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Notation

Symbols

x italic letters are used in mathematical text
x, ω̃ boldface letters are used for vectors and tensors
�v boldface letters with arrows are used for geometrical represented vectors
C capital and boldface letters are used for matrices
E capital letters are used for sets
� the set of real numbers
V Lyapunov function
u, u control input
x state vector
t time

Subscripts

F front wheel
R rear wheel
i wheel number; i=1 (front left), 2 (front right), 3 (rear left), 4 (rear right)
x in the x-direction of the coordinate system
y in the y-direction of the coordinate system
z in the z-direction of the coordinate system
w wheel parameter
max maximum value
CoG center of gravity
des desired value
crit critical value

Operators and Functions

‖x‖ Euclidian norm of x

V̇ = dV
dt

time derivative of V
∂V
∂x

partial derivative of V with respect to x

∂V
∂x

=
(

∂V
∂x1

, ..., ∂V
∂xn

)T
gradient of V

v



Abbreviations

ABS Anti-lock Brake System
ESP Electronic Stability Program
clf control Lyapunov function
CoG Center of Gravity
CASCaDE Computer Aided Simulation of Car, Driver, and Environment

Vehicle Nomenclature

Symbol Definition Unit
vx longitudinal velocity m/s
vy lateral velocity m/s
ϕ roll angle rad, ◦

ϕ̇ roll rate rad/s
ψ̇ yaw rate rad/s
ax longitudinal acceleration m/s2

ay lateral acceleration m/s2

Fx,i longitudinal force at wheel i N
Fy,i lateral force at wheel i N
Fz,i normal force at wheel i N
Mz,i angular momentum at wheel i Nm
δi steering angle of wheel i rad, ◦

ωw wheel rotation speed rad/s
µ road-tire coefficient of friction unitless
m mass kg
Jxx moment of inertia about the x-axis kgm2

Jyy moment of inertia about the y-axis kgm2

Jzz moment of inertia about the z-axis kgm2

lF horizontal distance from the front axle to the CoG m
lR horizontal distance from the rear axle to the CoG m
hCoG height from the ground to the CoG m
sF front track width m
sR rear track width m
s mean track width m
cϕ roll stiffness, mean of both axles Nm/rad
dϕ roll damping, mean of both axles Nm/rad

Other used variables are defined in the report.
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Chapter 1

Introduction

This chapter introduces some basic background facts about rollover and
the origin of this master’s thesis work. It also discusses the purpose and
objectives, how the work has been structured, used software, and some
assumptions. Finally, this report is outlined.

1.1 Background

Rollover occurs when a vehicle flips over on the side. It is possible to dis-
tinguish between two types of rollover; tripped and untripped. Tripped
rollover occurs when the vehicle has started to skid, then gets grip due to
higher friction or hits an obstacle, and finally rolls over. Untripped rollover
is caused by the driver, either on purpose during extreme maneuvers, or
in panic situations, [6].

Every year more than 40,000 people are killed in car accidents in Europe
and over 1.7 million people are injured, [2]. Rollover is one of the most
dangerous car crashes on European highways, responsible for many of the
killed people. Vehicles with a high center of gravity, e.g. vans, commercial
vehicles, and Sport Utility Vehicles (SUVs), are becoming more popular.
Since the ratio between the height of the center of gravity and the track
width is bigger for these vehicles than normal passenger cars, they are
more likely to rollover during extreme maneuvers, [3].

The tripped rollover is well understood, and the most common type. It
can be avoided if a control system prevents the vehicle from skidding, e.g.

1



2 CHAPTER 1. INTRODUCTION

the ESP1 system. The untripped rollover is not so well understood, but it
can be avoided if a control system lets the vehicle deviate from the desired
driving path, [6].

To be able to increase the safety on the European roads and to decrease
the number of killed and injured, the CEmACS2 project is a part of EU’s
sixth framework . The project’s main goal is to improve the driver and
passenger safety by accident avoidance and accident mitigation. This is
done through development of active systems that will respond faster and
more reliable in emergency situations than the average driver. Four Euro-
pean universities, Lund Institute of Technology among them, and Daim-
lerChrysler are parts of the project. This thesis work, "Vehicle Dynamics
Control for Rollover Mitigation", is one part of the traffic safety work in
the European CEmACS programme, see [2].

1.2 Purpose and Objectives

The main purpose of this thesis is to design, implement, and simulate a
control system (related to energy), which prevents a commercial van from
rollover. The objectives of the thesis can be organized in the following way;

• prevent untripped rollovers

• minimize the side slip

• minimize the deviation from the desired driving path

• adopt for changes in load parameters.

From the results reached in this report, DaimlerChrysler can decide whether
the design of this controller is of interest to prevent rollover of vehicles
with a relatively high center of gravity.

1.3 Method

All work has been done at DaimlerChrysler R&T, Vehicle Systems Dynam-
ics, in Esslingen outside Stuttgart, Germany. The work has been separated

1Electronic Stability Program
2Complex Embedded Automotive Control Systems



1.4. LIMITATIONS AND ASSUMPTIONS 3

into seven parts;

• study control theory and the underlying dynamics of vehicles and
tires

• derive a vehicle model with roll dynamics

• find a way to detect rollover

• design a controller to accomplish the objectives

• implement the controller in Matlab

• simulate the vehicle in Simulink for different maneuvers, velocities,
and load conditions, then analyze the results

• do a robustness analysis of the controller and adopt for changes in
parameters.

1.3.1 Software

Matlab [10] is the main software used for computation, model implemen-
tation, and simulation. The Matlab simulation tool Simulink [10], which is
used for modeling and simulating dynamic systems, has been playing a
major role during this work. Together with a CASCaDE3-model of the ve-
hicle, it has been used for modeling and simulating the commercial van.
This text was produced with LATEX [13].

1.4 Limitations and Assumptions

To be able to work properly, the controller needs to know the states of the
vehicle. Usually this is accomplished by using an observer, but since that is
outside the scope of this thesis it is assumed that all states are measurable.

The load conditions of the vehicle are unknown, i.e. the mass, the position
of the center of gravity, and the moments of inertia are not known.

The only actuators are the controlled brakes. Therefore, the only way to
mitigate rollover is to brake independently on the different wheels.

3Computer Aided Simulation of Car, Driver, and Environment



4 CHAPTER 1. INTRODUCTION

1.5 Outline of the Thesis

This thesis is outlined as follows.

Chapter 2: Presents general nonlinear theory and Lyapunov theory. It gives
the theoretical background needed to understand the controller de-
sign.

Chapter 3: This chapter describes some basic facts about vehicle dynam-
ics and brings up different models. First the tires are discussed, then
a model of the rolling chassis is derived, and finally everything is
combined in the vehicle model.

Chapter 4: Here the rollover detection is examined. Different approaches
to detect and predict rollover, both theoretical and analytical, are dis-
cussed.

Chapter 5: This chapter introduces the rollover mitigation controller. The
control strategy is explained and the control laws are derived. Fi-
nally the performance of the controller is demonstrated through sim-
ulations and discussions of different maneuvers, velocities, and load
conditions. The controller is also compared to an already existing
LQ-controller and to a vehicle without any roll control at all.

Chapter 6: This chapter concludes the thesis by summing up the main
results and discussions from rollover detection and mitigation.

Chapter 7: The last chapter states some proposals for future work.



Chapter 2

System and Control Theory

This chapter first presents some nonlinear theory for general systems, see
[16]. Then the control theory used in this thesis work is presented, includ-
ing important definitions and theorems.

2.1 General Nonlinear Theory

A nonlinear dynamic system can usually be represented by a set of non-
linear differential equations in the form

ẋ = f(x, t) (2.1)

where x is a n×1 state vector and f is a n×1 nonlinear vector function. A
point is a particular value of the state vector because the value corresponds
to a point in the state-space. The number of states n is called the order of
the system. A solution x(t) of the equations (2.1) corresponds to a curve
in state space as t varies from zero to infinity; this curve is called a state or
system trajectory.

Note that although equation (2.1) does not explicitly contain any control
input u as a variable, it is directly applicable to feedback control systems.
That is because equation (2.1) can describe the closed-loop dynamics of
a feedback control system, where the control input u is a function of the
states x and the time t; therefore disappearing in the closed-loop dynam-
ics. If the plant dynamics is

ẋ = f(x, u, t) (2.2)

5



6 CHAPTER 2. SYSTEM AND CONTROL THEORY

and the control input has been derived to be

u = g(x, t) (2.3)

then the closed-loop dynamics is

ẋ = f
(
x, g(x, t), t

)
(2.4)

This can be rewritten in the form (2.1). Equation (2.1) can of course also
represent dynamic systems where no control signals are present.

A special class of nonlinear systems are linear systems. They are on the
form

ẋ = A(t)x (2.5)

where A(t) is a n×n matrix.

Linear systems are either time-varying or time-invariant, depending on
whether the system matrix A varies with time or not. In the more general
theory of nonlinear systems, these adjectives are replaced in the following
definition.

Definition 2.1 The nonlinear system (2.1) is said to be autonomous if f does not
depend explicitly on time t, i.e., if the system can be written

ẋ = f(x) (2.6)

Otherwise the system is called non-autonomous.

Note that for control systems, the above definition is made on the closed-
loop dynamics. From now on all the discussed systems in this thesis will
be autonomous.

2.1.1 Equilibrium Points

It is possible for a system trajectory to correspond to only a single point,
which is called an equilibrium point.

Definition 2.2 A state xe is an equilibrium state (or point) of the system if once
x(t) is equal to xe, it remains equal to xe for all future time.
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This means that the constant vector xe satisfies

0 = f(xe) (2.7)

Equilibrium points can be found by solving these nonlinear algebraic equa-
tions (2.7). A nonlinear system can have none, several, or infinitely many
equilibrium points.

A linear time-invariant system

ẋ = Ax (2.8)

has the origin 0 as a single equilibrium point if A is nonsingular. It has in-
finitely many equilibrium points contained in the null-space of the matrix
A, i.e. in the subspace defined by Ax = 0, if A is singular.

Different stability concepts of nonlinear systems are properties not of the
dynamic system as a whole, but rather of its individual solutions. The fol-
lowing definition defines the stability class of a certain equilibrium point.

