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Introduction

In control it is desirable the know the state of the system being con­
trolled; effective feedback depends on it. It is often not practical to
measure the full state of a system directly, so one has to make do
with the measurements that one has. The observer problem is the
problem of estimating the state of a dynamical system given a model
of the system, some of its input signals and some (usually noisy) mea­
surements.

The optimal solution to the observer problem is the Bayesian Ob­
server, which calculates the conditional probability of the state of a
process given the measurements and any other available information.
For the case of a linear system with Gaussian process disturbances
and measurement noise, the optimal observer is the well known and
widely adopted Kalman Filter.

When the conditions of linear dynamics or Gaussian noise are re­
laxed, matters become much more complicated. While the Bayesian
Observer is still quite straightforward to derive, it is usually not prac­
tical to implement, and it is hard to assess the error made when trying
to approximate it.

In this thesis the assumption of Gaussian functions is relaxed to
logarithmic concave, or log­concave functions. The optimal observer is
derived and analyzed, and some ways of approximating it are investi­
gated. It turns out that observers for the log­concave case have much
in common with the Kalman Filter, and are in many ways almost as
well behaved. In particular, by stripping away the non­Gaussian parts
of log­concavity, a Kalman Filter is found which gives a conservative
bound on observer uncertainty.

One case where measurements are not accurately described by
the model of a true value corrupted by additive Gaussian noise is the
case of event based control, where measurements come in the form of
events that are generated under certain conditions such as a signal
passing over a threshold. In many cases, the measurements can still
be shown to be log­concave, however. To illustrate and test the theory,
a simple example of event based control is investigated throughout
the thesis.

Notations

The symbol R will be used to refer to the set of real numbers. Vectors
will be printed in boldface, for instance x ∈ R

n, and are considered
as single­column matrices. Matrices will be represented using capital
letters, for instance A. Stochastic variables will also be represented
with capital letters, while the corresponding realizations will be repre­
sented with lowercase letters. For instance, xk is the realization of Xk.
Vector valued stochastic variables will be printed in boldface capital
letters, for instance Xk.

Integrals without subscripts will refer to integration over the en­
tire range of the integration variable, for instance

∫

f (x) dx

refers to the integral of f (x) over R
n. Relational operators applied to

matrices will be interpreted in the sense of positive definiteness, for
instance A > B means that A − B is positive definite and A ≥ B

means that A − B is positive semidefinite.
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Statistical preliminaries

Probability densities will be a main topic of study. By a probability
density is meant any function f (x), x ∈ R

n such that f (x) ≥ 0 and

∫

f (x) dx = C = 1.

If the total probability integral is not equal to 1, but to some C ∈ (0, ∞)
then f is termed normalizable. A normalizable function can be turned
into a probability density by the transformation n(x) = C−1 ⋅ f (x),
implying that positive constant factors can be safely disregarded when
dealing with probability densities.

Probability densities will be denoted with the letter f , usually
subscripted by either the stochastic variable that it concerns or some
subscript of convenience for commonly used probability densities. For
instance, f X (x) is the probability density of the stochastic variable X ,
meaning that

P(X ∈ Ω) =
∫

x∈Ω
f X (x) dx,

where Ω is a subset of the set of values that X may assume. Con­
ditional probability densities may be denoted like f X hY (xhy), which is
the conditional probability density of X given that Y = y.

The expectation or center of mass of the probability density f (x)
with respect to the variable x will be referred to as

Ex

(

f (x)
)

=
∫

x f (x) dx.

The covariance matrix of a probability density f (x) with respect to
the variable x will be referred to as

Covx

(

f (x)
)

=
∫

(x − mx)(x − mx)T f (x) dx,

where mx = Ex

(

f (x)
)

.

The observer problem

The problem of estimating the state of a dynamical system given some
(noisy) measurements arises in many applications, among them con­
trol. Since the estimate is to be used in a feedback loop only online
estimates (estimates based on information available at the current
time) are of interest. A typical scenario is shown in figure 1. It is
usually assumed that some stochastic model of the system dynamics,
disturbances and measurement noise is available.

The optimal observer problem is the problem of finding the condi­
tional probability density of the state of a system from the available
information, including measurements. The optimal or Bayesian Ob­
server represents in some sense the best estimate that can be found
under any specific circumstances.

From a probability density often only the conditional mean state is
used, because it is simple, and in the case of linear dynamics, Gaus­
sian noise, and quadratic cost function can be shown to be optimal
(LQG control). Control laws that for instance take uncertainty directly
into account or are based on expected loss are conceivable however.
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ProcessController

Observer
fX

u yr

Figure 1 A typical scenario for using an observer. r is the reference signal, u

the command signal, y the measurement signal and fX is the system state prob­
ability density as estimated by the observer. The controller usually only extracts
the mean state estimate from fX , but could conceivably take for instance estimate
uncertainty into account.

For most state space models, the form of the online Bayesian Ob­
server is known. For continuous time models, the Fokker­Planck equa­
tion or Kolmogorov forward equation (see for instance [1]) describes
the evolution of the probability density over the system state, and
can be augmented to account for measurements. It usually takes the
form of a partial differential equation in the probability density of the
system state.

In discrete time, the Bayesian Observer usually takes the form of
an integral equality that relates the probability density at one sam­
pling instant to that of the previous instant and the latest measure­
ment.

In a few special cases, there exists a closed form solution to the
Bayesian Observer problem. In the case of linear dynamics and Gaus­
sian disturbances and measurements, this is the well­known Kalman
Filter. If the system has a finite number of possible states, the closed
form solution is known as a grid­based filter. The Kalman Filter enjoys
many desirable properties and has found widespread application.

When the actual Bayesian Observer is not tractable, or not practi­
cal to implement, it has to be modified. The Bayesian Observer should
only be modified in order to simplify it, or give some other substan­
tial benefit. For systems that are not very far from linear Gaussian,
linearization (and Gaussianization) can often allow a successful appli­
cation of the Kalman Filter. If the system is continually re­linearized
around the current expected state, the result is known as an Extended
Kalman Filter.

Sometimes a system is sufficiently non­linear or non­Gaussian that
no Kalman Filter can give a reasonable approximation to the optimal
observer. For instance, the Kalman Filter assumes that the probability
density over the system state is Gaussian. If the conditional probabil­
ity density is multimodal (having several distinct local maxima), no
Gaussian approximation will be good.

The Particle Filter is a computationally intensive but very general
way to approximate the Bayesian Observer, and can be applied in
many cases where simpler observers fail. It employs a cloud of points
(particles) to approximate an arbitrary probability density, which is
updated using Monte Carlo simulation. Approximating grid­based fil­
ters can also be used, but are often even more computationally expen­
sive for the same accuracy.

For a review of online observers in general and Particle Filters in
particular, see [2].
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F = u+v

Figure 2 The Event Based Accelerometer. The sensor consists of a test mass
confined between two walls, subject to a control acceleration u and an external
acceleration v. An output pulse is generated when the mass hits either wall.

Process model

The processes that will be considered are systems in state space form
with linear dynamics, state­independent but possibly non­Gaussian
process noise and possibly non­Gaussian measurements. The main
line of treatment will be limited to discrete time. With some additional
assumptions, this structure will turn out to be very exploitable.

Let n be the dimension of the state space. Then xk ∈ R
n is the

state of the process at time tk ∈ R. The time evolution of the process
is described by

xk = Φxk−1 + Γuk−1 + vk−1, (1)
where Φ ∈ R

n�n describes the system dynamics, uk is the input at
time tk, Γ describes how the input enters the system and vk is the
process noise. The process noise vk is assumed to have zero expec­
tation and be independent for different k. The distribution of vk is
described by the disturbance model

fVk
(vk) = f N(vk). (2)

Measurements yk are generated at each instant with a probability
distribution dependent only on xk,

fYk hXk
(ykhxk) = f M(yk, xk). (3)

The matrices Φ and Γ as well as the probability densities f N and f M ,
though not explicitly indicated, may be functions of time. Together
they define the process model.

Example: The Event Based Accelerometer

Consider an accelerometer in one dimension based on the following
design. (See figure 2) A test mass is suspended freely as to move
between two walls placed at ±1. Let x1 be the position and x2 the
velocity. The mass is subject to an unknown external acceleration v (to
be estimated) and a control acceleration u. The external acceleration
is modelled as (discrete time) white noise for simplicity.

The time evolution of the process is described by

ẋ1(t) = x2(t),
ẋ2(t) = u(t) + v(t).

The output y(t) is a function of position:

y(t) =











1, x1(t) ≥ 1

0, hx1(t)h < 1

−1, x1(t) ≤ −1.

This is the only non­classical property of the system.
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It is not allowable to let the test mass pass either of the walls.
Therefore it is assumed that any event, or nonzero reading of y, trig­
gers a control response that tries to restore x1 to the origin. The objec­
tive is to stabilize the process and estimate the external acceleration
v(t).

Similar process models describe other simple event based systems.
The common case of measuring rotation angle with an encoder that
generates events at regularly spaced angles would for instance benefit
from much the same analysis as will be applied here.

To obtain a discrete time process model the model has to be sam­
pled, which can be done in many ways. For a truly event based design
one might make sure as to bracket each change of y with two closely
placed sampling instants, otherwise maintaining a constant sample
rate. For simplicity, the process will instead be sampled with con­
stant sample rate h. Furthermore, it is assumed that h is so small
that second order terms can be neglected.

Sampling yields the dynamics

xk =
(

1 h

0 1

)

xk−1 +
(

0

h

)

uk−1 +
(

0

vk−1

)

= Φxk−1 + Γuk−1 + vk−1,

where

xk =
(

xk,1

xk,2

)

,

Φ, Γ and vk can be read out from the equation and Vk ∈ N(0,σ
√

h)
or equivalently

fVk
(vk) = f N0 (vk) = 1

σ
√

2π h
e− v2

k

2σ 2h ,

where σ describes the strength of the process noise.
The measurements yk are assumed to be available only at the

sampling instants. The measurement function is

f M(yk, xk) =











I(−∞,−1](xk,1), yk = 1

I(−1,1)(xk,1), yk = 0

I[1,∞)(xk,1), yk = −1,

where II(x) is the indicator function for the interval I, taking the
value 1 if x ∈ I and 0 otherwise.

