comes
at a/M rad/s and the second at a rad/s. The a-value is chosen so that the
phase at a certain frequency, ω, is not decreased too much. In general, ω is the
cut-off frequency, but since the Bode plots of the mirror system might have
many cut-off frequencies it has been chosen with more care throughout this
thesis. A rule of thumb is to choose a = 0.1ω, which ascertains a maximum
phase decrease of 6 degrees at ω. A high factor M gives a low stationary
error since it is also the static gain of the lag filter.

4.2.2 Lead filters

Lead filters are designed to increase both phase and magnitude at the cut-off
frequency, see Figure 26. The transfer function for lead filters is of the form

G(s) = KN
s+ b

s+ bN
(20)

A zero at frequency b rad/s forces the phase to increase and a pole breaks
it down at bN rad/s (N > 1), see Figure 26. The maximum phase gain
that can be achieved is +90o. As was mentioned, lead filters are often used
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Figure 26: Bode plot of a lead filter. The dashed line displays the asymptotes.

to increase the phase around the cut-off frequency, but introducing a lead
filter also increases the gain at higher frequencies. This is a quality that is
sometimes hard to deal with if there is high frequency noise in the process.

4.2.3 Band pass filters

A band pass filter is used to increase the gain for some frequencies ([15]). As
models and reality do not match in all characteristics, it can be dangerous
to cancel poles at specific frequencies and therefore a wider bandpass filter is
used containing multiple inverted Notch filters lying next to each other. The
transfer function for an inverted Notch filter is

G(s) =
s+ ω2

s2 + 2ζωs+ ω2
(21)

View Figure 27, which shows the Bode plot for such a filter. In order to
achieve a nice round bandpass filter, the damping, ζ, must not be chosen
too small. This should, however, be weighed by the fact that a damping
coefficient close to 1 gives a low gain increase and the positive effects of the
filter are thereby gone.
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Figure 27: The Bode plot for an inverted Notch filter.

4.3 SISO control of the deformable mirror

4.3.1 Transfer functions for the individual actuators

It seems reasonable that the hexagonal symmetry of the secondary mirror
would affect the transfer functions. A verification of this shows that transfer
functions from actuator forces to their deformation outputs are equivalent for
actuators in the same hexagonal rings. It was therefore decided to study the
actuator transfer functions located on a straight line from the center of the
mirror to the edge, as displayed in Figure 28. In this way, the actuators could
be put together in families according to the relative distance to the center
of the mirror. Each family can then be controlled using only one controller.
The system transfer functions were composed by the script in Appendix A.3
and the Bode plots (from the actuators’ forces to their deformations, i.e.
SISO systems) for all systems on the straight line can be viewed in Figure
29. Those actuators with similar transfer functions were placed in the same
family and a total of six families were used.

Examining Figure 29, one can conclude that the actuators with shortest
distance to the center of the mirror are the ones with the lowest static gain
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Figure 28: The actuators from the center of the mirror to the edge.

and the ones with highest static gain are the ones placed at the edge of the
mirror. This comes from the nature of the system, in which the mirror is
attached to the mirror cell at its center only. This results in low static gains
at the center and large static gains at the edge, caused by the greater torque
implied by the actuators at the outer limit of the mirror.

4.3.2 SISO control using compensation filters

As it would be impossible to meet bandwidth and root mean square specifi-
cations using only one control loop, the transfer functions were placed into
families depending on their characteristics, see Figure 29. SISO control loops
were then developed using compensation filters, mostly lead and lag filters.
Band pass filters were used to a smaller extent as troubles with deep gain
losses for relatively low frequencies only occurs at some actuator locations.
This characteristic can be viewed in Figure 30 at frequencies 30 rad/s and
100 rad/s.

Refer to the uncompensated SISO system in Figure 30, i.e. one of the func-
tions from Figure 29. To meet the bandwidth specification of 500 Hz, it is
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Figure 29: The transfer functions, from actuator force to deformation at the same
actuator position, for all 32 actuators in Figure 28.
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Figure 30: One of the uncompensated transfer functions displayed in a Bode diagram.

necessary to place a band pass filter over the deep valleys in the gain plot.
It may also be desirable to enhance the low frequency gain, which is done
by placing a lag filter for these frequencies. As the phase is close to zero at
these frequencies there will be no risk of turning the system unstable. At last
a lead filter is placed to increase the phase margin for frequencies where the
phase is dangerously close to −180o. The compensated system is displayed
in Figure 31. The full line represents the compensated transfer function and
the dotted line demonstrates the compensation link.

4.3.3 Results of the individual control

The control loop families were tuned to meet the specifications and a step
response test was used to validate the quality of the control. When the con-
trol loops had been designed they were tested on their separate SISO systems
using a reference signal more representative for real telescope control14. A
block diagram for the test configuration is displayed in Figure 32.

14The realistic control signals have been produced by adaptive optics scientists in the
Euro50 project group.
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Figure 32: Simulink block diagram used when realistic references were tested.
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Figure 33: Reference and output signal from the block diagram in Figure 32.

From the scope in Figure 32, it can be seen how well the reference signal
is tracked, see Figure 33. This control, however, does not say anything about
the performance on the full mirror. It is just an indication of how every fam-
ily would behave without any cross couplings in the full system. It can be
seen in the Figure that the reference is tracked, but it is hard to tell how large
the relative errors are by just looking at the Figure. The root mean square
value (RMS, see Equation 1 in Section 2.3) for the residuals (reference minus
output) were calculated to 190 nm for one of the worst performing control
loops and 16 nm for one of the best. The quality of the control depends on
how well the SISO controller is designed for the family member experimented
on. The specifications were clearly not achieved for every actuator position
on the mirror. The question is now whether or not it is possible to stabilize
the full mirror system.

4.3.4 SISO control of the full mirror

Experiments on the mirror showed that the system was unstable when the
SISO families were used. The first guess was that the cross coupling effect
caused the trouble. In order to determine the source of instability, fewer and
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fewer actuators were used to control the mirror15. As assumed, a sparse grid
of actuators resulted in a stable system, while a dense grid caused instability.
This supports the assumption of the cross coupling difficulty. As mentioned
before, the coupling effect may be viewed as waves generated by a stone
falling into a calm pool of water. The generated mirror waves need to be
suppressed, but how?
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Figure 34: The dots indicates the local mirror section. The center actuator is the
actuator actively controlled. A static force distribution is then applied to the two
hexagonal rings next to the actuator.

4.4 Local control using a static force distribution

4.4.1 Strategy of local control

In order to suppress cross coupling effects on the mirror surface, a local model
of the full mirror (see Section 3.3.2) was used. The model contains 19 ac-
tuators (see Figure 34) where the actuator in the center is controlled by a
compensation link. The idea of the local control is to place forces, in two

15The case with only one actuator corresponds to the individual control in the previous
section.
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Figure 35: Cross section of a local model describing how the static forces are applied.

neighbouring hexagonal rings around the active center actuator, that will
counteract cross-coupling deformations. The purpose of the force distribu-
tion is shown in Figure 35. The Figure is a slice of a local mirror model with
the active center actuator displayed as number four. Actuator number three
and five represents the closest neighbours while actuators two and six are
situated in the second hexagonal ring.