Definition 2.3 Given the system (2.6), assume that xe is an equilibrium point
and x(0) represents the initial state. Then the equilibrium point xe is said to be

• stable, if for any ε > 0 there exists some δ(ε) > 0 such that

‖x(0) − xe‖ < δ ⇒ ‖x(t) − xe‖ < ε, ∀ t ≥ 0 (2.9)

• unstable, if not stable

• asymptotically stable, if it is stable and if there exists some δ > 0 such that

‖x(0) − xe‖ < δ ⇒ x(t)→xe as t→∞ (2.10)

• exponentially stable, if there exist two constants α > 0 and λ > 0 such that

‖x(t) − xe‖ ≤ α‖x(0) − xe‖e−λt, ∀ t > 0 (2.11)

in some ball ‖x(0) − xe‖ < δ, δ > 0, around the equilibrium point

• globally asymptotically (or exponentially) stable, if it is asymptotically (or
exponentially) stable for any initial states.
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The stability definition above is often referred to as stability in the sense
of Lyapunov. A stable equilibrium point means that the system trajectory
can be kept arbitrarily close to this point by starting sufficiently close to
it. An asymptotically stable equilibrium point is stable, and states started
close to this point will converge to this point as time goes to infinity. An
equilibrium point, which is stable but not asymptotically stable, is said to
be marginally stable. The exponential stability (2.11) means that the states
converges to the equilibrium point faster than an exponential function.
The stability discussion above is characterizing the local behavior of sys-
tems, i.e., how the states develop after starting near the equilibrium point.
Instead, global concepts tell how the system will behave when the ini-
tial states is some distance away from the equilibrium point. Therefore, a
globally asymptotically stable equilibrium point means that all solutions,
regardless of starting point, will converge to it. Clearly, this is in most cases
a desirable property of a control system since it then can deal better with
perturbations and disturbances.

2.2 Lyapunov Theory

To be able to show which type of stability a certain equilibrium point cor-
responds to, equation (2.6) must be solved to find x(t). In general, this is
not possible to do analytically. Stability can however be proved using Lya-
punov’s direct method. This method determines the system’s stability prop-
erties from the properties of f(x) and its relation to a so-called Lyapunov
function V (x). The general interpretation of the Lyapunov function is that
it is a measurement of how far the system is from the equilibrium; when
this measurement decreases the system moves towards the equilibrium
point.

The procedure of Lyapunov’s direct method is to generate a scalar "energy-
like" Lyapunov function V (x) for the dynamic system, and then examine
the time variation of it. In this way, conclusions can be drawn on the sta-
bility of the set of differential equations without using the stability defin-
itions (see page 7) above. The definitions, theorems, and facts below are
collected from [4], [5], [9], [15], and [16].

Definition 2.4 A function V (x) is said to be

• positive definite if V (0) = 0 and V (x) > 0, x 	= 0
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• positive semi-definite if V (0) = 0 and V (x) ≥ 0, x 	= 0

• negative (semi-)definite if −V (x) is positive (semi-)definite

• radially unbounded if V (x)→∞ as ‖x‖→∞.

The definition above can be locally or globally definite depending on where
in the state space it is valid.

Theorem 2.1 (LaSalle-Yoshizawa) Let xe =0 be an equilibrium point of (2.6)
and suppose f is locally Lipschitz in x uniformly in t. Let V (x) be a scalar,
continuously differentiable function of the states x such that

• V (x) is positive definite

• V (x) is radially unbounded

• V̇ (x) =
∂V (x)

∂x
ẋ =

∂V (x)

∂x
f(x) ≤ −W (x), ∀ t ≥ 0, ∀ x ∈ �n, where

W (x) is a continuous and positive semi-definite function.

Then all solutions of (2.6) are globally bounded and satisfy lim
t→∞

W (x(t)) = 0.
In addition, if W (x) is positive definite, then the equilibrium xe = 0 is globally
asymptotically stable (GAS).

Proof: See [9]. �

When V̇ (x) is only negative semi-definite the following theorem can be
used to prove stability.

Theorem 2.2 Let xe = 0 be the only equilibrium of (2.6). Let V (x) be a scalar,
continuously differentiable function of the states x such that

• V (x) is positive definite

• V (x) is radially unbounded

• V̇ (x) is negative semi-definite.

Let E = {x ∈ �n|V̇ (x) = 0}, and suppose that no solution other than x(t) ≡ 0
can stay forever in E. Then the equilibrium xe =0 is globally asymptotically sta-
ble (GAS).

Proof: See [9]. �
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The theorems above assume that the origin xe =0 is the equilibrium point.
Every other equilibrium point can be moved to the origin through defining
a new set of states xnew = x − xe. This validates the theorems for every
possible equilibrium point.

Lyapunov functions are very powerful tools when determining the stabil-
ity properties of equilibrium points. No knowledge of the solution to the
system of differential equations is needed. Many other tools to determine
the stability are local theories, whereas the Lyapunov theory presents more
global results. It is possible to estimate the extent of the basin of attraction
of an equilibrium point. The basin of attraction is the domain such that all
solutions starting within the domain approach the equilibrium point, see
[4]. The theorem below explains how to decide this domain.

Theorem 2.3 (Basin of attraction) Assume that for the system (2.6) there exist
a number d> 0 and a function V that satisfies the conditions for Theorem 2.2 in
the set

Md = {x | V (x) < d} (2.12)

Then all solutions starting in the interior of Md remains there. If, in addition, no
other solutions but the equilibrium point xe remain in the subset of Md where
V̇ (x) = 0, then all solutions starting in the interior of Md will converge to xe.

Proof: See [5]. �

A Geometrical Interpretation of Lyapunov’s Direct Method can be found
in [4].

2.3 Lyapunov Theory and Control Design

This section discusses how closed loop systems can be designed so that the
Lyapunov criterions are fulfilled, which results in globally asymptotically
stable equilibrium points.

Consider the system with an input u

ẋ = f(x, u) (2.13)

The goal is to find a control law u = g(x), which makes some desired
states of the closed loop system asymptotically stable. By using a Lya-



2.3. LYAPUNOV THEORY AND CONTROL DESIGN 11

punov function V (x) and choosing g(x) so that

V̇ (x) =
∂V (x)

∂x
f(x, g(x)) = −W (x) (2.14)

where W (x) is positive definite, closed loop stability is given by Theorem
2.1. It can be difficult to know how to choose V (x) and W (x). The follow-
ing definition makes it easier.

Definition 2.5 (Control Lyapunov Function) A smooth, positive definite, ra-
dially unbounded, and scalar function V (x) is called a control Lyapunov function
for (2.13) if for all x 	= 0

V̇ (x) =
∂V (x)

∂x
f(x, u)<0 for some u. (2.15)

A system possesses a clf1 if a good choice of V (x) and W (x) exists. Art-
stein, see [9], showed that (2.15) is not only necessary, but also sufficient
for the existence of a control law satisfying (2.14), i.e., the existence of a clf
is equivalent to global asymptotic stability.

1control Lyapunov function
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Chapter 3

General Vehicle Dynamics

The used coordinate systems are in the DIN (Deutsches Institut für Nor-
mung) standard; x, y, z, right-hand orthogonal with the z-axis in local up-
ward direction. The three-dimensional Cartesian vehicle-attached coordi-
nate system has the x-direction in the direction where the car is moving,
the y-direction out through the left side of the car, and the z-direction up
through the roof of the car. The yaw rate and the roll angle of the vehicle
are defined so that they are positive when the vehicle is cornering to the
left, and vice versa.

3.1 Vehicle Dynamics and Tire Models

The forces, which the driver can influence, are induced by the tires. To be
able to produce forces a tire needs to slip, which can take place in two
directions, laterally and longitudinally. There exists two quantities to de-
scribe the two different slips, [14],

• the (tire) slip angle α characterizing the lateral slip

• the longitudinal slip λ.

The tire slip angle α is defined as the angle between the wheel velocity
vector �vw and the xw-axis

tan(α) =
vyw

vxw

(3.1)

13
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where vxw and vyw are the longitudinal and lateral velocities of the wheel in
a coordinate system attached to the wheel, see Figure 3.1. The longitudinal
slip is defined as

λ =
rdynωw − vxw

max(rdynωw, vxw)
(3.2)

where
rdyn = dynamic rolling radius
ωw = wheel rotation speed

The longitudinal slip can assume values in the interval λ = [−1, 1]. A nega-
tive value indicates braking operation, while a positive value corresponds
to acceleration.

Lateral slip occurs when the velocity vector of the tire is different from
the heading of the tire. This can be caused by the steering angle δ and/or
the yaw rate ψ̇, e.g., during cornering. Longitudinal slip occurs when a
braking or driving torque is applied to the wheel, e.g., during braking or
acceleration.

There is a third slip quantity characterizing the whole vehicle. It’s called
the (vehicle) side slip β, which is defined as

tan(β) =
vy

vx

(3.3)

where vx and vy are the longitudinal and lateral velocities of the vehicle in
a coordinate system attached to the vehicle.

A normal car has four wheels, which implies that there will be four tire slip
angles, one for each wheel. To simplify the analysis, it is usually assumed
that the front wheels have the same tire slip angle αF , and that the rear
wheels have the same angle αR. The geometrical interpretation of α and β
can be seen in Figure 3.1.

The longitudinal and lateral forces are in general dependent on four vari-
ables, Fx = Fx(α, λ, γ, Fz) and Fy = Fy(α, λ, γ, Fz), where α and λ are given
in (3.1) respective (3.2), and Fz is the vertical normal force. The tire forces
also depend on the camber angle γ, which is defined as the angle between
the tilted wheel plane and the vertical plane. Therefore, the camber angle
will depend on the roll angle ϕ of the vehicle and the steering angle δ. This
dependence can be calculated according to (3.57).
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Figure 3.1: (a) shows the tire slip angle, the rectangle illustrates the tire. (b)
shows the (vehicle) slip angle, the rectangle illustrates the vehicle.

3.1.1 Linear Force Model

The lateral force is the most important one during cornering. Figure 3.2 il-
lustrates a typical relation between α and Fy with λ and Fz fixed. At small
tire slip angles the relationship is approximately linear; the slope CFα of
the curve in this region is called the lateral slip stiffness or cornering stiff-
ness. Therefore, the lateral force can be approximated by [11]

Fy = CFαα (3.4)

Figure 3.2: Lateral force versus slip angle during cornering, λ and Fz are
fixed, [6].
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3.1.2 Nonlinear Force Model

A general model that correctly describes the lateral and longitudinal forces
under combined slip is complicated; therefore, a simplified model will be
used. During pure lateral slip (λ = 0), the lateral force is at its maximum
and the expression can be described by the Magic Formula, [11], which is
shown in Figure 3.3. Note that it is the normalized force that is shown and
the relationship between Fy and Fz is not linear. The saturation properties
of the tire forces are also described in the formula. The parameters in the
Magic Formula are described in Table 3.1; the actual parameters for a spe-
cific vehicle can be found through plotting the lateral force versus the slip
angle and the normal force (as in Figure 3.3) from known data, and then
analyzing this three-dimensional graph. The expression of the lateral force
in the Magic Formula is [11]

Fy = Fy(α, Fz) = D sin(C arctan(Bα − E(Bα − arctan(Bα)))) (3.5)

Figure 3.3: The Magic Formula: Normalized lateral force dependence on
Fz and α, [6].
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Parameter Explanation
B = CFα

CD
Stiffness factor

C Shape factor
D = µFz Peak factor

E Curvature factor
CFα = c1 sin(2 arctan(Fz

c2
)) Cornering stiffness
c1 Maximum cornering stiffness
c2 Load at maximum cornering stiffness

Table 3.1: Parameters in the Magic Formula.