The Bayesian Observer

The optimal or Bayesian Observer for the chosen process model will
now be derived by finding the conditional probability density of the
process state given available measurements.

Since only online observers are considered, the information avail­
able will be the initial probability density fX0

and the set of measure­
ments up to the current time y1:k. The state of the observer is the
probability density

fk(xk) = fXkhy1:k , fX0
(xk).

Since X is a Markov process, this state combined with the current
input uk and next measurement yk+1 is enough to calculate the a
posteriori probability density fk+1.
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The initial state of the observer is given by

f0(x0) = fX0
(x0).

The time evolution of the observer consists of three update steps: dy­
namics, noise and measurement. In the first two updates the process
and disturbance models are used to predict the next state of the pro­
cess, and in the third update the current measurement is used to
refine the prediction.

The dynamics update computes the probability density

f 0
k (xk) = fXkhvk=0, y1:k−1, fX0

(xk)

from fk−1, that is, the probability density at instant k given the mea­
surements up to k − 1 and without considering process noise for the
last step. Letting

z = xk − vk−1 = Φxk−1 + Γuk−1

and assuming Φ is nonsingular one finds that

xk−1 = Φ−1(z − Γuk−1)

and
dxk−1 = det(Φ)−1 dz,

so that
f 0

k (z) = det(Φ)−1 ⋅ fk−1(Φ−1z − Φ−1Γuk−1),

where the factor det(Φ)−1 is needed to preserve unit total probability.
Apparently, the dynamics update corresponds to an affine transfor­
mation of the observer state.

The assumption of nonsingular Φ corresponds to the process hav­
ing no deadbeat dynamics. The special case of deadbeat dynamics
could be incorporated at the price of lengthier mathematical treat­
ment, but this will not be done here.

The noise update computes the probability density

f 1
k (xk) = fXkhy1:k−1 , fX0

(xk)

from f 0
k , that is, the probability density at instant k given the mea­

surements up to k−1. This can be done using the Chapman­Kolmogorov
equation

f 1
k (xk) =

∫

fXk hZ(xkhz) ⋅ f 0
k (z) dz. (4)

From (1) and (2) it is seen that the transition probability is described
by

fXkhZ(xkhz) = f N(vk−1) = f N(xk − z),

which, inserted into (4) yields

f 1
k (xk) =

∫

f N(xk − z) f 0
k (z) dz =

(

f N ∗ f 0
k

)

(xk),

the convolution of f N and f 0
k .

The measurement update computes the probability density fk from
f 1

k , which can be done using Bayes’ rule:

fk(xk) = fXk hy1:k, fX0
(xk) =

fYk hXk
(ykhxk) ⋅ fXkhy1:k−1 , fX0

(xk)
fYkhy1:k−1

(yk) .
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Figure 3 Illustration of the dynamics update of the Bayesian Observer for the
Accelerometer: probability densities before and after. The affine transformation
amounts to a shear in this case.

Identification of the probability densities yields

fk(xk) = C−1 f M(yk, xk) ⋅ f 1
k (xk),

where C = fYk hy1:k−1
(yk) is a positive constant that must be chosen

so as to normalize fk. The case when normalization can not be per­
formed because C = 0 corresponds to that the observer has received
contradictory information.

To summarize, the state of the Bayesian Observer is

fk(xk) = fXkhy1:k , fX0
(xk),

which is the probability density of the state of the process over its
state space. The initial state is

f0(x0) = fX0
(x0),

and the dynamics are described by the equations

f 0
k (z) = C1 ⋅ fk−1(Φ−1z − Φ−1Γuk−1), (5)

f 1
k (xk) =

(

f N ∗ f 0
k

)

(xk), (6)
fk(xk) = C2 f M (yk, xk) ⋅ f 1

k (xk), (7)

where C1, C2 > 0 are constants that should be picked so as to nor­
malize each step. The update is composed of an affine transformation
for process dynamics, a convolution for process noise and a multiply
for measurements. These three mathematical operations will play a
major role in the forthcoming analysis.

Example: An observer for the Accelerometer

Here the Bayesian Observer for the Accelerometer will be derived. It
will be simplified somewhat for easier treatment.

The initial state of the observer is assumed to be known. The de­
terminant of Φ is one and

Φ−1 =
(

1 −h

0 1

)

,

so that the dynamics update of the observer becomes simply

f 0
k (z) = fk−1(zt), (8)
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Figure 4 Illustration of the noise update of the Bayesian Observer for the Ac­
celerometer: probability density before, noise density, and density after. The noise
in this case only has a component in the x2 direction, so its density is flat in the
x1 direction. The actual profile along x2 is Gaussian. The effect is that of blurring
the incoming density in the x2 direction.

where

zt = Φ−1z − Φ−1Γuk−1 =
(

z1 − hz2

z2

)

−
(−h2

h

)

uk−1, (9)

which is a shear and translate, see figure 3.
The noise update is a convolution with the noise probability density

f 1
k (xk) =

(

f N ∗ f 0
k

)

(xk),

where

f N(vk) = δ (vk,1) f N0 (vk,2),

and the delta function is needed since the process noise is assumed
to affect only x2, see figure 4.

When yk = ±1, h is assumed to be so small that the crossing
can be assumed to have taken place at t = tk. To account for some
measurement uncertainty, it is assumed that

xk,1 = yk + mk

where mk is measurement noise, Mk ∈ N(0,σ m) with σ m specifying
the uncertainty. The measurement update will change to

fk(xk) =







Ce
− (xk,1−yk)2

2σ 2
m ⋅ f 1

k (xk), yk ∈ {−1, 1},
CI(−1,1)(xk,1) ⋅ f 1

k (xk), yk = 0

where C is chosen so that fk is normalized, see figure 5.
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Figure 5 Illustration of the measurement update of the Bayesian Observer for
the Accelerometer: probability density before, noise density, and density after. The
current measurement y = 0 corresponds to multiplying with a window function
that is 1 when hx1 h < 1 and 0 otherwise.

The Kalman Filter

When the process noise and measurements in the Bayesian Observer
derived above are Gaussian, meaning that f N(vk) is Gaussian and
that f M(yk, xk) is a Gaussian function of xk for each yk, the Kalman
Filter is obtained. The results on the Kalman Filter are not new; they
are stated here for easy comparison.

Recall that a general Gaussian function can be written as

f (x) = Ce− 1
2 (x−mx)T Q(x−mx),

where x ∈ R
n, C ∈ R describes the magnitude, Q ∈ R

n�n is ≥ 0 and
describes the spread, and mx ∈ R

n describes the point of symmetry.
Taking Q = P−1, with P > 0, and C = (2π )−n/2

(

det(P)
)−1/2

, a
general Gaussian probability density is obtained. Letting

ϕ P(x) = 1
(√

2π
)n√

det(P)
e− 1

2 xT P−1x ,

any Gaussian probability density can be written as f (x) = ϕ P(x−mx)
for some mx and positive definite P.

Restricting observer states, process noise and measurement func­
tions to be Gaussian simplifies many things. For one,

Covx

(

ϕ P(x − mx)
)

= P,
Ex

(

ϕ P(x − mx)
)

= mx,

so the most important statistical measures are readily available. Fur­
thermore, the set of Gaussian functions is closed under the operations
of affine transformation, convolution and multiplication (when they
are defined), which for Gaussian probability densities with mx = 0
amounts to

det(A)ϕ F(Ax + b) = ϕ A−1 FA−T (x), (10)
(ϕ F ∗ ϕ G)(x) = ϕ F+G(x), (11)

Cϕ F(x) ⋅ ϕ G(x) = ϕ (F−1+G−1)−1(x), (12)
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where C > 0, A ∈ R
n�n, b ∈ R

n, and A−T = (A−1)T = (AT)−1. The
covariances are calculated in the same way when mx �= 0, and the
composition rules for mx are also simple.

The above formulas imply that the Kalman Filter is much easier
both to implement and analyze than the general Bayesian Observer.
If the initial state of the filter is a Gaussian density, so are all future
states, and since a Gaussian density is completely described by its
expectation and covariance, the state dimension of the Kalman Filter
need not be more than n + n(n+1)

2 , compared to the general Bayesian
Observer that usually has infinite state dimension. If furthermore
Covxk

(

f M(yk, xk)
)

is independent of yk then the estimate covariance
P can often be assumed to be stationary. In this case the Kalman
Filter will be a linear time­invariant system with state dimension n.

A further advantage of using a Kalman filter is the great amount
of knowledge that is already available on the subject.

Example: A conservative Kalman Filter approximation

The actual Bayesian Observer for the Accelerometer is not a Kalman
Filter, because the measurements are not Gaussian. Here a Kalman
Filter that approximates the Bayesian Observer will be derived from
the approximate Bayesian Observer. It will be referred to as the Con­
servative Kalman Filter for reasons that will become clear later.

There is no easy way to approximate the rectangular window mea­
surement function for y = 0 with a Gaussian function; in fact any ap­
proximation should probably take account of the interactions in the
observer as a whole. A simple approximation which will turn out to
have a special significance is to let f M(0, x) = 1, while keeping f M

for y = ±1, which happens to be Gaussian. This corresponds to disre­
garding the information contained in the measurement y = 0.

Let

Pk = P =
(

p11 p12

p12 p22

)

be the covariance matrix of the current Gaussian observer state. Con­
sider first the case when yk = 0. Then only dynamics and process noise
have to be considered. The dynamics update according to (5) consists
of an affine transformation with transformation matrix A = Φ−1, and
from (10) this corresponds to an update P1 = A−1PA−T so that

P1 = ΦPΦT =
(

p11 + 2hp12 + h2p22 p12 + hp22

p12 + hp22 p22

)

gives the covariance after the dynamics update.
The noise update according to (6) consists of a convolution with

the process noise probability density, which is Gaussian and has co­
variance

PN =
(

0 0

0 σ 2h

)

.

According to (11) this yields a new covariance matrix

Pk+1 = P2 = P1 + PN =
(

p11 + 2hp12 + h2p22 p12 + hp22

p12 + hp22 p22 + hσ 2

)

.