Ideally, the center actuator force should not affect the deformations at the
other actuator positions. This however is impossible, so the goal is instead
to have as small deviations as possible. The most straight-forward strat-
egy would be to generate all forces dynamically. Due to the complexity of
the system, however, the first approach was to apply the force distribution
mentioned above. This distribution is produced from the transfer function
matrix16 of the local state space model and should set the neighbouring defor-
mations to zero statically. The transfer function matrix G(s) can be derived
from the state space matrices of the local model.

G(s) = C(sI − A)−1B (22)

16Functions from actuator forces to deformations at the actuator positions.
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Figure 36: The normalized force distribution of a local model. Number one is the
active center actuator, two to seven are the actuators in ring one and eight to nineteen
are the actuators in ring two.

Here, I is the identity matrix and s should now equal zero since manipulations
of the deformations were constrained to static forces alone17. Now

G(0) = −CA−1B (23)

Y (0) = I1 = G(0)F (0)⇒ F = F (0) = (G(0)−1I1) (24)

Y (0) = I1, i.e. the first column in the identity matrix, because this is the
desired static deformation output, with the center actuator output set to one
while the rest remains uneffected. Since the distribution should not affect
the central force, the force distribution F is normalized

F = (G(0)−1I1)(IT1 G(0)−1I1)−1 (25)

The normalized forces are displayed in Figure 36. F can then be used in
the control by multiplying it with the force coming from the center actuator.
The result is a vector with 19 inputs which are fed into the local model.

17The static case is represented by zero frequency.
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4.4.2 Results of the local control

Before taking the local control onto the full mirror, transfer functions for local
models at different locations on the mirror were examined. It was found
that local models in the middle, close to the edge and close to the center
of the mirror all behaved almost equally when effected by their respective
force distribution (see Figure 37). Only one compensation link was therefore
needed for loop shaping. So, the control system was stable independent of
which local model18 the controller was tested on. Therefore, the coupling
effects seemed less important and the control was applied to the full mirror
system.
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Figure 37: The transfer functions from the middle actuator force to its deformation
for different positions on the mirror. The blue line correspond to an actuator close to
the center, the red close to the edge and the green one from in between.

4.5 Local control of the full mirror model

The local control was implemented on the full mirror and it was impossible to
achieve a robust control with only one active local section. The deformation

18Several local models were derived corresponding to different mirror positions.



4.5 Local control of the full mirror model 51

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Segment outside the mirror

Mirror length / m

M
ir

ro
r 

le
n

g
th

 /
 m

Figure 38: It is impossible to control actuators at the edge of the mirror using local
control as the sections would fall outside the surface of the mirror.

outputs from a step response showed to be unstable independent of where on
the mirror the section was positioned. In these test cases only one section had
active control while all other actuators on the mirror were left uncontrolled.

4.5.1 Control development

The control was then expanded to handle many, overlapping, active local
sections and the system robustness improved as more and more local sec-
tions were used. Finally, almost every actuator were center actuator for a
19 actuator local model. The relative forces for the individual sections were
calculated and distributed, contributing to the forces generated from other
center actuators in neighbour sections. When the overlapping sections were
evenly spread over the whole mirror surface a stable process was reached.
Only the two hexagonal rings around the mirror center and the two circles
closest to the mirror edge were left uncontrolled. These were left out since
the local model of nineteen actuators would be mismatched on the surface
of the mirror. The geometry of the sections makes it impossible to have an
active section at the edge of the mirror surface, see Figure 38. The same
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Figure 39: Simulink model for the full mirror control simulations.

problem occurs for the center of the mirror as the origin is fixed and can not
be controlled. Problems with control of the edge and the center of the mirror
calls for a new, smaller, local model. Leaving these actuators uncontrolled is
not an option as tests showed that the edges starts to wrench because of the
poor damping in the CFRP material.

The hexagonal ring next to the edge and the second hexagonal ring from
the center are controlled using a smaller version of the local model19. This
model contains only seven actuators using one active center actuator and
its closest hexagonal (six actuator) ring. A local symmetrical model for the
edge of the mirror is however impossible to produce and these actuators are
thereby controlled using SISO control alone. The circle closest to the center
of the mirror were left uncontrolled. This is physically possible since the cen-
ter is fixed and the waves are damped as they are reflected on the supported
section. This leaves the full control of the mirror with two different types
of local model control and one type of SISO control in the outer hexagonal
ring.

4.5.2 Implementation of the full mirror control

The multivariable mirror system has been implemented in Matlab20 and
Simulink, using its well-known qualities for matrix manipulations. Model
and control of the mirror have then been tested, verified and improved using
the output data from Simulink. A screen shot of the simulation block is at

19This model was made in the same fashion as the local 19 actuator model.
20Sources used for Matlab programming was, besides of the Matlab help function, [14]

and [12].
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a)

b)

Figure 40: a) The full mirror model realization. b) The model of the controller.

display in Figure 39. The block yr contains a command signal to the mirror.
The reference signals could for example form a coneshaped step response (see
Figure 42) or contain variable amplitudes for every actuator very much like a
real reference coming from adaptive optics reconstruction21. The references,
yr are subtracted with the deformations, y, giving the control errors, e, for
every actuator position. The error enters the control block generating forces,
F , for each and every central actuator. As the SISO control was found in-
adequate, these forces are used to form force distributions over all mirror
sections. There are now 19 force signals for every section coming out of the
controller. These, however, are not sorted nor added to form the total input
of 3162 forces. The sorting and addition of section forces are handled in the
Place Forces block. The sorted inputs are then fed into the mirror model
to influence it (see figure 39), giving the deformation output vector. The
Select Actuators block makes sure that only the deformations controlled are
fed back.

The controller block and the deformable mirror block are subsystems con-
taining the necessary matrix manipulations. The realizations of the models

21Such a test would use a different Simulink approach.
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are shown in Figure 40. The A-, B- and C-matrices in the mirror model are
the modal model matrices (see Section 3). But how are the control matrices
Areg, Breg, Creg and Dreg designed?

The full mirror controller contains three different compensation links. The
first for the control of the standard local model, the second for the smaller
local model and the last for the SISO compensations on the edges. The
filters have all been chosen to give the small systems as good phase mar-
gins as possible. Once the compensation links have been designed they are
transformed into state-space representation in Matlab. Every controller is
then represented by Ar-, Br-, Cr- and Dr-matrices. In order to construct
comprehensive control matrices for the full model, these are placed into cor-
responding matrices. The new matrices are built with the representations
of the respective compensation links on the diagonal. Take for example the
compound control matrix Areg, which is built as below in Equation 26. Here
Ar1 represents the controllers of the standard local models. Ar2 belongs to
the small local model controllers and Ar3 symbolizes the SISO controllers for
the actuators on the edge.

Areg =




Ar1 0 . . . 0 0
0 Ar1 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ar2 0
0 0 . . . 0 Ar3




(26)

The other control matrices are assembled using the same method. A full
representation of the controller matrices can be found in Appendix A.7 and
the control design code in Appendix A.6.