When longitudinal slip is present the lateral force is described with Fy =
Fy(α, λ, Fz), which can be expressed as Fy = Fy(α, Fx, Fz), since Fx de-
pends on λ and Fx has a more direct physical meaning than λ.

The simplest model for combined slip, i.e., combined braking and corner-
ing, is represented by the so-called friction ellipse. It is assumed that the
forces Fx and Fy cannot exceed their maximum values, Fxmax and Fymax .
The model is based on the resultant tire force is assumed to be on the
edge of the friction ellipse during extreme maneuvers, e.g., cornering and

braking. From the equation of an ellipse,
(

Fy

Fymax(α,Fz)

)2

+
(

Fx

Fxmax

)2

= 1,
an expression for Fy can be derived. The maximum value Fymax(α, Fz) is
obtained when λ = 0, and could therefore be found by (3.5). [17] gives the
maximum longitudinal force Fxmax = µFz. The expression for the lateral
force becomes

Fy = ±Fymax(α, Fz)

√
1 −

(
Fx

µFz

)2

(3.6)

|Fx| ≤ µFz

The friction ellipse can be seen in Figure 3.4. Each wheel has its own fric-
tion ellipse, i.e, there exist four friction ellipses for a normal vehicle.

Fx is the only force the controller can influence directly, through braking.
If the control law gives Fy, the corresponding longitudinal force Fx can
be calculated using the friction ellipse (3.6) and the Magic Formula (3.5).
The longitudinal slip λ that corresponds to a certain Fx(α, λ, Fz) can be
calculated from using an approximated model of Fx, which is based on a
fraction of two second order polynomials.
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Figure 3.4: The friction ellipse for a tire. Fymax is given by (3.5).

3.1.3 Steerability

Three different cases describe the vehicle’s steering behavior; understeer-
ing, neutral steering, and oversteering. According to the name, understeer-
ing indicates that the vehicle steers too less, which can result in that the ve-
hicle drives off the road during cornering. If the vehicle stays on the road,
understeering will stabilize the vehicle. On the other hand, oversteering
indicates that the vehicle steers too much, which can make the vehicle un-
stable since the rollangle ϕ can increase rapidly.

According to [1], the steering behavior of the vehicle is defined by

dδ

day

> 0 ⇒ understeering (3.7)

dδ

day

= 0 ⇒ neutral steering (3.8)

dδ

day

< 0 ⇒ oversteering (3.9)

where δ is the front wheel angle and ay is the lateral acceleration of the
vehicle. The steering behavior of the vehicle can be found by plotting the
wheel angle δ as a function of the lateral acceleration ay and examining the
slope of the curve.
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Under- or oversteering can be induced depending on which wheel the
vehicle is braking during cornering. Figure 3.5 from [7] shows how the ve-
hicle will steer during differential braking. When the yaw moment change
is positive the vehicle will turn inward which induces oversteering. When
it is negative the vehicle turns outward which induces understeering. As
can be seen, braking on the inner wheels will always induce oversteering,
which can make the vehicle unstable. Braking on the rear outer wheel re-
sults most of the time in understeering, but if the braking force becomes
very large it can induce oversteering behavior. Braking on the front outer
wheel will result in understeering of the vehicle, which will be stabilized.

Figure 3.5: Yaw moment change as a function of braking force for each
wheel.

3.2 Chassis Model

There are many different models used for characterizing the chassis of the
vehicle. For example the Bicycle Model (the One-track Model), the Plane
Model, the Two-track Model, and so on. They make different assumptions
and simplifications, resulting in both linear and nonlinear equations of
motion.
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3.2.1 The Two-track Model

The brakes are the only control actuators. Braking on the outer track will
stabilize the vehicle, therefore is it enough with a model assuming that the
vehicle is on two wheels.

The nonlinear two-track model with roll dynamics gives a complete de-
scription of the rollover event for a vehicle. In this model the translational
movement of the center of gravity in all directions, as well as the yaw and
roll movement, are considered. The name Two-track Model should clarify
that it is a result of the modeling of longitudinal, lateral, and yaw dynam-
ics following the so-called simplified One-track Model, [12]. In difference
from the one-track model, the single contact points of the tire forces and
for this reason the track width are considered in the two-track model. This
model assumes that the vehicle drives (during rolling) only on one track
(two wheels); therefore there will only occur forces and momentum on the
tires at this side.

The following simplifications are made

• no modeling of the spring and damper elements

• neglect the pitch dynamics

• approximately equal track widths s = sF = sR (otherwise would the
vehicle also pitch during rolling)

• the roll axis goes through the tire-contact center of the outside track.

Figure 3.6 shows the schematics of the modeled vehicle on two wheels.
The vehicle has five degrees of freedom,

• the position of the center of gravity, (xCoG, yCoG, zCoG)

• the roll angle ϕ around the x-axis

• the yaw rate ψ around the z-axis.

One degree of freedom is lost due to the contact between the tires and
the road surface, so the resulting four generalized coordinates are xCoG,
yCoG, ϕ, and ψ. There are totally eight states,including the derivatives of
the coordinates above. Five of these states are of interest here; namely the
four velocities vx, vy, ϕ̇, ψ̇ as well as the roll angle ϕ.

The following derivation is mainly collected from [8].
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Figure 3.6: Representation of the two-track model with roll dynamics; the
roll angle ϕ around the vehicle-attached x-axis.

Kinematics

Three coordinate systems are used to describe the vehicle motion. Besides
the inertial system I and the vehicle-attached system K ′′, another moving,
ψ rotated, horizontally coordinate system K ′ is defined. The vehicle’s lon-
gitudinal velocity vx, lateral velocity vy, and yaw rate ψ̇ are defined in the
directions of this system, see Figure 3.7.

The rotation of the moving systems (K ′, K ′′) are defined through the fol-
lowing orthogonal transformation matrices

CIK′ =

⎛
⎝ cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎞
⎠ (3.10)

CK′K′′ =

⎛
⎝ 1 0 0

0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ

⎞
⎠ (3.11)

K ′ is created through the rotation of I around the z-axis (yaw), K ′′ through
another rotation around the x-axis (roll). The product of the matrices (3.10)
and (3.11) gives the transformation from the inertial to the vehicle-attached
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system

CIK′′ = CIK′CK′K′′ =

⎛
⎝ cos ψ − sin ψ cos ϕ sin ψ sin ϕ

sin ψ cos ψ cos ϕ − cos ψ sin ϕ
0 sin ϕ cos ϕ

⎞
⎠ (3.12)

Figure 3.7: Three coordinate systems to describe the two-track model with
roll dynamics: the inertial system I , the moving ψ-rotated horizontal sys-
tem K ′, and the vehicle-attached (rolling) system K ′′.

According to [12] are the skew-symmetric tensors from I to K ′ respectively
K ′′, represented in I , defined as

ω̃I
IK′ = ĊIK′(CIK′)T (3.13)

ω̃I
IK′′ = ĊIK′′(CIK′′)T (3.14)

They contain the vectors of the rotational velocities; the vectors for the first
rotation (yaw) are

ωI
IK′ = ωK′

IK′ =

⎛
⎝ 0

0

ψ̇

⎞
⎠ (3.15)

and the vectors for the rotation of the vehicle-attached system relative to
the inertial one are

ωI
IK′′ =

⎛
⎝ ϕ̇ cos ψ

ϕ̇ sin ψ

ψ̇

⎞
⎠ respectively ωK′′

IK′′ =

⎛
⎝ ϕ̇

ψ̇ sin ϕ

ψ̇ cos ϕ

⎞
⎠ (3.16)
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The superscript indicates the coordinate system where the vector is repre-
sented.

The absolute velocity of the center of gravity CoG in the coordinate system
K ′ is

vK′
CoG :=

⎛
⎝ vx

vy

vz

⎞
⎠ (3.17)

The acceleration of the center of gravity follows from the differentiation-
rule of vectors in a moving coordinate system

aK′
CoG =

(
dK′

dt
vCoG

)K′

+ ωK′
IK′ × vK′

CoG =

⎛
⎝ v̇x − ψ̇vy

v̇y + ψ̇vx

v̇z

⎞
⎠ (3.18)

v̇x, v̇y, and v̇z denote the time-derivatives of the components of the velocity
vector in the moving system K ′.

Table 3.2 shows the indices for specific dimensions of the four contact
points used in the following derivation. Since the contact points of the left
track (i = 1, 3) does not carry any forces and momentum for positive roll
angles ϕ > 0, it’s enough to consider the contact points of the right track
(i = 2, 4).

index contact point
i = 1 front left
i = 2 front right
i = 3 rear left
i = 4 rear right

Table 3.2: Indices for the different contact points of the vehicle.

The position of the contact points in the vehicle-attached coordinate sys-
tem K ′′ are described by

rK′′
2 =

⎛
⎝ lF

− s
2−hCoG

⎞
⎠ respectively rK′′

4 =

⎛
⎝ −lR

− s
2−hCoG

⎞
⎠ (3.19)

when the wheel caster and the steering offset are neglected. The assump-
tion of an equal track width s in the front and rear is necessary since the
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pitch motion is not modeled. The value of s is the mean values of the real
widths sF and sR. By use of the abbreviations

h0 =

√
h2

CoG +
(s

2

)2

(3.20)

ϕ0 = arctan

(
2hCoG

s

)
(3.21)

the positions can be transformed into the horizontal coordinate system K ′

rK′
2 =

⎛
⎝ lF

−h0 cos(ϕ + ϕ0)
−h0 sin(ϕ + ϕ0)

⎞
⎠ respectively rK′

4 =

⎛
⎝ −lR

−h0 cos(ϕ + ϕ0)
−h0 sin(ϕ + ϕ0)

⎞
⎠

(3.22)
The following differentiation rule are valid for the velocity of the contact
points in K ′

vK′
i = vK′

CoG + ωK′
IK′ × rK′

i +

(
dK′

dt
ri

)K′

, i = 2, 4 (3.23)

The velocities of the contact points can then be written as

vK′
2 =

⎛
⎝ vx + h0ψ̇ cos(ϕ + ϕ0)

vy + lF ψ̇ + h0ϕ̇ sin(ϕ + ϕ0)
vz − h0ϕ̇ cos(ϕ + ϕ0)

⎞
⎠ (3.24)

vK′
4 =

⎛
⎝ vx + h0ψ̇ cos(ϕ + ϕ0)

vy − lRψ̇ + h0ϕ̇ sin(ϕ + ϕ0)
vz − h0ϕ̇ cos(ϕ + ϕ0)

⎞
⎠ (3.25)

If it is assumed that the contact points of the tires i = 2 and i = 4 always
will have road contact then the z-components of vK′

2 and vK′
4 are equal to

zero. This gives the z-component vz of the velocity of the center of gravity

vz = h0ϕ̇ cos(ϕ + ϕ0) (3.26)

with the time derivative

v̇z = h0ϕ̈ cos(ϕ + ϕ0) − h0ϕ̇
2 sin(ϕ + ϕ0) (3.27)

Derivation of the Model Equations

The equations of motion in the variables vx, vy, ϕ, and ψ̇ for the two-track
model with roll dynamics are derived in this section. The Newton/Euler
laws are used.
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Newton’s second law in the horizontal moving coordinate system K ′ gives

m(v̇x − ψ̇vy) = Fx,2 + Fx,4 (3.28)
m(v̇y + ψ̇vx) = Fy,2 + Fy,4 (3.29)

mv̇z = Fz,2 + Fz,4 − mg (3.30)

where Fx,i respectively Fy,i denote the sum of the tire forces (longitudi-
nal and lateral forces) in the respective direction of the horizontal moving
system K ′ at tire i. Fz,i is the normal force at tire i.