This difference equation has an explicit solution; to simplify matters
somewhat the equation will be solved only for the case h → 0, yielding
the differential equation

Ṗ(t) =
(

2p12(t) p22(t)
p22(t) σ 2

)

.
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The system is triangular and some calculations yield

P(t) =
( 1

3σ 2t3 + p0
22t2 + 2p0

12t 1
2σ 2t2 + p0

22t

1
2σ 2t2 + p0

22t σ 2t

)

+ P(0). (13)

The covariance will first grow in the x2 direction (linearly) correspond­
ing to process noise and gradually shear and grow faster and faster in
the x1 direction (cubically) corresponding to uncertainties in velocity.
This formula should give a good approximation of the observer state
when y = 0 as long as the bulk of the probability mass stays between
the borders x1 = ±1.

The case when y = ±1 yields an instantaneous update, from (7)
and (12) this becomes

P+(t) =
(

(

P−(t)
)−1 + Qm

)−1
=
(

I + P−(t)Qm

)−1
P−(t),

where

Qm =
(σ −2

m 0

0 0

)

is the inverse covariance matrix for the measurement noise (as a limit
when the noise along x2 tends to infinity), P−(t) is the covariance just
before the event, and P+(t) is the covariance just after.

Since everything is Gaussian, standard statistical theory can be
easily applied. Consider the case of estimating the velocity x2 from
only the information in the two latest events. Let

Y0 = X1(0) + M0,
Y1 = X1(t) + M1,

be the measurements obtained from events at time 0 and t respec­
tively, where Mi ∈ N(0,σ m) is the measurement noise. Since X2 is
the velocity of X1,

X1(t) = X1(0) +
∫ t

0
X2(τ ) dτ =

= X1(0) + tX2(t) +
∫ t

0

(

X2(τ ) − X2(t)
)

dτ =

= X1(0) + tX2(t) + D,

where D is the effect of the process noise plus any control acceleration
acting between time 0 and t. Since the effect of control acceleration is
purely deterministic, only the case u = 0 will be considered; the more
general case can be obtained by superposition of the deterministic
response to u and will not affect the estimation errors. Thus, using the
fact that the process is reversible in time, D is equal to the variance
of X1(t) starting from known initial conditions (P(0) = 0), and (13)
yields

V (D) = 1
3

σ 2t3.

The velocity X2(t) can now be estimated by

X̂2(t) = 1
t
(Y1 − Y0),

where the estimation error is given by

X̃2(t) = X2(t) − X̂2(t) = −1
t
(D + M1 − M0).
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Since D, M0 and M1 are independent,

V
(

X̃2(t)
)

= 1
t2

(

V (D) + V (M0) + V (M1)
)

=

= 1
t2

(

1
3

σ 2t3 + 2σ 2
m

)

=

= 1
3

σ 2t + 2σ 2
mt−2. (14)

Since t is the time between events, this expression hints at the fact
that at least up to a point set by the measurement error, state esti­
mates will be more accurate with a shorter time between events. Thus
the best control strategy is probably not to keep the state as close to
zero as possible if the objective is to obtain accurate estimates. The
apparent deterioration in estimate accuracy for small enough t might
be alleviated by using information from older measurements.

f 1
ln

(f
1)

f 2
ln

(f
2)

f 3
ln

(f
3)

Figure 6 Some examples of log­concave functions in one dimension; the logarithm
of each function is shown just below its graph. The dotted line corresponds to
f = 0. f1(x) = exθ (1 − x): (truncated) exponential function (ordinary exponential
is log­concave but not normalizable), f2(x) = e−x2

: Gaussian function, f3(x) =
θ (1 + x)θ (1 − x): rectangular window. θ (x) is the Heaviside step function.

Log­concavity

While the assumptions of the Kalman Filter makes the analysis of the
Bayesian Observer quite straightforward, it is not so easy to analyze
the general case. For the case of log­concave disturbances and mea­
surements, while being more general than the Gaussian case, many
of the appealing properties of the Kalman Filter do however turn out
to be preserved. First log­concavity will be introduced from a mathe­
matical point of view.

Log­concave functions have found a use in many different areas,
among them applied probability theory. Here we will mostly be con­
cerned with log­concave probability densities and normalizable log­
concave functions.

Log­concave functions

The results on general log­concavity are known since earlier, see for
instance [3], [4], [5], and [6] for these results and many other. [7]
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Figure 7 Some more examples of log­concave functions in one dimension; the log­
arithm of each function is shown just below its graph. The dotted line corresponds
to f = 0. f4(x) = en(x), where n is concave and piecewise quadratic: exponential of
concave function is log­concave, f5(x) = max(n(x), 0): nonnegative function that is
concave on a convex support is log­concave, f6: randomly generated Gaussian­like
function.

f 7
ln

(f
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f 8
ln
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f 9
ln

(f
9)

Figure 8 Some examples of non­log­concave functions in one dimension; the loga­
rithm of each function is shown just below its graph. The dotted line corresponds to
f = 0. f7(x) = e−3(x−1)2 + e−3(x+1)2

: not unimodal, f8(x) = θ (x +1)+θ (x)−2θ (x −1):
discontinuous outside boundary of support, f9(x) = 1

1+x2 : does not decay fast enough
(too fat tails).

contains some chapters about convex and concave functions in general.
Here, the results that are most useful in the current context will be
summarized.

DEFINITION 1—LOG­CONCAVE FUNCTION

A function f : R
n → R is log­concave iff f (x) ≥ 0, f has convex

support and ln
(

f (x)
)

is concave on the support of f . We denote this
f ∈ LC . If strict concavity holds for ln

(

f (x)
)

on the entire support of
f then f(x) is strictly log­concave.

Thus, a log­concave function is essentially any function f that can be
expressed as f (x) = e−n(x) where n(x) is convex and may assume the
value +∞ as long as the set on which n(x) is non­infinite is convex.
For some examples of log­concave functions in one dimension, see
figures 6 and 7. Figure 8 gives some counterexamples. For an excellent
account of how to construct and recognize convex functions (which can
easily be translated to the log­concave case), see [7];
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Figure 9 Illustration of the interpolating curve criterion for log­concavity. A func­
tion is log­concave iff it is nonnegative and for any exponential function drawn
between two points on the graph (if one exists), the graph does not lie below the
curve between the points. This also implies that the graph does not lie above the
curve on the rest of the interval.

It could be argued that log­concavity is a much more reasonable
form of convexity when concerned with probability densities than is
either convexity or concavity; all non­constant convex and concave
functions on R

n are unbounded. Furthermore log­concavity of a prob­
ability density makes the log­likelihood function concave, making for
instance maximum likelihood estimation into a convex problem.

Just as for convex functions, there are several other ways to ex­
press the conditions for log­concavity:

• The function f (x) is log­concave if and only if f (x) ≥ 0 and

f
(

(1 − λ)x1 + λx2

)

≥ f (x1)1−λ f (x2)λ , λ ∈ [0, 1]

for all x1, x2 ∈ R
n. If the inequality is strict when x1 �= x2 and

λ ∈ (0, 1) then f (x) is strictly log­concave. See figure 9.

• If f (x) ≥ 0 and f is twice differentiable with respect to x, then
f is log­concave if and only if

∇2 ln
(

f (x)
)

≤ 0,

for all x, where ∇2 denotes the Hessian or second derivative
matrix. If

∇2 ln
(

f (x)
)

< 0

then f is strictly log­concave, but this is only a sufficient condi­
tion.

Many commonly used probability densities are log­concave, for in­
stance exponential distributions and normal (Gaussian) distributions.
For a more complete list, see [5].

Log­concave functions have much in common with convex func­
tions. A function is log­concave if and only if it is log­concave on each
line through its domain. Many useful properties of log­concave func­
tions can be derived from the properties of convex functions, among
them:
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• Continuity. If f is log­concave then it is continuous on the inte­
rior of its support, and almost everywhere differentiable. It may
however be discontinuous at the support boundary.

• Unimodality. Any log­concave function f is quasiconcave, mean­
ing that all superlevel sets

Sα = {x; f (x) ≥ α }

are convex. If the sets Sα are closed and bounded for all α ≥
α 0, for some α 0 such that Sα 0 is nonempty, then f assumes its
maximum value on a convex set. If f is also strictly log­concave,
it assumes its maximum value at a single point.
The set of log­concave functions does in fact (at least in one di­
mension) coincide with the set of strongly unimodal functions;
the set of functions that when convoluted with an arbitrary uni­
modal function remain unimodal.

• Global information available locally. If g(x) is a (multivariate)
exponential function

n(x) = aebT x

such that n(x0) = f (x0) and n(x) ≥ f (x) in a small neighbor­
hood of x0, then n(x) ≥ f (x) for all x, that is n(x) is a global
overestimator of f (x).

Just like the plane is an extreme among convex functions in the sense
that it is the only function that is both convex and concave, the expo­
nential function is extreme among log­concave functions in the sense
that it is both log­concave and log­convex. In many respects, any log­
concave function is at least as well behaved as an exponential function.

Apart from what can be inferred from the properties of convex
functions, log­concave functions have many other useful properties.
The following theorem will be central in the forthcoming analysis.

THEOREM 1—PRÉKOPA

Let f (x, y) be a log­concave function of z =
(

x

y

)

, x ∈ R
m, y ∈ R

n.

Then the integral

n(x) =
∫

f (x, y) dy

is a log­concave function of x.

Proof. See [3] and [4].
Log­concavity is preserved under many operations:

• Multiplication. If f and n are log­concave then f (x) ⋅ n(x) is
log­concave. This can be derived from the fact that the sum of
two convex functions is convex.

• Affine transformation. If f is log­concave, A is a matrix and b a
vector of appropriate dimensions then f (Ax + b) is log­concave.

• Convolution. If f and n are log­concave then the convolution

( f ∗ n)(x) =
∫

f (x − y)n(y) dy

is also log­concave. This can be derived from theorem 1 and the
multiplication and affine transformation properties.
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Figure 10 Illustration of the interpolating curve criterion for strong log­concavity.
A function in one dimension is strongly log­concave of strength p iff it is nonnegative
and for any Gaussian with covariance p drawn between two points on the graph
(if one exists), the graph does not lie below the curve between the points. This also
implies that the graph does not lie above the curve on the rest of the interval.