4.5.3 Results of the full mirror control

In order to analyse the control of the full mirror model, several step response
tests were performed (see the output from a typical step response in Figure
41). The command signal was formed as the shape of a cone on one section
(see Figure 42). The center actuator for the section is given a reference of 12
nm and the first hexagonal ring around this actuator containing six actua-
tors is given a corresponding signal of 10 nm. Then the third hexagonal ring
with 12 actuators are obliged to a command signal of 5 nm. The cone shape
was used taking the mirror’s ability to bend into consideration. Hence, the
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Figure 41: The output of a step response test using the local control on the full mirror
model. The highest curve corresponds to the center actuator of a 19 actuator section.
The next one refers to the second hexagonal ring and the two transients around 5 nm
refer to the third ring. See the command signal in Figure 42.

mirror is not forced to be bent in a way that the structure can not tolerate
with too much divergence of deformations between adjacent actuators. Even
though these precautions were taken, quite a few strange behaviours could
be viewed, see Figure 41. Consider the output behaviour of the actuators
commanded to 5 nm. Their step responses are divided into two groups. None
of these are ending at the correct value. The phenomena disappeared as the
control was examined on the larger Guyan reduced mirror model. It was this
feature and some other strange results22 that led to a model substitution.
As the 2002 modes model did not prove to be absolutely accurate earlier in
Section 3.2 no time was spent examining the strange behaviors further23.

There were also problems with some actuators given zero reference signal.
They seemed to wander off and grow, but it is hard to tell what happens
and which actuators the growing deformations correspond to. Are the main

22For example the stationary error of the center actuator.
23When seen in the light of these facts, one might argue that the cone shaped reference

was probably unnecessary. This, however, was not examined further in this thesis and the
cone was used in all step response tests.
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Figure 42: The command signal used throughout this thesis in step response tests on
the full mirror. Note that the deformation dimensions are exaggerated in comparison
to the mirror size.

problems caused by poor edge control or is it perhaps the uncontrolled ac-
tuator ring in the center of the mirror that proves to be inadequate? One
can of course draw more conclusions by a further examination of individual
step response outputs, but the whole picture may be hard to grasp then. In
order to simplify the analysis of the mirror dynamics, a motion picture in
three dimensions was made. The outputs and time were stored in a specific
matrix. Using the information on where the actuators are placed and the
Matlab command trisurf, one can draw new pictures of the mirror deforma-
tions for every time sample. A movie is then created looping the images.
This approach proved to be of great use in this thesis since it was possible to
see exactly how systems like the one in Figure 41 behaved. The full Matlab
script can be viewed in Appendix A.5. The movie showed very clearly that
the mirror edges and center had divergent outputs. The mirror behaviour
looked very strange in the movie with growing waves in the outermost and
innermost actuator rings. These behaviours disappeared in large after the
model change.
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Figure 43: Simulation of the full mirror control using state feedback in Simulink.

Another curious mirror behaviour is transient dips in the step response plot
(see Figure 41). This quality was preserved even when the model was sub-
stituted. One possible reason is that the closed loop have zeros which have a
large influence on the transients. It seems desirable to avoid this unwanted
feature which might make the control less accurate.

4.6 Control using state feedback

A variant of state feedback control was tested in order to further improve the
system robustness. The idea was to use the velocities of the mirror defor-
mations. It is known that damping can be modeled as −dẋ, where d is the
damping coefficient and ẋ is the velocity of a variable, e.g. the deformation
as in this case. This characteristic may be used in the mirror control in a
state feedback fashion. The combined compensation/distribution control of
the mirror will thereby be further combined with this state feedback control
as a damping contribution to the control signal. The damping coefficients
have been selected by looking at the characteristics of a local model. A force
in the center actuator generates radial waves. It would therefore be advisable
to choose the same damping coefficients for every actuator position in the
hexagonal ring closest to the active actuator. The same thing would hold for
the ring just outside that one. As all sections are considered, each actuator
will have damping contributions from several rings resulting in a final damp-
ing coefficient. As mentioned before, the edge and the center of the mirror
lack active sections. Consequently, the actuators positioned in the middle of
the mirror have larger feedbacks through the L matrix than actuators at the
edge and the center. All damping coefficients di are placed in the diagonal
of a diagonal matrix L.
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Figure 44: Deformation outputs of a step response test where a combined force
distribution and state feedback control is used. The command signals are the same as
in Figure 41 and can be viewed in Figure 42.

L =




d1 0 . . . 0 0
0 d2 . . . 0 0
...

...
. . .

...
...

0 0 . . . dn−1 0
0 0 . . . 0 dn




(27)

Multiplying this matrix with the deformation velocities gives the desired
contribution to the control signal, i.e. uextra = −Lẋ. It should also be men-
tioned that the velocities ẋ could be used transforming the C-matrix (see
Equation 14) into

C =

[
Φ 0
0 Φ

]
(28)

The Simulink view of the full system can be seen in Figure 43 were the ve-
locities from every actuator are fed back through the L-matrix.

Comparing Figure 41 to Figure 44 of a step response using state feedback
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leaves it obvious that the results are more attractive after the modification.
The system with state feedback is slower in the initial stage but it approaches
the static value in less time than the system with the force distribution alone.
The error is also generally smaller in the state feedback case. The conclu-
sion must be that the state feedback controller also made the total system
more robust but that it need to be faster. The questions are whether or not a
faster system can have the same robustness qualities and then how to achieve
them?

4.7 Control using modal damping

The state feedback control strategy has qualities necessary to achieve good
control for the complicated process that the deformable mirror represents.
The L-matrix however, seems hard to tune so that the system bandwidth
remains high. A guess is that the state feedback control damps all mirror
modes and the question is if it is possible to take care of the most significant
modes alone. The most significant modes of the local model can be identified
by watching the modal states of the local model during a step response.
Figure 45 shows a plot of the local model states. This gives a measure
of how much each mode is triggered when the compensation link (for the
center actuator) and the force distribution are used. The model has a total
of 19 modes and the most significant of these are modes number 1, 3, 6
and 12. These can be viewed in Figure 46. With mode number 6 as the only
exception, they are all rotationally symmetric. These are the only local modes
that have this attribute. Thus, the significance of these modes is probably
emanating from this special feature. This seems to be a reasonable guess
since the actuators generate circular waves over the surface. The significance
of the sixth mode on the other hand, remains a mystery. An iterative tuning
of the control, however, demonstrated improved dynamics when this mode
was damped.

Figure 47 shows that there is an obvious gain in taking care of the most
significant modes. The convergence times are about the same, but the oscil-
lations are now better damped and the amplitudes are significantly smaller.
The approach used in this thesis was to damp the modal velocities multiply-
ing them with negative damping coefficients. Actually, this is the same thing
as the state feedback, the only difference is that the damping coefficients are
chosen more carefully. The main benefit of this new approach would be that
the control is more efficient.

It should also be mentioned that the modal control alters the force distribu-
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Figure 45: A plot of the modal states of the local model when the force distribu-
tion/compensation alone is being used during a step response.

Mode #6 Mode #12

Mode #1 Mode #3

Figure 46: The four most significant local modes.
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Figure 47: A plot of the same test as in Figure 45, but with modal damping.

tion needed to provide a static balance for the local model. This however,
is not a problem since all sections have active control in the full mirror control.

It proved difficult to implement the modal controller on the full mirror model
and there was not enough time in this thesis project to set up a functional
controller of this type. Tests on the local model, however, have shown satisfy-
ing results and the modal damping strategy is therefore considered important
to be investigated further in the future.