The equation of angular momentum around the center of gravity in the
vehicle attached system K ′′ is

JK′′
CoGω̇K′′

IK′′ + ω̃K′′
IK′′JK′′

CoGωK′′
IK′′ =

∑
i

MK′′
CoG,i (3.31)

with ωK′′
IK′′ from (3.16). A single differentiation gives

ω̇K′′
IK′′ =

⎛
⎝ ϕ̈

ψ̈ sin ϕ + ψ̇ϕ̇ cos ϕ

ψ̈ cos ϕ − ψ̇ϕ̇ sin ϕ

⎞
⎠ (3.32)

ω̃K′′
IK′′ is obtained through the following transformation of the tensor (3.14)

ω̃K′′
IK′′ = (CIK′′)Tω̃I

IK′′CIK′′ (3.33)

The moment of inertia tensor in K ′′ is defined as

JK′′
CoG =

⎛
⎝ Jxx 0 0

0 Jyy 0
0 0 Jzz

⎞
⎠ (3.34)

The angular momentum around the center of gravity comes from the tire
forces in the two contact points and from the tire angular momenta in the
z-direction of the inertial system∑

i

MK′′
CoG,i =

∑
i=2,4

(
rK′′

i × F K′′
i + MK′′

i

)
(3.35)

where rK′′
i is the position of the contact point i in the system K ′′, see (3.19).

The tire forces and angular momenta in K ′′ at the tires i = 2, 4 are

F K′′
i = (CK′K′′) T

⎛
⎝ Fx,i

Fy,i

Fz,i

⎞
⎠ respectively MK′′

i = (CK′K′′) T

⎛
⎝ 0

0
Mz,i

⎞
⎠

(3.36)
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Through combination of (3.31), (3.35), and (3.36) the angular momentum
around the center of gravity in K ′′ yields

Jxxϕ̈ + (Jzz − Jyy)ψ̇
2 sin ϕ cos ϕ (3.37)

= h0 sin(ϕ + ϕ0)(Fy,2 + Fy,4) − h0 cos(ϕ + ϕ0)(Fz,2 + Fz,4)

Jyy(ψ̈ sin ϕ + ψ̇ϕ̇ cos ϕ) + (Jxx − Jzz)ψ̇ϕ̇ cos ϕ (3.38)
= −hCoG(Fx,2 + Fx,4) + sin ϕ(lF Fy,2 − lRFy,4)

− cos ϕ(lF Fz,2 − lRFz,4) + sin ϕ(Mz,2 + Mz,4)

Jzz(ψ̈ cos ϕ − ψ̇ϕ̇ sin ϕ) + (Jyy − Jxx)ψ̇ϕ̇ sin ϕ (3.39)
= s

2
(Fx,2 + Fx,4) + cos ϕ(lF Fy,2 − lRFy,4)

+ sin ϕ(lF Fz,2 − lRFz,4) + cos ϕ(Mz,2 + Mz,4)

The normal forces Fz,2 and Fz,4 can be eliminated from the equations (3.28)
to (3.30) and (3.37) to (3.39). Four differential equations for vx, vy, ϕ, and ψ̇
are found by using the expression (3.27).

For the state vector

x =
(
vx vy ϕ ϕ̇ ψ̇

)T
(3.40)

the following state space representation is obtained

dvx

dt
= ψ̇vy +

1

m
(Fx,2 + Fx,4) (3.41)

dvy

dt
= −ψ̇vx +

1

m
(Fy,2 + Fy,4) (3.42)

dϕ

dt
= ϕ̇ (3.43)

dϕ̇

dt
=

1

Jxx + mh2
0 cos2(ϕ + ϕ0)

[
(Jyy − Jzz) ψ̇2 sin ϕ cos ϕ (3.44)

+ mh2
0ϕ̇

2 sin(ϕ + ϕ0) cos(ϕ + ϕ0) − mgh0 cos(ϕ + ϕ0)

+ h0 sin(ϕ + ϕ0) (Fy,2 + Fy,4)
]

dψ̇

dt
=

1

Jyy sin2 ϕ + Jzz cos2 ϕ

[
2 (Jzz − Jyy) ψ̇ϕ̇ sin ϕ cos ϕ (3.45)

+ h0 cos(ϕ + ϕ0) (Fx,2 + Fx,4) + lF Fy,2 − lRFy,4

+ Mz,2 + Mz,4

]
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Assume the four dimensional input vector is

u =
(
Fx,2 Fx,4 Fy,2 Fy,4

)T
(3.46)

and neglect the tire angular momenta Mz,2 and Mz,4. Then the state space
model can be written in the input affine nonlinear form

ẋ = f(x) +
4∑

i=1

gi(x)ui (3.47)

The equations of motion for cornering to the right, i.e. with negative roll
angle ϕ < 0, are obtained similarly to the above discussion (page 23 to 27).
The following equations are obtained instead of (3.44) and (3.45)

dϕ̇

dt
=

1

Jxx + mh2
0 cos2(ϕ − ϕ0)

[
(Jyy − Jzz) ψ̇2 sin ϕ cos ϕ (3.48)

+ mh2
0ϕ̇

2 sin(ϕ − ϕ0) cos(ϕ − ϕ0) + mgh0 cos(ϕ − ϕ0)

− h0 sin(ϕ − ϕ0) (Fy,1 + Fy,3)
]

dψ̇

dt
=

1

Jyy sin2 ϕ + Jzz cos2 ϕ

[
2 (Jzz − Jyy) ψ̇ϕ̇ sin ϕ cos ϕ (3.49)

− h0 cos(ϕ − ϕ0) (Fx,1 + Fx,3) + lF Fy,1 − lRFy,3

+ Mz,1 + Mz,3

]

Extension of the Model Equations

The contact forces Fx,i and Fy,i are used in the derivation of the model
equations. They are directed in the x- and y-direction of the vehicle, not
the wheels. These forces can be related to the longitudinal Fxw,i and lateral
Fyw,i forces at the wheels, i.e. in the wheels’ coordinate systems, which are
the actual forces that can be affected. Define the projection of the wheel
angle δi in the horizontal plane as δhor,i. Then

δhor,i = arctan(cos ϕ tan δi) (3.50)

for wheel number i. Then the following relationships can be derived.

Fx,1 = Fxw,1 cos δhor,1 + Fyw,1 sin δhor,1 (3.51)
Fy,1 = −Fxw,1 sin δhor,1 + Fyw,1 cos δhor,1 (3.52)
Fx,2 = Fxw,2 cos δhor,2 − Fyw,2 sin δhor,2 (3.53)
Fy,2 = Fxw,2 sin δhor,2 + Fyw,2 cos δhor,2 (3.54)
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For the rear wheels the steering angles are zero and therefore δhor,3,4 = 0.
This simplifies the relations to

Fx,3 = Fxw,3 , Fy,3 = Fyw,3 (3.55)
Fx,4 = Fxw,4 , Fy,4 = Fyw,4 (3.56)

The corresponding wheel forces Fxw,i and Fyw,i can be obtained through re-
arranging these equations. The longitudinal forces Fxw,i can be influenced
directly if the internal dynamics are neglected. The lateral force Fyw,i de-
pend on the tire slip angle αi and therefore also on δhor,i, on the camber
angle γi, and on the slip λi at wheel i. From geometrically derivations it
can be shown that the camber angle γi depends on the roll angle ϕ and the
wheel angle δi as of

γi = arcsin(sin ϕ cos δi) (3.57)

Since δ3 = δ4 = 0 the camber angle for the rear wheels can be simplified
to γ3 = γ4 = ϕ. From the definition of the tire slip angle (3.1) and by
consideration of the horizontal front wheel angle δhor,i the tire slip angles
can be calculated through

αi = −δhor,i + arctan
vy + lF ψ̇ + h0ϕ̇ sin(ϕ + ϕ0)

vx + h0ψ̇ cos(ϕ + ϕ0)
, i = 1, 2 (3.58)

αi = arctan
vy − lRψ̇ + h0ϕ̇ sin(ϕ + ϕ0)

vx + h0ψ̇ cos(ϕ + ϕ0)
, i = 3, 4 (3.59)

Therefore the lateral forces have the following dependencies

Fyw,i = Fyw,i(δi, x) , i = 1, 2 (3.60)
Fyw,i = Fyw,i(x) , i = 3, 4 (3.61)

which in general have nonlinear characteristics. Further, the adjustment of
the wheel forces introduces delays. This so-called breaking behavior can be
modeled with a PT1-element, but that is not done in this thesis.

3.3 Vehicle Model

Combining the models (tires and chassis) discussed in this chapter will
give a vehicle model that accurately enough describes its dynamics for
rollover analysis.
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The following relationships and properties can be obtained from the equa-
tions of motion (3.41) to (3.45), the section above (page 27-28), and from the
friction ellipse seen in Figure 3.4.

• The lateral forces Fy,i directly determine the lateral velocity vy, the
yaw rate ψ̇, and the roll rate ϕ̇.

• The longitudinal forces Fx,i have direct influence on the longitudinal
velocity vx and the yaw rate ψ̇.

• The longitudinal forces Fx,i and the lateral forces Fy,i on the same
wheel are related according to the friction ellipse.

• Therefore, either lateral forces or longitudinal forces can be used to
stabilize the roll dynamics.

The following chapters will examine the roll dynamics with respect to sta-
bility margins, detection, and prediction, as well as develop a control strat-
egy to mitigate rollover.
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Chapter 4

Rollover Detection

To be able to prevent rollover it is first necessary to predict and detect
rollover. This chapter will outline two different ways to detect rollover
before the vehicle actually flips.