• Marginal densities. If f is a log­concave probability density then
the marginal densities of f are log­concave. This is a direct con­
sequence of theorem 1.

Log­concave functions in one dimensions have some properties that
do not easily generalize to the multivariate case, for instance:

• Truncation. If f (x), x ∈ R is a log­concave probability density and
I ⊂ R is a (possibly semi­infinite) interval, then the truncated
probability density

n(x) =
{

f (x)
∫

I f (x) dx
, x ∈ I

0 otherwise

has a variance that is no greater than the variance of f . If f

already has a support that is not infinite in both directions and
truncation is used to cut away only a finite interval of the sup­
port, then the expectation can be shown to be unchanged or move
away from the removed interval, a distance no longer than its
length.

Strongly log­concave functions

It turns out that ordinary log­concavity is not a strong enough con­
dition to make useful claims in the multivariate case, in particular
there is need for a replacement for (or something better than) the
truncation property. We therefore introduce the concept of strongly
log­concave functions.

DEFINITION 2—STRONGLY LOG­CONCAVE FUNCTION

Let P be a positive definite matrix and define the class of functions

LC (P) =
{

f ; f (x) = e− 1
2 xT P−1x f0(x), f0 ∈ LC

}

.

Iff f ∈ LC (P) then f is strongly log­concave of strength P.
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That is, a strongly log­concave function is the product of a Gaussian
function and a log­concave function; the covariance of the Gaussian
determines the strength of log­concavity and shall be of prime interest
in the following. Out of the example functions in figures 6 and 7, f2, f5,
and possibly f6 are strongly log­concave.

Any of the alternative conditions for log­concavity can be used to
describe strong log­concavity, implying for instance that if f is positive
and twice differentiable then f ∈ LC (P) is equivalent to

∇2 ln
(

f (x)
)

≤ −P−1

for all x, see also figure 10. Any strongly log­concave function f is
strictly log­concave, and f goes to zero when hxh → ∞ at least as fast
as the associated Gaussian. Also,

f ∈ LC (P), P ≤ P′ =; f ∈ LC (P′).

If the limiting case of log­concavity is an exponential distribution,
then the limiting case of strong log­concavity is a Gaussian distribu­
tion. We will now see that all functions in LC (P) have a great deal
in common with Gaussian distributions with covariance P.

THEOREM 2—COVARIANCE BOUND

If f ∈ LC (P) is a probability density then

V = Covx

(

f (x)
)

≤ P.

Thus any probability density in LC (P) is at least as well localized as
the Gaussian density with covariance P. For the proof, see appendix
B.

THEOREM 3—ENCAPSULATION PROPERTY

If f ∈ LC (F) and n ∈ LC (G) then

f (Ax + b) ∈ LC (A−1FA−T )
( f ∗ n)(x) ∈ LC (F + G)

f (x) ⋅ n(x) ∈ LC
(

(F−1 + G−1)−1
)

where x, b ∈ R
n, A ∈ R

n�n and f ∗ n is the convolution of f and n.

This compares well with the corresponding results for Gaussian distri­
butions (10)–(12). Apparently, the covariance of strongly log­concave
functions subject to these operations is bounded from above by the co­
variance of the corresponding Gaussian functions. No tighter bounds
could be found under these assumptions since the Gaussian functions
satisfy them exactly. Just as the set of Gaussian functions is closed
under these operations, so is the set of log­concave functions. For the
proof, see appendix B.

The log­concave Bayesian Observer

By a log­concave Bayesian Observer shall be meant the Bayesian Ob­
server for a process with log­concave measurements and strongly log­
concave disturbances, meaning that f M(yk, xk) is a log­concave func­
tion of xk for all yk and that f N (vk) is a strongly log­concave function
of vk.
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The Covariance Bound and Encapsulation Property theorems im­
ply that the log­concave Bayesian Observer is much more well­behaved
than the general case. In particular, if the original state of the observer
is strongly log­concave, then so are all future states. This implies that
the probability density over the process state will always be concen­
trated around a single point, which can simplify both controller and
observer design. Although the observer state is still infinite dimen­
sional, the strong regularity implied by strong log­concavity might
allow for practical use of observers with quite low state dimension.

The theorems can also be used as a chain of inequalities to give
an upper bound on the estimate covariance for the optimal observer.
Such a bound can be interpreted as a certificate that there exists some
observer that achieves the bound (or better). This could be useful for
feasibility studies or as a benchmark.

With some additional results on the effects of measurements on
the expectation of a log­concave probability density, the results may
also be used to construct low­dimensional conservative observers for
log­concave systems. For full usefulness, the theorems would have to
be complemented, however. The mobility of the expectation of a prob­
ability density under the effect of measurements is directly related
to its spread. Strong log­concavity in itself gives an upper bound on
mobility but no lower bound.

Example: log­concavity and the Accelerometer

Since the process noise is Gaussian and the measurement function
f M(y, x) is a log­concave function of x for each y, the Bayesian Ob­
server for the Event Based Accelerometer is log­concave. This has
many implications. In particular, the Conservative Kalman Filter ap­
proximation derived actually gives a conservative estimate of the ob­
server covariance.

Since the estimate (14) is a conservative estimate based on the
Conservative Kalman Filter, it is a conservative estimate of the ve­
locity error for the Bayesian Observer just after an event.

Simulations

To test the theory and gain some insight into observer design for log­
concave systems, computer simulations were made of the Bayesian
Observer for the Event Based Accelerometer example. The process
noise was chosen as σ = 1 in all simulations. Any change of σ would
be equivalent to an appropriate rescaling of the t and x2 axes.

Discretization

A grid­based filter is used to approximate the Bayesian Observer. A
finite difference scheme is used to discretize the observer state fk(xk)
over the region x1 ∈ [−1, 1], x2 ∈ [−xmax

2 , xmax
2 ], such that

pk(i, j) = ∆x1∆x2 ⋅ fk(∆x1i + ∆x2 j),

where

∆x1 =
(∆x1

0

)

,

∆x2 =
(

0

∆x2

)

,
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∆x1 and ∆x2 are discretization step sizes and pk(i, j) is assumed to be
zero when (∆x1i + ∆x2 j) is not within the region. It is assumed that
xmax

2 is large enough that the effects of disregarding states of greater
velocity are negligible. Unit total probability means that

∑

i, j

pk(i, j) = 1.

The three operations of affine transformation, convolution with
noise probability density, and multiplication are discretized as follows.
Assuming uk = 0, the affine transformation update described by (8)
and (9) is discretized as

p0
k(i, j) = pk−1(i, j) + h∆x2

∆x1

j

∆i

(

pk−1(i − ∆i, j) − pk−1(i, j)
)

,

where ∆i = ±1 is chosen so that j
∆i

≥ 0 and it is assumed that
h is chosen so small that h h∆x2

∆x1
jh ≤ 1 for all permissible j. This is

a shear implemented by weighting the value of each element with
its immediate upstream neighbor. Nonzero uk is handled by integer
displacement in the j direction.

Convolution with the noise probability density is discretized as

p1
k(i, j) = (1 − w)p0

k(i, j) + w

2

(

p0
k(i, j − 1) + p0

k(i, j + 1)
)

,

where w = hσ 2

∆x2
2

and it is assumed that h is chosen so that w ≤ 1/2. This
approximates the Gaussian process noise with a three­point stochastic
variable taking the values {−1, 0, 1} and having the same incremental
covariance.

The multiplication step for the case yk = 0 is never actually per­
formed, but is implicit in the fact that values of pk(i, j) outside the
permitted region are treated as if they were zero. When yk = ±1,
all columns except the one on the proper border are set to zero, and
the remaining column is multiplied by max(yk j, 0) to approximate the
probability mass flowing out during the affine transformation stage.
The entire column is then displaced according to the assumed instant
control action. Renormalization is carried out regularly.

Probability densities

Stationary state Simulations indicate that the observer is stable.
When y = 0 it tends to a limit density as seen in figure 11. States with
low velocity seem to be the most probable, and positive velocity seems
to be correlated with positive position which is not surprising. The
probability density has an overall appearance that comes quite close to
a Gaussian, with the largest deviations occurring in the neighborhood
of the points x1 = ±1, x2 = 0. All superlevel sets appear to be convex.

It is desirable to confirm whether this probability density is log­
concave, and if so how strongly. Testing the (strength of) log­concavity
for a function in one dimension is straightforward: given a function
f (x), find

qf = sup
q

q;
f (x)

e− 1
2 qx2

∈ LC .

If the maximum exists and is non­negative, f is log­concave. If it is
positive then f ∈ LC (p), p = q−1. The quantity

√
p has the dimension
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Figure 11 Stationary observer state for zero process output, σ = 1.
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Figure 12 Estimated log­concavity strength as a function of angle for the sta­
tionary observer state. The square root of p is plotted since it has the dimension
of length. The range is between

√
pmin � 0.7 and

√
pmax � 2.8, implying that the

stationary state is strongly log­concave.
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of length and is the standard deviation of the associated Gaussian.
The test can be carried out numerically by finding a lower bound for
a suitable approximation of − d2

dx2 ln
(

f (x)
)

.
Turning to higher dimensions, matters become a bit more com­

plicated. Log­concavity of the function f (x) can be tested by testing
log­concavity of f on each line through its domain. There is however
not guaranteed to be any single minimal P for which f ∈ LC (P); this
is why strength of log­concavity has not been formulated as a func­
tion of f . The strength of log­concavity along each line does still give
useful information, however.

In two dimensions one can look at p(φ), defined to be the maximum
value of p found for all lines through f with angle φ , if one exists.
If p(φ) exists for all φ has an upper bound p then f is strongly log­
concave, for instance f ∈ LC (pI). A polar plot of

√

p(φ) for a Gaussian
function yields an ellipse.

A plot of
√

p(φ) for the stationary observer state can be seen in fig­
ure 12. Apparently the stationary state is strongly log­concave, while
only log­concavity was predicted from the theory. (All observer states
are log­concave but strength of log­concavity may deteriorate without
bounds with time.) The direction where

√

p(φ) spreads out the most
coincides with the direction in which the inner level curves of the
probability density are the most stretched.