4.8 Control evolution results

During the course of control development many system transfer functions
were studied. To get a good intuitive feeling of the benefits for different con-
trol strategies, this seemed to be a good initiative. In Simulink it is possible
to get linearized transfer functions with e.g. input at the command signal
and output at the process output using the control design tool. This was
done for the local systems using the different control strategies showing be-
haviours and contributions of the same24, see Figure 48. The untampered
system, without control and no feedback (yellow with many peaks), has bad

24Note that it was the open systems that were watched and that the transfer functions
were from center actuator force to center actuator deformation.
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Figure 48: Bode diagram of systems resulting from the control evolution.

phase and includes several peaks and dips effecting the control with poor
robustness as a result. When the force distribution was put on the mirror
a more harmonic Bode plot presented itself (see the black system, with 3
distinct peaks, in the same Figure). Many of the magnitude peaks and dips
at low frequencies have vanished and a better phase was received for higher
frequencies leading to a more straightforward control. Modal feedback added
further to these characteristics (the smooth red curve) with better damped
resonance peaks as a result. The system was now almost behaving as a low
pass filter without any resonances. This is a quite common appearance for
many systems and also highly desirable. A new compensation link could
then be designed to manipulate the system, receiving both increased low fre-
quency magnitude and a feasible bandwidth. The system for a section being
controlled using all strategies is represented by the blue system in the Bode
diagram (the one with higher gain).

As the magnitude slope for the compensated system does not cross 0 dB
more than once, a realization with a well determined bandwidth was achieved.
Reading the Bode diagram one could then determine the bandwidth to 550
Hz and the phase margin to 87 degrees. With Section 4.1.1 in mind one
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Figure 49: Step response using state feedback control with higher bandwidth. The
same command signals as before are used.

can argue that the phase margin is too high. One should however consider
that coupling effects might lead to worse phase margin than achieved in this
analysis. A high phase margin may therefore be crucial and 87 degrees is
perhaps not so bad. It should also be mentioned that the coupling effects are
very much neglected throughout this thesis. The control of the full mirror
however seem to verify that the SISO diagrams (from center actuator force
to center actuator deformation) are the most important when analysing the
systems. These are after all the ones controlled actively. The cross-coupling,
however, deserves more attention and should therefore be considered in more
detail in future research plans.

An important difference between the modal control approach and the others
are that the compensation filter was chosen after both force distribution and
modal dampings had been set. A compensation link could thus be tuned to
fulfill the requirements of both faster control and reasonable phase margin
leading to a better system overall.
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Figure 50: Realistic deformable mirror command signals was tracked.

4.9 State feedback control with higher bandwidth

As the implementation difficulties of the modal control approach led to a
dead end, an old idea was reconsidered. The state feedback solution in Sec-
tion 4.6 proved to be too slow. The control evolution in the previous section,
however, showed that the compensation link could simply be modified to re-
ceive a faster system. Since the state feedback controller is very similar to
the modal controller it seems reasonable to believe that at least some modal
damping will result from that control as well. The state feedback control was
therefore once again considered after an increase in the compensation filter
gain.

Step response tests on the full mirror (see Figure 49) showed that an ap-
proximate bandwidth of 800 Hz could be achieved and that the robustness
was intact, if not better. The estimated bandwidth was determined using
Equation (30), in the next section. A feasible mirror control, with a fast,
robust system, is hereby achieved. In order to examine if the specifications
were met, the controller was to be tested for realistic telescope reference sig-
nals

The final RMS-value was determined taking the RMS for every actuator po-
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Figure 51: Individual RMS values for the actuators. The higher number the actuator
has, the closer to the edge it is situated.
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Figure 52: Individual RMS values for the actuators. Three rings at the edge were left
out in this zoom in of Figure 51.
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sition and then the RMS over all these values. It was then determined to
395 nm which is not that flattering since the specifications require a RMS
value of at most 80 nm for IR light. Further examinations of the individ-
ual RMS values (see Figure 51), however, showed that there were still some
problems controlling the edge. The errors for the actuators located in the
three outermost hexagonal rings have RMS values of at most 5.5 µm. This
has a great impact on the final RMS value. When Figure 51 was zoomed in,
leaving these three rings out, a far better result was observed, see Figure 52.
The RMS values were less than 10 nm for each of these actuators and the
total RMS was just 3.2 nm, indicating that the specifications were met for
these actuator positions.

The problems with the edges, however, still remains and at this point no
true explanation exists although there are several possible reasons. The ref-
erences at the edge may not have been generated to match the mirror surface
to an acceptable degree. Furthermore, the smaller local model for the edges
should once again be studied and verified. This model might not describe
the dynamics of the mirror edge as expected. The SISO control of the edge
actuators may also cause trouble and asymmetric local models are perhaps
advisable to use in order to create better edge control.

Due to lack of time in the end of this thesis project, the realistic references
were only tracked for 0.2 s25. The full time series, however, lasts for more
than 8 seconds. This experiment might therefore not be representative for
the true RMS value. A full scale experiment should therefore be launched to
see whether or not the control is feasible.

4.10 Control difficulties

4.10.1 Fast control and model reliability

Due to an unfortunate programming flaw the SISO control for the edge was
set to a bandwidth of several thousand Hz. The behaviour was detected
as the edge control showed to be better than ever expected. This raised
the question whether or not the overall mirror controller was too fast as
well. The compensation filters for the mirror controllers was therefore used
as SISO controllers. It showed that these compensation filters gave a stable
SISO system with fantastic properties. Taking an approximate bandwidth
of the system however, showed that it was set in a frequency span where
the model is not reliable (see Figure 53). The approximate bandwidth was

25Simulation time approximately four days at a Pentium 2.4GHz with 1024Mbmemory.
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An exploded stepresponse using too fast SISO control

Figure 53: A magnified step response showing that the SISO control on the full mirror
is too fast to be adequate.

defined as

ωb =
1

τ
(29)

where τ is the time constant of the system. The mirror process is thereby
approximated as a first order system. A calculation of the SISO system
bandwidth (in Hz) gives

fb =
1

0.63 · 2.2 · 10−5 · 2 · π ≈ 7200 Hz (30)

which is too high. The 2002 model should not be used over 1500 Hz and the
same thing counts for the Guyan reduced model. This new SISO approach
could thereby be disregarded as before. It was also proved that lower filter
bandwidths gave an unstable system once again.

The worry was whether or not the rest of the control systems developed
were defined for the models. Step response tests, however, showed that the
approximate bandwidths were within a reasonable model frequency span.
This would also prove that the section control approach is useful.
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4.10.2 Cumbersome simulations

The Simulink simulations were realized using the Matlab solver ode4 with a
fixed step time of 4 · 10−6. The final control system had several thousand
controllers of order three or less. The Guyan reduced system has an order
of more than 6000 and the L-matrix containing all damping coefficients adds
further to the complexity of the final system. All of these features adds to the
total simulation time of the full mirror control. A simulation of 0.2 s took for
instance more than two days to finish. Different simulations were therefore
carried out at the same time at several computers in a local network .
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5 Recommendations on future research

The research on deformable mirrors in Lund is still in its initial stage and
more research has to be done before the final control objectives are reached.
This thesis has given valuable clues as to what needs to be done in the future.

The main part of this thesis was the mirror control and the modeling studies
were therefore not as extensive as will be needed in the future. The cur-
rent models should be analysed in detail to find out whether or not they
are representable for the real mirror and if a further model reduction might
be a possible next step. A further, relevant, reduction of the full model or-
der would be very welcome since it would simplify the analysis and control
system design. Grocott’s reduction [11] was based on the symmetrical prop-
erties of the MMT mirror. It may be possible to apply a similar reduction to
the hexagonal Euro50 mirror. Wodek K. Gawronski’s book, Dynamics and
Control of Structures [10], is also recommended for further studies on e.g.
model reduction. Further a model with time delays needs to be considered
and the models should also be extended to include dynamics of the voice coil
actuators as well as the capacitive gap sensors26.