4.1 Spring Deflections and Wheel Loads

When the vehicle is cornering it starts to tilt and load is transferred from
the inner to the outer side of the curve. This means that the loads on the
inner wheels are decreasing and the loads on the outer wheels are increas-
ing. If the turn is sharp and the speed of the vehicle is high then the load
transfer can become so large that one or both loads on the wheels on the
inner side becomes zero, which implies that liftoff will occur and rollover
is getting closer. Therefore, small wheel loads is an indication of possible
rollover, which gives a way to detect it.

Static measurements are performed on a test vehicle; relating the spring
deflections and the wheel loads on each wheel. Each side (left, right, front,
rear) of the vehicle is gradually lifted, the spring deflections are noted,
and the wheel loads are measured with scales under each tire. The tests
show that there is a relationship between the spring deflections and the
wheel loads. It is linear for "normal" loads (non-extreme maneuvers) and
becomes nonlinear for extreme situations (the loads are close to zero or
very large). This shows that, if the spring deflections can be measured,
each wheel load can be calculated and rollover can be detected.

31
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But, since today’s commercial vans do not have spring deflection sensors,
another strategy is needed to detect rollover.

4.2 Energy Description

By examining the roll energy of the vehicle, and compare it to a critical
limit, rollover can be detected. [3] has been consulted in the derivation
below.

Figure 4.1 shows an approximation of the vehicle as a rigid box connected
to the ground via a rotational spring. In the example, mass is denoted m,
J is the roll moment of inertia, cϕ is the roll stiffness, while s is the track
width and hCoG is the height of the center of gravity. Finally, ϕ denotes the
roll angle. It is assumed that the rotational spring is at rest when ϕ = 0. The

Figure 4.1: Rigid box example to illustrate the roll energy.

vehicle’s roll energy consists of a potential and a kinetic part. The potential
energy is

U = mg
(

s
2
sin ϕ + hCoG(cos ϕ − 1)

)
+ 1

2
cϕϕ2 (4.1)
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Hence, the potential energy is only depending on the roll angle ϕ and
system-fixed parameters. Rollover is defined as occurring when the po-
tential energy U reaches the critical potential energy Ucrit. Since potential
energy only depends on the roll angle ϕ, Ucrit is found simply by deriving
the angle ϕcrit at which the derivative dU/dϕ = 0.

The vehicle’s kinetic roll energy is

T = 1
2
Jeϕ̇

2 = 1
2

(
J + m

(
( s

2
)2 + h2

CoG

))
ϕ̇2 (4.2)

where ϕ̇ is the roll rate. The kinetic energy depends only on the rate of
change of the roll angle.

The energy margin E∆ to rollover at any time is the difference between
the critical potential energy (the energy needed to roll the vehicle) and the
current sum of the potential and kinetic energy.

E∆ = Ucrit − (U + T ), where Ucrit = U(ϕcrit) (4.3)

If the energy margin is positive, the vehicle is stable and continues to os-
cillate around ϕ = 0, but if the margin is negative, rollover occurs unless
stabilizing forces are applied. This gives a way to detect rollover if the roll
angle ϕ and the roll rate ϕ̇ are known.
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Chapter 5

Rollover Mitigation

This chapter outlines a control system that mitigates rollover and skid-
ding. It also shows tests and discusses the simulation results of the con-
troller acting on the vehicle.

To have a big steering wheel angle is not dangerous itself, it is the kinetic
and potential roll energy of the vehicle that is dangerous. Therefore, the
main idea to prevent rollover is to lower the roll energy of the vehicle,
which is done through allowing braking as the only actuation.

The vehicle is equipped with differential brakes, which allows the control
system to brake on every wheel independently. Braking on the outer track
during cornering will stabilize the vehicle.

5.1 Control Laws

The relationships for the used parameters h0 (3.20) and ϕ0 (3.21) in Chapter
3 can be rewritten as

−h0 cos(ϕ + ϕ0) = − s
2
cos ϕ + hCoG sin ϕ

h0 sin(ϕ + ϕ0) = s
2
sin ϕ + hCoG cos ϕ

}
when ϕ > 0 (5.1)

h0 cos(ϕ − ϕ0) = s
2
cos ϕ + hCoG sin ϕ

−h0 sin(ϕ − ϕ0) = − s
2
sin ϕ + hCoG cos ϕ

}
when ϕ < 0 (5.2)

These equations can easily be validated by a geometrical derivation. The
following short-forms will be used during the derivation of the control

35
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laws

ξϕ(ψ̇, ϕ, ϕ̇) =
1

Jxx + m[∓ s
2
cos ϕ + hCoG sin ϕ]2

[
mg

[∓s

2
cos ϕ + hCoG sin ϕ

]
+

(
Jyy − Jzz

)
ψ̇2 sin ϕ cos ϕ

− mϕ̇2
[∓s

2
cos ϕ + hCoG sin ϕ

][±s

2
sin ϕ + hCoG cos ϕ

]]
(5.3)

ζϕ(ϕ) =
± s

2
sin ϕ + hCoG cos ϕ

Jxx + m[∓ s
2
cos ϕ + hCoG sin ϕ]2

(5.4)

ξψ(ψ̇, ϕ, ϕ̇) =
2(Jzz − Jyy)ψ̇ϕ̇ sin ϕ cos ϕ

Jyy sin2 ϕ + Jzz cos2 ϕ
(5.5)

ζψ(ϕ) =
1

Jyy sin2 ϕ + Jzz cos2 ϕ
(5.6)

ζx(ϕ) = ζψ

[±hCoG cos(ϕ ± ϕ0)
]

= ζψ

[
±s

2
cos ϕ − hCoG sin ϕ

]
(5.7)

The last equality is shown through using some simple algebra, and the
relations (5.1) and (5.2). The ambiguous use of sign is because the upper
sign is valid when the roll angle ϕ > 0, and the lower is valid when ϕ < 0.
This makes the control laws valid at the same time for both positive and
negative roll angles. An unambiguous representation is possible with the
so-called signum-function, but this makes the overview of the terms less
clear.

The following derivation is valid for both positive and negative roll angles
ϕ and yaw rates ψ̇, therefore a general designation for the forces on the
outer wheels during cornering is needed since the two-track model is only
assuming wheel contact on the outer side. Denote the longitudinal, lateral,
and normal forces on the front outer wheel with Fx,F , Fy,F , and Fz,F . The
forces on the rear wheel will be described by Fx,R, Fy,R, and Fz,R. Which
side the forces correspond to is determined by the sign of the yaw rate ψ̇

or the sign of the roll angle ϕ. So, if the yaw rate is positive ψ̇>0 the forces
correspond to Fy,F = Fy,2, Fy,R = Fy,4 etc, and vice versa when the yaw
rate is negative ψ̇<0; the wheel numbers are defined in Table 3.2.

The equations of motion (3.42) for vy , (3.44) respectively (3.48) for ϕ̇, and
(3.45) respectively (3.49) for ψ̇ are rewritten for both positive and negative
roll angles ϕ ∈ [−π

2
, π

2
] through use of the short-forms (5.3) to (5.7) and the
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relationships (5.1) and (5.2), which yields

v̇y = −ψ̇vx +
1

m

[
Fy,F + Fy,R

]
(5.8)

ϕ̈ = ξϕ(ψ̇, ϕ, ϕ̇) + ζϕ(ϕ)
[
Fy,F + Fy,R

]
(5.9)

ψ̈ = ξψ(ψ̇, ϕ, ϕ̇) + ζψ(ϕ)
[
lF Fy,F − lRFy,R

]
+ ζx(ϕ)

[
Fx,F + Fx,R

]
(5.10)

if the tire angular momenta Mz,F and Mz,R are neglected.
The time derivative of the lateral velocity v̇y is related to the lateral accel-
eration ay , the yaw rate ψ̇, and the longitudinal velocity vx through

v̇y = ay − ψ̇vx (5.11)

and it can be measured since ay, ψ̇, and vx all are measurable. The lat-
eral tire forces Fy,F and Fy,R in equation (5.9) and Fy,R, Fx,F , and Fx,R in
equation (5.10) are eliminated by insertion of (5.8), and by use of max =
Fx,F + Fx,R and may = Fy,F + Fy,R.

ϕ̈ = ξϕ(ψ̇, ϕ, ϕ̇) + ζϕ(ϕ)m
[
v̇y + ψ̇vx

]
(5.12)

ψ̈ = ξψ(ψ̇, ϕ, ϕ̇) + ζψ(ϕ)
[
(lF + lR)Fy,F − lRmay

]
+ ζx(ϕ)max (5.13)

To stabilize the roll, slip, and yaw dynamics the following Lyapunov func-
tion is proposed

V =
1

2
(ψ̇− ψ̇des)

2 +
1

2
c1(ϕ̇− ϕ̇des)

2 +
1

2
c2(ϕ−ϕdes)

2 +
1

2
c3(vy −vydes

)2 (5.14)

Assume that the constants c1, c2, c3 > 0, then V is positive definite in the
"error states" (x−xdes). The time derivative of the Lyapunov function V̇ is

V̇ = (ψ̈ − ψ̈des)(ψ̇ − ψ̇des) + c1(ϕ̈ − ϕ̈des)(ϕ̇ − ϕ̇des) + c2(ϕ̇ − ϕ̇des)(ϕ − ϕdes)

+ c3(v̇y − v̇ydes
)(vy − vydes

)

(5.15)

Through rearrange of the (ϕ̇−ϕ̇des)-terms and by insertion of the equations
(5.8), (5.12), and (5.13) the time derivative V̇ becomes

V̇ =

{
ξψ(ψ̇, ϕ, ϕ̇) + ζψ(ϕ)

[
(lF + lR)Fy,F − lRmay

]
+ ζx(ϕ)max − ψ̈des

}

(ψ̇ − ψ̇des)+

{
c1

[
ξϕ(ψ̇, ϕ, ϕ̇) + ζϕ(ϕ)m

[
v̇y+ψ̇vx

]−ϕ̈des

]
+c2(ϕ − ϕdes)

}

(ϕ̇ − ϕ̇des) +

{
c3

[
−ψ̇vx +

1

m

[
Fy,F + Fy,R

] − v̇ydes

]}
(vy − vydes

)

(5.16)
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and at last

V̇ =

{
ξψ(ψ̇, ϕ, ϕ̇) + ζψ(ϕ)

[
(lF + lR)Fy,F − lRmay

]
+ ζx(ϕ)max − ψ̈des︸ ︷︷ ︸

term1

}

(ψ̇ − ψ̇des)+

{
c1

[
ξϕ(ψ̇, ϕ, ϕ̇) + ζϕ(ϕ)m

[
v̇y+ψ̇desvx

]−ϕ̈des

]
+c2(ϕ−ϕdes)︸ ︷︷ ︸

term2

}

(ϕ̇ − ϕ̇des) + c1mvxζϕ(ϕ)(ψ̇ − ψ̇des)(ϕ̇ − ϕ̇des)