−0.5 0 0.5

−2

−1

0

1

2

x
1

t = 0.1T

x 2

−0.5 0 0.5

−2

−1

0

1

2

x
1

t = 0.16T

−0.5 0 0.5

−2

−1

0

1

2

x
1

t = 0.25T

−0.5 0 0.5

−2

−1

0

1

2

x
1

t = 0.4T

−0.5 0 0.5

−2

−1

0

1

2

x
1

t = 0.63T

x 2

−0.5 0 0.5

−2

−1

0

1

2

x
1

t = 1T

−0.5 0 0.5

−2

−1

0

1

2

x
1

t = 1.6T

−0.5 0 0.5

−2

−1

0

1

2

x
1

t = 2.5T

Figure 13 Time evolution of observer state starting from a Dirac pulse in the
origin, with y = 0. The states appear to be approximately (truncated) Gaussian
up to t = T , when the effects of the rectangular measurement window begin to be
appreciable. Already at t = 1.6T , the state is very close to stationary. T � 1.38
is the estimated mean exit time in stationary state. The probability that no event
occurs during an interval of length 2.5T is approximately 0.08 in this scenario.

Time evolution In figures 13 and 14, the time evolution of the
observer state is plotted with two different initial conditions and no
events. It is evident that the observer state converges quite quickly to
the stationary state, which seems to be the same in both cases. In both
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Figure 14 Time evolution of observer state starting from a Dirac pulse in
(x1, x2) = (0, 1.5), with y = 0. The states appear to be approximately (truncated)
Gaussian up to t = 0.63T , when the effects of the rectangular measurement window
begin to be appreciable. Already at t = 2.5T , the state is very close to stationary.
T � 1.38 is the estimated mean exit time in stationary state.
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Figure 15 Estimated strength of log­concavity as a function of angle for the
time evolution in figure 13. The dashed lines are Gaussian predictions calculated
from (13) and are supposed to be conservative (enclosing the estimated curve);
the fact that they in general are not might be explained by discretization errors
in the simulation. The radial axis is

√
p. The first two observer states were too

concentrated for a reliable estimate to be calculated.
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Figure 16 Estimated strength of log­concavity as a function of angle for the time
evolution in figure 14. The difference to the log­concavity estimate in figure 15 is
slight but noticeable.

cases the states seem to be approximately Gaussian until the effects
of the rectangular measurement window start to become appreciable.
At all times they are unimodal with convex superlevel sets.

It is worth noting that there is an intermediate phase when the
state is actually truncated Gaussian. Not until an appreciable proba­
bility mass would have been flowing back through the borders, were
they not there, does the state the within window x2 ∈ [−1, 1] begin
to feel its effects and become noticeably non­Gaussian. Even then the
probability densities seem to be quite well­behaved.

Figures 15 and 16 show log­concavity estimates for the two time
series, combined with predictions calculated from the Conservative
Kalman Filter using (13), which should give an upper bound on p.

Apparently the predictions do not give an upper bound, except for
large t. What is more, the difference is big even long before the simu­
lated states are affected by the rectangular measurement window and
begin to deviate from the Gaussian. During this time the estimates
should be accurate. The same predictions are, however, very accurate
for the state covariances of the simulated observer.

The discrepancy could be the effect of discretization errors, indicat­
ing that explicit log­concavity is probably more fragile to discretization
than is state covariance.

A non­log­concave example To illustrate the effects of a non­log­

concave measurement situation, the measurement was modified to be

y =























1, x1 ≥ 1,
−1, x1 ≤ −1,

0, hx1h < 1/3,
2, otherwise,

where the difference is that y is 2 instead of 0 when 1/3 ≤ hx1h < 1.
This means that it is known when the position is between the walls
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Figure 17 Snapshots from the Bayesian Observer with a non­log­concave mea­
surement situation. Most states are clearly not log­concave; many are bimodal and
the last one even tetramodal. The order of changes in y and snapshot times is:
y = 0, t = 0.25T , y = 2, t = 0.5T , t = 0.75T , y = 1, y = 0, t = T , t = 1.25T , y = 2, t =
1.5T , y = 0, t = 1.75T , y = 2, t = 2T .

but farther away from the origin than 1/3, but not on which side. The
measurement function for y = 2 becomes non­log­concave in this case
(two vertical stripes of 1 with a gap in between). For an example of a
simulation of the Bayesian Observer for this process, see figure 17.

It is clear that violating the assumption of log­concave measure­
ment function in this case lets the observer states violate the property
of log­concavity; many are even multimodal. It is worth noting that
the non­log­concavity enters the observer the first time the non­log­
concave measurement function for y = 2 is used, but that it may
persist even with log­concave measurements active as in the seventh
snapshot.

In the fourth and fifth snapshots it seems that a period of log­
concave measurements has managed to restore log­concavity. This
is not unreasonable; consider for instance the case when y is held
constant under log­concave conditions. If the state converges to a
unique density under these conditions it must be log­concave, since
log­concave initial states converge to it with log­concavity preserved.

The example uses a substantially non­log­concave measurement
function to give a clear illustration. For measurement functions that
are close to a log­concave function the effect is probably less pro­
nounced, and may in some cases even be unnoticeable.
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Figure 18 Actual and estimated state using the Discretized Bayesian Observer
and xr

2 = 0.7. The square wave like appearance of the velocity estimate is a direct
consequence of the ping pong control strategy. In both cases the actual state falls
within the 95% confidence interval provided by the observer almost all of the time.

Filtering and control

The basic requirement for control of the Accelerometer is to keep the
position x1 from straying into the walls; behavior of the process once
past the walls might typically be undefined or unpredictable in a real
application. Thus the controller will have to apply some kind of strong
restorative action to bring the position back toward the center as soon
as an event is detected. This restorative action will be idealized as
deadbeat control to bring the position to the origin.

A further requirement for any reasonable controller is to control
the velocity x2. Too high speeds are not desirable since they may re­
quire too much control authority for restoration and may demand too
high bandwidth for the controller/observer. At the same time, it seems
that higher speeds and a higher frequency of events may be desirable
up to a point, to increase the amount of information available to the
observer and thus yield better estimates. The prime interest has been
in the estimate of x2, since this is the state from which it is easiest to
estimate the acceleration.

The best compromise between on the one hand low demands on
control authority and controller/observer bandwidth and on the other
hand high information content in the event sequence is realized if the
speed can be closely controlled. To achieve this a simple scheme has
been adopted which might be labeled ping pong control. The idea is
to control x2 to a reference velocity ±xr

2 that switches sign to always
point away from the last wall that was reached. If the speed control
is successful then a mean time between events of tmean � (xr

2)−1 will
be achieved. The process noise sets an upper limit on the mean time
the process can be controlled to stay away from the walls.
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Figure 19 Actual and estimated state using the Full Kalman Filter and xr
2 = 0.7.

The estimates and the resulting control (as can be seen from the actual states) are
not very different from the Discretized Bayesian Observer in figure 18. The most
noticeable difference is actually that the confidence intervals for position are wider
in this case, often stretching beyond the [−1, 1] range.
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Figure 20 Actual and estimated state using the Simplified Kalman Filter and
xr

2 = 0.7. The behavior is apparently different from figures 18 and 19. The confi­
dence intervals still do seem to cover the actual states fairly well however.
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Ping pong control has been simulated for different reference speeds
using a deadbeat controller with three observers of varying complex­
ity:

• The Discretized Bayesian Observer

• The Full Kalman Filter. This is a Kalman Filter approximation
of the Bayesian Observer. The rectangular window measurement
function for y = 0 has been replaced with a Gaussian function
chosen to yield the same variance of x1 in stationary state as
with the Bayesian Observer. This was achieved by using the
measurement variance σ 2

o h−1, where

σ o = 2−1/3(pstat
11 )2/3σ −1/3,

pstat
11 is the desired stationary variance in x1 and σ 2 is the incre­

mental variance of the process noise. The expression was derived
from the analytical solution of the Riccati equation for the Full
Kalman Filter.
The measurement functions for y = ±1 are the same as for the
Conservative Kalman Filter. The result is a Kalman Filter with
time varying estimate covariance matrix Pk.

• The Simplified Kalman Filter. This is a Kalman Filter with con­
stant covariance matrix. The measurement update rule for the
filter is

x̂(khk) = x̂(khk − 1) + Kk

(

y(k) − Cx̂(khk)
)

,

where C = ( 1 0 ), and Kk = K0 when yk = 0 and Kk = K e

when yk = ±1. K0 and K e are chosen as the mean effective K

for the cases y = 0 and y = ±1 respectively of the Full Kalman
Filter during a simulation run under the same conditions. The
constant covariance matrix P is chosen in a similar way.

The same disturbance acceleration sequence was used in all simula­
tions.

Figures 18, 19, and 20 show actual and estimated states from sim­
ulations of ping pong control with the three observers. In general it
can be seen that the estimates do not follow the details of the evolu­
tion of the actual process (and neither could they since the details are
mostly due to process noise, the effects of which only become visible
at events) but that they almost always stay within a certain range
of the actual values. The square wave like appearance of the velocity
estimate is a direct consequence of the ping pong control strategy. It is
not immediately evident from these plots whether one observer yields
better estimates than another, though the greatest difference seems
to be between the Simplified Kalman Filter and the other observers.

State estimate variances for the Discretized Bayesian Observer
and the Full Kalman Filter are shown in figures 21 and 22 together
with estimates from the Conservative Kalman Filter. (The Simplified
Kalman Filter has constant estimate variance.) The conservative pre­
dictions are seen to always overestimate the actual variances, as they
should. The variances of the Discretized Bayesian Observer and the
Kalman Filter do not seem to differ by much, though the latter is a
little more pessimistic.