The analysis of the model needs to be extended to cover optimal sensor and
actuator placement27, examining controllability and observability Gramians
along with system singular values. The cross coupling effects should also be
considered in detail, especially when visual light adaptive optics is consid-
ered. The control system for visual light will also give a system with much
more actuators.

Future development of the deformable mirror control should consider the
use of more complex MIMO controllers, for instance LQG- or H∞ control.
The local models should provide the forum necessary to perform this. A
complicated controller will, however, add more computer calculations. The
simulations should then be made more efficient. It would also be neces-
sary to include observers in order to determine deformation velocities. This
will for instance be needed in order to use the state feedback on a real mirror.

The future deformable mirror research at Lund University will consider the
control of a prototype mirror with 7 operating actuators. However, sooner
or later there will also be a need to verify the control on a mirror with more

26Both when collocated with the actuators (as in this thesis) and located between.
27See for instance [10].
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dynamic features. In order to reach the science level needed to control this
mirror, a more long-term project should be started. Such studies should be
run by a group of scientists and Ph.D./Master Thesis students28. The Ph.D.
students could e.g. base their studies on the dynamics of flexible structures.
A future cooperation with some commercial companies and/or other ELT
project groups might also be advisable.

28Compare with the MMT group.
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6 Main results and conclusions

Controlling the large deformable Euro50 mirror showed to be a formidable
quest. The mirror has almost a thousand eigenmodes within the expected
controller bandwidth and a modal model approach was extremely cumber-
some considering computer calculations. Most of the problems however,
could be overcome by the use of sparse matrices and Matlab functions sup-
porting these.

Two large modal models were used in this thesis, the 2002 mode model
and the Guyan reduced model. Model verification showed that the Guyan
Reduced model had better static performance. It also showed more logical
simulation results. The model should, however, not be used at too high fre-
quencies since model errors are more significant there. In order to simplify
the analysis of the MIMO control based on the full mirror model, a local
mirror model was derived from the Guyan reduced model.

The control of the large deformable mirror needs a closed loop bandwidth
of at least 500 Hz and an RMS-value of at most 80 nm. Four control ap-
proaches were used to find a solution. SISO control of actuator families gave
an unstable system29. Force distributions, together with compensation filters,
applied on mirror sections over the mirror gave a stable but not so accurate
step response. In order to damp the system, a state feedback of deformation
velocities was used as well and showed to be effective but slow. The last
modal damping state feedback approach showed excellent behaviour on the
local model but was never realized on the full model due to a complicated
implementation. An idea sprung from this control led to further tests of the
velocity feedback. The compensation links had higher bandwidth this time
thus giving a fast enough step response. Results from tests with realistic
command signals were then carried out and showed that the system could
match the specifications for all actuator positions but for the mirror edges.
The results give hope for the future research and the edge difficulties should
not prove to be too hard a problem to solve.

29Very much like Grocott predicted [11]. See Section 1.5.3.
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A Matlab programming files

A.1 State space modal model derivation

%##############################################################

%Creates the A-,B- and C-matrices for the 2002 mode model,

%using the FEM model.

%Authors: Fredrik Bjöörn & Olof Garpinger

%##############################################################

clear

%Load nodenumbers,

%x-, y- and z-coordinates together with deformations

%for the mirror in z for all 2002 modes

load M2-modal_a_modes;

%Load the eigenfrequences for all 2002 modes

load M2-frequencies.txt;

nbr_a = 3168; %Number of actuator nodes

nbrmod = 2002; %Number of modes taken into account

%The natural frequency vector in rad/s

omega = [2*pi*M2_frequencies(:,2)];

%The normalized modal matrix

Phi = [a_modes(:,5:nbrmod+4)];

%--------------------------------------------------------------

%The A-Matrix

%--------------------------------------------------------------

%The approximate damping factor for the Carbon Fiber Reinforced

%Polymer mirror

Z = 0.02;

%A = [0 I; -(omega)^2 -2*Z*omega]

A = [zeros(nbrmod) eye(nbrmod);...

diag(-omega.*omega) diag(-2*Z*omega)];

%--------------------------------------------------------------

%The B-Matrix

%--------------------------------------------------------------

%B = [o; Bm]; Bm = inv(Mm)*Phi’*B0 = Phi’*B0, since Mm = B0 = I
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B = [zeros(nbrmod, nbr_a); Phi’];

save ABmat A B %Save the A- and B-matrices temporary

%Allocate memory

clear a_modes e_modes s_modes omega M2_frequencies A B

%--------------------------------------------------------------

%The C-Matrix

%--------------------------------------------------------------

%y = Coq*q + Cov*qdot, Cov = 0 => the deformations are measured

C = [Phi zeros(nbr_a, nbrmod)]; %C = [Phi 0]

save Cmat C

clear

load ABmat

load Cmat

%Save the A- B- and C-matrices in a file

save ABCmatrices_2002a A B C

delete ABmat.mat %Deletes temporary files from disk

delete Cmat.mat
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A.2 Verification of the mirror model

%##############################################################

%The static gain is used for comparison between the State Space

%Model and the more complex FEM model. Two different test

%cases are used to measure the residuals between the two models

%The residuals are plotted in Figures.

%Authors: Fredrik Bjöörn & Olof Garpinger

%##############################################################

clear

load ABCmatrices_2002a

load Dmatrix

%G(s) = C*(sI-A)^(-1)*B,

G0 = -C*(A\B); %The static gain, G(0) = -CA^(-1)B

save staticgain_2002a G0 %Save the gain to file

%--------------------------------------------------------------

%Determines the static deformations for the State Space Model

%of the secondary mirror using the first test case force vector

%--------------------------------------------------------------

clear

%Creates a force vector for the verification

load M2-modal_a_modes; %Load the actuator modes

nbr_a=3168;

F = zeros(nbr_a,1); %Create the force vector

%Find the numbers of the right force actuators and give them

%predetermined test forces

F(find(a_modes(:,1)==6203),1)=-10;

F(find(a_modes(:,1)==6653),1)=-10;

F(find(a_modes(:,1)==7113),1)=-10;

clear a_modes nbr_a %Allocate memory

%Load static gain of the mirror model

load staticgain_2002a

%Find the static deformations, i.e. y(inf)=G(0)*F
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delta1 = G0*F;

%Save the deformations

save deformations1_2002a delta1

%--------------------------------------------------------------

%Determines the static deformations for the State Space Model

%of the secondary mirror using the second test case forcevector

%--------------------------------------------------------------

clear

%Creates a force vector for the verification

load M2-modal_a_modes; %Load the actuator modes

nbr_a=3168;

F = zeros(nbr_a,1); %Create the force vector

%Find the numbers of the right force actuators and give them

%predetermined test forces

F(find(a_modes(:,1)==12783),1)=-1;

F(find(a_modes(:,1)==14715),1)=-1;

F(find(a_modes(:,1)==16863),1)=-1;

F(find(a_modes(:,1)==14739),1)=3;

clear a_modes nbr_a %Allocate memory

%Load static gain of the mirror model

load staticgain_2002a

%Find the static deformations, i.e. y(inf)=G(0)*F

delta2 = G0*F;