+

{
c3

[
−ψ̇vx +

1

m

[
Fy,F + Fy,R

] − v̇ydes

]
︸ ︷︷ ︸

term3

}
(vy − vydes

)

(5.17)

Define the following equalities

term1 = −λ1(ψ̇ − ψ̇des) (5.18)
term2 = −λ2(ϕ̇ − ϕ̇des) (5.19)
term3 = −λ3(vy − vydes

) (5.20)

Then V̇ can be simplified to

V̇ = − λ1(ψ̇ − ψ̇des)
2 − λ2(ϕ̇ − ϕ̇des)

2 + c1mvxζϕ(ϕ)(ψ̇ − ψ̇des)(ϕ̇ − ϕ̇des)

− λ3(vy − vydes
)2

(5.21)

which can be rearranged to

V̇ = − [
λ1 − 1

2
c1mvxζϕ(ϕ)

]
(ψ̇ − ψ̇des)

2 − [
λ2 − 1

2
c1mvxζϕ(ϕ)

]
(ϕ̇ − ϕ̇des)

2

− 1

2
c1mvxζϕ(ϕ)

[
(ψ̇ − ψ̇des) − (ϕ̇ − ϕ̇des)

]2 − λ3(vy − vydes
)2

(5.22)

If the following relationships are satisfied

λi >
1

2
c1mvxζϕ(ϕ), i = 1, 2 (5.23)

1

2
c1mvxζϕ(ϕ) > 0, true since c1, m, vx, ζϕ(ϕ)>0 if ϕ ∈ [−π

2
, π

2
] (5.24)

λ3 > 0 (5.25)

V̇ will become negative semi-definite in the error states z1 = (ψ̇ − ψ̇des),
z2 = (ϕ̇ − ϕ̇des), z3 = (ϕ − ϕdes), and z4 = (vy − vydes

). It will only become
semi-definite since the state z3 is not present in (5.22).
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Since V (5.14) is also a scalar, radially unbounded, and continuously dif-
ferentiable function of the states it fulfills the assumptions of Theorem 2.2
and therefore are the error states z1, z2, and z4 stable around the origin.
Since z3 is not present in (5.22) it has to be shown that also z3 is stable
around the origin when the other error states are stable. That will be done
further on.

Equations (5.18) to (5.20) are used to find the control signals that stabilizes
the error states. To control the yaw rate ψ̇ equation (5.18) is used

ξψ(ψ̇, ϕ, ϕ̇)+ζψ(ϕ)
[
(lF + lR)Fy,F − lRmay

]
+ζx(ϕ)max− ψ̈des = −λ1(ψ̇− ψ̇des)

(5.26)
Solving for Fy,F results in the following control law for ψ̇

Fy,F =
1

ζψ(ϕ)(lF + lR)

[
−ξψ(ψ̇, ϕ, ϕ̇) + ζψ(ϕ)lRmay − ζx(ϕ)max + ψ̈des

− λ1(ψ̇ − ψ̇des)
]

(5.27)

Equation (5.19) is used to control the roll angle ϕ and the roll rate ϕ̇.

c1

[
ξϕ(ψ̇, ϕ, ϕ̇) + ζϕ(ϕ)m

[
v̇y + ψ̇desvx

]− ϕ̈des

]
+ c2(ϕ−ϕdes) = −λ2(ϕ̇− ϕ̇des)

(5.28)
Rearranging and using (5.11) gives

c1ζϕ(ϕ)mvx

[
ay

vx

−ψ̇+ψ̇des

]
= −c1ξϕ(ψ̇, ϕ, ϕ̇)+c1ϕ̈des−c2(ϕ−ϕdes)−λ2(ϕ̇−ϕ̇des)

(5.29)
Finally, solving for ψ̇des gives the control law that governs the roll dynam-
ics corresponding to ϕ and ϕ̇

ψ̇des = ψ̇ +
1

c1ζϕ(ϕ)mvx

[
−c1

[
ξϕ(ψ̇, ϕ, ϕ̇) + ζϕ(ϕ)may − ϕ̈des

] − c2(ϕ − ϕdes)

− λ2(ϕ̇ − ϕ̇des)
]

(5.30)

The stability of the error state z3 = (ϕ − ϕdes) can now easily be shown.
As proved above, assume that the other error states are stable around the
origin, i.e. z1 = z2 = z4 = 0. By identifying ϕ̈ in (5.30) using (5.12) and (5.11)
two error states are left. Letting the desired value of the roll acceleration
ϕ̈des be equal to the actual acceleration ϕ̈ it shows that z3 = (ϕ − ϕdes) = 0,
i.e. the error state of the roll angle is also stable around the origin.
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The last control law, which controls the lateral velocity vy and therefore the
side slip β, is obtained through use of equation (5.20)

c3

[
−ψ̇vx +

1

m

[
Fy,F + Fy,R

] − v̇ydes

]
= −λ3(vy − vydes

) (5.31)

Solving for Fy,R results in a control law that controls vy

Fy,R = −Fy,F + m

[
ψ̇vx + v̇ydes

− λ3

c3

(vy − vydes
)

]
(5.32)

where Fy,F is already known from the control law (5.27).

5.2 Controller Design

The controller is implemented in Matlab as an S-function, which is used in
a Simulink model to simulate the vehicle. Figure 5.1 shows the main view
of the model with all the different parts using a sample time of 1 ms.

Figure 5.1: Simulink model for simulation of the vehicle.
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The main part is the modeling of the vehicle in CASCaDE, where lookup-
tables are used to get the output signals through using the input values.
The boxes to the left in Figure 5.1 are used to calculate the input signals
(steering angle, brake torques, road parameters etc.) to the CASCaDE ve-
hicle model. The upper most box governs the steering wheel input, which
defines the actual maneuver. It gives the steering wheel angle as a function
of time, i.e. there is no defined road since the velocities can be different for
different vehicles or maneuvers.

The box at the bottom to the left in Figure 5.1 contains the Lyapunov con-
troller (see Figure 5.2), which controls the roll motion and the side slip. The
controller calculates the longitudinal braking forces on each wheel needed
to stabilize the vehicle. They are then given as outputs from the S-function
(sfdlyap.m). The braking forces are sent to the second most upper box in

Figure 5.2: The part of the Simulink model which contains the Lyapunov
controller, called sfdlyap.

Figure 5.1. There are they converted to braking torques through using the
ABS1. The torques are then sent to the CASCaDE vehicle model as inputs.

1Anti-lock Brake System
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The inputs to the Lyapunov controller can be seen in Figure 5.2. It needs
the longitudinal velocity vx and acceleration ax, the lateral velocity vy and
acceleration ay, the yaw rate ψ̇, the roll angle ϕ and the roll rate ϕ̇, the nor-
mal forces Fz,i on each wheel, and the steering angle δ. All these states are
assumed to be known from the CASCaDE vehicle model. Since it is only
allowed to brake when mitigating rollover and skidding, the controller
simply gives the braking force on each wheel as outputs.

The structure of the S-function that acts as a Lyapunov controller is as
follows (it will be discussed intensively below);

• set some physical constants, margins, and vehicle load parameters

• load the inputs (see the discussion above and Figure 5.2)

• check how the vehicle is cornering (to the left or to the right) and
compute needed vehicle characteristics, i.e. slip quantities, camber
angles etc.

• set the desired values, i.e. βdes, β̇des, ϕdes, ϕ̇des, ϕ̈des, ψ̈des

• do rollover and skidding detection

• control the vehicle if needed; set up some short forms and controller
constants, calculate the control laws (i.e. the desired yaw rate ψ̇des

and the lateral forces Fy,F , Fy,R)

• use an advanced Magic Formula (C-function) to get the maximum
tire forces and then convert the lateral forces to longitudinal braking
forces through use of the friction ellipse

• set the longitudinal forces on each wheel as outputs from the S-
function, if there is no detection of rollover or skidding the outputs
are set to zero.

The margins (for rollover and side slip detection) are minimized to show
the limits of the controller. Of course, in a future controller, these margins
will be tuned for best performance of the vehicle. The load parameters in
the controller specifies the mass and moments of inertia of the vehicle and
the position of the center of gravity. Since these parameters are unknown
and cannot be measured in today’s vehicles they have to be estimated. As
shown below in section 5.4.2 the controller can assume that the vehicle is
fully loaded even though it might not be. So the load parameters in the



5.2. CONTROLLER DESIGN 43

controller are always set to those for the fully loaded vehicle; they can be
seen in Appendix A.

How the vehicle is cornering (to the left or to the right) and rolling is sim-
ply determined from the sign of the yaw rate, see page 13. The vehicle
characteristics are computed as described in (3.3), (3.50), (3.57), (3.58), and
(3.59).

The desired values for the side slip βdes and β̇des are set as in the source
code for the ESP system. Basically, a βmax depending on the velocity vx

is calculated and compared to the actual side slip β. The desired value
is obtained through setting βdes = min (max(−βmax, β), βmax). So the de-
sired value is something in between the limit values ±βmax, or equal to
one of the limits depending on the magnitude of the actual side slip β.
As stated before, a minimized safety margin is used when applying these
limits. Skidding is detected if the magnitude of the side slip is outside this
region. βmax is in between 3◦ and 10◦ depending on the velocity (e.g. 90
km/h gives a maximum side slip of βmax = 7.3◦). The derivative of the
side slip β̇des is computed in two different ways depending on if the actual
side slip β is outside the region ±βmax or not. ψ̈des is simply set to zero
since the yaw rate only contains first order dynamics.

The same approach as for βdes is used when setting the desired roll angle
ϕdes. ϕdes is equal to the actual roll angle ϕ as long as it is inside a region
limited by the critical roll angle ϕcrit, defined on page 33. The desired roll
angle ϕdes is equal to ±ϕcrit (approximately ±6◦) when the actual angle is
outside this region. A minimized safety margin is also used when setting
the limits of this region. The settings of ϕ̇des and ϕ̈des depend on if rollover
is detected or not. Three different criterions are used to detect rollover.
The actual roll angle ϕ is compared to the critical roll angle ϕcrit. Since the
roll angle only governs the potential energy, another criterion is needed
to cover the kinetic part. The roll rate ϕ̇ is therefore compared to a pre-
set maximum value. Finally, to cover the intermediate cases the total roll
energy is compared to the critical potential energy, see (4.1), (4.2), and (4.3).
Different safety margins are used to predict and detect rollover on time. If
rollover is detected ϕ̇des is set so it directs ϕ and ϕ̇ back into the safe region,
where no rollover can take place. ϕ̈des is then defined as the difference
between the desired roll rate ϕ̇des and the actual roll rate ϕ̇, which is a
measurement of the roll acceleration. If rollover is not detected nothing
needs to be done, so simply setting ϕ̇des = ϕ̇ and ϕ̈des = 0 is enough.