The system was simulated with the three observers and with dif­
ferent reference speeds xr

2, yielding different mean times between
events tmean and estimation errors. The results can be seen in fig­
ure 23. The Simplified Kalman Filter gave too unreliable control with
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Figure 21 State estimate variances and predictions for the Discretized Bayesian
Observer using xr

2 = 0.7. The predictions are very good for the position and quite
good for the velocity a while after each event, after which the actual variances start
to settle while the predictions do not. The Kalman Filter estimates come from the
Full Kalman Filter and are seen to mimic the variance of the Discretized Bayesian
Observer quite well, though settling at a somewhat higher level.
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Figure 22 State estimate variances and predictions for the Full Kalman Filter
using xr

2 = 0.7. The variances are very close to the Kalman Filter predictions in
figure 21 and are always overestimated by the Conservative Kalman Filter.
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Figure 23 Estimation errors for x2 as a function of mean time between events for
the Discretized Bayesian Observer and the Full Kalman Filter. The conservative
predictions seem to be conservative for the most part. The Discretized Bayesian
Observer has a slight edge for low frequency of events while the Full Kalman Fil­
ter has a slight edge for high frequencies, probably because it is less susceptible
to discretization errors which seem to be noticeable when tmean < 0.4 for the for­
mer. The mean observer covariance seems to give a reasonable estimate of the
actual estimation error, though for some reason the Discretized Bayesian Observer
underestimates its own error slightly.

modest to high reference speeds and was not included in the compar­
ison.

The figure confirms that a higher frequency of events gives a lower
estimation error, up to a point. The conservative estimates obtained
from (14) are mostly conservative, being accurate for high frequencies.
The slack at low frequencies results because the Conservative Kalman
Filter disregards the information contained in a long period without
events.

It seems that the performance of the Discretized Bayesian Ob­
server starts to deteriorate somewhat for high frequencies, probably
due to discretization error. Simulations using a finer grid gave an im­
provement in this region. At the same time higher frequencies means
a more concentrated observer state that is appreciably in touch with
the walls only a small part of the time, meaning that a Kalman Filter
has a good chance of approximating the Bayesian Observer well.

The most remarkable result is probably that the difference be­
tween the Discretized Bayesian Observer and the Kalman Filter is so
small for a wide range of frequencies, the Discretized Bayesian Ob­
server having a slight edge only for low frequencies where its greater
complexity comes to use.
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Figure 24 Estimated and actual integrals xm
2 of the disturbance acceleration for

the Discretized Bayesian Observer with different reference speeds. Higher speeds
and higher frequency of events yields better tracking and shorter time delays.

To examine the tracking performance more closely the signal

xm
2 (t) =

∫ t

0
v(τ ) dτ

was adopted as the time integral of the disturbance acceleration. Es­
timates of xm

2 are readily available by combining an estimate of x2

with the deterministic effects of the known control acceleration.
In figures 24, 25, and 26 actual and estimated xm

2 have been plotted
for the three observers and different reference speeds. Here as well it
is seen that the frequency of events is the main influence on tracking
performance, and it also seems to have a direct influence on time
delay. The tracking achieved by the three observers is very similar.

In figure 26 it can be seen how the Simplified Kalman Filter fails.
When the error in the velocity estimate becomes too great, the ping
pong control applies erroneous control signals that happen to bring
the actual speed close to zero. The frequency of events drops and the
estimate deteriorates even more.

When an event does not occur in the expected time, the velocity
estimate of either of the first two observers decreases drastically in
magnitude, causing control action to drive the velocity against the
border. This seems to be enough to cause an actual event to occur
quite soon. The Simplified Kalman Filter appears to have trouble ap­
preciating the information contained in that no event has occurred for
a while, since it does not keep track of the time since the last event.
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Figure 25 Estimated and actual integrals xm
2 of the disturbance acceleration for

the Full Kalman Filter with different reference speeds. The tracking performance
is very similar to the Discretized Bayesian Observer in figure 24, though possibly
a bit worse for low reference speeds and a bit better for high reference speeds.

The robustness could probably be improved by letting it weight the
measurements higher in general, at the cost of some accuracy.

It seems that while the approximation from the Bayesian Observer
to the Full Kalman Filter is quite straightforward and does not involve
very much compromise in this case, the approximation to the Simpli­
fied Kalman Filter is delicate and has to be tailored to the expected
operating conditions.

Conclusions and future work

This thesis shows that the area of log­concave observers comprises an
interesting field where powerful statements can be made while main­
taining considerable generality. The beginnings of an analysis hints
at the possibility that many more useful properties can be derived
under similar assumptions.

The theory shows that observers for log­concave systems are in
many ways very well behaved; almost as well behaved as Kalman
Filters in some respects. This places the observer problem for log­
concave systems much closer to the linear Gaussian case than the
general nonlinear case, implying that log­concave observers should
be easier to design and require less computing power than general
nonlinear ones.
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Figure 26 Estimated and actual integrals xm
2 of the disturbance acceleration for

the Simplified Kalman Filter with different reference speeds. The tracking perfor­
mance in general is close to but probably a little worse than for the Full Kalman
Filter in figure 25. The main problem is tracking robustness, which can be seen in
the bottom left corner where the observer estimate suddenly becomes too bad for
reliable ping pong control.

The Event Based Accelerometer example shows that a Kalman Fil­
ter can provide a good approximate observer for a log­concave system
even with a hard non­Gaussianity such as a discontinuous rectangular
window measurement function.

In conclusion, it should be possible to find good approximate ob­
servers for many log­concave systems with moderate effort, and with­
out using heavier artillery such as Particle Filters. Further develop­
ments in the theory of log­concave observers would certainly be an aid
in such efforts. Additional assumptions of an entirely different nature
from strong log­concavity might be necessary to form a powerful the­
ory.

Much remains to be explored. Among some interesting points are

• Results on how to make approximations of log­concave observers
that are good rather than conservative.

• Results on the behavior of expected values and other proper­
ties of probability densities in log­concave observers, apart from
estimate covariances.

• Observers that exploit the property of log­concavity in a system.
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A. Some properties of log­concave and

strongly log­concave functions

In this appendix we derive some properties of (strongly) log­concave
functions that will be needed for the proof of theorem 2.

Bounding functions

In this section we shall consider log­concave functions in one dimen­
sion (or the behavior of multivariate functions on a single line). As
a definition for log­concavity, one can take the following conditions:
f (x) is log­concave iff f (x) ≥ 0 and

f (x) ≥ f (x1)1−λ f (x2)λ , (15)
x = (1 − λ)x1 + λ x2, λ ∈ [0, 1] (16)

for all x1, x2 ∈ R. We will now show that the converse inequality holds
when λ ∈ R \ (0, 1).

Assuming λ �= 0 we can solve (16) for x2,

λ x2 = (λ − 1)x1 + x =;

=; x2 =
(

1 − 1
λ

)

x1 + 1
λ x =

= (1 − µ)x1 + µx,

where µ = 1
λ . Putting λ = 1

µ in (15) yields

f (x) ≥ f (x1)1− 1
µ f (x2) 1

µ =;
=; f (x)µ ≥ f (x1)µ−1 f (x2) =;

=; f (x1)1−µ f (x)µ ≥ f (x2),

assuming f (x1) > 0. Putting y = x2, y1 = x1 and y2 = x we find that

f (y) ≤ f (y1)1−µ f (y2)µ ,
y = (1 − µ)y1 + µ y2, µ ∈ (1, ∞).

When µ = 1 the inequality reads

f (y) ≤ f (y2),
y = y2,

which is trivially true, so that the range of µ can be extended to [1, ∞).
Letting ν = 1 − µ now yields

f (y) ≤ f (y2)1−ν f (y1)ν ,
y = (1 − ν)y2 + ν y1, ν ∈ (−∞, 0].

Summarizing we find that given a log­concave function f (x),
any x1 , x2 ∈ R and letting

x = (1 − λ)x1 + λ x2

f (x) satisfies

f (x) ≥ f (x1)1−λ f (x2)λ , λ ∈ [0, 1],
f (x) ≤ f (x1)1−λ f (x2)λ , λ ∈ R \ (0, 1), (17)
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whenever the exponentiations are defined.
We now turn to the strongly log­concave case to derive a similar

inequality. Letting q = p−1 and

n(x) = e− 1
2 qx2 ,

the condition on strong log­concavity for any function f (x) = n(x) f0(x)
is that

f (x) ∈ LC (p) :; f0(x) ∈ LC .

This means that if f (x) ∈ LC (p) then

f0(x) = f (x)
n(x)

is log­concave. Thus, letting λ ∈ [0, 1] we can apply (15) to f0, yielding

f (x)
n(x) ≥

(

f (x)
n(x1)

)1−λ (
f (x2)
n(x2)

)λ
=;

=; f (x) ≥ n(x)
n(x1)1−λn(x2)λ f (x1)1−λ f (x2)λ (18)

where x is given by (16). Inserting (16) into

ln
( n(x)

n(x1)1−λn(x2)λ

)

= 1
2

q
(

−x2 + (1 − λ)x2
1 + λ x2

2

)

=

= 1
2

q
(

−
(

(1 − λ)x1 + λ x2
)2 + (1 − λ)x2

1 + λ x2
2

)

=

= 1
2

q
(

−(1 − λ)2x2
1 − 2λ(1 − λ)x1x2 − λ2x2

2 + (1 − λ)x2
1 + λ x2

2

)

=

= 1
2

q
(

(

(1 − λ) − (1 − λ2)
)

x2
1 − 2λ(1 − λ)x1x2 + (λ − λ2)x2

2

)

=

= 1
2

qλ(1 − λ)(x2
1 − 2x1x2 + x2

2) =

= 1
2

qλ(1 − λ)(x1 − x2)2

we find that
n(x)

n(x1)1−λn(x2)λ = e
1
2 qλ(1−λ)(x1−x2)2 .

Furthermore

λ(x1 − x2) = x1 + (λ − 1)x1 − λ x2 =
= x1 − x,

(1 − λ)(x1 − x2) = (1 − λ)x1 + λ x2 − x2 =
= x − x2 ,

so that we also can write

n(x)
n(x1)1−λn(x2)λ = e

1
2 q(x−x1)(x2−x).

Inserting this into (18) we find that

f (x) ≥ e
1
2 q(x−x1)(x2−x) f (x1)1−λ f (x2)λ , (19)

x = (1 − λ)x1 + λ x2, λ ∈ [0, 1].
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Looking at the derivation of (18) from (15) we find that it only involves
multiplication by the same positive constant on both sides, so that the
sign of the inequality does not matter. Hence we conclude that (19)
holds with the converse inequality when λ ∈ R \ (0, 1).