%Save the deformations

save deformations2_2002a delta2

%--------------------------------------------------------------

%Comparisons are made between the more advanced FEM model and

%the State Space Model in various plots

%--------------------------------------------------------------

clear

%Load M2 deformations from both the FEM model and the State
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%Space model for both test cases

load deformation_H1_2002a %FEM deformations case 1

load deformation_H2_2002a %FEM deformations case 2

load deformations1_2002a %State Space deformations case 1

load deformations2_2002a %State Space deformations case 2

%Plot mirror deformations

load M2-modal_a_modes.mat %Load actuator modes

x = a_modes(:,2); %Get x-coordinates

y = a_modes(:,3); %Get y-coordinates

tri = delaunay(x,y); %Delaunay triangulation

%Triangular surface plot of the differences between the first

%deformations

trisurf(tri,x,y,dz1-delta1,’EdgeColor’,’none’)

title(’The differences between the first deformations’)

zlabel(’Deformation differences in meters’)

figure

%Triangular surface plot of the differances between the second

%deformations

trisurf(tri,x,y,dz2-delta2,’EdgeColor’,’none’)

title(’The differences between the second deformations’)

zlabel(’Deformation differences in meters’)

maxcase1=max(dz1-delta1) %Maximum deformation, case 1

maxcase2=max(dz2-delta2) %Maximum deformation, case 2

mincase1=min(dz1-delta1) %Minimum deformation, case 1

mincase2=min(dz2-delta2) %Minimum deformation, case 2

meancase1=sum(abs(dz1-delta1))/length(dz1) %Mean, case 1

meancase2=sum(abs(dz2-delta2))/length(dz2) %Mean, case 2

%Contour plots of the deviations between the two models

xlin = linspace(-2.2,2.2,150);

ylin = linspace(-2.2,2.2,150);

[xm ym] = meshgrid(xlin,ylin);

%Interpolation function, puts data on grid
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zm1 = griddata(x,y,dz1-delta1,xm,ym);

zm2 = griddata(x,y,dz2-delta2,xm,ym);

figure

[cs1,h1]=contour(xm,ym,zm1);

figure

[cs2,h2]=contour(xm,ym,zm2);
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A.3 Transfer functions for the actuators located from
the center to the edge of the deformable mirror

%##############################################################

%Find the actuator numbers from x=0 to x= 2.2 when y=0

%Authors: Fredrik Bjöörn & Olof Garpinger

%##############################################################

vec(1)=1; %The first actuator number=1

xvec(1)=vec(1);

%There exists 32 actuators from the middle of the mirror to

%the edge

for k=1:31

%Returns all neighbours to the actuator

vec = neighbournodes(vec(1));

%Puts the actuator number of the neighbour to the right

%(vec(1)) into a vector, xvec

xvec(k+1) = findnodeplace(vec(1));

end

%--------------------------------------------------------------

%Save the Bodeplots for the transfer functions from actuator

%force to deformation using the actuators above.

%--------------------------------------------------------------

load ABCmatrices_2002a A

freqv = logspace(-1,4,500); %Frequencies in rad/s

sI = i*sparse(eye(length(A))); %i*I

A = sparse(A);

for l=1:length(xvec) %Use the l:th actuator

load ABCmatrices_2002a B C

B = sparse(B(:,xvec(l))); %Using the xvec(l):th column

C = sparse(C(xvec(l),:)); %Using the xvec(l):th row

for j=1:length(freqv)

temp = freqv(j)*sI-A; %i*w*I-A

%Calculate the transfer function for a frequency w

G(j) = C*(temp\B);
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pause(0.2) %Allow Ctrl-c

end

Gs(:,l)=full(transpose(G)); %From sparse to full matrix

end

save Gsmatrix Gs
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A.4 SISO compensation filters for the actuators

%##############################################################

%Compensation link for the first actuator - Family 1

%Authors: Fredrik Bjöörn & Olof Garpinger

%##############################################################

load Gsmatrix %Transfer functions are loaded

%The transfer function containing the first actuator is

%sorted out

G=Gs(:,1);

%Frequency vector containing 700 points between 10^-1 and 10^4

freqv = logspace(-1,4,700);

%Creation of or conversion to Frequency Response Data model

Gsys = frd(G,freqv);

K=5e4; %Static gain

w1=7; %Locations for the inverted Notch filter

z=0.25; %Damping for the inverted Notch filter

s=tf(’s’); %Specifies the transfer function H(s) = s

%Transfer function for the inverted Notch filter

Gk1 = K*(s+w1)^2/(s^2+2*z*w1*s+w1^2);

%Compensation links

Bandpas=(Gk1^1);

Phasedec=(s+2)/(s*(s+400));

sys = K*Bandpas*Phasedec*Gsys; %The compensated system

%The controller

[numreg1,denreg1] = tfdata(K*Bandpas*Phasedec,’v’);

%Plotting the Bode plot of the system and the controller

margin(sys)

hold on

bode(Bandpas*Phasedec,’r’)

grid on

hold off
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%##############################################################

%Compensation link for the second to the fourth actuator

%Family 2

%##############################################################

K=8.9; %Static gain

w1=7; %Locations for the inverted Notch filter

w2=15;

w3=50;

w4=150;

z=0.25; %Damping for the inverted Notch filters

s=tf(’s’); %Specifies the transfer function H(s) = s

%Transfer functions for the inverted Notch filters

Gk1 = K*(s+w1)^2/((s)^2+2*z*w1*s+w1^2);

Gk2 = K*(s+w2)^2/((s)^2+2*z*w2*s+w2^2);

Gk3 = K*(s+w3)^2/((s)^2+2*z*w3*s+w3^2);

Gk4 = K*(s+w4)^2/((s)^2+2*z*w4*s+w4^2);

%Compensation links

Bandpas=(Gk1^2*Gk2^1*Gk3^1*Gk4^1);

Phasead = ((s+4))/((s+80));

Phasedec=(s+4)^2/((s+0.01)^2);

%##############################################################

%Compensation links for the fifth to the eleventh actuator

%Family 3

%##############################################################

K=2.2; %Static gain

w1=10; %Locations for the inverted Notch filter

w2=18;

w3=50;

w4=100;

w5=160;

z=0.45; %Damping for the inverted Notch filters

s=tf(’s’); %Specifies the transfer function H(s) = s

%Transfer functions for the inverted Notch filters

Gk1 = K*(s+w1)^2/((s)^2+2*z*w1*s+w1^2);
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Gk2 = K*(s+w2)^2/((s)^2+2*z*w2*s+w2^2);

Gk3 = K*(s+w3)^2/((s)^2+2*z*w3*s+w3^2);

Gk4 = K*(s+w4)^2/((s)^2+2*z*w4*s+w4^2);

Gk5 = K*(s+w5)^2/((s)^2+2*z*w5*s+w5^2);

%Compensation links

Bandpas=(Gk1^3*Gk2^3*Gk3^3*Gk4^3*Gk5^3);

Phasead = ((s+60))/((s+300));

Phasedec=((s+3)*(s+2))/((s)*(s+0.02));

%##############################################################

%Compensation links for the 12’th to the 22’nd actuator

%Family 4

%##############################################################

K=4.2; %Static gain

w1=30; %Locations for the inverted Notch filters

w2=50;

w3=100;

w4=150;

z=0.45; %Damping for the inverted Notch filters

s=tf(’s’); %Specifies the transfer function H(s) = s

%Transfer functions for the inverted Notch filters

Gk1 = K*(s+w1)^2/((s)^2+2*z*w1*s+w1^2);

Gk2 = K*(s+w2)^2/((s)^2+2*z*w2*s+w2^2);

Gk3 = K*(s+w3)^2/((s)^2+2*z*w3*s+w3^2);