The shorts forms (5.3) to (5.7) are used when the control laws are calcu-
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lated. The controller constants are chosen, see section 5.4.1 below, so the
constraints on the constants are satisfied, i.e. (5.23), (5.25), and c1, c2, c3 >0.
The yaw rate ψ̇des, which controls the roll motion, is calculated using (5.30).
This yaw rate is then used when the lateral force on the front outer wheel
Fy,F is determined through using (5.27). To control the side slip the lateral
force on the rear outer wheel Fy,R is calculated according to (5.32).

A complex Magic Formula (see page 16) is used to get the maximum tire
forces for a specific µ, Fz,i, λi, αi, and γi. This formula is a C-function taken
from the ESP source code with the variables above as inputs. Then the
lateral forces are converted to longitudinal braking forces through using
the so-called friction ellipse (see page 17). The front longitudinal force is
converted from the vehicle coordinate system to the tire coordinate system
using (3.51) to (3.54).

Finally, the calculated longitudinal braking forces on the outer track dur-
ing cornering are set as outputs from the S-function. If no rollover and no
skidding are detected the outputs are just set to zero, because the vehicle
is not in a critical position so there is no need for braking.

5.3 Simulation Tests

The Simulink model of the controller and the vehicle is tested for differ-
ent maneuvers, initial velocities, and load conditions. The maneuver is
defined by the steering wheel angle as a function of time; i.e. there is no
defined road. The vehicle is simulated for velocities up to 140 km/h and
two load cases are tested; empty vehicle and fully loaded vehicle, see Ap-
pendix A.

Five different maneuvers are examined; ramp (linearly increasing steering
angle), chirp (sinusoidal with linearly increasing frequency), sinusoidal
(constant frequency), step, and fishhook. The fishhook is a step to the left
and then a longer step to the right followed by constant angle for a while
and finally a ramp back to the initial steering angle. Every maneuver is
simulated for 10 s.

Time-plots are constructed for the most important vehicle parameters, e.g.
wheel angle δ, yaw rate ψ̇, roll angle ϕ, roll rate ϕ̇, slip angle β, lateral
acceleration ay, longitudinal velocity vx, and tire forces Fx,i, Fy,i, Fz,i. The
wheel angle δ versus the lateral acceleration ay are also plotted for station-
ary motion.
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The Lyapunov controller is compared to an already existing LQ-controller
and a vehicle without any roll or skid control at all. Comparisons are done
through examining the plots and through use of video animations of the
test-runs.

5.4 Simulation Results and Discussions

This section shows and discusses the results from the simulations. First the
controller is tuned and then the robustness is discussed. The performance
of the Lyapunov controller is examined using plots and animations. Fi-
nally, the controller is compared to an already existing LQ-controller.

5.4.1 Tuning

Before the controller can be tested and used intensively it needs to be
tuned. Controller constants, safety margins etc. are tuned to make the con-
troller perform better. The parameters are tuned so the controller works
well for all the different maneuvers (see section 5.3), different velocities,
and load conditions.

Tests show that the best set of controller constants are

c1 = 0.5, c2 = 40, c3 = 1, λ1,2 = 0.6c1mvxζϕ(ϕ), λ3 = 2 (5.33)

These constants satisfies the constraints on them, i.e. (5.23), (5.25), and
c1, c2, c3 >0.

The safety margins for the setting of the desired states are minimized to
show the limits of the controller.

5.4.2 Controller Robustness against Uncertain Load Con-

ditions

The position of the center of gravity and the vehicle’s mass are coupled.
When the mass increases the position moves most of the time backwards
and up. The only exception is when the vehicle is loaded with for example
a flat block of lead on the floor, but this will just stabilize the vehicle.
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The controller cannot know the actual load case (m,hCoG, lF , lR, Jxx, Jyy, Jzz)
in the vehicle. Either must these parameters be estimated with an adap-
tive part, which estimates one or a few of them and then calculates the rest
from the coupling, or if the controller is robust it can assume that the load
case is the same all the time even though it might not be.

Simulations show that when the controller assumes that the vehicle is fully
loaded it works better than if it assumes that the vehicle is loaded with a
mean between full and empty. There is no significant difference between
the performance of the controller assuming full load compared to the con-
troller that knows the exact load condition. This shows that the controller
is robust against uncertainties in the load conditions. Therefore, no adap-
tive part, which would have slowed down the controller, is needed. From
now on will the controller always assume that the vehicle is fully loaded
(see Appendix A for load parameters), even though it might not be. Simu-
lations of this controller show that the magnitude of the yaw rate and the
lateral acceleration is allowed to be bigger for lighter vehicles; showing
that the controller works properly.

5.4.3 General Evaluation of the Lyapunov Controller

Maneu. Load Steering wheel angle or rate, freq. max vx,0 [km/h]
ramp empty 45◦/s up to 180◦/s 140 and more
ramp full 45◦/s up to 180◦/s 140 and more
chirp empty 135◦, 0.1 � 2, 0.4 � 0.8, 0.01→1 Hz 140 and more
chirp full 135◦, 0.1 � 2, 0.4 � 0.8, 0.01→1 Hz nice up to 120
sinus empty 135◦, 0.5, 0.01, 0.1, 0.4, 0.6, 0.7 Hz 140 and more
sinus full 135◦, 0.5, 0.01, 0.1, 0.4, 0.6, 0.7 Hz nice up to 120
step empty 200◦ and 400◦ 140 and more
step full 200◦ and 400◦ 140 and more
fishhook empty standard, maximum at 162.5◦ ok up to 130
fishhook full standard, maximum at 162.5◦ nice up to 120

Table 5.1: The controller works well for these maneuvers, load conditions,
and maximum initial velocities.

The vehicle governed by the Lyapunov controller is tested for the maneu-
vers, maximum velocities, and load conditions shown in Table 5.1. The
steering wheel angles, rates, and frequencies given in the table are tested
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up to the maximum velocities given in the rightmost column. The vehicle
is avoiding rollover and skidding (stays inside the limit values ±βmax and
±ϕcrit) at least up to these values. The table shows that the Lyapunov con-
troller works good for extreme maneuvers and high speeds. The controller
is also tested for normal driving maneuvers showing that it will not affect
them by applying braking forces unless rollover or skidding is close.

Numerous plots and animations of the maneuvers show the behavior of
the vehicle. Both the full and empty vehicle have a roll eigenfrequency
that is approximately 0.5 Hz, which is validated by simulating a vehicle
without a controller using a sinusoidal steering input.
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Figure 5.3: Plots from simulation with a sinusoidal steering input (135◦

and 0.5 Hz) for a fully loaded vehicle in 80 km/h using the Lyapunov
controller that assumes full load.

Figure 5.3 illustrates the simulation of a 0.5 Hz sinusoidal input signal
to show if the controller stabilizes the vehicle around the eigenfrequency.
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The amplitude on the steering wheel is 135◦, which gives a front wheel
angle of approximately 7.7◦ since the ratio between the steering wheel and
the wheels are 17.5 for the commercial van; this extreme maneuver can be
seen in the left uppermost plot. The right uppermost plot of the yaw rate ψ̇
shows that the vehicle follows the desired input path well. The roll angle
ϕ and the side slip β stay most of the time inside their limit values, and
they decrease by time. The roll rate ϕ̇ is pretty large since it is a sinusoidal
signal, but the control on it is enough to stabilize the vehicle. The lateral
acceleration reaches a little above 5 m/s2 for the fully loaded vehicle. Also
the animation of the vehicle shows how it is well controlled and no rolling
or skidding is present.
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Figure 5.4: Force plots from simulation with a sinusoidal steering input
(135◦ and 0.5 Hz) for a fully loaded vehicle in 80 km/h using the Lyapunov
controller that assumes full load.

Figure 5.4 shows the tire forces during the sinusoidal input. The upper-
most plot illustrates the braking forces induced by the Lyapunov con-
troller. It shows how the outer track is used for braking; first the front
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wheel to stabilize the roll motion, and then the rear wheel to avoid skid-
ding. After 2.5 s the slip motion does not need to be stabilized resulting in
only front braking forces, which minimizes the risk of oversteering due to
Figure 3.5. The mid-plot shows the variation of the lateral tire forces and
the plot at the bottom illustrates the normal forces. Zero normal force indi-
cates wheel liftoff, which occurs for both wheels on the inner track during
the first 5 s. This is because the safety margins are minimized to show the
limits of the controller. After wheel liftoff the vehicle is quickly stabilized
resulting in full ground contact.

This shows that the Lyapunov controller stabilizes the roll and slip motion
for extreme maneuvers and the vehicle follows the steering input well.
The same results are obtained during simulations with the empty vehicle.

5.4.4 Steerability

This section will examine the steering properties of the vehicle using the
Lyapunov controller.
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Figure 5.5: Plots from simulation of a step input (200◦) for an empty vehicle
in 110 km/h using the Lyapunov controller that assumes full load.

Figure 5.5 shows the plots from a simulation of a step input in 110 km/h
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for the empty vehicle. The step on the steering wheel is 200◦ occurring at 2
s, with almost an infinite slope. The yaw rate ψ̇ indicates how the vehicle
is cornering, first it increases rapidly but decreases later due to the roll
control, then it increases again and so on. The roll angle ϕ and the lateral
acceleration ay are stable around the values 5.7◦ and 7.1 m/s2. The side
slip β is just inside the limits and decreasing with time.
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Figure 5.6: Steerability and velocity plots from simulation of a step input
(200◦) for an empty vehicle in 110 km/h using the Lyapunov controller
that assumes full load.

The steerability and velocity of the vehicle is shown in Figure 5.6. Due
to (3.7), (3.8), and (3.9) the steering properties of the vehicle can be de-
termined through looking at the slope of the uppermost plot. Of course,
during the initial phase when the wheel angle increases from 0◦ up to 11.4◦

the vehicle will understeer a bit. The interesting part is though during sta-
tionary motion, i.e. when the wheel angle has reached the stationary value
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11.4◦. Then the slope of the plot is approximately zero indicating neutral
steering. The same results are obtained for the fully loaded vehicle.

5.4.5 Snow and Ice Driving

The simulations above and below are all performed on dry roads, i.e. the
road-tire coefficient of friction µ = 1. During snow conditions the coeffi-
cient µ = 0.4.

The vehicle will almost never liftoff or roll during snow or ice driving, only
skid. Therefore is the two-track model not satisfied, and the controller can-
not be used. The only possibility that the vehicle will roll is if it starts to
skid and then reaches an area of the road with higher friction and gets grip
(tripped rollover). But this will be avoided using an ESP, which prevents
the vehicle from skidding. If the vehicle even though starts to roll, a de-
sired yaw rate (5.30) can still be calculated and processed in the ESP to
stabilize the roll motion. See Chapter 7 for further discussion.