Summarizing we find that given a strongly log­concave function
f ∈ LC (q−1), any x1 , x2 ∈ R and letting

x = (1 − λ)x1 + λ x2 (20)

f (x) satisfies

f (x) ≥ e
1
2 q(x−x1)(x2−x) f (x1)1−λ f (x2)λ , λ ∈ [0, 1], (21)

f (x) ≤ e
1
2 q(x−x1)(x2−x) f (x1)1−λ f (x2)λ , λ ∈ R \ (0, 1), (22)

whenever the exponentiations are defined, that is, the exponential
function bounding a log­concave function from above or below depend­
ing on the interval is replaced by a Gaussian function with the spread
of e− 1

2 qx2
.

Boundedness

All log­concave functions are ≥ 0 and hence a log­concave function is
bounded iff it is bounded from above.

Consider any log­concave function f (x) on a bounded interval I.
If there exists less than three x ∈ I such that f (x) > 0 then f (x) is
clearly bounded on I. Otherwise, let x1 < x2 < x3 be three points in
I such that f (xi) > 0, i ∈ {1, 2, 3}. We can then apply (17) using x1

and x2 to show that f (x) is bounded by an exponential function when
x ∈ I \ (x1, x2). Similarly, we can apply (17) using x2 and x3 to show
that f (x) is bounded by an exponential function when x ∈ I \ (x2, x3).
Since I is bounded, both exponential functions are bounded on I and
hence f (x) is bounded on I.

If f (x) is strongly log­concave we can apply (22) instead of (17),
which shows that f (x) is bounded by at least one of two Gaussian
functions for each x. Since any Gaussian function is bounded on R we
can let I = R and the conclusion still holds. Also, as any Gaussian
function goes to zero as hxh → ∞, f (x) → 0 as hxh → ∞.

Summarizing, we find that any log­concave function is bounded
on any bounded interval, and any strongly log­concave function is
bounded on R and goes to zero as hxh → ∞.

Continuity and the hypographic closure

Any convex function is continuous on the interior of its domain, imply­
ing that any log­concave function is continuous on the interior of its
support. It is often convenient to assume that the continuity extends
to the closure of the support. If this is not true then it can be remedied
by changing the values of the function on a set of zero measure.

DEFINITION 3—HYPOGRAPHIC CLOSURE

The hypographic closure f (x), x ∈ R of a function n(x) is defined as

f (x) = lim
t→0+

sup
hy−xh≤t

n(y) (23)

A function is hypographically closed iff it is the hypographic closure
of itself.

A function f is hypographically closed iff its hypograph {(x, y); y ≤
f (x)} is a closed set.

37



LEMMA 1—HYPOGRAPHIC CLOSURE

If n(x), x ∈ R is log­concave the hypographic closure f (x) of n(x) exists
and is log­concave, and is continuous on the closure of its support. The
hypographic closure satisfies

f (x) ≥ n(x)

where f (x) �= n(x) for no more than two points x ∈ R. Furthermore

sup
x∈R

f (x) = sup
x∈R

n(x).

Proof. Consider the definition (23). Since n(x) is log­concave, it is
bounded on any bounded interval and the supremum exists for all t.
Furthermore suphy−xh≤t n(y) is a decreasing function for decreasing t

and is bounded from below by zero. Hence, the limit (23) exists for all
x.

If n is continuous in a neighborhood of x, then n(x) = f (x). We
know that this is true for the interior of the support Sn = {x; n(x) �=
0}, and trivially also for the exterior of the support, where n(x) is
zero.

Consider now the behavior of f (x) on the boundary V Sn of Sn .
Since n(x) is log­concave Sn is a convex set, which in one dimension
amounts to an interval. This means that either

• Sn has no boundary. Then f (x) = n(x) and the lemma is true.

• Sn consists of a single point xb. Then

sup
hy−xbh≤t

n(y) = n(xb)

for all t > 0 so that f (xb) = n(xb). Sn is closed and the lemma is
true.

• Sn has positive measure and one or two boundary points xb.
Then f (xb) is the maximum of n(xb) and the limit of n(y) when
y goes to xb from the interior. Let xi be some point in the interior
of Sn . Then we can apply (15) to find

n(x) ≥ n(xb)1−λn(xi)λ ,
x = (1 − λ)xb + λ xi, λ ∈ [0, 1],

where x will be some point in the interior of Sn . When λ → 0 we
know that x → xb, and we see that the limit of n(x) at xb from
the interior is bounded from below by n(xb)1−λn(xi)λ which goes
to n(xb) as λ → 0. Thus the limit of n(x) when x → xb from the
interior is no less than n(xb) and we find that

f (xb) = lim
x→xb ,x∈Sn\{xb}

n(x). (24)

Since f (xb) is the limit of f (x) as x goes to xb from the in­
terior, f (x) is continuous on Sf ∪ V Sf , which is the closure
of Sf . Since f (xb) is a limit of values of n(x) we have that
f (xb) ≤ supx∈R n(x). At the same time, f (x) ≥ n(x) so that

sup
x∈R

f (x) = sup
x∈R

n(x).
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Finally, we must prove that f is log­concave, which means that we
must verify that (15) holds. It is enough to verify this when x1 , x2 ∈ Sf ,
since the right hand side evaluates to 0 otherwise. Using that (15)
holds for n we can replace x1 and x2 with sequences that approach
these points from the interior, taking limits and using that n is con­
tinuous in the interior and (24) we find that

n(x) ≥ f (x1)1−λ f (x2)λ ,

under the conditions of (16). Using that f (x) ≥ n(x) completes the
proof.

Unimodality of strongly log­concave functions

Consider any function f ∈ LC (p) defined on the real line, letting
q = p−1. Then (22) holds. Let x1 , x2 ∈ Sf be two distinct points such
that x2 > x1. If two such points do not exist then f (x) assumes it’s
maximum value either at a single point or (only if f (x) � 0) on the
entire real line.

Otherwise, since f (x) ≥ 0 and f (x) → 0 as hxh → ∞ there exists
some closed and bounded interval I such that

sup
x∈R

f (x) = sup
x∈I

f (x).

Assuming that f is hypographically closed, I can be chosen as a com­
pact subset of the closure of the support of f , and since f is continuous
on this interval, f (x) assumes its maximum value.

Let us now assume that f (x) is not identically zero and assumes
its maximum value at some point Mx,

f (x) ≤ f (Mx) ∀ x ∈ R.

Fixing some arbitrary x and letting x1 = Mx and

x2 = x1 + 1
λ

(x − x1), λ ≥ 1

so that x = (1 − λ)x1 + λ x2 we can apply (22) to find

f (x) ≤ e
1
2 q(x−Mx)(x2−x) f (Mx)1−λ f (x2)λ =

= e
1
2 q(x−Mx)(x2−x) f (Mx)

(

f (x2)
f (Mx)

)λ
≤

≤ e
1
2 q(x−Mx)(x2−x) f (Mx),

and since the right hand side is a continuous function of x2 we can
let λ → ∞ so that x2 → Mx, finding that

f (x) ≤ e
1
2 q(x−Mx)(Mx−x) f (Mx) =

= e− 1
2 q(x−Mx)2

sup
y∈R

f (y).

We see that f (x) < f (Mx) when x �= Mx. Thus any strongly log­
concave function that assumes its maximum value does so at a single
point Mx, and the function is bounded from above by the inequality

f (x) ≤ e− 1
2 q(x−Mx)2

sup
y∈R

f (y). (25)
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For any strongly log­concave function f (x) the result can be applied to
the hypographic closure of f , yielding the conclusion that f assumes
or approaches its supremum at single point Mx, and the inequality
still holds.

We shall now consider the monotonicity of log­concave functions.
Let f (x) be a log­concave function that assumes its maximum at x =
Mx. Let x2 = Mx and let x, x1 ∈ R be two points such that hx1 − Mxh <
hx − Mxh and x − Mx and x1 − Mx have the same sign. Then (17) can
be applied to find

f (x) ≤ f (x1)1−λ f (Mx)λ =

= f (x1)
(

f (Mx)
f (x1)

)λ
≤

≤ f (x1)

since λ < 0 and f (Mx) is the maximum value of f . Thus f is increas­
ing if x ≤ Mx and decreasing if x ≥ Mx.

B. Proof of theorems on strongly

log­concave functions

Multiplication

Let f ∈ LC (F) and n ∈ LC (G). Then

h(x) = f (x)n(x) =
= e− 1

2 xT F−1x e− 1
2 xT G−1x ⋅ f0(x)n0(x) =

= e− 1
2 xT (F−1+G−1)x ⋅ f0(x)n0(x) =

= e− 1
2 xT H−1x ⋅ h0(x),

where f0 and n0 are log­concave, h0(x) = f0(x)n0(x) and H−1 = F−1 +
G−1. Thus h0 is log­concave and so h ∈ LC (H).

Affine transformation

Let f ∈ LC (F), A ∈ R
n�n and b ∈ R

n. Then

n(x) = f (Ax + b) =
= e− 1

2 (Ax+b)T F−1(Ax+b) ⋅ f0(Ax + b) =
= e− 1

2 (xT AT F−1 Ax+2bT F−1 Ax+bT F−1b) ⋅ f0(Ax + b) =
= e− 1

2 xT (A−T FA−1)−1x ⋅
(

e− 1
2 bT F−1be−(AT F−1b)T x f0(x)

)

=

= e− 1
2 xT G−1x ⋅ n0(x),

where
n0(x) = e− 1

2 bT F−1be−(AT F−1b)T x f0(x)
and

G = A−T FA−1.

We see that n0 is the product of a constant, an exponential function
and a log­concave function. Since all these are log­concave, so is n0.
Thus n ∈ LC (G).
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Convolution

For the following proof we shall need a matrix identity. Let A, B be
positive definite matrices and x, y be vectors. Furthermore, let

C = (A−1 + B−1)−1 = A(A + B)−1B ,
z = y − (A + B)−1Bx.