Gk4 = K*(s+w4)^2/((s)^2+2*z*w4*s+w4^2);

%Compensation links

Bandpas=(Gk1^2*Gk2^2*Gk3^2*Gk4^2);

Phasead = ((s+30))/((s+400));

%##############################################################

%Compensation links for the 23’rd to the 31’st actuator

%Family 5

%##############################################################

K=5e5; %Static gain

s=tf(’s’); %Specifies the transfer function H(s) = s



A.4 SISO compensation filters for the actuators 86

%Compensation links

Phasead = ((s+6))/((s+200));

sys = K*Phasead*Gsys; %The compensated system

%The controller

[numreg23to31,denreg23to31] = tfdata(K*Phasead,’v’);

%##############################################################

%Compensation links for the 32’nd actuator - Family 6

%##############################################################

K=6.2; %Static gain

w1=7; %Locations for the inverted Notch filters

w2=15;

w3=50;

w4=150;

z=0.25; %Damping for the inverted Notch filters

s=tf(’s’); %Specifies the transfer function H(s) = s

%Transfer functions for the inverted Notch filters

Gk1 = K*(s+w1)^2/((s)^2+2*z*w1*s+w1^2);

Gk2 = K*(s+w2)^2/((s)^2+2*z*w2*s+w2^2);

Gk3 = K*(s+w3)^2/((s)^2+2*z*w3*s+w3^2);

Gk4 = K*(s+w4)^2/((s)^2+2*z*w4*s+w4^2);

%Compensation links

Bandpas=(Gk1^2*Gk2^1*Gk3^1*Gk4^1);

Phasead = ((s+6))/((s+800));

Phasedec=(s+4)^2/((s+0.01)^2);

sys = K*Bandpas*Phasead*Phasedec*Gsys; %The compensated system

%The controller

[numreg32,denreg32] = tfdata(K*Bandpas*Phasead*Phasedec,’v’);
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A.5 Create a movie of the mirror

%##############################################################

%Creates a motion picture of the deformations clarifying the

%dynamics of the full mirror

%Authors: Fredrik Bjöörn & Olof Garpinger

%##############################################################

load M2-modal_a_modes

%Load deformations and time scale from mirror simulations

load Output

%The big model does not use nodes 1 to 6

x = a_modes(7:end,2); %x-coordinates

y = a_modes(7:end,3); %y-coordinates

clear a_modes %Memory allocation

%The first row in y16643 is the time vector

dz = y16643(2:3163,1:length(y16643(1,:))); %Only deformations

tri = delaunay(x,y); %Delaunay triangulation

%Making a full screen figure that presents the movie

bdwidth=5;

set(0,’Units’,’pixels’)

pos=[bdwidth, 650, 1024, 650];

figure(’Position’, pos)

%Uppdates the figure with new deformations for every time

%sample

for i = 1:length(y16643(1,:))

%Triangular surface plot, no edge lines

trisurf(tri,x,y,dz(:,i),’EdgeColor’,’none’)

shading interp

axis([-2.5 2.5 -2.5 2.5 -12e-5 4e-5])

xlabel([’time : ’ num2str(y16643(1,i)) ’s’])

view(0,30)

pause(0.05) %Uppdate the figure every 0.05 s

end



A.6 Initial file to test full mirror step responses 88

A.6 Initial file to test full mirror step responses

%##############################################################

%This script initializes the matrices used in the control of

%the full mirror model

%Authors: Fredrik Bjöörn & Olof Garpinger

%##############################################################

clear

%Load the different controllers used on the full mirror

load ControllerV6 numreg denreg

load Controller32FredrikV6 numreg32 denreg32

%Load a matrix containing the force distributions, different

%force vector depending on where on the mirror the local

%model is placed

load ForcevectorV6 force

s=tf(’s’);

%Controller used for local control of sections

Gk=tf(numreg,denreg);

%Controller for local control of smaller sections

Gk31=20*tf(numreg32,denreg32);

%Controller used for SISO control of the edge

Gk32=6*tf(numreg32,denreg32);

Gr=Gk;

%Retrieving controller state space matrices

Regsys=ss(Gr);

Ar=Regsys.a;

Br=Regsys.b;

Cr=Regsys.c;

Dr=Regsys.d;

ArR=length(Ar); %Order of the section controller

%The same controller is used for the third ring from the edge

%as for the rings located from here to the center

GrW2Rings=Gk;

%Retrieving controller state space matrices

RegsysW2Rings=ss(GrW2Rings);

ArW2Rings=RegsysW2Rings.a;
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BrW2Rings=RegsysW2Rings.b;

CrW2Rings=RegsysW2Rings.c;

DrW2Rings=RegsysW2Rings.d;

ArW2RingsR=length(ArW2Rings); %Order of the section controller

%Controller used for local control of smaller sections

Gr31=Gk31;

%Retrieving controller state space matrices

Regsys31=ss(Gr31);

Ar31=Regsys31.a;

Br31=Regsys31.b;

Cr31=Regsys31.c;

Dr31=Regsys31.d;

Ar31R=length(Ar31); %Order of the smaller section controller

Gr32=Gk32;

%Retrieving A, B, C and D matrices for the SISO controller

Regsys32=ss(Gr32);

Ar32=Regsys32.a;

Br32=Regsys32.b;

Cr32=Regsys32.c;

Dr32=Regsys32.d;

Ar32R=length(Ar32); %Order of the SISO controller

%--------------------------------------------------------------

%Build matrices so that the controllers can

%control the full mirror

%--------------------------------------------------------------

Aregtemp = sparse(2592*ArR,2592*ArR);

Bregtemp = sparse(2592*ArR,2592);

Cregtemp = sparse(2592*19,2592*ArR);

Dregtemp = sparse(2592*19,2592);

%6 more in each ring

%Put the local model section controller matrices in the

%"diagonal" of new controller matrices

l = 1; %Force distibution counter

j = 1; %Matrix counter
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k = 1; %force vector counter

n = 43;

m = 24;

for i = 1:2592 % for all actuators controlled by large sections

%Choose the correct k-value for the force matrix

%For all actuators placed between the center and the third

%ring to the edge

if i < 43 | i > 2418

elseif n == i %To get the right force vector

k = k+1; %Force vector counter

n = i+m+6;

m = m+6;

end

Aregtemp(j:j+length(Ar)-1,j:j+length(Ar)-1) = Ar;

Bregtemp(j:j+length(Ar)-1,i) = Br;

Cregtemp(l:l+19-1,j:j+length(Ar)-1) = forcemat(:,k)*Cr;

Dregtemp(l:l+19-1,i) = forcemat(:,k)*Dr;

j = j + length(Ar);

l = l + 19;

if i == 42

k = 0;

end

end

l = 1;

j = 1; %Matrix counter

AregW2Rings = sparse(ArW2RingsR*180,ArW2RingsR*180);

BregW2Rings = sparse(ArW2RingsR*180,180);

CregW2Rings = sparse(180*19,ArW2RingsR*180);

DregW2Rings = sparse(180*19,180);

for i = 1:180 % for all actuators in the third ring
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AregW2Rings(j:j+length(ArW2Rings)-1,j:j+length(ArW2Rings)-1) = ArW2Rings;

BregW2Rings(j:j+length(ArW2Rings)-1,i) = BrW2Rings;

CregW2Rings(l:l+19-1,j:j+length(ArW2Rings)-1) = forcemat(:,24)*CrW2Rings;