5.4.6 Comparison between the Lyapunov Controller and

the LQ-controller

It also exists an old roll controller, namely a linear quadratic one (LQ),
based on completely different theories. It is simulated in the same Simulink
model as the Lyapunov controller. The only difference is that the S-function
sfdlyap.m in the design above is exchanged for another S-function sfdlqr.m,
which contains the LQ-controller.

The LQ-controller is simulated and compared to the new Lyapunov con-
troller using plots and animations. The safety margins in both controllers
are minimized to see the limits. When the vehicle model is run on a 2.8
GHz Pentium 4 processor the simulation with the Lyapunov controller is
approximately 2.7 times faster than the simulation with the LQ-controller.

Figure 5.7 shows the comparison plots between the controllers for a chirp
signal input to the empty vehicle. The amplitude of the signal is 135◦ and
the frequency increases from 0.1 Hz to 2 Hz, covering the roll eigenfre-
quency of the vehicle. The yaw rate ψ̇ is approximately equal for both con-
trollers at the beginning, but the amplitude decreases faster for the LQ-
controller at the end. The magnitude of the roll angle ϕ is a little bigger
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for the Lyapunov controller in the first 3 s but still inside the limits, both
controllers are equal after 3 s . The roll rate ϕ̇ is approximately the same
and the increasing amplitudes of both ϕ and ϕ̇ is explained by the increas-
ing frequency, but the amplitudes decrease again just around and after 10
s. The first 3 s indicates that the side slip is bigger for the Lyapunov con-
troller, but all values are inside the allowed region.
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Figure 5.7: Plots from simulation with a chirp signal as input (135◦ and
0.1 Hz → 2 Hz) for an empty vehicle in 120 km/h using the Lyapunov
controller and the LQ-controller that assume full load.

The lowest plot to the right shows the lateral acceleration ay of the different
vehicles. The red curve illustrates the static limit of ay, which is the highest
lateral acceleration of the uncontrolled vehicle just before it rolls over, ap-
proximately 8 m/s2. It can be seen that the curve corresponding to the Lya-
punov controller is closer to this limit than the curve corresponding to the
LQ-controller. This indicates that the Lyapunov controller is less conserva-
tive and allows the states to get closer to the limits than the LQ-controller,
even though the safety margins are minimized for both controllers.
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Figure 5.8: Force and velocity plots from simulation with a chirp signal as
input (135◦ and 0.1 Hz → 2 Hz) for an empty vehicle in 120 km/h using
the Lyapunov controller and the LQ-controller that assume full load.

The animation of the three vehicles (two with controllers and one with-
out any control at all) shows that the uncontrolled vehicle rolls over in
the first turn after 1.8 s. The controlled vehicles continue driving due to
single-wheel braking that stabilizes the roll and slip motion. It can also
be seen that the Lyapunov controlled vehicle overtakes the LQ-controlled,
i.e. the Lyapunov one looses less energy due to less braking. This becomes
obvious when analyzing the plots in Figure 5.8. The two uppermost plots
show the braking forces from the Lyapunov controller respective the LQ-
controller. As can be seen, the LQ-controller applies higher braking forces
overall than the Lyapunov controller, especially on the rear outer wheel.
The Lyapunov controller brakes only on the rear outer wheel during the
first 3 s (the first two turns), when the slip motion needs to be stabilized,
but the LQ-controller uses the rear outer brake during all 10 s. The lowest
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plot showing the velocity vx as a function of time t confirms that the LQ-
controller brakes more since it looses more speed. This discussion shows
once more that the Lyapunov controller is less conservative than the LQ-
controller. Due to Figure 3.5 and the observation that the Lyapunov con-
troller brakes less on the rear outer wheel than the LQ-controller, the risk
of oversteering and un-stabilizing the vehicle is lower for the Lyapunov
controller.

The last simulation is a fishhook, described in section 5.3. The amplitude of
the signal is standardized to 162.5◦ on the steering wheel. Since it consists
of a step to the left immediately followed by a longer step to the right it is
very difficult to control the vehicle during this maneuver at high speeds.
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Figure 5.9: Plots from simulation of a fishhook (162.5◦) for a fully loaded
vehicle in 120 km/h using the Lyapunov controller and the LQ-controller
that assume full load.

The animation shows rollover of the uncontrolled vehicle at 2.8 s, only 0.8 s
after the start of the fishhook. The LQ-controlled vehicle starts to oversteer
in the second turn at about 4.1 s, which results in skidding, spinning, and
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leaving the desired path. This is also confirmed in the left lowermost plot
in Figure 5.9 showing the slip angle β; it goes to infinity at about 4 s for
the LQ-controller. The yaw rate ψ̇ shows also the dangerous movement
of the LQ-controlled vehicle. The Lyapunov controlled vehicle is the only
one following the desired path all the way, see the yaw rate ψ̇ in Figure
5.9. Both the roll angle ϕ and the side slip β is kept inside the limits. The
right lowermost plot shows once again that the lateral acceleration ay for
the Lyapunov controlled vehicle is closest to the static limit (6.2 m/s2); i.e.
the Lyapunov controller is less conservative than the LQ-controller.
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Figure 5.10: Force and velocity plots from simulation of a fishhook (162.5◦)
for a fully loaded vehicle in 120 km/h using the Lyapunov controller and
the LQ-controller that assume full load.

The sudden oversteering behavior of the LQ-controlled vehicle can be ex-
plained through looking at the braking forces, see Figure 5.10. In the sec-
ond turn (to the right) the LQ-controller puts on a braking force on the
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rear left wheel, see the mid-plot in Figure 5.10. The braking force is big
and lasts for more than 2 s. This probably results in oversteering of the
vehicle according to Figure 3.5. The Lyapunov controlled vehicle uses the
rear left brake much less (just to stabilize the slip motion), which avoids
oversteering behavior. The lowermost plot shows the velocity vx and once
more the strange behavior of the LQ-controlled vehicle.



Chapter 6

Conclusions

This chapter sums up the most important results reached in this report.
First it discusses rollover detection and then the control system.

6.1 Rollover Detection

Performed measurements show that it is possible to calculate each wheel
load from measuring the spring deflections. This gives a way to detect
wheel liftoff and possible rollover. But, since today’s commercial vans do
not have spring deflection sensors, another strategy is needed.

Assuming that the roll angle ϕ and the roll rate ϕ̇ can be measured or
estimated it is possible to calculate the total roll energy and the critical
potential energy. Comparing these two quantities gives another way to
detect rollover. This strategy is used in the development of the roll and
slip controller.

6.2 Rollover Mitigation

Simulations show that the control system prevents rollover and skidding
through stabilizing the roll and slip dynamics. The vehicle follows the de-
sired steering input well. All this is proved for extreme maneuvers and at
high speeds; even when one or two wheels have lost ground contact the
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controller is able to stabilize the vehicle. Thus, the main objectives of this
thesis are accomplished.

The controller is also robust; it works for both full and empty load con-
ditions even though it assumes full load. No adaptive part to estimate the
mass or center of gravity is needed, it would just slow down the controller.

The steering of the vehicle using the Lyapunov controller is mostly neutral,
at some points it slightly understeers due to the braking on the outside
wheels. There are no signs of oversteering.

The Lyapunov controller performs better than the already existing LQ-
controller. It is much faster and less conservative since the lateral acceler-
ation is closer to the limits and it brakes less; especially on the rear outer
wheel, which reduces the risk of oversteering. The Lyapunov controller
can be made more conservative easily through increasing the safety mar-
gins, which have been minimized during the simulations to show the lim-
its of the controllers.



Chapter 7

Future Work

The tuning of the controller has to be optimized to find the best working
set of safety margins and controller constants. It also needs to be simulated
more for other maneuvers to see if the two-track model is enough. Maybe
it has to be extended so it also covers the cases when the vehicle is on one
and three wheels, but no indications of needing this has been seen so far.

The most important future work is to combine the robust Lyapunov con-
troller with an observer that estimates for example the roll angle ϕ, which
is unknown in the real vehicle. This will introduce uncertainties in the ob-
served variables that can effect the performance of the controller.

Another important task is to integrate the Lyapunov controller with the
ESP system, which will take care of skidding, under-, and oversteering.
This results in avoiding tripped rollovers (see section 1.1), for example
on snow or ice. An idea is to calculate the desired yaw rate (5.30) when
rollover is detected and then process it in the ESP to stabilize the roll mo-
tion.

Lastly, the final control system must be tested in the real physical world,
i.e. on a real test vehicle. This will of course introduce disturbances that
can effect the controller negatively.
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[9] Krstić, M., Kanellakopoulos, I., Kokotović, P. Nonlinear and Adaptive
Control Design. John Wiley & Sons, Inc., 1995.

[10] MathWorks, Inc. Matlab Online Documentation.
www.mathworks.com.

61



62 BIBLIOGRAPHY

[11] Pacejka, H. B. Tyre and Vehicle Dynamics. Elsevier Butterworth Heine-
mann, 2002.

[12] Popp, K., Schiehlen, W. Fahrzeugdynamik. B. G. Teubner, 1993.

[13] LATEX project team. LATEX homepage. www.latex-project.org.

[14] Schindler, E. Vehicle Dynamics.
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Appendix A

Vehicle Parameters

Parameter Explanation [unit] Value
m mass [kg] 2666
Jxx moment of inertia about the x-axis [kgm2] 1800
Jyy moment of inertia about the y-axis [kgm2] 8400
Jzz moment of inertia about the z-axis [kgm2] 8830
lF horizontal distance from the front axle to the CoG [m] 1.58
lR horizontal distance from the rear axle to the CoG [m] 1.97
hCoG height from the ground to the CoG [m] 0.850
sF front track width [m] 1.652
sR rear track width [m] 1.652
cϕ roll stiffness, mean of both axles [Nm/rad] 221057
dϕ roll damping, mean of both axles [Nm/rad] 11216

Table A.1: Vehicle parameters for the empty commercial van.
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Parameter Explanation [unit] Value
m mass [kg] 3526
Jxx moment of inertia about the x-axis [kgm2] 2275
Jyy moment of inertia about the y-axis [kgm2] 13400
Jzz moment of inertia about the z-axis [kgm2] 13990
lF horizontal distance from the front axle to the CoG [m] 2.2114
lR horizontal distance from the rear axle to the CoG [m] 1.3386
hCoG height from the ground to the CoG [m] 1.135
sF front track width [m] 1.652
sR rear track width [m] 1.652
cϕ roll stiffness, mean of both axles [Nm/rad] 221057
dϕ roll damping, mean of both axles [Nm/rad] 11216

Table A.2: Vehicle parameters for the fully loaded commercial van.