Then

xT Cx + zT(A + B)z =
= xT Cx +

(

yT − xT B(A + B)−1
)

(A + B)
(

y − (A + B)−1Bx
)

=
= xT Cx + yT(A + B)y − 2yT(A + B)(A + B)−1Bx + xT B(A + B)−1(A + B)(A + B)−1B

= xT Cx + yT(A + B)y − 2yT Bx + xT B(A + B)−1Bx.

Rearranging and inserting the definition of C gives

xT Cx + zT(A + B)z =
= yT Ay + yT By − 2yT Bx + xT B(A + B)−1Bx + xT A(A + B)−1Bx =
= yT Ay + yT By − 2yT Bx + xT(A + B)(A + B)−1Bx =
= yT Ay + yT By − 2yT Bx + xT Bx =
= yT Ay + (x − y)T B(x − y).

We observe that both A + B and C = (A−1 + B−1)−1 are positive
definite.

Let f ∈ LC (F) and n ∈ LC (G). Then the convolution of f and n
is

h(x) = ( f ∗ n)(x) =
∫

f (y)n(x − y) dy =

=
∫

e− 1
2 yT F−1ye− 1

2 (x−y)T G−1(x−y) ⋅ f0(y)n0(x − y) dy =

=
∫

e− 1
2

(

yT F−1y+(x−y)T G−1 (x−y)
)

⋅ f0(y)n0(x − y) dy.

Letting A = F−1, B = G−1 and C = H−1 = (F + G)−1 and using the
matrix identity (26) yields

h(x) =
∫

e− 1
2

(

xT Hx+zT (F−1+G−1)
)

z ⋅ f0(y)n0(x − y) dy =

= e− 1
2 xT Hx

∫

e− 1
2 zT (F−1+G−1)z ⋅ f0(y)n0(x − y) dy,

where z = y − FH−1x. The integrand is the product of three log­
concave functions and is thus log­concave, so that

h0(x) =
∫

e− 1
2 zT (F−1+G−1)z ⋅ f0(y)n0(x − y) dy

is a log­concave function of x and

h(x) = e− 1
2 xT Hx ⋅ h0(x)

is a strongly log­concave function, h ∈ LC (H).
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A useful lemma

The proof of this lemma requires application of many of the properties
of log­concave functions derived in appendix A.

LEMMA 2—EXPECTATION BOUND

Let f (x) ∈ LC (p), p > 0 be a probability density in one dimension and
Mx ∈ R be the unique value such that f (x) is increasing for x < Mx

and decreasing for x > Mx. Then

∫

w(hx − Mxh) f (x) dx ≤ 1√
2π p

∫

w(hxh)e−1
2 p−1x2

dx

where w(x), x ≥ 0 is any nonnegative increasing function of x such
that the right hand integral exists.

Proof. Since the theorem only concerns integrals of f and a log­concave
function coincides with its hypographic closure except for on a set of
zero measure, f can be assumed to be hypographically closed without
loss of generality. Thus f (x) assumes its maximum value at some x =
Mx. Using the definition of strong log­concavity, f (x) can be written
as

f (x) = e− 1
2 q(x−Mx)2

f0(x)

where q = p−1, f0 ∈ LC , and the property (25) implies that f0(x)
assumes its maximum for x = Mx. The function

n0(x) = f0(x − Mx) + f0(−x − Mx), x ≥ 0

defined only for x ≥ 0 is then decreasing in x because of the unimodal­
ity of log­concave functions, as is

n(x) = f (x − Mx) + f (−x − Mx) = e− 1
2 qx2n0(x), x ≥ 0.

Let

C =
(
∫ ∞

0
e− 1

2 qx2

)−1

=
√

2q

π
.

Since n0 is decreasing in x, either

• There exists some x0 ≥ 0 such that

n0(x) ≥ C, x ≤ x0

n0(x) ≤ C, x ≥ x0

• Either n0(x) > C for all x or n0(x) < C for all x. But

∫ ∞

0
e− 1

2 qx2n0(x)dx =
∫ ∞

0
n(x)dx =

∫ ∞

−∞
f (x)dx = 1

and
∫ ∞

0
e− 1

2 qx2
Cdx = 1,

which can not both be true if n0(x) is almost everywhere con­
tinuous and everywhere less than or everywhere greater than
C.
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Thus there must exist some x0 that satisfies the conditions given
above. Then

d =
∫

w(hx − Mxh) f (x)dx −
∫

w(hx − Mxh)
1
2

Ce− 1
2 q(x−Mx)2

dx =

=
∫

w(hx − Mxh)e− 1
2 q(x−Mx)2( f0(x) − 1

2
C)dx =

=
∫ ∞

0
w(x)e−1

2 qx2(n0(x) − C)dx =

=
∫ x0

0
w(x)e−1

2 qx2(n0(x) − C)dx +
∫ ∞

x0

w(x)e−1
2 qx2(n0(x) − C)dx.

In the first integral the integrand is positive, so it can be overesti­
mated by replacing w(x) with its maximum value in the range, that
is w(x0). In the second integral the integrand is negative, so it can
be overestimated by replacing w(x) with its minimum value in the
range, which is also w(x0). Thus

d ≤
∫ x0

0
w(x0)e− 1

2 qx2(n0(x) − C)dx +
∫ ∞

x0

w(x0)e− 1
2 qx2(n0(x) − C)dx =

= w(x0)
∫ ∞

0
e− 1

2 qx2(n0(x) − C)dx =

= w(x0)
∫ ∞

0
(n(x) − Ce− 1

2 qx2)dx = 0

since both terms in the integrand integrate to one by themselves. We
find that

∫

w(hx − Mxh) f (x) dx ≤
∫

w(hx − Mxh)1
2

Ce− 1
2 q(x−Mx)2

dx =

=
√

q

2π

∫

w(hxh)e−1
2 qx2

dx,

which concludes the proof.

COROLLARY 1—ML / LEAST SQUARES DEPENDENCE

Let f (x) ∈ LC (p) be a probability density in one dimension that
assumes its maximum at x = Mx and let mx = Ex ( f (x)). Then

hmx − Mxh ≤
√

2p

π .

This is a bound on the difference between the maximum likelihood
and the least squares estimate obtained from f (x).

Proof. Let w(x) = hxh. Then lemma 2 can be applied to find

hmx − Mxh =
∣

∣

∣

∣

∫

(x − Mx) f (x) dx

∣

∣

∣

∣

≤

≤
∫

hx − Mxh f (x) dx ≤

≤ 1√
2π p

∫

hxhe− 1
2 p−1x2

dx =
√

2p

π .
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Bounded variance

We shall begin by proving the theorem in one dimension. Using lemma
2 we find that

∫

(x − Mx)2 f (x)dx ≤ 1√
2π p

∫

x2e− 1
2 p−1x2

dx = p.

At the same time the second moment of f assumes its minimum
around x = mx :
∫

(x − Mx)2 f (x)dx =
∫

(

(x − mx) + (mx − Mx)
)2

f (x) dx =

=
∫

(

(x − mx)2 + 2(x − mx)(mx − Mx) + (mx − Mx)2) f (x) dx =

=
(
∫

(x − mx)2 f (x) dx

)

+ 2(mx − mx)(mx − Mx) + (mx − Mx)2 =

= Covx

(

f (x)
)

+ (mx − Mx)2

so that
Covx

(

f (x)
)

≤ Covx

(

f (x)
)

+ (mx − Mx)2 ≤ p,

which proves the theorem in one dimension.
For the proof in R

n we shall need the following matrix inequality.
Let Q be a positive definite matrix and x and y be vectors; then

(xT Qy)2 ≤ (xT Qx)(yTQy).

This is the Cauchy­Schwartz inequality for the inner product (xhy) =
xT Qy. Letting y = Q−1z the inequality is transformed into

(xT QQ−1z)2 ≤ (xT Qx)
(

(Q−1z)T QQ−1z
)

=;
=; (xTz)2 ≤ (xT Qx)(zT Q−1z),

where Q−1 exists and is positive definite since Q is positive definite.
Assuming z �= 0 we find

(xTz)(zTx)(zT Q−1z)−1 ≤ xT Qx =;
=; xT

(

z(zT Q−1z)−1zT
)

x ≤ xT Qx

which is the same as to say that

z(zT Q−1z)−1zT ≤ Q.

Now consider the probability density f (x) ∈ LC (P). If the expecta­
tion mx is not zero, it can be made zero by the simple transformation
n(x) = f (x − mx), which does not alter the variance of f . Therefore,
without loss of generality, let mx = 0. Let ez be a unit vector. Then
f (x) can be written as

f (x) = e− 1
2 xT P−1x ⋅ f0(x) =

= e− 1
2 xT Qr x ⋅

(

e− 1
2 xT (P−1−Qr )x f0(x)

)

=

= e− 1
2 xT Qr x ⋅ f1(x)

where f0 is log­concave and

Qr = ez(ez
T Pez)−1ez

T ≤ P−1.
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Since P−1−Qr ≥ 0 the function e− 1
2 xT (P−1−Qr )x is log­concave and hence

f1 is log­concave. Letting V = Covx

(

f (x)
)

and looking at the variance
along the ez direction we see that

ez
T Vez =

∫

ez
TxxTez f (x) dx.

We can split the integral by letting x = y + tez, where y ∈ [ez]⊥ =
{y ∈ R

n; yTez = 0} and dx = dy dt, finding

ez
T Vez =

∫

t∈R

∫

y∈[ez ]⊥
ez

T(y + tez)(y + tez)Tez f (y + tez) dy dt =

=
∫

t∈R

t2 ⋅ e− 1
2 (y+tez)T Qr (y+tez)

∫

y∈[ez ]⊥
f1(y + tez) dy dt =

=
∫

t∈R

t2e− 1
2 (ez

T Pez)−1t2

(
∫

y∈[ez ]⊥
f1(y + tez) dy

)

dt,

since Qry = 0. The inner integral is the marginal density of f1 along
ez as a function of t; since f1 is log­concave, so is the integral. Thus
the outer integrand save t2 is strongly log­concave with p = ez

T Pez.
Furthermore it has zero expectation and the result in one dimension
can be applied to find that

ez
T Vez ≤ ez

T Pez =;
=; V ≤ P,

which proves the theorem.
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