DregW2Rings(l:l+19-1,i) = forcemat(:,24)*DrW2Rings;

j = j + length(ArW2Rings);

l = l + 19;

end

j = 1; %Matrix counter

Areg31 = sparse(Ar31R*186,Ar31R*186);

Breg31 = sparse(Ar31R*186,186);

Creg31 = sparse(186,Ar31R*186);

Dreg32 = sparse(186,186);

for i = 1:186 % for all actuators in the second ring from the edge

Areg31(j:j+length(Ar31)-1,j:j+length(Ar31)-1) = Ar31;

Breg31(j:j+length(Ar31)-1,i) = Br31;

Creg31(i,j:j+length(Ar31)-1) = Cr31;

Dreg31(i,i) = Dr31;

j = j + length(Ar31);

end

j = 1; %Matrix counter

Areg32 = sparse(Ar32R*192,Ar32R*192);

Breg32 = sparse(Ar32R*192,192);

Creg32 = sparse(192,Ar32R*192);

Dreg32 = sparse(192,192);

for i = 1:192 % for all actuators positioned at the edge

Areg32(j:j+length(Ar32)-1,j:j+length(Ar32)-1) = Ar32;

Breg32(j:j+length(Ar32)-1,i) = Br32;

Creg32(i,j:j+length(Ar32)-1) = Cr32;

Dreg32(i,i) = Dr32;

j = j + length(Ar32);
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end

%Matrices are temporary saved for memory allocation

save RegmatricesW2MRingsV6 Aregtemp Bregtemp Cregtemp Dregtemp...

AregW2Rings BregW2Rings CregW2Rings DregW2Rings Areg31 Breg31...

Creg31 Dreg31 Areg32 Breg32 Creg32 Dreg32

save dimensionsV6 ArR ArW2RingsR Ar31R Ar32R

clear

load RegmatricesW2MRingsV6

load dimensionsV6

%--------------------------------------------------------------

%New matrices that will contain all control matrices

%--------------------------------------------------------------

Areg=sparse(2592*ArR+ArW2RingsR*180+Ar31R*186+Ar32R*192,...

2592*ArR+ArW2RingsR*180+Ar31R*186+Ar32R*192);

Breg=sparse(2592*ArR+ArW2RingsR*180+Ar31R*186+Ar32R*192,...

2592+180+186+192);

Creg=sparse(2592*19+180*19+186+192,...

2592*ArR+ArW2RingsR*180+Ar31R*186+Ar32R*192);

Dreg=sparse(2592*19+180*19+186+192,...

2592+180+186+192);

Areg=[Aregtemp zeros(2592*ArR,...

ArW2RingsR*180+Ar31R*186+Ar32R*192);...

zeros(ArW2RingsR*180,2592*ArR) AregW2Rings ...

zeros(ArW2RingsR*180,Ar31R*186+Ar32R*192);...

zeros(Ar31R*186,2592*ArR+ArW2RingsR*180)...

Areg31 zeros(Ar31R*186,Ar32R*192);...

zeros(Ar32R*192,2592*ArR+ArW2RingsR*180+Ar31R*186) Areg32];

Breg=[Bregtemp zeros(2592*ArR,180+186+192);...

zeros(ArW2RingsR*180,2592) BregW2Rings...

zeros(ArW2RingsR*180,186+192);...

zeros(Ar31R*186,2592+180) Breg31 zeros(Ar31R*186,192);...

zeros(Ar32R*192,2592+180+186) Breg32];

Creg=[Cregtemp zeros(2592*19,...
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ArW2RingsR*180+Ar31R*186+Ar32R*192);...

zeros(180*19,2592*ArR) CregW2Rings...

zeros(180*19,Ar31R*186+Ar32R*192);...

zeros(186,2592*ArR+ArW2RingsR*180)...

Creg31 zeros(186,Ar32R*192);...

zeros(192,2592*ArR+ArW2RingsR*180+Ar31R*186) Creg32];

Dreg=[Dregtemp zeros(2592*19,180+186+192);...

zeros(180*19,2592) DregW2Rings zeros(180*19,186+192);...

zeros(186,2592+180) Dreg31 zeros(186,192);...

zeros(192,2592+180+186) Dreg32];

save RegmatricesRings3To30And32V6 Areg Breg Creg Dreg

clear %Memory allocation

load RegmatricesRings3To30And32V6 Areg Breg Creg Dreg

%Feed the right deformations back

I=sparse([zeros(2772,12) eye(2772) zeros(2772,192+186);...

zeros(186,12+2772) eye(186) zeros(186,192);...

zeros(192,12+2772+186) eye(192)]);

I = sparse([I zeros(3150,3162)]);

R=zeros(3162-12,1);

%Step response reference

nbntemp=getNeighbourRings(16643)-18;

R(nbntemp(1))=0.6;

R(nbntemp(2:7))=0.5;

R(nbntemp(8:19))=0.25;

%Distributing the forces to right actuators

load PmatrixOlofV6

P = [P [zeros(3168-192-186,186);...

eye(186);zeros(192,186)] [zeros(3168-192,192);eye(192)]];

P = P(7:3168,:);

%Feedback of velocities

load LmatrixV6

Lmat = Lmat(7:3168)’;

I2 = sparse([zeros(3162) eye(3162)]);

Lmat = diag(full(Lmat*I2));
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Lmat=Lmat(end/2+1:end,:)./2;

pack %Memory allocation

load TorbenBigModelV6 %The full mirror model

%Get velocities as outputs from the mirror model

Cm2 = sparse([Cm(:,1:3354) zeros(3162,3354);...

zeros(3162,3354) Cm(:,1:3354)]);

clear Cm
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A.7 Place forces on the deformable mirror

%##############################################################

%Makes sure the forces are distributed to the right actuators

%Authors: Fredrik Bjöörn & Olof Garpinger

%##############################################################

%Load the neigbour rings for the activated actuators

load nbnRingsMatrixW2Rings2 nbnMatrix1 nbnMatrix2

nbnMatrix2=[nbnMatrix2(:,1) nbnMatrix2(:,3) nbnMatrix2(:,2)...

nbnMatrix2(:,7) nbnMatrix2(:,6) nbnMatrix2(:,5) nbnMatrix2(:,4)];

load M2-modal_a_modes

a_modes=a_modes(:,1);

%Force distribution to nineteen actuators

for i=1:18

temp(i,1:19)=getNeighbourRings(a_modes(i+18))’;

end

j = 1; %Row counter in nbnMatrix

l = 1; %Column counter in nbnMatrix

P1 = sparse(3168,52668); %Create sparse matrix

nbnMatrix1=[temp;nbnMatrix1];

for i=1:52668

%In Column nbr i put 1 in the row corresponding

%to the current actuator

P1(nbnMatrix1(j,l),i)=1;

if l == 19 %Change row in nbnMatrix

l = 1;

j = j+1;

else %Change Column in nbnMatrix

l = l+1;

end

end

j = 1; %Row counter in nbnMatrix
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l = 1; %Column counter in nbnMatrix

P2 = sparse(3168,1302); %Create sparse matrix

for i=1:1302

%In Column nbr i put 1 in the row corresponding

%to the current actuator

P2(nbnMatrix2(j,l),i)=1;

if l == 7 %Change row in nbnMatrix

l = 1;

j = j+1;

else %Change Column in nbnMatrix

l = l+1;

end

end

P=sparse(3168,52668+1302);

P=[P1 P2];

save PmatrixV6 P -v6




